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1 Prelude: Multiplicative Groups

Given a set that is closed under multiplication, such as any field, or the set of mod # integers
Z./nZ, we can look at the subset of all invertible elements. This subset allows us to do
multiplication and division freely without any concerns, it is called the multiplicative group
§* of the original set S.

e The multiplicative group of any field F is F* = F \ {O¢}. (Why?)

¢ The multiplicative group of Z/nZ consists of those coprime to n. (Why?)

2 Orders

In this handout, we will focus on multiplicative groups that are commutative ab = ba. Don’t
worry, the examples given in section 1 are all commutative.

Definition. The order Oy of x is the smallest positive integer n such that x" = 1, if it exists.

Note. The definition above applies to elements x in any multiplicative group. For example, if
x # 1 is a real number, then there is no order. Or if x € ]F; , then there is always an order. If
x is complex, there is sometimes an order (when?). We will see other multiplicative groups
afterwards. In fact, the 1 in the definition above should be specified as the identity element
1¢ of the multiplicative group G, but we will abuse a little bit of notation — I will not draw
bars above elements in [F, either.

Exercise. Prove that if x” = 1 then Oy | n.

Exercise. Prove that if x € IF then O | p — 1.

Proposition 1. If O, and O,, are coprime, then Oy, = 0,0,

Proof. Since (xy)9*Or = (xOx)%% . (y°r)O = 1, we know Oyy | O;Oy. On the other hand,

xOxy = yi Oxy

xOyOxy = y_OyOxy

xOOw =1

and thus Oy | O,Oyy. But (O, Oy) = 1,0 Ox | Oyy. Similarly O | Oy. O



Proposition 2. If n | O,, there exist another element y such that O, = n.
Proof. Write Oy = mn. We claim that Ox» = n. That Oy | n is obvious. Conversely,
1= (x™O%" = x"O = yn | mOwm = 1| O
and thus O,m = n. O]
Proposition 3. Let Oy, Oy be some orders, there exist another order O, = lem (Ox, Oy).

Proof. Write O, =TIT; p;’ and O, =IT; Plﬁi. By proposition 2 there exist orders

Ox/: H p?i and Oy/: H pii

i aiZﬁi i 0(1'<ﬁl'

since they divide O, and O, respectively. But they’re coprime and multiply to lem (Oy, O)
(verify!), so by proposition 1 we just pick z = x"y/. O

By taking successive lcm, we can deduce the following:

Proposition 4. If we work in a finite multiplicative group, there exists an order that is equal
to the lcm of all orders. This is called the universal order.

Exercise. Why does the universal order of F divide p —1?
Theorem 1. The universal order of IF,;< is, in fact, p — 1.
Proof. The above exercise shows the universal order O divides p — 1. Conversely, note that

xO =1forallx € IF because O is a multiple of all orders. Therefore, the polynomial x0 -1
has p — 1 roots in the field IF,. By comparing degrees, O > p — 1. O]

3 Primitive Roots

Theorem 1 is the culmination of this handout. It asserts that, there is an element with order
p — 1 mod p. We call such an element g a primitive root mod p and write (g) = F.

Exercise. ¢ is a primitive root mod p if and only if {1,¢,¢%,--- ¢/ 2} = Fj.

Example. 3 is a primitive root mod 5 because (1,3,32,3%) = (1,3,4,2) in Fs.

Exercise. Find all primitive roots mod 13.

You can safely quote the existence of primitive roots without proof. Primitive roots are
extremely useful when we are studying multiplicative properties of mod p numbers. For

example, given a mod p integer written in the form g*, we can see whether or not it has an
n-th root mod p by seeing whether k + (p — 1)m is a multiple of n for some m (Why?).



4 Another Perspective: Cyclotomic Polynomials

2mik/n — 7k
Denote e = (-

Consider factoring polynomials in the form X" — 1 in Z]x]:

X-1=X-1
X2—1—(X— WX +1)
X—1=(X-1)(X>+X+1)
X -1=(X-1)(X+1)(X>+1)
X —1=X-1D)(X*+X+ X2+ X+1)
X0-1=X-1)(X+)(X*+X+1)(X2-X~-1)

The pattern may not look exactly obvious, but if we decompose these irreducible factors in
C|x] there seems to be some pattern:

X+1=X-03
X+ X+1=(X-33)(X-33)
XP+1=(X-7)(X-7))
XX+ X2+ X4+ 1= (X -3 (X - 35) (X - 32)(X—25)
X2P—X—-1=(X-7)(X-2)

Hmm... 2 with {1}, 3 with {1,2}, 4 with {1,3}, 5 with {1,2,3,4}, 6 with {1,5}... They are
the numbers coprime to it! We give the polynomials above a special name:

Definition. The polynomial

is called the n-th cyclotomic polynomial.
It might not be entirely obvious that ®,(x) € Z[x] yet, but something you can show is

Exercise. X" —1 =] [®4(X
d|n

Exercise. Use the above exercise to prove that ®,(x) € Z[x].
Proposition 5. @, (x) is irreducible in Z[x].

Proof. Let ®,(X) = f(X)g(X) and f is irreducible. We prove that for all primes p { n we

have that f(z) = 0 = f(zF) = 0 (Why does this imply the result?). Suppose the contrary

that f(z) = 0, f(zP) # 0, then g(z) = 0, so z is a root of g(X?). But f is the minimal

polynomial of z, so f(X) | g(X*). Note that a simple generalisation of (a 4+ b)P = aP + b?
= 8(X)

|
(mod p) gives ¢(XP) = g(X)? (mod p). Therefore, reducing mod p, f(X) | g(X)P. This



means f and g has a nontrivial common factor, but @, (X) does not have repeated roots as
(X" —1) =nX""1#£0 (mod p)! O

Exercise. Leta € Z. If ®,(a) =0 (mod p), thena” =1 (mod p). (i.e. are you awake?)
The following result is why all of these matter in number theory:

Theorem 2. Leta € Z and p { n. If ,(a) =0 (mod p), then not only a” =1 (mod p), but
also n is the order of 2 mod p.

Proof. Suppose the contrary that the order of @ mod p is m (strictly divides n). Then p | 2" — 1
and hence ®;(a) =0 (mod p) for some d | m | n. Therefore

Dy (x) = {I%(X)

has a double root a under mod p (one in ®;(x), one in ®,(x)), but

@ (x) = nx"!
has no common roots with ®,(x) as p 1 n. O
Corollary 2.1. If 2> = —1 (mod p) thenp =2o0rp =1 (mod 4).

Proof. ®4(a) = 0 (mod p). By Theorem 2, either p | 4, or 4 is the order of 4 mod p, i.e.
4]p-1. O

Corollary 2.2. There exists a primitive root mod p.

Proof. Consider ®,_1(x). It divides x”~! — 1 which splits completely into (x —1)(x —
2)---(x — p+1) mod p, therefore there must exist some ®,_1(a) =0 (mod p). O

5 General Primitive Roots

We found that there is a primitive root for IF ;. How about for other moduli? For which 7 is
there a primitive root for (Z/nZ)*? Turns out it is:

Theorem 3. (Z/nZ)™ has a primitive root <> n = 2,4, p* or 2p* where p is an odd prime.
Proof. Fun exercise. Remember to use the trick (g + mp)k = ¢F + kmpg"=! (mod p?) etc.

Note. F and Z/ p*Z are different sets! They are only isomorphic when k = 1. Otherwise,
the former is a field while the latter is not. The field F  is something complicated that I will
not talk about, but a sneak peek is that IF > = T, [0] where ¢ is a square root.



6 Problems.

1. Notice that the decimal expansions of k/7 are cyclic shifts. Why?
e 1/7 = 0.142857 e 3/7 =0.428571 e 5/7 =0.714285

* 2/7 =0.285714 * 4/7 =0.571428 * 6/7 =0.857142

2. How many primitive roots are there in IF;?
3. Find the remainder of
2k (p—1)f
when divided by p.

4. Find all positive integers n such that n | 2" — 1.

5. (IMOSL1997) Show that if an infinite arithmetic progression of positive integers contains
a square and a cube, it must contain a sixth power.

6. (IMOSL2006) Prove that

has no integer solutions.
7. (USATST2008) Prove that x” + 7 cannot be a perfect square for all positive integers .
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