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Basic DefinitionsLecture 1

Basic Definitions

Lie algebras arose as the main instrument in the study of Lie groups in the work of
Sophus Lie (a Norwegian mathematician) in the second half of the 19th century.

However there are many other sources of Lie algebras, and by now it has become clear
that the notion of a Lie algebra is more fundamental. It gave birth to many other mathe-
matical theories which play an important role in mathematics and physics.

Definition 1.1. An algebra is a vector space A over a field F, endowed with a binary
operation A ˆ A Ñ A, also called a product, defined by pa, bq ÞÑ ab, which is bilinear :
this means that for all a, b, c P A and λ, µ P F,

apλb ` µcq “ λab ` µac and pλb ` µcqa “ λba ` µca.

Examples 1.1.

1. Given a vector space V , the space of all endomorphisms (i.e. linear operators)
of V , denoted EndpV q, with the composition operation is an associative algebra:
pabqc “ apbcq for all a, b, c P EndpV q.

2. Special case: The set of all n-by-n matrices with entries in F, denoted MatnˆnpFq,
with matrix multiplication, is an associative algebra.

Definition 1.2. A subalgebra B of an algebra A is a subspace of A that is closed
under the binary operation: ab P B for all a, b P B.

Definition 1.3. A Lie algebra is an algebra with a bilinear binary operation
denoted ra, bs (instead of ab), called bracket , which satisfies the following two axioms:

• ra, as “ 0 (skew-commutativity)

• ra, rb, css ` rb, rc, ass ` rc, ra, bss “ 0 (Jacobi identity)

Remarks.

1. Skew-commutativity implies that ra, bs “ ´rb, as because

0 “ ra ` b, a ` bs “ ra, as ` rb, bs ` ra, bs ` rb, as “ ra, bs ` rb, as.

The converse is true if char F ‰ 2.

3



Basic Definitions

2. One usually writes the Jacobi identity as

ra, rb, css ` cycl “ 0

where cycl stands for the two clockwise cyclic permutations: a Ñ b Ñ c and
b Ñ c Ñ a.

Examples 1.2.

1. The vector space g with bracket ra, bs “ 0 for all a, b P g. This is called an
abelian Lie algebra, and is denoted abn if dim g “ n.

2. g “ R3 with ra, bs “ aˆ b (cross product). It was Jacobi who first proved that it
satisfies the Jacobi identity.

3. Let A be an algebra with a product ab. Denote by A´ the vector space A with the
bracket ra, bs “ ab´ ba. Then A´ is a Lie algebra, if the algebra A is associative.

Exercise 1.1. Given an algebra A, show that the Jacobi identity in A´ holds in the
following four situations (of course, skew-commutativity automatically holds):

1. 2-member identity: pabqc “ apbcq, i.e. A is an associative algebra.

2. Two 3-member identities: pabqc ` cycl “ 0 and apbcq ` cycl “ 0.

3. 4-member identity: apbcq ´ pabqc “ a Ø b, where the RHS means that a and b
are permuted in the LHS. This is called a left symmetric algebra . The same
claim holds for right symmetric algebras, when RHS “ b Ø c (instead of a Ø b).

4. 6-member identity: ra, bcs ` cycl “ 0.

Examples 1.3.

1. glV “ EndpV q´, called the general linear Lie algebra. In the case V “ Fn, one
denotes glV “ glnpFq, the set of all n-by-n matrices with entries in F with the
bracket ra, bs “ ab ´ ba.

2. slnpFq “ ta P glnpFq | trpaq “ 0u.

3. Let B be a bilinear form on the vector space V , and consider the following
subalgebra oV,B “ ta P glV | Bpau, vq “ ´Bpu, avq @u, v P V u.
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Remark. A subalgebra of a Lie algebra is a Lie algebra.

Exercise 1.2. Show that trra, bs “ 0 for all a, b P MatnˆnpFq. This implies that
slnpFq is a subalgebra of glnpFq. It is called the special linear Lie algebra.

Exercise 1.3. Show that oV,B is a subalgebra of the Lie algebra glV .

Exercise 1.4. Let V “ Fn and let B be the matrix of a bilinear form in the
standard basis of Fn. Show that

oFn,B “
␣

a P glnpFq | aJB ` Ba “ 0
(

where aJ denotes the transpose matrix of a. Special cases of oFn,B are the following:

• son,BpFq if B is a non-singular symmetric n-by-n matrix. This is called the
orthogonal Lie algebra.

• spn,BpFq if B is a non-singular skew-symmetric n-by-n matrix. This is called the
symplectic Lie algebra.

The series of Lie algebras glnpFq, slnpFq, son,BpFq, spn,BpFq are the most important
examples called the classical Lie algebras .

Exercise 1.5. Let f : MatnˆnpFq Ñ F be a linear function, such that fpra, bsq “ 0 for
all a, b. Show that fpaq “ λ trpaq for some λ P F, independent of a.

Important notation: If X, Y are subspaces of a Lie algebra g, then rX, Y s denotes the
span of all vectors rx, ys where x P X, y P Y .

Definition 1.4. Let g be a Lie algebra. In the above notation, a subspace h
of g is a subalgebra if rh, hs Ď h. A subspace h is called an ideal of g if rg, hs Ď h; an
ideal is obviously a subalgebra of g.

Definition 1.5. A derived subalgebra of a Lie algebra g is rg, gs.

Proposition 1.1. rg, gs is an ideal of a Lie algebra g, such that the factor algebra
g{ rg, gs is an abelian Lie algebra.

Proof. If a P g and b P rg, gs, then ra, bs P rg, gs, and thus rg, gs is an ideal of g. The fact
that g{ rg, gs is abelian is obvious. ■
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Classification of all Lie algebras of dimension ď 2

Dimension 1

g “ Fa, and ra, as “ 0 by the skew-commutativity axiom, hence g “ ab1.

Dimension 2

g “ Fx ` Fy, where x, y is a basis of g. Then, clearly, rg, gs “ Frx, ys is at most 1-
dimensional (by skew-symmetry). Hence either g “ ab2, or else rg, gs “ Fb where b ‰ 0.
In that case, take a P gzFb, so that a, b is a basis of g. Then ra, bs P rg, gs “ Fb, so that
ra, bs “ λb for some nonzero λ P F. Replacing a by λ´1a, we get ra, bs “ b. This Lie algebra
is isomorphic to the subalgebra with zero second row in gl2pFq, since taking

a “

ˆ

1 0
0 0

˙

, b “

ˆ

0 1
0 0

˙

we get ra, bs “ b. This is the only 2-dimensional non-abelian Lie algebra, up to isomorphism.
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Some Sources of Lie Algebras
Lecture 2

Some Sources of Lie Algebras

Recall that an algebra is a vector space A over a field F with a bilinear product ab, i.e.
for a, b, c P A and λ, µ P F:

apλb ` µcq “ λab ` µac and pλb ` µcqa “ λba ` µca.

(More generally, there can be several products.)

Recall that a Lie algebra is an algebra with product denoted ra, bs, and called bracket,
satisfying the skew-commutativity and the Jacobi identity axioms.

(a) From associative or more general algebras

Given an algebra A with product ab, we can form a new algebra A´ with the bilinear
binary operation the commutator ra, bs “ ab ´ ba. Then, as was discussed in Lecture 1, A´

is a Lie algebra if A is associative, or if it satisfies a variety of other conditions.

(b) As algebra of derivations of an algebra

Definition 2.1. For any algebra A over a field F, a derivation of A is an endomor-
phism D of A, viewed as a vector space over F, satisfying

Dpabq “ Dpaqb ` aDpbq.

Let DerpAq Ď glA be the vector space over F of all derivations of the algebra A.

Exercise 2.1. Prove that DerpAq is a subalgebra of the Lie algebra glA, and thus it
is a Lie algebra.

Geometric Picture. Let F be the algebra of smooth functions on a manifold, then
DerpFq is the Lie algebra of all vector fields on this manifold. For example, on R2, all vector
fields are

P px, yq
B

Bx
` Qpx, yq

B

By
.

A very important example for string theory: complex valued vector fields on the circle

defined by fpθq
d

dθ
, where fpθq is a complex valued function on S1:
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θ

S1

Letting Ln “ ´e2πinθ
d

dθ
, we see that

rLm, Lns “ pm ´ nqLm`n pm,n P Zq.

This Lie algebra has a remarkable central extension, called the Virasoro algebra :

rLm, Lns “ pm ´ nqLm`n `
m3 ´ m

12
δm,´nC where rC,Lms “ 0, m P Z.

Bonus Problem. Prove that this is a Lie algebra.

For an element a of a Lie algebra g, define a map

ad a : g Ñ g, b ÞÑ ra, bs.

This map is referred to as the adjoint operator . Rewriting the Jacobi identity as

ra, rb, css “ rra, bs , cs ` rb, ra, css ,

we see that ad a is a derivation of the Lie algebra g. Derivations of this form are referred as
inner derivations of g.

Proposition 2.1. Inner derivations form an ideal of Derpgq. More precisely,

rD, ad as “ ad Dpaq for all D P Derpgq, a P g.

Proof. Apply both sides to b P g:

rD, ad as b “ Dra, bs ´ ra,Dbs
p˚q
“ rDa, bs “ pad Dpaqq b

where p˚q is true since D is a derivation of g. ■

Bonus Problem. If A is an associative algebra, then ad a, defined by pad aqpbq “

ab´ba, is a derivation of A. Prove that for A “ EndpV q, where V is a finite-dimensional
vector space, these are all derivations.
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(c) From Poisson brackets

Exercise 2.2. Let A be the algebra of smooth functions in x1, ¨ ¨ ¨ , xn. Define a
Poisson bracket on A by

tf, gu “

n
ÿ

i,j“1

Bf

Bxi

Bf

Bxj
txi, xju for given choices txi, xju P A.

Show that this bracket satisfies the axioms of a Lie algebra if and only if

txi, xiu “ 0 for all i, txi, xju “ ´ txj, xiu for all i, j,

and xi, xj, xk satisfy the Jacobi identity for all i, j, k.

Example 2.1. Let A be the algebra of smooth functions in p1, ¨ ¨ ¨ , pn, q1, ¨ ¨ ¨ , qn and
let tpi, pju “ tqi, qju “ 0 and tpi, qju “ ´ tqi, pju “ δij. Then the conditions of Exercise
2.2 obviously hold, and we get

tf, gu “

n
ÿ

i“1

ˆ

Bf

Bpi

Bg

Bqi
´

Bg

Bpi

Bf

Bqi

˙

which is a Poisson bracket in classical mechanics.

These are special cases of the notion of a Poisson algebra , which is a commutative
associative algebra, endowed with a bracket ta, bu, satisfying the axioms of a Lie algebra,
and the Leibniz rule :

ta, bcu “ ta, bu c ` b ta, cu .

Given a family of associative algebras Ah, depending on a parameter h (i.e. an algebra
over Frhs, such that multiplication by h has trivial kernel), then hAh is its ideal, and if
A “ Ah{hAh is commutative, it gets a well defined Poisson bracket, given by

ta, bu “ lim
hÑ0

!

ra,rb
)

h
,

where ra,rb are some preimages of a and b respectively under the canonical map Ah Ñ A.

Recovering Ah from the Poisson algebra A is called quantization .
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(d) Via structure constants

Given a basis e1, e2, ¨ ¨ ¨ of a Lie algebra g over F, the bracket is determined by the
structure constants ckij P F, defined by

rei, ejs “
ÿ

k

ckijek.

The skew-commutativity axiom means

ckii “ 0, ckij “ ´ckji,

and a more complicated quadratic condition corresponds to the Jacobi identity.

However, changing basis changes the structure constants dramatically, so it is difficult
to see from the structure constants whether we have isomorphic Lie algebras.

General Remark. Algebraic objects are considered up to isomorphism. Isomorphic
objects are indistinguishable.

Given two algebras g1, g2 (with one or more products), a homomorphism φ : g1 Ñ g2
is a linear map over F, which preserves these products:

φ pra, bsq “ rφpaq, φpbqs for Lie algebras.

The homomorphism φ is called an isomorphism if φ is bijective.

If there exists an isomorphism φ, we say that g1 and g2 are isomorphic, written g1 » g2.
For example, we proved last time that any 2-dimensional Lie algebra is isomorphic either to
the abelian Lie algebra ab2, or to the Lie algebra of 2-by-2 matrices with zero second row.

Exercise 2.3. Let φ : g1 Ñ g2 be a homomorphism of algebras. Then

(a) Kerpφq is an ideal of g1.

(b) Impφq is a subalgebra of g2.

(c) Impφq » g1{Kerpφq (the Fundamental Homomorphism Theorem).
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(e) As the Lie algebra of an algebraic group

Definition 2.2. A (linear) algebraic group G over a field F is a collection tPαuαPI of
polynomials on the space of matrices MatnˆnpFq, such that for any unital commutative
associative algebra A over F, the set

GpAq “ tg P MatnˆnpAq | g is invertible, and Pαpgq “ 0 for all α P Iu

is a group under matrix multiplication.

Examples 2.2.

1. The general linear group GLn is defined by the empty set of polynomials, so that
GLnpAq is the set of all invertible n-by-n matrices with entries in A. This is a
group for any A, so that GLn is an algebraic group.

2. The special linear group SLn corresponds to tPαu “ tdetpxijq ´ 1u, so that
SLnpAq is a subgroup of GLnpAq of n-by-n matrices with determinant 1.

Exercise 2.4. Given B P MatnˆnpFq, let

On,BpAq “
␣

g P GLnpAq | gJBg “ B
(

.

Show that On,B is an algebraic group.

Definition 2.3. Define the algebra of dual numbers D over a field F by

D “ Frεs{pε2q “
␣

a ` bε | a, b P F, ε2 “ 0
(

.

The Lie algebra Lie G of an algebraic group G is

Lie G “ tX P glnpFq | In ` εX P GpDqu ,

where In is the n-by-n identity matrix.

Example 2.3. Lie GLn “ glnpFq, since pIn ` εXq´1 “ In ´ εX (Intuitively, In ´ εX
approximates the inverse to order 2, which is ignored over D).
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Exercise 2.5. Prove that

(a) Lie SLn “ slnpFq,

(b) Lie On,B “ oFn,B.

Theorem 2.1. Lie G is a subalgebra of the Lie algebra glnpFq.

Proof. We first show that Lie G is a subspace of glnpFq. Indeed, X “ pxijq P Lie G if
and only if PαpIn ` εXq “ 0 for all α.

Since ε2 “ 0, the Taylor expansion is

PαpIn ` εXq “ PαpInq ` ε
n
ÿ

i,j“1

BPα

Bxij
pInqxij.

But PαpInq “ 0 since every group contains the identity. Hence PαpIn ` εXq is linear in pxijq,
so that Lie G is a subspace of glnpFq.

Next, suppose X, Y P Lie G. We wish to prove rX, Y s “ XY ´ Y X P Lie G. We have

In ` εX P G
`

Frεs{pε2q
˘

and In ` ε1Y P G
`

Frε1
s{pε12

q
˘

.

Viewing these as elements of G pFrε, ε1s{pε2, ε12qq, we have

pIn ` εXq pIn ` ε1Y q pIn ` εXq
´1

pIn ` ε1Y q
´1

“ pIn ` εXq pIn ` ε1Y q pIn ´ εXq pIn ´ ε1Y q

“ In ` εε1
pXY ´ Y Xq

P G
`

Frεε1
s{ppεε1

q
2
q
˘

Ď G
`

Frε, ε1
s{pε2, ε12

q
˘

.

Since Frεε1s{ppεε1q2q » D, we see that XY ´ Y X P Lie G. ■

(f) From quantum field theory

A vertex operator algebra is a vector space V with the vacuum vector 1 and bilinear
products anb for each n P Z such that anb “ 0 for n " 0, subject to the following axioms:

• 1na “ δn,´1a, and a´11 “ a, (vacuum axiom)

•
8
ÿ

j“0

ˆ

m

j

˙

pan`jbqm`k´j c “

8
ÿ

j“0

p´1q
j

ˆ

n

j

˙

pam`n´jpbk`jcq ´ p´1q
nbn`k´jpam`jcqq
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for all m,n, k P Z. (Borcherds identity).

Bonus Problem. Let TV “ ta´21 | a P V u. Then ra, bs “ a0b is a well-defined Lie
algebra bracket on V {TV .

Bonus Problem. ra, bs “ a0b and ab “ a´1b give a well-defined Poisson al-
gebra structure on V {pTV q, where pTV q denotes the 2-sided ideal generated by
TV .
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Engel’s TheoremLecture 3

Engel’s Theorem

The notion of a representation is very important in the study of an algebraic structure.
The proof of Engel’s Theorem is a nice demonstration of this principle.

Definition 3.1. Let g be a Lie algebra over a field F and let V be a vector space over
F. A representation of g in V is a Lie algebra homomorphism

π : g Ñ glV , a ÞÑ πpaq.

In other words, it is a linear map a ÞÑ πpaq from g to End V , such that

π pra, bsq “ πpaqπpbq ´ πpbqπpaq.

Examples 3.1.

1. Trivial representation of g in V :

πpaq “ 0 for all a P g.

2. Adjoint representation ad of g in g:

a ÞÑ ad a, a P g, where pad aq b “ ra, bs.

In order to check that it is a representation, we need to show that, for a, b P g,

ad ra, bs “ pad aqpad bq ´ pad bqpad aq.

Applying both sides to c P g, we get

rra, bs , cs “ ra, rb, css ´ rb, ra, css

which is just the Jacobi identity by skew-commutativity of the bracket. (Another
proof is immediate by Proposition 2.1.)

3. Tautological representation of glV in V and oV,B in V :

πpaq “ a.

Definition 3.2. The center of a Lie algebra g is Zpgq “ ta P g | ra, gs “ 0u. Clearly,
Zpgq is an abelian ideal of g.
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Engel’s Theorem

Exercise 3.1. Show that Z pglnpFqq “ FIn and

Z pslnpFqq “

"

0 if char F ∤ n,
FIn otherwise.

Proposition 3.1. The adjoint representation defines an embedding of the Lie algebra
g{Zpgq in glg.

Proof. ad : g Ñ glg is a homomorphism with kernel Zpgq. The proposition follows from
the Fundamental Homomorphism Theorem. ■

Ado’s Theorem. Any finite-dimensional Lie algebra over F embeds in glnpFq for
some n.

We present this theorem without proof. Proposition 3.1 proves it when Zpgq “ 0. ■

Define the Heisenberg Lie algebra heis2n`1 to be the p2n`1q-dimensional Lie algebra
with basis tp1, ¨ ¨ ¨ , pn, q1, ¨ ¨ ¨ , qn, cu and all non-zero brackets

rpi, qis “ ´ rqi, pis “ c, i “ 1, ¨ ¨ ¨ , n.

It is very important in quantum mechanics.

Exercise 3.2. Let n “ dim g. Prove that dimZpgq ‰ n ´ 1.

Exercise 3.3. Prove that any n-dimensional Lie algebra, for which dimZpgq “ n´2, is
isomorphic either to abn´3‘heis3 or to abn´2‘h, where ‘ denotes the direct sum of Lie
algebras; abj denotes the j-dimensional abelian Lie algebra; and h the 2-dimensional
non-abelian Lie algebra.

Construction of representations from given ones

(a) Direct sum of representations

Given representations πi pi “ 1, ¨ ¨ ¨ , kq of g in vector spaces Vi, we have their direct sum

pπ1 ‘ ¨ ¨ ¨ ‘ πkq paq “ π1paq ‘ ¨ ¨ ¨ ‘ πkpaq, a P g,

in the vector space V1 ‘ ¨ ¨ ¨ ‘ Vk.
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(b) Subrepresentations and factor representations

Given a representation π of g in V , if a subspace U in V is invariant with respect to all
operators πpaq, a P g, we have the subrepresentation πU of g in U :

a ÞÑ πpaq |U ,

and the factor representation of g in V {U :

a ÞÑ πpaq |V {U .

(c) Restriction of a representation of g in V to a subalgebra h Ď g

Definition 3.3. A linear operator A on a vector space V is called nilpotent if AN “ 0
for some positive integer N .

Exercise 3.4. Show that if dimV ă 8, then A is a nilpotent operator on V if and
only if all its eigenvalues are 0.

Lemma 3.1. Let A be a nilpotent operator on a vector space V . Then

(a) There exists a non-zero v P V , such that Av “ 0.

(b) ad A is a nilpotent operator on glV .

Proof. (a) Consider the minimal positive integer N such that AN “ 0, then AN´1 ‰ 0.
Choose a non-zero vector v P AN´1V . Then Av “ 0.

(b) Note that

ad A “ LA ´ RA, (1)

where LApBq “ AB and RApBq “ BA. Furthermore LARB “ RBLA due to associativity of
product of operators:

LARBpCq “ ApCBq “ pACqB “ RBLApCq.

Hence we may apply the binomial formula to p1q:

pad Aq
M

“

M
ÿ

j“0

ˆ

M

j

˙

Lj
AR

M´j
A .
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Engel’s Theorem

Apply both sides to B with M “ 2N :

pad Aq
2N B “

2N
ÿ

j“0

ˆ

2N

j

˙

AjBA2N´j,

which is zero, since either j ě N or 2N ´ j ě N . ■

Theorem 3.1. (Engel’s Theorem) Let V be a non-zero vector space (not necessarily
finite-dimensional) and let g Ď glV be a finite-dimensional subalgebra, consisting of
nilpotent operators. Then there exists a non-zero vector v P V such that

Av “ 0 for all A P g.

Remark. If we assume dimV ă 8, then dim g ď pdimV q2 is automatically finite.

Proof of Engel’s Theorem. We use induction on dim g.

If dim g “ 1, then g “ FA for A P glV and, by Lemma (a), Engel’s Theorem holds.

Henceforth assume that dim g ě 2, and let h be a maximal proper subalgebra of g. Since
ra, as “ 0, we have that dim h ě 1.

Step 1. h is an ideal of codimension 1 in g.

Consider the adjoint representation of g (on itself), and its restriction to h, so we have
h is an invariant subspace of g for this representation of h on g (since h is a subalgebra).
Hence we may consider the factor representation π of h on g{h. Then πphq Ď glg{h and
dimπphq ď dim h ă dim g. But by Lemma 3.1(b), πphq consists of nilpotent operators on
g{h.

Hence we may apply the inductive assumption: there exists a non-zero vector a P g{h,
such that πphqa “ 0 for all h P h. If a P g is an arbitrary preimage of a under the map
g Ñ g{h, we get that

rh, as Ď h, (2)

and a R h since a ‰ 0. Hence h ` Fa is a subalgebra of g, larger than h. Since h is a
(maximal) proper subalgebra of g, we conclude that

g “ h ‘ Fa, (3)

and (2) and (3) show that h is an ideal of codimension 1 in g.

Step 2. By the inductive assumption, there exists a non-zero vector v P V such that
Av “ 0 for all A P h. Let V0 denote the subspace of all vectors, satisfying Av “ 0 for all

18



Engel’s Theorem

A P h. It is a non-zero subspace.

We claim that aV0 Ď V0. Indeed, V0 “ tv P V | hpvq “ 0u. So, if v P V0, then we have

hpavq “ rh, asv ` ahpvq “ 0 ` 0 “ 0,

since rh, as P h. By Lemma 3.1(a) there exists a non-zero vector v P V0, annihilated by a.
Since v is also annihilated by h, we conclude, by (3), that v is annihilated by g. ■

Corollary. Let π : g Ñ glV be a representation of a Lie algebra g in a finite-
dimensional vector space V , such that πpaq is a nilpotent operator for all a P g. Then
there exists a basis of V , with respect to which all operators πpaq pa P gq have strictly
upper triangular matrices. In particular, any subalgebra g Ď glV , where dimV ă 8,
consisting of nilpotent operators, is a subalgebra of the Lie algebra of strictly upper
triangular matrices in some basis of V .

Proof. By induction on dimV . By Engel’s Theorem, there exists a non-zero vector e1
such that πpaqe1 “ 0 for all a P g. Since Fe1 is a g-invariant subspace of V , we may consider
the factor representation of g in V {Fe1.

Applying the inductive assumption, we get a basis e2, ¨ ¨ ¨ , en of V {Fe1 in which al ma-
trices of πV {Fe1 are strictly upper triangular.

Take arbitrary preimages e2, ¨ ¨ ¨ , en of e2, ¨ ¨ ¨ , en. Then in the basis e1, ¨ ¨ ¨ , en of V , all
matrices of the operators in πpgq are strictly upper triangular. ■

Exercise 3.5. Construct in sl3pFq a 2-dimensional subspace, consisting of nilpotent
matrices, which do not have a common eigenvector. (Hence the assumption in Engel’s
theorem that g is a subalgebra of glV is essential)

Hint: Consider the matrices

A “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚, B “

¨

˝

0 0 0
´1 0 0
0 1 0

˛

‚.

Bonus problem. (Very difficult) If A,B P MatnˆnpCq are matrices for which all their
linear combinations are diagonalizable, then rA,Bs “ 0. This is called the Motzkin-
Taussky theorem. Hence, the nilpotent case is dramatically different from the diago-
nalizable case.
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Nilpotent and Solvable Lie Algebras
Lecture 4

Nilpotent and Solvable Lie Algebras

A flag in a d-dimensional vector space V is a sequence of subspaces

0 “ V0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vd “ V, where dimVj “ j.

To such a flag we may associate two associative subalgebras of End V :

Bd “ tA P End V | AVj Ď Vj for all j ě 0u ,

Nd “ tA P End V | AVj Ď Vj´1 for all j ě 1u .

Note that the product of any d operators from Nd is 0, i.e Nd is a nilpotent (associative)
subalgebra of End V . Note that Nd Ď Bd.

Choosing a basis e1, ¨ ¨ ¨ , ed of V , we can construct a flag by letting

0 “ V0 Ă V1 “ Fe1 Ă V2 “ Fe1 ` Fe2 Ă ¨ ¨ ¨ Ă Vd “ Fd.

In this basis Bd consists of upper triangular matrices, and Nd of strictly upper triangular
matrices. Then pBdq

´
“ bd and pNdq

´
“ nd are subalgebras of the Lie algebra gldpFq.

Exercise 4.1. Show that nd “ rbd, bds.

Definition 4.1. Let g be a Lie algebra over a field F. The central series of g is the
descending chain of subspaces

g1 :“ g Ě g2 :“
“

g, g1
‰

Ě g3 :“
“

g, g2
‰

Ě ¨ ¨ ¨ Ě gn :“
“

g, gn´1
‰

Ě ¨ ¨ ¨ ,

while the derived series of g is

gp0q :“ g Ě gp1q :“ rg, gs Ě gp2q :“
“

gp1q, gp1q
‰

Ě ¨ ¨ ¨ Ě gpnq :“
“

gpn´1q, gpn´1q
‰

Ě ¨ ¨ ¨ .

Note that g2 “ gp1q “ rg, gs is the derived subalgebra of g, and that

(1) gpnq Ď gn`1 for n ě 1 by induction on n.

(2) All gpnq and gn are ideals of g.

Definition 4.2. A Lie algebra g is called nilpotent (resp. solvable) if gn “ 0 (resp.
gpnq “ 0) for some n ą 0.

Note that we have for Lie algebras

tabelianu Ĺ tnilpotentu Ĺ tsolvableu
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Examples 4.1.

1. g “ Fa ` Fb, ra, bs “ b. Then gp1q “ g2 “ rg, gs “ Fb, g3 “ g4 “ ¨ ¨ ¨ “ Fb, while
gp2q “ 0. Hence g is a solvable, but not nilpotent, Lie algebra.

2. heis2n`1 for n ě 1 is a nilpotent Lie algebra since its derived subalgebra is
central, hence g3 “ 0.

Exercise 4.2. bd is a solvable (but not nilpotent for d ě 2) Lie algebra, and nd is a
nilpotent Lie algebra.

Obviously any subalgebra of a nilpotent (resp. solvable) Lie algebra is nilpotent (resp.
solvable) Lie algebra and the same holds for factor algebras by ideals.

Exercise 4.3. Let g be a Lie algebra and h its ideal. Prove that if h and g{h are
solvable Lie algebras, then g is solvable too.

Example 4.2. g “ Fa ` Fb, ra, bs “ b. Then Fb is an abelian (hence nilpotent) ideal
and the factor algebra g{Fb is abelian. But g is not a nilpotent Lie algebra.

Theorem 4.1.

(a) If g is a non-zero nilpotent Lie algebra, then its center Zpgq is non-zero.

(b) If g is a Lie algebra, such that g{Zpgq is a nilpotent Lie algebra, then g is
nilpotent.

Proof.

(a) Take the minimal positive integer N such that gN “ 0. Since g ‰ 0, N ě 2, but then
gN´1 ‰ 0 and

“

g, gN´1
‰

“ gN “ 0, so gN´1 Ď Zpgq.

(b) The Lie algebra g “ g{Zpgq nilpotent means that gn “ 0 for some n ě 1, hence
gn Ď Zpgq and gn`1 “ 0. ■

Engel’s characterization of nilpotent Lie algebras

Let g be a finite-dimensional Lie algebra. Then g is a nilpotent Lie algebra if and only
if the operator ad a is nilpotent for each a P g.
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Proof. If g is a nilpotent Lie algebra, then gn`1 “ 0 for some positive integer n. In
particular, pad aqnb “ 0 for all a, b P g.

Conversely, the adjoint representation embeds g{Zpgq in glg, and by the assumption, it
consists of nilpotent operators.

Hence, by Corollary of Engel’s theorem, there is a basis of g in which all operators from
g{Zpgq are strictly upper triangular. Therefore, g{Zpgq is a nilpotent Lie algebra, and, by
Theorem 4.1(b), g is nilpotent too. ■

The meaning of this theorem is as follows. Let pad a1q ¨ ¨ ¨ pad an´1qan be a commutator
of length n. For example, pad aqn´1b. Note that in a d-dimensional nilpotent Lie algebra g
any commutator of length d ` 1 is zero, since the central series of g is strictly decreasing.

Thus, Engel’s characterization theorem says that if all the commutators of length d ` 1
of the form pad aqdb are zero in a nilpotent Lie algebra of dimension d, then all commutators
of length d ` 1 are zero.

The famous Zelmanov’s theorem says that in any, possible infinite-dimensional, Lie al-
gebra, pad aqd “ 0 for all a implies that all commutators of length d ` 1 are 0.

Let g be a finite-dimensional nilpotent Lie algebra. Recall that, by Theorem 4.1(a),
Zpgq ‰ 0, so that dim g{Zpgq ă dim g.

Definition 4.3. Define inductively by dim g the notion of a nnn-step nilpotent Lie
algebra g:

• 1-step nilpotent g is abelian.

• 2-step nilpotent g if g{Zpgq is abelian.

• k-step nilpotent g if g{Zpgq is pk ´ 1q-step nilpotent (k ě 2).

Exercise 4.4. Prove that any 2-step finite-dimensional nilpotent Lie algebra with
1-dimensional center is isomorphic to heis2n`1 for some integer n ě 1.

How to classify 2-step finite dimensional nilpotent Lie algebras?

Let V “ g{Zpgq; it is an abelian Lie algebra. Consider the bilinear form on V with
values in Zpgq:

B : V ˆ V Ñ Zpgq, pa, bq ÞÑ

”

ra,rb
ı

,

where ra,rb are some preimages of a, b P V respectively under the map g Ñ V .
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Note that B is a well-defined alternating bilinear form, i.e. Bpx, xq “ 0 for all x P V .
Moreover, B is non-singular in the sense that Bpa, V q “ 0 implies that a “ 0; otherwise
Zpgq is larger.

Conversely, given a non-singualr alternating bilinear form B on a vector space V with
values in a vector space Z, we can construct a 2-step nilpotent Lie algebra

gB “ V ‘ Z pdirect sum of vector spacesq,

for which Z “ Zpgq and the bracket on V is defind by ra, bs “ Bpa, bq.

Exercise 4.5. Prove that gB is a Lie algebra and that gB » gB1 if and only if B and
B1 are isomorphic bilinear forms.

The classification of 2-step finite-dimensional nilpotent Lie algebras is equivalent to the
classification of alternating non-singular bilinear forms on a finite-dimensional vector space
V with values in a finite-dimensional vector space Z.

If dimZ “ 1 there is only one such bilinear form, up to isomorphism, which leads to
Exercise 4.4. In the case dimZ “ 2 the problem was solved by G. Belitskii, R. Lipyanski and
V. Sergeichuk in 2005. However it was proved in the same paper that the case dim Z “ 3 is
impossible (a ‘wild’ problem of linear algebra).

Remark. A problem of linear algebra is calledwild if it contains the problem of classification
of pairs of linear operators in a finite-dimensional vector space as a subproblem, otherwise
the problem is called tame . An example of a tame problem is the classification of linear
operators in a finite-dimensional vector space (Jordan form). An example of a wild problem
is classification of triples of linear maps A,B,C from U to V , where U and V are finite-
dimensional vector spaces. Indeed, take dimU “ dimV , and C “ I. Then we get the
problem of classification of pairs of linear operators on V . Classification of pairs of linear
maps A,B : U Ñ V is a tame problem.

Another example is classification of m-tuples of subspaces in a finite-dimensional vector
space. This problem is tame for m ď 4, but wild for m ě 5. For example U Ď V is
determined by dimU ; 2-tuple U1, U2 Ď V is determined by dimU1, dimU2 and dimU1 X U2.
For m “ 3 it is a little more complicated, but the problem is still finite. For m “ 4 the
problem is tame, but infinite.
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Lecture 5

Lie’s Theorem

Definition 5.1. Let h be a Lie algebra over a field F, let π : h Ñ glV be a representa-
tion of h in a vector space V over F, and let λ : h Ñ F be a linear function. We define
the weight subspace of V for h, attached to λ, as

V h
λ :“ tv P V | πphqv “ λphqv for all h P hu .

If V h
λ ‰ 0, we say that λ is a weight of the representation π.

Lie’s Lemma. Let g be a Lie algebra over a field F of characteristic 0, and let h be
an ideal of g. Let π : g Ñ glV be a representation of g in a finite-dimensional vector
space V over F. Then each weight space V h

λ for π |h, where λ is a linear function on h,
is invariant under πpgq.

Proof. πpaqv P V h
λ for a P g means

πphq pπpaqvq “ λphqπpaqv for all h P h.

We have, using that ra, hs Ď h,

LHS “ rπphq, πpaqs v ` πpaqπphqv

“ πprh, asqv ` λphq pπpaqvq

“ λprh, asqv ` λphq pπpaqvq .

Hence it suffices to prove that

λ prh, asq “ 0 for all h P h, a P g.

Fix a P g and pick a non-zero v P V h
λ (we may assume that V h

λ ‰ 0). Let W´1 “ 0 and

Wm “ span tv, πpaqv, ¨ ¨ ¨ , πpaq
mvu if m ě 0.

Take the maximal integer N such that the vectors v, πpaqv, ¨ ¨ ¨ , πpaqNv are linearly indepen-
dent (recall that dimV ă 8). Then we have

W´1 Ĺ W0 Ĺ W1 Ĺ ¨ ¨ ¨ Ĺ WN “ WN`1 “ ¨ ¨ ¨ ,

hence

πpaqWN Ď WN . (1)

We shall prove by induction on m ě 0 the following two properties
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• p2qm : πphqπpaqmpvq ´ λphqπpaqmpvq P Wm´1 for all h P h,

• p3qm : Wm is πphq-invariant.

This is true for m “ 0 since v P V h
λ . Suppose m ě 1 and p2q and p3q hold for m ´ 1:

• p2qm´1 : πphqπpaqm´1pvq ´ λphqπpaqm´1pvq P Wm´2 for all h P h,

• p3qm´1 : Wm´1 is πphq-invariant.

Let us prove p2qm:

πphqπpaq
mv ´ λphqπpaq

mv

“ πphqπpaqπpaq
m´1v ´ λphqπpaq

mv

“ π prh, asq πpaq
m´1v ` πpaq

`

πphqπpaq
m´1v ´ λphqπpaq

m´1v
˘

.

The first summand lies in Wm´1 by p3qm´1, and the second lies in Wm´1 by p2qm´1.

Let us prove p3qm. By p3qm´1, it suffices to check that πphqπpaqmv P Wm. But, as above,
it is equal to

π prh, asq πpaq
m´1v ` πpaq

`

πphqπpaq
m´1v

˘

.

Both summands lie in Wm by p3qm´1.

Now, by p1q and p3qN , the space WN is πpaq-invariant and πphq-invariant, and, by p2qN ,
the matrix of πphq for h P h is upper triangular with λphq on the diagonal. Hence, for h P h
we have

trWN
π prh, asq “ trWN

rπphq, πpaqs “ Nλ prh, asq .

Since the trace of the commutator of two operators in a finite-dimensional vector space is 0,
and char F “ 0, we conclude that λ prh, asq “ 0. ■

Exercise 5.1. Show that Lie’s Lemma holds if char F ą dimV .

Lie’s Theorem. Let g be a solvable Lie algebra over an algebraically closed field F
of characteristic 0 and let π : g Ñ glV be a representation of g in a finite-dimensional
vector space V over F. Then there exists a linear function λ on g, such that V g

λ ‰ 0.
In other words, there exists a common eigenvector v in V for all πpaq, a P g, such that
the eigenvalue is linear in a.

Proof. We may assume that dim g ă 8, replacing g by πpgq Ď End V . As g is solvable,
πpgq is solvable as well.
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We shall prove Lie’s Theorem by induction on dim g. The case dim g “ 0 is trivial.
Suppose that d “ dim g ě 1 and we have proved Lie’s Theorem for dim g “ d ´ 1, and we
want to show that it holds for dim g “ d.

Since g is a solvable Lie algebra of positive dimension, g properly includes rg, gs, let h
be a subspace of codimension 1 in g, containing rg, gs. It is an ideal of g, hence we have

g “ h ‘ Fa (direct sum of vector spaces), ra, hs Ď h.

Since h is solvable of dimension d ´ 1, by the inductive hypothesis, V h
λ1 ‰ 0 for some linear

function λ1 on h.

By Lie’s Lemma, V h
λ1 is g-invariant. In particular aV h

λ1 Ď V h
λ1 . Since F is algebraically

closed, there exists a non-zero v in V h
λ1 , such that av “ ℓv for some ℓ P F. Define a linear

function λ on g, letting

λph ` µaq “ λphq ` µℓ.

Then v P V g
λ , and the proof is complete. ■

Exercise 5.2. Consider the following representation of heis3 “ tp, q, cu in Frxs:

c ÞÑ IFrxs, p ÞÑ
d

dx
, q ÞÑ multiplication by x.

Show that xpFrxs is an invariant subspace with respect to heis3 if char F “ p, and
that heis3 has no weight in V “ Frxs{xpFrxs. This shows that Lie’s Theorem fails if
char F “ p. Explain why this example also shows that Lie’s Lemma fails over fields of
characteristic p.

Exercise 5.3. Prove the following two corollaries of Lie’s Theorem:

(a) For any representation π of a solvable Lie algebra g in a finite-dimensional vector
space V over an algebraically closed field F of characteristic 0 there exists a basis
of V for which the matrices of πpgq are upper triangular.

(b) Under the same assumption on V and F, a subalgebra of glV is solvable if and
only if it is contained in a subalgebra of upper triangular matrices for some basis
of V .

Proposition 5.1. Let g be a finite-dimensional solvable Lie algebra over an alge-
braically closed field of characteristic 0. Then rg, gs is a nilpotent Lie algebra.

Proof. Recall that g{Zpgq is a subalgebra of glg, and that it is solvable since g is. By
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Exercise 5.3(b) this subalgebra is contained in the subalgebra of upper triangular matrices in
some basis of g. Hence rg{Zpgq, g{Zpgqs is a nilpotent Lie algebra since it consists of strictly
upper triangular matrices. The proposition follows, using the following exercise. ■

Exercise 5.4. Prove that rg, gs is a nilpotent Lie algebra if rg{Zpgq, g{Zpgqs is (for
any Lie algebra g).

Remark. Not any nilpotent subalgebra of glV is a subalgebra of strictly upper trian-
gular matrices in some basis of V . For example, the Lie algebra of diagonal matrices
in glnpFq is abelian, hence nilpotent.

Note that, due to Exercise 5.3(a), the subspace n of a solvable Lie algebra b over a field F
of characteristic 0, consisting of ad-nilpotent elements, is the maximal nilpotent subalgebra
in b.

Another application of Lie’s Lemma and Lie’s Theorem is the following proposition.

Proposition 5.2. Let b be a finite-dimensional solvable Lie algebra over an alge-
braically closed field F of a characteristic 0, and let n be its maximal nilpotent subal-
gebra. Then for any derivation D of b we have Dpbq Ď n.

Proof. It is by induction on dim b. By Lie’s Theorem there exists a linear function λ on
b, such that the weight space bλ for the adjoint representation is non-zero. Consider the Lie
algebra g “ FD‘b (direct sum of vector spaces) with b an ideal and rD, bs “ Dpbq for b P b.
Then, by Lie’s Lemma, rg, bλs Ď bλ. In particular,

rD, bλs Ď bλ, and rb, bλs Ď bλ, and rrD, as , bλs Ď bλ for all a P b.

Since all eigenvalues of ad rD, as in bλ are equal to λprD, asq, we conclude that

0 “ trbλ rad D, ad as “ trbλad rD, as “ λ prD, asq dim bλ.

Hence ad rD, as is a nilpotent operator on bλ.

Applying the inductive assumption to b “ b{bλ, we see that D
`

b
˘

Ď n and therefore
D pbq Ď n. ■

Exercise 5.5. By going to the algebraic closure of F, remove the condition that F is
algebraically closed in Proposition 5.2.

Remark. Lie’s Theorem and its corollary in Exercise 5.3(a) is important for differential
Galois theory .

In the usual Galois theory one associates to a polynomial P pxq “ xn ` a1x
n´1 ` ¨ ¨ ¨ `an,
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where ai P C, the field extension E Ě F where F Ď C is the field generated by a1, ¨ ¨ ¨ , an
(the minimal subfield of C containing a1, ¨ ¨ ¨ , an), and E “ Frα1, ¨ ¨ ¨ , αns where αi are all
the roots of P pxq. The Galois group GalpE,Fq is the (finite) group of all automorphisms of
the field E that fix all elements of F.

Galois’ Theorem says that the roots of P pxq can be expressed in terms of radicals (solved
in radicals) of elements of F if and only if the group GalpE,Fq is solvable.

Similarly, in differential Galois theory, one considers a linear differential equation

ypnq
` a1pxqypn´1q

` ¨ ¨ ¨ ` anpxq “ 0, (˚)

where a1pxq, ¨ ¨ ¨ , anpxq are “nice” functions in x, for example, polynomials with coefficients
in C. Let F be the field, genereated over C by a1pxq, ¨ ¨ ¨ , anpxq, and E “ Fpα1pxq, ¨ ¨ ¨ , αnpxqq,
where α1pxq, ¨ ¨ ¨ , αnpxq is a basis of solutions of the equation p˚q. The Galois group

G “ GalpE,Fq

is the algebraic group of automorphisms of the field E, fixing all elements of F.

Then E can be obtained from F by adding
ş

a, e
ş

a with a P F or algebraic functions
over F if and only if Lie G is a solvable Lie algebra (such extensions are called Liouville
extensions).

Example. y2 ´ ay “ 0, where a P Crxs. Then

(a) G “ t1u if and only if a “ 0,

(b) G – tdiagonal invertible 2 ˆ 2 matricesu if and only if a P Cz t0u,

(c) G – B2 (2 ˆ 2 upper triangular invertible matrices) if and only if a “ b1 ` b2 for
some b P CrxszC,

(d) G – SL2 if and only if a ‰ b1 ` b2 for any b P Crxs.

For example, the differential equation

y2
´ xy “ 0 (Airy equation)

is not solvable in the above sense, since its differential Galois group is SL2, hence its
Lie algebra sl2pCq is not solvable.
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Lecture 6

Representation Theory of Nilpotent Lie Algebras and Generalized Weight Spaces

Definition 6.1. Let A be a linear operator on a vector space V over a field F and let
λ P F. Then the subspace

Vpλq “
␣

v P V | pA ´ λIV q
Nv “ 0 for some N P Zą0

(

is called a generalized eigenspace of A with eigenvalue λ. Note that the eigenspace
Vλ of A in V with eigenvalue λ is a subspace of Vpλq.

Example 6.1. A is a nilpotent operator on V if and only if V “ Vp0q.

Recall from linear algebra:

Proposition 6.1. Let A be a linear operator on a finite-dimensional vector space
V over an algebraically closed field F, and let λ1, ¨ ¨ ¨ , λs be all eigenvalues of A with
multiplicities m1, ¨ ¨ ¨ ,ms respectively. Then one has the generalized eigenspace de-
composition

V “

s
à

j“1

Vpλjq, where dimVpλjq “ mj. (1)

Each Vpλjq is A-invariant, and A |Vpλjq
“ λjImj

` Nj where Nj is a nilpotent operator

on Vpλjq.

From Proposition 6.1 we obtain the following decomposition of the linear operator A,
called the classical Jordan decomposition:

A “ As ` An, (2)

where As |Vpλjq
“ λjImj

and An |Vpλjq
“ Nj. It has the following three properties:

(i) As is a diagonalizable operator (usually called semisimple),

(ii) An is a nilpotent operator,

(iii) AsAn “ AnAs.

Indeed, (i) and (ii) are obvious, while (iii) holds since each Vpλjq is A-invariant, and As |Vpλjq
“

λjImj
.

Definition 6.2. A decomposition (2) of a linear operator A with properties (i), (ii),
(iii) is called a Jordan decomposition of A.
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We established its existence, provided that dimV ă 8 and F is an algebraically closed
field.

Proposition 6.2. Jordan decomposition is unique if V is a finite-dimensional vector
space over an algebraically closed field.

The proof of this proposition uses

Lemma 6.1. Let A and B be commuting operators on a vector space V , i.e. AB “

BA. Then

(a) All generalized eigenspaces of A are B-invariant.

(b) If A “ As ` An is the classical Jordan decomposition, then B commutes with
both As and An.

Proof. (a) is immediate from the definition of a generalized eigenspace. (b) follows from
(a) since each Vpλjq is B-invariant and As |Vpλjq

“ λjImj
, therefore B and As commute

on each Vpλjq, hence commute on V .

Proof of Proposition 6.2 on uniqueness of a Jordan decomposition.
Consider a Jordan decomposition A “ A1

s `A1
n, and let A “ As `An be the classical Jordan

decomposition. Taking the difference, we get:

As ´ A1
s “ A1

n ´ An. (3)

But A1
s commutes with A1

n and itself, hence with A. Hence, by taking B “ A1
s in Lemma

6.1(b), we conclude that A1
s commutes with As and An. Therefore A1

n “ A ´ A1
s also

commutes with As and An. So in (3) we have differences of commuting operators on both
sides. Hence LHS of (3) is a diagonalizable, and RHS of (3) is a nilpotent operator. Hence
both sides of (3) are 0. ■

Bonus Problem. Prove that a Jordan decomposition of a linear operator A in any
vector space is unique (if it exists).

Exercise 6.1. Show that any non-abelian 3-dimensional nilpotent Lie algebra is
isomorphic to heis3.

After this digression to linear algebra, we turn to representation theory.

Let g be a finite-dimensional Lie algebra and π its representation in a finite-dimensional
vector space V , both over an algebraically closed field F of characteristic 0. We have the
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following generalized eigenspace decomposition for fixed a P g:

V “
à

λPF
V a

pλq, where V a
pλq “

␣

v P V | pπpaq ´ λIq
Nv “ 0 for some N P Zą0

(

.

g “
à

αPF
gapαq, where gapαq “

␣

g P g | padpaq ´ αIq
Ng “ 0 for some N P Zą0

(

.

We shall prove the following theorem.

Theorem 6.1. π
´

ga
pαq

¯

V a
pλq

Ď V a
pλ`αq

, for α, λ P F.

In order to prove this theorem, we need a lemma whose proof is similar to that of Lemma
3.1(b).

Lemma 6.2. Let U be an associative unital algebra over a field F, and let a, b P U,
λ, α P F. Then

pa ´ α ´ λq
Nb “

N
ÿ

j“0

ˆ

N

j

˙

`

pad a ´ αIq
jb
˘

pa ´ λq
N´j (4)

Proof. Let La (resp. Ra) be the operator of left (resp. right) multiplication by a. They
commute by associativity of U. We have

La´α´λ “ La ´ αI ´ λI “ pad aq ` Ra ´ αI ´ λI “ pad a ´ αIq ` Ra´λ. (5)

Since the operators in the RHS of (5) commute, (4) follows from the binomial theorem
by rising both sides of (5) to the N -th power.

Proof of Theorem 6.1. Applying Lemma 6.2 to U “ End V , πpaq and πpgq, we have:

pπpaq ´ α ´ λq
Nπpgq “

N
ÿ

j“0

ˆ

N

j

˙

`

pad πpaq ´ αIq
jπpgq

˘

pπpaq ´ λq
N´j (6)

where g P gα. Apply both sides to v P V a
pλq

with N ą dimV a
pλq

` dim ga
pαq

. Then either
j ą dim ga

pαq
or N ´ j ą dimV a

pλq
.

If j ą dim ga
pαq

, then pad πpaq ´αIqjπpgq “ 0 since g P ga
pαq

. Otherwise N ´ j ą dimV a
pλq

,

so pπpaq ´ λIqN´jv “ 0 since v P V a
pλq

.

This makes the RHS of (6) zero, when applied to v P V a
pλq

, so pπpaq ´ α´ λqNπpgqv “ 0.
Since this holds for all g P ga

pαq
, v P V a

pλq
, Theorem 6.1 follows. ■

Now we turn to representation theory of nilpotent Lie algebras.

33



Representation Theory of Nilpotent Lie Algebras and Generalized Weight Spaces

Definition 6.3. Let g be a Lie algebra and let π be a representation of g in a vector
space V over a field F. Let λ : g Ñ F be a linear function on g. The generalized
weight space of g in V , attached to λ, is

V g
pλq

“
␣

v P V | pπpgq ´ λpgqIV q
Nv “ 0 for some N P Zą0 depending on g P g

(

.

Note that the notion of a weight space V g
λ introduced in Lecture 5 is a special case of

this, and that V g
pλq

Ě V g
λ .

Theorem 6.2. Let h be a nilpotent Lie algebra and π its representation in a finite-
dimensional vector space V over an algebraically closed field of characteristic 0. Then
we have the generalized weight space decomposition

V “
à

λPh˚

V h
pλq
. (6)

Proof. Case 1. For each a P h, πpaq has only one eigenvalue. Then V is a generalized
eigenspaace V a

pλpaqq
, so we just need to check the linearity of λ.

Since h is a nilpotent Lie algebra, it is solvable, and we may apply Lie’s Theorem, which
guarantees the existence of λ1 P h˚ with a non-zero weight space V h

pλ1q
. Then λ1paq is the

eigenvalue of πpaq on V h
pλ1q

, so λ “ λ1 P h˚.

Case 2. For some a0 P h, πpa0q has at least two distinct eigenvalues. Since h is a

nilpotent Lie algebra, ad a is a nilpotent operator on h for all a P h, hence h “ h
πpaq

p0q
.

Therefore, by Theorem 6.1,

πphqV
πpaq

pλq
Ď V

πpaq

pλq
for all a P h. (7)

Since F is algebraically closed, V is a direct sum of the generalized eigenspaces for πpa0q.

Since each V a0
pλq

is πphq-invariant by (7), it is also a representation of h. Since 0 ă dimV
πpa0q

pλq
ă

dimV for some λ P F, we may apply induction on dimV . ■

If g is a finite-dimensional Lie algebra over an algebraically closed field F of characteristic
0 and h is a nilpotent subalgebra of g, we may apply Theorem 6.2 to the adjoint representation
of h on g, to obtain the generalized root space decomposition with respect to h:

g “
à

αPh˚

gh
pαq
, where gh

pαq
“
␣

a P g | padphq ´ αphqIgq
dim ga “ 0 for all h P h

(

. (8)
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Theorem 6.3. Let g and h be as above, and let π be a representation of g in a finite-
dimensional vector space V , so that we have the generalized weight space decomposition
(6) with respect to πphq. Then

π
´

gh
pαq

¯

V h
pλq

Ď V h
pλ`αq

. (9)

Proof. If g P gh
pαq

, then g P ga
pαpaqq

for all a P h. By Theorem 6.1, πpgqV a
pλpaqq

Ď V a
pλpaq`αpaqq

for all a P h. Hence, if v P
Ş

aPh V
a

pλpaqq
, then πpgqv P

Ş

aPh V
a

pλpaq`αpaqq
. Since

Ş

aPh V
a

pλpaq`αpaqq
“

V h
pλq

, this establishes (9). ■

If V “ g and π “ ad, we obtain the following corollary of Theorem 6.3.

Corollary 6.1.
”

gh
pαq
, gh

pβq

ı

Ď gh
pα`βq

.

Exercise 6.2. Let F be a field of characteristic 2, and V “ Frxs{x2Frxs be the repre-

sentation of heis3, given by p ÞÑ d
dx
, q ÞÑ x, c ÞÑ IV . Show that V “ V

heis3
pλq

, but λ is not
a linear function on heis3. Compute λ.

Exercise 6.3. By the example of the adjoint representation of the 2-dimensional non-
abelian solvable Lie algebra, show that the generalized weight space decomposition
fails for solvable Lie algebras that are not nilpotent.

Exercise 6.4. Let g “ glnpFq and h “ tdiagonal matricesu. Find the generalized
weight space decomposition for the tautological and adjoint representations with re-
spect to h, and show that (9) and Corollory 6.1 hold. They are actually weight space
decompositions.
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Regular Elements and Rank of a Finite-Dimensional Lie Algebra
Lecture 7

Regular Elements and Rank of a Finite-Dimensional Lie Algebra

For further development of the theory of Lie algebras we need the notions of a topological
space and Zariski topology.

Definition 7.1. A topological space is a set X with a collection of subsets F , called
the closed subsets, satisfying the following axioms:

1. X P F and ∅ P F ,

2. the union of a finite collection of closed subsets is a closed subset,

3. the intersection of an arbitrary collection of closed subsets is a closed subset,

4. (weak separation axiom) for any two distinct points x, y P X, there exists F P F ,
such that x P F , but y R F .

Given a closed subset F P F , its complement F c in X is called an open subset. The
axioms for a topological space can also be phrased in terms of open subsets.

Definition 7.2. Let X “ Fn where F is a field. The Zariski topology on X is
defined as follows: A subset in X is closed if and only if it is the set of common zeros
of a (possibly infinite) collection of polynomials tPαpxqu on Fn.

For a collection of polynomials S “ tPαpxqu, we denote F pSq the set of common
zeros of all polynomials from S. If S contains precisely one non-constant polynomial,
then F pSq is called a hypersurface in Fn.

Exercise 7.1. Prove that the Zariski topology is indeed a topology.

Example 7.1. If X “ F, the closed subsets in Zariski topology are precisely ∅,F and
finite subsets of F.

Theorem 7.1. Let F be an infinite field and n a positive integer. Then

(a) The complement to a hypersurface in Fn is an infinite set. Consequently, the
complement to F pSq, where S contains a non-zero polynomial, is an infinite set.

(b) Every two non-empty Zariski open subsets in Fn have a non-empty intersection.

(c) If a polynomial ppxq vanishes on a non-empty Zariski open subset, then ppxq is
the zero polynomial.

Proof. We prove (a) by induction on n. When n “ 1, since any non-zero polynomial ppxq

has at most deg ppxq roots, F pppxqqc is an infinite set (since F is). If n ą 1, then any non-
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constant polynomial ppx1, ¨ ¨ ¨ , xnq can be written, after a permutation of the indeterminates
as

ppx1, ¨ ¨ ¨ , xnq “ p0px2, ¨ ¨ ¨ , xnqxd1 ` p1px2, ¨ ¨ ¨ , xnqxd´1
1 ` ¨ ¨ ¨ ,

where p0px2, ¨ ¨ ¨ , xnq is a non-zero polynomial. By the inductive hypothesis, we can find
x˝
2, ¨ ¨ ¨ , x˝

n P F, such that p0px˝
2, ¨ ¨ ¨ , x˝

nq ‰ 0. Now fixing these values, we get

ppx˝
1, ¨ ¨ ¨ , x˝

nq “ p0px
˝
2, ¨ ¨ ¨ , x˝

nqxd1 ` p1px˝
2, ¨ ¨ ¨ , x˝

nqxd´1
1 ` ¨ ¨ ¨ ,

so we are back to the n “ 1 case. Hence we can find an infinite number of values x˝
1 P F,

such that ppx˝
1, ¨ ¨ ¨ , x˝

nq ‰ 0.

To prove the second claim of (a), just observe that if S is a collection of polynomials con-
taining a non-zero polynomial ppxq, then F pSqc Ą F pppxqqc, hence, by the first claim, F pSqc

is an infinite set.

(b) Let S1 and S2 be two sets of polynomials, each containing a non-zero polynomial p1pxq

and p2pxq respectively. It suffices to prove that F pp1pxqqc X F pp2pxqqc is non-empty. But
F pp1p2q “ F pp1q Y F pp2q, so F pp1p2qc “ F pp1q

c X F pp2q
c, which is an infinite set by (a),

hence non-empty.

(c) If ppxq vanishes on F pSqc for S containing a non-zero polynomial qpxq, then ppxq vanishes
on F pqqc. If ppxq were non-zero, then by (b), F pqqc X F ppqc ‰ ∅, a contradiction. ■

Remark. The condition that F be infinite is essential. For example, if F “ F2 “ t0, 1u,
the polynomial ppxq “ x2 ` x vanishes on F, but is not the zero polynomial, hence (c)
fails.

Let g be a finite-dimensional Lie algebra of dimension d over a field F. Note that,
as a vector space, it is isomorphic to Fd. Consider the characteristic polynomial of an
endomorphism ad a for some a P g:

detg pad a ´ λIq “ p´λq
d

` cd´1paqp´λq
d´1

` ¨ ¨ ¨ ` detgpad aq.

Note that cdpaq “ 1, hence this polynomial has degree d, and its constant term c0paq “

detgpad aq is a zero polynomial, since pad aqa “ ra, as “ 0, so that the determinant of the
operator ad a on g is 0.

Exercise 7.2. Show that cjpaq is a homogeneous polynomial on g of degree d ´ j.
(Since g – Fd as vector spaces, a polynomial ppvq on g is a polynomial ppx1, ¨ ¨ ¨ , xdq

where v “ x1e1 ` ¨ ¨ ¨ ` xded.)
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Definition 7.3. The smallest positive integer r, such that crpaq is a non-zero poly-
nomiial on g, is called the rank of g. The non-zero polynomial crpaq of degree d ´ r
is called the discriminant of the Lie algebra g. An element a P g is called regular if
crpaq ‰ 0. Note that 1 ď r ď d.

Theorem 7.2. Let g be a Lie algebra of dimension d and rank r, over a field F. Then

(a) r “ d if and only if the Lie algebra g is nilpotent.

(b) The set of regular elements coincides with g if and only if g is a nilpotent Lie
algebra.

(c) If g is not a nilpotent Lie algebra, then the set of regular elements is the com-
plement to a hypersurface, hence it is infinite if F is.

Proof. (a) r “ d means that detpad λIq “ p´λqd for all a P g. This holds if and only if
all the eigenvalues of ad a are 0, which happens if and only if ad a is a nilpotent operator
for all a P g. By Engel’s characterization theorem this happens if and only if g is a nilpotent
Lie algebra.

(b) By (a), g is a nilpotent Lie algebra if and only if detpad λIq “ p´λqd, i.e. crpaq “ cdpaq “

1, so all a P g are regular.

(c) If g is not a nilpotent Lie algebra, then r ă d, so that F pcrpxqqc is a complement to a
hypersurface, defined by a homogeneous polynomial crpxq of degree d´ r ą 0. By Theorem
7.1(a) the complement to a hypersurface is an infinite set if F is infinite. ■

Exercise 7.3.

(a) Show that the Jordan decomposition of ad a in glnpFq is given by

ad a “ pad asq ` pad anq,

where a “ as ` an is the Jordan decomposition of a P glnpFq.

(b) If λ1, ¨ ¨ ¨ , λn are all the eigenvalues of as, then λi ´ λj are all the eigenvalues of
ad as.

(c) ad as has the same eigenvalues as ad a.
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Exercise 7.4.

(a) rankpglnpFqq “ n.

(b) The discriminant of glnpFq is given by

cnpaq “
ź

i‰j

pλi ´ λjq,

where λi’s are all eigenvalues of a P glnpFq (over F), taken with their multiplicities.

(c) Show that the discriminant c2paq of g “ gl2pFq is equal to 4 det a ´ ptr aq2.

Bonus Problem. It follows from Exercise 7.4 that for n ˆ n matrix A over F the
function

ś

i‰jpλi ´ λjq, where the λi’s are all eigenvalues of A taken with their multi-

plicities, is a polynomial of degree n2 ´ n over F, in the entries of A. Find an explicit
formula for this polynomial (called the discriminant of the matrix A). The correspond-
ing hypersurface consists of the A, which have equal eigenvalues.
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Lecture 8

Cartan Subalgebras

Definition 8.1. Let g be a Lie algebra, and h a subalgebra of g. Then

Ngphq “ ta P g | ra, hs Ď hu

is a subalgebra of g, called the normalizer of h in g.

The fact that Ngphq is a subalgebra is immediate by Jacobi identity. Note also that
Ngphq is the maximal subalgebra of g, containing h as an ideal.

Bonus problem. Let G be an algebraic group, and H be an algebraic subgroup of
G. Let NGpHq “ tg P G | gHg´1 “ Hu be the normalizer of H in G. Prove that it is
an algebraic subgroup, whose Lie algebra is Ngphq, where g “ Lie G and h “ Lie H.

Lemma 8.1. Let g be a nilpotent Lie algebra and h Ĺ g a proper subalgebra. Then
h is a proper subalgebra of Ngphq.

Proof. Since g is a nilpotent Lie algebra, its central series has the form:

g “ g1 Ě g2 “ rg, gs Ě g3 “ rg, g2s Ě ¨ ¨ ¨ Ě gn “ 0,

for some positive integer n (note that g ‰ 0). Take j to be the maximal positive integer
such that gj Ĺ h. Clearly we have that 1 ă j ă n. But then, by the choice of j,

rgj, hs Ď h.

Hence gj Ď Ngphq, but gj Ĺ h. Therefore h ‰ Ngphq. ■

Definition 8.2. A Cartan subalgebra of a Lie algebra g is a subalgebra h, satisfying
the following two conditions:

(i) h is a nilpotent Lie algebra,

(ii) Ngphq “ h.

Corollary of Lemma 8.1. Any Cartan subalgebra of a Lie algebra g is a maximal
nilpotent subalgebra.

Exercise 8.1. Let g “ sl2pFq with char F ‰ 2. Let h “ F
ˆ

0 1
0 0

˙

. This is a maximal

nilpotent subalgebra, but not a Cartan subalgebra.
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The following simple, but important, theorem allows one to construct Cartan subalge-
bras.

Theorem 8.1. Let g Ď glnpFq be a subalgebra, containing a diagonal matrix a “
¨

˚

˝

a1 0
. . .

0 an

˛

‹

‚

with distinct ai’s. Then the subalgebra h of all diagonal matrices in g

is a Cartan subalgebra of g.

Proof. Since the subalgebra h is abelian, it is a nilpotent Lie algebra. It remains to check
that h coincides with its normalizer in g. Let b “

řn
i,j“1 bijEij P g, such that rb, hs Ă h. Here

Eij are the matrix units (1 at entry pi, jq and 0 otherwise). Then, in particular, ra, bs is a
diagonal matrix. But

ra, bs “

«

ÿ

k

akEkk,
ÿ

i,j

bijEij

ff

“
ÿ

i,j

pai ´ ajqbijEij,

which is a diagonal matrix only if bij “ 0 for i ‰ j. Hence ra, bs P h only if b P h. ■

Cartan’s Theorem. Let g be a finite-dimensional Lie algebra over an algebraically
closed field F. Let a P g be a regular element (which exists since F is infinite), and let

g “
à

αPF
gapαq (1)

be the generalized eigenspace decomposition of g with respect to ad a. Then h “ ga
p0q

is a Cartan subalgebra of g.

Proof. The proof uses the fact that any two non-empty Zariski open sets have a non-

empty intersection (Theorem 7.1(b)). Recall also that
”

ga
pαq
, ga

pβq

ı

Ď ga
pα`βq

, and, in particu-

lar, if α “ 0,

“

h, gapµq

‰

Ď gapµq. (2)

Let V “
À

α‰0 g
a
pαq

, then by (1) and (2) we have:

g “ h ‘ V (direct sum of vector spaces); rh, V s Ď V. (3)

Consider the following two subsets of h:

U “ th P h | ad h |h is not a nilpotent operatoru ,

R “ th P h | ad h |V is a non-singular operatoru .
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Both U and R are Zariski open subsets of h.

Now, we shall prove that h is a nilpotent Lie algebra. Suppose the contrary, then by
Engel’s characterization theorem, there exists h P h, such that ad h is not a nilpotent operator
on h. But then h P U , hence U ‰ ∅. Also a P R since all eigenvectors with zero eigenvalues
of ad a in g, lie in h, since a is a regular element of g. Hence R ‰ ∅.

Therefore, U X R ‰ ∅, and we take b P U X R.

Then ad b |h is not a nilpotent operator, and ad b |V is a non-singular operator. Hence,
by (3), gb

p0q
Ĺ h, which contradicts the choice of a as a regular element (since for regular

a, dim ga
p0q

is minimal among all a P g). This contradiction completes the proof that h is a
nilpotent Lie algebra.

Finally, we prove that Ngphq “ h. If b P Ngphq, so that rb, hs Ă h, we have that, in
particular, rb, as P h.

But since a P h and h is a nilpotent Lie algebra, then ad a |h is a nilpotent operator
on h. In particular, 0 “ pad aqN ra, bs “ pad aqN`1b for some positive integer N . Hence
b P ga

p0q
“ h, which completes the proof of the theorem. ■

Remark. The dimension of the Cartan subalgebra of g, constructed in the proof of
Cartan’s theorem equals rank g, by definitions.

Proposition 8.1. Let g be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic 0, and let h Ď g be a Cartan subalgebra. Consider the
generalized weight space decomposition of g with respect to h:

g “
à

λPh˚

gh
pλq
.

Then gh
p0q

“ h.

Proof. Since h is a nilpotent Lie algebra, ad h |h is a nilpotent operator for all h P h.
Hence h Ď gh

p0q
.

But by definition of gh
p0q
, ad h |gh

p0q

is a nilpotent operator for all h P h. Hence ad h |gh
p0q

{h

is nilpotent operator for all h P h. Therefore, by Engel’s theorem, there exists a non-zero
element b P gh

p0q
{h, which is annihilated by all ad h |gh

p0q
{h, h P h. Taking a preimage b P g of

b under the map gh
p0q

Ñ gh
p0q

{h, this means that rb, hs Ď h. Hence b P Ngphq, but b R h, which
contradicts the fact that h is a Cartan subalgebra. ■
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Corollary. Under the assumptions of Proposition 8.1, we have the generalized root
space decomposition

g “ h ‘
à

αPh˚

α‰0

gh
pαq
, where h “ gh

p0q
and

”

gh
pαq
, gh

pβq

ı

Ď gh
pα`βq

. (4)

Next, we use the generalized root space decomposition to classify all Lie algebras of
dimension 3 over an algebraically closed field F of characteristic 0.

We know that for 3-dimensional g, rank g “ 3, 2, or 1, and rank g “ 3 if and only if g is
a nilpotent Lie algebra.

• If rank g “ 3: then by Exercise 6.1, g » ab3 or heis3.

• If rank g “ 2: in this case dim h “ 2, and since h is a nilpotent Lie algebra, it must be
abelian (the only non-abelian 2-dimensional Lie algebra is not nilpotent). Hence the
generalized root space decomposition (4) in this case is

g “ h ‘ Fc, where c ‰ 0 and rh, cs Ď Fc.

Since h “ Ngphq, then rh, cs ‰ 0. Also Fc “ gh
pλq

, where λ is a non-zero linear function on

h “ Fa‘Fb, ra, bs “ 0. We can choose the basis a, b of h, such that λpaq “ 1, λpbq “ ´1,
which means that

ra, cs “ c, rb, cs “ ´c, ra, bs “ 0.

This 3-dimensional Lie algebra is isomorphic to the Lie algebra b2pFq of upper-triangular
2-by-2 matrices by letting

a “

ˆ

1 0
0 0

˙

, b “

ˆ

0 0
0 1

˙

, c “

ˆ

0 1
0 0

˙

.

• If rank g “ 1: in this case g “ Fh ‘ V , where dimV “ 2, rh, V s Ď V .
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Exercise 8.2. Show that in the last case g is isomorphic to one of the following Lie
algebras with basis h, a, b:

(i) rh, as “ a, rh, bs “ a ` b, ra, bs “ 0,

(ii) rh, as “ a, rh, bs “ λb, where λ P Fz t0u , ra, bs “ 0,

(iii) rh, as “ a, rh, bs “ ´b, ra, bs “ h.

Exercise 8.3. Show that all Lie algebras from (i) and (ii) are solvable and find
conditions of their isomorphism. Show that (iii) is isomorphic to sl2pFq, and that it is
not solvable.
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Chevalley Conjugacy Theorem
Lecture 9

Chevalley Conjugacy Theorem

In the last lecture we defined Cartan subalgebras and gave a construction, using regular
elements. In this lecture, we will show that this construction gives all Cartan subalgebras
by proving the Chevalley conjugacy theorem on conjugacy of Cartan subalgebras.

To state the theorem, we need the notion of the exponential of a nilpotent operator.

Definition 9.1. Let A be a nilpotent operator on a vector space V over a field F of
characteristic 0. Define

eA “ I ` A `
1

2!
A2

`
1

3!
A3

` ¨ ¨ ¨

(as A is nilpotent, this is a finite sum).

Exercise 9.1. If A and B are commuting nilpotent operators on a vector space over
a field of characteristic 0, so that A ` B is nilpotent as well, show that

eA`B
“ eAeB.

Deduce that eAe´A “ I, hence eA is an invertible operator.

Exercise 9.2. Let g be an arbitrary (not necessarily Lie) algebra over a field F
of characteristic 0, and let D be a derivation of the algebra g. Show that eD is an
automorphism of the algebra g, provided that D is a nilpotent operator.

We are now ready to state the main result of the lecture.

Chevalley Theorem. Let g be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic 0. Denote by G the group of automorphisms of the Lie
algebra g, generated by automorphisms of the form ead a, for a P g such that ad a is a
nilpotent operator on g. Then any two Cartan subalgebras h1 and h2 of g are conjugate
by G, i.e. there exists σ P G, such that σph1q “ h2.

Before proving this theorem, we give a corollary that addresses the question with which
we opened the lecture.

Corollary. Let g and F be as in the Chevalley Theorem. Then any Cartan subalgebra
h of g is of the form ga

p0q
for some regular element a P g, and, in particular, rank

g “ dim h. Also, all such subalgebras ga
p0q

are isomorphic.

Proof. Fix a regular element a P g. By the Chevalley theorem, any Cartan subalgebra h

of g is conjugate to ga
p0q
, say, h “ σ

´

ga
p0q

¯

for some σ P G. Hence dim h “ dim ga
p0q

“ rank g.
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Next, because σ is an automorphism of the Lie algebra g, it is easy to check that

σ
`

gap0q

˘

“ g
σpaq

p0q
,

and that σpaq is a regular element of g. Finally the last claim is immediate since conjugate
subalgebras are isomorphic. ■

In order to prove Chevalley’s theorem, we need two lemmas

Lemma 9.1. Let h Ď g be a Cartan subalgebra of g and suppose there is a regular
element a P g, which is in h. Then h “ ga

p0q
.

Proof. The Lie algebra h is nilpotent since it is a Cartan subalgebra. Hence ad a |h is a
nilpotent operator, and so h Ď ga

p0q
. But, being a Cartan subalgebra, ga

p0q
is a nilpotent

Lie algebra, and, being a Cartan subalgebra, h is a maximal nilpotent subalgebra of g
(by Corollary of Lemma 8.1). Hence h “ ga

p0q
.

The next lemma is a special case of a general result from algebraic geometry.

Lemma 9.2. Let F be an algebraically closed field of characteristic 0. Let f : Fm Ñ Fm

be a polynomial map, i.e.

fpx1, ¨ ¨ ¨ , xmq “ pf1px1, ¨ ¨ ¨ , xmq, ¨ ¨ ¨ , fmpx1, ¨ ¨ ¨ , xmqq ,

where the fi’s are polynomials. Suppose that for some a P Fm the linear map

pdfq |x“a: Fm
Ñ Fm

is non-singular. Then fpFmq contains a non-empty Zariski open subset of Fm.

Exercise 9.3. Recall that

pdfq |x“a pbq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpa ` tbq.

Show that pdfq |x“a is a linear operator on Fm with the matrix

ˆ

Bfi
Bxj

paq

˙m

i,j“1

.
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Bonus Problem. Prove Lemma 9.2 by the following steps, using Exercise 9.3.

1. If F is a non-zero polynomial in m indeterminates, such that F pf1, ¨ ¨ ¨ , fmq is

identically zero, then det
´

Bfi
Bxj

¯

is identically 0.

2. Given algebraically independent polynomials y1, ¨ ¨ ¨ , ym in Frx1, ¨ ¨ ¨ , xms, show
that the field extension Fpx1, ¨ ¨ ¨ , xmq Ě Fpy1, ¨ ¨ ¨ , ymq is finite, i.e. each xi
satisfies a non-zero polynomial equation over Fpy1, ¨ ¨ ¨ , ymq.

3. For each i “ 1, ¨ ¨ ¨ ,m, take a polynomial equation satisfied by xi over
Fpf1, ¨ ¨ ¨ , fmq, clear the denominators to get a polynomial over Frf1, ¨ ¨ ¨ , fms,
and let pipf1, ¨ ¨ ¨ , fmq be the leading coefficient of this polynomial. Show that
the set of points

ty P Fm
| pipyq ‰ 0 for i “ 1, ¨ ¨ ¨ ,mu

is contained in fpFmq.

Example 9.1. Consider the map f : R Ñ R, given by fpxq “ x2. Then fpRq “

Rě0, which doesn’t contain a non-empty Zariski open subset (which is either R or the
complement to a finite set). Thus, the algebraic closure assumption in Lemma 9.2 is
essential.

However, fpRq contains an open subset in the metric topology. In fact, for each a P R
with pdfq |x“a non-singular, the image of f contains an open neighborhood of fpaq

in the metric topology for any smooth map f : Rm Ñ Rm by the Inverse function
theorem.

Proof of Chevalley’s Theorem. Let h be any Cartan subalgebra of g. Since h is a nilpotent
Lie algebra, we have the corresponding generalized root space decomposition

g “
à

αPh˚

gh
pαq
, where h “ gh

p0q
,
”

gh
pαq
, gh

pβq

ı

Ď gh
pα`βq

. (1)

(Recall that h “ gh
p0q

by Proposition 8.1). Then for any x P gh
pαq

, with α ‰ 0, the operator

ad x is nilpotent on g. Indeed, by (1), pad xqNgh
pβq

Ď gh
pβ`Nαq

. As α ‰ 0 and char F “ 0,

tβ ` Nα | N P Zą0u is an infinite set of distinct linear functions on h. But there are only
finitely many of them, for which the attached generalized weight space is non-zero. Hence
pad xqNgh

pβq
“ 0 for N big enough.

Next, we show that there is a Zariski open subset of g, consisting of images of elements
of h under the action of the group G. Let ∆ “ tα P h˚u be the (finite) set of non-zero linear
functions on h, such that gh

pαq
‰ 0, and let tbju

m
j“1 be a basis of V “

À

αP∆ gh
pαq

, compatible
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with its decomposition. Then any element of g has a unique expression of the form

h `

m
ÿ

j“1

xjbj, where h P h, xj P F.

Define a map f : g Ñ g by

f

˜

h `

m
ÿ

j“1

xjbj

¸

“ ex1adpb1qex2adpb2q
¨ ¨ ¨ exmadpbmq

phq.

The map f is polynomial since all operators ad bj are nilpotent on g.

Let us compute pdfq |x“a for a P h, applied to b ` h, where h P h, b “
ř

xjbj:

pdfq |x“a pb ` hq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

f pa ` tpb ` hqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

etx1adpb1qetx2adpb2q
¨ ¨ ¨ etxmadpbmq

pa ` thq.

To compute this derivative, it suffices to expand the function that we are differentiating to
the first order in t. We find

pdfq |x“a pb ` hq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

m
ź

j“1

pIg ` txjadpbjqq pa ` thqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˜

a ` th `

m
ÿ

j“1

txj rbj, as

¸

“ h `

m
ÿ

j“1

xj rbj, as “ h ` rb, as .

Thus, the linear operator pdfq |x“a restricts to the identity operator on h, and to ´adpaq on
V . On each subspace gh

pαq
of V the only eigenvalue of ´adpaq is ´αpaq.

Since each subset th P h | αphq “ 0u is Zariski closed in h, their intersection

č

αP∆

ta P h | αpaq “ 0u

is Zariski closed. Hence its complement in h is non-empty. Thus, we can find a P h such that
αpaq ‰ 0 for each α P ∆. But then pdfq |x“a is an invertible operator on each gh

pαq
, α P ∆,

so pdfq |x“a is an invertible linear operator on g.

Then, by Lemma 9.2, the image of the map f contains a non-empty Zariski open subset
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in g, which we denote by Ωh. Recall that, by definition, the image of f (and thus the subset
Ωh) consists of points σphq for some σ P G, all h P h.

The above arguments hold for any Cartan subalgebra of g. Taking arbitrary Cartan
subalgebras h1 and h2 of g, we obtain the corresponding non-empty Zariski open subsets Ωh1

and Ωh2 . Let Ωr be the subset of all regular elements of g; this is also a non-empty Zariski
open subset. The intersection Ωh1 X Ωh2 X Ωr is then non-empty as well. Rephrasing this,
there exists a regular element x P g, elements h1 P h1, h2 P h2, and automorphisms σ1, σ2 P G
of g, such that

σ1ph1q “ x “ σ2ph2q.

Since x is a regular element and σ1 is an automorphism of g, the element h1 “ σ´1
1 pxq is

regular as well. Hence, by Lemma 9.1, h1 “ gh1

p0q
. Similarly, h2 “ gh2

p0q
.

The automorphism σ “ σ´1
2 σ1 P G maps h1 to h2, and so

σph1q “ σ
´

gh1

p0q

¯

“ g
σph1q

p0q
“ gh2

p0q
“ h2.

This finishes the proof of Chevalley’s Theorem. ■

Exercise 9.4. Let g “ sl2pRq. Show that h1 “ R
ˆ

1 0
0 ´1

˙

and h2 “ R
ˆ

0 1
´1 0

˙

are

Cartan subalgebras, but they are not conjugate by any automorphism of g.

Bonus Problem. Any Cartan subalgebra of sl2pRq is conjugate by its automorphism
to one of these two.
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Trace Form and Cartan’s Criterion
Lecture 10

Trace Form and Cartan’s Criterion

Definition 10.1. Let g be a Lie algebra over a field F and let π be a representation
of g in a finite-dimensional vector space V over F. The associated trace form is a
bilinear form on g given by the following formula:

pa, bqV “ trV πpaqπpbq.

Proposition 10.1.

(a) The trace form is symmetric, i.e.

pa, bqV “ pb, aqV .

(b) The trace form is invariant , i.e.

pra, bs, cqV “ pa, rb, csqV . (1)

Proof. (a) follows from the fact that tr AB “ tr BA. For (b), we compute

pra, bs, cqV “ trV π pra, bsq πpcq

“ trV pπpaqπpbqπpcq ´ πpbqπpaqπpcqq

“ trV pπpaqπpbqπpcq ´ πpaqπpcqπpbqq

“ trV πpaqπprb, csq “ pa, rb, csqV .

Exercise 10.1. As above, a bilinear form p‚, ‚q on a Lie algebra g is called invariant
if pra, bs, cq “ pa, rb, csq. Check that invariance of p‚, ‚q means that all operators ad a
are skew-adjoint with respect to this form, i.e.

ppad aqb, cq “ ´ pb, pad aqcq .

Exercise 10.2. Let g be a Lie algebra over a field F of characteristic 0, and let p‚, ‚q

be an invariant bilinear form on g. Let D be a derivation of g, which is a nilpotent
operator, skew-adjoint with respect to p‚, ‚q. Then

`

eDa, eDb
˘

“ pa, bq for all a, b P g.

In particular, pgpaq, gpbqq “ pa, bq for all g P G from Chevalley’s Theorem. This exercise
explains why (1) is called the invariance property of the trace form.
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Definition 10.2. If dim g ă 8, then the trace form of the adjoint representation is
called the Killing form:

κpa, bq “ trgpad aqpad bq, a, b P g.

Exercise 10.3.

(a) Show that the trace form of g “ glnpFq (resp. of g “ slnpFq), associated to the
tautological representation of g is non-degenerate (resp. if char F ∤ n).

(b) Show that the Killing form on slnpFq is non-degenerate, provided that char F ∤ 2n.
Find the radical of the Killing form on glnpFq and slnpFq.

Cartan’s Lemma. Let g be a finite-dimensional Lie algebra over an algebraically
closed field F of characteristic 0 (so that F Ą Q). Let π be a representation of g
in a finite-dimensional vector space V . Let h be a Cartan subalgebra of g, and con-
sider the generalized weight space decomposition of V and the generalized root space
decomposition of g with respect to h (see Theorem 6.2 and 6.3):

V “
à

λPh˚

Vpλq, (2)

g “
à

αPh˚

gpαq,
“

gpαq, gpβq

‰

Ď gpα`βq, gp0q “ h, (3)

π
`

gpαq

˘

Vpλq Ď Vpλ`αq. (4)

Pick e P gpαq, f P gp´αq, so that h :“ re, f s P gp0q “ h. Suppose that Vpλq ‰ 0. Then

λphq “ r αphq, (5)

where r P Q is independent of h.

Proof. Let U “
À

nPZ Vpλ`nαq Ď V . Then dimU ă 8, and U is πpeq- ,πpfq- and πphq-
invariant, due to (4). Since πphq “ rπpeq, πpfqs, trU πphq “ 0, hence we have:

0 “ trU πphq “
ÿ

nPZ

trVpλ`nαq
πphq, (6)

and since πphq on Vpλ`nαq has in some basis an upper triangular matrix with pλ` nαqphq on
the diagonal, (6) can be rewritten as

λphq
ÿ

nPZ

dimVpλ`nαq “ ´αphq
ÿ

nPZ

n dimVpλ`nαq. (7)
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Since Vpλq ‰ 0, (5) follows. ■

Corollary of Cartan’s Lemma. Let V be a finite-dimensional vector space over an
algebraically closed field of characteristic 0. If g Ď glV is a non-zero subalgebra, such
that rg, gs “ g, then pa, aqV ‰ 0 for some a P g.

Proof. Since rg, gs “ g, due to the generalized root space decomposition (3), we have

h “
ÿ

αPh˚

“

gpαq, g´α

‰

. (8)

We will prove that ph, hqV ‰ 0 for some h P h. Suppose the contrary. Then we have for
hα P

“

gpαq, g´α

‰

:

0 “ phα, hαqV “ trV πphαq
2

“
ÿ

λPh˚

trVpλq
πphαq

2
“

ÿ

λPh˚

λphαq
2 dimVpλq. (9)

By Cartan’s Lemma we have

λphαq “ rα,λαphαq for some rα,λ P Q, independent of hα. (10)

Substituting this in (9), we obtain

0 “

¨

˝

ÿ

λ: Vpλq‰0

r2α,λ dimVpλq

˛

‚αphαq
2. (11)

It follows that λphαq “ 0. Indeed, in the contrary case, by (10), rα,λ ‰ 0 and αphαq ‰ 0,
which contradicts (11).

Since, by (8), h is spanned by all hα’s, it follows that λ “ 0, hence V “ Vp0q.

Since π
`

gpαq

˘

V “ π
`

gpαq

˘

Vp0q Ď Vpαq “ 0 if α ‰ 0, it follows that gpαq “ 0 for all α ‰ 0.
Hence g “ h is a nilpotent Lie algebra, which contradicts our assumption that rg, gs “ g. ■

Cartan’s Criterion. Let g be a subalgebra of glV , where V is a finite-dimensional
vector space over an algebraically closed field of characteristic 0. Then the following
properties of g are equivalent:

(a) pg, rg, gsqV “ 0, i.e. pa, bqV “ 0 for all a P g, b P rg, gs,

(b) pa, aqV “ 0 for all a P rg, gs,

(c) g is a solvable Lie algebra.
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Proof. paq ñ pbq is obvious. pcq ñ paq follows from Lie’s Thorem, since in some basis of V
all matrices of elements of g are upper triangular, hence of that of rg, gs are strictly upper
triangular, and so ra, bsV “ 0 if a P g, b P rg, gs.

Finally, we prove the nontrivial part that pbq ñ pcq. Suppose that pa, aqV “ 0 for all
a P rg, gs, but g is not a solvable Lie algebra. Then the derived series of g stabilizes at gpnq:

“

gpnq, gpnq
‰

“ gpnq
‰ 0

for some n. By the Corollary to Cartan’s Lemma, pa, aqV ‰ 0 for some a P gpnq, which
contradicts (b). ■

Corollary of Cartan’s Criterion. A finite-dimensional Lie algebra g over an alge-
braically closed field of characteristic 0 is solvable if and only if κ pg, rg, gsq “ 0.

Proof. Consider the adjoint representation

ad : g Ñ glg.

Its kernel is Zpgq, hence g is solvable if and only if ad g Ă glg is a solvable subalgebra. But,
by Cartan’s criterion applied to the subalgebra ad g in glg, ad g is solvable if and only if
κ pg, rg, gsq “ 0. ■

Exercise 10.4. Consider the following 4-dimensional solvable Lie algebra D “ heis3`

Fd, where heis3 “ Fp ` Fq ` Fc, with brackets

rp, qs “ c, rc, ps “ rc, qs “ 0,

rd, ps “ p, rd, qs “ ´q, rd, cs “ 0.

Define on D the bilinear form

pp, qq “ pc, dq “ 1, and the rest are 0.

Show that D is a solvable Lie algebra, p‚, ‚q is a non-degenerate symmetric invariant
bilinear form on D, but pD, rD,Dsq ‰ 0, so Cartan’s criterion fails for this bilinear
form. (Hence it is not a trace form on some finite-dimensional representation of D).

One often can remove the condition that F is algebraically closed by the following trick.
Let F Ě F be the algebraic closure of F. Given a Lie algebra g over F, let g “ F bF g. In
other words, choosing a basis e1, e2, ¨ ¨ ¨ of g over F, so that g “

À

i Fei, let g “
À

i Fei,
which is a Lie algebra over F.
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Exercise 10.5.

(a) g is solvable (resp. nilpotent) if and only if g is.

(b) Derive Cartan’s criterion and its Corollary for char F “ 0, but not necessarily
F “ F.

(c) Show that rg, gs is nilpotent if g is solvable over any F of characteristic 0.

(d) ga
p0q

is a Cartan subalgebra for every regular element a P g, for any field F.

(e) Prove Proposition 5.1 for any field F of characteristic 0.
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The Radical and Semisimple Lie AlgebrasLecture 11

The Radical and Semisimple Lie Algebras

Exercise 11.1. Let g be a Lie algebra. Show that

(a) If a, b Ď g are ideals, then a ` b and a X b are ideals; if, moreover, a and b are
solvable Lie algebras, then a ` b and a X b are solvable.

(b) If a Ď g is an ideal and b Ď g is a subalgebra, then a ` b is a subalgebra.

Definition 11.1. A radical Rpgq of a finite-dimensional Lie algebra g is a solvable
ideal in g of maximal dimension.

Proposition 11.1. Rpgq contains all solvable ideals of g. Consequently Rpgq is the
sum of all solvable ideals of g and therefore it is unique.

Proof. If a is a solvable ideal of g, then a`Rpgq is again a solvable ideal, by Exercise 11.1(a).
Since Rpgq has maximal dimension among solvable ideals, we conclude that a`Rpgq “ Rpgq,
hence a Ď Rpgq. Therefore, Rpgq is the sum of all solvable ideals, hence it is unique. ■

Definition 11.2. A finite-dimensional Lie algebra is called semisimple if it is non-
zero and its radical is zero.

Proposition 11.2. A non-zero finite-dimensional Lie algebra g is semisimple if and
only if either of the following two conditions holds:

(i) any solvable ideal of g is zero;

(ii) any abelian ideal of g is zero.

Proof. (i) is obviously equivalent to semisimplicity of g, and (i) ñ (ii) is obvious as well.
Suppose now that g contains a non-zero solvable ideal r. Then for some k ě 1 we have the
derived series for r:

r “ rp0q
Ľ rp1q

Ľ rp2q
Ľ ¨ ¨ ¨ Ľ rpkq

“ 0,

hence rpk´1q is a non-zero abelian ideal of g. Hence (ii) ñ (i). ■
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Remark 11.1. Let g be a finite-dimensional Lie algebra over a field F, and Rpgq its
radical. Then s :“ g{Rpgq is a semisimple Lie algebra.

Indeed, suppose the contrary: s contains a non-zero solvable ideal r, then its preimage
r̃ in g contains Rpgq properly, so that r̃{Rpgq « r, which is solvable. Hence r̃ is a larger
solvable ideal than Rpgq, a contradiction.

So an arbitrary finite-dimensional Lie algebra g ‘reduces’ to a solvable Lie algebra Rpgq

and a semisimple Lie algebra s “ g{Rpgq.

In the case char F “ 0 a stronger result holds:

Levi decomposition theorem . If g is a finite-dimensional Lie algebra over a field
of characteristic 0, then there exists a semisimple subalgebra s Ď g, complementary to
Rpgq, i.e.

g “ s ‘ Rpgq (direct sum as vector spaces). (1)

We shall prove this theorem later in the course after developing a structure theory of
semisimple Lie algebras.

The decomposition (1) is a special case of a semidirect product.

Definition 11.3. A decomposition g “ h ‘ r, which is a direct sum of subspaces h
and r, where h is a subalgebra and r is an ideal of g, is called a semi-direct product
of h and r, and it is denoted by

g “ h ˙ r.

The special case when h is an ideal too, corresponds to the direct product g “ h ˆ r.

Note that the open end of ˙ goes on the side of the ideal. When both are ideals, we use
ˆ (or ‘), and we have direct product (or sum) of ideals.
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Exercise 11.2. Let h and r be Lie algebras and let γ : h Ñ Derprq be a Lie algebra
homomorphism. Let g “ h ‘ r be the direct sum of vector spaces, and extend the
bracket on h and on r to the whole g by letting

rh, rs “ ´ rr, hs “ γphqprq for h P h, r P r.

Show that this provides g with a Lie algebra structure, denoted by g “ h
γ
˙ r. Show

that any semidirect product of Lie algebras is obtained in this way. Finally, show that
g “ h ˆ r is the direct product of Lie algebras if and only if γ “ 0.

Cartan-Jacobson Theorem. Let g be a subalgebra of glV , where V is a finite-
dimensional vector space over an algebraically closed field of characteristic 0. Suppose
that V is irreducible with respect to g, i.e. any g-invariant subspace of V is either 0
or V . Then one of the two possibilities holds:

1. g is a semisimple Lie algebra,

2. g “ pg X slV q ‘ FIV and g X slV is semisimple (hence Rpgq “ FIV ).

Proof. If g is not semisimple, then Rpgq is a non-zero solvable ideal of g. By Lie’s Theorem,
there exists a linear function λ on Rpgq, such that the weight space Vλ is non-zero. By Lie’s
Lemma, Vλ is g-invariant. Hence, by irreducibility, Vλ “ V .

Hence a “ λpaqIV for all a P Rpgq, so Rpgq “ FIV . Hence pg X slV q X Rpgq “ 0, which
proves we have case 2, as g X slV is semisimple since it is the complement of the radical. ■

Exercise 11.3. Let V be a finite-dimensional vector space over an algebraically closed
field of characteristic 0. Show that glV and slV are irreducible. Deduce that slV is a
semisimple Lie algebra.

Exercise 11.4. Let V be a finite-dimensional vector space with a symmetric bilinear
form p‚, ‚q. Let U Ď V be a subspace, such that the restriction p‚, ‚q |UˆU is non-
degenerate. Denote UK “ tv P V | pv, Uq “ 0u. Then

V “ U ‘ UK.
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Proposition 11.3. Let g be a finite-dimensional Lie algebra, and p‚, ‚q a symmetric
invariant bilinear form on g. Then

(a) If a Ď g is an ideal, then aK is also an ideal.

(b) If, moreover, p‚, ‚q |aˆa is non-degenerate, then g “ a ‘ aK, a direct sum of Lie
algebras.

Proof. (a) v P aK means that pv, aq “ 0. If b P g, then prv, bs, aq “ pv, rb, asq “ 0, since the
bilinear form is invariant and a is an ideal. Hence aK is an ideal of g. (b) follows from (a)
and Exercise 11.4. ■

Theorem 11.1. Let g be a finite-dimensional Lie algebra over a field of characteristic
0. Then the Killing form κ on g is non-degenerate if and only if g is semisimple.
Furthermore, if g is semisimple and a Ď g is an ideal, then κ |aˆa is also non-degenerate
and coincides with the Killing form of a.

Proof. Suppose that the Killing form κ on g is non-degenerate. If a Ď g is an abelian ideal,
and x P g, y P a, then pad xqpad yqz “ rx, ry, zss P a for all z P g. It follows that for a basis
e1, ¨ ¨ ¨ , ek of a, contained in the basis e1, ¨ ¨ ¨ , ek, ek`1, ¨ ¨ ¨ , en of g the matrix of pad xqpad yq

is of the form

ˆ

0 ˚

0 0

˙

. Since the trace of this matrix is 0, we deduce that κpg, aq “ 0, and

since κ is non-degenerate, we obtain that a “ 0. Hence g is semisimple.

Conversely, let g be a semisimple Lie algebra. Let a be an ideal of g. If κ |aˆa is
degenerate, so that b “ a X aK ‰ 0, then b is a non-zero ideal of g, such that κpb, bq “ 0 for
all b P b. By Cartan’s Criterion (which holds if char F “ 0), it follows that b is a non-zero
solvable ideal of g, which contradicts semisimplicity of g. Thus, if g is semisimple, the Killing
form is non-degenerate, by taking a “ g, and also κ |aˆa is non-degenerate.

Hence, by Proposition 11.3(b), g is a direct sum of a and aK. Therefore the Killing form
of a coincides with the Killing form of g, restricted to a. ■

Definition 11.4. A Lie algebra g is called simple if its only ideals are 0 and g, and
g is not abelian.

Corollary 11.1 Any semisimple finite-dimensional Lie algebra over a field of charac-
teristic 0 is isomorphic to a direct sum of simple Lie algebras. Conversely, a direct sum
of simple Lie algebras is semisimple.

Proof. If g is semisimple, but not simple, and if a is a proper ideal, then, by Theorem 11.1,
the Killing form, restricted to a is a non-degenerate, hence g is isomorphic to the direct sum
of a and aK, both semisimple and having smaller dimension than g. After finitely many steps
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we obtain a decomposition of g in a direct sum of simple Lie algebras.

The converse statement is obvious. ■

Exercise 11.5. Let g be a simple Lie algebra over a field F of characteristic p. Let
Ap “ Frxs{xpFrxs. Show that

rg “ F
d

dx
˙ pAp bF gq

is a semisimple Lie algebra, which is not isomorphic to a direct sum of non-zero simple
ideals. Actually the only proper non-zero ideal of rg is Ap b g. (If A is a commutative
associative algebra and g is a Lie algebra, both over a field F, then A bF g is a Lie
algebra with bracket rf b a, g b bs “ fg b ra, bs, a, b P g, f, g P A).

Theorem 11.2. Let g Ď glV be a semisimple subalgebra, where V is a finite-
dimensional vector space over a field F of characteristic 0. Then the trace form p‚, ‚qV

is non-degenerate on V .

Proof. Let g0 Ď g be the kernel of p‚, ‚qV . Since, by Corollary 11.1, g0 is semisimple,
g0 “ rg0, g0s and pa, aqV “ 0 for all a P g0. It follows from Corollary of Cartan’s lemma in
Lecture 10 that g0 “ 0. ■
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Lecture 12

Structure Theory of Semisimple Lie Algebras I

In this lecture and a few that follow, we will study the structure of finite-dimensional
semisimple Lie algebras over an algebraically closed field F of characteristic 0 with the aim
of classifying them. This will amount to a detailed knowledge of the generalized root space
decomposition. The first step is to use the Killing form to understand Cartan subalgebras
and their actions under the adjoint representation.

Unless otherwise stated, we will assume throughout, that our base field F is algebraically
closed of characteristic 0.

Exercise 12.1. Show that the Lie algebra slnpFq is simple for n ě 2, iff char F doesn’t
divide 2n, with no other assumptions on F.

Definition 12.1. Let g be a Lie algebra over an arbitrary field F. An abstract
Jordan decomposition of an element a P g is a decomposition of the form

a “ as ` an,

where

(a) ad as is a diagonalizable (semisimple) operator on g,

(b) ad an is a nilpotent operator on g,

(c) ras, ans “ 0.

An element a is called semisimple (resp. nilpotent) if ad a is a semisimple (resp.
nilpotent) operator on g.

Exercise 12.2. Abstract Jordan decomposition in a finite-dimensional Lie algebra g
is unique, when it exists, if and only if its center Zpgq “ 0.

Theorem 12.1. Let g be a finite-dimensional semisimple Lie algebra over F. Then

(a) Zpgq “ 0.

(b) All derivations of g are inner.

(c) Any a P g admits a unique Jordan decomposition.

Proof. (a) holds since Zpgq is an abelian ideal of g.

(b) By (a) the homomorphism ad : g Ñ Der g is an embedding g Ď Der g. Consider the
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trace form

pd1, d2q “ trg d1d2, d1, d2 P Der g.

Its restriction to g is the Killing form, hence non-degenerate since g is semisimple, by The-
orem 11.1. Hence, by Proposition 11.2 from Lecture 11, we have:

Der g “ pad gq ‘ pad gq
K (direct sum of ideals).

Take D P pad gqK. For a P g we have rD, ad as “ 0. Recall from Exercise 2.1 that
rD, ad as “ ad Dpaq. Hence Dpaq P Zpgq, and, by (a), Dpaq “ 0 for all a P g. Therefore
Der g “ ad g.

(c): Fix a P g, and consider the classical Jordan decomposition

ad a “ As ` An,

where As is diagonalizable on g, As is nilpotent, and rAs, Ans “ 0. Consider the generalized
eigenspace decomposition of g with respect to ad a:

g “
à

λPF
gapλq, where As |ga

pλq
“ λI,

“

gapλq, g
a
pµq

‰

Ď gapλ`µq.

First, we show that As is a derivation of g. Indeed, for x P ga
pλq
, y P ga

pµq
we have:

As prx, ysq “ pλ ` µqrx, ys “ rλx, ys ` rx, µys

“ rAsx, ys ` rx,Asys ùñ As P Der g.

By part (b), As “ ad as for some as P g. Letting an “ a ´ as, we have ad an “ An. It
remains to check that ras, ans “ 0. Since

ad pras, ansq “ rad as, ad ans “ rAs, Ans “ 0,

part (a) gives the result. ■
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Theorem 12.2. Let g be a semisimple Lie algebra over F, let h Ď g be a Cartan
subalgebra, and consider the generalized root space decomposition of g with respect
to h:

g “
à

αPh˚

gpαq, h “ gp0q,
“

gpαq, gpβq

‰

Ď gpα`βq.

Let κ be the Killing form on g. Then

(a) κpgpαq, gpβqq “ 0 if α ` β ‰ 0.

(b) κ |gpαqˆgp´αq
is non-degenerate. In particular, κ |hˆh is non-degenerate.

(c) h is an abelian subalgebra of g.

(d) h consists of semisimple elements, i.e. each ad h for h P h is diagonalizable.
Consequently,

gpαq “ gα “ ta P g | rh, as “ αphqa, for all h P hu

is a root space.

Proof. (a) If a P gpαq, b P gpβq, then

ppad aqpad bqq
N gpγq Ď gpγ`Npα`βqq.

Since the RHS is 0 for N " 0 if α ` β ‰ 0, we conclude that the operator pad aqpad bq is
nilpotent, hence its trace on g is 0.

(b) Since the Killing form κ is non-degenerate on g by semisimplicity of g, and κ
`

gpαq, gpβq

˘

“

0 if α ` β ‰ 0, by (a), necessarily κ |gpαqˆgp´αq
is non-degenerate.

(c) Note that κ |hˆh is the trace form on h under the adjoint representation of it on g.
Since, being nilpotent, h is a solvable Lie algebra, by (the easy part of) Cartan’s Criterion,
we find that

0 “ trg pad h, rad h, ad hsq “ κ ph, rh, hsq .

But by part (b), κ |hˆh is non-degenerate. Hence rh, hs “ 0, so h is an abelian Lie algebra.

(d) Let h P h. By Theorem 12.1(c), h has abstract Jordan decomposition h “ hs ` hn,
where ad hs is diagonalizable, ad hn is a nilpotent operator, and rhs, hns “ 0.

By part (c), rh, hs “ 0. Hence for any h1 P h we have: 0 “ ad rh1, hs “ rad h1, ad hs.
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Hence, by Lemma 6.1, we know that rad h1, pad hqss “ 0, yielding

0 “ rad h1, pad hqss “ rad h1, ad hss “ ad prh1, hssq .

Since Zpgq “ 0, it follows that rh1, hss “ 0 for all h1 P h. Since h is a Cartan subalgebra, we
conclude that hs P h.

It remains to show that hn “ 0. Recall that hn “ h ´ hs, hence hn P h.

Since h is a solvable Lie algebra, Lie’s Theorem implies that, in some basis of g, all
matrices of elements of ad h are upper triangular. As ad hn is a nilpotent operator, its matrix
is strictly upper triangular. Hence κph, hnq “ 0. Since, by (b), κ |hˆh is non-degenerate, we
conclude that hn “ 0, implying that h “ hs is a semisimple element. ■

Thus, for a semisimple Lie algebra g the generalized root space decomposition is actually
a root space decomposition:

g “ h ‘

˜

à

αP∆

gα

¸

, gα “ ta P g | rh, as “ αphqa for all h P hu ,

where ∆ “ tα P h˚ | α ‰ 0, gα ‰ 0u.

Definition 12.2. Elements α P ∆ are called roots of g, and gα are called the
corresponding root spaces .

Next, we’ll be gathering information about roots of g and the root spaces gα.

We have a canonical linear map of vector spaces

ν : h Ñ h˚, h ÞÑ κph, ‚q.

Since the Killing form κ |hˆh is non-degenerate by Theorem 12.2(b), ν is injective, and since
dim h “ dim h˚ ă 8, ν is a vector space isomorphism.

Definition 12.3. The Killing form κ on h induces a non-degenerate bilinear form on
h˚, using the isomorphism ν:

κpγ, γ1
q :“ κ

`

ν´1
pγq, ν´1

pγ1
q
˘

, for γ, γ1
P h˚.

Note that κpνphq, νph1qq “ νphqph1q “ νph1qphq, for h, h1 P h.
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Theorem 12.3.

(a) If α P ∆, e P gα, f P g´α, then

re, f s “ κpe, fqν´1
pαq.

(b) If α P ∆, then κpα, αq ‰ 0.

Proof. (a) We know that re, f s P h. Since, by Theorem 12.2(b), κ |hˆh is non-degenerate, it
is enough to show that κ pre, f s ´ κpe, fqν´1pαq, hq “ 0 for all h P h. We compute:

LHS “ κpre, f s, hq ´ κpe, fqκpν´1
pαq, hq

“ κpe, rf, hsq ´ κpe, fqαphq by invariance of κ.

But f P g´α, hence rf, hs “ αphqf , hence

RHS “ αphqκpe, fq ´ κpe, fqαphq “ 0,

proving (a).

(b) Since, by Theorem 12.2(b), κ |gαˆg´α is non-degenerate, there exist e P gα and
f P g´α, such that κpe, fq “ 1, hence, by part (a),

re, f s “ ν´1
pαq.

Also rν´1pαq, es “ α pν´1pαqq e “ κpα, αqe, and similarly

rν´1
pαq, f s “ ´αpν´1

pαqqf “ ´κpα, αqf.

Suppose the contrary to (c): that κpα, αq “ 0. Then by the above relations, the Lie algebra

a “ Fe ` Ff ` Fν´1
pαq

is isomorphic to the nilpotent Lie algebra heis3 with center Fν´1pαq “ ra, as.

Applying Lie’s Theorem to the adjoint representation of a on g, we can find a basis of
g, such that ad e and ad f have upper triangular matrices, and hence ad ν´1pαq has strictly
upper triangular matrix. Hence ν´1pαq is an nilpotent element of g. But ν´1pαq P h is a
semisimple element of g. So we conclude that ν´1pαq “ 0, hence α “ 0. This contradicts
the fact that α P ∆. ■
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Exercise 12.3.

(a) Show that all derivations of the 2-dimensional non-abelian Lie algebra are inner.

(b) Describe the Lie algebra Derpheis3q. Namely, show that it is isomorphic to the
semidirect product of sl2pFq and a 3-dimensional radical, provided that char
F ‰ 2, while inner derivations form a 2-dimensional abelian ideal.

Bonus Problem. Prove that all derivations of the subalgebra of upper-triangular
matrices in slnpFq are inner.

Exercise 12.4. Let g be a finite-dimensional Lie algebra over a field F of characteristic
0. Show that g is semisimple if and only if the Killing form on g is non-degenerate.
Show that Theorem 12.1 and Theorem 12.2(c) hold (i.e. F is not necessarily alge-
braically closed).
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Structure Theory of Semisimple Lie Algebras II

Throughout this and next lecture, g is a finite-dimensional semisimple Lie algebra over
an algebraically closed field F of characteristic 0.

So far we have proved:

1. The Killing form κ on g is non-degenerate.

2. Pick a Cartan subalgebra h in g. Then h is abelian and consists of semisimple elements
of g, and we have the root space decomposition:

g “ h ‘

˜

à

αP∆

gα

¸

, g0 “ h,

where
∆ “ tα P h˚

| α ‰ 0, gα ‰ 0u

is the set of roots; and

gα “ ta P g | rh, as “ αphqa for all h P hu

is the root space, attached to α P ∆;

rgα, gβs Ď gα`β.

3. κ defines a pairing between gα and g´α, i.e. the map gα Ñ g˚
´α, defined by a ÞÑ κpa, ‚q

is a vector space isomorphism. In particular, dim gα “ dim g´α and α P ∆ if and only
if ´α P ∆.

4. κ |hˆh is a non-degenerate bilinear form, hence we have an isomorphism ν : h Ñ h˚,
defined by νphqph1q “ κph, h1q for all h, h1 P h. The map ν defines a bilinear form on
h˚ by

κpα, βq “ βpν´1
pαqq “ αpν´1

pβqq for α, β P h˚.

We proved that κpα, αq ‰ 0 if α P ∆.

5. If α P ∆, e P gα, f P g´α, then

re, f s “ κpe, fqν´1
pαq P h.

Next, given α P ∆, pick a non-zero E P gα and F P g´α, such that κpE,F q “ 2
κpα,αq

(which is possible by 3 and the last claim in 4.), and let H “
2ν´1pαq

κpα,αq
. Then we have:

rH,Es “ 2E, rH,F s “ ´2F, rE,F s “ H.
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Indeed, we have by 5.:

rE,F s “ κpE,F qν´1
pαq “ H;

next,
rH,Es “

2

κpα, αq
rν´1

pαq, Es “
2

κpα, αq
α
`

ν´1
pαq

˘

E “ 2E.

The verification of the second equality is similar.

Thus, for each root α P ∆, we constructed a 3-dimensional subalgebra aα “ FE`FH`FF
of g, isomorphic to sl2pFq, via the map

E ÞÑ

ˆ

0 1
0 0

˙

, H ÞÑ

ˆ

1 0
0 ´1

˙

, F ÞÑ

ˆ

0 0
1 0

˙

.

Exercise 13.1. Describe the root space decomposition of slnpFq and find all aα in it,
for h “ traceless diagonal matrices.

Key sl2 Lemma. Let F be a field of characteristic 0. Let π be a representation of
sl2pFq in a vector space V over F (not necessarily finite-dimensional ), and let v P V
be a non-zero vector, such that πpEqv “ 0 and πpHqv “ λv, where λ P F (such vector
is called a singular vector of weight λ). Then

(a) πpHqπpF qnv “ pλ ´ 2nqπpF qnv for any n P Zě0.

(b) πpEqπpF qnv “ npλ ´ n ` 1qπpF qn´1v for any n P Zě1.

(c) If dimV ă 8, then λ P Zě0, the vectors πpF qjv for 0 ď j ď λ are linearly
independent, and πpF qλ`1v “ 0. Consequently, in this case the eigenvalues of
πpHq on the span of the vectors πpF qjv, where jP Zě0, are λ, λ´ 2, λ´ 4, ...,´λ.

(d) If λ R Zě0, then all πpF qjv for j P Zě0 are linearly independent, hence dimV “

8.

Proof. (a) We prove this by induction on n. For n “ 0 it is given to us. Suppose it holds for
n “ k ´ 1 for some k ą 0. Then

πpHqπpF q
kv “ πpHqπpF qπpF q

k´1v

“ rπpHq, πpF qs πpF q
k´1v ` πpF q

`

πpHqπpF q
k´1v

˘

“ ´2πpF q
kv ` πpF qpλ ´ 2pk ´ 1qqπpF q

k´1v

“ pλ ´ 2kqπpF q
kv.

(b) is proved in a similar way, by induction on n P Zě1, and is left as an exercise.
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In order to prove (c) and (d), note that by (a), all vectors πpF qjv for j P Zě0 have
distinct eigenvalues with respect to πpHq. Hence, by linear algebra, those of them which are
non-zero, are linearly independent.

Now the first claim of (c) follows from (b). The second claim of (c) follows from (b) as
well, since, if πpF qλ`1v ‰ 0, (b) implies that all πpF qnv ‰ 0 for n ą λ` 1, which contradicts
that V is finite-dimensional .

(d) follows from (b) as well by the same argument. ■

Exercise 13.2. Prove claim (b).

Exercise 13.3. (the F -analogue of the key sl2 lemma) Using the notation of the key
sl2 lemma, if v instead satisfies πpF qv “ 0 and πpHqv “ λv, then we have:

(a) πpHqπpEqnv “ pλ ` 2nqπpEqnv for n P Zě0.

(b) πpF qπpEqnv “ ´npλ ` n ´ 1qπpEqn´1v for n P Zě1.

(c) If dimV ă 8, then ´λ P Zě0, the vectors πpEqjv are linearly independent for
0 ď j ď ´λ, and πpEq´λ`1v “ 0.

(d) If ´λ R Zě0, then all πpEqjv for j P Zě0 are linearly independent, hence dimV “

8.

Hint: One can do it by a direct computation. Alternatively, introduce the automor-
phism φ of sl2pFq by φpEq “ F, φpF q “ E,φpHq “ ´H and its representation π ˝φ in
V .

In order to state the next theorem on the properties of the root space decomposition, we
introduce the following notation:

Aα,β “
2κpα, βq

κpα, αq
for α, β P ∆, called Cartan integers ,

r∆ “ ∆ Y t0u .
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Theorem 13.1. The root space decomposition of g with respect to a Cartan subal-
gebra h and the set of roots ∆ Ă h˚z t0u satisfy the following properties:

(a) dim gα “ 1 for all α P ∆.

(b) (String property) If α, β P ∆, then tβ ` nαunPZ X r∆ is a finite connected string

tβ ´ pα, β ´ pp ´ 1qα, ¨ ¨ ¨ , β, β ` α, ¨ ¨ ¨ , β ` qαu

where p, q P Zě0 and p ´ q “ Aα,β P Z.

(c) If α, β, α ` β P ∆, then rgα, gβs “ gα`β.

(d) If α P ∆, then nα P ∆ for n P F if and only if n “ 1 or n “ ´1.

Proof. Suppose the contrary to (a): dim gα ą 1 for some α P ∆. Then, by 3., dim g´α ą 1,
and there exists a non-zero vector v P g´α, such that κpE, vq “ 0, where FE`FH`FF “ aα,

H “
2ν´1pαq

κpα,αq
, aα » sl2pFq.

Consider the adjoint representation of aα on g. We have pad Eqv “ κpE, vqν´1pαq “ 0,
and

pad Hqv “ rH, vs “
2rν´1pαq, vs

κpα, αq
“ ´

2αpν´1pαqqv

κpα, αq
“ ´

2κpα, αqv

κpα, αq
“ ´2v.

Hence, by the key sl2 lemma (d), dim g “ 8, a contradiction.

(b) Consider the following subspace of g

Uα,β “
à

nPZ
gβ`nα.

It is obviously ad aα-invariant. The maximal eigenvalue of ad H on Uα,β is equal to

λmax :“ Aα,β ` 2q, (13.1)

and its minimal eigenvalue is equal to

λmin :“ Aα,β ´ 2p. (13.2)

But by the key sl2 lemma (c), the string is connected and λmin “ ´λmax. Hence, adding
(13.1) and (13.2), we obtain that p´ q “ Aα,β. Both p and q are non-negative integers since
β P ∆.

(c) Pick the largest integers p and q, such that β ´ pα, β ` qα P r∆, and pick a non-zero
vector v P gβ´pα. Then pad F qv “ 0 and pad Hqv “ pAα,β ´ 2pqv.
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By Exercise 13.2, pad Eqjv ‰ 0 for 0 ď j ď 2p´Aαβ “ p` q. But q ě 1 since α`β P ∆,
so pad Eqp`1v ‰ 0. The root of this vector is α ` β and pad Eqpv P gβ, hence rE, gβs ‰ 0.
Therefore rgα, gβs “ gα`β since dim gα`β “ 1 by (a).

(d) Let β “ nα, n ‰ 0, be a root. Then, since by (b), Aβα P Z, we conclude that

Aβα “
2κpα,nαq

κpnα,nαq
“ 2n

n2 “ 2
n

P Z; also Aαβ “ 2n P Z. Hence the possible values of n are

2, 1,´1,´2, 1
2
,´1

2
. However rgα, gαs “ 0 since dim gα “ 1, so 2α R ∆ by (c). Similarly

1
2
α R ∆. Since γ P ∆ if and only if ´γ P ∆ by 3., we conclude that ´2α R ∆ and ´1

2
α R ∆

as well. ■

Exercise 13.4. Find which p and q are possible for slnpFq.

Exercise 13.5. Show that an element h P h is regular if and only if αphq ‰ 0 for all
α P ∆.

Exercise 13.6. Show that an elmeent a P g is regular only if it is semisimple.

Remark. By definition, for g “ slnpFq an element a P g is semisimple if and only if it
is contained in a Cartan subalgebra of g. It is known that this fact holds for any semisimple
Lie algebra g.
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Structure Theory of Semisimple Lie Algebras III

Recall the root space decomposition

g “ h ‘

˜

à

αP∆

gα

¸

, h “ g0, rh, hs “ 0, ∆ “ tα P h˚
| α ‰ 0, gα ‰ 0u ,

gα “ ta P g | rh, as “ αphqa for all h P hu , dim gα “ 1 if α P ∆, r∆ “ ∆ Y t0u .

By Theorem 13.1, the set of roots ∆ satisfies the properties:

(i) If α P ∆, then nα P ∆ for n P F if and only if n “ 1 or ´1.

(ii) (String property) If α, β P ∆, then tβ ` nαunPZ X r∆ is a finite connected string

tβ ´ pα, β ´ pp ´ 1qα, ¨ ¨ ¨ , β, β ` α, ¨ ¨ ¨ , β ` qαu

where p, q P Zě0 and p ´ q “ Aα,β :“ 2κpα,βq

κpα,αq
.

The Killing form κ is non-degenerate on g, as well as its restriction to h. We have an
isomorphism ν : h Ñ h˚, defined by νphqph1q “ κph, h1q, h, h1 P h.

Using the root space decomposition of g, we can rewrite κ on h as a sum over roots.
Namely, for h1, h2 P h we have (since dim gα “ 1 if α P ∆ and h is abelian)

κph1, h2q “ trg pad h1qpad h2q “
ÿ

αP∆

αph1qαph2q. (1)

Hence, using ν, we deduce the following formula for κ on h˚:

κpλ1, λ2q “
ÿ

αP∆

α
`

ν´1
pλ1q

˘

α
`

ν´1
pλ2q

˘

“
ÿ

αP∆

κpλ1, αqκpλ2, αq. (2)

Definition 14.1. The Q-span of ∆ in h is denoted by h˚
Q.

Theorem 14.1.

(a) ∆ spans h˚ over F.

(b) κpα, βq P Q for α, β P ∆.

(c) κ |h˚
Qˆh˚

Q
is a positive definite symmetric bilinear form with values in Q.

Proof. (a) Suppose the contrary: h˚ is not spanned by ∆ over F. Then there exists a non-zero
h P h, such that αphq “ 0 for all α P ∆.
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This implies that rh, gαs “ 0 for all α P ∆, and since rh, hs “ 0, we conclude that
h P Zpgq. Hence h “ 0 since the center of g is zero, which is a contradiction.

(b) From equation (2) we obtain for λ P h˚,

κpλ, λq “
ÿ

αP∆

κpλ, αq
2. (3)

Recall that κpβ, βq ‰ 0 for β P ∆, so, by (3), taking λ “ β and multiplying both sides by
p 2
κpβ,βq

q2, we obtain:

4

κpβ, βq
“

ÿ

αP∆

ˆ

2κpα, βq

κpβ, βq

˙2

“
ÿ

αP∆

A2
β,α.

Since, by the string property, Aβ,α P Z, we conclude that κpβ, βq P Qą0 for any root β. Since

Aα,β “
2κpα,βq

κpβ,βq
P Z, we conclude that κpα, βq P Q for α, β P ∆, proving (b).

(c) It follows from (b) that κpλ, µq P Q for any λ, µ P h˚
Q. Since, by (a), ∆ spans h˚, and

κ |hˆh is non-degenerate, we see that κ |h˚
Qˆh˚

Q
is non-degenerate as well.

By equation (3), κpλ, λq ě 0 for all λ P h˚
Q since it is a sum of rational squares. This

proves part (c) since a non-degenerate symmetric positive semi-definite bilinear form κ on
h˚
Q is positive definite. ■

The following simple lemma is very important in representation theory, and will be used
to prove our next theorem.

Lemma 14.1. Let h be a Lie algebra over an infinite field F and let π be its represen-
tation in a vector space V , such that V has a weight space decomposition

V “
à

λPh˚

Vλ, where Vλ “ tv P V | πphqv “ λphqv, h P hu .

If U Ď V is πphq-invariant subspace, then

U “
à

λPh˚

pU X Vλq.

Proof. Any u P U can be written as

u “

n
ÿ

i“1

vλi
, where vλi

P Vλi
z t0u , λi ‰ λj. (4)

We will prove by induction on n that all vλi
P U . For n “ 1, vλ1 “ u P U . If n ą 1, we apply
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πphq to both sides of (4):

πphqu “

n
ÿ

i“1

λiphqvλi
, (5)

where h is chosen such that λiphq ‰ λjphq for i ‰ j (here we use that F is infinite).

From (4) we obtain:

πphqu ´ λ1phqu “

n
ÿ

i“2

pλiphq ´ λ1phqq vλi
,

where each coefficient is not 0.

Hence, by the inductive assumption vλi
P U for all i ě 2, hence also vλ1 P U . ■

Exercise 14.1. Recall that a semisimple Lie algebra g “
ÀN

j“1 sj is a direct sum
of simple ideals. Prove that any ideal of g is a subsum of this sum and that this
decomposition is unique up to permutation of summands.

Next, we examine how a decomposition of g in a direct sum of (semisimple) ideals,
g “ g1 ‘ g2, corresponds to a decomposition of the set of roots ∆ of g. Choose Cartan
subalgebras h1 and h2 of g1 and g2 respectively; then h “ h1 ‘ h2 is a Cartan subalgebra of
g. Let ∆1 Ă h˚

1 and ∆2 Ă h˚
2 be the sets of roots for g1 and g2, so that we have root space

decompositions

g “ h ‘

˜

à

αP∆

gα

¸

, gi “ hi ‘

˜

à

αP∆i

gα

¸

for i “ 1, 2.

Then ∆ “ ∆1

š

∆2, and for α P ∆1, β P ∆2 we have rgα, gβs “ 0, hence α`β R r∆ “ ∆Yt0u.

Definition 14.2. Let ∆ be a finite subset of non-zero vectors in a vector space V .
This set is called indecomposable if it cannot be decomposed into a disjoint union
of non-empty subsets ∆1 and ∆2, such that

α ` β R r∆ if α P ∆1, β P ∆2. (5)

The following theorem provides a simple way to check if a finite-dimensional Lie algebra
is semisimple (resp. simple).
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Theorem 14.2. Let g “ h‘

´

À

αP∆Ăh˚ gα

¯

be a decomposition of a finite-dimensional

Lie algebra g over a field F into a direct sum of subspaces, such that the following
properties hold:

(i) h is an abelian subalgebra, gα “ ta P g | rh, as “ αphqa, h P hu, and dim gα “ 1
for all α P ∆,

(ii) rgα, g´αs “ Fhα, where hα P h is such that αphαq ‰ 0,

(iii) h˚ is spanned by ∆.

(All these properties hold for a semisimple g over an algebraically closed field of char-
acteristic 0.) Then g is a semisimple Lie algebra, and h is its Cartan subalgebra.
Moreover g is simple if and only if the set ∆ is indecomposable.

Proof. We need to prove that if a is an abelian ideal of g, then a “ 0. Note that, since a is
an ideal, it is ad h-invariant. Hence, by Lemma 14.1, if a ‰ 0, then either gα Ď a for some
α P ∆, or h X a ‰ 0, by the properly that dim gα “ 1.

In the first case rgα, g´αs “ Fhα Ď a, and, since αphαq ‰ 0, rhα, gαs “ gα Ď a. So a
contains a non-abelian subalgebra Fhα ` gα, which is impossible since a is abelian.

In the second case, a contains a non-zero element h from h. By condition (iii), αphq ‰ 0
for some α P ∆, hence rh, gαs “ gα Ď a, and a again contains a non-abelian subalgebra
Fh ` gα, which is again impossible. So a “ 0, which proves that g is semisimple.

It is obvious that h is a Cartan subalgebra of g.

Finally, why g is simple if the set ∆ Ă h˚ is indecomposable? In the contrary case,
g “ g1‘g2, where g1 and g2 are (non-zero) semisimple ideals, and by the discussion preceding
Definition 14.2, this implies that the set ∆ is not indecomposable. ■

Exercise 14.2. Prove that if a semisimple Lie algebra g with the set of roots ∆ is
simple, then the set ∆ is indecomposable.

The following is an easy method to check if a set ∆ is indecomposable.

Exercise 14.3. Show that a finite subset ∆ of non-zero vectors in a vector space V is
indecomposable if and only if for any α, β P ∆, there exists a sequence γ1, ¨ ¨ ¨ , γs P ∆,
such that α “ γ1, β “ γs, and γi ` γi`1 P ∆ Y t0u for i “ 1, ¨ ¨ ¨ , s ´ 1.
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Examples of Classical Semisimple and Simple Lie Algebras

Recall Theorem 14.2, which says that if g is a finite-dimensional Lie algebra over an
infinite field F, decomposed in a direct sum of subspaces

g “ h ‘

˜

à

αP∆Ďh˚zt0u

gα

¸

, (1)

where h is an abelian subalgebra,

gα “ ta P g | rh, as “ αphqa, h P hu , dim gα “ 1,

rgα, g´αs “ Fhα P h, αphαq ‰ 0, and h˚ is spanned by ∆, (2)

then g is a semisimple Lie algebra, and h is its Cartan subalgebra.

Moreover g is simple if and only if ∆ is an indecomposable set, meaning that for any
α, β P ∆, α ‰ β, these exists a sequence of elements from ∆, α “ γ1, γ2, ¨ ¨ ¨ , γs “ β, such
that γi ` γi`1 P ∆ Y t0u for all i “ 1, ¨ ¨ ¨ , s ´ 1.

Example 15.1. g “ slnpFq, n ě 2 (special linear Lie algebra). LetD be the subalgebra
of all diagonal matrices in glnpFq, and let h “ DXslnpFq be the subspace of all traceless
diagonal matrices. It is a Cartan subalgebra of slnpFq (by Theorem 8.1). Denote by

εi P D˚ the linear function, defined by εi

¨

˚

˝

a1
. . .

an

˛

‹

‚

“ ai, i “ 1, ¨ ¨ ¨ , n. They

form a basis of D˚. Their restrictions to h, also denoted by εi, are linearly dependent:
ε1 ` ¨ ¨ ¨ ` εn “ 0. However, the vectors

ε1 ´ ε2, ε2 ´ ε3, ¨ ¨ ¨ , εn´1 ´ εn, ε1 ` ε2 ` ¨ ¨ ¨ ` εn

form a basis of D˚ if char F ∤ n, since

Exercise 15.1.

∣∣∣∣∣∣∣∣∣
1 ´1 0 ¨ ¨ ¨ 0
0 1 ´1 ¨ ¨ ¨ 0
...

...
...

. . .
...

1 1 1 ¨ ¨ ¨ 1

∣∣∣∣∣∣∣∣∣ “ n.

Hence tε1 ´ ε2, ε2 ´ ε3, ¨ ¨ ¨ , εn´1 ´ εnu is a basis of h˚. We have the decomposition (1),
where

∆slnpFq “ tεi ´ εj | i, j “ 1, ¨ ¨ ¨ , n, i ‰ ju , gεi´εj “ FEij. (3)

We have: rEij, Ejis “ Eii ´ Ejj “: hεi´εj , and pεi ´ εjqpEii ´ Ejjq “ 2 ‰ 0 if char F ‰ 2.
Hence condition (2) holds if char F ‰ 2 and char F ∤ n (by Exercise 15.1).

81



Examples of Classical Semisimple and Simple Lie Algebras

Therefore slnpFq is semisimple if char F ∤ 2n. To check simplicity, consider two roots:

α “ εi ´ εj, β “ εk ´ εs, where i ‰ j, k ‰ s,

and construct the sequences α “ γ1, ¨ ¨ ¨ , γs “ β. If j “ k, the sequence α “ γ1, γ2 “ β
works. If j ‰ k, the sequence α “ γ1, γ2 “ εj ´ εk, γ3 “ β works. Hence slnpFq is a simple
Lie algebra if char F ∤ 2n.

This series of simple Lie algebras is denoted by An´1 (since rank slnpFq “ n´ 1), n ě 2.
This is called the classical series of type An, n ě 1.

Example 15.2. Let B be a non-degenerate symmetric bilinear form on N -dimensional
vector space V over F. Recall the corresponding orthogonal Lie algebra .

oV,BpFq “ ta P glV pFq | Bpau, vq ` Bpu, avq “ 0, u, v P V u Ď glV pFq, (4)

where char F ‰ 2. Choosing a basis of V and denoting again by B the matrix of the
bilinear form in this basis (which is non-singular symmetric), we proved that we get
the subalgebra of glNpFq (see Exercise 1.4)

oN,BpFq “
␣

a P glNpFq | aJB ` Ba “ 0
(

, (5)

where aJ is the transposition of a with respect to the principal diagonal.
If F is algebraically closed, one can choose a basis of V in which B is any symmetric
non-singular N ˆ N matrix. We choose a basis, such that

B “

¨

˚

˝

0 1
...

1 0

˛

‹

‚

,

and denote by soNpFq “ g the corresponding Lie algebra oN,BpFq.

Exercise 15.2. Show that

soNpFq “ ta P glNpFq | a ` a1
“ 0u ,

where a1 is the transposition of a with respect to the anti-diagonal.

Exercise 15.3.

(a) so2pFq “

"ˆ

a 0
0 ´a

˙

| a P F
*

is 1-dimensional abelian, hence not semisimple.

(b) Show that sonpFq Ď slnpFq.
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We consider separately two cases.

Case 1. N “ 2n ` 1, where n is a positive integer. Let

h “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1
. . .

an
0

´an
. . .

´a1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p“ soNpFq X Dq .

This is a Cartan subalgebra by Theorem 8.1, since it contains a diagonal matrix with distinct
entries.

Case 2. N “ 2n, where n ě 2 is an integer. Let

h “

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1
. . .

an
´an

. . .

´a1

˛

‹

‹

‹

‹

‹

‹

‹

‚

p“ soNpFq X Dq .

This is a Cartan subalgebra for the same reason. In both cases, dim h “ n and ε1, ¨ ¨ ¨ , εn
form a basis of h˚. Note that

εN`1´j |h“ ´εj |h and εpN`1q{2 |h“ 0 if N is odd. (6)

Next, all the eigenvectors for ad h on g are the elements

Ei,j ´ EN`1´j,N`1´i, i, j P t1, ¨ ¨ ¨ , Nu ,

and the corresponding root is εi ´ εj |h. Therefore, the set ∆ of roots is

N “ 2n ` 1 : ∆soN pFq “ tεi ´ εj,˘pεi ` εjq,˘εi | i, j P t1, ¨ ¨ ¨ , nu , i ‰ ju ; (7)

N “ 2n : ∆soN pFq “ tεi ´ εj,˘pεi ` εjq | i, j P t1, ¨ ¨ ¨ , nu , i ‰ ju . (8)

Exercise 15.4.

(a) Using the root space decomposition, prove that soNpFq is semisimple if N ě 3.

(b) Show that soNpFq is simple if N “ 3 or N ě 5.
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Example 15.3. Consider the special case g “ so4pFq. In this case ∆ “

t˘pε1 ´ ε2qu
š

t˘pε1 ` ε2qu is the decomposition in a union of two indecomposable
subsets ∆1 “ t˘pε1 ´ ε2qu and ∆2 “ t˘pε1 ` ε2qu. Then g decomposes in a direct sum
of two subalgebras, isomorphic to sl2pFq with the sets of roots ∆1 and ∆2.

Let e1 “ E12 ´ E34, f1 “ E21 ´ E43, e2 “ E31 ´ E42, f2 “ E13 ´ E24. Then

re1, e2s “ 0, re1, f2s “ 0, re2, f1s “ 0.

Hence g » g1 ‘ g2, where gi “ Fei ` Ffi ` Frei, fis pi “ 1, 2q are the two ideals of g
isomorphic to sl2pFq.

Bonus Problem. Consider the Lorentz Lie algebra o4,BpRq, where B “
¨

˚

˚

˝

1 0
´1

´1
0 ´1

˛

‹

‹

‚

(see (5)). Prove that this is a simple 6-dimensional Lie algebra

over R. Note that its complexification o4,BpCq » so4pCq is not simple. Thus, though
semisimplicity of g remains under field extensions, this is false for simplicity.

The series of simple Lie algebras so2n`1pFq for n ě 1 is called the series of type Bn of
classical Lie algebras. The series so2npFq of simple Lie algebras, where n ě 3, is called the
series of type Dn of classical Lie algebras. In both cases, n is the rank.

Example 15.4. Consider the Lie algebra oV,B, defined by (4), where V is the N -
dimensional vector space over a field F of characteristic ‰ 2, and B is skew-symmetric
non-singular bilinear form. By linear algebra, N “ 2n must be even, and there exists
a basis of V in which the bilinear form B has matrix

B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

0
...

1
´1

... 0
´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(9)

We denote sp2npFq the Lie algebra 0F2n,B, where B is the matrix (9). This Lie algebra
is called the symplectic Lie algebra .
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Exercise 15.5. Repeat the discussion we’ve done for so2npFq in the case of g “

sp2npFq.

First, show that sp2npFq consists of 2nˆ2n matrices of the form

ˆ

a b
c d

˙

, where a, b, c, d

are n ˆ n matrices over F, and

a “ ´d1, b “ b1, c “ c1,

where 1 is the transposition with respect to the antidiagonal.

Next, let h be the set of all diagonal matrices in sp2npFq:

h “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1
. . .

an
´an

. . .

´a1

˛

‹

‹

‹

‹

‹

‹

‹

‚

, where a1, ¨ ¨ ¨ , an P F

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

.

Show that h is a Cartan subalgebra of sp2npFq, and find the root space decomposition.

Show that the set of roots is:

∆spN pFq “ tεi ´ εj,˘pεi ` εjq,˘2εi | i, j P t1, ¨ ¨ ¨ , nu , i ‰ ju .

Show that this set is indecomposable.

Prove that sp2npFq is a simple Lie algebra for all n ě 1.

These Lie algebras are called type Cn classical simple Lie algebras.

Thus, we have constructed four series of classical simple Lie algebras of rank n:

An “ sln`1pFq pn ě 1q, Bn “ so2n`1pFq pn ě 1q,

Cn “ sp2npFq pn ě 1q, Dn “ so2npFq pn ě 3q.

We conclude the lecture by a discussion on invariant bilinear forms.
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Proposition 15.1. Let g be a simple finite-dimensional Lie algebra over an alge-
braically closed field F. Then

(a) Any symmetric invariant bilinear form on g is either non-degenerate or identically
zero.

(b) Any two non-degenerate symmetric invariant bilinear forms on g are proportional:
pa, bq1 “ λpa, bq2 for some λ P F, independent of a and b.

Proof. (a) If p‚, ‚q is a symmetric invariant bilinear form on g, its kernel is an ideal of g,
hence on simple g the kernel is either g or 0.

(b) Choose a basis of g, and let Bi be the matrix of p‚, ‚qi in this basis, i “ 1, 2. Then

detpB1 ´ λB2q “ pdetB2qpdetpB´1
2 B1 ´ λIqq.

If λ0 is an eigenvalue of the matrix B´1
2 B1, then detpB1 ´ λ0B2q “ 0. Hence the bilinear

form pa, bq1 ´ λ0pa, bq2 is degenerate, and therefore is identically zero by (a). ■

Corollary 15.1. If g Ă glNpFq is a simple Lie algebra and F is algebraically closed,
then κpa, bq “ λtrFN pabq for all a, b P g for some non-zero λ P F, independent of a, b.

Example 15.5. On glNpFq we have trFN pEijEksq “ δjkδis, hence for the induced
bilinear form on D˚, where D is the subalgebra of all diagonal matrices, we have

pεi, εjq “ δij, i, j “ 1, ¨ ¨ ¨ , N. (10)

By Corollary 15.1 and Theorem 14.1(c), for all classical Lie algebras, the Killing form
on h˚

Q is a multiple of the bilinear form (10) with positive rational coefficient.
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Root Systems

The discussion in previous lectures leads to the following definition.

Definition 16.1. Let V be a finite-dimensional real Euclidean space, i.e. V is a
finite-dimensional vector space over R with symmetric positive definite bilinear form
p‚, ‚q. Let ∆ Ă V be a subset. Then the pair pV,∆q is called a root system if

(i) ∆ is finite, 0 R ∆, ∆ spans V over R;

(ii) (string condition) for any α, β P ∆, the set tβ ` jα | j P ZuXp∆Yt0uq is a string

β ´ pα, β ´ pp ´ 1qα, ¨ ¨ ¨ , β ´ α, β, β ` α, ¨ ¨ ¨ , β ` qα,

where p, q P Zě0 and p ´ q “
2pα,βq

pα,αq
p:“ Aα,βq;

(iii) for all α P ∆, k P Z, we have kα P ∆ if and only if k “ 1 or ´1.

Elements of ∆ are called roots and r “ dimR V is called the rank of pV,∆q.

Remark 16.1. Multiplying the bilinear form p‚, ‚q by a positive real number, we again get
a root system.

Basic Example. Let g be a finite-dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0. Choose a Cartan subalgebra h in g, let ∆ Ă h˚

be the set of roots, and h˚
Q the Q-span of ∆. Then we know that the Killing form κ

on h˚
Q is Q-valued and positive definite, by Theorem 14.1(b), (c).

Let V “ RbR h
˚
Q, i.e. linear combination of roots with real coefficeints, and extend the

Killing form from h˚
Q to V by bilinearity to a real-valued positve definite symmetric

bilinear form on V . Then the pair pV,∆q is a root system, called the root system
attached to g.

This construction is independent of the choice of h, due to Chevalley’s Theorem.

Exercise 16.1. Let pV,∆q be a root system. Then the set ∆ is indecomposable if
and only if there doesn’t exist a decomposition pV,∆q “ pV1,∆1q ` pV2,∆2q, where
V “ V1 ‘ V2, Vi ‰ 0, V1 K V2, ∆i Ă Vi, and ∆ “ ∆1 Y ∆2. (Hint: use the string
condition)

Moreover, the decomposition ∆ “
š

i ∆i into indecomposable sets corresponds to
decomposition of the root system in the orthogonal direct sum of indecomposable root
systems.
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Definition 16.2. (of Remark 16.1) An isomorphism of indecomposable root systems
pV1,∆1q and pV2,∆2q is a vector space isomorphism φ : V1 Ñ V2, such that φp∆1q “ ∆2

and pφpαq, φpβqq2 “ cpα, βq1, for all α, β P ∆, where c P Rą0 is independent of α and
β.

Example 16.1. Any root system of rank 1 is isomorphic to pR,∆ “ t1,´1uq and
pα, βq “ αβ. This root system is indecomposable, and it is a root system, isomorphic
to that, attached sl2pFq, so3pFq and sp2pFq.

Proposition 16.1. Let pV,∆q be an indecomposable root system with the bilinear
form p‚, ‚q on V . Then

(a) Any other bilinear form p‚, ‚q1 on V , satisfying the string property, is pa, bq1 “

cpa, bq, where c P Rą0 is independent of a and b.

(b) If pα, αq P Q for some α P ∆, then pβ, γq P Q for all β, γ P ∆.

Proof. Fix α P ∆. Since pV,∆q is indecomposable by Exercise 16.1, for any β P ∆ there exists
a sequence of roots γ1, ¨ ¨ ¨ , γs, such that α “ γ1, β “ γs and pγi, γi`1q ‰ 0 for i “ 1, ¨ ¨ ¨ , s´1.

Define c P R by pα, αq1 “ cpα, αq. By the string property, p ´ q “
2pα,γ2q

pα,αq
“

2pα,γ2q1

pα,αq1
, hence

pα, γ2q1 “ cpα, γ2q.

Likewise, by the string property 2pα,γ2q

pγ2,γ2q
“

2pα,γ2q1

pα,αq1
, hence pγ2, γ2q1 “ cpγ2, γ2q. Continuing

this way, we show that pγ3, γ3q1 “ cpγ3, γ3q, ¨ ¨ ¨ , pβ, βq1 “ cpβ, βq.

Since 2pα,βq

pα,αq
“

2pα,βq1

pα,αq1
, we conclude that pα, βq1 “ cpα, βq. Since ∆ spans V , we conclude

that (a) holds. The same argument proves (b). ■

Now we turn to the construction of roots systems beyond the classical ones.

Definition 16.3. A lattice in a finite-dimensional real Euclidean space V is a discrete
subgroup L with respect to the addition operation in V , which spans V over R. The
integer r “ dimR V is called the rank of L.

A lattice L is called integral if pα, βq P Z for all α, β P L, and it is called even if
pα, αq P 2Z for all α P L.

Exercise 16.2. Show that any even lattice is integral.
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Example 16.2. For N P Rą0,
1
N
Zn is a lattice in Rn with the standard bilinear form

pa, bq “

n
ÿ

i“1

αiβi, where a “ pα1, ¨ ¨ ¨ , αnq, b “ pβ1, ¨ ¨ ¨ , βnq.

Proposition 16.2. If ∆ is a finite subset in a finite-dimensional Euclidean space V ,
spanning V over R, such that pa, bq P Q for all α, β P ∆, then the Z-span of ∆ is a
lattice in V .

Proof. The only thing to prove is that Z∆ is a discrete set. For this choose a basis β1, ¨ ¨ ¨ , βr
of V among the vectors of ∆. Then for any α P ∆, we have α “

řr
i“1 ciβi, where ci P R.

Hence

pα, βjq “

r
ÿ

i“1

cipβi, βjq, j “ 1, ¨ ¨ ¨ , r. (1)

But ppβi, βjqq
r
i,j“1 is a Gramm matrix of a linear independent set in a Euclidean space, hence

it is non-singular. Hence the ci can be computed by Cramer’s rule, so all ci P Q, hence
Z∆ Ď Q tβ1, ¨ ¨ ¨ , βru. But since the set ∆ is finite, we conclude that Z∆ Ď 1

N
Z tβ1, ¨ ¨ ¨ , βru,

where N is a positive integer. But 1
N
Z tβ1, ¨ ¨ ¨ , βru is a discrete set, hence Z∆ is discrete as

well. ■

Bonus Exercise. Show that Z
␣

1,
?
2
(

is not a discrete subset of R.

Definition 16.4. Let pV,∆q be a root system. Then the Z-span of ∆ is called the
root lattice of this root system .

By Propositions 16.1(b) and 16.2, the root lattice is indeed a lattice if pV,∆q is inde-
composable (since we can always normalize the bilinear form, such that pα, αq P Q for some
α P ∆), hence it holds for any root system.

We list below the four series of indecomposable root systems pV,∆q and their root lattices
L, attached to the simple classical Lie algebras (see Lecture 15).
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Type g V ∆ L

Ar
slr`1pFq,
r ě 1

r`1
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ai P R,
ř

ai “ 0
εi ´ εj

r`1
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ai P Z
ř

ai “ 0

Br
so2r`1pFq,
r ě 1

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ
ai P R εi ´ εj,˘pεi ` εjq,˘εi

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ
ai P Z

Cr
sp2rpFq,
r ě 1

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ
ai P R εi ´ εj,˘pεi ` εjq,˘2εi

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ai P Z
ř

ai P 2Z

Dr
so2rpFq,
r ě 3

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ
ai P R εi ´ εj,˘pεi ` εjqi

r
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ai P Z
ř

ai P 2Z

In the column ∆, i ‰ j and 1 ď i, j ď r.

Explanation of L for Ar. Clearly Z tεi ´ εj | i ‰ ju is contained in L. To show the reverse
inclusion, write

r`1
ÿ

i“1

aiεi “ a1pε1´ε2q`pa1`a2qpε2´ε3q`¨ ¨ ¨`pa1`¨ ¨ ¨`arqpεr ´εr`1q`pa1`¨ ¨ ¨`ar`1qεr`1.

Since
r`1
ÿ

i“1

ai “ 0, it follows. For Br the explanation is obvious.

Exercise 16.3. Explain the root lattices in cases Cr and Dr.

Remarks 16.2.

(a) The root lattices of type Ar and Dr are even, hence integral. The root lattice of
type Br is integral, but not even.

(b) The “best” normalization of the bilinear form p‚, ‚q is such that max
αP∆

pα, αq “ 2.

For types Ar, Br and Dr we have this normalization. However, for type Cr, in
order to get this normalization, we need to multiply this bilinear form by 1{

?
2.

Then we get an integral, but not even, lattice.

Now we turn to the construction of “exceptional” root systems. For that we construct
some “exceptional” lattices.

Consider the Euclidean space V r “
Àr

i“1Rεi, with the bilinear form pεi, εjq “ δij,
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i, j “ 1, ¨ ¨ ¨ , r. Consider the following lattices in V r:

Γ1
r “

#

r
ÿ

i“1

aiεi | either all ai P Z or all ai P
1

2
` Z

+

Ą Γr “

#

γ “

r
ÿ

i“1

aiεr P Γ1
r |

r
ÿ

i“1

ai P 2Z

+

.

Proposition 16.3.

(a) Γ1
r is a lattice, such that pα, αq P Z for all α P Z, if and only if r is divisible by 4.

(b) Γr is an even (hence integral) lattice if and only if r is divisible by 8.

Proof. Let α “
řr

i“1 αiεi P Γ1
r. If all ai P Z, pα, αq is obviously an integer. If all ai P 1

2
` Z,

we write α “ β ` ρ, where β “
řr

i“1 biεi with the bi P Z, and ρ “ 1
2

řr
i“1 εi. Then

pα, αq “ pb, bq ` 2pρ, bq ` pρ, ρq “

r
ÿ

i“1

pb2i ` biq `
r

4
. (2)

This is an integer if and only if r is divisible by 4, proving (a).

To prove (b), notice that c2 ˘ c P 2Z for c P Z. Hence pα, αq “
řr

i“1 a
2
i ”

řr
i“1 ai

pmod 2q, and pα, αq P 2Z if α P Γr and all ai P Z. Finally, pα, αq P 2Z for α “ β` ρ as above
if and only if r is divisible by 8, by (2). ■

Theorem 16.1. Let L be an integral lattice in a finite-dimensional Euclidean space
V , let ∆ “ tα P L | pα, αq “ 2u and assume that ∆ spans V over R. Then pV,∆q is a
root system.

Proof. Axioms (i) and (iii) of a root system are clear. It remains to prove the string condition.
It is clear that the string condition for α, β P ∆ holds if and only if it holds for ´α, β. Hence,
without loss of generality we may assume that pα, βq ě 0. Note that

0 ď pα ´ β, α ´ βq “ pα, αq ´ 2pα, βq ` pβ, βq “ 4 ´ 2pα, βq

since pα, αq “ pβ, βq “ 2. But pα, βq P Zě0 since L is an integral lattice and we assumed
that pα, βq ě 0. Hence the only possibilities for pα, βq are

pα, βq “ 0, 1, or 2.

If pα, βq “ 0, then pα ˘ β, α ˘ βq “ 4, hence α ˘ β R ∆, and p “ q “ 0, so p ´ q “ 0 “ Aα,β

and the string condition holds.
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If pα, βq “ 1, then pβ ` jα, β ` jαq “ 2 ` 2j ` 2j2, by (3), hence β ` jα P ∆ if and only
if j “ 0 or ´1. Hence p “ 1, q “ 0 and p ´ q “ 1 “ Aα,β, and the string condition holds.

Finally, if pα, βq “ 2, then, by (3), pα ´ β, α ´ βq “ 0, hence α “ β. But then, by
axiom (iii), β ` jα P ∆ Y t0u if and only if j “ 0,´1,´2. Hence p “ ´2, q “ 0, and
p ´ q “ ´2 “ Aα,β, and the string condition again holds. ■

Exercise 16.4. Show that for L “ Γr with r divisible by 8, the root system, given by
Theorem 16.1, is of type Dr if r ą 8.

Exercise 16.5. Let L be a lattice, such that 2pα, βq P Z if pα, αq “ 1 and pα, βq P Z
if pα, αq “ 2 for α, β P L. Let

∆ “ tα P L | pα, αq “ 2 or 1u ,

and let V “ R∆. Show that pV,∆q is a root system.
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Lecture 17

Root Systems and Cartan Matrices

Let Vr “
Àr

i“1Rεi be an r-dimensional Euclidean vector space with the symmetric
bilinear form defined by pεi, εjq “ δij, i, j “ 1, ¨ ¨ ¨ , r. Consider in V8 the lattice LE8 :“ Γ8.
Recall that

LE8 “

#

8
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“1

ai P 2Z, and either all ai P Z or all ai P
1

2
` Z

+

.

As was explained in the last lecture, LE8 is an even lattice, and

∆E8 “ tα P LE8 | pα, αq “ 2u Ă V8

is a root system. It is immediate to see that

∆E8 “ t˘εi ˘ εj | i ‰ ju Y

"

1

2
p˘ε1 ˘ ¨ ¨ ¨ ˘ ε8q

ˇ

ˇ

ˇ

ˇ

even number of minus signs

*

.

Exercise 17.1. Show that |∆E8 | “ 240 and that LE8 is the root lattice for the root
system pV8,∆E8q.

The root system pV8,∆E8q (of rank 8) is called the exceptional root system of type
E8. This root system contains two important root subsystems, of type E7 and E8. In order
to construct them, let (as before) ρ “ 1

2

ř8
i“1 εi and ξ “ ε7 ` ε8 be two roots from ∆E8 . Let

VE7 “ tv P V8 | pρ, vq “ 0u Ą VE6 “ tv P VE7 | pξ, vq “ 0u ,

and let LEi
“ VEi

X LE8 , ∆Ei
“ VEi

X ∆E8 , where i “ 7 or 6.

Exercise 17.2.

(a) Show that pVE7 ,∆E7q is a root system of rank 7, for which LE7 is the root lattice.
Describe ∆E7 and show that |∆E7 | “ 126.

(b) Show that pVE6 ,∆E6q is a root system of rank 6, for which LE6 is the root lattice.
Describe ∆E6 and show that |∆E6 | “ 72.

The next exceptional root system is of type F4, which has rank 4. In order to construct
it, consider in V4 the lattice Γ1

4, which we denote by LF4 . Recall that

LF4 “

#

4
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ˇ

ˇ

either all ai P Z or all ai P
1

2
` Z

+

.

This lattice satisfies conditions of Exercise 16.5, hence pV4,∆F4q is a root system, where
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∆F4 “ tα P LF4 | pα, αq “ 2 or 1u.

It is straightforward to see that

∆F4 “ t˘εi ˘ εj;˘εi | i, j P t1, 2, 3, 4u , i ‰ ju Y

"

1

2
p˘ε1 ˘ ε2 ˘ ε3 ˘ ε4q

*

.

Exercise 17.3. Show that LF4 is the root lattice for the root system pV4,∆F4q, and
that |∆F4 | “ 48.

The last exceptional root system is of type G2 (of rank 2). In order to construct it, recall
the root system of type A2: pVA2 ,∆A2q, where VA2 “

␣
ř3

i“1 aiεi
ˇ

ˇ ai P R, a1 ` a2 ` a3 “ 0
(

,

pεi, εjq “ δij; the root lattice is LA2 “
␣
ř3

i“1 aiεi
ˇ

ˇ ai P Z, a1 ` a2 ` a3 “ 0
(

, the set of roots
∆A2 “ tα P LA2 | pα, αq “ 2u “ tεi ´ εj | i, j P t1, 2, 3u , i ‰ ju.

We let VG2 “ VA2 . Let LG2 “ LA2 ,

∆G2 “ tα P LG2 | pα, αq “ 2 or 6u pĄ ∆A2q.

It is straightforward to see that

∆G2 “ ∆A2 Y t˘p2εi ´ εj ´ εkq | i, j, k P t1, 2, 3u are distinctu .

Obviously, LG2 is the root lattice for this root system.

Exercise 17.4. Prove that pVG2 ,∆G2q is an indecomposable root system with |∆G2 | “

12.

Bonus Problem. Is it true that for an even lattice L the set tα P L | pα, αq “ 2 or 6u

satisfies the string condition?

In order to construct the root space decomposition of a semisimple Lie algebra g, we
needed to “break symmetry”: choose a Cartan subalgebra. This has led to the root system
pV,∆q of g, which is independent, up to isomorphism, of this choice.

In order to study (general) root systems, we need to break symmetry again.
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Definition 17.1. Let pV,∆q be a root system and let f P V ˚ be a linear R-valued
function on V , such that fpαq ‰ 0 for all α P ∆. Then

(i) α P ∆ is called positive if fpαq ą 0 and negative if fpαq ă 0;

(ii) A positive root is called simple if it cannot be written as a sum of two positive
roots;

(iii) A highest root θ is that on which f takes maximal value.

Notation 17.1. ∆` (resp. ∆´) is the set of positive (resp. negative) roots; Π Ď ∆` is the
set of simple roots. The set Π is called indecomposable if it cannot be represented as a
union of two non-empty subsets, which are orthogonal to each other.

Dynkin Theorem.

(a) If α, β P Π and α ‰ β, then α ´ β R ∆ and pα, βq ď 0.

(b) ∆` Ď Zě0Π.

(c) If α P ∆`zΠ, then α ´ γ P ∆ for some γ P Π; moreover, then α ´ γ P ∆`.

(d) Π is a basis of V (over R) and a basis of L over Z.

(e) ∆ is indecomposable if and only if Π is indecomposable.

Proof. (a) is proved by contradiction. If α ´ β “ γ P ∆, then either

• γ P ∆`, and so α “ β ` γ, which contradicts α P Π,

• or γ P ∆´, and so β “ α ` p´γq, which contradicts β P Π.

Finally, pα, βq ď 0 due to the string condition.

(b) If α P ∆` is simple, there is nothing to prove. Otherwise α “ β ` γ for some
β, γ P ∆`, and then fpαq “ fpβq ` fpγq, so both fpβq and fpγq are strictly less than fpαq.
Repeat this process until all summands are simple (which must happen in finitely many
steps since ∆ is finite), thus yielding α as a sum of simple roots.

(c) If α´γ R ∆ for all γ P Π, then the string condition would imply that 2pα,γq

pγ,γq
“ ´q ď 0,

hence pα, γq ď 0 for all γ P Π. Then, by (b),

pα, αq “

˜

α,
ÿ

γPΠ

kγγ

¸

ď 0, where all kγ ě 0,
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which would imply that α “ 0, which is impossible since α is a root. Hence α ´ γ P ∆ for
some γ P Π. Finally, if α´ γ R ∆`, we have α´ γ “ β P ∆´, and then γ “ α` p´βq, which
would contradict γ being simple.

(d) By (b), ∆` Ď ZΠ, hence, since ∆´ “ ´∆`, ∆ “ ∆` Y ∆´ Ď ZΠ. Thus L “ ZΠ,
hence V is spanned by Π over R. To prove linear independence of the set Π over R, suppose
the contrary: there is a non-trivial linear combination of elements from Π, which is 0.
Splitting it into positive and negative parts, and moving the negative part to the other side,
we obtain

γ :“
ÿ

i

aiαi “
ÿ

j

bjαj, (1)

where all ai and bj are positive integers, the set of i’s is non-empty, and i ‰ j.

However, by (a) we obtain

pγ, γq “ p
ÿ

i

aiαi,
ÿ

j

bjαjq ď 0,

hence γ “ 0. But then we have from (1): 0 “ fpγq “
ř

i aifpαiq ą 0, a contradiction.

(e) If pV,∆q is decomposable, then by (d), so is Π. Conversely, suppose that Π de-
composes as Π1

š

Π2 in two non-empty sets, with Π1 K Π2, then we will show that ∆ “

pZΠ1 X ∆q Y pZΠ2 X ∆q.

For this we need to show that any α P ∆` lies in one of the sets ZΠi X ∆`, i “

1, 2. Suppose the contrary, and take the α P ∆` with minimal sum of coefficients in its
decomposition as

ř

γPΠ kγγ. By (c), there is γ P Π, such that α´ γ P ∆`, and by the above
minimality, α ´ γ lies in one of the sets ZΠi X ∆`, so α “ β ` γ, where γ P Π1 and β P Π2.
But then 2pα,βq

pβ,βq
“ 2 `

2pγ,βq

pβ,βq
“ 2. By the string condition, it follows that γ ´ β is a root,

which contradicts (a). ■

Definition 17.2. Let Π “ tα1, ¨ ¨ ¨ , αru be the set of simple roots of ∆, corresponding

to the choice of f . This is a basis of V , by Dynkin Theorem (d). Let Aij “
2pαi,αjq

pαi,αiq
,

which are integers, by the string condition. The matrix A “ pAijq
r
i,j“1 is called the

Cartan matrix of the root system pV,∆q. (We will show later that it is independent
of the choice of f , up to a permutation of the set Π.)
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Proposition 17.1. The Cartan matrix A “ pAijq of the root system pV,∆q has all
entries integers, and satisfies the following properties:

(a) Aii “ 2 for all i;

(b) If i ‰ j, then Aij ď 0, and Aij “ 0 ñ Aji “ 0;

(c) All principal minors of A are positive, in particular, detA ą 0.

Proof. (a) is immediate, and (b) follows from Dynkin Theorem (a), since pα, αq ą 0 for
α ‰ 0. In order to prove (c), note that

A “

¨

˚

˝

2{pα1, α1q 0
. . .

2{pαr, αrq

˛

‹

‚

ppαi, αjqq
r
i,j“1 .

Hence every principal minor of A is equal to the product of a positive number and a principal
minor of the Gram matrix of the set Π. The result follows by the Sylvester criterion. ■

Definition 17.3. Let θ be a highest root of ∆, and let α0 “ ´θ, rΠ “ tα0, ¨ ¨ ¨ , αru.

The pr ` 1q ˆ pr ` 1q matrix rA “ pAijq
r
i,j“0 is called the extended Cartan matrix

of the root system pV,∆q.

Exercise 17.5. The extended Cartan matrix rA satisfies all properties of Proposition
17.1, except that det rA “ 0.

Definition 17.4. An rˆr matrix, satisfying all properties of Proposition 17.1 is called
an abstract Cartan matrix .

We will classify abstract Cartan matrices and prove that to each of them corresponds a
semi-simple finite-dimensional Lie algebra, in the subsequent lectures.
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Classification of Abstract Cartan Matrices and their Dynkin Diagrams
Lecture 18

Classification of Abstract Cartan Matrices and their Dynkin Diagrams

Recall that an abstract Cartan matrix is an rˆ r matrix A “ pAijq with integer entries,
satisfying the following properties:

(a) Aii “ 2 for all i;

(b) if i ‰ j, then Aij ď 0, and Aij ă 0 ñ Aji ă 0;

(c) all principal minors of A are positive, in particular, detA ą 0.

In this lecture we classify abstract Cartan matrices A, rather their Dynkin diagrams.

If r “ 1, then, of course A “ p2q, and this is the Cartan matrix of type A1.

There are more possibilities for r “ 2. In this case A “

ˆ

2 ´a
´b 2

˙

, where either

a “ b “ 0, or a and b are positive integers, such that ab ă 4 (since detA ą 0). Thus, we
have 6 possibilities:

ˆ

2 0
0 2

˙ ˆ

2 ´1
´1 2

˙ ˆ

2 ´1
´2 2

˙ ˆ

2 ´2
´1 2

˙ ˆ

2 ´1
´3 2

˙ ˆ

2 ´3
´1 2

˙

In the second row the Dynkin diagrams of these abstract Cartan matrices are depicted.
For an arbitrary abstract Cartan r ˆ r matrix its Dynkin diagram DpAq is a graph with r
vertices, which are connected by edges as follows: if i, j P t1, ¨ ¨ ¨ , ru , i ‰ j, the corresponding

principal submatrix

ˆ

Aii Aij

Aji Ajj

˙

is, obviously 2ˆ2 abstract Cartan matrix, listed above, and

we connect them as in the above table.

Remark 18.1. A permutation of the set of simple roots Π “ tα1, ¨ ¨ ¨ , αru corresponds to
the permutation of the rows and the same permutation of the columns of its Cartan matrix,
which corresponds to a permutation of vertices of the Dynkin diagram. Hence the sets of
simple roots of root systems are classifed by the Dynkin diagrams.

In particular, there are only 4 Dynkin diagrams with 2 vertices:

(1)

Next we find Cartan matrices and their (connected) Dynkin diagrams of all indecompos-
able root systems that we constructed so far.
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Remarks 18.2.

(a) For a decomposable root system, the Dynkin diagram is a disjoint union of connected
Dynkin diagrams, corresponding to indecomposable components by Dynkin Theorem
(e).

(b) Any subdiagram of a Dynkin diagram of an abstract Cartan matrix is again the Dynkin
diagram of an abstract Cartan matrix.

(c) Dp rAq, the extended Dynkin diagram, is NOT a Dynkin diagram of an abstract Cartan

matrix, since det rA “ 0.

The list of these connected Dynkin diagrams and their extended Dynkin diagrams is as
follows:

(a) Ar ¨ ¨ ¨ rAr
¨ ¨ ¨

`

(b) Br ¨ ¨ ¨ rBr
¨ ¨ ¨

+

(c) Cr ¨ ¨ ¨ rCr
¨ ¨ ¨

`

(d) Dr ¨ ¨ ¨ rDr
¨ ¨ ¨

+

pr ą 4q

rD4

+

(e) E8
rE8

+

(f) E7
rE7 +

(g) E6
rE6

+

(h) F4
rF4

+

(i) G2
rG2

+

Figure 1: Dynkin diagrams and extended Dynkin diagrams of all the indecomposable root
systems constructed so far. Here ` corresponds to the vertex added to DpAq.
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The basic idea is to choose the function f : V Ñ R, which takes non-zero values on
roots, to have integer values on roots, such that | tα P ∆` | fpαq “ 1u | “ r. Then Π is the
set of these α1s.

Example 18.1. Ar pr ě 1q, ∆ “ tεi ´ εj | 1 ď i, j ď r ` 1, i ‰ ju.

Take fpε1q “ r, fpε2q “ r ´ 1, ¨ ¨ ¨ fpεrq “ 1, fpεr`1q “ 0. Then f |∆‰ 0,

∆` “ tεi ´ εj | i ă ju ,

Π “ tεi ´ εi`1 | i “ 1, ¨ ¨ ¨ , ru ,

θ “ ε1 ´ εr`1,

A “

¨

˚

˚

˚

˝

2 ´1 ¨ ¨ ¨ 0

´1 2
...

...
. . . ´1

0 ¨ ¨ ¨ ´1 2

˛

‹

‹

‹

‚

,

DpAq “ ¨ ¨ ¨ ,

α0 “ εr`1 ´ ε1,

Dp rAq “ ¨ ¨ ¨

`

.

This is precisely the first row of Figure 1.

Exercise 18.1. Show that DpAq and Dp rAq are as in the rows 2 and 3 of Figure 1 for
Br and Cr.

We show this below for Dr and E8.

Example 18.2. Dr pr ě 3q, ∆ “ t˘εi ˘ εj | i, j P t1, ¨ ¨ ¨ , ru , i ‰ ju .

Take fpε1q “ r ´ 1, fpε2q “ r ´ 2, ¨ ¨ ¨ , fpεrq “ 0. Then f |∆‰ 0,

∆` “ tεi ˘ εj | i ă ju ,

Π “ tε1 ´ ε2, ε2 ´ ε3, ¨ ¨ ¨ , εr´1 ´ εr, εr´1 ` εru ,

θ “ ε1 ` ε2 “ ´α0.

So DpAq and Dp rAq are as in row 4 of Figure 1. Note that DpD3q “ DpA3q.

Example 18.3. E8, ∆ “ t˘εi ˘ εj | i ‰ juY
␣

1
2
p˘ε1 ˘ ¨ ¨ ¨ ˘ ε8q | even number of ´

(

.
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Let fpε1q “ 23, fpε2q “ 6, fpε3q “ 5, ¨ ¨ ¨ , fpε7q “ 1, fpε8q “ 0. Then f |∆‰ 0, and f
takes integer values on ∆,

∆` “ tεi ´ εj | 1 ď i ă j ď 8u Y

"

1

2
pε1 ˘ ¨ ¨ ¨ ˘ ε8q | even number of ´

*

,

Π “

"

ε2 ´ ε3, ε3 ´ ε4, ¨ ¨ ¨ , ε7 ´ ε8,
1

2
pε1 ´ ε2 ´ ¨ ¨ ¨ ´ ε7 ` ε8q

*

,

θ “ ε1 ` ε2 “ ´α0.

So DpAq and Dp rAq are as in Figure 1.

Exercise 18.2. Show that DpAq and Dp rAq are as in rows 6 and 7 for E7 and E6 in
Figure 1.

Exercise 18.3. Show that DpAq and Dp rAq are as in rows 8 and 9 for F4 and G2 in
Figure 1.

Now we turn to classification of connected Dynkin diagrams of abstract Cartan matrices.
Note that DpA1q “ DpB1q “ DpC1q, DpB2q “ DpC2q, and DpD3q “ DpA3q.

Theorem 18.1. A complete non-redundant list of connected Dynkin diagrams DpAq

of abstract Cartan matrices coincides with that of the constructed indecomposable root
systems, and is as follows:

DpArq pr ě 2q, DpBrq pr ě 3q, DpCrq pr ě 1q, DpDrq pr ě 4q,

DpE6q, DpE7q, DpE8q, DpF4q, and DpG2q.

Proof. We have to prove that there are no other connected Dynkin diagrams. To do this,
we find all connected graphs with connections of four types in (1), such that any subgraph
corresponds to a principal submatrix with positive determinant (since any subgraph must
be a Dynkin diagram).

In particular, Dynkin diagrams don’t contain any extended Dynkin diagrams, since the
corresponding principal submatrix has determinant 0.

Part 1. We first classify all simply-laced connected Dynkin diagrams, i.e. diagrams
having only or connections (which correspond to symmetric Cartan matri-
ces).

Such a diagram contains no cycles, since otherwise it contains Dp rAsq for some s ě 2. It
has simple edges, and it may or may not contain branching vertices. If there are no branching
vertices, we get DpArq. If there are 2 branching vertices, the Dynkin diagram contains Dp rDsq
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for some s ě 5, which is impossible. If there is precisely one branching vertex, the Dynkin
diagram has 3 branches, since otherwise it contains Dp rD4q as a subgraph.

Therefore, it remains to consider the case when DpAq is a graph of the form Tp,q,r, where
p ě q ě r ě 2:

¨ ¨ ¨ ¨ ¨ ¨

...

+

looooomooooon

p

looooomooooon

q

r

$

’

’

&

’

’

%

If r “ 3, then Tp,q,3 contains Dp rE6q “ T3,3,3, which is impossible, so r “ 2, i.e. DpAq has
the form

¨ ¨ ¨ ¨ ¨ ¨
looooomooooon

p

looooomooooon

q

Tp,q,2 : with p ě q ě 2.

If q “ 2, we get Tp,q,2 “ Dp`2, so it remains to consider the case q ě 3.

If q ą 3, then DpAq contains Dp rE7q “ T4,4,2, which is impossible. So we are left with
the case

¨ ¨ ¨
looooomooooon

p

Tp,3,2 : with p ě 3.

If p “ 3, 4, or 5, we get E6, E7, or E8 respectively. In the case p ě 6, DpAq contains

T6,3,2 “ Dp rE8q, which is impossible. This completes the proof in the simply-laced case.

Part 2. We now classify non-simply-laced connected diagrams DpAq, i.e. containing
or as subdiagrams. This can be done by computing many large determinants

(which we completely avoided in the simply-laced case). But we would rather argue by the
following simple result on determinants:
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Exercise 18.4. Let A be an r ˆ r matrix, r ě 3, and let B (resp. C) be the
submatrices of A, obtained by removing the first row and column (resp. the first two
rows and columns). Then

(a) If the first row (resp. column) of A is
`

2 ´a 0 ¨ ¨ ¨ 0
˘

(resp.
`

2 ´b 0 ¨ ¨ ¨ 0
˘T

, then

detA “ 2 detB ´ ab detC.

(b) If

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

c1 ´a1 ´br
´b1 c2 ´a2 0

´b2 c3
. . .

. . . . . . ´ar´2

0 ´br´2 cr´1 ´ar´1

´ar ´br´1 cr

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

then detpA ´ εE12q “ detA ´ ε pb1 detC `
śr

i“2 aiq. In particular, if b1 ą 0,
ai ą 0 for i “ 2, ¨ ¨ ¨ , r, detC ą 0, and ε ą 0, then detpA ´ εE12q ă detA.

Exercise 18.4(b) implies that a non-simply laced Dynkin diagram DpAq has no cycles,

since otherwise detA ă det rAr “ 0, a contradiction.

Next, if DpAq without cycles contains the Dynkin diagram of G2 and is connected, the
matrix A contains the following principal submatrix

M “

¨

˝

2 ´a 0
´b 2 ´1
0 ´3 2

˛

‚ with a, b ą 0,

then in Exercise 18.4(a), we have B “

ˆ

2 ´1
´3 2

˙

, C “ p2q, so that detM “ 2 detB ´

ab detC “ 2p1 ´ abq ď 0, a contradiction.

It remains to consider the case when DpAq has only simple or ě 1 double connections.

Recall that ĂCs with s ě 2 cannot be a subdiagram. By Exercise 18.4(a) the subdiagrams
with flipped arrow directions also cannot be subdiagrams, since they are obtained from the
corresponding matrix of Dp rCsq by replacing some of A,B or C by their transposes, which
does not change any of the determinants in the calculation. Hence, by Exercise 18.4(a) each
of these variants is impossible.

Therefore DpAq may contain only one double connection. But then it cannot have a

branching point, since Dp rBrq contains a double edge and a branching point. So the only
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remaining case is the diagram

¨ ¨ ¨ ¨ ¨ ¨
looooomooooon

p

looooomooooon

q

If p “ 1 (resp. q “ 1), we get the Dynkin diagram of Cq`1 (resp. Bp`1. If p “ 2 “ q,

we get F4. The diagram Dp rF4q has p “ 3, q “ 2 and the corresponding transpose Cartan
matrix has p “ 2, q “ 3, so both cases are impossible. ■

Bonus Problem. Prove that the list of all abstract extended Dynkin diagrams (i.e.
connected Dynkin diagrams of the matrices, satisfying all properties, listed in Propo-
sition 17.1, except that the determinant is 0), consists of those in the right column of
Figure 1, those obtained from them by reversing the arrows, and the Dynkin diagrams

of 2 ˆ 2 matrices

ˆ

2 ´2
´2 2

˙

and

ˆ

2 ´4
´1 2

˙

.
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Lecture 19

Classification of Simple Finite Dimensional Lie Algebras over
an Algebraically Closed Field of Characteristic 0

Since any semisimple Lie algebra decomposes uniquely, up to permutation, in a direct
sum of simple ones, the classification of the former reduces to the latter.

Our strategy schematically is as follows:

simple g
choose h indecomposable

root system
attached to g
pV “ h˚

R,∆q

Ď
indecomposable

abstract
root system

pV,∆q

choose f P V ˚

Cartan matrix
A of pV,∆q with
connected DpAq

Ě
abstract Cartan
matrix A with
connected DpAq

Lie algebra gpAq

„

Semisimple Lie algebras over an algebraically closed field F of characteristic 0 are clas-
sified by the following theorem.

Classification Theorem.

(a) Finite-dimensional semisimple Lie algebras are isomorphic if and only if they
have the same Dynkin diagram.

(b) A complete non-redundant list of simple finite-dimensional Lie algebras over F is
the following:

slnpFq pn ě 2q, sonpFq pn ě 7q, sp2npFq pn ě 2q,

E6, E7, E8, F4, G2.

Corollary 19.1.

(a) An arbitrary root system pV,∆q is isomorphic to a root system, attached to a
semisimple finite-dimensional Lie algebra over F.

(b) Any abstract Cartan matrix is that of a finite-dimensional semisimple Lie algebra
over F.

Exercise 19.1. Deduce from the Classification Theorem (a) the following isomor-
phisms:

sl2pFq » so3pFq » sp2pFq, so4pFq » sl2pFq ‘ sl2pFq,

so5pFq » sp4pFq, so6pFq » sl4pFq.
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Beginning of proof of Classification Theorem (a). Let g be a semisimple finite-dimensional
Lie algebra over F. Choose a Cartan subalgebra h and consider the root space decomposition:

g “ h ‘

˜

à

αP∆

gα

¸

, (1)

where ∆ Ă h˚ is the set of roots. Choose a linear function on h, which takes non-zero integer
(or rational) values on ∆, and let ∆` “ tα P ∆ | fpαq ą 0u ,∆´ “ tα P ∆ | fpαq ă 0u. Then
∆ “ ∆`

š

∆´, where ∆´ “ ´∆`. Let Π Ď ∆` be the set of simple roots. We will prove
later that nothing depends on the choice of f .

Let n` “
À

αP∆`
gα, and n´ “

À

αP∆´
gα, which are obviously subalgebras of g. Then

(1) implies the triangular decomposition

g “ n´ ‘ h ‘ n` (direct sum of vector spaces). (2)

Exercise 19.2. Show that for g “ slnpFq, sonpFq, or spnpFq, choosing h to be all
diagonal matrices in g, then n` (resp. n´) consists of all strictly upper (resp. lower)
triangular matrices in g. (Hence the name triangular decomposition)

Continuation of proof of Classification Theorem (a). Recall that for each α P ∆`, we can

choose Eα P gα and Fα P g´α, such that κpEα, E´αq “ 2
κpα,αq

, so that, letting Hα “
2ν´1pαq

κpα,αq
,

we obtain a subalgebra FEα ‘ FHα ‘ FFα, isomorphic to sl2pFq. For the set of simple roots
Π “ tα1, ¨ ¨ ¨ , αru, set

Ei “ Eαi
, Hi “ Hαi

, Fi “ F´αi
, 1 ď i ď r.

Then we have:

(a) rHi, Hjs “ 0,

(b) rHi, Ejs “ AijEj,

(c) rHi, Fjs “ ´AijFj,

(d) rEi, Fjs “ δijHj,

where A “ pAijq is the Cartan matrix of g. Indeed, (a) holds since h is abelian; (b) and (c)
hold since Ej P gαj

and Fj P g´αj
. Finally (d) holds for i “ j by construction, and for i ‰ j

by Dynkin Theorem (a) (difference of distinct simple roots is not a root).

Definition 19.1. The relations (a)-(d) are called the Chevalley relations. The
elements Ei, Fi, Hi are called Chevalley generators .
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Exercise 19.3. Prove that the Ei satisfy the following relations:

pad Eiq
1´AijEj “ 0 for i ‰ j,

and similarly the Fi. These are called Serre relations.

(In the simply-laced case these relatoins mean that rEi, Ejs “ 0 (resp. rrEi, Ejs, Ejs “

0) if i and j are not connected (resp. connected) in the Dynkin diagram of g.)

Lemma 19.1. The elements E1, ¨ ¨ ¨ , Er (resp. F1, ¨ ¨ ¨ , Fr) generate n` (resp. n´).
Consequently the Chevalley generators indeed generate the Lie algebra g.

Proof. We have to prove that for each α P ∆` the root space gα lies in the subalgebra n1
` of

n`, generated by E1, ¨ ¨ ¨ , Er, and similarly g´α lies in n1
´, generated by the Fi’s.

Given α P ∆`, writing α “
řr

i“1miαi, where mi are non-negative integers, we call
ř

imi pě 1q the height of α, and prove the claim by induction on the height. When height
α “ 1, this root is simple, so Eα P n1

`.

For the inductive step, recall that for a non-simple α there exists a simple root αi, such
that α ´ αi P ∆` (by Dynkin Theorem (c) in Lecture 17), hence gα “ rgα´αi

, Eis. By the
inductive assumption, gα´αi

P n1
`, hence gα P n1

`. For n´ the proof is the same. ■

Definition 19.2. Let A be an abstract Cartan matrix. Denote by rgpAq the Lie algebra
on generators Ei, Fi and Hi, 1 ď i ď r, subject to the Chevalley relations (a)-(d). Note
that this Lie algebra depends only on A.

The Lie algebra rgpAq is infinite-dimensional if r ą 1 (we will not need this fact), but is
closely related to g, as we have an obvious surjective homomorphism φ : rgpAq Ñ g, sending
Ei ÞÑ Ei, Fi ÞÑ Fi, Hi ÞÑ Hi. Surjectivtiy of φ follows from Lemma 19.1.

Lemma 19.2. Let rn` (resp. rn´) be the subalgebra of rgpAq, generated by E1, ¨ ¨ ¨ , Er

(resp. F1, ¨ ¨ ¨ , Fr), and let rh be the span of H1, ¨ ¨ ¨ , Hr. Then

(a) rgpAq “ rn` ‘ rh ‘ rn´ (direct sum of vector spaces).

(b) If I is an ideal of rgpAq, then

I “ prn` X Iq ‘ prh X Iq ‘ prn´ X Iq.

(c) Provided that the Lie algebra g is simple, the Lie algebra rgpAq contains a unique
proper maximal ideal IpAq.
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Proof. (a) Let rgpAq1 “ rn` `rh`rn´, which is a subspace of rgpAq. It is obvious, by the Jacobi
identity, that

”

rh,rgpAq
1
ı

Ď rgpAq
1. (3)

We will show that

rEi,rgpAq
1
s Ď rgpAq

1, (4)

rFi,rgpAq
1
s Ď rgpAq

1. (5)

Since an arbitrary element of rgpAq is an iterated bracket of the Ei, Fi, Hi, by the Jacobi
identity, (3), (4) and (5) together would imply that rgpAq Ď rgpAq1, hence rgpAq “ rgpAq1.

Inclusion (5) is proved in the same way as (4). To prove (4), note that, obviously

rEi,rn`s Ď rn`, and rEi, hs Ď rn`. Finally, rEi,rn´s Ď rh ` rn´ because rEi, Fjs P rh, and, by the
Jacobi identity, for s ě 2 we have:

rEi, rFi1 , ¨ ¨ ¨ , Fisss “ δii1 rHi1 , Fi2 , ¨ ¨ ¨ , Fiss ` ¨ ¨ ¨ ` δiis
“

Fi1 , ¨ ¨ ¨ , Fis´1 , His

‰

Ă rn´,

by the Chevalley relations (d) and (c). Here ra1, ..., ass stands for an s-fold commutator with
brackets taken in arbitrary order.

To show that the sum in rgpAq “ rn` ` rh ` rn´ is direct, let h0 P h satisfy αiph0q “ 1 for
all i. Writing h0 “

ř

j xjHj, finding such an h0 is equivalent to solving the linear system of
equations

ÿ

i

Aijxi “ 1, j “ 1, ¨ ¨ ¨ , r,

which is possible since detA ‰ 0.

Then ad h0 acts with positive (resp. negative) eigenvalues (equal to height α and resp.

´height α) on rn` (resp. rn´) and 0 eigenvalue on rh, proving that the sum is direct.

To prove (b), we invoke Lemma 19.1, which said for any h0-module V “
À

λPh˚
0
Vλ and

any h0-invariant subspace U Ď V , we have U “
À

λpU X Vλq. Applying this to the adjoint
representation and h0 “ Fh0, we see that rn` (resp. rn´) is the sum of ad h0-eigenspaces with

positive (resp. negative) eigenvalues and rh has 0 eigenvalue, proving (b).

(d) Since g is simple, its Dynkin diagram DpAq is connected. Let I be a proper ideal of

rgpAq. Then I X rh “ 0. Indeed, if a P I X h is non-zero, then αipaq ‰ 0 for some i, hence
ra,Eis “ αipaqEi ‰ 0, so Ei P I. Hence Hi P I by Chevalley relation (d). Also, by the
Chevalley relations (b) and (c), Ej and Fj are contained in I for all j, such that Aij ‰ 0.
Since DpAq is connected, it follows that all Ej and Fj are contained in I, hence, by Chevalley
relation (d), all Hj P I, contradicting properness of I.

110



Classification of Simple Finite Dimensional Lie Algebras over an Algebraically
Closed Field of Characteristic 0

Thus we have the decomposition

I “ prn` X Iq ‘ prn´ X Iq.

for any proper ideal, hence for the sum of all proper idealsm, IpAq. Hence IpAq is the unique
proper maximal ideal. ■

Continuation of proof of the Classification Theorem. By part (c) of Lemma 19.2, the Lie
algebra

gpAq “ rgpAq{IpAq

depends only on the abstract Cartan matrix A, if DpAq is connected. So if g is a simple
Lie algebra, the kernel of the surjective homomorphism φ is a maximal proper ideal, hence,
by Lemma 19.2(a), φ induces an isomorphism gpAq » g. This proves the “if” part of
Classification Theorem (a). The “only if” part will follow once we show the independence
of A from the choice of f . This will be proved in Lecture 21.

Claim (b) will follow from the classification of Dynkin diagrams of abstract Cartan
matrices, once we show that dim gpAq ă 8 for A “ E6, E7, E8, F4, G2, This will be proved
in Lecture 20. We will prove this by exhibiting an explicit construction of the Lie algebras
gpAq for these five abstract Cartan matrices A.

Exercise 19.4. Prove that dimrgpAq “ 8 if r ą 1.

Remark 19.1. The Lie algebra gpAq, for which A satisfies (i), (ii), but not necessarily (iii)
is called a Kac-Moody algebra . It is infinite-dimensional if (iii) doesn’t hold. Especially

important are the Lie algebras gp rAq, where rA is an extended Cartan matrix, called affine
Lie algebras.
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Lecture 20

Explicit Construction of Exceptional Simple Lie Algebras, and the Compact Form

In the previous lecture we proved that any simple classical Lie algebra g is isomorphic
to the Lie algebra gpAq, where A is the Cartan matrix of g. One of the two things that
remained, in order to complete the proof of the Classification Theorem, is to show that the
Lie algebra gpAq is finite-dimensional for all five exceptional abstract Cartan matrices. We
do this by an explicit construction of simple Lie algebras with an abstract Cartan matrix A.
Of course, for classical A we recover all clasical (finite-dimensional) simple Lie algebras.

We shall consider two cases: simply laced case, consisting of symmetric abstract Cartan
matrices A of type Ar, Dr, E6, E7, E8, for which the set of roots ∆ consists of vectors α, such
that pα, αq “ 2 in the even root lattice L “ Z∆; and the non-simply laced case, of A of type
Br, Cr, F4, G2.

Case 1: simply-laced. Let L be an even lattice of rank r such that ∆ “ tα P L | pα, αq “ 2u

spans L over Z. Then we know that pV “ R bZ L,∆q is a root system, with a symmetric
Cartan matrix A “ ppαi, αjqq

r
i,j“1.

We expect the corresponding simple Lie algebra to be of the form

g “ h ‘

˜

à

αP∆

FEα

¸

, where h “ F bZ ∆ (direct sum of vector spaces) (1)

with the following brackets, where h, h1 P h, and α, β P ∆:

(a) rh, h1s “ 0,

(b) rh,Eαs “ pα, hqEα “ ´rEα, hs,

(c) rEα, E´αs “ ´α,

(d) rEα, Eβs “ 0 if α ` β R ∆ Y t0u,

(e) rEα, Eβs “ εpα, βqEα`β for some εpα, βq P Fˆ if α ` β P ∆.

For this algebra g to be a Lie algebra we need to construct the non-zero constants εpα, βq for
all α, β P ∆ such that α ` β P ∆, for which skew-commutativity and Jacobi identity hold.
Remarkedly, we can arrange so that εpα, βq P t˘1u for all α, β P L.

Once we prove that g is a Lie algebra, it will automatically be simple by the criterion
from Lecture 14, noting that αphq means the same as pα, hq if we identify h with h˚, using
the bilinear form p‚, ‚q on L. Then rh,Eαs “ αphqEα for h P h, α P ∆ and αpν´1pαqq “

pα, αq ‰ 0.
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Proposition 20.1. There exists a map

ε : L ˆ L Ñ t˘1u

with the following two properties:

(a) (bimultiplicativity) εpα, β`γq “ εpα, βqεpα, γq, and pεpα`β, γq “ εpα, γqεpβ, γq;
this implies εpα, 0q “ εp0, αq “ 1 and εp´α, βq “ εpα, βq “ εpα,´βq.

(b) εpα, αq “ p´1qpα,αq{2 for all α P L; by expanding εpα ` β, α ` βq “

εpα, αqεpβ, βqεpα, βqεpβ, αq, it follows that

εpα, βqεpβ, αq “ p´1q
pα,βq, if α, β P ∆. (2)

Proof. Choose a set of simple roots Π “ tα1, ¨ ¨ ¨ , αru for ∆ and consider the Dynkin
diagram. Direct the edges of the Dynkin diagram arbitrarily and set

(i) εpαi, αiq “ ´1 for all i;

(ii) εpαi, αjq “ ´εpαj, αiq “ ´1 if i ‰ j and there is an edge αi Ñ αj in the Dynkin
diagram;

(iii) εpαi, αjq “ εpαj, αiq “ 1 if αi and αj are not connected in the Dynkin diagram.

This implies that

εpαi, αjqεpαj, αiq “ p´1q
pαi,αjq for i, j “ 1, ¨ ¨ ¨ , r,

since pαi, αjq “ ´1 (resp. “ 0) if αi and αj are connected in DpAq (resp. not connected).

Then we extend ε from Π ˆ Π Ñ t˘1u to ε : Lˆ L Ñ t˘1u by bimultiplicativity, so we
get bimultiplicativity of ε for free, and twe just need to check that εpα, αq “ p´1qpα,αq{2 for
α P ∆. Write α “

řr
i“1 kiαi, where ki P Z. Then we have:

εpα, αq “

r
ź

i,j“1

εpαi, αjq
kikj “

r
ź

i“1

εpαi, αjq
k2i

ź

αiÑαj

pεpαi, αjqεpαj, αiqq
kikj

“ p´1q
ř

i k
2
i

ź

αiÑαj

p´1q
kikj “ p´1q

ř

i k
2
i pαi,αiq{2

ź

αiÑαj

p´1q
kikjpαi,αjq

“ p´1q
pα,αq{2.

In the second equality we used bimultiplicativity of ε. In the third equality we used that
i, j for which αi and αj are not connected contribute 1 to the product, and in the final
two equalities we used that pαi, αiq “ 2 and pαi, αjq “ ´1 if αi and αj are connected, and
pαi, αjq “ 0 if αi and αj are not connected in DpAq. ■
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Theorem 20.1. If ε : L ˆ L Ñ t˘1u satisfies properties (a) and (b) of Proposition
20.1, then skew-commutativity and Jacobi identity holds for the Lie algebra g, given
by (1), with brackets (a) - (e). Consequently g is a Lie algebra.

Proof. Note that, since α is a root if and only if pα, αq “ 2, we have for α, β P ∆:

α ˘ β P ∆ if and only if pα, βq “ ¯1. (3)

Hence, by (2), εpα, βqεpβ, αq “ ´1 if α, β, α ` β P ∆, proving that rEα, Eβs “ ´rEβ, Eαs in
this case (see (e)). In all other cases (a) - (d), the skew-commutativity is obvious.

As we did for skew-commutativity, it is enough to show, in order to prove the Jacobi
identity, that

rrx, ys, zs ` rry, zs, xs ` rrz, xs, ys “ 0 (4)

if x, y, z are either in h, or one of the Eα.

If one of the elements x, y, z lies in h, it is immediate to see that (4) holds for any map
ε : L ˆ L Ñ Fˆ. It remains to check (4) if x “ Eα, y “ Eβ, z “ Eγ for α, β, γ P ∆.

If α`β, α` γ, β` γ are not in ∆Y t0u, then all brackets rEα, Eβs, rEα, Eγs, rEβ, Eγs are
zero, hence (4) trivially holds.

So we may assume without loss of generality that α ` β P ∆ Y t0u.

Case 1. α ` β “ 0. In this case the LHS of (4) is

r´α,Eγs ` rrE´α, Eγs, Eαs ` rrEγ, Eαs, E´αs. (5)

If γ “ ˘α, then p5q becomes

¯2E˘α ` r˘α,E˘αs ` r˘α,E˘αs “ 0,

so in this case Jacobi identity holds for any map ε.

Hence we may assume that γ ˘ α ‰ 0. If γ ˘ α R ∆, then rE˘α, Eγs “ 0 and pα, γq “ 0
by (3), so all three terms in (5) vanish.

Otherwise assume that γ`α P ∆, so that γ´α R ∆ by (3), whence rE´α, Eγs “ 0. Then
the Jacobi identity becomes

´pα, γqEγ ` εpγ, αqεpγ ` α,´αqEγ “ 0.
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This is equivalent to

´pα, γq ` εpγ, αqεpγ,´αqεpα,´αq “ 0,

which holds since pα, γq “ ´1 by (3), and εpγ, αqεpγ,´αqεpα,´αq “ εpγ, αqεpγ, αq´1εpα, αq “

´1. The case when γ ´ α P ∆ and γ ` α R ∆ is similar.

Case 2. α ` β, α ` γ, β ` γ P ∆. In this case pα, βq “ pα, γq “ pβ, γq “ ´1 by (3).
This implies that pα ` β ` γ, α ` β, γq “ 2 ` 2 ` 2 ´ 6 ¨ 1 “ 0, so α ` β ` γ “ 0. Then
γ “ ´α ´ β P ∆, and (4) becomes equivalent to showing that

rrEα, Eβs, E´α´βs ` rrEβ, E´α´βs, Eαs ` rrE´α´β, Eαs, Eβs

“ εpα, βqrEα`β, E´α´βs ` εpβ,´α ´ βqrE´α, Eαs ` εp´α ´ β, αqrE´β, Eβs

“ ´εpα, βqpα ` βq ´ εpβ, αqα ´ εpβ, αqβ vanishes.

But εpα, βqεpβ, αq “ p´1qpα,βq “ ´1 by (3), so the Jacobi identity holds in this case too. ■

Remark 20.1. The dimension of g, given by (1), is equal to |∆| ` r, hence

dimE6 “ 72, dimE7 “ 133, dimE8 “ 248, dimF4 “ 52, dimG2 “ 14.

Exercise 20.1. Define on the Lie algebra g, given by (1), the following bilinear form:

• On h “ F bZ L it is the bilinear form p‚, ‚q on L extended by bilinearity,

• ph, Eαq “ 0 for all α P ∆,

• pEα, Eβq “ ´δα,´β if α, β P ∆.

Show that this is a non-degenerate symmetric invariant bilinear form on g.

Exercise 20.2. On the lattice L “
Àr

i“1 Zεi with pεi, εjq “ δij consider the bimulti-
plicative function ε : L ˆ L Ñ t˘1u, defined by

εpεi, εjq “

"

´1 if i ă j,
1 if i ě j.

Show that the restriction of ε to LAr´1 and LDr satisfies properly (b) of Proposition
20.1.

We have explicitly constructed the simple finite-dimensional Lie algebra of type Ar pr ě

1q, Drpr ě 4q, E6, E7, E8. The bilinear form, defined by Exercise 20.1, is the unique invariant
symmetric non-degenerate bilinear form on these Lie algebras, up to a non-zero constant
factor.

Now we turn to the non-simply laced case.
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Case 2: non-simply laced. It remains to show that the (simple) Lie algebras gpAq for A
of type F4 and G2 are finite-dimensional . We construct them by constructing embeddings
F4 Ă E6 and G2 Ă D4 as follows. Consider the Dynkin diagrams of E6 and D4 with the
following orientations and their automorphism of order 2 and 3 respectively, preserving these
orientations:

E6

1 2 3 4 5

6

σ2

D4

1 2 3

4

σ3

σ3σ3

Since the Dynkin diagram and its orientation is invariant under these automorphisms,
we see that εpσpαq, σpβqq “ εpα, βq and Aσpiq,σpjq “ Aij for σ “ σ1 or σ2, hence the brackets
(a) - (d) are preserved by σ.

Also σ preserves all Chevalley relations (a)–(d) from Lecture 19, hence induces an au-
tomorphism of the Lie algebra rgpAq, so that the surjective homomorphism φ : rgpAq Ñ g
is σ-equivariant. Due to its uniqueness, the maximal ideal IpAq of rgpAq in Lemma 19.2 is
σ-invariant. Hence σ descends to an automorphism of gpAq, which is again denoted by σ.

Exercise 20.3. Show that for σ2 the elements X1 ` X5, X2 ` X4, X3, X6, where
X “ E,F or H, lie in the fixed point set of σ2 in E6, and satisfy the Chevalley relation
of F4. Likewise, for σ3 the elementsX1`X3`X4 andX2 are fixed by the automorphism
σ3 of D4, and satisfy the Chevalley relations of G2.

Denote in both cases the elements of g “ E6 or D4, fixed by σ “ σ2 or σ3 respectively,
by gσ. By Exercise 20.3, there are surjective homomorphisms from respective subalgebras:

gpE6q
σ2

φ2
ÝÑ gpF4q and gpD4q

σ3
φ3
ÝÑ gpG2q.

It follows that both gpF4q and gpG2q are finite-dimensional (simple) Lie algebras.

Exercise 20.4. Show that dim gpE6qσ2 “ 52 and dim gpD4qσ3 “ 14, and therefore, by
Remark 20.1, both homomorphisms σ2 and σ3 are isomorphisms.

In the last part of this lecture we assume that F “ C, and define the compact form
gcom Ă g where g is a simple finite-dimensional Lie algebra over C, and gcom is a Lie algebra
over R, whose complexification is g.

Let gR “ hR‘p
À

αP∆ REαq, which is a Lie algebra over R, whose complexification CbRgR
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is g. First, assume that g is simply laced. Define an automorphism ωR of gR by letting it act
as ´1 on hR, and let ωRpEαq “ E´α.

Exercise 20.5. Check that ωR is an automorphism of the Lie algebra gR in the simply
laced case.

Next, we extend ωR from gR to g “ C bR gR to be an antilinear automorphism ω, by
ωpλaq “ λωpaq for λ P C, a P gR.

Definition 20.1. The fixed point set of ω in g is a Lie algebra over R, called the
compact form of g, denoted gcom.

Exercise 20.6. If g “ slnpCq, then ωpAq “ ´A
J
, and

gcom “ sun “

!

A P slnpCq | A
J

“ ´A
)

,

which is called the special unitary Lie algebra.

Proposition 20.2. The restriction of the invariant bilinear form p‚, ‚q on g, defined
in Exercise 20.1, is negative definite on gcom.

Proof. We can write

gcom “
`?

´1hR
˘

‘

˜

ÿ

αP∆`

RpEα ` E´αq

¸

‘

˜

ÿ

αP∆`

?
´1RpEα ´ E´αq

¸

, (6)

and these 3 subspaces are orthogonal to each other. Obviously, g is the complexification
of gcom. It remains to show that the bilinear form is negative definite on each of these 3
subspaces.

This is true because p
?

´1h,
?

´1hq “ ´ph, hq ă 0 for h P hR, pEα ` E´α, Eβ ` E´βq “

´2δα,˘β, and
`?

´1pEα ´ E´αq,
?

´1pEβ ´ E´βq
˘

“ ´2δα,˘β for α, β P ∆.

In the non-simply laced cases the automorphisms σ2 and σ3 of E6 and D4 commute with
ω on the simply laced Lie algebras E6 and D4, hence the bilinear form p‚, ‚q remains negative
definite on gσ.

The non-simply laced classical Lie algebras Br and Cr for r ě 2, are fixed point sets of
the transposition with respect to the anti-diagonal of the Lie algebras A2r “ sl2r´1pCq and
A2r´1 “ sl2rpCq which commutes with ω as well, hence the propositoin holds for them too.■
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Remark 20.2 gcom is the Lie algebra of a maximal compact subgroup of a complex
algebraic group whose Lie algebra is g, hence the name “compact form”.

Bonus Problem. Let g Ă g1 be the non-simply laced subalgebra of type Br, Cr, F4

or G2 in the simply laced Lie algebra A2r, A2r´1, E6 and D4 respectively, as above.
Describe the structure constants of g in terms of those of g1. Show that the root
vectors Eα can be chosen in such a way that, for α, β, α ` β P ∆, one has rEα,Eβs “

˘pp ` 1qEα`β, where p is the maximal non-negative integer such that α ´ pβ P ∆.
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The Weyl Group of a Root System
Lecture 21

The Weyl Group of a Root System

Let V be a finite-dimensional Euclidean vector space, i.e. a vector space over R with a
positive-definite symmetric bilinear form p‚, ‚q. For a non-zero vector a P V , denote by ra
the orthogonal reflection relative to a, i.e. a linear operator on V such that

rapaq “ ´a, rapvq “ v if pv, aq “ 0. (1)

Obviously, it is given by the following formula

rapvq “ v ´
2pa, vq

pa, aq
a, v P V. (2)

Denote by OV pRq the group of all invertible linear operators on V , preserving the bilinear
form p‚, ‚q, i.e.

OV pRq “ tA P GLV pRq | pAu,Avq “ pu, vq, u, v P V u .

It is called the orthogonal group. It is a compact subset of the vector space End V .

Exercise 21.1. Prove the following properties of the reflection ra:

(a) ra P OV pRq,

(b) ra “ r´a and r2a “ IV ,

(c) det ra “ ´1,

(d) AraA
´1 “ rApaq for A P OV pRq.

Definition 21.1. Let pV,∆q be a root system. Let W be the subgroup of OV pRq,
generated by all ra, where a P ∆. This group is called the Weyl group of the root
system pV,∆q, and of the corresponding semisimple Lie algebra g.

Proposition 21.1. Let pV,∆q be a root system, and let W be its Weyl group. Then

(a) wp∆q “ ∆ for all w P W .

(b) W is a finite subgroup of OV pRq.

Proof. For (a) we need to show that

rαpβqp“ β ´ Aα,βαq P ∆ if α, β P ∆, where Aα,β “
2pα, βq

pα, αq
P Z.
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The Weyl Group of a Root System

First, rα is non-singular, since det rα “ ´1. Second, recall the string property of pV,∆q:

tβ ´ kα | k P Zu X p∆ Y t0uq “ tβ ´ pα, ¨ ¨ ¨ , β, ¨ ¨ ¨ , β ` qαu

where p, q P Zě0, p ´ q “ Aα,β. Hence

p ě Aα,β, q ě ´Aα,β.

So, if pα, βq ď 0 (resp. ě 0), we can add α to β at least ´Aα,β times (resp. subtract α from
β at least Aα,β times), which means that β ´ Aα,βα P ∆ Y t0u. But it cannot be 0 since rα
is a non-singular operator.

(b) If an element w of W fixes all elements of ∆, it musst be IV since ∆ spans V , so the
group W embeds in the group of permutations of the finite set ∆. Therefore W is a finite
group. ■

Proposition 21.1 shows that the string property of a root system pV,∆q implies that ∆
is W -invariant.

Bonus Problem. Show that the converse is true: if we replace the string property
by W -invariance of ∆ and that Aα,β “

2pα,βq

pα,αq
P Z for all α, β P ∆, then we get an

equivalent definition of a root system.

Hint: One has to check this only in the case dimV “ 2, i.e. the four rank 2 root
systems.

Definition 21.2. Fix f P V ˚, which doesn’t vanish on ∆, and let, as before, ∆` “

tα P ∆ | fpαq ą 0u be the set of positive roots, and Π “ tα1, ¨ ¨ ¨ , αru Ď ∆` be the set
of simple roots (r “ dimV ). Then the reflections si “ rαi

pi “ 1, ¨ ¨ ¨ , rq are called
simple reflections.

Theorem 21.1.

(a) ∆`z tαiu is si-invariant.

(b) If α P ∆`zΠ, then there exists i, such that height sipαq ă height α (height
ř

i kiαi :“
ř

i ki).

(c) If α P ∆`zΠ, then there exists a sequence of simple reflections si1 , ¨ ¨ ¨ , sik , such
that si1 ¨ ¨ ¨ sikpαq P Π, and also sij ¨ ¨ ¨ sikpαq P ∆` for all 1 ď j ď k.

(d) The group W is generated by simple reflections.

Proof. (a) Recall that each α P ∆` can be written as α “
ř

j kjαj, where all kj P Zě0, and

122
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α1, ¨ ¨ ¨ , αr are linearly independent. Since sipαq “ α ` nαi P ∆, where n P Z, we conclude
that sipαq P ∆` if at least two of the ki’s are positive, i.e. if α P ∆`zΠ. If α “ αj, j ‰ i,
then sipαjq “ αj ´ Aijαi P ∆` since Aij ď 0 for i ‰ j.

(b) Since sipαq “ α ´
2pα,αiq

pαi,αiq
αi, we see that if height sipαq ě height α for all i, then

pα, αiq ď 0 for all i, and then pα, αq “
ř

i kipα, αiq ď 0, hence α “ 0, a contradiction,
proving (b).

(c) Just apply (b) finitely many times until we get a simple root.

(d) Denote by W 1 the subgroup of W , generated by simple reflections. By (c), for any
α P ∆` there exists w P W 1 such that

wpαq “ αj P Π.

Hence, by Exercise 21.1(d), rα “ w´1sjw, which lies in W 1. So W 1 contains all rα with
α P ∆`. Since rα “ r´α, W

1 contains all reflections, hence W 1 “ W . ■

Example 21.1. Recall the root system of type Ar:

∆ “ tεi ´ εj | i, j P t1, ¨ ¨ ¨ , r ` 1u , i ‰ ju Ă V “

#

r`1
ÿ

i“1

aiεi |
ÿ

i

ai “ 0, ai P R

+

Ă Rr`1
“

r`1
à

i“1

Rεi with pεi, εjq “ δij.

We have

rεi´εjpεsq “ εs ´ pεs, εi ´ εjqpεi ´ εjq “

$

&

%

εs if s ‰ i or j
εj if s “ i
εi if s “ j

.

So rεi´εj is the transposition of εi and εj, and the Weyl group WAr “ Sr`1, the group
of permutations of the set tε1, ¨ ¨ ¨ , εr`1u.

Exercise 21.2. Compute the Weyl groups for the root system of type Br, Cr and
Dr. In particular, show that for Br and Cr the Weyl groups are isomorphic, but not
isomorphic for Dr.
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Definition 21.3. Consider the root system pV,∆q, and let Tα be the hyperplane in V ,
perpendicular to α P ∆i; consider V with the usual metric topology and in it the open
set V z

Ť

αP∆ Tα. The connected components of this subset are called open chambers,
their closures are called closed chambers. The subset

C “ tv P V | pαi, vq ą 0 for all αi P Πu (3)

is called the fundamental chamber , and its closure is called the closed funda-
mental chamber .

Exercise 21.3. Show that the open fundamental chamber C is an open chamber.
(Hint: if a, b P C, then ta ` p1 ´ tqb P C for 0 ď t ď 1.)

Example 21.2. For the root system of type A2, there are 6 open (closed) chambers,
as depicted below:

Tα1

Tα2

ψ

where α1 and α2 are simple roots and ψ “ 60˝. The angle between Tα1 and Tα2 is the
fundamental chamber.

Exercise 21.4. Show that a similar picture holds for all other rank 2 root systems
A1 ` A1, B2, G2 with ψ “ 90˝, 45˝, 30˝ respectively. Deduce that ps1s2q

m “ e, where
m “ 2, 3, 4, 6 for the root systems of type A1 ` A1, A2, B2, G2 respectively, and the
number of open chambers is 2m.

Theorem 21.2.

(a) The Weyl group W permutes all open (hence closed) chambers transitively, i.e.
for any two open chambers Ci and Cj there exists w P W , such that wpCiq “ Cj.

(b) Let ∆` and ∆1
` be two subsets of positive roots, defined by the linear functions

f and f 1 P V ˚ respectively. Then there exists w P W , such that wp∆`q “ ∆1
`.

In particular, the Cartan matrix of the root system pV,∆q is independent of the
choice of f .

Proof. (a) Choose a segment connecting points in Ci and Cj, which doesn’t intersect all
Tα X Tβ, α, β P ∆`, α ‰ β. Let’s move along this segment until we hit a hyperplane Tα.
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The Weyl Group of a Root System

Then replace Ci by rαCi. After finitely many such steps we hit the chamber Cj

Tβ

Tα
Ci

Cj

Cj “ rβrαCi.

(b) Any linear function f on V can be written as fapvq “ pa, vq, and it doesn’t vanish on
all roots if and only if a lies in one of the open chambers. If we move a around this chamber,
the set ∆` defined by f remains unchanged. If we cross the hyperplane Tα, the chamber C
changes to rαpCq. Hence all the subsets of positive roots in ∆ are labelled by open chambers,
and if wpCq “ C 1, then for the corresponding sets of positive roots ∆` and ∆1

` we get that
wp∆`q “ ∆1

`. ■

Definition 21.4. Let s1, ¨ ¨ ¨ , sr be the simple reflections in W (they depend on
the choice of ∆`). By Theorem 21.1(d), any w can be written as w “ si1 ¨ ¨ ¨ sit .
Such a decomposition with minimal possible number of factors t is called a reduced
decomposition, and in this case t “ ℓpwq is called the length of w.

Note that detV w “ p´1qℓpwq (since detV si “ ´1). For example ℓpeq “ 0, ℓpsiq “

1, ℓpsisjq “ 2 if i ‰ j, but “ 0 if i “ j since s2i “ e.

Exchange Lemma. Suppose that si1 ¨ ¨ ¨ sit´1pαitq P ∆´ where αit P Π. Then the
expression w “ si1 ¨ ¨ ¨ sit is not reduced. More precisely, w “ si1 ¨ ¨ ¨ sim´1sim`1 ¨ ¨ ¨ sit´1

for some 1 ď m ď t ´ 1.

Proof. Consider the roots

βk “ sik`1
sik`2

¨ ¨ ¨ sit´1pαitq for 0 ď k ď t ´ 1.

Then β0 P ∆´ and βt´1 “ αit P ∆`. Hence there exists a positive integer m ď t ´ 1, such
that βm´1 P ∆´, βm P ∆`.

But βm´1 “ simpβmq, hence, by Theorem 21.1(a), βm “ αim P Π.

Let w “ sim`1 ¨ ¨ ¨ sit´1 . Since wpαitq “ αim , by Exercise 21.1(d) it follows that wsitw
´1 “

sim , or wsit “ simw. The result follows by multiplying both sides of the last equation by
si1 ¨ ¨ ¨ sim on the left. ■

Corollary 21.1. The Weyl group W acts simply transitively on the set of chambers,
i.e. for chambers Ci and Cj there exists a unique w P W , such that wpCiq “ Ci.
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Proof. By Theorem 21.2(a), W acts transitively on the set of chambers . So we need only
to prove that if C is the fundamental chamber, w P W , and wpCq “ C, then w “ 1.

In the contrary case, wpCq “ C for some w ‰ e, hence wp∆`q “ ∆` for ∆` correspond-
ing to C. Take a reduced expression w “ si1 ¨ ¨ ¨ sit , t ě 1. Then wpαitq “ si1 ¨ ¨ ¨ sit´1p´αitq P

∆`, hence si1 ¨ ¨ ¨ sit´1pαitq P ∆´. Therefore, w “ si1 ¨ ¨ ¨ sit is not a reduced expression, a
contradiction. ■

Remark 21.1. As we have seen (Exercise 21.4), the generators s1, ¨ ¨ ¨ , sr of the Weyl
group W satisfy the relations

s2i “ e, psisjq
mij “ e if i ‰ j, where mij P Zě0, (4)

and the possible values of mij are 2, 3, 4 and 6. One can show that relations (4)
generate all relations, i.e. W is a Coxeter group, defined as a group on generators
si pi “ 1, ¨ ¨ ¨ , rq, and relations (4). This property of the Weyl group holds for any
Kac-Moody Lie algebra, with the possible values of mij being 0, 2, 3, 4, and 6. Such a
Coxeter group is called crystallographic: in some basis the matrices of the generators
si have integer entries.
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Lecture 22

The Universal Enveloping Algebra of a Lie Algebra and the Casimir Element

Throughout the lecture g will denote a Lie algebra, not necessarily finite-dimensional,
over any field F.

Definition 22.1. An enveloping algebra of g is a pair pφ,Uq, where U is a unital
associative algebra and φ : g Ñ U´ is a Lie algebra homomorphism. (recall that U´ is
a Lie algebra structure on U with bracket ra, bs “ ab ´ ba).

Example 22.1. If φ : g Ñ End V is a representation of g, then pφ,End V q is an
enveloping algebra of g.

Definition 22.2. The universal enveloping algebra of g is an enveloping algebra
pΦ, Upgqq which has the universal mapping property, namely, for any enveloping algebra
pφ,Uq of g there exists a unique associative algebra homomorphism f : Upgq Ñ U ,
such that φ “ f ˝ Φ. This condition can be rephrased as saying that the following
diagram is commutative:

Upgq

Ug

f

φ

Φ

Exercise 22.1. Prove that the universal enveloping algebra is unique, up to unique
isomorphism, if such an algebra exists.

In order to prove existence, recall that a tensor algebra T pV q over a vector space V
over F is the following vector space over F:

T pV q “ F ‘ V ‘ pV b V q ‘ pV b V b V q ‘ ¨ ¨ ¨ ,

with the concatenation product. This is a unital associative algebra.

Let Jpgq be the two-sided ideal in the algebra T pgq, generated by the set

ta b b ´ b b a ´ ra, bs | a, b P gu .

Let Upgq “ T pgq{Jpgq, and define the map Φ : g Ñ Upgq by letting

Φpaq “ a P g Ă T pgq mod Jpgq.
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Exercise 22.2. Show that pΦ, Upgqq is the universal enveloping algebra of the Lie
algebra g.

The basic result on the universal enveloping algebras is the following Poincare-Birkhoff-
Witt (PBW) theorem.

PBW Theorem. Choose a basis of the Lie algebra g, taiuiPI , indexed by an ordered
set I. Then the monomials

1, ai1ai2 ¨ ¨ ¨ aik with i1 ď i2 ď ¨ ¨ ¨ ď ik (1)

form a basis of Upgq.

Proof. We need to show that the monomials (1) span Upgq, which is the easy part, and that
these monomials are linearly independent, which is the hard part.

For both parts introduce the following (partial) ordering on the set of all monomials
A “ ai1 ¨ ¨ ¨ aik : 1 ă ai ă aj if i ă j, and A ă A1 “ aj1 ¨ ¨ ¨ ajs if either k ă s, or k “ s
but the number of inversions in A is strictly smaller than in A1. Here by an inversion in the
monomial A we mean a pair paim , ainq such that im, in P I, im ă in, but aim ą ain . Both
parts are proved by induction on this ordering.

Easy part. Let the monomial A have an inversion:

A “ A1abA2

where A1 and A2 are some monomials, and a and b are elements of the basis of g, such that
a ą b. Then, replacing ab by ba ` ra, bs, we obtain

A “ A1baA2 ` A1ra, bsA2. (2)

In the first summand the number of inversions is smaller than in A, and the second summand
has degree smaller than the degree of A. In both cases we may apply induction on our
ordering to write both summands as a linear combination of monomials from (1).

Hard part. Let B be a vector space over F with basis

1, bi1 ¨ ¨ ¨ bik with i1 ď ¨ ¨ ¨ ď ik in I. (3)

Define the linear map σ : T pgq Ñ B by (we shall skip the b signs):

(i) σp1q “ 1, σpai1 ¨ ¨ ¨ aikq “ bi1 ¨ ¨ ¨ bik if i1 ď ¨ ¨ ¨ ď ik,

128



The Universal Enveloping Algebra of a Lie Algebra and the Casimir Element

(ii) if is`1 ă is, let inductively for A “ A1aisais`1A2 (cf. (2)):

σpAq “ σpA1ais`1aisA2q ` σpA1rais , ais`1sA2q.

By induction on our ordering, we can use (ii) to reduce σpai1 ¨ ¨ ¨ aikq to a linear combination
of σ, applied to the ordered monomials (1) and use (i). The difficulty is to show that σ is
well-defined, i.e. independent of the order, in which the inversions are resolved.

Case 1. We swap the order of two inversions which don’t overlap. Namely, consider the
monomial

A “ A1abA2cdA3,

where A1, A2, A3 are some monomials and a, b, c, d are basis elements of g, such that a ą

b and c ą d. Then

σpAq “ A1baA2cdA3 ` A1ra, bsA2cdA3 (4)

or

σpAq “ A1abA2dcA3 ` A1abA2rc, dsA3. (5)

By the inductive assumption, the map σ is well-defined on each summand of (4) and (5)
so it suffices to show that there exists further reduction of (4) and (5) that gives the same
result. Indeed, if we replace ab by ba ` ra, bs in (4), and cd by dc ` rc, ds in (5), we obtain
the same result.

Note that in this case we didn’t use axioms of a Lie algebra at all.

Case 2. We swap the order of two inversions which overlap. Namely, consider the
monomial

A “ A1cbaA2,

where a, b, c are elements of the basis of g, such that c ą b ą a. We have two reductions:

σpAq “ A1bcaA2 ` A1rc, bsaA2, (6)

or

σpAq “ A1cabA2 ` A1crb, asA2. (7)

Hence, by the inductive assumption, the map σ is well-defined on each summand of (6) and
(7), so it suffices to show that there exist further reductions of (6) and (7) that give the same
result.
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The further reductions of (6) and (7) ignoring the irrelevant factors A1 and A2, are as
follows, respectively:

bca ` rc, bsa Ñ bac ` brc, as ` rc, bsa Ñ abc ` rb, asc ` brc, as ` rc, bsa (8)

cab ` crb, as Ñ acb ` rc, asb ` crb, as Ñ abc ` arc, bs ` rc, asb ` crb, as (9)

Consider the summand rb, asc in the last reduction in (8). The element rb, as is a linear
combination of some elements of the basis taiuiPI . If such an element, say d, is less than c,
we keep dc unchanged in rb, asc; otherwise we replace dc by cd ` rd, cs, so that rb, asc gets
replaced by cd ` rd, cs. We do the same with the term crb, as in (9).

As a result the difference of the reductions of this term in (8) and the corresponding
term crb, as in (9) becomes rrb, as, cs.

Indeed, if a non-zero multiple of a basis element in rb, as, which we denote by rb, asi,
is smaller than c, we keep rb, asic unchanged; otherwise we replace it by rrb, asi, cs ` crb, asi

in (8). We reduce similarly the term crb, as in (9): if rb, asi ă c, we replace crb, asi by
rc, rb, asis ` rb, asic, and if rb, asi ą c, we keep crb, asi unchanged.

The difference between these two reductions is ´rc, rb, asis in the first case and rrb, asi, cs
in the second, which is the same due to skew-commutativity in g.

We perform similar reductions for the remaining two pairs:

• brc, as in (8) and rc, asb in (9), and

• rc, bsa in (8) and arc, bs in (9).

As a result, we obtain that the two reductions differ by

rrb, as, cs ` rb, rc, ass ` rrc, bs, as,

which is 0 by the Jacobi identity in g since rb, rc, ass “ rra, cs, bs by the skew-commutativity
in g.

Next, we need to show that Jpgq lies in kerσ. But Jpgq is an ideal of T pgq, generated by
the elements

ab ´ ba ´ ra, bs, where a ă b, a, b P g, (10)

since ba ´ ab ´ rb.as “ p10q with the ´ sign.

Applying σ to p10q, we obtain ab ´ prb, as ` abq ´ ra, bs “ 0 due to skew-commutativity
in g.

Hence σ induces a linear map: Upgq Ñ B, which is surjective, and since monomials (3)
form a basis of B, monomials (1) form a basis of Upgq. ■
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Now, that we have an understanding of Upgq, we define a very important element of this
algebra. For that we need

Exercise 22.3. Let V be a d-dimensional vector space over F, and let ta1, ¨ ¨ ¨ , adu be
a basis of V . Let p‚, ‚q be a non-degenerate bilinear form of V . Then there exists a
unique dual basis tb1, ¨ ¨ ¨ , bdu of V , so that pai, bjq “ δij for i, j “ 1, ¨ ¨ ¨ , d.

Definition 22.3. Let g be a d-dimensional Lie algebra over F, equipped with a non-
degenerate invariant symmetric bilinear form p‚, ‚q. Choose a basis ta1, ¨ ¨ ¨ , adu of
g, and let tb1, ¨ ¨ ¨ , bdu be the dual basis. Then the Casimir element Ω P Upgq is
defined as Ω “

řd
i“1 aibi.

Exercise 22.4. Show that Ω is independent of the choice of the basis ta1, ¨ ¨ ¨ , adu of
g. (Hint: Write a change of basis as pa1

1 ¨ ¨ ¨ a1
dq “ pa1 ¨ ¨ ¨ adqA, where A is a non-singular

d ˆ d matrix over F.)

Lemma 22.1. Let g be a d-dimensional Lie algebra over F with a non-degenerate sym-
metric invariant bilinear form p‚, ‚q. Let ta1, ¨ ¨ ¨ , adu be a basis of g, and tb1, ¨ ¨ ¨ , bdu

the dual basis. For x P g write

rx, ais “

d
ÿ

k“1

αikak, rx, bjs “

d
ÿ

k“1

βjkbk.

Then αij “ ´βji.

Proof. We have:

prx, ais, bjq “
`

ÿ

k

αikak, bj
˘

“

d
ÿ

k“1

αikpak, bjq “

d
ÿ

k“1

αikδkj “ αij, (11)

and similarly

prx, bjs, aiq “ βji, (12)

Using invariance of the bilinear form p‚, ‚q, we obtain from (11) and (12):

αij “ prx, ais, bjq “ px, rai, bjsq “ ´px, rbj, aisq “ ´prx, bjs, aiq “ ´βji. ■
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Exercise 22.5. Using Lemma 22.1 show that the Casimir element Ω is a central
element of the algebra Upgq, i.e. aΩ “ Ωa for any a P Upgq.

(Hint: use the fact that in an associative algebra the operator ad a, defined by pad aqb “

ab ´ ba, is a derivation of this algebra.)
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Vanishing of First Cohomology, and the Weyl, Levi and Maltsev Theorems

First, note that, by the universality property of Upgq, any representation π of the Lie
algebra g in a vector space V extends uniquely to an associative algebra homomorphism
Upgq Ñ End V (cf. Example 22.1)

We will use the more efficient language of g-modules instead of representations π of g
in V :

πpaqv “ a ¨ v por avq for a P g, v P V , so that

ra, bsv “ abv ´ bav for a, b P g, v P V .

Definition 23.1. A 1-cocycle of a g-module V is a linear map f : g Ñ V , such that

fpra, bsq “ a ¨ fpbq ´ b ¨ fpaq for a, b P g. (1)

Example 23.1. For any v P V we have a trivial 1-cocyle fvpaq “ a ¨ v for all a P g.
This is a 1-cocycle since the LHS of (1) is equal to ra, bs ¨ v, and its RHS is abv ´ bav,
which are equal by the definition of a g-module.

Definition 23.2. Denote by Z1pg, V q the vector space of all 1-cocycles of the g-module
V , and by B1pg, V q the subspace of trivial ones. The first cohomology of g with
coefficients in V is defined as the factor space

H1
pg, V q “ Z1

pg, V q{B1
pg, V q.

So H1pg, V q “ 0 means that all 1-cocycles are trivial.

The key result of this lecture is the

First cohomology vanishing theorem. Let g be a finite-dimensional semisimple Lie
algebra over a field F of characteristic 0, and let V be a finite-dimensional g-module.
Then H1pg, V q “ 0.

The proof of this theorem is based on the following technical lemma, which holds over
an arbitrary field.
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Lemma 23.1. Let g be a d-dimensional Lie algebra with a non-degenerate invariant
symmetric bilinear form p‚, ‚q. Let taiu be a basis of g and tbiu the dual basis.

Let f P Z1pg, V q for a g-module V . Then for any a P g we have

a
d
ÿ

j“1

ajfpbjq “ Ωpfpaqq,

where Ω P Upgq is the Casimir element of Upgq.

Exercise 23.1. Prove this lemma, using Lemma 22.1 on dual bases, and that
ř

i aibi “
ř

i biai (which follows from Exercise 22.4).

Corollary 23.1(cf. Exercise 22.5). Ω commutes with the action of g in any g-module V .

Proof. Take f “ fv, v P V , then Lemma 23.1 becomes aΩpvq “ Ωapvq. ■

Exercise 23.2. For any g-modules V1 and V2, we have:

H1
pg, V1 ‘ V2q “ H1

pg, V1q ‘ H1
pg, V2q.

Proof of the 1st cohomology vanishing theorem. First, we may assume that the g-module V is
faithful. Indeed, if its kernel g0 is non-zero, it is a semisimple ideal of g since g is semisimple.
In particular, g0 “ rg0, g0s. If f P Z1pg, V q, then

fpra, bsq “ afpbq ´ bfpaq “ 0 if a, b P g0.

Hence fpg0q “ fprg0, g0sq “ 0. This means that f induces a well-defined 1-cocycle on g{g0
with values in V . Replacing g by g{g0, we may assume that g Ď glV . By Theorem 11.2, the
trace form p‚, ‚qV is non-degenerate on g, hence we may consider the corresponding Casimir
element Ω “

ř

i aibi for g, where ai and bi are dual bases of g with respect to p‚, ‚qV .

We prove the theorem by induction on dimV . With respect to the operator Ω we have
the decomposition

V “ Vp0q ‘ V 1 (direct sum of vector spaces), (2)

where Vp0q is the generalized 0-th eigenspace of Ω and V 1 “ ΩNpV q for sufficiently large N .
(If F is algebraically closed, we can take V 1 “

À

λ‰0 Vpλq.)

By Corollary 23.1, g commutes with Ω on V , hence Vp0q and V 1 are submodules of the
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g-module V . By Exercise 23.2, we have

H1
pg, V q “ H1

pg, Vp0qq ‘ H1
pg, V 1

q.

Hence, by the inductive assumption, H1pg, V q “ 0 if both Vp0q are V
1 are non-zero.

Thus, the proof reduces to two cases:

Case 1. Ω is invertible on V .

Case 2. Ω is a nilpotent operator on V .

In Case 1, we use Lemma 23.1, which says that for m “
řdim g

j“1 ajfpbjq, where f P

Z1pg, V q, we have:

apmq “ Ωpfpaqq,

hence Ω´1pamq “ aΩ´1pmq by Corollary 23.1, and therefore fpaq “ Ω´1pamq “ apΩ´1pmqq.
Hence f “ fΩ´1pmq is a trivial 1-cocycle.

In Case 2 we have

trVΩ “

dim g
ÿ

i“1

trV aibi “

dim g
ÿ

i“1

pai, biqV “ dim g.

But since Ω is a nilpotent operator, it follows that its trace is 0, hence g “ 0. But then, of
course, H1pg, V q “ 0. ■

Bonus Problem. Does the converse hold, that ifH1pg, V q “ 0 for a finite-dimensional
g and any finite-dimensional g-module V , then g is a semisimple Lie algebra?

Next, we use the first cohomology vanishing theorem to prove the following three fun-
damental theorems, which hold over any field F of characteristic 0.

Weyl’s Complete Reducibility Theorem. Let g be a finite-dimensional semisimple
Lie algebra and let V be a finite-dimensional g-module. Then for any submodule
U Ď V , there exists a complementary submodule U 1 so that V “ U ‘ U 1.

Levi’s Theorem. Let g be a finite-dimensional Lie algebra and let Rpgq be its radical.
Then there exists a subalgebra s of g, complementary to Rpgq, so that g “ s ˙ Rpgq.
(Note that s is automatically semisimple)

Maltsev’s Theorem. In the notation of Levi’s theorem, any semisimple subalgebra s1
of g is conjugate to s, that is there exists an automorphism σ of g, such that σps1q Ď s.
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The proofs of all three theorems use the first cohomology vanishing theorem, and the
notion of a projector P of a vector space V onto a subspace U . Recall that a linear operator
P on V is called a projector onto U if it has the following two properties:

(i) P pV q Ď U ,

(ii) P puq “ u for u P U .

Note that P 2 “ P and

V “ pKer P q ‘ U, (3)

since v “ pv ´ P pvqq ` P pvq and P pv ´ P pvqq “ 0 by P 2 “ P .

Observe also that, given a projector P : V ↠ U , any other projector P1 : V ↠ U is
obtained as P1 “ P ` A where A is an operator satisfying

ApV q Ď U and ApUq “ 0. (4)

Proof of Weyl’s theorem. Consider End V as a (finite-dimensional) g-module with a P g
acting as a ¨ A “ aA ´ Aa. Pick an arbitrary projector P0 : V ↠ U and consider the
following (trivial) 1-cocycle f for the g-module End V :

fpaq “ a ¨ P0 “ aP0 ´ P0a, a P g. (5)

Let M Ď End V be the subspace, consisting of all A such that ApV q Ď U,ApUq “ 0.

Exercise 23.3.

(a) M is a submodule of the g-module End V .

(b) The 1-cocycle f defined by (5) is actually a 1-cocycle with values in M .

Thus, f defines a class rf s P H1pg,Mq. Since H1pg,Mq “ 0, f is a trivial cocycle, hence
there exists A P M , such that fpaq “ a ¨ A for all a P g. This means that

aP0 ´ P0ap“ fpaqq “ a ¨ A “ aA ´ Aa, for all a P g.

Rearranging terms, we see that

apP0 ´ Aq “ pP0 ´ Aqa, for all a P g.

Thus P :“ P0 ´ A is a projector of V onto U which commutes with each operator from g.
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Hence kerP is g-invariant, and so

V “ U ‘ kerP

is the desired decomposition of V in a direct sum of g-submodules. ■

Proof of Levi’s theorem. We proceed by induction on dim g. First, we reduce to the case when
the radical Rpgq is abelian. If not then rg “ g{rRpgq, Rpgqs has smaller dimension than g, and
so, by the inductive assumption, rg “ rs˙Rprgq, where rs is a complementary subalgebra. Hence
g “ g1 ` Rpgq, where g1 is the preimage of rs in g. Obviously, dim g1 ă dim g, and applying
the inductive assumption to g1, we obtain g1 “ s ˙ Rpg1q. Hence g “ s ˙ pRpg1q ` Rpgqq.

Exercise 23.4. Prove that Rpg1q ` Rpgq is a solvable ideal of g (hence actually
Rpg1q Ď Rpgq).

It remains to prove the theorem in the case Rpgq is abelian.

Consider the following g-module structure on End g:

a ¨ m “ pad aqm ´ mpad aq for a P g,m P End g.

Further, consider the following g-submodule of End g:

ĂM “ tm P End g | mpgq Ď Rpgq; mpRpgqq “ 0u .

It is trivial to see that ĂM is a submodule. (In that, it is a particular case of the submodule
M , constructed in the proof of Weyl’s theorem with V “ g, U “ Rpgq, and g acting by the
adjoint action.)

Consider also the submodule of the g-module ĂM :

rR “ tad a | a P Rpgqu .

It is a submodule since Rpgq is an abelian ideal of g. Hence M “ ĂM{ rR is a g-module.

We now see that Rpgq acts trivially on M . Indeed, if r P Rpgq and m P ĂM , then for any
b P g we have

pr ¨ mqpbq “ pad rqmpbq ´ mpad rqpbq “ rr,mpbqs ´ mrr, bs.

Since mpbq P Rpgq, which is abelian, we see that rr,mpbqs “ 0. Since Rpgq is an ideal and
m ¨ Rpgq “ 0, we see that m ¨ rr, bs “ 0. Hence r ¨ m “ 0, as was claimed, and M is actually
a module over the semisimple Lie algebra s “ g{Rpgq.

Now let P0 : g ↠ Rpgq be an arbitrary projector, and consider the following 1-cocycle
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f : s Ñ M ,

fpaq “ pad raqP0 ´ P0pad raq,

where ra is any preimage of a P s under the canonical map g Ñ g{Rpgq “ s.

Exercise 23.5. Check that f : s Ñ M is a well-defined 1-cocycle.

Thus f defines a cohomology class rf s P H1ps,Mq “ 0, hence we can find m P M , such
that

a ¨ m “ pad raqP0 ´ P0pad raq, a P s.

This just means that

pad raqpP0 ´ rmq ´ pP0 ´ rmqpad raq “ ad ra, (6)

where rm P ĂM is a lift of m under the canonical map ĂM Ñ M , and ra P Rpgq is an element,
depending on a P s.

Now, consider the projector P “ P0 ´ rm : g ↠ Rpgq.

Case 1. All the ra “ 0 in (6). Then all ad ra commute with the projector P , and
g “ pkerP q ‘ Rpgq is a direct sum of ideals, and, in particular, kerP is a complementary
subalgebra to g.

Case 2. ra ‰ 0 for some a P g. Let g1 “ ta P g | rP, ad as “ 0u. Then g1 is a proper
subalgebra of g. Since Rpgq is an abelian ideal of g, we have

ppad rqP ´ P pad rqqpbq “ rr, P pbqs ´ P prr, bsq “ 0 ´ rr, bs “ ´pad rqpbq

for any r P Rpgq and b P g. Thus we may write

pad aqP ´ P pad aq “ ad ra “ P pad raq ´ pad raqP,

or P padpa ` raqq “ padpa ` raqqP .

That is, any element a of g differs from an element of g1 by an element of Rpgq, i.e.

g “ g1 ` Rpgq “ s ` pRpg1q ` Rpgqq,

where we have the decomposition g1 “ s ` Rpg1q by the inductive assumption. But by
Exercise 23.4, the ideal Rpg1q ` Rpgq is solvable, hence coincides with Rpgq, since Rpgq is
the maximal solvable ideal. Hence g “ s ` Rpgq. ■

Proof of Maltsev’s theorem. By Levi’s theorem, g “ s`Rpgq. Suppose that s1 is a semisimple
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subalgebra of g. We need to construct an automorphism σ of g, such that σps1q Ď s.

First, consider the case when Rpgq is abelian. Let Ps and PR be the projections of g
onto s and Rpgq respectively with respect to the decomposition g “ s ‘ Rpgq (direct sum
of vector spaces). Since Rpgq is a ideal, it is easy to see that Ps is a homomorphism of Lie
algebras. Also note that Ps ` PR “ Ig, the identity map. Consider the map f : s1 ↠ Rpgq,
defined by

fpaq “ PRpaq. (7)

Note that Rpgq is an s1-module by the adjoint action, and we claim that f is a 1-cocycle of
this s1-module, i.e. f P Z1ps1, Rpgqq.

Exercise 23.6. Prove that claim.

Thus f defines a class rf s P H1ps1, Rpgqq, which is trivial by the vanishing of the first
cohomology of the module Rpgq over the semisimple Lie algebra s1. Hence there exists an
element r P Rpgq, such that PRpaq “ a ¨ r “ ra, rs for all a P s1. Hence

PR “ ´ad r on s1. (8)

Now consider the automorphism σ “ ead r. Since Rpgq is an abelian ideal, pad rq2 “ 0, so
that σ “ Ig ` ad r. Hence, if a P s1, we have by (8):

σpaq “ pIg ` ad rqpaq “ pIg ´ PRqpaq “ Pspaq P s.

Hence σps1q Ď s, as desired. This finishes the case when Rpgq is abelian.

The general case uses this one by the following exercise.

Exercise 23.7. Let Npgq be the subalgebra Rpgq, consisting of nilpotent elements

(a) Using Proposition 5.2, show that

s1p“ rs1, s1sq Ď s ` Npgq.

(b) Prove by induction on k that there exists rk P Npgq, such that ead rkps1q Ď

s ` Npgqpkq.

Since Npgqpkq “ 0 for sufficiently large k, this completes the proof of Maltsev’s theorem.
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Height Weight Modules over a Semisimple Lie Algebra
Lecture 24

Height Weight Modules over a Semisimple Lie Algebra

In the remainder of the course F is an algebraically closed field of characteristic 0, and
g is a finite-dimensional semisimple Lie algebra over F.

Choose a Cartan subalgebra h of g and consider the root space decomposition:

g “ h ‘

˜

à

αP∆

gα

¸

,

where ∆ Ă h˚ is the set of roots, and

gα “ ta P g | rh, as “ αphqa or all h P hu

is the root space attached to α P ∆. Recall that dim gα “ 1 and choose a non-zero vector
Eα P gα for each α P ∆.

Choose a subset of positive roots ∆` Ă ∆, and let n˘ “
À

αP∆`
g˘α. Then we have the

triangular decomposition

g “ n´ ‘ h ‘ n` (direct sum of vector spaces), (1)

where n` and n´ are subalgebras of g with bases tEαuαP∆`(resp. ´∆`). Let ∆` “ tβ1, ¨ ¨ ¨ , βNu

be the set of all positive roots, then ´∆` “ t´β1, ¨ ¨ ¨ ,´βNu, and let tH1, ¨ ¨ ¨ , Hru be a basis
of h. Then the set

tE´αuαP∆`
Y tHiu

r
i“1 Y tEαuαP∆`

(2)

is an ordered basis of g. Hence, by the PBW theorem, the monomials

Em1
´β1

¨ ¨ ¨EmN
´βN

Hs1
1 ¨ ¨ ¨Hsr

r E
k1
β1

¨ ¨ ¨EkN
βN

with mi, ki, sj P Zě0

form a basis of the universal enveloping algebra Upgq, while the monomials

Em1
´β1

¨ ¨ ¨EmN
´βN

(resp. Ek1
β1

¨ ¨ ¨EkN
βN

) (3)

form a basis of Upn´q (resp. Upn`q). It follows that

Upgq “ Upn´q b Uphq b Upn`q (tensor product of vector spaces) (4)

The subalgebra b “ h ` n` is called a Borel subalgebra of g.

Exercise 24.1. Show that n` and n´ are maximal nilpotent subalgebras of g and b
is a maximal solvable subalgebra of g, and that rb, bs “ n`.

Since, by Weyl’s complete reducibility theorem, any finite-dimensional g-module de-
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composes into a direct sum of irreducible g-modules, it suffices to study finite-dimensional
irreducible g-modules in order to understand all the finite-dimensional ones.

Proposition 24.1. Let V be a finite-dimensional irreducible g-module. Then there
exists Λ P h˚ and a non-zero vector vΛ P V with the following three properties:

(i) hvΛ “ ΛphqvΛ for h P h,

(ii) n`vΛ “ 0,

(iii) UpgqvΛ “ V .

It follows from (4) and (i) that (iii) is equivalent to

(iii1) Upn´qvΛ “ V .

Proof. By Lie’s theorem, the solvable Lie algebra b has a non-zero vector v P V , such that

bv “ Λpbqv for some Λ P b˚.

But Λprb, bsq “ 0 since Fv is a 1-dimensional b-module, hence, by Exercise 24.1, Λpn`q “ 0.
Hence (i) and (ii) hold for vΛ “ v. Property (iii) follows from the irreducibility of the
g-module V since Upgqv is a non-zero submodule of V .

Definition 24.1. A g-module V (not necessarily finite-dimensional), satisfying the
three properties (i)-(iii) from Proposition 24.1, is called a highest weight module
with highest weight Λ, and vΛ is called a highest weight vector.

Definition 24.2. For an arbitrary g-module V , for λ P h˚, we denote by Vλ “

tv P V | hv “ λphqv, all h P hu the weight space of h in V , attached to λ. A non-zero
vector v P Vλ is called singular of weight λ if n`v “ 0; if such a vector exists, then λ
is called a singular weight of the g-module V .

Example 24.1. Any Λ P h˚ is a singular weight of a highest weight g-module with
highest weight Λ.

Notation. Given Λ P h˚, let DpΛq “

!

Λ ´
ř

αP∆`
kαα | kα P Zě0

)

.
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Theorem on Highest Weight Modules. Let V be a highest weight g-module with
highest weight Λ P h˚. Then

(a) V “
À

λPDpΛq
Vλ.

(b) VΛ “ FvΛ and dimVλ ă 8.

(c) V is an irreducible g-module if and only if Λ is the only singular weight of V .

(d) V contains a unique proper maximal submodule.

(e) If v is a singular vector with weight λ, then

Ωpvq “ pλ ` 2ρ, λqv,

where p‚, ‚q is a non-degenerate symmetric invariant bilinear form on g, Ω is the
corresponding Casimir element, and

ρ “
1

2

ÿ

αP∆`

α.

(f) Ω |V “ pΛ ` 2ρ,ΛqIV .

(g) If λ is a singular weight of V , then

pλ ` ρ, λ ` ρq “ pΛ ` ρ,Λ ` ρq.

(h) If Λ P h˚
Q, then the number of singular weights of the g-module V is finite.

Proof. By property (iii1) of a highest weight module,

V “ Upn´qvΛ “
ÿ

FEm1
´β1

¨ ¨ ¨EmN
´βN

vΛ.

But the weight of Em1
´β1

¨ ¨ ¨EmN
´βN

vΛ is Λ ´
řN

i“1miβi P DpΛq, proving (a) and (b).

In order to prove (c) and (d), note that any g-submodule U of V we have, by Lemma
14.1 and (a),

U “
à

λPDpΛq

pU X Vλq. (5)

Choose λ “ Λ´
ř

αP∆`
kαα P DpΛq with minimal

ř

αP∆`
kα height α, such that U X Vλ ‰ 0,

and let v be a non-zero vector there. Then Eαv “ 0 for all α P ∆`. Hence v is a singular
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vector, and therefore

Upgqv “ Upn´qv,

which is a proper submodule, unless λ “ Λ, proving (c).

The sum of all proper submodules of V is again a proper submodule because it doesn’t
contain vΛ by (5). Then, this sum is a unique (proper) maximal submodule, proving (d).

In order to prove (e), consider the basis (2) of g, where we choose Eβj
and E´βj

, such
that pEβj

, E´βj
q “ 1. Then the basis of g, dual to (2), is

tE´αuαP∆`
Y
␣

H i
(r

i“1
Y tEαuαP∆`

,

where tH iu is the basis of h, dual to tHiu.

Then, by the definition, we obtain the following formula for the Casimir element:

Ω “

r
ÿ

i“1

HiH
i

`

N
ÿ

j“1

Eβj
E´βj

`

N
ÿ

j“1

E´βj
Eβj

.

Using that rEα, E´αs “ ν´1pαq if pEα, E´αq “ 1, we can rewrite this as follows

Ω “ 2
N
ÿ

j“1

E´βj
Eβj

`

r
ÿ

i“1

HiH
i

`

N
ÿ

j“1

ν´1
pβjq.

Since the last sum is 2ν´1pρq, applying this to a singular vector vλ, we obtain

Ωvλ “

˜

r
ÿ

i“1

λpHiqλpH i
qvλ ` 2pρ, λq

¸

vλ.

Since
řr

i“1 λpHiqλpH iq “ pλ, λq, (e) is proved.

Here we used

Exercise 24.2. Let V be a finite-dimensional vector space with a non-degenerate
symmetric bilinear form p‚, ‚q. Then it induces a bilinear form p‚, ‚q on V ˚, and for
dual bases taiu and tbiu of V we have

pλ, λq “

dimV
ÿ

i“1

λpaiqλpbiq for any λ P V ˚.

End of the proof of the Theorem. Claim (f) follows from (e) since Ω commutes with Upgq on
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V , hence

Ω
`

Em1
´β1

¨ ¨ ¨EmN
´βN

vΛ
˘

“ Em1
´β1

¨ ¨ ¨EmN
´βN

Ω pvΛq ,

and we can use (e).

Claim (g) follows from (f) and (e). Finally, by (g), the set of singular weights lies in a
compact set in h˚

R “ R bQ h˚
Q, and since it also lies in a discrete set DpΛq, their intersection

is finite. ■

Exercise 24.3. Let V be a g-module, and v P V be such that Upgqv “ V (then v is
called a cyclic vector of the g-module V ). Let Ann v “ ta P Upgq | av “ 0u. This is a
left ideal of the associative algebera Upgq, and V is isomorphic to Upgq{Ann v (with g
acting by multiplication on the left), as g-modules. Show that if V 1 is another g-module
with cyclic vector v1, and Ann v1 Ě Ann v, then the g-module V 1 is isomorphic to a
factor module of V .

Definition 24.3. Given Λ P h˚, aVerma module MpΛq is a highest weight g-module
with highest weight Λ, such that any other highest weight module with highest weight
Λ is a factor module of MpΛq.

Proposition 24.2.

(a) For any Λ P h˚, there exists a Verma module MpΛq, unique up to isomorphism.

(b) MpΛq has a unique proper maximal submodule JpΛq, so that the factor-module
LpΛq “ MpΛq{JpΛq is irreducible.

(c) The g-modules MpΛq and MpΛ1q (resp. LpΛq and LpΛ1q) are isomorphic if and
only if Λ “ Λ1.

(d) The vectors Em1
´β1

¨ ¨ ¨EmN
´βN

vΛ with m1, ¨ ¨ ¨ ,mN P Zě0 form a basis of MpΛq.

Proof. (a) It is clear from the definition and Exercise 24.2 that

MpΛq “ Upgq{Upgqpn` ` th ´ Λphq with h P huq

with g acting by multiplication on the left.

(b) follows from the Theorem on highest weight modules (d), and (c) follows from (b).

In order to prove (d), note that by (3) and the PBW theorem we have

Upn´q X Upgqpn` ` th ´ Λphq with h P huq “ 0.
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Hence the map Upn´q Ñ MpΛq, defined by u ÞÑ u ¨vΛ is injective, but by (iii1) it is surjective.
Hence MpΛq is a free module of rank 1 over Upn´q, and (d) follows from the PBW theorem
for n´. ■

Exercise 24.4. Let g “ sl2pFq “ FF `FH`FE, so that h “ FH, n´ “ FF, n` “ FE.
Then Λ P h˚ is identified with ΛpHq P F, andMpΛq “ span tF nvΛ | n P Zě0u, on which
sl2pFq acts according to the key sl2 lemma. This module is irreducible, i.e. isomorphic
to LpΛq if and only if ΛpHq R Zě0, by this lemma, and, if ΛpHq P Zě0, then JpΛq “

span tF nvΛ | n ą ΛpHqu, so that LpΛq “ MpΛq{JpΛq “ span tF nvΛ | 0 ď n ď ΛpHqu

is pΛpHq ` 1q-dimensional.
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Lecture 25

Dimensions and Characters of Finite-Dimensional Irreducible Modules over
Semisimple Lie Algebras

Let g be a finite-dimensional semisimple Lie algebra, choose a Cartan subalgebra h, let
∆ Ă h˚ be the set of roots, and

Π “ tα1, ¨ ¨ ¨ , αru Ď ∆` Ă ∆

be the subsets of simple and positive roots. We have the corresponding triangular decom-
position

g “ n´ ‘ h ‘ n`,

and let b “ h ‘ n` be the Borel subalgebra, recall that rb, bs “ n`. Let, as before,

ρ “
1

2

ÿ

αP∆`

α P h˚. (1)

Fix a non-degenerate invariant symmetric bilinear form p‚, ‚q on g, and let ν : h Ñ h˚ be
the corresponding vector space isomorphism; it induces a non-degenerate symmetric bilinear
form p‚, ‚q on h˚, and pα, αq ‰ 0 for all α P ∆.

Let tEi, Fi, Hiu
r
i“1 be the Chevalley generators of g, where Hi “

2ν´1pαiq

pαi,αiq
, Ei P gαi

, Fi P

g´αi
, so that Ei, Hi, Fi form the standard basis of the subalgebra ai, isomorphic to sl2pFq.

Define the set of dominant weights

P` “ tλ P h˚
| λpHiq P Zě0 for all i “ 1, ¨ ¨ ¨ , ru .

The two main theorems of finite-dimensional representation theory of g are the following.

Cartan’s Theorem. The set of g-modules tLpΛquΛPP`
is, up to isomorphism, a

complete non-redundant list of all irreducible finite-dimensional g-modules. (Recall
that LpΛq is the irreducible highest weight g-module with highest weight Λ P h˚.)

Weyl’s Dimension Formula. If Λ P P`, then

dimLpΛq “
ź

αP∆`

pΛ ` ρ, αq

pρ, αq
.

Proof of Cartan’s Theorem. By Proposition 24.1, any irreducible finite-dimensional g-module
is isomorphic to one of the LpΛq,Λ P h˚. Note that vΛ P LpΛq satisfies EivΛ “ 0, HivΛ “

ΛpHiqvΛ. Hence, by the key sl2 lemma, ΛpHiq P Zě0 for all i “ 1, ¨ ¨ ¨ , r, if LpΛq is finite-
dimensional, and so Λ P P`. Conversely, if Λ P P`, then, by Weyl’s dimensional formula,
which will be proved shortly, dimLpΛq ă 8 (we shall see in a moment that pρ, αq ‰ 0 for
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α P ∆). That tLpΛquΛPP`
is a non-redundant list follows from Proposition 24.2(c). ■

The g-modules LpΛq with Λ P P` are depicted by labeled Dynkin diagrams, by writing
Λ “

řr
i“1miΛi, where Λi P h˚ are the fundamental weights , defined by ΛipHjq “ δij, and

mi P Zě0, by putting mi against the i-th node of the Dynkin diagram of g if mi ‰ 0.

Example 25.1. Let g “ slnpFq, and choose its triangular decomposition such that
h consists of traceless diagonal matrices, and n` (resp. n´) of strictly upper (resp.
lower) triangular matrices. Then Hi “ Ei,i ´ Ei`1,i`1 for i “ 1, ¨ ¨ ¨ , n ´ 1. Let Vm
be the space of all homogeneous polynomials in x1, ¨ ¨ ¨ , xn of degree m, and define a
g-module structure on Vm by letting

paijq ¨ P px1, ¨ ¨ ¨ , xnq “

n
ÿ

i,j“1

aijxi
BP px1, ¨ ¨ ¨ , xnq

Bxj
.

It is easy to see that this is a g-module. If P px1, ¨ ¨ ¨ , xnq is annihilated by n`, i.e. by
all xi

B

Bxj
with i ă j, then BP

Bxj
“ 0 for all j ě 2, hence P is a constant multiple of xm1 .

In other words, Fxm1 are all singular vectors of the g-module Vm. Also, since, up to a
non-zero constant factor,

ˆ

xn
B

Bx1

˙kn

¨ ¨ ¨

ˆ

x2
B

Bx1

˙k1

xm1 “ xm´k2´¨¨¨´kn
1 xk12 ¨ ¨ ¨ xknn ,

we see that Upn´qxm1 “ Vm. Thus Vm is a highest weight module over g with the highest
weight vector xm1 , Fxm1 being the only singular vectors. Since Hi “ xi

B

Bxi
´xi`1

B

Bxi`1
, we

see that the weight of xm1 is mΛ1. Hence, by the Theorem on highest weight modules,

the g-module Vm is isomorphic to LpmΛ1q, and its Dynkin diagram is
m

¨ ¨ ¨ .

Exercise 25.1. Prove that for g “ slnpFq with n ě 2, sonpFq with n ě 7 and spnpFq

with n ě 4, the tautological module is irreducible, and is depicted by the following
labeled Dynkin diagrams:

1
¨ ¨ ¨

1
¨ ¨ ¨

1
¨ ¨ ¨

1
¨ ¨ ¨
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Exercise 25.2. Show that for the adjoint representation of simple Lie algebras of type
Ar pr ě 2q, Br pr ě 3q, Cr pr ě 1q, Dr pr ě 4q, E6, E7, E8, F4, G2, the labeled Dynkin
diagrams are respectively

1
¨ ¨ ¨

1 1
¨ ¨ ¨

2
¨ ¨ ¨

1
¨ ¨ ¨

1

1

1 1 1

Now we turn to the proof of Weyl’s dimension formula. First we take care of vector ρ.

Lemma 25.1. Recall ρ, given by formula (1). Then ρpHiq “ 1 for all i “ 1, ¨ ¨ ¨ , r.

Proof. Consider the simple reflection si “ rαi
, and recall that the set ∆i “ ∆`z tαiu

is si-invariant. Hence ρ “ 1
2
αi ` ρ1, where ρ1 “ 1

2

ř

αP∆ztαiu
α is fixed by si. So

sipρq “ ´1
2
αi ` ρ1 “ ρ ´ αi. But sipλq “ λ ´ λpHiqαi, hence ρpHiq “ 1.

Corollary 25.2. pρ, αq ‰ 0 for all α P ∆`.

Proof. We can take the normalization of the bilinear form p‚, ‚q such that pα, αq ą 0

for all α P ∆. Since Hi “
2ν´1pαiq

pαi,αiq
, we see that

pρ, αiq “
1

2
pαi, αiq, u “ 1, ¨ ¨ ¨ , r. (2)

Hence for α “
ř

i kiαi P ∆`, pρ, αq “ 1
2

ř

i kipαi, αiq ą 0.

Exercise 25.3. For a root system pV,∆q with Cartan matrix A, let ∆_ “
!

α_ “
2νpαq

pα,αq
| α P ∆

)

, where ν : V Ñ V ˚ is the vector space isomorphism induced

by the bilinear form on V . Show that

(a) pV ˚,∆_q is a root system (called the dual root system) and its Cartan matrix
is AJ.
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(b) Show that if Π “ tα1, ¨ ¨ ¨ , αru is a set of simple roots for pV,∆q, then Π_ “

tα_
1 , ¨ ¨ ¨ , α_

r u is a set of simple roots for the dual root system and ρpα_
i q “ 1 for

all i “ 1, ¨ ¨ ¨ , r. Consequently,

ρpα_
q “ height α_ for α_

P ∆_
`.

(c) The Weyl dimension formula can be rewritten as a ratio of two positive integers:

dimLpΛq “

ś

α_P∆_
`

pΛpα_q ` height α_q
ś

α_P∆_
`
height α_

. (3)

Example 25.2. Let g “ sl2pFq. By Cartan’s theorem, all irreducible finite-
dimensional g-modules are, up to isomorphism, Vm “ LpmΛ1q which has dimension
m ` 1. This is consistent with (3), whose numerator is m ` 1 and denominator is 1.

Exercise 25.4. Let g “ sl3pFq and Λ “ m1Λ1 ` m2Λ2 (whose Dynkin diagram is
m1 m2

where m1,m2 P Zě0). Then Λpα_
i q “ mi, i “ 1, 2, the set of positive

coroots is α_
1 , α

_
2 , α

_
1 ` α_

2 , and we have

pΛ ` ρqpα_
i q “ mi ` 1, i “ 1, 2, pΛ ` ρqpα_

1 ` α_
2 q “ m1 ` m2 ` 2,

so that the Weyl dimension formula gives

dimLpΛq “
pm1 ` 1qpm2 ` 1qpm1 ` m2 ` 2q

2
.

(However, to construct explicitly the sl3pFq-modules LpΛq withmi ą 0 andm1`m2 ą 2

is a rather hard problem; recall that
1 1

is the adjoint module).

Exercise 25.5. Given a finite-dimensional g-module V , show that V ˚ is a g-module
as well, letting

pa ¨ fqpvq “ ´fpa ¨ vq.

Show that for Λ “
řn

i“1miΛi, where mi P Zě0, the An-module LpΛq˚ is isomorphic to
LpΛ˚q, where ˚ : P` Ñ P` is defined by

˚pΛiq “ Λn´i`1, i “ 1, ¨ ¨ ¨ , n.

We shall deduce the Weyl dimension formula from the Weyl character formula, intro-
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duced below. For this and for the proof of the Weyl character formula we shall need the
following framework.

Definition 25.1. Recall that for an abelian group V its group ring ZrV s is defined
as the unital commutative associative ring with basis tea | a P V u over Z and product
eaeb “ ea`b for a, b P V . We shall consider ZrV s with V “ h˚

Q, and its “completion”
ZrrV ss, consisting of all sums

ř

aPV mae
a where ma P Z. This completion is a module

over the ring ZrV s, but it is not a ring.

Definition 25.2. A g-module M is called a weight module if M “
À

λPV Mλ as
h-module, where dimMλ ă 8 for all λ (recall that Mλ denotes the weight space,
attached to the weight λ). The character of a weight module M is

ch M “
à

λPV

pdimMλqeλ.

(This is an element of ZrrV ss, and it lies in ZrV s if and only if dimV ă 8.)

Introduce the Weyl denominator

R “
ź

αP∆`

p1 ´ e´α
q P ZrV s. (4)

Weyl’s character formula. For Λ P P`pĂ V q we have

eρR ch LpΛq “
ÿ

wPW

p´1q
ℓpwqewpΛ`ρq. (5)

Corollary 25.3 (Weyl’s denominator identity) eρR “
ÿ

wPW

p´1q
ℓpwqewpρq. (6)

Proof. Since Lp0q is the trivial 1-dimensional g-module, its character ch Lp0q “ 1.
Hence (6) follows from (5) with Λ “ 0.

For the dual Lie algebra gpAJq we obtain a similar formula

eρ
_

R_
“

ÿ

wPW

p´1q
ℓpwqewpρ_q, (7)

where pρ_, αiq “ 1 and R_ “
ś

αP∆_
`

p1 ´ e´αq.

We first deduce Weyl’s dimension formula from Weyl’s character formula (5), and then
prove (5) next time.
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Let P_
`` “ tλ P V | pλ, αiq P Zě1u. Given µ P P_

``, define a ring homomorphism

Fµ : Zrre´α1 , ¨ ¨ ¨ , e´αrss Ñ Zrrqss, Fµpe´αiq “ qpµ,αiq.

Formula (5) can be rewritten as

Re´Λ ch LpΛq “
ÿ

wPW

p´1q
ℓpwqewpΛ`ρq´pΛ`ρq. (8)

Its LHS lies in Zrre´α1 , ¨ ¨ ¨ , e´αrs. It follows from Lemma 26.1 from the next lecture that
this holds for the RHS as well. Recall ρ_ P V , defined by pρ_, αiq “ 1 for i “ 1, ¨ ¨ ¨ , r, and
apply Fρ_ to both sides of (8). We obtain in the LHS:

ź

αP∆`

p1 ´ qpρ_,αq
q
ÿ

λ

pdimLpΛqλqqpΛ´λ,ρ_q. (9)

Next in the RHS we have:

ÿ

wPW

p´1q
ℓpwqq´pΛ`ρ,ρ_q`pwpΛ`ρq,ρ_q,

and using the W -invariance of the bilinear form p‚, ‚q, we get:

q´pΛ`ρ,ρ_q
ÿ

wPW

p´1q
ℓpwqqpwpΛ`ρq,ρ_q

“ q´pΛ`ρ,ρ_qFΛ`ρ

ÿ

wPW

p´1q
ℓpwqewpρ_q´ρ,

which, by (7), is equal to
ś

αP∆_
`

p1 ´ qpΛ`ρ,αqq. From this and (9) we obtain

ź

αP∆_
`

p1 ´ qpρ_,αq
q
ÿ

λ

pdimLpΛqλqqpΛ´λ,ρ_q
“

ź

αP∆`

p1 ´ qpΛ`ρ,α_q
q.

Hence
ř

λ dimLpΛqλq
pΛ´λ,ρ_q “

ś

αP∆`

1´qpΛ`ρ,α_q

1´qpρ,α_q .

As q Ñ 1, by L’Hôpital’s rule, the limit of each factor in the RHS is pΛ`ρ,α_q

pρ,α_q
, hence the

limit of the LHS exists and is equal to dimLpΛq. This proves the Weyl dimension formula
in the form (3).
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Example 25.3. Let g “ sl2pFq. By Example 25.2, all finite-dimensional irreducible
g-modules are LpmΛ1q, whose highest weight is mΛ1 “ m

2
α where α is the positive

root of g and m P Zě0. Its weight space decomposition is

LpmΛ1q “

m
à

j“0

LpmΛ1qpm
2

´jqα,

where LpmΛ1qpm
2

´jqα “ FF jvmΛ1 are 1-dimensional. Hence

ch LpmΛ1q “ e
1
2
mα

` e
1
2

pm´2qα
` `e

1
2

pm´4qα
` ¨ ¨ ¨ ` `e´ 1

2
α, (10)

which also can be written as
´

e
1
2
α

´ e´ 1
2
α
¯

ch LpmΛ1q “ e
1
2

pm`1qα
´ e´ 1

2
pm`1qα. (11)

Formuala (11) coincides with the Weyl character formula for g “ sl2pFq, since ρ “ 1
2
α.
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Proof of the Weyl Character Formula

As in the previous lecture, let V “ h˚
Q. We view V as an abelian group with respect to

the addition operation and consider its group ring ZrV s. Consider also the set ZrrV ss of all
linear combinations

ř

λPV aλe
λ, where aλ P Z. It is an abelian group, but not a ring. We

have the inclusion ZrV s Ă ZrrV ss as abelian groups, with the action of the Weyl group W ,
given by w

ř

λ aλe
λ “

ř

λ aλe
wpλq.

Also the abelian group ZrrV ss is a module over the ring ZrV s, with a compatible action
of W :

wppfq “ wppqwpfq for p P ZrV s, f P ZrrV ss.

Of course, the character of any weight g-module lies in ZrrV ss.

Lemma 26.1. If Λ P P`, then wpch LpΛqq “ ch LpΛq.

Proof. Consider the subalgebra ai “ FEi`FHi`FFi`Tαi
of g, where Tαi

“ th P h | αiphq “ 0u,
so that h “ Tαi

‘ FHi.

By the key sl2-lemma, Ei

´

F
ΛpHiq`1
i vΛ

¯

“ 0, also Ej

´

F
ΛpHiq`1
i vΛ

¯

“ 0 for j ‰ i, since

rEj, Fis “ 0 in this case. So, F
ΛpHiq`1
i vΛ is a singular vector of LpΛq, and since LpΛq is an

irreducible g-module, it has no singular weights different from Λ, and therefore F
ΛpHiq`1
i vΛ “

0. But LpΛq “ UpgqvΛ and ad Fi is locally nilpotent on g, hence on Upgq, hence Fi is locally
nilpotent on LpΛq. The same obviously holds for the Ei. We use here Lemma 6.2 with
α “ λ “ 0.

(Recall that an operator A on a vector space V is called locally nilpotent , if for any
v P V , ANv “ 0 for N " 0.)

It follows that any weight vector v P LpΛq lies in an ai-invariant finite-dimensional
subspace. Hence, by the Weyl complete reducibility theorem, applied to sl2pFq, LpΛq de-
composes in a direct sum of finite-dimensional sl2pFq-modules, which are also h-modules,
hence ai-modules. But the character of such a module is of the form (see Example 25.3)

emαi{2 ` epm´2qαi{2 ` epm´4qαi{2 ` ¨ ¨ ¨ ` e´mαi{2, m P Zě0,

which is rαi
-invariant. Hence ch LpΛq is rαi

-invariant for all i, and therefore W -invariant.■

Lemma 26.2. R ch MpΛq “ eΛ, where R “
ś

αP∆`
p1 ´ e´αq, and Λ P V .
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Proof. By Proposition 24.2(d), we have

ch MpΛq “
ÿ

pm1,¨¨¨ ,mN qPZN
ě0

eΛ´m1β1´¨¨¨´mNβN

“ eΛ
ÿ

pm1,¨¨¨ ,mN qPZN
ě0

e´m1β1´¨¨¨´mNβN

“ eΛ
ź

αP∆`

`

1 ´ e´α
˘´1

by the geometric progression:
ř

ně0 e
´nα “ p1 ´ e´αq´1. ■

Lemma 26.3. wpeρRq “ p´1qℓpwqeρR for w P W , i.e. eρR is W -anti-invariant.

Proof. Since the group W is generated by the simple reflections si “ rαi
, it suffices to check

that sipe
ρRq “ ´eρR. For that we rewrite R as

R “ p1 ´ e´αiqR1, where R1 “
ź

αP∆`ztαiu

p1 ´ e´α
q.

Since ∆`z tαiu is si-invariant, R1 is si-invariant, hence sipRq “ p1 ´ eαiqR1, and sipe
ρRq “

eρ´αip1 ´ eαiqR1 “ eρpe´αi ´ 1qR1 “ ´eρR. ■

Lemma 26.4. Let Λ P V and let M be a highest weight module over g with
highest weight Λ. Recall DpΛq “ tΛ ´

řr
i“1 kiαi | ki P Zě0u and let BpΛq “

tλ P DpΛq | pλ ` ρ, λ ` ρq “ pΛ ` ρ,Λ ` ρqu. Then ch V “
ř

λPBpΛq
aλ ch Lpλq, where

aΛ “ 1 and aλ P Zě0.

Proof. It is by induction on
ř

λPBpΛq
dimVλ, which is finite since dimVλ ă 8 and BpΛq is a

finite set by Theorem on highest weight modules (h) from Lecture 24.

If
ř

λPBpΛq
dimVλ “ 1, then Λ is the only singular weight of V , hence, by Theorem on

highest weight modules (c) from Lecture 24, V “ LpΛq, so ch V “ ch LpΛq. If there is
another singular weight λ ‰ Λ, then λ P BpΛq by Theorem on highest weight modules (g),
and let vλ be a corresponding singular vector, let U “ Upgqvλ, and consider the following
exact sequence of g-modules

0 Ñ U Ñ V Ñ V {U Ñ 0.

Then ch V “ ch U ` ch V {U , and we can apply the inductive assumption to each of the two
terms on the right. ■
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Lemma 26.5. In the assumptions of Lemma 26.4, and V “ LpΛq, we have

ch LpΛq “
ÿ

λPBpΛq

bλ ch Mpλq, where bΛ “ 1, bλ P Z. (1)

Proof. By Lemma 26.4, we have for any µ P BpΛq,

ch Mpµq “
ÿ

λPBpΛq

aλ,µch Lpλq, aλ,µ P Zě0, aµ,µ “ 1.

LetBpΛq “ tλ1, ¨ ¨ ¨ , λmu, and order this set in such a way that λi´λj R t
řr

i“1 kiαi | ki P Zě0u

if i ą j. We get a system of linear equations

ch Mpλjq “

m
ÿ

i“1

aij ch Lpλiq, j “ 1, ¨ ¨ ¨ ,m,

where aij P Z, aii “ 1 and aij “ 0 for i ą j. So the matrix paijq
m
i,j“1 of this system is upper

triangular with 1’s on the diagonal and integers over the diagonal. Hence its inverse, which
expresses the ch Lpλiq’s in terms of the ch Mpλiq’s is an upper triangular matrix with 1’s on
the diagonal and integers over the diagonal. In particular, this proves (1). ■

End of Proof of Weyl’s Character Formula. Multiply both sides of (1) with Λ P P`, which
lie in ZrrV ss, by eρR P ZrV s, and use Lemma 26.2 to obtain

eρR ch LpΛq “
ÿ

λPBpΛq

bλe
λ`ρ, bΛ “ 1, bλ P Z. (2)

By Lemma 26.1, ch LpΛq is W -invariant, hence, by Lemma 26.3, the LHS of (2) is W -anti-
invariant, so the RHS is as well. Hence, using simple transitivity of the action of W on open
Weyl chambers and that Λ ` ρ lies in the open fundamental chamber, we can rewrite (2) as
follows

eρR ch LpΛq “
ÿ

wPW

p´1q
ℓpwqewpΛ`ρq

`
ÿ

λPBpΛqztΛu

bλ
ÿ

wPW

p´1q
ℓpwqewpλ`ρq, λ ` ρ P P`. (3)

It remains to show that the second sum in the RHS of (3) is zero. For that it suffices to
show that the set

tλ P BpΛq | λ ‰ Λ, λ ` ρ P P`u

is empty. In the contrary case, for λ from this set we have λ “ Λ ´
ř

i kiαi, where ki P Zě0
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and not all of them are 0, and also pλ ` ρ, λ ` ρq “ pΛ ` ρ,Λ ` ρq. Hence we have

0 “ pΛ ` ρ,Λ ` ρq ´ pλ ` ρ, λ ` ρq

“ pΛ ´ λ, λ ` Λ ` 2ρq

“

˜

ÿ

i

kiαi,Λ

¸

`

˜

ÿ

i

kiαi, λ ` ρ

¸

`

˜

ÿ

i

kiαi, ρ

¸

. (4)

Since pΛ, αiq “
2ΛpHiq

pαi,αiq
ě 0, and similarly pλ ` ρ, αiq ě 0, and pρ, αiq “ 1

2
pαi, αiq ą 0, where

we use the Killing form, the RHS of (4) is positive, which is a contradiction. ■
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