Since $-5 \equiv 3(\bmod 4), \mathbb{Z}[\sqrt{-5}]$ is the ring of integers of $\mathbb{Q}[\sqrt{-5}]$. Let $p \mid k^{2}+5$.
Claim 1. The ideal (p) can be decomposed as $\mathfrak{p} \overline{\mathfrak{p}}$ for some ideal $\mathfrak{p} \neq \overline{\mathfrak{p}}$.
Proof. Let $\mathfrak{p}=(p, k+\sqrt{-5})$. Then $\mathfrak{p p}=\left(p^{2}, p k \pm p \sqrt{-5}, k^{2}+5\right)$. All the generators are divisible by p, hence $\mathfrak{p p} \subseteq(p)$. However, the gcd of p^{2} and $(p k+p \sqrt{-5})+(p k-p \sqrt{-5})$ is p, thus $(p) \subseteq \mathfrak{p p}$. Assume $\mathfrak{p}=\overline{\mathfrak{p}}$, then $A p+B(k-\sqrt{-5})=k+\sqrt{-5}$ for some $A, B \in \mathbb{Z}[\sqrt{-5}]$. Write $A=a_{1}+a_{2} \sqrt{-5}$ and $B=b_{1}+b_{2} \sqrt{-5}$ and thus

$$
\left\{\begin{array}{l}
a_{1} p+k b_{1}+5 b_{2}=k \\
a_{2} p-b_{1}+k b_{2}=1
\end{array} \quad \Rightarrow \quad\left(a_{1}+k a_{2}\right) p+\left(5+k^{2}\right) b_{2}=2 k\right.
$$

has solutions for integers $a_{1}, a_{2}, b_{1}, b_{2}$. This is impossible as $p \mid$ LHS but $p \nmid$ RHS.

Claim 2. The class group of $\mathbb{Z}[\sqrt{-5}]$ is C_{2}.
Proof. It suffices to prove that there are only two types of sub- $\alpha \sqrt{-5}$ lattices in $\mathbb{Z}[\sqrt{-5}]$ up to orientation-preserving transformations. Let \mathcal{L} be a sublattice of $\mathbb{Z}[\sqrt{-5}]$ and α be nonzero with minimal norm. Therefore \mathcal{L} contains the sublattice \mathcal{A} spanned by $(\alpha, \alpha \sqrt{-5})$. If $\mathcal{L}=\mathcal{A}$ then this ideal is just (α), otherwise let $\beta \in \mathcal{L} \backslash \mathcal{A}$ be situated in the parallelogram $x \alpha+y \alpha \sqrt{-5}$ where $0 \leq x, y<1$. Note that β cannot lie inside the four quarter circles as shown on the right due to minimality of α. For the remaining region, any β lying there, multiplied by two, will be $<|\alpha|$ distance away from some point in \mathcal{A} (Verified by applying an origin-homothety with scale 2 onto the circle and the two semicircles). Therefore, $2 \beta \in \mathcal{A}$, i.e. $\beta=\frac{\sqrt{-5}}{2} \alpha$ or $\frac{1+\sqrt{-5}}{2} \alpha$ (The two points labelled in the diagram). The former implies $-\frac{5}{2} \alpha \in \mathcal{L} \Rightarrow \frac{1}{2} \alpha \in \mathcal{L}$, contradicting minimality of α. Thus $\beta=\frac{1+\sqrt{-5}}{2} \alpha$.
 Therefore any ideal is in the form (α) or $\left(\alpha, \frac{1+\sqrt{-5}}{2} \alpha\right)$.

By claim 2, the product of any two ideals in the same ideal class belongs to the unit ideal class, i.e. is a principal ideal. Therefore $\mathfrak{p p}=(x)$ for some $x \in \mathbb{Z}[\sqrt{-5}]$. We know $x \neq p$ otherwise $\mathfrak{p}=\overline{\mathfrak{p}}$ by the cancellation law, hence

$$
\left(p^{2}\right)=(p)(p)=\mathfrak{p} \overline{\mathfrak{p}} \overline{\mathfrak{p}}=\mathfrak{p p p} \overline{\mathfrak{p}}=(x)(\bar{x})=(x \bar{x})
$$

i.e $p^{2}=x \bar{x}=(m+n \sqrt{-5})(m-n \sqrt{-5})=m^{2}+5 n^{2}$ for some $(m, n) \neq(p, 0)$.

Generalising.
The ring of integers \mathcal{O} of $\mathbb{Q}[\sqrt{-d}]$ is $\mathbb{Z}[\sqrt{-d}]$ for $-d \equiv 2,3(\bmod 4)$ squarefree. I will only analyse the case $-d \equiv 2,3(\bmod 4)$ for simplicity. We see that

$$
\frac{\mathcal{O}}{(p)} \cong \frac{\mathbb{Z}[x]}{\left(p, x^{2}+d\right)} \cong \frac{\mathbb{F}_{p}[x]}{\left(x^{2}+d\right)} \cong \frac{\mathbb{F}_{p}[x]}{(x+k)} \times \frac{\mathbb{F}_{p}[x]}{(x-k)}
$$

where $p \mid k^{2}+d$. The last step holds because when $p>d$, the numbers k and $-k$ are distinct $\bmod p$ and we apply CRT. The maximal (\Leftrightarrow prime) ideals of $\mathcal{O} /(p)$ are thus the preimages of $(x+k)$ and $(x-k)$, which are $\mathfrak{p}=(p, \sqrt{-d}+k)$ and $\overline{\mathfrak{p}}=(p, \sqrt{-d}-k)$ respectively. Therefore $(p)=\mathfrak{p p}$ where $\mathfrak{p} \neq \overline{\mathfrak{p}}$ (so p does not ramify).

Claim. There exists an expression $p^{2}=m^{2}+d n^{2}(n \neq 0)$ for all integer primes $p>d$ if and only if the class group of \mathcal{O} is

$$
C_{2} \times C_{2} \times \cdots \times C_{2}
$$

Proof. (\Leftarrow) The order of every class is 1 and 2 , thus $\mathfrak{p p}=(x)$ for some x. Since p does not ramify, $\mathfrak{p} \neq \overline{\mathfrak{p}}$ and hence $x \neq p$. Therefore $\left(p^{2}\right)=(p)(p)=\mathfrak{p p y p}=(x)(\bar{x}) \Rightarrow p^{2}=x \bar{x}$. (\Rightarrow) Assume some ideal class $\langle\mathfrak{a}\rangle$ has order >2. Then $\mathfrak{a a}$ is not principal. Decomposing \mathfrak{a} into prime ideals, there must exist some prime ideal \mathfrak{p} where $\mathfrak{p p}$ is not principal. Let $\mathfrak{p p}=(p) \Rightarrow\left(p^{2}\right)=\mathfrak{p p} \overline{\mathfrak{p p}}$ is not expressible as a product of conjugate principal ideals. \square

Therefore, the problem statement after changing 5 to d works if and only if the class group is $C_{2} \times C_{2} \times \cdots \times C_{2}$. (From Internet:) The values of d for which the class group is C_{2} are $5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,403,427$. The values of d for which the class group is C_{1} are $1,2,3,7,11,19,43,67,163$. Picking those with $-2,-3$ $(\bmod 4)$, we have $d=1,2,5,6,10,13,22,37,58$. Also, $\mathbb{Z}[\sqrt{-21}]$ has class group $C_{2} \times C_{2}$, so $d=21$ works too. Therefore,

$$
d=1,2,5,6,10,13,21,22,37,58
$$

all work. There might be others.

Problem 2.

Let $\mathcal{S} \subseteq \mathbb{N}$ be the set of integers expressible as a sum of distinct squares. Denote $N_{4}=\left\{4^{n} \mid n \in \mathbb{N}\right\}, N_{9}=\left\{9^{n} \mid n \in \mathbb{N}\right\}$. Denote $[x, y]=\{x, x+1, \cdots, y\}$.

Claim 1. $\forall \varepsilon>0$, there exists infinitely many $(a, b) \in \mathbb{N}$ such that $\left|\frac{4^{a}}{9^{b}}-1\right|<\varepsilon$. Proof. If $\varepsilon \geq 1$ it is obvious. Assume $\varepsilon<1$. The statement is equivalent to

$$
\begin{equation*}
\ln (1-\varepsilon)<a \ln 4-b \ln 9<\ln (1+\varepsilon) \tag{*}
\end{equation*}
$$

It is well-known (Dirichlet) that any $n \in \mathbb{N}$, there exists infinitely many a, b such that

$$
\begin{aligned}
&-\frac{1}{n}<a \cdot \frac{\ln 4}{\ln 9}-b<\frac{1}{n} \\
& \Leftrightarrow-\frac{\ln 9}{n}<a \ln 4-b \ln 9<\frac{\ln 9}{n}
\end{aligned}
$$

hence we just have to choose $n>\frac{\ln 9}{\min (|\ln (1-\varepsilon)|,|\ln (1+\varepsilon)|)}$ so $(*)$ is satisfied.
Claim 2. $x \in \mathcal{S} \Rightarrow 4 x, 4 x+1,4 x+10,4 x+35 \in \mathcal{S}$.
Proof. $x=\sum x_{i}^{2} \Rightarrow 4 x+k=\sum\left(2 x_{i}\right)^{2}+k$ for $k=0,1^{2}, 1^{2}+3^{2}, 1^{2}+3^{2}+5^{2}$.
Claim 3. $x \in \mathcal{S} \Rightarrow 9 x, 9 x+1,9 x+20,9 x+21,9 x+4,9 x+5,9 x+42,9 x+16,9 x+17 \in \mathcal{S}$. Proof. $x=\sum x_{i}^{2} \Rightarrow 9 x+k=\sum\left(3 x_{i}\right)^{2}+k$ for k a sum of numbers in $\left\{1^{2}, 2^{2}, 4^{2}, 5^{2}\right\}$.

Claim 4. If $[x, y] \subseteq \mathcal{S}$, then $[k(x+12), k y] \subseteq \mathcal{S}$ for any $k \in N_{4} \cup N_{9}$.
Proof. From Claim 2 and Claim 3, we have $[x, y] \subseteq \mathcal{S} \Rightarrow[4 x+35,4 y],[9 x+42,9 y] \subseteq \mathcal{S}$. By induction, for any $m, n \in \mathbb{N} \cup\{0\}$

$$
\begin{array}{rlrl}
{\left[4^{n} x+35\left(1+4+\cdots+4^{n-1}\right), 4^{n} y\right]} & \subseteq \mathcal{S} & {\left[9^{m} x+42\left(1+9+\cdots+9^{m-1}\right), 9^{m} y\right]} & \subseteq \mathcal{S} \\
{\left[4^{n} x+\frac{35}{3}\left(4^{n}-1\right), 4^{n} y\right]} & \subseteq \mathcal{S} & {\left[9^{m} x+\frac{42}{8}\left(9^{m}-1\right), 9^{m} y\right]} & \subseteq \mathcal{S} \\
\Rightarrow\left[4^{n}(x+12), 4^{n} y\right] & \subseteq \mathcal{S} & \Rightarrow\left[9^{m}(x+6), 9^{m} y\right] \subseteq \mathcal{S}
\end{array}
$$

Since $12>6$, we are done.
Define the scale of $[a, b]$ as $\frac{b}{a}$.

Claim 5. Assume there is $[x, y] \subseteq \mathcal{S}$ with $y \geq x+13$. There exists $[x, y] \subseteq \mathcal{S}(x>0)$ with arbitrarily large scales.

Proof. By claim 1, there exists infinitely many $a, b \in N_{4} \cup N_{9}$ such that $1<\frac{b}{a}<\frac{y}{x+12.5}$. Choose a, b such that $a>25$. We will prove by induction that there always exists $[x, y] \subseteq \mathcal{S}$ with $\frac{y}{x+12.5}>\left(\frac{b}{a}\right)^{n}$. The base case $n=1$ is done. Assume $[x, y] \subseteq \mathcal{S}$ such that $\frac{y}{x+12.5}>\left(\frac{b}{a}\right)^{n-1} \geq \frac{b}{a}$. By claim 4 ,

$$
[a(x+12), a y],[b(x+12), b y] \subseteq \mathcal{S}
$$

but $a y>b(x+12.5)>b(x+12)$, hence $[a(x+12), b y] \subseteq \mathcal{S}$ and

$$
\begin{aligned}
& \frac{b y}{a(x+12)+12.5}>\frac{b}{a} \cdot \frac{y}{x+12.5} \Leftrightarrow a>25 \text { is true, thus } \\
& \frac{b y}{a(x+12)+12.5}>\frac{b}{a} \cdot \frac{y}{x+12.5}>\frac{b}{a} \cdot\left(\frac{b}{a}\right)^{n-1}=\left(\frac{b}{a}\right)^{n} .
\end{aligned}
$$

Thus $\forall n \geq 1: \exists[x, y] \subseteq \mathcal{S}$ with $\frac{y}{x}>\frac{y}{x+12.5}>\left(\frac{b}{a}\right)^{n}$. When $n \rightarrow \infty,\left(\frac{b}{a}\right)^{n} \rightarrow \infty$.
Claim 6. Assume there is $[x, y] \subseteq \mathcal{S}$ with $y \geq x+13$. Then there exists N such that all integers $x \geq N$ are in \mathcal{S}.

Proof. By claim 5, there exists some $[x, y] \subseteq \mathcal{S}$ such that $y \geq 39 x \geq 4 x+35$. Assume $[x, k-1] \subseteq \mathcal{S}$ for some integer $k-1 \geq 4 x+35$. Suppose $k \notin \mathcal{S}$, then by claim 2 , one of $k / 4,(k-1) / 4,(k-10) / 4,(k-35) / 4$ is not in \mathcal{S}. This is impossible as they are all at least x. Therefore $k \in \mathcal{S}$, and by induction we are done.

It remains to find some $[x, x+13] \in \mathcal{S}$:

$$
\begin{array}{ll}
144=12^{2} & 151=1^{2}+2^{2}+5^{2}+11^{2} \\
145=1^{2}+12^{2} & 152=4^{2}+6^{2}+10^{2} \\
146=5^{2}+11^{2} & 153=1^{2}+4^{2}+6^{2}+10^{2} \\
147=1^{2}+5^{2}+11^{2} & 154=1^{2}+3^{2}+12^{2} \\
148=2^{2}+12^{2} & 155=3^{2}+5^{2}+11^{2} \\
149=1^{2}+2^{2}+12^{2} & 156=1^{2}+3^{2}+5^{2}+11^{2} \\
150=2^{2}+5^{2}+11^{2} & 157=2^{2}+3^{2}+12^{2}
\end{array}
$$

and boom.

Problem 2 (Extra).

Let $\mathcal{S} \subseteq \mathbb{N}$ be the set of integers expressible as a sum of distinct m-th powers. We similarly have

$$
x \in \mathcal{S} \Rightarrow 2^{m} x, 2^{m} x+\sum_{i=0}^{k}\left(2^{m} i+1\right)^{m} \in \mathcal{S}
$$

for any $k=0, \cdots, 2^{m}-2$. Therefore, if we could verify that $[x, y] \subseteq \mathcal{S}$ for some $y \geq 2^{m} x+\sum_{i=0}^{2^{m}-2}\left(2^{m} i+1\right)^{m}$, then all $n \geq x$ lie in \mathcal{S}.

