
Proving for d = 5

Since −5 ≡ 3 (mod 4), Z
[√
−5
]

is the ring of integers of Q
[√
−5
]
. Let p | k2 + 5.

Claim 1. The ideal (p) can be decomposed as pp for some ideal p 6= p.

Proof. Let p =
(
p, k +

√
−5
)
. Then pp =

(
p2, pk ± p

√
−5, k2 + 5

)
. All the generators are

divisible by p, hence pp ⊆ (p). However, the gcd of p2 and
(
pk + p

√
−5
)

+
(
pk − p

√
−5
)

is p, thus (p) ⊆ pp. Assume p = p, then Ap + B
(
k −
√
−5
)

= k +
√
−5 for some

A,B ∈ Z
[√
−5
]
. Write A = a1 + a2

√
−5 and B = b1 + b2

√
−5 and thus{

a1p+ kb1 + 5b2 = k

a2p− b1 + kb2 = 1
⇒ (a1 + ka2)p+ (5 + k2)b2 = 2k

has solutions for integers a1, a2, b1, b2. This is impossible as p | LHS but p - RHS. �

Claim 2. The class group of Z
[√
−5
]

is C2.

Proof. It suffices to prove that there are only two types of sub-
lattices in Z

[√
−5
]

up to orientation-preserving transformations. Let

L be a sublattice of Z
[√
−5
]

and α be nonzero with minimal norm.

Therefore L contains the sublattice A spanned by
(
α, α
√
−5
)
. If

L = A then this ideal is just (α), otherwise let β ∈ L \ A be situated
in the parallelogram xα + yα

√
−5 where 0 ≤ x, y < 1. Note that β

cannot lie inside the four quarter circles as shown on the right due
to minimality of α. For the remaining region, any β lying there,
multiplied by two, will be < |α| distance away from some point in
A (Verified by applying an origin-homothety with scale 2 onto the

circle and the two semicircles). Therefore, 2β ∈ A, i.e. β =
√
−5
2 α or

1+
√
−5

2 α (The two points labelled in the diagram). The former implies

−5
2α ∈ L ⇒

1
2α ∈ L, contradicting minimality of α. Thus β = 1+

√
−5

2 α.

Therefore any ideal is in the form (α) or
(
α, 1+

√
−5

2 α
)

. �

α
√
−5

0 α

By claim 2, the product of any two ideals in the same ideal class belongs to the
unit ideal class, i.e. is a principal ideal. Therefore pp = (x) for some x ∈ Z

[√
−5
]
. We

know x 6= p otherwise p = p by the cancellation law, hence

(p2) = (p)(p) = pppp = pppp = (x)(x) = (xx)

i.e p2 = xx =
(
m+ n

√
−5
) (
m− n

√
−5
)

= m2 + 5n2 for some (m,n) 6= (p, 0). �
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Generalising.

The ring of integers O of Q
[√
−d
]

is Z
[√
−d
]

for −d ≡ 2, 3 (mod 4) squarefree. I
will only analyse the case −d ≡ 2, 3 (mod 4) for simplicity. We see that

O
(p)
∼=

Z[x]

(p, x2 + d)
∼=

Fp[x]

(x2 + d)
∼=

Fp[x]

(x+ k)
× Fp[x]

(x− k)

where p | k2 + d. The last step holds because when p > d, the numbers k and −k are
distinct mod p and we apply CRT. The maximal (⇔ prime) ideals of O/(p) are thus the
preimages of (x + k) and (x − k), which are p = (p,

√
−d + k) and p = (p,

√
−d − k)

respectively. Therefore (p) = pp where p 6= p (so p does not ramify).

Claim. There exists an expression p2 = m2 + dn2 (n 6= 0) for all integer primes p > d if
and only if the class group of O is

C2 × C2 × · · · × C2.

Proof. (⇐) The order of every class is 1 and 2, thus pp = (x) for some x. Since p does
not ramify, p 6= p and hence x 6= p. Therefore (p2) = (p)(p) = pppp = (x)(x)⇒ p2 = xx.
(⇒) Assume some ideal class 〈a〉 has order > 2. Then aa is not principal. Decompos-
ing a into prime ideals, there must exist some prime ideal p where pp is not principal.
Let pp = (p)⇒ (p2) = pppp is not expressible as a product of conjugate principal ideals.�

Therefore, the problem statement after changing 5 to d works if and only if the class
group is C2×C2×· · ·×C2. (From Internet:) The values of d for which the class group is
C2 are 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427. The values of d
for which the class group is C1 are 1, 2, 3, 7, 11, 19, 43, 67, 163. Picking those with −2,−3
(mod 4), we have d = 1, 2, 5, 6, 10, 13, 22, 37, 58. Also, Z

[√
−21

]
has class group C2×C2,

so d = 21 works too. Therefore,

d = 1, 2, 5, 6, 10, 13, 21, 22, 37, 58

all work. There might be others. �
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Problem 2.

Let S ⊆ N be the set of integers expressible as a sum of distinct squares. Denote
N4 = {4n | n ∈ N}, N9 = {9n | n ∈ N}. Denote [x, y] = {x, x+ 1, · · · , y}.

Claim 1. ∀ε > 0, there exists infinitely many (a, b) ∈ N such that

∣∣∣∣4a9b
− 1

∣∣∣∣ < ε.

Proof. If ε ≥ 1 it is obvious. Assume ε < 1. The statement is equivalent to

ln(1− ε) < a ln 4− b ln 9 < ln(1 + ε) (∗)

It is well-known (Dirichlet) that any n ∈ N, there exists infinitely many a, b such that

−1

n
< a · ln 4

ln 9
− b < 1

n

⇔ − ln 9

n
< a ln 4− b ln 9 <

ln 9

n

hence we just have to choose n >
ln 9

min(| ln(1− ε)|, | ln(1 + ε)|)
so (∗) is satisfied. �

Claim 2. x ∈ S ⇒ 4x, 4x+ 1, 4x+ 10, 4x+ 35 ∈ S.

Proof. x =
∑
x2i ⇒ 4x+ k =

∑
(2xi)

2 + k for k = 0, 12, 12 + 32, 12 + 32 + 52. �

Claim 3. x ∈ S ⇒ 9x, 9x+1, 9x+20, 9x+21, 9x+4, 9x+5, 9x+42, 9x+16, 9x+17 ∈ S.

Proof. x =
∑
x2i ⇒ 9x+ k =

∑
(3xi)

2 + k for k a sum of numbers in {12, 22, 42, 52}. �

Claim 4. If [x, y] ⊆ S, then [k (x+ 12) , ky] ⊆ S for any k ∈ N4 ∪N9.

Proof. From Claim 2 and Claim 3, we have [x, y] ⊆ S ⇒ [4x+ 35, 4y], [9x+ 42, 9y] ⊆ S.
By induction, for any m,n ∈ N ∪ {0}[

4nx+ 35(1 + 4 + · · ·+ 4n−1), 4ny
]
⊆ S[

4nx+
35

3
(4n − 1), 4ny

]
⊆ S

⇒ [4n (x+ 12) , 4ny] ⊆ S

[
9mx+ 42(1 + 9 + · · ·+ 9m−1), 9my

]
⊆ S[

9mx+
42

8
(9m − 1), 9my

]
⊆ S

⇒ [9m (x+ 6) , 9my] ⊆ S

Since 12 > 6, we are done. �

Define the scale of [a, b] as b
a .
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Claim 5. Assume there is [x, y] ⊆ S with y ≥ x + 13. There exists [x, y] ⊆ S (x > 0)
with arbitrarily large scales.

Proof. By claim 1, there exists infinitely many a, b ∈ N4∪N9 such that 1 <
b

a
<

y

x+ 12.5
.

Choose a, b such that a > 25. We will prove by induction that there always exists

[x, y] ⊆ S with
y

x+ 12.5
>

(
b

a

)n

. The base case n = 1 is done. Assume [x, y] ⊆ S such

that
y

x+ 12.5
>

(
b

a

)n−1
≥ b

a
. By claim 4,

[a (x+ 12) , ay] , [b (x+ 12) , by] ⊆ S

but ay > b (x+ 12.5) > b (x+ 12), hence [a (x+ 12) , by] ⊆ S and

by

a (x+ 12) + 12.5
>
b

a
· y

x+ 12.5
⇔ a > 25 is true, thus

by

a (x+ 12) + 12.5
>
b

a
· y

x+ 12.5
>
b

a
·
(
b

a

)n−1
=

(
b

a

)n

.

Thus ∀n ≥ 1 : ∃[x, y] ⊆ S with
y

x
>

y

x+ 12.5
>

(
b

a

)n

. When n→∞,

(
b

a

)n

→∞. �

Claim 6. Assume there is [x, y] ⊆ S with y ≥ x + 13. Then there exists N such
that all integers x ≥ N are in S.

Proof. By claim 5, there exists some [x, y] ⊆ S such that y ≥ 39x ≥ 4x + 35. As-
sume [x, k − 1] ⊆ S for some integer k − 1 ≥ 4x + 35. Suppose k 6∈ S, then by claim 2,
one of k/4, (k − 1)/4, (k − 10)/4, (k − 35)/4 is not in S. This is impossible as they are
all at least x. Therefore k ∈ S, and by induction we are done. �

It remains to find some [x, x+ 13] ∈ S:

144 = 122

145 = 12 + 122

146 = 52 + 112

147 = 12 + 52 + 112

148 = 22 + 122

149 = 12 + 22 + 122

150 = 22 + 52 + 112

151 = 12 + 22 + 52 + 112

152 = 42 + 62 + 102

153 = 12 + 42 + 62 + 102

154 = 12 + 32 + 122

155 = 32 + 52 + 112

156 = 12 + 32 + 52 + 112

157 = 22 + 32 + 122

and boom. �
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Problem 2 (Extra).

Let S ⊆ N be the set of integers expressible as a sum of distinct m-th powers. We
similarly have

x ∈ S ⇒ 2mx, 2mx+
k∑

i=0

(2mi+ 1)m ∈ S

for any k = 0, · · · , 2m − 2. Therefore, if we could verify that [x, y] ⊆ S for some

y ≥ 2mx+
∑2m−2

i=0 (2mi+ 1)m, then all n ≥ x lie in S. �
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