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1 Definitions

Definition 1. Let n ≥ 0 be an integer. A polynomial of degree n is a function of the form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 =
n

∑
k=0

akxk

where an, an−1, · · · , a1, a0 are constants and an 6= 0. We also include the zero function
( f (x) = 0 for all x) as a polynomial and usually say it has degree −∞ (or just agree it
has lower degree than any other polynomial).

Definition 2. The numbers an, · · · , a0 defined above are called the coefficients of f .

Definition 3. The solution(s) to the equation f (x) = 0 are called the root/zero(s) of f (x).

Definition 4. A polynomial is said to be monic if the leading coefficient an is 1.

Exercise. Which of the following are polynomials? Which are monic?

• 2x2 + 1

• 2

• 1 + x + x2 + · · ·

• x100 − πx + 1

• 2x

• x−1

Exercise. A polynomial of degree 101 has no real root. Is this possible?

Exercise. A polynomial of degree 102 has no real root. Is this possible?

Exercise. deg( f g) = deg f + deg g. Can you see why we say deg 0 = −∞ now?

Exercise. deg( f + g) ≤ max(deg f , deg g).

2 Division Algorithm

Given two positive integers m and n, we can always write m = nq+ r uniquely where r < n.
This is called the division algorithm. There is also an analogous statement for polynomials:



Theorem 1. Given nonzero polynomials f , g, there exist unique polynomials q, r such that

f = gq + r, deg r < deg g

Example. Say f (x) = x5 + 3x2 − 2x + 1 and g(x) = x2 − 1, then

x5 + 3x2 − 2x + 1 = (x2 − 1)(x3 + x + 3) + (−x + 4)

You have probably learnt how to find q and r via long division, but being able to find some
q and r doesn’t guarantee uniqueness. So let’s prove it.

Proof. [Existence] Stating the exact procudure of long division is enough to prove existence,
but let’s prove it another way. We induct on the degree of f . The case deg f = 0 is easy (left
as an exercise). Assume for all f , g with deg f ≤ k there exists such q, r.

Let’s say deg f = k + 1. If deg g > deg f , then q = 0, r = f works. Or else when deg g ≤
deg f , say g(x) = gnxn + · · · and f (x) = fmxm + · · · , notice that

f (x)− ( fm/gn)xm−ng(x)

has degree≤ k because the leading term of f is annihilated. Therefore, by inductive hypoth-
esis there exists q1, r1 such that

f − ( fm/gn)xm−ng = gq1 + r1, deg r1 < deg g.

Rewriting the equation gives

f =
(
( fm/gn)xm−n + q1

)
g + r1, deg r1 < deg g.

Therefore q = ( fm/gn)xm−n + q1 and r = r1 works.

[Uniqueness] The most common way of proving uniqueness is performing subtraction in
some way. Say there exist (q1, r1), (q2, r2) such that

f = gq1 + r1, deg r1 < deg g
f = gq2 + r2, deg r2 < deg g

then by subtracting we get

0 = g(q1 − q2) + (r1 − r2).

We see that q1 − q2 = 0, otherwise deg g(q1 − q2) ≥ deg g > deg(r1 − r2) and their sum
cannot be equal to 0 on the LHS. But when q1 − q2 = 0 the equation forces r1 − r2 = 0.
Therefore q1 = q2, r1 = r2. �

Note. The above theorem needs an extra condition to hold if, let’s say, we are only allowed
to have integer coefficients. What is the condition? (Hint, it is about g).

Corollary 1 (Remainder/Factor Theorem). If f is a polynomial with root a, then f (x) = (x−
a)g(x) for some polynomial g. If, on the other hand, f (a) = r, then f (x) = (x− a)g(x) + r.



A result of the factor theorem is,

Theorem 2. A nonzero polynomial of degree n cannot have more than n roots. �

Corollary 2. If two nonzero polynomials f , g with degree ≤ n agree at more than n points
(meaning: there exist n + 1 distinct xi such that f (xi) = g(xi) for all i), then f = g.

3 Lagrange Interpolation

Question: Can you find a polynomial f with real coefficients such that

f (1) = 2, f (2) = 3, f (3) = 4?

How about a polynomial g with real coefficients such that

g(1) = 2, g(2) = 3, g(3) = π?

Before we answer these questions, let’s notice from Corollary 2 that if we only allow f or g
to have degree ≤ 2, then they must be unique (if they exist, of course). Let’s prove that they
must exist.

• For the first example, f (x) = x + 1 obviously works. Therefore by Corollary 2 there
are no other polynomials of degree ≤ 2 that work.

• For the second example, existence is not so easy. Let’s break down the problem into
several pieces, and please try them yourself:

– First we find three polynomials g1, g2, g3 with deg ≤ 2 satisfying:

g1(1) = 2, g1(2) = 0, g1(3) = 0
g2(1) = 0, g2(2) = 3, g2(3) = 0
g3(1) = 0, g3(2) = 0, g3(3) = π

– Then we stitch them together to form our final g:

g(x) = g1(x) + g2(x) + g3(x)

You should get something like

g(x) = 2
(x− 2)(x− 3)
(1− 2)(1− 3)

+ 3
(x− 1)(x− 3)
(2− 1)(2− 3)

+ π
(x− 1)(x− 2)
(3− 1)(3− 2)

More generally,

Theorem 3 (Lagrange Interpolation). If x1, · · · , xn are distinct numbers and y1, · · · , yn are
numbers (not necessarily distinct) then the (unique) polynomial f of deg < n such that



f (xi) = yi for all i is

f (x) =
n

∑
i=1

yi ∏
j 6=i

x− xj

xi − xj

Exercise. f (x) leaves a remainder of 2 when divided by (x − 3) whereas f (x) leaves a re-
mainder of 1 when divided by (x− 4). Find the remainder polynomial when f (x) is divided
by (x− 3)(x− 4).

Exercise. Let f0(x) be the polynomial obtained by interpolation. Find a way to express
all polynomials f (x) such that f (xi) = yi for all i.

4 An IMO Example

IMOSL2019A5. Let x1, · · · , xn be distinct reals. Prove that

n

∑
i=1

∏
j 6=n

1− xixj

xi − xj
=

{
0 if n even
1 if n odd

We first want a polynomial which we can easily incorporate into the Interpolation Formula.
Therefore we want something like yi = f (xi) = ∏j 6=i(1− xixj), but the closest thing we can
have is probably by choosing

f (x) = (1− x1x)(1− x2x) · · · (1− xnx)

except this generates a new factor (1 − x2
i ). Let’s just see what happens when we apply

interpolation on f (x) anyway:

f (x) =
n

∑
i=1

(1− x2
i )∏

j 6=i

(1− xixj)(x− xj)

xi − xj
.

How do we ‘erase’ the (1− x2
i )? The idea turns out to be adding more ‘nodes’ to the inter-

polation. If we interpolate not just on x1, · · · , xn but also on 1,−1, then the denominator in
the above expression has new factors of xi − 1 and xi + 1, cancelling with the (1− x2

i ). Let’s
do exactly that then. Redoing interpolation on 1,−1, x1, · · · , xn,

f (x) = f (1)
x + 1
1 + 1 ∏

j

x− xj

1− xj
+ f (−1)

x− 1
−1− 1 ∏

j

x− xj

−1− xj
+

n

∑
i=1

f (xi)
(x− 1)(x + 1)
(xi − 1)(xi + 1) ∏

j 6=i

x− xj

xi − xj

Each term above is a polynomial with degree n + 1, but we know by definition that f has
degree n. That means the coefficient of xn+1 must miraculously vanish after summing ev-
erything. By looking at the leading coefficients:

0 = f (1)
1

1 + 1 ∏
j

1
1− xj

+ f (−1)
1

−1− 1 ∏
j

1
−1− xj

+
n

∑
i=1

f (xi)
1

(xi − 1)(xi + 1) ∏
j 6=i

1
xi − xj



Substituing f (1) = ∏j(1− xj), f (−1) = ∏j(1 + xj) and f (xi) gives

0 =
1
2
− (−1)n

2
−

n

∑
i=1

∏
j 6=i

1− xixj

xi − xj
. �

5 Exercises

1. Find the remainder when x100 is divided by x2 − x− 6.

2. If a ∈ R is a root of a polynomial with integer coefficients, then there is a unique monic
polynomial with integer coefficients, with a as a root, with minimal degree. This is called
the minimal polynomial of a.

3. Find a polynomial in Z[x] with root
√

2 +
√

3.

4. Prove

a2

(a− b)(a− c)
+

b2

(b− a)(b− c)
+

c2

(c− a)(c− b)
= 1.

(As Peter Lorre would say, ‘Do it ze kveek vay, Johnny!’) How about

a3

(a− b)(a− c)
+

b3

(b− a)(b− c)
+

c3

(c− a)(c− b)
?

5. Consider the system of equations

a + 8b + 27c + 64d = 1
8a + 27b + 64c + 125d = 27

27a + 64b + 125c + 216d = 125
64a + 125b + 216c + 343d = 343

Find the value of 64a + 27b + 8c + d.

6. Show that for all n ∈N, there is a polynomial Pn such that cos nx = Pn (cos x).

7. Let P be a polynomial with positive coefficients. Prove that if

P
(

1
x

)
≥ 1

P(x)

holds for x = 1, then it holds for all x > 0.
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