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1 Prelude: Multiplicative Groups

Given a set that is closed under multiplication, such as any field, or the set of mod n integers
Z/nZ, we can look at the subset of all invertible elements. This subset allows us to do
multiplication and division freely without any concerns, it is called the multiplicative group
S× of the original set S.

• The multiplicative group of any field F is F× = F \ {0F}. (Why?)

• The multiplicative group of Z/nZ consists of those coprime to n. (Why?)

2 Orders

In this handout, we will focus on multiplicative groups that are commutative ab = ba. Don’t
worry, the examples given in section 1 are all commutative.

Definition. The order Ox of x is the smallest positive integer n such that xn = 1, if it exists.

Note. The definition above applies to elements x in any multiplicative group. For example, if
x 6= 1 is a real number, then there is no order. Or if x ∈ F×p , then there is always an order. If
x is complex, there is sometimes an order (when?). We will see other multiplicative groups
afterwards. In fact, the 1 in the definition above should be specified as the identity element
1G of the multiplicative group G, but we will abuse a little bit of notation – I will not draw
bars above elements in Fp either.

Exercise. Prove that if xn = 1 then Ox | n.

Exercise. Prove that if x ∈ F×p then Ox | p− 1.

Proposition 1. If Ox and Oy are coprime, then Oxy = OxOy.

Proof. Since (xy)OxOy = (xOx)Oy · (yOy)Ox = 1, we know Oxy | OxOy. On the other hand,

xOxy = y−Oxy

xOyOxy = y−OyOxy

xOyOxy = 1

and thus Ox | OyOxy. But
(
Ox, Oy

)
= 1, so Ox | Oxy. Similarly Oy | Oxy. �



Proposition 2. If n | Ox, there exist another element y such that Oy = n.

Proof. Write Ox = mn. We claim that Oxm = n. That Oxm | n is obvious. Conversely,

1 = (xm)Oxm = xmOxm ⇒ mn | mOxm ⇒ n | Oxm

and thus Oxm = n. �

Proposition 3. Let Ox, Oy be some orders, there exist another order Oz = lcm
(
Ox, Oy

)
.

Proof. Write Ox = ∏i pαi
i and Oy = ∏i pβi

i . By proposition 2 there exist orders

Ox′ = ∏
i: αi≥βi

pαi
i and Oy′ = ∏

i: αi<βi

pβi
i

since they divide Ox and Oy respectively. But they’re coprime and multiply to lcm
(
Ox, Oy

)
(verify!), so by proposition 1 we just pick z = x′y′. �

By taking successive lcm, we can deduce the following:

Proposition 4. If we work in a finite multiplicative group, there exists an order that is equal
to the lcm of all orders. This is called the universal order.

Exercise. Why does the universal order of F×p divide p− 1?

Theorem 1. The universal order of F×p is, in fact, p− 1.

Proof. The above exercise shows the universal order O divides p− 1. Conversely, note that
xO = 1 for all x ∈ F×p because O is a multiple of all orders. Therefore, the polynomial xO− 1
has p− 1 roots in the field Fp. By comparing degrees, O ≥ p− 1. �

3 Primitive Roots

Theorem 1 is the culmination of this handout. It asserts that, there is an element with order
p− 1 mod p. We call such an element g a primitive root mod p and write 〈g〉 = F×p .

Exercise. g is a primitive root mod p if and only if {1, g, g2, · · · , gp−2} = F×p .

Example. 3 is a primitive root mod 5 because (1, 3, 32, 33) = (1, 3, 4, 2) in F5.

Exercise. Find all primitive roots mod 13.

You can safely quote the existence of primitive roots without proof. Primitive roots are
extremely useful when we are studying multiplicative properties of mod p numbers. For
example, given a mod p integer written in the form gk, we can see whether or not it has an
n-th root mod p by seeing whether k + (p− 1)m is a multiple of n for some m (Why?).



4 Another Perspective: Cyclotomic Polynomials

Denote e2πik/n = ζk
n.

Consider factoring polynomials in the form Xn − 1 in Z[x]:

X− 1 = X− 1

X2 − 1 = (X− 1)(X + 1)

X3 − 1 = (X− 1)(X2 + X + 1)

X4 − 1 = (X− 1)(X + 1)(X2 + 1)

X5 − 1 = (X− 1)(X4 + X3 + X2 + X + 1)

X6 − 1 = (X− 1)(X + 1)(X2 + X + 1)(X2 − X− 1)

The pattern may not look exactly obvious, but if we decompose these irreducible factors in
C[x] there seems to be some pattern:

X + 1 = X− ζ1
2

X2 + X + 1 = (X− ζ1
3)(X− ζ2

3)

X2 + 1 = (X− ζ1
4)(X− ζ3

4)

X4 + X3 + X2 + X + 1 = (X− ζ1
5)(X− ζ2

5)(X− ζ3
5)(X− ζ4

5)

X2 − X− 1 = (X− ζ1
6)(X− ζ5

6)

Hmm... 2 with {1}, 3 with {1, 2}, 4 with {1, 3}, 5 with {1, 2, 3, 4}, 6 with {1, 5}... They are
the numbers coprime to it! We give the polynomials above a special name:

Definition. The polynomial

Φn(X) = ∏
1≤k≤n
(k,n)=1

(X− ζk
n)

is called the n-th cyclotomic polynomial.

It might not be entirely obvious that Φn(x) ∈ Z[x] yet, but something you can show is

Exercise. Xn − 1 = ∏
d|n

Φd(X).

Exercise. Use the above exercise to prove that Φn(x) ∈ Z[x].

Proposition 5. Φn(x) is irreducible in Z[x].

Proof. Let Φn(X) = f (X)g(X) and f is irreducible. We prove that for all primes p - n we
have that f (z) = 0 ⇒ f (zp) = 0 (Why does this imply the result?). Suppose the contrary
that f (z) = 0, f (zp) 6= 0, then g(zp) = 0, so z is a root of g(Xp). But f is the minimal
polynomial of z, so f (X) | g(Xp). Note that a simple generalisation of (a + b)p ≡ ap + bp

(mod p) gives g(Xp) ≡ g(X)p (mod p). Therefore, reducing mod p, f (X) | g(X)p. This



means f and g has a nontrivial common factor, but Φn(X) does not have repeated roots as
(Xn − 1)′ = nXn−1 6≡ 0 (mod p)! �

Exercise. Let a ∈ Z. If Φn(a) ≡ 0 (mod p), then an ≡ 1 (mod p). (i.e. are you awake?)

The following result is why all of these matter in number theory:

Theorem 2. Let a ∈ Z and p - n. If Φn(a) ≡ 0 (mod p), then not only an ≡ 1 (mod p), but
also n is the order of a mod p.

Proof. Suppose the contrary that the order of a mod p is m (strictly divides n). Then p | am− 1
and hence Φd(a) ≡ 0 (mod p) for some d | m | n. Therefore

Φn(x) = ∏
k|n

Φk(x)

has a double root a under mod p (one in Φd(x), one in Φn(x)), but

Φ′n(x) = nxn−1

has no common roots with Φn(x) as p - n. �

Corollary 2.1. If a2 ≡ −1 (mod p) then p = 2 or p ≡ 1 (mod 4).

Proof. Φ4(a) ≡ 0 (mod p). By Theorem 2, either p | 4, or 4 is the order of a mod p, i.e.
4 | p− 1. �

Corollary 2.2. There exists a primitive root mod p.

Proof. Consider Φp−1(x). It divides xp−1 − 1 which splits completely into (x − 1)(x −
2) · · · (x− p + 1) mod p, therefore there must exist some Φp−1(a) ≡ 0 (mod p). �

5 General Primitive Roots

We found that there is a primitive root for F×p . How about for other moduli? For which n is
there a primitive root for (Z/nZ)×? Turns out it is:

Theorem 3. (Z/nZ)× has a primitive root⇔ n = 2, 4, pk or 2pk where p is an odd prime.

Proof. Fun exercise. Remember to use the trick (g + mp)k ≡ gk + kmpgk−1 (mod p2) etc.

Note. Fpk and Z/pkZ are different sets! They are only isomorphic when k = 1. Otherwise,
the former is a field while the latter is not. The field Fpk is something complicated that I will
not talk about, but a sneak peek is that Fp2 ∼= Fp[δ] where δ is a square root.



6 Problems.

1. Notice that the decimal expansions of k/7 are cyclic shifts. Why?

• 1/7 = 0.142857

• 2/7 = 0.285714

• 3/7 = 0.428571

• 4/7 = 0.571428

• 5/7 = 0.714285

• 6/7 = 0.857142

2. How many primitive roots are there in F×p ?

3. Find the remainder of

1k + 2k + · · ·+ (p− 1)k

when divided by p.

4. Find all positive integers n such that n | 2n − 1.

5. (IMOSL1997) Show that if an infinite arithmetic progression of positive integers contains
a square and a cube, it must contain a sixth power.

6. (IMOSL2006) Prove that

x7 − 1
x− 1

= y5 − 1

has no integer solutions.

7. (USATST2008) Prove that x7 + 7 cannot be a perfect square for all positive integers n.
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