
Intractability I, II, III (Lecture 13-15 Notes)

We’ve seen many interesting algorithms for a variety of problems. We’ve tried to get algorithms with
running time O(nk) for inputs of size n, where k is a constant independent of n: These are polynomial
time algorithms. Examples:

• s-t Shortest Path: Given an unweighted graph G = (V,E) and two nodes s, t ∈ V , find a shortest
(simple) path from s to t. From 6.1210, we can use BFS, works in O(|E|) time!

• s-t Longest Path: Given an unweighted graph G = (V,E) and two nodes s, t ∈ V , find a longest path
from s to t. The fastest algorithm is Bjorklund ’2010 which is O(1.66|V |) for undirected graphs.
Exercise: Get an O(2|V | · |E|) time algorithm for directed graphs. This is exponential time! Why
is this so hard?

• Maximum Matching: Given an undirected bipartite graph G = (V,E), find a largest set of edges
that share no endpoints. Can be solved in polytime by using max-flow! The 2022 algorithm gives
O(|E|1+o(1)) time.

• 3D Matching: Given a tripartite hypergraph H = (V,E) where V = V1 ⊔ V2 ⊔ V3 are vertices and
E ⊆ V1 × V2 × V3 are hyperedges of 3 vertices each, find a largest set of hyperedges that share no
endpoints. Can be solved in O(3.52|V |) time, again exponential!

• Linear Programming (LP): Given an n-by-n real matrix A and vectors b and c, find a real vector x
maximizing c⊤x subject to Ax ≤ b. This is solvable in O(n2.372) time.

• Integer Programming (IP): Given an n-by-n integer matrix A and integer vectors b and c, find an
integer vector x maximizing c⊤x subject to Ax ≤ b. This turns out to be exponential time even
if all entries are constrained in the set {0, 1}!

Similar sounding problems can have extremely different running times!

Extremely interesting question: Can you get polytime algorithms for problems like IP, 3D-Matching and
Longest Path? Today’s answer: Maybe not, otherwise a huge open problem in theoretical computer
science is resolved.

1 Decision, Search and Optimization Problems

• Optimization Problem: Given input I, find an object satisfying some property and having maxi-
mum/minimum weight.

• Search Problem: Given input I and a value K, find an object satisfying some property with weight
≥ K or ≤ K.

• Decision Problem: Given input I and a value K, decide whether there exists an object satisfying
some property with weight ≥ K or ≤ K. It has a yes/no output.

Examples:
Optimization Search Decision

s-t shortest
In: G, s, t In: G, s, t,K In: G, s, t,K

Out: path with min weight path w. weight ≤ K bool(exists path w. weight ≤ K)

s-t longest
In: G, s, t In: G, s, t,K In: G, s, t,K

Out: path with max weight path w. weight ≥ K bool(exists path w. weight ≥ K)
Maximum In: G In: G,K In: G,K
Matching Out: a max matching matching w. size ≥ K bool(exists matching w. size ≥ K)

1

Can solve Optimization ⇒ Can solve Search ⇒ Can solve Decision. From now on, we focus on
decision problems.

Therefore, if there is no efficient algorithm for Decision, then there is no efficient algorithm for Search
nor Optimization.

2 Intractability

2.1 Polynomial Time (P)

Definition. A decision problem π is solvable in polynomial time if there exists an algorithm A and
a constant c such that for every input x of size n, A(x) runs in O(nc) time, and returns yes if and
only if π(x) = yes. The class of all decision problems solvable in polynomial time is denoted as P.

Note: We only consider deterministic polynomial time algorithms (without randomization) when defining
P. There are other classes RP, BPP etc that allow randomization.

Almost everything mentioned in 6.1210/6.1220 is in P.

2.2 Nondeterministic Polynomial Time (NP, “Nifty Proofs”)

Informal Definition. A problem is in NP if for any instance whose answer is yes, we can provide
a short proof that the answer is yes and this proof can be easily checked. (Note that we don’t need
proofs for no-instances)

Definition. A decision problem π is in nondeterministic polynomial time if there exists an algorithm
Vπ and a constant c, c′ such that

• Vπ takes two inputs x, y, where |y| ≤ nc′ .

• Vπ(x, y) runs in O((|x|+ |y|)c) time.

• For every input x of size n, A(x) runs in O(nc) time, π(x) = yes if and only if there exists a
string y (|y| ≤ nc′) such that Vπ(x, y) = yes.

The class of all decision problems in nondeterministic polynomial time is denoted as NP.

Here y is a certificate proving that x is a yes-instance of π.

Verifier
Algorithm

for π

yes
if π(x) = yes, ∃y

no
if π(x) = no, ∀y

x

y

(|y| ≤ poly(x))

Examples:

• s-t Longest Path ∈ NP: We can let Vπ((G, s, t,K), y) check that y is a simple path in G from s to
t of length ≥ K. This runs in poly(|V |) time and |y| ≤ |V |. Whenever there is a simple path P of
length ≥ K, then y = P triggers yes, otherwise any y triggers no.

2

• Linear Programming ∈ NP: We can let Vπ((c,b, A,K), y) check that y encodes a vector y such that
c⊤y ≥ K and Ay ≤ b.

Often the certificate is hinted in the NP problem itself! This is not always the case though.

Are any of these in NP?

• Graph Isomorphism: Given two graphs G1 and G2, is there a permutation of the vertices of G1 to
those in G2 that makes G1 into G2?

Answer. NP. Verifier takes in y as a permutation G1 → G2.

• Shortest Path: Given a graph G and nodes s, t, return a shortest path from s to t.

Answer. Not in NP. It is not a decision problem.

• No-Long Path: Given a graph G, nodes s, t and a number of K, is it true that there is no simple s-t
path of length ≥ K?

Answer. This is the complement of an NP-problem: It is in coNP. Whether it is NP is unknown!

• No-Short Path: Given a graph G, nodes s, t and a number of K, is it true that every s-t path has
length > K?

Answer. This is in P (use BFS). We’ll show that P ⊆ NP.

Theorem. P ⊆ NP.

Proof. Let π ∈ P be a problem, with an algorithm Aπ that runs in poly(|x|) time and returns yes if
and only if π(x) = yes. Then we let Vπ(x, y) ignore y and run Aπ(x). This is in polynomial time
and returns the correct answer anyway. ■

Definition. Denote EXP as the class of decision problems solvable in 2poly(n) time.

Theorem. NP ⊆ EXP.

Proof Sketch. We run the verifier for all possible inputs y. Since |y| ≤ nc, this will take ≤ 2n
c
time.

Then we return yes if some call says yes. ■

3 Believed State of the World

Known:

• P ⊊ EXP ⊊ R where R is the class of decidable problems.

• There are undecidable problems such as the Halting Problem.

Big Open Problem: Is P = NP?

How do we address this?

3

3.1 Success of NP-Completeness

There exists concrete problems in NP called NP-complete such that if you ever develop a polynomial time
algorithm for any one of these problems, then P = NP!

Turns out Longest Path, IP, Circuit SAT (in Lec 15) and CNF SAT (Lec 14) are NP-Complete Problems.

To prove that a problem π is NP-complete,

1. Show that π ∈ NP

2. Show that π is NP-hard

where a problem π is NP-hard if a polynomial time for π can be used to solve any NP problem in polynomial
time. We do this by exhibiting “many-one polynomial time reductions”.

4 Reductions

Definition. Let Q and π be decision problems. A (many-one) polynomial time reduction from Q
to π is an algorithm R that takes as input an instance x of Q, runs in poly(|x|) time, and returns
an instance y of π such that Q(x) = π(y) ∈ {yes,no}. If such a reduction exists, we write Q ≤P π.

Note that y = R(x) has poly size in |x| since R runs in poly time.

Instances of Q Instances of π

yes
yes

yes
no
no

yes
yes

yes
no
no

Claim. If Q ≤P π and π ∈ P. then Q ∈ P.

Proof. Let A be a poly-time algorithm for π. Let R be a many-one poly-time reduction from Q to
π. Here is an algorithm for Q:

1. Given instance x of Q, run R on x to get an instance y = R(x) of π.

2. Solve y using A and return the answer.

The runtime is polynomial since R runs in poly(|x|) time, |y| is poly(|x|) and hence A runs in
poly(poly(|x|)) time. ■

Definition. A problem π is NP-hard if every problem Q in NP can be many-one poly-time reduced
to π. A decision problem is NP-complete if it is in NP and is NP-hard.

By the above claim, if an NP-hard problem has a poly time algorithm, then P = NP!

4

4.1 Transitivity

Once we have one NP-hard problem, to show its NP-hardness it will suffice to reduce it to other problems.
We won’t have to reduce from every NP-problem ever again! To see why this is the case, we will show a
nice property of polynomial time reductions.

Claim. If A ≤P B and B ≤P C then A ≤P C.

Proof Sketch. Successively run the reduction algorithms, the runtime will be poly(poly(|x|)) which
is still polynomial. ■

5 SAT

Today we assume that 3-SAT is NP-Complete and reduce it to other problems.

5.1 CNF-SAT (Boolean Satisfiability in Conjunctive Normal Form)

Input: A CNF-Formula F on variables x1, · · · , xn.

Output: yes if there is a Boolean assignment to x1, · · · , xn such that F = 1; no otherwise.

A CNF-Formula on x1, · · · , xn (Boolean variables) is of the form

C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci (called a clause) is of the form

Ci = ℓi1 ∨ ℓi2 ∨ · · · ∨ ℓipi

and each ℓij (called a literal) is some xk or ¬xk (Boolean negation)

Example. (x1 ∨ ¬x9 ∨ x7) ∧ (x3 ∨ x5 ∨ ¬x7 ∨ x2) is a CNF-Formula.

Here, ∧ is the Boolean AND operation and ∨ is the Boolean OR operation.

Example. F = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) on the assignment (x1, x2, x3) = (1, 0, 1) evaluates to

(1 ∨ ¬0) ∧ (¬1 ∨ 1) = 1 ∧ 1 = 1.

We see that F evaluates to 1 if and only if for every clause Cj some literal evaluates to 1 on the assignment.

If k is an integer, the k-SAT problem is the CNF-SAT problem restricted to CNFs with ≤ k literals
in every clause.

• 1-SAT is in P (exercise).

• 2-SAT is in P (more interesting exercise).

• 3-SAT is NP-Complete (next time!).

• k-SAT (k ≥ 3) is NP-Complete.

5

6 Vertex Cover

A vertex cover of a graph G = (V,E) is a subset S ⊆ V such that every edge has at least one endpoint in
S. Here |S| is the size of the vertex cover.

For example, S = {1, 3, 5} is a vertex cover of size 3 in this diagram:

1

2

3 4

56

6.1 VC (Vertex Cover Problem)

Input: G = (V,E) and integer K.

Output: yes if there is a vertex cover of size ≤ K; no otherwise.

Note that VC ∈ NP: Use a subset S ⊆ V as the certificate, and check that every edge has at least
one endpoint in S.

Theorem. 3-SAT ≤P VC (implies VC is NP-Complete)

Proof. Take a 3CNF-Formula

φ = (ℓ11 ∨ ℓ12 ∨ ℓ13) ∧ · · · ∧ (ℓm1 ∨ ℓm2 ∨ ℓm3)

where ℓij is some xk or ¬xk and (x1, · · · , xn) are the inputs.

We’ll create a graph Gφ and an integer K such that Gφ has a vertex cover of size ≤ K if and only if φ is
satisfiable.

1. For every variable xi create two vertices connected by an edge (xT
i , x

F
i).

(This will mean that either xT
i or xF

i needs to be in any vertex cover)

2. For every clause (ℓj1, ℓj2, ℓj3) create 3 vertices connected in a triangle.
(This means for every clause at most one of its literals is not in the VC)

Example: (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x4 ∨ ¬x3 ∨ x2) means

xT
1 xF

1 xT
2 xF

2 xT
3 xF

3 xT
4 xF

4

x1 x3

¬x2

x2 ¬x4

¬x1

¬x3 x2

x4

3. For each ℓjk in clause j,

6

• If ℓjk = xp, connect node ℓjk to xT
p

• If ℓjk = ¬xp, connect node ℓjk to xF
p

xT
1 xF

1 xT
2 xF

2 xT
3 xF

3 xT
4 xF

4

x1 x3

¬x2

x2 ¬x4

¬x1

¬x3 x2

x4

4. And set K = n+ 2m (recall n is the number of inputs; m is the number of clauses).

A few properties to note:

1. For each (xT
i , x

F
i), one of the endpoints must be in VC to cover this edge.

2. For each (ℓi1, ℓi2, ℓi3), at least two of the nodes must be in VC, so at most one is not in the VC.

3. |V | = 3m+ 2n and |E| = n+ 3m+ 3m = poly(m,n) and it takes poly(m,n) time to build graph.

4. Size of any VC is at least n+ 2m (due to properties 1 and 2).

By setting K = n + 2m, we have that any VC of size ≤ K has size exactly K (and will have exactly 2
nodes from each triangle and exactly one node from each xT , xF)

We now prove the equivalence of φ and Gφ.

• Suppose φ has a satisfying assignment (x1, · · · , xn) = (x1, · · · , xn).

1. For each xi = 1, we put xT
i ∈ S, otherwise xF

i ∈ S.

2. For each clause (ℓj1, ℓj2, ℓk3), (at least) one of the ℓjk evaluated satisfies the clause. We put the
two nodes corresponding to the other two literals in S.

Claim: S is a vertex cover with size K.

Proof. First, |S| = 2m + n = K. All the black edges are covered by S by the above procedure. For
the each blue edge (ℓjk, x

•
p), we have ℓjk ̸∈ S ⇒ x•

p ∈ S from step 2, so we are done. ■

• Suppose Gφ has a VC T of size ≤ K. Then T contains exactly one of each xT
i , x

F
i and exactly 2 from

each clause triangle. We define xi = 0, 1 according to whether xF
i or xT

i ∈ S. We will show that this
satisfies φ: For each clause, exactly one of its literals is not in T ; that means the x•

i connected to
that literal must be in T , hence satisfying that literal and hence the clause. ■

Therefore VC is NP-Complete!

7

6.2 Subset-Sum

Subset-Sum: Given a set S of n positive integers and an integer t (written in binary), does there exist
A ⊆ S such that

∑
a∈A a = t?

This is clearly in NP: Certificate being y = A, verifier then checks the sum.

(Optional) We will prove VC ≤P Subset-Sum at the end of the notes.

But WAIT! Using dynamic programming we can solve Subset-Sum in O(nt) time. Isn’t this polynomial?
Is P = NP? Well, O(nt) is actually pseudopolynomial. The integers are specified in binary, so the input
representation of t is of size log t and hence O(nt) is actually exponential in the input size!

7 A bit on coNP

coNP is the class of decision problems whose complements are in NP (the yes and no are flipped)

We see that P ⊆ coNP by using the same proof but flipping the answers. So

NP

coNP

P

It is an OPEN question that NP = coNP! Believed no. It is also OPEN that P = NP ∩ coNP.

7.1 Factoring

Factoring: Given two integers n, k written in binary, 1 < k < n, is there some prime p such that p | n
and k ≤ p < n?

If Factoring is in P, we can factor numbers in polytime: RSA Cryptography will be broken!

7.2 Primes

Primes: Given n in binary, is n a prime?

Turns out Primes ∈ P. (Agrawal, Kayal, Saxena 2004)

Theorem. Factoring ∈ NP ∩ coNP.

Proof.

• In NP: Certificate y being a prime; check y is prime, k ≤ y < n and y | n.

• In coNP: Certificate y being a prime factorization; check that y is in the prime factorization
of n (multiply to see if we get n), then verify each prime in y is < k. We used the uniqueness
of prime factorization! ■

Note: How large is y? Each prime in y has ≤ log n bits, and the number of primes in the prime factorization
is ≤ log n, so |y| ≤ log2 n. Therefore the procedure is poly(log n) time!

8

The believed state of the world is that Factoring ̸∈ P, though.

8 Optional: VC ≤P Subset-Sum

Given G = (V,E) and integer k, want to create an instance of Subset-Sum. Denote n = |V | and m = |E|.
We assume E = {0, · · · ,m− 1}, otherwise just relabel.

Here is how we will construct an instance (S, t) of Subset-Sum:
1. S starts off as ∅.

2. For every e ∈ E, add be = 4e to S. These will be called edge numbers.

3. For every v ∈ V , add bv = 4m +
∑

e:v∈e 4
e to S. These will be called vertex numbers.

4. Set t = k · 4m + 2
∑

e∈E 4e.

All numbers have O(m) bits. Let’s consider them in base-4 representation (in reverse order):

• be: an (m+ 1)-length vector with a 1 in position e (and 0 everywhere else).

00 · · · 00︸ ︷︷ ︸
e

1 00 · · · 00︸ ︷︷ ︸
m−e

• bv: an (m+ 1)-length vector with a 1 in position m and all positions e such that v ∈ e.

00 · · · 00100 · · · 00100 · · · 001

• t: an (m+log4 k)-length vector with a 2 in all positions e ∈ E and such that substring from positions
m to m+ log4 k is exactly the base-4 representation of k.

22 · · · 22︸ ︷︷ ︸
m

k1k2 · · ·︸ ︷︷ ︸
log4 k

For example, the following graph with k = 3 reduces to S = {edge numbers} ∪ {vertex numbers} =
{40, 41, 42, 43} ∪ {44 + 41 + 43, 44 + 43 + 42, 44 + 40 + 41 + 42, 44 + 40} and t = 3 · 44 + 2(40 + 41 + 42 + 43).

a

c

b

d

3

21

0

In base-4 representation: S = {10000, 01000, 00100, 00010} ∪ {01011, 00111, 11101, 10001} and t = 22223.

Claim 1. If C is a VC of size k for G, then there exists a Subset-Sum solution.

Proof. Construct A = {bv}v∈C ∪ {be | e covered by C exactly once} in poly time. (Note that every
edge is covered by C either once or twice) Then∑

A =

[∑
v∈C

bv

]
+

[∑
e covered once

be

]

=

[
|C|4m +

∑
e covered twice

2 · 4e +
∑

e covered once

4e

]
+

[∑
e covered once

4e

]
= k · 4m + 2

∑
e

4e = t

9

and hence A is a solution to Subset-Sum.

Claim 2. Say A ⊆ V,E ′ ⊆ E such that
∑
a∈A

ba +
∑
e∈E′

be = t (a solution to Subset-Sum). Then we

claim that A is a vertex cover of size k of G.

Proof. Denote 1event ∈ {0, 1} as the indicator variable of an event.
∑
a∈A

ba +
∑
e∈E′

be = t expands to

|A|4m +
∑
e∈E

(
of times e

covered by A

)
· 4e +

∑
e∈E

1e∈E′ · 4e = k · 4m + 2
∑
e∈E

4e

|A|4m +
∑
e∈E

(≤ 2) · 4e +
∑
e∈E

(≤ 1) · 4e = k · 4m + 2
∑
e∈E

4e

Now consider what is happening in base-4 representation. On the LHS, in positions 0 to m − 1, we are
adding digits ≤ 2 to digits ≤ 1, whereas in positions m onwards only |A| (in base-4) is a contribution. So
there are no carry-overs for the addition in the LHS. Hence we can compare the sum digits-by-digits:(

of times e

covered by A

)
+ 1e∈E′ = 2 (∀e ∈ E)

|A| · 4m = k · 4m

The first equalities tell us that # of times e covered by A is always ≥ 1, for all e ∈ E. The second equality
tells us that |A| = k. Therefore A is a vertex cover of size k.

Hence, by Claim 1 and Claim 2, the instance of Subset-Sum that reduction algorithm gives is yes-
instance if and only if the input (an instance of VC) is a yes-instance. Hence VC ≤P Subset-Sum and
therefore Subset-Sum is NP-Complete. ■

9 Boolean Circuits

Boolean gates: AND, OR, NOT.

A circuit is a directed acyclic graph (no feedback) where the nodes are gates and the n inputs, and there
is one output gate. The edges are wires from inputs to gates and wires between gates.

x1

x2

x3

NOT AND

OR

Out

Circuit Evaluation: Given Boolean values (0, 1) to the variables x1, · · · , xn, plug them in and propagate
to see the output. This takes linear time as we can use a topological order and dynamic programming.

Circuit-SAT: Given a Boolean circuit C on n inputs, does there exist an assignment of inputs so that C
evaluates to 1?

10

Claim: Circuit-SAT ∈ NP.

Proof. The verifier just evaluates the circuit with y being the input assignment. ■

Today we will prove

Cook-Levin Theorem. Circuit-SAT Is NP-complete.

We have to exhibit a many-one poly-time reduction from every problem in NP to Circuit-SAT.

We will do this implicitly (not by going through all problems in NP) by using the definition of NP, namely
the existence of a verifier. We haven’t formally specified a machine model (Turing Machine, RAM etc.).
Fortunately, the Cook-Levin Theorem holds for any reasonable machine model.

9.1 Assumptions on the Machine Model

• A computer program is stored in memory as a sequence of instructions encoding an operation to
be performed, addresses of operands in memory, and an address where the result is stored.

• A program counter keeps track of which instruction is next. This is automatically incremented after
each instruction. Therefore execution is usually sequential, except that an execution can also write
to the program counter (allowing for loops and conditional branches).

• At any point of the execution, memory holds the entire state of the computation (program, counter,
working storage, and various bits of state for bookkeeping).

• If an algorithm has running time O(p(n)), we only need O(p(n) log p(n)︸ ︷︷ ︸
pointer size
in RAM

) space.

• Main Assumption of the Model:
Let Li be the state in memory at step i of a run of the algorithm. Between state Li and Li+1, a simple
operation is performed, transforming Li to Li+1. For a fixed input size n (and hence runtime p(n)),
there is a fixed Boolean circuit M that transforms Li to Li+1 for each i, and M can be constructed
in poly(p(n)) time. (Think of M as being embedded in hardware)

Given the Main Assumption, we can prove that an entire program can be converted into a circuit of
polynomial size given a fixed input size:

Theorem. Suppose Q is a decision problem that can be solved by a program P in p(n) time on
inputs of size n (in binary). Then for every fixed n there is a Boolean Circuit Cn that can be
constructed in O(poly(p(n))) time such that for every input x1, · · · , xn of Q,

Q(x1, · · · , xn) = Cn(x1, · · · , xn).

Note: Programs work on arbitrary size inputs but are of constant size, whereas circuits work on
fixed size inputs and their size is polynomial in the program’s runtime on size n inputs.

11

Proof Sketch. Any run of P on size n inputs and runtime p(n) looks like this:

P. codeLf state bits: P. counter W. storage Input x Aux. Regs

...
...

...
...

...

P. codeL0 state bits: P. counter W. storage Input x Aux. Regs

Circuit M

P. codeL1 state bits: P. counter W. storage Input x Aux. Regs

Circuit M

P. codeL2 state bits: P. counter W. storage Input x Aux. Regs

Circuit M

Output

This is combines to an entire Boolean circuit constructible in O(|M | · p(n)) = O(poly(p(n))) time. ■

9.2 Proof of Cook-Levin

Let A be any problem in NP. Let VA be its verifier algorithm. Recall that if x is a yes-instance to A, then
there exists a proof y with |y| = poly(|x|) and VA(x, y) = yes; and if x is a no-instance then VA(x, y) = no
for all y.

Since VA is a poly-time algorithm, for every N there exists a circuit CN such that CN simulates VA on all
inputs (x, y) of size N and CN can be computed in poly(N) time.

Consider the following reduction:

R(x): ▷ x is an instance of A of size n

(1) Let VA(x, y) be the verifier algorithm taking input x of length n and y of length p(n).

(2) Construct the corresponding Boolean circuit CN(x1, · · · , xn, y1, · · · , yp(n)) where N = n+ p(n).

(3) Hardcode1 x = x1 · · ·xn, and return the circuit C(y1, · · · , yp(n)) = CN(x1, · · · , xn, y1, · · · , yp(n)).

Then x is a yes-instance of A ⇔ there exists y for VA ⇔ there exists a satisfying input to C. ■

1means to replace each xi with its Boolean value

12

10 3-SAT (and thus CNF-SAT) is NP-Complete

Assume C is an instance of Circuit-SAT with n variables, t gates and m wires. We can safely assume
that every gate and every variable has a path to the output gate, so m ≥ n + t− 1 (C is connected) and
the size of C is O(m). We will reduce Circuit-SAT to 3-SAT in two steps:

1. Convert C into a simpler circuit C1 that outputs a conjunction (∧) of O(m) “clauses” of the form
(x), (x ⇔ ¬y), (x ⇔ (y ∨ z)), (x ⇔ (y ∧ z)).

C1 will have input variables x1, · · · , xn, g1, · · · , gm where gi is variable encoding the truth value of
gate i of C. We will encode each gi such that gi = 1 if and only if the output of gate i of C is 1.

For a gate with corresponding variable gi and inputs from gates/input variables a and b, we write
the following “clauses”:

• gi ⇔ (a ∧ b) if the gate is an AND

• gi ⇔ (a ∨ b) if the gate is an OR

• gi ⇔ ¬a if the gate is a NOT

To ensure all variables encode their gates correctly, we then take the conjunction (AND) of all of
these “clauses”. Finally, add a ∧goutput to the end of the expression, where goutput is the variable for
the output gate so that the output of C1 should be the same as the output of C. Constructing C1

only takes O(m) time by using a topological order.

For example, for this circuit, C1 is

(g1 ⇔ ¬x1) ∧ (g2 ⇔ (x2 ∧ x3)) ∧ (g3 ⇔ (g1 ∧ g2)) ∧ g3

x1

x2

x3

NOT

g1

AND

g3

OR

g2

Out

2. Replace each “clause” with real clauses:

• gi ⇔ (a ∧ b) is equivalent to (gi ∨ ¬a ∨ ¬b) ∧ (¬gi ∨ a) ∧ (¬gi ∨ b).

• gi ⇔ (a ∨ b) is equivalent to (¬gi ∨ a ∨ b) ∧ (gi ∨ ¬a) ∧ (gi ∨ ¬b).
• gi ⇔ ¬a is equivalent to (¬gi ∨ ¬a) ∧ (gi ∨ a).

Exercise: Verify these equivalences.

Therefore, we can convert an instance of Circuit-SAT to an equivalent instance of 3-SAT! Thus

Circuit-SAT ≤P 3-SAT ⇒ 3-SAT is NP-Complete. ■

13

