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1 Definitions

Definition 1. Let 7 > 0 be an integer. A polynomial of degree 1 is a function of the form
g poly g
n
f(x) = anx" + a1 x" P+ tax+ag = Y gt
k=0

where ay,a,_1,---,a1,a0 are constants and a4, # 0. We also include the zero function
(f(x) = 0 for all x) as a polynomial and usually say it has degree —oo (or just agree it
has lower degree than any other polynomial).

Definition 2. The numbers a,, - - - , a9 defined above are called the coefficients of f.
Definition 3. The solution(s) to the equation f(x) = 0 are called the root/zero(s) of f(x).

Definition 4. A polynomial is said to be monic if the leading coefficient a,, is 1.

Exercise. Which of the following are polynomials? Which are monic?

e 2x2 41 o 100 _ 7y 41
o D o 2F
o 1+x+x>+--- o x!

Exercise. A polynomial of degree 101 has no real root. Is this possible?
Exercise. A polynomial of degree 102 has no real root. Is this possible?
Exercise. deg(fg) = deg f + deg g. Can you see why we say deg0 = —oco now?

Exercise. deg(f + g) < max(deg f,degg).

2 Division Algorithm

Given two positive integers m and 1, we can always write m = ngq + r uniquely where r < n.
This is called the division algorithm. There is also an analogous statement for polynomials:



Theorem 1. Given nonzero polynomials f, g, there exist unique polynomials g, r such that
f=g9+r, degr < degg
Example. Say f(x) = x° + 3x> —2x + 1 and g(x) = x> — 1, then
43 —2x+1= (x> -1) (P +x+3)+ (—x +4)

You have probably learnt how to find g and r via long division, but being able to find some
g and r doesn’t guarantee uniqueness. So let’s prove it.

Proof. [Existence] Stating the exact procudure of long division is enough to prove existence,
but let’s prove it another way. We induct on the degree of f. The case deg f = 0 is easy (left
as an exercise). Assume for all f, ¢ with deg f < k there exists such g, .

Let'ssay deg f = k+ 1. If degg > deg f, then g = 0,r = f works. Or else when deg g <
deg f, say g(x) = gux" +--- and f(x) = f,x™ + - - -, notice that

f(x) = (fm/ gu)x""g(x)

has degree < k because the leading term of f is annihilated. Therefore, by inductive hypoth-
esis there exists g1, 71 such that

f=(fm/gn)x""g =gq1 +11,  degry <degg.
Rewriting the equation gives

f=(fu/gn)x" " +q1) g+ 11, degr; < degg.
Therefore g = (fi/gn)x™ " 4+ g1 and r = r{ works.

[Uniqueness] The most common way of proving uniqueness is performing subtraction in
some way. Say there exist (q1,71), (42,72) such that

f=8q1+r, degr; < degg
f =892+, degr, < degg

then by subtracting we get
0=g(q1—q2) + (r1 —12).

We see that g1 — g» = 0, otherwise degg(q1 — q2) > degg > deg(r1 — r2) and their sum
cannot be equal to 0 on the LHS. But when gq; — g2 = 0 the equation forces r{ —p = 0.
Therefore q1 = g2, 11 = 1. ]

Note. The above theorem needs an extra condition to hold if, let’s say, we are only allowed
to have integer coefficients. What is the condition? (Hint, it is about g).

Corollary 1 (Remainder/Factor Theorem). If f is a polynomial with root a, then f(x) = (x —
a)g(x) for some polynomial g. If, on the other hand, f(a) = r, then f(x) = (x —a)g(x) +r.



A result of the factor theorem is,

Theorem 2. A nonzero polynomial of degree n cannot have more than 7 roots.

OJ

Corollary 2. If two nonzero polynomials f, g with degree < n agree at more than n points
(meaning: there exist n + 1 distinct x; such that f(x;) = g(x;) for all i), then f = g.

3 Lagrange Interpolation

Question: Can you find a polynomial f with real coefficients such that

(1) =2,£(2) =3,£(3) = 42

How about a polynomial ¢ with real coefficients such that

g(1) =2,¢(2) =3,4(3) = m?

Before we answer these questions, let’s notice from Corollary 2 that if we only allow f or g
to have degree < 2, then they must be unique (if they exist, of course). Let’s prove that they

must exist.

e For the first example, f(x) = x 4+ 1 obviously works. Therefore by Corollary 2 there

are no other polynomials of degree < 2 that work.

* For the second example, existence is not so easy. Let’s break down the problem into

several pieces, and please try them yourself:

— First we find three polynomials g1, g2, g3 with deg < 2 satisfying:

g1(1) =2,81(2) =0,81(3) =0
82(1) = 0,82(2) = 3,£2(3) =0
g5(1) =0,85(2) =0,85(3) = 7

— Then we stitch them together to form our final g:

g(x) = g1(x) + ga(x) + g3(x)

You should get something like

More generally,

Theorem 3 (Lagrange Interpolation). If xy, - - - , x, are distinct numbers and y;,

,yn are

numbers (not necessarily distinct) then the (unique) polynomial f of deg < n such that



f(x;) =y; foralliis

x—x]-

f) = Yull

i1 i X T

Exercise. f(x) leaves a remainder of 2 when divided by (x — 3) whereas f(x) leaves a re-
mainder of 1 when divided by (x — 4). Find the remainder polynomial when f(x) is divided
by (x —3)(x —4).

Exercise. Let fo(x) be the polynomial obtained by interpolation. Find a way to express
all polynomials f(x) such that f(x;) = y; for all i.

4 An IMO Example

IMOSL2019A5. Let xq, - - - , x, be distinct reals. Prove that

ZH

i= 1]7&11 Y

x,x] 0 if neven
1 ifnodd

We first want a polynomial which we can easily incorporate into the Interpolation Formula.
Therefore we want something like y; = f(x;) = [1;(1 — x;x;), but the closest thing we can
have is probably by choosing

f(x) =(1—x1x)(1—x0x) -+ - (1 — xpx)

except this generates a new factor (1 — x?). Let’s just see what happens when we apply
interpolation on f(x) anyway:

f(x) = i(l _ le) 1—[ (1 — xin)(x _ X])

xi—x]-

How do we “erase’ the (1 — x?)? The idea turns out to be adding more ‘nodes’ to the inter-
polation. If we interpolate not just on xy, - - -, x, but also on 1, —1, then the denominator in
the above expression has new factors of x; —1and x; + 1, Cancelhng with the (1 — x?). Let’s
do exactly that then. Redoing interpolationon 1, —1, xq, - - - , x4,

x+ 1 X—X x—1 —1(x+1) Y%
(x) = f(1) +f(=1) +
f f 1+1I]—.[1—x]- f —1—11]—[ 1—x] gf 1)(xi+1)]1;!xi—xj
Each term above is a polynomial with degree n + 1, but we know by definition that f has
degree n. That means the coefficient of x"*! must miraculously vanish after summing ev-
erything. By looking at the leading coefficients:

1 1 1 1 ! 1 1
O:f(l)l—l-lnl—x]+f(_1)—1—11;I—1—x]-+i_21f(xi)(xi—1)(xi+1)]1.;[l.xi—xj




Substituing f(1) = [T;(1 — x;), f(—=1) =I1;(1 + x;) and f(x;) gives

0-3- 55110

im1j4 YT

—_

1-— xl-x]-

N

5 Exercises

1. Find the remainder when x1% is divided by x> — x — 6.
2. If a € Ris a root of a polynomial with integer coefficients, then there is a unigue monic
polynomial with integer coefficients, with a4 as a root, with minimal degree. This is called

the minimal polynomial of a.

3. Find a polynomial in Z[x] with root v/2 + /3.

4. Prove
a? n b? L c? 1
(a=b)la—c) (b-a)b—c) (c—a)(c—b)
(As Peter Lorre would say, ‘Do it ze kveek vay, Johnny!”) How about
3 3 3
a b c )

(@—b)a—0) b-a)b-c  (c—a)c—b)

5. Consider the system of equations

a+8b+27c+64d =1
8a + 27b + 64c + 125d = 27
27a + 64b + 125¢ 4 216d = 125
64a + 125b + 216¢ + 343d = 343

Find the value of 64a + 27b + 8c + d.
6. Show that for all n € IN, there is a polynomial P, such that cos nx = P, (cos x).
7. Let P be a polynomial with positive coefficients. Prove that if
1 1
Pl=]>
(%) 2 7

holds for x = 1, then it holds for all x > 0.
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