
Definition 1. A transition (or stochastic) matrix is a square matrix with non-negative entries whose
rows add up to 1. Say a transition matrix is positive if all its entries are positive.

Theorem 1. Eigenvalues of a Transition Matrix.
Let W be a transition matrix. The eigenvalues (real or complex) of W have magnitude at most 1.
In the special case where W is positive, the only eigenvalue of magnitude 1 is 1.

Proof. Let Wv⃗ = λv⃗ and say the component vm of v⃗ has largest magnitude. Then

|λvm| =

∣∣∣∣∣∑
k

Wm,kvk

∣∣∣∣∣ ≤ ∑
k

Wm,k|vk| ≤
∑
k

Wm,k|vm| = |vm|

and thus |λ| ≤ 1. If equality holds, then Wm,kvk all point in the same direction in the complex plane, and
|vk| = |vm| for all k. For W with strictly positive entries, we have vk = vm for all k, which from Wv⃗ = λv⃗
gives λ = 1 (corresponding to the all-ones vector). ■

Theorem 2. Jordan Form of a Transition Matrix.
Let Λ be a Jordan Form of a transition matrix W = PΛP−1. The Jordan blocks of all eigenvalues
of W of magnitude 1 have size 1.

Proof. Note that Λn = P−1W nP is bounded sinceW n is bounded. So powers of Jordan blocks are bounded:λ 1 0 · · ·
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For |λ| = 1, this power is unbounded unless the Jordan block has size 1. ■

Theorem 3. Convergence of a Transition Matrix.
If W n is positive for all n ≥ N for some N , then W n converges as n → ∞.

Proof. W n positive ⇒ The only eigenvalue of W n of magnitude 1 is 1. Let λ be an eigenvalue of W of
magnitude 1. Then λn = 1 for all n ≥ N and hence λ = 1.

Therefore the only eigenvalue of W of magnitude 1 is 1. The Jordan block [1]n corresponding to 1 obviously
converges to [1]. And the other Jordan blocks (corresponding to |λ| < 1) converge to the zero matrix as
n → ∞ (see (∗)). Hence Λn converges ⇒ W n converges. ■

Theorem 4. Existence of a Stationary Distribution.
A stationary distribution exists, i.e. π⃗ ≥ 0 (π⃗ ̸= 0⃗) such that π⃗ = π⃗W .

Proof. W has 1 as an eigenvalue, so W⊤ also has 1 as an eigenvalue. This guarantees a row vector v⃗ such
that v⃗ = v⃗W , but the problem is we don’t know if v⃗ ≥ 0.

To tackle this, take any initial distribution u⃗0. Then u⃗n := u⃗0W
n ≥ 0 for all n. The idea is to average

out u⃗n as n → ∞. Write u⃗0 =
∑N

i=0 civ⃗i where v⃗i are the column vectors of P in W = PΛP−1. We can
partition the set {v⃗i} into those with eigenvalue 1 (A), with eigenvalue with magnitude 1 but not 1 (B),
and with eigenvalue with magnitude < 1 (C). Then

u⃗n = u⃗0W
n =

∑
vi∈A

civ⃗i +
∑
vi∈B

ciλ
n
i v⃗i +

∑
vi∈C

civ⃗iW
n ≥ 0
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For large n ≥ N ,
∑

vi∈C civ⃗iW
n vanishes (the Jordan blocks corresponding to those vectors vanish). We

then average out the above equation over sufficiently large n ≥ N . Then the λn
i terms will also vanish:

lim
T→∞

1

T + 1

N+T∑
n=N

λn
i = λN lim

T→∞

1− λT

(T + 1)(1− λ)
= 0.

Leaving us with
∑

vi∈A civ⃗i ≥ 0, which is a valid π⃗ ≥ 0 with π⃗ = π⃗W . It is not the zero vector because the
average of any u⃗n over some range of n is still a distribution, i.e. its components still add up to 1. ■

From now on, let X = {Xt : t ∈ N} be a time-homogenous Markov process, where Xt ∈ D for all t ∈ N.
Let GX be its Markov chain, and W be its transition matrix.

Theorem 5. n-step Probabilities.
The i, j-th entry of W n is the probability that state i ends up in state j with exactly n steps, i.e.

(W n)i,j = P (Xn = j | X0 = i) := p
(n)
i,j

Proof. We write p
(n)
i,j recursively:

P (Xn = j | X0 = i) =
∑
d∈D

P (Xn = j | Xn−1 = d)P (Xn−1 = d | X0 = i)

p
(n)
i,j =

∑
d∈D

Wd,jp
(n−1)
i,d =

∑
d∈D

p
(n−1)
i,d Wd,j

but this is exactly the formula when multiplying by the matrix M . Note: This recursive relation is known
as the Chapman-Kolmogorov Equation. ■

Theorem 6. Strongly Connected ⇒ Unique Stationary Distribution.
If GX is strongly connected, then, GX has a unique stationary distribution.

Proof. Since GX is strongly-connected, for any states i, j there exists an n such that state i can get to
state j in n steps, and so p

(n)
i,j > 0. By Theorem 4, there exists a stationary distribution π⃗.

• All components of π⃗ are strictly positive: If some j-th component of π⃗ is zero, it stays zero forever,
which isn’t possible since some other state will get to state j eventually (strong connectedness).

• Assume there were two stationary distributions x⃗ and y⃗. Since they are strictly positive, we can
write x⃗ ≥ ry⃗ with one of the components holding a tight equality (say xm = rym). Then for any n,
we have x⃗ = x⃗W n and y⃗ = y⃗W n, so

xm =
∑
i

xi(W
n)i,m ≥ r

∑
i

yi(W
n)i,m = rym = xm,

so xi(W
n)i,m = ryi(W

n)i,m =⇒ xip
(n)
i,m = ryip

(n)
i,m for all i, n. Since we can always choose an n such

that p
(n)
i,m > 0, we have xi = ryi for all i. Hence x⃗ = ry⃗, giving x⃗ = y⃗. ■
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Theorem 7. Fundamental Theorem of Markov Chains.
If GX is strongly connected and aperiodic, then every random walk on GX converges to the unique
stationary distribution.

Proof. When GX is strongly connected, any state i can get to any other state j eventually. When GX is
furthermore aperiodic, by the Chicken McNugget Theorem, there exists an N such that state i can get
to state j in any n ≥ N steps. Therefore W n,W n+1, · · · are positive, so by Theorem 3, W n converges to
some W ′, and that given any initial distribution π⃗, eventually W nπ⃗ converges to W ′π⃗. ■

Definition 2. A strongly connected component of a Markov Chain GX is also called a communicating
class. Classes that have an outward edge to other classes are called transient classes, while classes
that don’t are called (positive) recurrent classes. (For infinite Markov Chains, however, there is a
distinction between positive recurrent and null recurrent.)

Theorem 8. Aperiodic ⇒ Convergence.
If GX is aperiodic, every random walk on GX converges to some stationary distribution.

Proof. Consider the communicating classes of GX . If a class is transient, we can expect that the total
probabilities in that class will diminish to 0 when n → ∞ as the probabilities leak out from the class.
Therefore, eventually we can approximate a distribution purely on the recurrent classes. Each recurrent
class is strongly connected and aperiodic, and hence any random walk on them converges. ■

Theorem 9. Exact Condition of Uniqueness.
The following are equivalent:

• GX has a unique stationary distribution.

• GX has exactly one recurrent class.

Proof. Firstly, all stationary distributions must have 0 on all states in the transient classes (probability
leak out). Therefore any stationary distribution is specified by a stationary distribution on each of the
recurrent classes.

If there is only one recurrent class, then by Theorem 6, the stationary distribution is unique. If there are
more than one recurrent class, since the recurrent classes don’t flow to each other, any weighted average
of the stationary distributions among the recurrent classes gives a valid stationary distribution, so the
stationary distribution is not unique. ■

Theorem 10. Exact Condition of Convergence.
The following are equivalent:

• All recurrent classes of GX are aperiodic.

• Every random walk of GX converges.

Proof. Again we just have to look at the recurrent classes due to probability leak outs. The forward
direction is Theorem 8. On the other hand, if some recurrent class is periodic with period d, we first pick a
random state i in the Markov Chain, then we implement a uniform distribution on all and only the states
that are accessible from i by paths with lengths that are a multiple of d. Then p

(n)
ii > 0 if and only if n is

a multiple of d, so this distribution does not converge. ■

3


