Proving for d =5

Since —5 =3 (mod 4), Z [/=5] is the ring of integers of Q [v/=5]. Let p | k* + 5.
Claim 1. The ideal (p) can be decomposed as pp for some ideal p # p.

Proof. Let p = (p, k + \/—_5) Then pp = (p2,pk + pv/ =5, k? + 5). All the generators are
divisible by p, hence pp C (p). However, the ged of p? and (pk + p\/—_5) + (pk — p\/—_5)
is p, thus (p) C pp. Assume p = p, then Ap + B (k: — \/—_5) = k + /=5 for some
A,B € Z [\/=5]. Write A = a; + apy/=5 and B = by + byy/=5 and thus

= (a1 + kag)p+ (5 + k*)by = 2k

a1p+kbl+5b2:k
asp — by + kby =1

has solutions for integers ay, as, by, be. This is impossible as p | LHS but p t RHS. [

Claim 2. The class group of Z [\/—5] is (.

Proof. It suffices to prove that there are only two types of sub- a,/—5
lattices in Z [\/—_5] up to orientation-preserving transformations. Let
L be a sublattice of Z [\/—_5} and a be nonzero with minimal norm.
Therefore £ contains the sublattice A spanned by (o, ay/=5). If
L = A then this ideal is just («), otherwise let 8 € L\ A be situated
in the parallelogram za + yoy/—5 where 0 < z,y < 1. Note that 8
cannot lie inside the four quarter circles as shown on the right due
to minimality of a. For the remaining region, any [ lying there,
multiplied by two, will be < |a| distance away from some point in
A (Verified by applying an origin-homothety with scale 2 onto the
circle and the two semicircles). Therefore, 25 € A, ie. § = \/7_750‘ or
1+\2/j5 o (

The two points labelled in the diagram). The former implies

—ga el = %oc € L, contradicting minimality of . Thus = %_*5&.
Therefore any ideal is in the form («) or (a, #Q). O

By claim 2, the product of any two ideals in the same ideal class belongs to the
unit ideal class, i.e. is a principal ideal. Therefore pp = () for some x € Z [\/—5}. We
know x # p otherwise p = p by the cancellation law, hence

(r°) = (p)(p) = PPPP = pppp = (2)(T) = (27)
ie p? = 2T = (m+ nv/=5) (m — ny/=5) = m? + 5n? for some (m,n) # (p,0). O
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Generalising.

The ring of integers O of Q [v/—d] is Z [v/—d] for —d = 2,3 (mod 4) squarefree. 1
will only analyse the case —d = 2,3 (mod 4) for simplicity. We see that
o Zz] o Fplel  Fpla]  Fpla]

~

») e +d) (@P+d) (w+k) (w—k)

where p | k* + d. The last step holds because when p > d, the numbers k and —k are
distinct mod p and we apply CRT. The maximal (< prime) ideals of O/(p) are thus the
preimages of (r + k) and (z — k), which are p = (p,v/—d + k) and p = (p,vV/—d — k)
respectively. Therefore (p) = pp where p # p (so p does not ramify).

Claim. There exists an expression p?> = m? + dn? (n # 0) for all integer primes p > d if
and only if the class group of O is

CQXCQX"-XCQ.

Proof. (<) The order of every class is 1 and 2, thus pp = (z) for some . Since p does
not ramify, p # p and hence x # p. Therefore (p?) = (p)(p) = ppbp = (2)(Z) = p* = 27.
(=) Assume some ideal class (a) has order > 2. Then aa is not principal. Decompos-
ing a into prime ideals, there must exist some prime ideal p where pp is not principal.
Let pp = (p) = (p*) = pppp is not expressible as a product of conjugate principal ideals.(]

Therefore, the problem statement after changing 5 to d works if and only if the class
group is Cy X Cy X - - - X Cy. (From Internet:) The values of d for which the class group is
Cs are 5,6,10,13,15,22,35,37,51,58,91, 115, 123, 187, 235, 267,403, 427. The values of d
for which the class group is C; are 1,2,3,7,11,19,43,67,163. Picking those with —2, —3
(mod 4), we have d = 1,2, 5,6, 10, 13,22,37,58. Also, Z [\/—21} has class group Cs x Cy,
so d = 21 works too. Therefore,

d=1,2,5,6,10,13,21,22,37,58

all work. There might be others. L]



Problem 2.

Let S C N be the set of integers expressible as a sum of distinct squares. Denote
Ny={4"|n € N}, Ng ={9" | n € N}. Denote [z,y] = {z,z+1,--- ,y}.

Claim 1. Ve > 0, there exists infinitely many (a,b) € N such that |— — 1| < e.
Proof. 1f € > 1 it is obvious. Assume ¢ < 1. The statement is equivalent to
In(l —¢) <aln4d —bIn9 < In(1 +¢) (%)

It is well-known (Dirichlet) that any n € N, there exists infinitely many a, b such that

1 - In4 ! 1
—_— a —_— —_
n In9 n
In9 In9
& -——2<alnd—bn9 < —
n n
h just have to ch > 9 () is satisfied 0
so (x) is satisfied.
ence we just have to choose n (I — o) I £ 2)])
Claim 2. xr €S = 4x,4x+ 1,42+ 10,42+ 35 € S.
Proof. v =Y 2? = 4o +k=>(22;)* +k for k=0,12 1>+ 3% 1% + 3> + 5% O

Claim 3. z €S = 92,92+1,92+20,92+421,92+4,9x+5,9x+42, 92+ 16,92+ 17 € S.
Proof. x =Y 27 = 9x+k=>(3z;)? + k for k a sum of numbers in {1% 2% 4% 52}. O
Claim 4. If [z,y] C S, then [k (z + 12),ky] C S for any k € Ny U Ny.

Proof. From Claim 2 and Claim 3, we have [z,y] C S = [4x + 35,4y], [92 + 42,9y] C S.
By induction, for any m,n € NU {0}

[4"2 +35(1+ 4+ +4" 1), 4"y €S [9"r +42(1+9+ - +9™71), 9"y C S
35 42

So 42U 1), 4| C S 9"+ (9"~ 1), 9"y| €S

= [4"(x+12), 4"y| C S = [9"(x4+6), 9"y] C S

Since 12 > 6, we are done. O

Define the scale of [a,b] as 2.



Claim 5. Assume there is [z,y] C S with y > = 4 13. There exists [z,y] C S (z > 0)
with arbitrarily large scales.

b
Proof. By claim 1, there exists infinitely many a,b € N;yUNy such that 1 < — < ﬁ
a T .
Choose a,b such that a > 25. We will prove by induction that there always exists

b n
[z,y] € S with — Y~ (2) . The base case n = 1 is done. Assume [z,y] € S such
x+12.5 a

n—1
Y b b :
that ——— — > —. By cl 4

. :13+12.5>(a> =g ) cem s

@ (w+12),ay], [b (s +12) ,by] C S
but ay > b (z + 12.5) > b (z + 12), hence [a (z + 12) ,by] C S and

by >b Y
a(r+12)+125  a x+125

by b y b /b\"' b\
> —2 > . (= =(-) .
a(x+12)4+125 " a z+125 a \a a
Thus Vn > 1: 3[z,y] €S with = > ——— —] . Whenn = o0, (-] —o0. O
x a

>
r+12.5 a

Claim 6. Assume there is [z,y] C S with y > 2 + 13. Then there exists N such
that all integers x > N are in S.

& a > 25 is true, thus

Proof. By claim 5, there exists some [z,y] C § such that y > 392 > 4z + 35. As-
sume [z, k — 1] C S for some integer kK — 1 > 4x + 35. Suppose k € S, then by claim 2,
one of k/4,(k —1)/4,(k — 10)/4,(k — 35)/4 is not in S. This is impossible as they are
all at least x. Therefore k € S, and by induction we are done. ]

It remains to find some [z, 4+ 13] € S:

144 = 122 151 = 12 + 22 + 5% + 112
145 = 12 + 12° 152 = 4% + 6% + 10°
146 = 5% + 112 153 = 12 + 42 4+ 6% + 107
147 = 17 + 5% + 117 154 = 1% + 3% + 122
148 = 2% + 122 155 = 3% + 5% + 112
149 = 12 + 22 4 122 156 = 12 + 3% + 5% + 112
150 = 22 + 5% + 117 157 = 22 + 3% + 122
and boom. ]



Problem 2 (Extra).

Let S C N be the set of integers expressible as a sum of distinct m-th powers. We
similarly have

k
reS = 2mx,2mx+2(2mi+ HN"eS

i=0
for any k& = 0,---,2™ — 2. Therefore, if we could verify that [z,y] C S for some
y > 2mx + 57 2(2m + 1)™, then all n > x lic in S. O



