
Max-Flow I and II Notes

Max-Flow I

Max-flow is a fundamental problem with many applications in logistics and routing etc.

1 Input

A flow network G = (V,E, s, t, c) has:

• Network (i.e. directed graph) (V,E)

• One source node s ∈ V and one target node t ∈ V

• Edge capacities c : V 2 → R≥0 where c(u, v) = 0 if (u, v) ̸∈ E

Intuition: Each edge is a one-way road, and the capacity is the number of lanes on that road.

s

u

v

t
2

4

3

1
2 1

Fundamental question: What is the max value of traffic from s to t that we can support?

1.1 Gross Flow

Gross flow is specified by a function g : E → R≥0, satisfying the following properties.

• Feasibility: 0 ≤ g(e) ≤ c(e) for all e ∈ E.

• Flow conservation:
∑

(x,v)∈E

g(x, v) =
∑

(v,y)∈E

g(v, y) for all v ∈ V \ {s, t}.

Example: Each edge is labelled by g(e)/c(e) where g(e) is the rate and c(e) is the value.
Here we can see all flows ≤ capacities and “flow in = flow out” for every node.

s

a

b

c

d

t

1/3

2/2

2/3

1/2

2/2

1/1 1/31/2

3/3
1/1

However, this definition is not convenient when dealing with flow cycles of length 1 or 2:

s 1/2
s t

1/3
1/2

1

1.2 Net flow

Firstly, we won’t assume that s is a source and t is a sink (i.e. both can have in- and out- neighbors), so
c(u, v) = 0 for all (u, v) ̸∈ E. We now define net flow.

Net flow is specified by a function f : V 2 → R, satisfying the following properties:

• Feasibility: f(u, v) ≤ c(u, v) for all u, v ∈ V .

• Flow conservation:
∑
x∈V

f(v, x) = 0 for all v ∈ V \ {s, t}.

• Skew-symmetry: f(u, v) = −f(v, u) for all u, v ∈ V .

Few corollaries to note:

1. We can have f(u, v) ≤ 0 when (u, v) ̸∈ E.

2. f(v, v) = 0 for all v ∈ V .

3. If (u, v), (v, u) ̸∈ E then f(u, v) = 0.

4.
∑

f(x,v)>0

f(x, v) =
∑

f(v,y)>0

f(v, y) for all v ∈ V \ {s, t}.

We define the value of flow f to be |f | =
∑
v∈V

f(s, v).

The Max-Flow Problem is to find a flow with maximal value for a given flow network G.

Simplest examples of non-zero flow:

s

t

1/2

s v

t

2/3

2/22/5

2 Flow Decomposition

An observation: Any flow can be decomposed into a collection of flow cycles and s-t flow paths:

s

a

b

c

d

t

1/3

2/2

2/3

1/2

2/2

1/1 1/31/2

3/3
1/1

can be decomposed into

2

s

a c

t
1 1

1

b

c

d

1 1

1

s

a

b

c

t

1

1
1

1 s

b d

t

1 1
1

Formally, denote the support suppf (G) as the subgraph of G with only edges with positive flow.

Flow Decomposition Theorem.
For any flow f with |f | ≥ 0, suppf (G) can be decomposed into a collection of flow cycles and s-t flow paths.

Proof.
We induct on the number of edges in suppf (G). The base case is where the support has no edges (so
|f | = 0), and indeed it can be decomposed into an (empty) set of flow cycles and s-t flow paths. Now
assume suppf ′(G) can always be decomposed into flow cycles and s-t flow paths when |f ′| < L. Let there
be a flow f with |f | = L.
Suppose that we can find a cycle C in suppf (G). Then we can “reduce that cycle” by substracting all the
flows on the cycle by fmin(C) = min

e∈C
f(e). Formally, we define a new flow f ′ on the graph:

f ′(u, v) =


f(u, v)− fmin(C) (u, v) ∈ C

−f(u, v) + fmin(C) (v, u) ∈ C

f(u, v) otherwise

For example,

s

a

c

b

t

1/2 1/2
2/2

1/11/1 s

a

c

b

t

1/2 1/2
1/2

We can check that f ′ still satisfies feasibility, flow conservation and skew-symmetry, so f ′ is a flow.

Now that suppf ′(G) has at least one edge fewer than suppf (G), we can apply the inductive hypothe-
sis, decomposing suppf ′(G) and then adding the flow cycle back to get suppf (G).

What if there are no cycles? Note that each vertex, that is not s nor t, with an in-edge must have
an out-edge by flow conservation, so if we perform DFS starting from s, we are going to reach either t or
s again. The latter case forms a cycle, so we instead reach just t.

Now we have an s-t path P , we reduce it by subtracting the flow by fmin(P) = mine∈P f(e). In other

3

words, we define again a new flow

f ′(u, v) =


f(u, v)− fmin(P) (u, v) ∈ P

−f(u, v) + fmin(P) (v, u) ∈ P

f(u, v) otherwise

and check that it still satisfies it being a flow. Then at least one edge is removed, and we can use the
inductive hypothesis similarly. □

Exercise. There is always a flow decomposition with at most |E| flow cycles and s-t flow paths.

Exercise∗. If |f | > 0, then there must be at least one s-t flow path in suppf (G).

3 Cuts

Let f ∗ be a max flow of G (need not be unique), and denote F ∗ = |f ∗|.

Warmup. How to check whether F ∗ > 0 using flow decomposition?

Let G∗ be the subgraph of G with only edges with positive capacities. Note: suppf (G) is the subgraph
with positive flow edges, and hence depends on f ; whereas G∗ is the subgraph with positive capacity edges,
and hence is independent of flow.

By flow decomposition, F ∗ > 0 if and only if there is an s-t path in G∗.

So how do we certify when there is no s-t path in G∗? We use a cut.

Let S = {v ∈ V | exists s-v path in G∗}. Then when F ∗ = 0, s ∈ S but t ∈ V \ S.

More generally, we define an s-t cut to be a cut (S, V \ S) such that s ∈ S and t ∈ V \ S.

s

a

b

c

d

t

1/3

2/2

2/3

1/2

2/2

1/1 1/31/2

3/3
1/1S

We also define the capacity of a cut c(S) = c(S, V \S) =
∑
u∈S

∑
v∈V \S

c(u, v). In other words, c(S) is the total

capacity of edges leaving S. Then

F ∗ = 0 ⇐⇒ no s-t path in G∗ ⇐⇒ exists s-t cut S with c(S) = 0.

Therefore, s-t paths and s-t cuts are dual to each other!

Minimum s-t cut problem: Given G, find an s-t cut of minimum capacity.

Let S∗ = argmin
S s-t cut

c(S) be a cut with minimum capacity. Hence F ∗ = 0 ⇔ c(S∗) = 0.

4

Given a flow f , we can also define a flow across a cut f(S) = f(S, V \ S) =
∑
u∈S

∑
v∈V \S

f(u, v). By

feasibility, f(S) ≤ c(S) for any s-t cut S.

Claim. For any two s-t cuts S, S ′, we have f(S) = f(S ′).

Proof. By flow decomposition, f is a collection of flow cycles and s-t flow paths. For any cut S,

• Flow cycles contribute 0 to both f(S) because of skew-symmetry and the fact that cycles will zig-zag
into and out of S.

• s-t flow paths contribute to f(S) the amount equal to the flow of the path itself, because paths will
zig-zag into and out of S, cancelling out except for the last zig, which contributes the flow.

In both cases, f(S) did not depend on S, so f(S) = f(S ′). □

Therefore, for any s-t cut S, f(S) = f({s}) = |f |.

Weak Duality (Maxflow ≤ Mincut). |f ∗| = f(S) ≤ c(S) ≤ c(S∗).

4 Increasing Flow

Question: Given a flow f , how to increase its value or conclude that |f | = F ∗?

Our first idea is to find another s-t path and push more flow along it. But this does not always work.
Consider the following example:

s

u

v

t

0/1

1/1

1/1

0/1
1/1

There are no more s-t paths to push flow, yet |f | = 1 is not the max flow!

New idea: Undo some existing flows. We can think of (u, v) as being there with capacity 0, so we can push
flow along s → u → v → t, undoing the flow:

s

u

v

t

0/1

1/1

1/1

0/1
1/1−1/0 s

u

v

t

1/1

1/1

1/1

1/1
0/1

Now we have |f | = 2! How do we ensure that 2 is a maximum? We can use weak duality and choose an
appropriate cut S. By choosing S = {s}, we get 2 = |f | ≤ F ∗ ≤ c(S∗) ≤ c({s}) = 2, confirming maxflow.

5

5 Residual Network

In light of the previous example, we introduce a residual network to find pushable flows.

Given a flow f on a flow network G, we define the residual network Gf = (V,Ef , s, t, cf) where

• cf (u, v) = c(u, v)− f(u, v)

• (u, v) ∈ Ef ⇐⇒ cf (u, v) > 0

For the previous example, here is how the original flow network and its residual network look like:

s

u

v

t

0/1

1/1

1/1

0/1
1/1 s

u

v

t
1

1

1

1
1

Notice that a non-edge (u, v) ̸∈ E can be in Ef if f(v, u) > 0. This is because

cf (u, v) = c(u, v)− f(u, v) = 0 + f(v, u) > 0.

Therefore this definition allows us to undo flow!

Another example of flow vs residual:

s

a

b

c

d

t

1/3

2/2

2/3

1/2

2/2

1/1 1/31/2

3/3
1/1

s

a

b

c

d

t
2
1

2

1
2

1
1

2

1 2111

1
3

Observation: If f, f ′ are flows in G,Gf respectively, then f + f ′ is a flow in G.

So to improve f , we just need to find a non-zero flow in Gf .

What if there is no non-zero flow in Gf? Then by setting S as the set of vertices reachable from s in
Gf , we have cf

(
S
)
= 0, which rearranges to∑

u∈S

∑
v∈V \S

(c(u, v)− f(u, v)) = 0 =⇒ c
(
S
)
= f

(
S
)
.

Applying weak duality, c
(
S
)
= f

(
S
)
= |f | ≤ c(S∗) ≤ c

(
S
)
, so f is a max-flow and S is a min-cut!

In conclusion, we have

|f | = F ∗ ⇐⇒ no s-t path in Gf

6

6 Towards an Algorithm

Define an augmenting path as a directed s-t path in Gf . We have shown that we should always push
additional flow along such a path P up to the (residual) bottleneck capacity cf (P) = min

e∈P
cf (e), increasing

|f | by cf (P). When there is no more augmenting path, we have also shown that f is a max-flow. We can
write this as the Ford-Fulkerson algorithm:

Algorithm 1 Ford-Fulkerson (1956)

1: Start with zero flow
2: while Gf has augmenting path, do
3: Find augmenting path P in Gf via DFS ▷ O(|E|)
4: Augment flow by pushing cf (P) ▷ O(|E|)
5: end while

Runtime. If all capacities are integers in [0, C] then

no. of augmentations ≤ |f | ≤ c({s}) ≤ |V | · C

and thus the runtime is O(|E| · |f |) = O(|E| · |V | · C). This is pseudopolynomial : It is polynomial in the
numerical value C, i.e. polynomial in the unary coding (1, 11, 111, · · ·) of the numbers instead of binary.

By this algorithm, we also have the flow integrality theorem.

Flow Integrality Theorem. If all capacities are integers, there exists an integral max-flow.

Note that if the capacities are irrational, this algorithm may potentially take infinite runtime!

Max-Flow II

7 Maxflow-Mincut Theorem

Maxflow-Mincut Theorem (Strong Duality). The following are equivalent:

• There is an s-t cut (S, V \ S) such that c(S) = f(S) = |f |.

• f is a max flow.

• There is no s-t path in Gf .

Proof.
(1) ⇒ (2). Use weak duality: |f | ≤ |f ∗| ≤ c(S∗) ≤ c(S) = f(S) = |f |
(2) ⇒ (3). Contrapositive: If there is an s-t path in Gf , push the flow!
(3) ⇒ (1). Proven in section 5.

7

8 Other Algorithms

8.1 Max Bottleneck Path Algorithm (MBP)

Algorithm 2 Max Bottleneck Path

1: Start with zero flow
2: while Gf has augmenting path, do
3: Find augmenting path P in Gf that has maximum cf (P) ▷ O(|E| log |V |)
4: Augment flow by pushing cf (P) ▷ O(|E|)
5: end while

Runtime. It turns out that the number of iterations is O(|E| log |f |), so the runtime is

O(m log n) ·O(m log |f |) = O(m2 log n log(nC))

which is weakly polynomial.

8.2 Edmonds-Karp

Algorithm 3 Edmonds-Karp

1: Start with zero flow
2: while Gf has augmenting path, do
3: Find augmenting path P in Gf with minimal number of edges
4: Augment flow by pushing cf (P)
5: end while

Runtime. O(m2n). Polynomial (no proof given)

8.3 Later Work

King-Rao Tarjan (1994): O(mn logm/n logn n)
Ortin (2013): O(mn)

Goldberg-Rao (1998): O(min
(
m3/2,mn2/3

)
log(n2/m) logC)

Lee-Sidford (2014): O(m
√
n logO(1) n logC)

Madry (2013): O(m10/7 logO(1) n) for C = 1
Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva (1998): O(m1+o(1) logC)

9 Application

A matching in a graph G is a set of edges that do not share end points. The size |M | of a matching M is
the number of edges in M .

Max Bipartite Matching Problem: Given a bipartite graph G (a graph on vertices L ∪ R disjoint,
with edges E ⊆ L×R), output a matching of maximum size.

8

Solution. The method is to create a source s that connects to all vertices in L, and let all vertices in R to
connect to a target t. Then we assign a capacity of 1 to all the edges.

s

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

1

1

1

1

1

1

1

r1

r2

r3

r4

r5

1

1

1

1

1

1

1
1

t

1

1

1

1

1

1. By flow integrality, since all capacities are integers, there is a max flow with 0 or 1 values on every
edge and Ford-Fulkerson will find it.

2. If the maxflow f ∗ has value F ∗ then F ∗ of the edges (s, x) get flow 1 and the rest get 0.

3. The max matching is ≥ F ∗ because given any maxflow f ∗, no edges in L × R with flow 1 have a
common node (otherwise the flow in/out is > 1 but the capacities are all 1), and hence we can find
a matching with that number of edges, i.e. F ∗. The best case is at least as good as this.

4. F ∗ is at least the max-matching because given any max-matching we can extend the matching to s
and t and give flow 1 to all of them, giving a valid flow. The maxflow must be better than this.

5. Therefore F ∗ = max-matching.

Runtime via Ford-Fulkerson. O(m|f |) = O(m|M |) = O(mn).

9

10 Optional: Running Time of MBP

Let fi be the flow computed after iteration i, decomposable into ≤ |E(Gfi)| flow cycles and s-t flow paths.
Let f ∗

i be the max flow in Gfi after i-th iteration.
At the beginning, |f ∗

0 | = F ∗.
(Exercise) f ∗ = fi + f ∗

i for all i.

Since |E(Gfi)| ≤ 2m, there is always an s-t flow path P with flow value f ∗
i (P) ≥ |f∗

i |
2m

. For this path

P in Gfi , we must have cfi(P) ≥ f ∗
i (P) ≥ |f∗

i |
2m

.

Therefore after iteration (i+ 1), the residual flow

f ∗
i+1 ≤ |f ∗

i | −
|f ∗

i |
2m

which solves to

f ∗
i+1 ≤

(
1− 1

2m

)i

F ∗.

Consider I = (4m lnF ∗) + 1 iterations, then

|f ∗
I | ≤

(
1− 1

2m

)4m lnF ∗

F ∗

<

(
1

e

)2 lnF ∗

F ∗

=
1

(F ∗)2
F ∗ ≤ 1

and hence f ∗
I = 0. Therefore we need ≤ O(m logF ∗) iterations. □

10

