Problem Solving Session

Tristan Chaang

Sunway College

28 Aug 2022

Table of Contents

(1) Logic
(2) Proofs
(3) Topics
(4) Algebra
(5) Combinatorics
(6) Geometry
(7) Number Theory

Logic

1. Negation

The negation $\neg S$ of a statement S is a statement whose truth value is opposite of S.

Examples

S : ' X is a boy', $\neg S$:' X is not a boy'
Q : 'All apples are red',
$\neg Q$: 'Not all apples are red' or 'At least one apple is not red'
Note that 'all apples are not red' is not the negation of Q.

Exercise

Negate the statement

$$
\text { For all } x>0, f(x) \geq 1
$$

Logic

2. AND and OR

The conjunction of statements A, B is a statement which gives a truth value of 'true' if both A and B are true, and gives 'false' otherwise. We normally say the conjunction of A, B as A AND B.

The disjunction of statements A, B is a statement which gives a truth value of 'true' if any of A or B is true, and gives 'false' otherwise. We normally say the disjunction of A, B as A OR B.

Logic

3. Implication

Say A and B are two statements. When we have 'If statement A is true, then statement B is true', we say that ' A implies B ', or ' A is sufficient for B ', or ' B is necessary for A^{\prime}, denoted by $A \Rightarrow B$. However, this does NOT mean $B \Rightarrow A$. For example, an apple is a fruit, however a fruit might not be an apple. Note that an implication of two statements is also a statement.

Examples

$$
\begin{gathered}
x=y \Rightarrow x^{2}=y^{2} \\
a>b \Rightarrow a+1>b+1
\end{gathered}
$$

Logic

4. Equivalence

Say A and B are two statements. When we have

$$
‘ A \Rightarrow B^{\prime} \text { AND } ‘ B \Rightarrow A '
$$

we say that ' A is equivalent to B ', or ' A if and only if (iff) B ', or ' A is sufficient and necessary for B^{\prime}, denoted as $A \Leftrightarrow B$.

Examples

X is an equilateral triangle $\Leftrightarrow \mathrm{X}$ is a triangle with angles 60° only

$$
a=b \Leftrightarrow a+c=b+c
$$

Logic

Contrapositive Property
 $(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)$

Proofs

A typical problem looks like "Given A, prove B. ."

1. Direct Proofs $(A \Rightarrow B)$

Proofs

A typical problem looks like "Given A, prove B. ."

1. Direct Proofs $(A \Rightarrow B)$

OMK2017B

Let $A B C$ be a triangle. The altitudes from A, B, C are denoted h_{A}, h_{B}, h_{C} respectively. Prove that

$$
\frac{1}{h_{A}}+\frac{1}{h_{B}}>\frac{1}{h_{C}}
$$

Proofs

A typical problem looks like "Given A, prove B."

1. Direct Proofs $(A \Rightarrow B)$

OMK2017B

Let $A B C$ be a triangle. The altitudes from A, B, C are denoted h_{A}, h_{B}, h_{C} respectively. Prove that

$$
\frac{1}{h_{A}}+\frac{1}{h_{B}}>\frac{1}{h_{C}}
$$

First thought: This looks like the triangle inequality $a+b>c$ (?)

Proofs

Let's try to relate a with h_{A}, b with h_{B}, and c with h_{C}. What's something that relates these lengths?

Proofs

Let's try to relate a with h_{A}, b with h_{B}, and c with h_{C}. What's something that relates these lengths?

$$
\text { Area! } S=[A B C]=\frac{a \cdot h_{A}}{2}=\frac{b \cdot h_{B}}{2}=\frac{c \cdot h_{C}}{2}
$$

Proofs

Solution 1

Denote $a=B C, b=A C, c=A B$. By the triangle inequality,

$$
a+b>c
$$

Since the area of $A B C$ is $S=[A B C]=\frac{a \cdot h_{A}}{2}=\frac{b \cdot h_{B}}{2}=\frac{c \cdot h_{C}}{2}$,

$$
\begin{aligned}
& \frac{2 S}{h_{A}}+\frac{2 S}{h_{B}}>\frac{2 S}{h_{C}} \\
\Rightarrow & \frac{1}{h_{A}}+\frac{1}{h_{B}}>\frac{1}{h_{C}} .
\end{aligned}
$$

Proofs

Solution 2

Denote $a=B C, b=A C, c=A B$.

$$
\begin{aligned}
\frac{1}{h_{A}}+\frac{1}{h_{B}} & >\frac{1}{h_{C}} \\
\Leftrightarrow \frac{2[A B C]}{h_{A}}+\frac{2[A B C]}{h_{B}} & >\frac{2[A B C]}{h_{C}} \\
\Leftrightarrow a+b & >c
\end{aligned}
$$

The last line is the triangle inequality, so the first line is true.

Proofs

2. Proof by Contradiction (A and $\neg B \Rightarrow$ contradiction)

Proofs

2. Proof by Contradiction (A and $\neg B \Rightarrow$ contradiction)

Santos pg 9

Let $a_{1}, a_{2}, \cdots, a_{n}$ be an arbitrary permutation of the numbers $1,2, \cdots, n$, where n is an odd number. Prove that the product

$$
\left(a_{1}-1\right)\left(a_{2}-2\right) \cdots\left(a_{n}-n\right)
$$

is even.

Proofs

2. Proof by Contradiction (A and $\neg B \Rightarrow$ contradiction)

Santos pg 9

Let $a_{1}, a_{2}, \cdots, a_{n}$ be an arbitrary permutation of the numbers $1,2, \cdots, n$, where n is an odd number. Prove that the product

$$
\left(a_{1}-1\right)\left(a_{2}-2\right) \cdots\left(a_{n}-n\right)
$$

is even.
First thought: Hard to prove how at least one of $a_{1}-1, a_{2}-2, \cdots, a_{n}-n$ is even.

Proofs

2. Proof by Contradiction (A and $\neg B \Rightarrow$ contradiction)

Solution

Assume the contrary that $\left(a_{1}-1\right)\left(a_{2}-2\right) \cdots\left(a_{n}-n\right)$ is odd, then all

$$
a_{1}-1, a_{2}-2, \cdots, a_{n}-n
$$

are odd, but then
$\left(a_{1}-1\right)+\left(a_{2}-2\right)+\cdots+\left(a_{n}-n\right)=\left(a_{1}+\cdots+a_{n}\right)-(1+\cdots+n)=0$
which is a contradiction since an odd number of odd numbers must sum up to an odd number!

Proofs

3. Proof by Construction

OMK2017B

An integer is called an autobiographical number if the first digit is equal to the number of digits 0 , the second digit is equal to the number of digits 1 , the third digit is equal to the number of digits 2 , the fourth digit is equal to the number of digits 3 , and so on until the last digit. Two examples of autobiographical numbers are 42101000 and 6210001000 . (a) Find two autobiographical numbers with 4 digits. (b) Find one autobiographical number with 5 digits.

Proofs

3. Proof by Construction

You might do a lot of trial and error on a piece of blank paper, and find out two answers 1210 and 2020 for part (a), and an answer 21200 for part (b). You might think you have to write down how you got those answers. But no! The answers you got are easily verifiable with the problem statement, so they are automatically correct.

Solution

(a) 1210, 2020. (b) 21200.

If the problem were 'find all autobiographical numbers with 5 digits', then we have to show why 21200 is the only one, and that would be quite tedious to write out.

Proofs

3. Proof by Construction

Unknown

What is the maximum number of trailing 4 s a perfect square can have? E.g. $6 \underline{4}$ has one trailing 4.

Proofs

3. Proof by Construction

Unknown

What is the maximum number of trailing 4 s a perfect square can have? E.g. $6 \underline{4}$ has one trailing 4.

It's easy to find perfect squares with one or two trailing 4s, such as $12^{2}=144$. Now finding three trailing 4 s is hard.

Proofs

3. Proof by Construction

Turns out there are a few: $38^{2}=1444,462^{2}=213444, \cdots$. The mere existence of one of them is enough to say that the maximum is at least 3 . But how you found them does not matter. In fact, three trailing zeros is the best we can do, and we have to prove this by explaining why four trailing 4s can't work.

Proofs

3. Proof by Construction

Solution

Answer: 3.
$38^{2}=1444$, so it suffices to prove that four trailing 4 s cannot. Assume such a number x^{2} exists, then

$$
\begin{aligned}
10000 \mid x^{2}-4444 & \Rightarrow x \text { is even, } x=2 k \\
\Rightarrow 2500 \mid k^{2}-1111 & \Rightarrow 4\left|k^{2}-1111 \Rightarrow 4\right| k^{2}-3
\end{aligned}
$$

However,

$$
(2 N)^{2}=4 N^{2}, \quad(2 N+1)^{2}=4 N^{2}+4 N+1
$$

shows us that there cannot be a perfect square that is 3 more than a multiple of 4 .

Proofs

4. Proof by Induction ((True for $n=1$) and (True for $n=k-1 \Rightarrow$ True for $n=k) \Rightarrow$ True for all $n \in \mathbb{N}$)

OMK2017S

Given a positive integer n. Consider all subsets of $\{1,2,3, \cdots, n\}$ except the empty set. For each subset, consider a fraction $1 / d$, where d is the product of all elements in the subset. Let S_{n} be the sum of such fractions taken over all subsets. Example: For $n=3$, the nonempty subsets of $\{1,2,3\}$ are $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$. Therefore,

$$
S_{3}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3}=3 .
$$

Prove that $S_{n}=n$.

Proofs

4. Proof by Induction

Solution 1

Denote $[n]=\{1, \cdots, n\}$.
For $n=1, S_{1}=\frac{1}{1}=1$. Assume $S_{k-1}=k-1$ for $k \geq 2$, then

$$
\begin{aligned}
S_{k} & =\sum_{\varnothing \neq A \subseteq[k]} \frac{1}{\prod A} \\
& =\sum_{\varnothing \neq A \subseteq[k-1]} \frac{1}{\prod A}+\sum_{\varnothing \neq A \subseteq[k-1]} \frac{1}{k \prod A}+\frac{1}{k} \\
& =(k-1)+\frac{1}{k}(k-1)+\frac{1}{k}=k
\end{aligned}
$$

and hence $S_{n}=n$ for all positive integers n.

Proofs

4. Proof by Induction

Solution 2

Notice that

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right) \cdots\left(1+\frac{1}{n}\right)
$$

expands to become $1+S_{n}$, so

$$
S_{n}=\frac{2}{1} \cdot \frac{3}{2} \cdots \frac{n+1}{n}-1=n .
$$

Proofs

Some common techniques

1. Guess an answer then prove why it is correct instead

APMOPS

$A B C$ is a triangle with $A C=B C$ and $\angle B A C=80^{\circ}$. Given that $A B=C D$, find $\angle B D C$.

Proofs

Solution 1

Answer: $150^{\circ} . \quad(\leftarrow$ Good practice to write the answer first) Proof: Let $\angle A D B=\theta$, then sine rule gives

$$
\begin{aligned}
& \frac{\sin \left(\theta-20^{\circ}\right)}{\sin 20^{\circ}}=\frac{C D}{B D}=\frac{A B}{B D}=\frac{\sin \theta}{\sin 80^{\circ}} \\
& \cos 20^{\circ}-\cot \theta \sin 20^{\circ}=\frac{\sin 20^{\circ}}{\sin 80^{\circ}}
\end{aligned}
$$

Hence there is only one possible $0<\theta<180^{\circ}$. Note that $\theta=30^{\circ}$ works:

$$
\frac{\sin \left(30^{\circ}-20^{\circ}\right)}{\sin 20^{\circ}}=\frac{\sin 30^{\circ}}{\sin 80^{\circ}} \Longleftrightarrow 2 \sin 10^{\circ} \sin 80^{\circ}=\sin 20^{\circ}
$$

which is true since $\sin 80^{\circ}=\cos 10^{\circ} . \therefore \angle A D B=30^{\circ}$.

Proofs

Solution 2

Answer: 150°.
Proof: Erect an eq. triangle $C D C^{\prime}$ as shown.

$$
\left\{\begin{array}{l}
C C^{\prime}=B A \\
C B=C B \\
\angle C^{\prime} C B=\angle A B C=80^{\circ}
\end{array}\right.
$$

and therefore $B C C^{\prime}$ is isosceles too, with $B D$ being the symmetry line, and hence $\angle B D C=180^{\circ}-\frac{60^{\circ}}{2}=150^{\circ}$.

Proofs

Some common techniques
2. Write in claims

OMK2021M

Let $f(x)$ be a function defined on the set of real numbers satisfying $f(1)=2$ and for any real number x,

$$
f(x+7) \geq f(x)+7 \text { and } f(x+1) \leq f(x)+1
$$

If $g(x)=f(x)+7-x$, find the value of $g(2021)$.

Proofs

Some common techniques
2. Write in claims

Solution

Claim: $f(x+1)=f(x)+1$ for all real x.
Proof:
$f(x+7) \leq f(x+6)+1 \leq f(x+5)+2 \leq \cdots \leq f(x)+7 \leq f(x+7)$.
Therefore all the terms above are equal, in particular,
$f(x+1)+6=f(x)+7$, i.e. $f(x+1)=f(x)+1$.
This means $f(1)=2 \Rightarrow f(2)=3 \Rightarrow \cdots \Rightarrow f(2021)=2022$, and thus

$$
g(2021)=f(2021)+7-2021=8
$$

Proofs

Some common techniques
3. Use generalised forms

OMK2017M

Find

$$
\sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+\cdots+\sqrt{1+\frac{1}{2016^{2}}+\frac{1}{2017^{2}}} .
$$

Proofs

Solution

$$
\begin{aligned}
\sum_{k=1}^{2016} \sqrt{1+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}} & =\sum_{k=1}^{2016} \sqrt{\frac{k^{4}+2 k^{3}+3 k^{2}+2 k+1}{k^{2}(k+1)^{2}}} \\
& =\sum_{k=1}^{2016} \sqrt{\frac{\left(k^{2}+k+1\right)^{2}}{k^{2}(k+1)^{2}}} \\
& =\sum_{k=1}^{2016} \frac{k^{2}+k+1}{k(k+1)} \\
& =\sum_{k=1}^{2016}\left(1+\frac{1}{k(k+1)}\right) \\
& =2016 \frac{2016}{2017}
\end{aligned}
$$

Proofs

Some common techniques
3. Use generalised forms

OMK2019S

We call a sequence of five numbers a good sequence if it is an arithmetic progression that contains the terms 20 and 19. For example, these two sequences are good sequences:

$$
\begin{gathered}
18,19,20,21,22 \\
20,19 \frac{2}{3}, 19 \frac{1}{3}, 19,18 \frac{2}{3}
\end{gathered}
$$

For each good sequence, we take the sum of all terms in the sequence. Then we add the sums over all possible good sequences. What will be the result?

Proofs

Solution (pg 1)

Answer: 1950.
For an AP a_{1}, \cdots, a_{5}, the sum is just 5 times a_{3}. Thus we just have to sum over all a_{3} 's. Assume $a_{i}=19, a_{j}=20$ where $\{i, j\} \subseteq\{1,2,3,4,5\}$. Then the common difference is $d=\frac{20-19}{j-i}$ and $a_{1}=a_{i}-(i-1) d$, so

$$
a_{3}=a_{1}+2 d=a_{i}+(i-3) d=19+\frac{i-3}{j-i}
$$

and so it remains to find

$$
5 \sum_{\{i, j\} \subseteq\{1,2,3,4,5\}}\left(19+\frac{i-3}{j-i}\right)
$$

Proofs

Solution (pg 2)

$$
=5\left(\sum_{i, j} 19+\sum_{i, j} \frac{i-3}{j-i}\right)
$$

The first term in the brackets is just $19 \times 5 \times 4=380$. The second sum can be computed by pairing swaps:

$$
2 \sum_{i, j} \frac{i-3}{j-i}=\sum_{i, j}\left(\frac{i-3}{j-i}+\frac{j-3}{i-j}\right)=\sum_{i, j} 1=5 \times 4
$$

so the answer is

$$
5(380+10)=1950
$$

Exercise

OMK2017M

Given an odd integer $N \geq 5$. Show that $N^{2}+5$ can be written as the sum of four different positive perfect squares.

OMK2018S

For any positive integer k, denote by g_{k} the largest odd factor of k. For example, $g_{8}=1, g_{9}=9$ and $g_{10}=5$.
(a) Prove that $g_{n+1}+g_{n+2}+\cdots+g_{2 n}=n^{2}$ for all positive integers n.
(b) Find the value of $g_{1}+g_{2}+g_{3}+\cdots+g_{512}$.

Exercise

OMK2019S (modified)

Given three distinct positive reals a, b, c, prove that

$$
\left(\frac{1}{x+a}-\frac{1}{x}\right)+\left(\frac{1}{x+b}-\frac{1}{x}\right)+\left(\frac{1}{x+c}-\frac{1}{x}\right)=0
$$

has a real root.

OMK2018S

Let $\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ be the set that consists of all integers that can be expressed as a sum of four distinct positive fourth powers. Assume that $a_{1}<a_{2}<a_{3}<\cdots$. If $a_{i}=2018$, find the value of i.

Note: A positive fourth power is a number in the form k^{4}, where k is a positive integer.

Topics

(1) Algebra

Topics

(1) Algebra
(2) Combinatorics

Topics

(1) Algebra
(2) Combinatorics
(3) Geometry

Topics

(1) Algebra
(2) Combinatorics
(3) Geometry
(c) Number Theory

Algebra

(1) Inequalities
(2) Functional Equations
(3) Recursion
(c) Polynomials

Algebra (Inequalities)

All inequalities are based on

$$
x^{2} \geq 0, \quad x \in \mathbb{R}
$$

where equality holds if and only if $x=0$.

Examples

$\frac{a+b}{2} \geq \sqrt{a b}$ for all $a, b>0$.
Proof: Equivalent to $(\sqrt{a}-\sqrt{b})^{2} \geq 0$.

Examples

$x^{2}+y^{2}+z^{2} \geq x y+y z+x z$ for all $x, y, z \in \mathbb{R}$.
Proof: Equivalent to $(x-y)^{2}+(y-z)^{2}+(x-z)^{2} \geq 0$.

Algebra (Inequalities)

Examples

$\frac{x+y+z}{3} \geq \sqrt[3]{x y z}$ for all $x, y, z>0$.
Proof: Equivalent to
$(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})\left[(\sqrt[3]{x}-\sqrt[3]{y})^{2}+(\sqrt[3]{y}-\sqrt[3]{z})^{2}+(\sqrt[3]{x}-\sqrt[3]{z})^{2}\right] \geq 0$.
That's a bit of a stretch! We can do better by knowing some well-known inequalities. You can quote them in contests.

AM-GM Inequality

For any $a_{1}, a_{2}, \cdots, a_{n}>0$,

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} \cdots a_{n}}
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.

Algebra (Inequalities)

Cauchy-Schwarz's Inequality

For any $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{R}$,

$$
\left(\sum a_{i}^{2}\right)\left(\sum b_{i}^{2}\right) \geq\left(\sum a_{i} b_{i}\right)^{2}
$$

Equality holds if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$ (where $\frac{0}{0}$ is any number).

Examples

$x^{2}+y^{2}+z^{2} \geq x y+y z+x z$ for all $x, y, z \in \mathbb{R}$.
Proof: By Cauchy,

$$
\begin{aligned}
& \left(x^{2}+y^{2}+z^{2}\right)\left(y^{2}+z^{2}+x^{2}\right) \geq(x y+y z+z x)^{2} \\
& \therefore x^{2}+y^{2}+z^{2} \geq|x y+y z+z x| \geq x y+y z+x z
\end{aligned}
$$

Algebra (Inequalities)

OMK2021S

The polynomial $x^{4}+a x^{3}+2 x^{2}+b x+1$ has a real solution. Find the minimum value of $a^{2}+b^{2}$.

OMK2021S

Prove that for all real numbers x, y, z, the following inequality holds:

$$
x^{2}+y^{2}+z^{2}-x y-y z-x z \geq \frac{3}{4}(x-y)^{2}
$$

Combinatorics

(1) Bijections
(2) Pigeonhole Principle
(3) Combinatorial Sums
(9) Graph Theory
(3) and more

Combinatorics (Pigeonhole Principle)

100 pigeons distributed in 99 boxes. What can you say about the number of pigeons in each box?

Combinatorics (Pigeonhole Principle)

100 pigeons distributed in 99 boxes. What can you say about the number of pigeons in each box?

Pigeonhole Principle

- If $n+1$ objects is distributed in n boxes, there must be one box with at least 2 objects.
- (Generalised) If N objects is distributed in n boxes, there must be one box with at least $\left\lceil\frac{N}{m}\right\rceil$ objects.
- If an infinite number of objects is distributed in n boxes, there must be one box with an infinite number of objects.

Combinatorics (Pigeonhole Principle)

Examples

At most how many elements can you take from the set $\{1,2, \cdots, 1000\}$ so that no two elements add up to 1000 ?

Answer: 501.
Proof. Consider the 501 sets

$$
\{1,999\},\{2,998\}, \cdots,\{499,501\},\{500\},\{1000\}
$$

If 502 elements were taken, by PP there must be 2 in a same set, which means they add up to 1000 , a contradiction.

501 is possible: Take $1,2, \cdots, 500$ and 1000 .

Combinatorics (Pigeonhole Principle)

?
What is the maximum number of elements you could pick from $\{1,2,3, \cdots, 2024\}$ so that no two distinct elements a, b are picked with a dividing b ?
?
Let a be a fixed positive integer. Prove that for any positive integer n, there exists a power of a that ends with $0 \cdots 01$ (n zeros). Note: a power of a is a^{N} for some positive integer N.

Combinatorics (Pigeonhole Principle)

OMK2019M

A group of students collected 200 seashells at a beach. What would be the maximum possible number of students in the group, if every student collected at least one seashell, and all students collected different numbers of seashells?

OMK2019S

Consider the set $A=\{1,2,3,4,5, \cdots, 100\}$. For a positive integer k, let $f(k)$ represents the maximum size of a subset of A such that no two elements in that subset differ by k. Determine the number of possible values of k that fulfill the condition $f(k)=50$.

Geometry

(1) Angle and length chasing
(2) Cyclic quadrilaterals
(3) Various centres of a triangle
(9) Trigonometry
(5) Menelaus's Theorem
(0) 'Bashing'
(3 and more

Geometry

OMK2019M

Given a square $A B C D$. A point P is chosen such that $\angle P A B=15^{\circ}, \angle P B D=90^{\circ}$ and $\angle P B C<90^{\circ}$. Prove that $A C P$ is an isosceles triangle.

OMK2019M

Let $P Q R$ be a triangle in which $P Q=P R$ and I be its incenter. Given that $Q R=P Q+P I$. Let S be a point on the line $Q P$ extended beyond P such that $P S=P I$. Prove that SPIR is a cyclic quadrilateral. (The incenter of triangle $P Q R$ is the point of intersection of the three internal angle bisectors)

Geometry

OMK2019S

Let $A B C$ be an acute triangle. Let D be the reflection of point B with respect to the line $A C$. Let E be the reflection of point C with respect to the line $A B$. Let Γ_{1} be the circle that passes through A, B, and D. Let Γ_{2} be the circle that passes through A, C, and E. Let P be the intersection of Γ_{1} and Γ_{2}, other than A. Let Γ be the circle that passes through A, B, and C. Show that the center of Γ lies on line $A P$.

OMK2019M

Given $P A$ and $P B$ are two tangent lines of a circle from a point P outside the circle, and A, B are the contact points. $P D$ is a secant line, and it intersects the circle at C and D. $B F$ is parallel to $P A$ and meets the lines $A C$ and $A D$ at E and F respectively. Given the length of $B F$ is 8 , find the length of $B E$.

Number Theory

(1) Prime numbers
(2) Modular arithmetic
(3) Diophantine equations (tricks etc)
(9) and more

Number Theory

OMK2019M

Let a, b, and c be integers such that $7 a+4 b-3 c=0$. Prove that $(a+b)(b+c)(c+a)$ is divisible by 42.

OMK2018M

Let a and b be positive integers such that
(1) both a and b have at least two digits;
(2) $a+b$ is divisible by 10 ;
(3) a can be changed into b by changing its last digit.

Prove that the hundreds digit of the product $a b$ is even.

OMK2018M

Let n be an integer greater than 1 , such that $3 n+1$ is a perfect square. Prove that $n+1$ can be expressed as a sum of three perfect squares.

Number Theory

OMK2021S

Find all positive integers k and n satisfying the following equation:

$$
\underbrace{1 \cdots 1}_{k} \underbrace{0 \cdots 0}_{2 k+3}+\underbrace{7 \cdots 7}_{k+1} \underbrace{0 \cdots 0}_{k+1}+\underbrace{1 \cdots 1}_{k+2}=3 n^{3}
$$

OMK2021M

Find all pairs of positive integers (m, n) such that $m^{2} n^{3}=10^{10}$.

OMK2017S (modified)

Prove that there exist 2017 positive integers $a_{1}, a_{2}, a_{3}, \cdots, a_{2017}$ such that each of the following numbers is a perfect square:
$a_{1}^{2}, \quad a_{1}^{2}+a_{2}^{2}, \quad \cdots \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{2017}^{2}$

Reading/Practice Materials

(1) https://aops.com/community/c13_contests
(2) Junior Problem Seminar by Santos
(3) Euclidean Geometry in Mathematical Olympiads by Evan Chen
(3) Techniques for High School Mathematics Contests

Visit https://tristanchaang.github.io/

