Since $-5 \equiv 3 \pmod{4}$, $\mathbb{Z}\left[\sqrt{-5}\right]$ is the ring of integers of $\mathbb{Q}\left[\sqrt{-5}\right]$. Let $p \mid k^2 + 5$.

Claim 1. The ideal (p) can be decomposed as $p\overline{p}$ for some ideal $p \neq \overline{p}$.

Proof. Let $\mathbf{p} = (p, k + \sqrt{-5})$. Then $\mathbf{p}\overline{\mathbf{p}} = (p^2, pk \pm p\sqrt{-5}, k^2 + 5)$. All the generators are divisible by p, hence $\mathbf{p}\overline{\mathbf{p}} \subseteq (p)$. However, the gcd of p^2 and $(pk + p\sqrt{-5}) + (pk - p\sqrt{-5})$ is p, thus $(p) \subseteq \mathbf{p}\overline{\mathbf{p}}$. Assume $\mathbf{p} = \overline{\mathbf{p}}$, then $Ap + B(k - \sqrt{-5}) = k + \sqrt{-5}$ for some $A, B \in \mathbb{Z} [\sqrt{-5}]$. Write $A = a_1 + a_2\sqrt{-5}$ and $B = b_1 + b_2\sqrt{-5}$ and thus

$$\begin{cases} a_1p + kb_1 + 5b_2 = k \\ a_2p - b_1 + kb_2 = 1 \end{cases} \implies (a_1 + ka_2)p + (5 + k^2)b_2 = 2k$$

has solutions for integers a_1, a_2, b_1, b_2 . This is impossible as $p \mid \text{LHS}$ but $p \nmid \text{RHS}$.

Claim 2. The class group of $\mathbb{Z}\left[\sqrt{-5}\right]$ is C_2 .

It suffices to prove that there are only two types of sub- $\alpha\sqrt{-5}$ Proof. lattices in $\mathbb{Z}\left[\sqrt{-5}\right]$ up to orientation-preserving transformations. Let \mathcal{L} be a sublattice of $\mathbb{Z}\left[\sqrt{-5}\right]$ and α be nonzero with minimal norm. Therefore \mathcal{L} contains the sublattice \mathcal{A} spanned by $(\alpha, \alpha\sqrt{-5})$. If $\mathcal{L} = \mathcal{A}$ then this ideal is just (α), otherwise let $\beta \in \mathcal{L} \setminus \mathcal{A}$ be situated in the parallelogram $x\alpha + y\alpha\sqrt{-5}$ where $0 \le x, y < 1$. Note that β cannot lie inside the four quarter circles as shown on the right due to minimality of α . For the remaining region, any β lying there, multiplied by two, will be $< |\alpha|$ distance away from some point in \mathcal{A} (Verified by applying an origin-homothety with scale 2 onto the circle and the two semicircles). Therefore, $2\beta \in \mathcal{A}$, i.e. $\beta = \frac{\sqrt{-5}}{2}\alpha$ or $\frac{1+\sqrt{-5}}{2}\alpha$ (The two points labelled in the diagram). The former implies $-\frac{5}{2}\alpha \in \mathcal{L} \Rightarrow \frac{1}{2}\alpha \in \mathcal{L}$, contradicting minimality of α . Thus $\beta = \frac{1+\sqrt{-5}}{2}\alpha$. Therefore any ideal is in the form (α) or $\left(\alpha, \frac{1+\sqrt{-5}}{2}\alpha\right)$.

By claim 2, the product of any two ideals in the same ideal class belongs to the unit ideal class, i.e. is a principal ideal. Therefore $\mathfrak{pp} = (x)$ for some $x \in \mathbb{Z}[\sqrt{-5}]$. We know $x \neq p$ otherwise $\mathfrak{p} = \overline{\mathfrak{p}}$ by the cancellation law, hence

$$(p^2) = (p)(p) = \mathfrak{p}\overline{\mathfrak{p}}\mathfrak{p}\overline{\mathfrak{p}} = \mathfrak{p}\mathfrak{p}\overline{\mathfrak{p}}\overline{\mathfrak{p}} = (x)(\overline{x}) = (x\overline{x})$$

i.e $p^2 = x\overline{x} = (m + n\sqrt{-5})(m - n\sqrt{-5}) = m^2 + 5n^2$ for some $(m, n) \neq (p, 0)$.

Generalising.

The ring of integers \mathcal{O} of $\mathbb{Q}\left[\sqrt{-d}\right]$ is $\mathbb{Z}\left[\sqrt{-d}\right]$ for $-d \equiv 2,3 \pmod{4}$ squarefree. I will only analyse the case $-d \equiv 2,3 \pmod{4}$ for simplicity. We see that

$$\frac{\mathcal{O}}{(p)} \cong \frac{\mathbb{Z}[x]}{(p, x^2 + d)} \cong \frac{\mathbb{F}_p[x]}{(x^2 + d)} \cong \frac{\mathbb{F}_p[x]}{(x + k)} \times \frac{\mathbb{F}_p[x]}{(x - k)}$$

where $p \mid k^2 + d$. The last step holds because when p > d, the numbers k and -k are distinct mod p and we apply CRT. The maximal (\Leftrightarrow prime) ideals of $\mathcal{O}/(p)$ are thus the preimages of (x + k) and (x - k), which are $\mathfrak{p} = (p, \sqrt{-d} + k)$ and $\overline{\mathfrak{p}} = (p, \sqrt{-d} - k)$ respectively. Therefore $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ where $\mathfrak{p} \neq \overline{\mathfrak{p}}$ (so p does not ramify).

Claim. There exists an expression $p^2 = m^2 + dn^2$ $(n \neq 0)$ for all integer primes p > d if and only if the class group of \mathcal{O} is

$$C_2 \times C_2 \times \cdots \times C_2.$$

Proof. (\Leftarrow) The order of every class is 1 and 2, thus $p\overline{p} = (x)$ for some x. Since p does not ramify, $p \neq \overline{p}$ and hence $x \neq p$. Therefore $(p^2) = (p)(p) = pp\overline{p}\overline{p} = (x)(\overline{x}) \Rightarrow p^2 = x\overline{x}$. (\Rightarrow) Assume some ideal class $\langle \mathfrak{a} \rangle$ has order > 2. Then \mathfrak{aa} is not principal. Decomposing \mathfrak{a} into prime ideals, there must exist some prime ideal \mathfrak{p} where \mathfrak{pp} is not principal. Let $p\overline{p} = (p) \Rightarrow (p^2) = pp\overline{p}\overline{p}$ is not expressible as a product of conjugate principal ideals.

Therefore, the problem statement after changing 5 to d works if and only if the class group is $C_2 \times C_2 \times \cdots \times C_2$. (From Internet:) The values of d for which the class group is C_2 are 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427. The values of d for which the class group is C_1 are 1, 2, 3, 7, 11, 19, 43, 67, 163. Picking those with $-2, -3 \pmod{4}$, we have d = 1, 2, 5, 6, 10, 13, 22, 37, 58. Also, $\mathbb{Z}\left[\sqrt{-21}\right]$ has class group $C_2 \times C_2$, so d = 21 works too. Therefore,

$$d = 1, 2, 5, 6, 10, 13, 21, 22, 37, 58$$

all work. There might be others.

2

Problem 2.

Let $S \subseteq \mathbb{N}$ be the set of integers expressible as a sum of distinct squares. Denote $N_4 = \{4^n \mid n \in \mathbb{N}\}, N_9 = \{9^n \mid n \in \mathbb{N}\}$. Denote $[x, y] = \{x, x + 1, \dots, y\}$.

Claim 1. $\forall \varepsilon > 0$, there exists infinitely many $(a, b) \in \mathbb{N}$ such that $\left| \frac{4^a}{9^b} - 1 \right| < \varepsilon$.

Proof. If $\varepsilon \geq 1$ it is obvious. Assume $\varepsilon < 1$. The statement is equivalent to

$$\ln(1-\varepsilon) < a\ln 4 - b\ln 9 < \ln(1+\varepsilon) \tag{(*)}$$

It is well-known (Dirichlet) that any $n \in \mathbb{N}$, there exists infinitely many a, b such that

$$-\frac{1}{n} < a \cdot \frac{\ln 4}{\ln 9} - b < \frac{1}{n}$$
$$\Leftrightarrow -\frac{\ln 9}{n} < a \ln 4 - b \ln 9 < \frac{\ln 9}{n}$$

hence we just have to choose $n > \frac{\ln 9}{\min(|\ln(1-\varepsilon)|, |\ln(1+\varepsilon)|)}$ so (*) is satisfied. Claim 2. $x \in S \Rightarrow 4x, 4x + 1, 4x + 10, 4x + 35 \in S$.

Proof.
$$x = \sum x_i^2 \Rightarrow 4x + k = \sum (2x_i)^2 + k$$
 for $k = 0, 1^2, 1^2 + 3^2, 1^2 + 3^2 + 5^2$.

Claim 3. $x \in S \Rightarrow 9x, 9x+1, 9x+20, 9x+21, 9x+4, 9x+5, 9x+42, 9x+16, 9x+17 \in S.$ *Proof.* $x = \sum x_i^2 \Rightarrow 9x + k = \sum (3x_i)^2 + k$ for k a sum of numbers in $\{1^2, 2^2, 4^2, 5^2\}$. \Box

Claim 4. If $[x, y] \subseteq S$, then $[k(x + 12), ky] \subseteq S$ for any $k \in N_4 \cup N_9$.

Proof. From Claim 2 and Claim 3, we have $[x, y] \subseteq S \Rightarrow [4x + 35, 4y], [9x + 42, 9y] \subseteq S$. By induction, for any $m, n \in \mathbb{N} \cup \{0\}$

$$\begin{bmatrix} 4^n x + 35(1 + 4 + \dots + 4^{n-1}), \ 4^n y \end{bmatrix} \subseteq \mathcal{S} \qquad \begin{bmatrix} 9^m x + 42(1 + 9 + \dots + 9^{m-1}), \ 9^m y \end{bmatrix} \subseteq \mathcal{S} \\ \begin{bmatrix} 4^n x + \frac{35}{3}(4^n - 1), \ 4^n y \end{bmatrix} \subseteq \mathcal{S} \qquad \begin{bmatrix} 9^m x + \frac{42}{8}(9^m - 1), \ 9^m y \end{bmatrix} \subseteq \mathcal{S} \\ \Rightarrow \begin{bmatrix} 4^n (x + 12), \ 4^n y \end{bmatrix} \subseteq \mathcal{S} \qquad \Rightarrow \begin{bmatrix} 9^m (x + 6), \ 9^m y \end{bmatrix} \subseteq \mathcal{S}$$

Since 12 > 6, we are done.

Define the *scale* of [a, b] as $\frac{b}{a}$.

Claim 5. Assume there is $[x, y] \subseteq S$ with $y \ge x + 13$. There exists $[x, y] \subseteq S$ (x > 0) with arbitrarily large scales.

Proof. By claim 1, there exists infinitely many $a, b \in N_4 \cup N_9$ such that $1 < \frac{b}{a} < \frac{y}{x+12.5}$. Choose a, b such that a > 25. We will prove by induction that there always exists $[x, y] \subseteq S$ with $\frac{y}{x+12.5} > \left(\frac{b}{a}\right)^n$. The base case n = 1 is done. Assume $[x, y] \subseteq S$ such that $\frac{y}{x+12.5} > \left(\frac{b}{a}\right)^{n-1} \ge \frac{b}{a}$. By claim 4, $[a(x+12), ay], [b(x+12), by] \subseteq S$

but ay > b(x + 12.5) > b(x + 12), hence $[a(x + 12), by] \subseteq S$ and

$$\frac{by}{a(x+12)+12.5} > \frac{b}{a} \cdot \frac{y}{x+12.5} \iff a > 25 \text{ is true, thus}$$
$$\frac{by}{a(x+12)+12.5} > \frac{b}{a} \cdot \frac{y}{x+12.5} > \frac{b}{a} \cdot \left(\frac{b}{a}\right)^{n-1} = \left(\frac{b}{a}\right)^n.$$

Thus $\forall n \ge 1 : \exists [x, y] \subseteq \mathcal{S}$ with $\frac{y}{x} > \frac{y}{x + 12.5} > \left(\frac{b}{a}\right)^n$. When $n \to \infty$, $\left(\frac{b}{a}\right)^n \to \infty$. \Box

Claim 6. Assume there is $[x, y] \subseteq S$ with $y \ge x + 13$. Then there exists N such that all integers $x \ge N$ are in S.

Proof. By claim 5, there exists some $[x, y] \subseteq S$ such that $y \ge 39x \ge 4x + 35$. Assume $[x, k-1] \subseteq S$ for some integer $k-1 \ge 4x + 35$. Suppose $k \notin S$, then by claim 2, one of k/4, (k-1)/4, (k-10)/4, (k-35)/4 is not in S. This is impossible as they are all at least x. Therefore $k \in S$, and by induction we are done.

It remains to find some $[x, x + 13] \in \mathcal{S}$:

$144 = 12^2$	$151 = 1^2 + 2^2 + 5^2 + 11^2$
$145 = 1^2 + 12^2$	$152 = 4^2 + 6^2 + 10^2$
$146 = 5^2 + 11^2$	$153 = 1^2 + 4^2 + 6^2 + 10^2$
$147 = 1^2 + 5^2 + 11^2$	$154 = 1^2 + 3^2 + 12^2$
$148 = 2^2 + 12^2$	$155 = 3^2 + 5^2 + 11^2$
$149 = 1^2 + 2^2 + 12^2$	$156 = 1^2 + 3^2 + 5^2 + 11^2$
$150 = 2^2 + 5^2 + 11^2$	$157 = 2^2 + 3^2 + 12^2$

and boom.

Problem 2 (Extra).

Let $\mathcal{S}\subseteq\mathbb{N}$ be the set of integers expressible as a sum of distinct m-th powers. We similarly have

$$x \in \mathcal{S} \Rightarrow 2^m x, 2^m x + \sum_{i=0}^k (2^m i + 1)^m \in \mathcal{S}$$

for any $k = 0, \dots, 2^m - 2$. Therefore, if we could verify that $[x, y] \subseteq S$ for some $y \ge 2^m x + \sum_{i=0}^{2^m-2} (2^m i + 1)^m$, then all $n \ge x$ lie in S.