Max-Flow I and II Notes
Max-Flow 1

Max-flow is a fundamental problem with many applications in logistics and routing etc.

1 Input
A flow network G = (V, E, s,t,c) has:
e Network (i.e. directed graph) (V, E)
e One source node s € V and one target node t € V'
e Edge capacities ¢ : V2 — Ry where c(u,v) = 0 if (u,v) € F

Intuition: Each edge is a one-way road, and the capacity is the number of lanes on that road.
2 3
& 2i O

Fundamental question: What is the max value of traffic from s to ¢ that we can support?

1.1 Gross Flow

Gross flow is specified by a function g : £ — R, satisfying the following properties.

o Feasibility: 0 < g(e) < c(e) for all e € E.

e Flow conservation: Z g(x,v) = Z g(v,y) for all v € V' \ {s,t}.

(x,v)EE (U7y)€E

Example: Each edge is labelled by g(e)/c(e) where g(e) is the rate and c(e) is the value.
Here we can see all flows < capacities and “flow in = flow out” for every node.

AD—22
1/37 F T o/3

GX 12y 13 X0
2/2\@%3/3%/1/2
11

However, this definition is not convenient when dealing with flow cycles of length 1 or 2:

1/3
(e1/2 @111/22@

1.2 Net flow

Firstly, we won’t assume that s is a source and ¢ is a sink (i.e. both can have in- and out- neighbors), so
c(u,v) =0 for all (u,v) € E. We now define net flow.

Net flow is specified by a function f : V2 — R, satisfying the following properties:
o Feasibility: f(u,v) < c(u,v) for all u,v € V.

e Flow conservation: Z f(v,z) =0 for all v € V'\ {s,t}.

zeV
o Skew-symmetry: f(u,v) = —f(v,u) for all u,v € V.
Few corollaries to note:
1. We can have f(u,v) <0 when (u,v) € E.
2. f(v,v)=0foralvelV.
3. If (u,v), (v,u) ¢ E then f(u,v) = 0.

Z flz,v) = Z f(v,y) for all v € V'\ {s,t}.

f(z,0)>0 f(v,y)>0

We define the value of flow f to be |f| = Zf(s,v).

veV

The Max-Flow Problem is to find a flow with maximal value for a given flow network G.
Simplest examples of non-zero flow:

O Q-

1/2 2/5 2/2

oG

2 Flow Decomposition

An observation: Any flow can be decomposed into a collection of flow cycles and s-t flow paths:

1/3 ; 2/2;; /3
OGN RPN ;@

2/2Nd)jé3/3 1/2
1/1>®/

can be decomposed into

OW

Formally, denote the support supp(G) as the subgraph of G with only edges with positive flow.

Flow Decomposition Theorem.
For any flow f with | f] > 0, supp #(G) can be decomposed into a collection of flow cycles and s-t flow paths.

Proof.

We induct on the number of edges in suppf(G). The base case is where the support has no edges (so
|f| = 0), and indeed it can be decomposed into an (empty) set of flow cycles and s-t flow paths. Now
assume supp () can always be decomposed into flow cycles and s-t flow paths when [f’| < L. Let there
be a flow f with |f| = L.

Suppose that we can find a cycle C' in supp;(G). Then we can “reduce that cycle” by substracting all the
flows on the cycle by fiuin(C) = Ierélél f(e). Formally, we define a new flow f’ on the graph:

f(u,v) = fain(C) (u,v) €C
f(u,v) = ¢ —f(u,v) + fain(C) (v,u) € C

f(u,v) otherwise

2/2 1/2
2"@% @1/2 1/2@_ @1/2

MRV & O} ©
©

We can check that f’ still satisfies feasibility, flow conservation and skew-symmetry, so f’ is a flow.

For example,

Now that supp;(G) has at least one edge fewer than supp;(G), we can apply the inductive hypothe-
sis, decomposing supp; (G) and then adding the flow cycle back to get supp;(G).

What if there are no cycles? Note that each vertex, that is not s nor ¢, with an in-edge must have
an out-edge by flow conservation, so if we perform DFS starting from s, we are going to reach either t or

s again. The latter case forms a cycle, so we instead reach just t.

Now we have an s-t path P, we reduce it by subtracting the flow by fuin(P) = minecp f(e). In other

words, we define again a new flow

f(u,v) = fain(P) (u,v) €P
fu,v) = ¢ —f(u,v) + fam(P) (v,u) € P

f(u,v) otherwise

and check that it still satisfies it being a flow. Then at least one edge is removed, and we can use the
inductive hypothesis similarly. 0

Exercise. There is always a flow decomposition with at most |E| flow cycles and s-t flow paths.

Exercise®. If [f| > 0, then there must be at least one s-¢ flow path in supp;(G).

3 Cuts

Let f* be a max flow of G (need not be unique), and denote F* = | f*|.

Warmup. How to check whether F* > 0 using flow decomposition?

Let G* be the subgraph of G with only edges with positive capacities. Note: supp;(G) is the subgraph
with positive flow edges, and hence depends on f; whereas G* is the subgraph with positive capacity edges,
and hence is independent of flow.

By flow decomposition, F* > 0 if and only if there is an s-t path in G*.

So how do we certify when there is no s-t path in G*? We use a cut.

Let S = {v € V | exists s-v path in G*}. Then when F* =0, s€ Sbutt€ V\S.

More generally, we define an s-t cut to be a cut (S, V \ S) such that s € Sandt € V'\ S.

L IBTT T “2/3
| @X 120 117 1/3 3@
Y 3/3>®/1/2
S = l 1/1
We also define the capacity of a cut ¢(S) = c¢(S,V\95) = Z Z . In other words, ¢(.5) is the total
ueS veV\S

capacity of edges leaving S. Then
F* =0 <= no s-t path in G* <= exists s-t cut S with ¢(S) = 0.
Therefore, s-t paths and s-t cuts are dual to each other!

Minimum s-t cut problem: Given G, find an s-t cut of minimum capacity.

Let S* = argmin ¢(S5) be a cut with minimum capacity. Hence F* = 0 < ¢(S*) = 0.
S s-t cut

Given a flow f, we can also define a flow across a cut f(S) = f(S,V \ 9) Z Z f(u,v). By
ueS veV\S

feasibility, f(S) < ¢(S) for any s-t cut S.

Claim. For any two s-t cuts S, S’, we have f(S) = f(5').

Proof. By flow decomposition, f is a collection of flow cycles and s-t flow paths. For any cut S,

e Flow cycles contribute 0 to both f(S) because of skew-symmetry and the fact that cycles will zig-zag
into and out of S.

e s-t flow paths contribute to f(.5) the amount equal to the flow of the path itself, because paths will
zig-zag into and out of 9, cancelling out except for the last zig, which contributes the flow.

In both cases, f(S) did not depend on S, so f(S) = f(5). O
Therefore, for any s-t cut S, f(S) = f({s}) = |f|.

Weak Duality (Maxflow < Mincut). |f*| = f(S5) < ¢(5) < ¢(S*).

4 Increasing Flow

Question: Given a flow f, how to increase its value or conclude that |f| = F*?

Our first idea is to find another s-¢ path and push more flow along it. But this does not always work.

Consider the following example:
0/ 1)@\1 /1
OGNS O

1/1\@)/0/1

There are no more s-t paths to push flow, yet | f| = 1 is not the max flow!

New idea: Undo some ezisting flows. We can think of (u,v) as being there with capacity 0, so we can push
flow along s — u — v — t, undoing the flow:

@x/% o 6 %m:@

%D//o/l 1/1\@/ /1

Now we have |f| = 2! How do we ensure that 2 is a maximum? We can use weak duality and choose an
appropriate cut S. By choosing S = {s}, we get 2 = |f| < F* < ¢(5*) < ¢({s}) = 2, confirming maxflow.

5 Residual Network

In light of the previous example, we introduce a residual network to find pushable flows.

Given a flow f on a flow network G, we define the residual network G; = (V, Ey, s, t, cf) where
o ¢r(u,v) = c(u,v) — f(u,v)
o (u,v) € Ef <= cf(u,v) >0
For the previous example, here is how the original flow network and its residual network look like:
oS -N
@i 1/1 3@ @< 1 >,@
1/ \}d})/o /1 \é/ 1
Notice that a non-edge (u,v) € E can be in Ey if f(v,u) > 0. This is because
cr(u,v) = c(u,v) = f(u,v) =0+ f(v,u) > 0.
Therefore this definition allows us to undo flow!

Another example of flow vs residual:

AT AR
@<1/3 /2 11 1/3 2/3 7@2{;

%éf;ww %é ﬁéﬁg

Observation: If f, f’ are flows in G, Gy respectively, then f + f’ is a flow in G.
So to improve f, we just need to find a non-zero flow in GYy.

What if there is no non-zero flow in G;? Then by setting S as the set of vertices reachable from s in
Gy, we have c; (S) = 0, which rearranges to

o> (elwv) = flu,0) =0=c(S) = (5) .

ueS veV\S
Applying weak duality, ¢ (S) = f (S) = |f] < ¢(5*) < ¢(S5), so f is a max-flow and S is a min-cut!
In conclusion, we have

|f| = F* <= no s-t path in Gy

6 Towards an Algorithm

Define an augmenting path as a directed s-t path in Gy. We have shown that we should always push
additional flow along such a path P up to the (residual) bottleneck capacity cf(P) = mi}g cy(e), increasing
ec

|f| by ¢f(P). When there is no more augmenting path, we have also shown that f is a max-flow. We can
write this as the FORD-FULKERSON algorithm:

Algorithm 1 FORD-FULKERSON (1956)

1: Start with zero flow

2: while Gy has augmenting path, do

3: Find augmenting path P in G; via DFS > O(|E|)
4: Augment flow by pushing c¢;(P) > O(|E|)
9:

end while

Runtime. If all capacities are integers in [0, C] then
no. of augmentations < [f| < c({s}) < |V|-C

and thus the runtime is O(|E| - |f]) = O(|E| - |V| - C). This is pseudopolynomial: It is polynomial in the
numerical value C', i.e. polynomial in the unary coding (1,11,111,---) of the numbers instead of binary.

By this algorithm, we also have the flow integrality theorem.
Flow Integrality Theorem. If all capacities are integers, there exists an integral max-flow.

Note that if the capacities are irrational, this algorithm may potentially take infinite runtime!

Max-Flow 11

7 Maxflow-Mincut Theorem

Maxflow-Mincut Theorem (Strong Duality). The following are equivalent:
e There is an s-t cut (S,V \) such that ¢(S) = f(S5) = |f].
e fis a max flow.

e There is no s-t path in Gy.

Proof.

(1) = (2). Use weak duality: |f| < |f*] < e(S*) <e(S) = f(S) =|f]

(2) = (3). Contrapositive: If there is an s-t path in G, push the flow!
1

=
(3) = (1). Proven in section 5.

8 Other Algorithms

8.1 Max Bottleneck Path Algorithm (MBP)

Algorithm 2 MAX BOTTLENECK PATH

1: Start with zero flow

2: while Gy has augmenting path, do

3: Find augmenting path P in G that has maximum c;(P) > O(|E|log |V])
4: Augment flow by pushing c¢;(P) > O(|E|)
5: end while

Runtime. It turns out that the number of iterations is O(|E|log|f|), so the runtime is
O(mlogn) - O(mlog|f|) = O(m*lognlog(nC))

which is weakly polynomial.

8.2 Edmonds-Karp

Algorithm 3 EDMONDS-KARP

. Start with zero flow

while Gy has augmenting path, do
Find augmenting path P in Gy with minimal number of edges
Augment flow by pushing c¢;(P)

end while

Runtime. O(m?n). Polynomial (no proof given)

8.3 Later Work

KING-RAO TARJAN (1994):
ORTIN (2013):
GOLDBERG-RAO (1998):
LEE-SIDFORD (2014):
MADRY (2013):

(1998)

CHEN-KYNG-L1U-PENG-GUTENBERG-SACHDEVA (1998):

9 Application

A matching in a graph G is a set of edges that do not share end points. The size | M| of a matching M is
the number of edges in M.

Max Bipartite Matching Problem: Given a bipartite graph G (a graph on vertices L U R disjoint,
with edges £ C L x R), output a matching of maximum size.

Solution. The method is to create a source s that connects to all vertices in L, and let all vertices in R to
connect to a target t. Then we assign a capacity of 1 to all the edges.

1. By flow integrality, since all capacities are integers, there is a max flow with 0 or 1 values on every
edge and FORD-FULKERSON will find it.

2. If the maxflow f* has value F* then F™* of the edges (s,x) get flow 1 and the rest get 0.

3. The max matching is > F* because given any maxflow f* no edges in L x R with flow 1 have a
common node (otherwise the flow in/out is > 1 but the capacities are all 1), and hence we can find
a matching with that number of edges, i.e. F*. The best case is at least as good as this.

4. F* is at least the max-matching because given any max-matching we can extend the matching to s
and t and give flow 1 to all of them, giving a valid flow. The maxflow must be better than this.

5. Therefore F* = max-matching.

Runtime via FORD-FULKERSON. O(m|f|) = O(m|M]) = O(mn).

10 Optional: Running Time of MBP

Let f; be the flow computed after iteration i, decomposable into < |E(Gy,)| flow cycles and s-t flow paths.

Let f be the max flow in G, after i-th iteration.
At the beginning, |fi| = F*.
(Exercise) f* = f; + f for all 4.

Since |E(Gy,)| < 2m, there is always an s-t flow path P with flow value f;(P) >

P in Gy,, we must have cy,(P) > f(P) > %

Therefore after iteration (i + 1), the residual flow

£

2m

fi <11 =

which solves to

fi+1§(1—%) F.

Consider I = (4mIn F*) + 1 iterations, then

1 4mIn F*
1= (150)

1 21In F*
< (—) F*
e
1 *
Fp =t

and hence f; = 0. Therefore we need < O(mlog F*) iterations.

10

For this path

