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Lecture 1

Basic Definitions

Lie algebras arose as the main instrument in the study of Lie groups in the work of
Sophus Lie (a Norwegian mathematician) in the second half of the 19th century.

However there are many other sources of Lie algebras, and by now it has become clear
that the notion of a Lie algebra is more fundamental. It gave birth to many other mathe-
matical theories which play an important role in mathematics and physics.

Definition 1.1. An algebra is a vector space A over a field F, endowed with a binary
operation A x A — A, also called a product, defined by (a, b) — ab, which is bilinear:
this means that for all a,b,ce A and \,u e F,

a(Ab + pc) = Aab + pac  and (Ab + pc)a = Aba + puca.

Examples 1.1.

1. Given a vector space V, the space of all endomorphisms (i.e. linear operators)
of V', denoted End(V'), with the composition operation is an associative algebra:

(ab)e = a(be) for all a, b, c € End(V).

2. Special case: The set of all n-by-n matrices with entries in F, denoted Mat,, ., (F),
with matrix multiplication, is an associative algebra.

Definition 1.2. A subalgebra B of an algebra A is a subspace of A that is closed
under the binary operation: ab € B for all a,b € B.

Definition 1.3. A Lie algebra is an algebra with a bilinear binary operation
denoted [a, b] (instead of ab), called bracket, which satisfies the following two axioms:

e [a,a] =0 (skew-commutativity)

e [a,[b,c]] +[b,[c,al] + [c [a,b]] =0 (Jacobi identity)
Remarks.

1. Skew-commutativity implies that [a,b] = —[b, a] because

0=[a+b,a+b]=]a,a]+][bb]+[ab]+[ba]l=]a,b]+ b al.

The converse is true if char [F # 2.



Basic Definitions

2. One usually writes the Jacobi identity as
[a,[b,c]] +cycl =0

where cycl stands for the two clockwise cyclic permutations: ¢ — b — ¢ and
b—c—a.

Examples 1.2.

1. The vector space g with bracket [a,b] = 0 for all a,b € g. This is called an
abelian Lie algebra, and is denoted ab,, if dim g = n.

2. g = R? with [a,b] = a x b (cross product). It was Jacobi who first proved that it
satisfies the Jacobi identity.

3. Let A be an algebra with a product ab. Denote by A_ the vector space A with the
bracket [a,b] = ab—ba. Then A_ is a Lie algebra, if the algebra A is associative.

Exercise 1.1. Given an algebra A, show that the Jacobi identity in A_ holds in the
following four situations (of course, skew-commutativity automatically holds):

1. 2-member identity: (ab)c = a(bc), i.e. A is an associative algebra.
2. Two 3-member identities: (ab)c + cycl = 0 and a(bc) + cycl = 0.

3. 4-member identity: a(bc) — (ab)c = a <> b, where the RHS means that a and b
are permuted in the LHS. This is called a left symmetric algebra. The same
claim holds for right symmetric algebras, when RHS = b < ¢ (instead of a < b).

4. 6-member identity: [a, bc] + cycl = 0.

Examples 1.3.

1. gl = End(V)_, called the general linear Lie algebra. In the case V = F", one
denotes gly, = gl (F), the set of all n-by-n matrices with entries in F with the
bracket [a, b] = ab — ba.

2. sl,(F) = {a € gl (F) | tr(a) = 0}.

3. Let B be a bilinear form on the vector space V, and consider the following
subalgebra oy g = {a € gl | B(au,v) = —B(u, av) Yu,v e V}.




Basic Definitions

Remark. A subalgebra of a Lie algebra is a Lie algebra.

Exercise 1.2. Show that tr[a,b] = 0 for all a,b € Mat,«,(IF). This implies that
s, (F) is a subalgebra of gl (F). It is called the special linear Lie algebra.

Exercise 1.3. Show that oy p is a subalgebra of the Lie algebra gl .

Exercise 1.4. Let V = F" and let B be the matrix of a bilinear form in the
standard basis of F". Show that

opn p = {a € gl,(F)|a" B+ Ba =0}
where a' denotes the transpose matrix of a. Special cases of op» g are the following:

e 50, 5(F) if B is a non-singular symmetric n-by-n matrix. This is called the
orthogonal Lie algebra.

e sp, 5(F) if B is a non-singular skew-symmetric n-by-n matrix. This is called the
symplectic Lie algebra.

The series of Lie algebras gl,(F),sl,(F),s0, 5(IF),sp, 5(F) are the most important
examples called the classical Lie algebras.

Exercise 1.5. Let f: Mat,«,(F) — F be a linear function, such that f([a,b]) = 0 for
all a,b. Show that f(a) = A tr(a) for some A € IF, independent of a.

Important notation: If X,Y are subspaces of a Lie algebra g, then [X, Y] denotes the
span of all vectors [z, y] where x € X,y e Y.

Definition 1.4. Let g be a Lie algebra. In the above notation, a subspace b
of g is a subalgebra if [h, h] < h. A subspace b is called an ideal of g if [g,h] < b; an

ideal is obviously a subalgebra of g.

Definition 1.5. A derived subalgebra of a Lie algebra g is [g, g].

Proposition 1.1. [g,g] is an ideal of a Lie algebra g, such that the factor algebra
g/ [g, 9] is an abelian Lie algebra.

Proof. If a € g and b € [g, g], then [a, b] € g, g], and thus [g, g] is an ideal of g. The fact
that g/ g, g] is abelian is obvious. |



Basic Definitions

Classification of all Lie algebras of dimension < 2

Dimension 1

g = Fa, and [a, a] = 0 by the skew-commutativity axiom, hence g = ab.

Dimension 2

g = Fx + Fy, where z,y is a basis of g. Then, clearly, [g,g] = F[z,y] is at most 1-
dimensional (by skew-symmetry). Hence either g = absy, or else [g,g] = Fb where b # 0.
In that case, take a € g\Fb, so that a,b is a basis of g. Then [a,b] € [g,g] = Fb, so that
[a,b] = Ab for some nonzero X € F. Replacing a by A~'a, we get [a, b] = b. This Lie algebra
is isomorphic to the subalgebra with zero second row in gl,(F), since taking

(Y ()

we get [a, b] = b. This is the only 2-dimensional non-abelian Lie algebra, up to isomorphism.



Lecture 2

Some Sources of Lie Algebras

Recall that an algebra is a vector space A over a field F with a bilinear product ab, i.e.
for a,b,ce A and \, u € F:

a(Ab + pc) = Aab + pac and (Ab + pc)a = Aba + pca.

(More generally, there can be several products.)

Recall that a Lie algebra is an algebra with product denoted [a, b], and called bracket,
satisfying the skew-commutativity and the Jacobi identity axioms.

(a) From associative or more general algebras

Given an algebra A with product ab, we can form a new algebra A_ with the bilinear
binary operation the commutator [a,b] = ab — ba. Then, as was discussed in Lecture 1, A_
is a Lie algebra if A is associative, or if it satisfies a variety of other conditions.

(b) As algebra of derivations of an algebra

Definition 2.1. For any algebra A over a field F, a derivation of A is an endomor-
phism D of A, viewed as a vector space over I, satisfying

D(ab) = D(a)b + aD(b).

Let Der(A) < gl, be the vector space over F of all derivations of the algebra A.

Exercise 2.1. Prove that Der(A) is a subalgebra of the Lie algebra gl,, and thus it
is a Lie algebra.

Geometric Picture. Let F be the algebra of smooth functions on a manifold, then

Der(F) is the Lie algebra of all vector fields on this manifold. For example, on R?, all vector
fields are
Ple.y) & + Q) -
T,Y)=— T,Y)=—.
7y ax 7y ay
A very important example for string theory: complex valued vector fields on the circle

defined by f (0)@, where f(6) is a complex valued function on S':



Some Sources of Lie Algebras

Sl

o
N

cod
Letting L, = —e*™ —  we see that

do
[Lim, Ln] = (m —n)Lpin (m,neZ).

This Lie algebra has a remarkable central extension, called the Virasoro algebra:

m3 —m

12

[Lin, Ln] = (m —n)Lppyn + Om,—nC where [C, L,,] =0, meZ.

Bonus Problem. Prove that this is a Lie algebra.

For an element a of a Lie algebra g, define a map
ada:g—g, b—[a,b].
This map is referred to as the adjoint operator. Rewriting the Jacobi identity as

[a7 [b7 C]] = [[a7 b] 70] + [b7 [a> C]] )

we see that ad a is a derivation of the Lie algebra g. Derivations of this form are referred as
inner derivations of g.

Proposition 2.1. Inner derivations form an ideal of Der(g). More precisely,

[D,ad a] = ad D(a) for all D € Der(g), a € g.

Proof. Apply both sides to b € g:
[D,ad a] b= D[a,b] — [a, Db] & [Da,b] = (ad D(a))b

where (*) is true since D is a derivation of g. [

Bonus Problem. If A is an associative algebra, then ad a, defined by (ad a)(b) =
ab—ba, is a derivation of A. Prove that for A = End(V'), where V is a finite-dimensional
vector space, these are all derivations.




Some Sources of Lie Algebras

(c) From Poisson brackets

Exercise 2.2. Let A be the algebra of smooth functions in zi,---,z,. Define a
Poisson bracket on A by

{f, g} = Z gg % {z;,z;} for given choices {z;, z,} € A.

i,j=1 v J

Show that this bracket satisfies the axioms of a Lie algebra if and only if

{z;,z;} =0 for all ¢, {z;,z;} = —{z;,x;} forall i, 7,

and z;, z;, x;, satisfy the Jacobi identity for all 7, j, k.

Example 2.1. Let A be the algebra of smooth functions in p1, -+, pn,q1, - , g, and
let {pi,p;} = {¢,q;} = 0and {p;,q;} = — {qi, p;} = d;;. Then the conditions of Exercise
2.2 obviously hold, and we get

{f,g}=zn:<a_f@_a_95_f>

o1 op; 0g; op; 0¢;

which is a Poisson bracket in classical mechanics.

These are special cases of the notion of a Poisson algebra, which is a commutative
associative algebra, endowed with a bracket {a,b}, satisfying the axioms of a Lie algebra,
and the Letbniz rule:

{a,bc} = {a,b}c+ b{a,c}.

Given a family of associative algebras A, depending on a parameter h (i.e. an algebra
over F[h], such that multiplication by h has trivial kernel), then hAj is its ideal, and if
A = Ap/hAy is commutative, it gets a well defined Poisson bracket, given by

)

{a,b} = lim {5}?}

h—0

where 5,5 are some preimages of a and b respectively under the canonical map A, — A.

Recovering A;, from the Poisson algebra A is called quantization.

9



Some Sources of Lie Algebras

(d) Via structure constants

Given a basis ey, ey, -+ of a Lie algebra g over F, the bracket is determined by the
structure constants cf”j € IF, defined by

le;, €] = Z ijek.
k

The skew-commutativity axiom means

c;. =0, cfj = —cfi,
and a more complicated quadratic condition corresponds to the Jacobi identity.

However, changing basis changes the structure constants dramatically, so it is difficult
to see from the structure constants whether we have isomorphic Lie algebras.

General Remark. Algebraic objects are considered up to isomorphism. Isomorphic
objects are indistinguishable.

Given two algebras g,, g, (with one or more products), a homomorphism ¢ : g, — g,
is a linear map over IF, which preserves these products:

¢ ([a,b]) = [p(a), p(b)] for Lie algebras.

The homomorphism ¢ is called an tsomorphism if ¢ is bijective.

If there exists an isomorphism ¢, we say that g; and g, are ¢somorphic, written g; ~ go.
For example, we proved last time that any 2-dimensional Lie algebra is isomorphic either to
the abelian Lie algebra abs, or to the Lie algebra of 2-by-2 matrices with zero second row.

Exercise 2.3. Let ¢ : gy — go be a homomorphism of algebras. Then
(a) Ker(yp) is an ideal of g;.

(b) Im(y) is a subalgebra of gs.

(¢) Im(p) ~ g1/Ker(p) (the Fundamental Homomorphism Theorem).

10



Some Sources of Lie Algebras

(e) As the Lie algebra of an algebraic group

Definition 2.2. A (linear) algebraic group G over a field F is a collection {P,} ., of
polynomials on the space of matrices Mat,, ., (IF), such that for any unital commutative
associative algebra A over I, the set

G(A) = {g € Mat,«x,(A) | g is invertible, and P,(g) = 0 for all a € I'}

is a group under matrix multiplication.

Examples 2.2.

1. The general linear group GL,, is defined by the empty set of polynomials, so that
GL,(A) is the set of all invertible n-by-n matrices with entries in A. This is a
group for any A, so that GL,, is an algebraic group.

2. The special linear group SL, corresponds to {P,} = {det(x;;) —1}, so that
SL,(A) is a subgroup of GL,(A) of n-by-n matrices with determinant 1.

Exercise 2.4. Given B € Mat,, ., (F), let
On,5(A) = {9 € GL.(A) | " Bg = B} .

Show that O, p is an algebraic group.

Definition 2.3. Define the algebra of dual numbers D over a field F by
D =F[e]/(e’) = {a+be |a,beF, & =0}.
The Lie algebra Lie G of an algebraic group G is
Lie G={Xegl,(F)|I,+cX e G(D)},

where I, is the n-by-n identity matrix.

Example 2.3. Lie GL, = gl,(F), since (I, + eX)™ ! = I, — eX (Intuitively, I,, — eX
approximates the inverse to order 2, which is ignored over D).

11



Some Sources of Lie Algebras

Exercise 2.5. Prove that
(a) Lie SL, = sl,(F),
(b) Lie On,B = O~ B.

Theorem 2.1. Lie G is a subalgebra of the Lie algebra g, ().

Proof. We first show that Lie G is a subspace of gl,(F). Indeed, X = (z;;) € Lie G if
and only if P, (I, +¢X) = 0 for all a.

Since €2 = 0, the Taylor expansion is

= 0P,

P.(I,+eX) = P,(1,) +
(ot eX) = Pall) 42 3, 2

(In)xij'

i,j=1

But P,([,) = 0 since every group contains the identity. Hence P, (I, +cX) is linear in (x;;),
so that Lie G is a subspace of gl,(F).

Next, suppose X,Y € Lie G. We wish to prove [X,Y] = XY — Y X € Lie G. We have

I, +eX € G(Fle]/(e?)) and I, +¢Y e G (F[]/(e7)).

Viewing these as elements of G (F[e,£']/(2,€"?)), we have

(I, + ¢X) (I, + 5’Y) (I, +eX) (I, +£'Y) "
(Ln

= (I, +eX) 'Y) (I, —eX) (I, —€'Y)
=1, + es’(XY Y X)
€ G (Flee']/((e€")?)) < G (Fle,€']/(e%,€7)) .

Since Flee’]/((e€)?) ~ D, we see that XY — Y X € Lie G. |

(f) From quantum field theory

A vertex operator algebra is a vector space V with the vacuum vector 1 and bilinear
products a,b for each n € Z such that a,b = 0 for n » 0, subject to the following axioms:

e 1,a=90,_1a,and a_11 = a, (vacuum axiom)

Z < ) U 450) gy € = i(_l)j (7;) (@myn—j(brsjc) = (=1)"bpin—j(amyjc))

7=0

12



Some Sources of Lie Algebras

for all m,n, k € Z. (Borcherds identity).

Bonus Problem. Let TV = {a_1 | a€ V}. Then [a,b] = apb is a well-defined Lie
algebra bracket on V/T'V.

Bonus Problem. [a,b] = aob and ab = a_1b give a well-defined Poisson al-
gebra structure on V/(T'V), where (T'V) denotes the 2-sided ideal generated by
V.

13
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Lecture 3

Engel’s Theorem

The notion of a representation is very important in the study of an algebraic structure.
The proof of Engel’s Theorem is a nice demonstration of this principle.

Definition 3.1. Let g be a Lie algebra over a field IF and let V' be a vector space over
F. A representation of g in V is a Lie algebra homomorphism

g — gly, a— 7(a).
In other words, it is a linear map a — 7(a) from g to End V, such that

7 ([a,b]) = w(a)w(b) — w(b)7w(a).

Examples 3.1.

1. Trivial representation of g in V:

m(a) =0 forallaceg.

2. Adjoint representation ad of g in g:
a—ada, acg, where (ad a) b= [a,b].
In order to check that it is a representation, we need to show that, for a,b € g,
ad [a,b] = (ad a)(ad b) — (ad b)(ad a).
Applying both sides to ¢ € g, we get
[[a, 0], ¢] = [a,[b, c]] = [b; [a, c]]

which is just the Jacobi identity by skew-commutativity of the bracket. (Another
proof is immediate by Proposition 2.1.)

3. Tautological representation of gl,, in V and oy p in V:

m(a) = a.

Definition 3.2. The center of a Lie algebra g is Z(g) = {a € g | [a,g] = 0}. Clearly,
Z(g) is an abelian ideal of g.

15



Engel’s Theorem

Exercise 3.1. Show that Z (gl,(F)) = FI,, and

{0 if char F 1 n,
Z (51, (F)) = { IFI,, otherwise.

Proposition 3.1. The adjoint representation defines an embedding of the Lie algebra
g9/Z(g) in gl

Proof. ad : g — gl is a homomorphism with kernel Z(g). The proposition follows from
the Fundamental Homomorphism Theorem. [ |

Ado’s Theorem. Any finite-dimensional Lie algebra over F embeds in gl,(F) for
some 7.

We present this theorem without proof. Proposition 3.1 proves it when Z(g) = 0. [

Define the Heisenberg Lie algebra heis,, ., to be the (2n+ 1)-dimensional Lie algebra
with basis {p1, - ,Pn,q1, " , qn, c} and all non-zero brackets

[pMQZ]:_[Q’HpZ]:cv ZZl?an

It is very important in quantum mechanics.

Exercise 3.2. Let n = dimg. Prove that dim Z(g) # n — 1.

Exercise 3.3. Prove that any n-dimensional Lie algebra, for which dim Z(g) = n—2, is
isomorphic either to ab,,_3®heis; or to ab,,_o@®h, where @ denotes the direct sum of Lie
algebras; ab; denotes the j-dimensional abelian Lie algebra; and b the 2-dimensional
non-abelian Lie algebra.

Construction of representations from given ones

(a) Direct sum of representations

Given representations m; (i = 1,--- , k) of g in vector spaces V;, we have their direct sum
(Mm@ @m)(a) =m(a)® - Om(a), acgy,

in the vector space Vi ®--- ® V.

16



Engel’s Theorem

(b) Subrepresentations and factor representations

Given a representation 7 of g in V| if a subspace U in V' is invariant with respect to all
operators w(a), a € g, we have the subrepresentation 7y of g in U:

a— 7(a) v,
and the factor representation of g in V/U:

a +— ’/T(G,) ’V/U .

(c) Restriction of a representation of g in V' to a subalgebra h < g

Definition 3.3. A linear operator A on a vector space V is called nilpotent if AN = 0
for some positive integer V.

Exercise 3.4. Show that if dimV < oo, then A is a nilpotent operator on V if and
only if all its eigenvalues are 0.

Lemma 3.1. Let A be a nilpotent operator on a vector space V. Then
(a) There exists a non-zero v € V, such that Av = 0.

(b) ad A is a nilpotent operator on gl,.

Proof. (a) Consider the minimal positive integer N such that AY = 0, then AV~! # 0.
Choose a non-zero vector v € AN~'V. Then Av = 0.

(b) Note that
ad A =Ly — Ru, (1)

where L4(B) = AB and Ra(B) = BA. Furthermore LyRp = RpL,4 due to associativity of
product of operators:

LaR5(C) = A(CB) = (AC)B = RgL4(C).

Hence we may apply the binomial formula to (1):
M
(ad A)™ Z < >Lf4RiV{ 7.

17



Engel’s Theorem

Apply both sides to B with M = 2N:

2N
(ad A)*N B = Z <2N)AJBA2N J
Jj=0 J

which is zero, since either 7 > N or 2N — j > N. [ |

Theorem 3.1. (Engel’s Theorem) Let V be a non-zero vector space (not necessarily
finite-dimensional) and let g < gl;, be a finite-dimensional subalgebra, consisting of
nilpotent operators. Then there exists a non-zero vector v € V' such that

Av =0 for all A e g.

Remark. If we assume dim V' < o0, then dim g < (dim V)? is automatically finite.

Proof of Engel’s Theorem. We use induction on dim g.
If dimg = 1, then g = FA for A € gl,, and, by Lemma (a), Engel’s Theorem holds.

Henceforth assume that dim g > 2, and let h be a maximal proper subalgebra of g. Since
[a,a] = 0, we have that dimb > 1

Step 1. b is an ideal of codimension 1 in g.

Consider the adjoint representation of g (on itself), and its restriction to b, so we have
b is an invariant subspace of g for this representation of h on g (since b is a subalgebra).
Hence we may consider the factor representation m of h on g/h. Then 7(h) < gl , and
dim7(h) < dimbh < dimg. But by Lemma 3.1(b), 7(h) consists of nilpotent operators on

a/b.

Hence we may apply the inductive assumption: there exists a non-zero vector a € g/b,
such that w(h)a = 0 for all h € h. If a € g is an arbitrary preimage of @ under the map
g — g/b, we get that

[h,a] < b, (2)

and a ¢ h since @ # 0. Hence h + Fa is a subalgebra of g, larger than §. Since b is a
(maximal) proper subalgebra of g, we conclude that

g =h®Fa, (3)

and (2) and (3) show that b is an ideal of codimension 1 in g.

Step 2. By the inductive assumption, there exists a non-zero vector v € V such that
Av = 0 for all A € h. Let Vj denote the subspace of all vectors, satisfying Av = 0 for all

18



Engel’s Theorem

A e h. It is a non-zero subspace.

We claim that aVy € Vp. Indeed, Vo = {v e V | h(v) = 0}. So, if v € 1}, then we have
h(av) = [h,a]v + ah(v) =0+ 0 = 0,

since [h,a] € h. By Lemma 3.1(a) there exists a non-zero vector v € Vp, annihilated by a.
Since v is also annihilated by b, we conclude, by (3), that v is annihilated by g. [ |

Corollary. Let m : g — gl,, be a representation of a Lie algebra g in a finite-
dimensional vector space V', such that 7(a) is a nilpotent operator for all a € g. Then
there exists a basis of V', with respect to which all operators m(a) (a € g) have strictly
upper triangular matrices. In particular, any subalgebra g < gl;,, where dim V' < o0,
consisting of nilpotent operators, is a subalgebra of the Lie algebra of strictly upper
triangular matrices in some basis of V.

Proof. By induction on dim V. By Engel’'s Theorem, there exists a non-zero vector e;
such that 7(a)e; = 0 for all a € g. Since Fe; is a g-invariant subspace of V', we may consider
the factor representation of g in V /Fe;.

Applying the inductive assumption, we get a basis €, - - ,€, of V /Fe; in which al ma-
trices of my pe, are strictly upper triangular.

Take arbitrary preimages es, -+ , e, of €s,--- ,€,. Then in the basis e;,--- ,e, of V, all
matrices of the operators in 7(g) are strictly upper triangular. [ |

Exercise 3.5. Construct in sl3(F) a 2-dimensional subspace, consisting of nilpotent
matrices, which do not have a common eigenvector. (Hence the assumption in Engel’s
theorem that g is a subalgebra of gl is essential)

Hint: Consider the matrices

010 0 00
A=10 0 1], B=|-1 00
0 00 0 10

Bonus problem. (Very difficult) If A, B € Mat,,,,(C) are matrices for which all their
linear combinations are diagonalizable, then [A, B] = 0. This is called the Motzkin-
Taussky theorem. Hence, the nilpotent case is dramatically different from the diago-
nalizable case.

19
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Lecture 4

Nilpotent and Solvable Lie Algebras

A flag in a d-dimensional vector space V is a sequence of subspaces
0O=VwcVicVc---cVy=1V, where dim V; = j.
To such a flag we may associate two associative subalgebras of End V:

B;j={AeEnd V| AV, C V; for all j = 0},
Ny={AeEnd V| AV; CcV,_, forall j > 1}.

Note that the product of any d operators from Ny is 0, i.e Ny is a nilpotent (associative)
subalgebra of End V. Note that N; < By.

Choosing a basis eq,- -+ ,e4 of V', we can construct a flag by letting
0=VocVi=Fe, cVo=Fe; +Fey -+ = Vg =F%

In this basis B, consists of upper triangular matrices, and N, of strictly upper triangular
matrices. Then (B;)_ = by and (N;)_ = ny are subalgebras of the Lie algebra gl;(F).

Exercise 4.1. Show that ng = [by, by].

Definition 4.1. Let g be a Lie algebra over a field F. The central series of g is the
descending chain of subspaces

g i=g2g’:=[g.0'|2¢°:=[0.0°] 220" :=[0.0"'] 2,

while the derived series of g is

Note that g> = g(!) = [g, g] is the derived subalgebra of g, and that

(1) g™ < g"*! for n = 1 by induction on n.

(2) All g™ and g" are ideals of g.

Definition 4.2. A Lie algebra g is called nilpotent (resp. solvable) if g" = 0 (resp.
g™ = 0) for some n > 0.

Note that we have for Lie algebras

{abelian} < {nilpotent} & {solvable}
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Examples 4.1.

1. g = Fa +Fb, [a,b] =b. Then gV = g% = [g,g] = Fb, g° = g* = --- = Fb, while
g® = 0. Hence g is a solvable, but not nilpotent, Lie algebra.

2. beisy, ., for n > 1 is a nilpotent Lie algebra since its derived subalgebra is
central, hence g3 = 0.

Exercise 4.2. by is a solvable (but not nilpotent for d > 2) Lie algebra, and n, is a
nilpotent Lie algebra.

Obviously any subalgebra of a nilpotent (resp. solvable) Lie algebra is nilpotent (resp.
solvable) Lie algebra and the same holds for factor algebras by ideals.

Exercise 4.3. Let g be a Lie algebra and b its ideal. Prove that if h and g/ are
solvable Lie algebras, then g is solvable too.

Example 4.2. g = Fa + Fb, [a,b] = b. Then Fb is an abelian (hence nilpotent) ideal
and the factor algebra g/Fb is abelian. But g is not a nilpotent Lie algebra.

Theorem 4.1.
(a) If g is a non-zero nilpotent Lie algebra, then its center Z(g) is non-zero.

(b) If g is a Lie algebra, such that g/Z(g) is a nilpotent Lie algebra, then g is
nilpotent.

Proof.

(a) Take the minimal positive integer N such that g¥ = 0. Since g # 0, N > 2, but then
g" ! #0and [g,g" '] =gV =0, 50 gV = Z(g).

(b) The Lie algebra g = g/Z(g) nilpotent means that g" = 0 for some n > 1, hence
g" < Z(g) and g"! = 0. [ |

Engel’s characterization of nilpotent Lie algebras

Let g be a finite-dimensional Lie algebra. Then g is a nilpotent Lie algebra if and only
if the operator ad a is nilpotent for each a € g.
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n+1

Proof. If g is a nilpotent Lie algebra, then g = 0 for some positive integer n. In

particular, (ad a)"b = 0 for all a,b € g.

Conversely, the adjoint representation embeds g/Z(g) in gl,, and by the assumption, it
consists of nilpotent operators.

Hence, by Corollary of Engel’s theorem, there is a basis of g in which all operators from
9/Z(g) are strictly upper triangular. Therefore, g/Z(g) is a nilpotent Lie algebra, and, by
Theorem 4.1(b), g is nilpotent too. [

The meaning of this theorem is as follows. Let (ad a4) - - (ad a,_1)a, be a commutator
of length n. For example, (ad a)"~'b. Note that in a d-dimensional nilpotent Lie algebra g
any commutator of length d + 1 is zero, since the central series of g is strictly decreasing.

Thus, Engel’s characterization theorem says that if all the commutators of length d + 1
of the form (ad a)? are zero in a nilpotent Lie algebra of dimension d, then all commutators
of length d + 1 are zero.

The famous Zelmanov’s theorem says that in any, possible infinite-dimensional, Lie al-
gebra, (ad a)? = 0 for all @ implies that all commutators of length d + 1 are 0.

Let g be a finite-dimensional nilpotent Lie algebra. Recall that, by Theorem 4.1(a),
Z(g) # 0, so that dimg/Z(g) < dimg.

Definition 4.3. Define inductively by dim g the notion of a n-step nilpotent Lie
algebra g:

e 1-step nilpotent g is abelian.
e 2-step nilpotent g if g/Z(g) is abelian.

e k-step nilpotent g if g/Z(g) is (k — 1)-step nilpotent (k > 2).

Exercise 4.4. Prove that any 2-step finite-dimensional nilpotent Lie algebra with
1-dimensional center is isomorphic to heis,, ; for some integer n > 1.

How to classify 2-step finite dimensional nilpotent Lie algebras?

Let V' = g/Z(g); it is an abelian Lie algebra. Consider the bilinear form on V' with
values in Z(g):

B:VxV—Zg), (ab) |3,
where 5,5 are some preimages of a,b e V respectively under the map g — V.
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Note that B is a well-defined alternating bilinear form, i.e. B(x,z) = 0 for all z € V.
Moreover, B is non-singular in the sense that B(a,V) = 0 implies that a = 0; otherwise
Z(g) is larger.

Conversely, given a non-singualr alternating bilinear form B on a vector space V with
values in a vector space Z, we can construct a 2-step nilpotent Lie algebra

gg=VaZz (direct sum of vector spaces),

for which Z = Z(g) and the bracket on V' is defind by [a,b] = B(a,b).

Exercise 4.5. Prove that gp is a Lie algebra and that gp ~ gp, if and only if B and
By are isomorphic bilinear forms.

The classification of 2-step finite-dimensional nilpotent Lie algebras is equivalent to the
classification of alternating non-singular bilinear forms on a finite-dimensional vector space
V' with values in a finite-dimensional vector space Z.

If dim Z = 1 there is only one such bilinear form, up to isomorphism, which leads to
Exercise 4.4. In the case dim Z = 2 the problem was solved by G. Belitskii, R. Lipyanski and
V. Sergeichuk in 2005. However it was proved in the same paper that the case dim Z = 3 is
impossible (a ‘wild” problem of linear algebra).

Remark. A problem of linear algebra is called wzld if it contains the problem of classification
of pairs of linear operators in a finite-dimensional vector space as a subproblem, otherwise
the problem is called tame. An example of a tame problem is the classification of linear
operators in a finite-dimensional vector space (Jordan form). An example of a wild problem
is classification of triples of linear maps A, B,C from U to V, where U and V are finite-
dimensional vector spaces. Indeed, take dimU = dimV, and C' = I. Then we get the
problem of classification of pairs of linear operators on V. Classification of pairs of linear
maps A, B: U — V is a tame problem.

Another example is classification of m-tuples of subspaces in a finite-dimensional vector
space. This problem is tame for m < 4, but wild for m > 5. For example U < V is
determined by dim U; 2-tuple Uy, U; € V is determined by dim Uy, dim Uy and dim Uy n Us.
For m = 3 it is a little more complicated, but the problem is still finite. For m = 4 the
problem is tame, but infinite.
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Lecture 5

Lie’s Theorem

Definition 5.1. Let h be a Lie algebra over a field F, let 7 : h — gl;, be a representa-
tion of b in a vector space V over I, and let A : h — [ be a linear function. We define
the wetght subspace of V for b, attached to A, as

={veV |n(h)v=A(h)v for all h € h}.

If V;’ # 0, we say that \ is a wetight of the representation 7.

Lie’s Lemma. Let g be a Lie algebra over a field F of characteristic 0, and let h be
an ideal of g. Let m : g — gl, be a representation of g in a finite-dimensional vector
space V over F. Then each weight space V/\h for 7 |, where X is a linear function on b,
is invariant under m(g).

Proof. w(a)v € VY for a € g means
7w(h) (r(a)v) = AM(h)m(a)v for all h € b.

We have, using that [a, ] < b,

[w(h), w(a)] v + 7(a)m(h)v
([h, al)v + A(h) (w(a)v)
([, al)v + A(h) (m(a)v) .

T
A

Hence it suffices to prove that
A([h,a]) =0 forallheb, acg.
Fix a € g and pick a non-zero v € V) (we may assume that V) # 0). Let W_; = 0 and
W, = span {v, w(a)v, - ,7(a)™v} if m = 0.

Take the maximal integer N such that the vectors v, (a)v, - -+ , m(a)v are linearly indepen-
dent (recall that dim V' < ). Then we have

WaocWoecWic - cWy=Wyy=---,
hence
m(a)Wy < Wy. (1)
We shall prove by induction on m > 0 the following two properties
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o (2),,: w(h)m(a)™(v) — A(h)m(a)™(v) € W,,—1 for all h e b,

e (3), : Wy, is m(bh)-invariant.
This is true for m = 0 since v € V. Suppose m > 1 and (2) and (3) hold for m — 1

o (2)1: m(h)m(a)™ (v) — A(h)m(a)™ 1 (v) € W,,_o for all h € b,

e (3)y_1: W1 is m(h)-invariant.

Let us prove (2),:

w(h)m(a)™v — )\( ) (a)™v

(h)m(a)m(a)™ v = A(h)m(a)™v

([h,a]) m(a)™ v + 7(a) (7(h)w(a)™ v — A(h)m(a)™ " v) .

The first summand lies in W,,,_1 by (3),,_1, and the second lies in W,,,_1 by (2),,_1.

Let us prove (3),,. By (3),,_1, it suffices to check that w(h)m(a)™v € W,,. But, as above,
it is equal to

7 ([h,a])7(a)™ v + 7(a) (w(h)w(a)™ 'v) .
Both summands lie in W,,, by (3),,—1

Now, by (1) and (3)x, the space Wy is m(a)-invariant and 7 (h)-invariant, and, by (2)y,
the matrix of 7(h) for h € b is upper triangular with A(h) on the diagonal. Hence, for h € b
we have

Ty, ([h’ a]) = trwy [W(h)aﬂ(a)] = NA ([h> a]) :

Since the trace of the commutator of two operators in a finite-dimensional vector space is 0,
and char F = 0, we conclude that A ([h,a]) = 0. |

Exercise 5.1. Show that Lie’s Lemma holds if char F > dim V.

Lie’s Theorem. Let g be a solvable Lie algebra over an algebraically closed field F
of characteristic 0 and let 7 : g — gl be a representation of g in a finite-dimensional
vector space V over F. Then there exists a linear function A on g, such that Vi # 0.
In other words, there exists a common eigenvector v in V for all 7(a),a € g, such that
the eigenvalue is linear in a.

Proof. We may assume that dim g < oo, replacing g by 7(g) € End V. As g is solvable,
7(g) is solvable as well.
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We shall prove Lie’s Theorem by induction on dimg. The case dimg = 0 is trivial.
Suppose that d = dimg > 1 and we have proved Lie’s Theorem for dimg = d — 1, and we
want to show that it holds for dim g = d.

Since g is a solvable Lie algebra of positive dimension, g properly includes [g, g], let b
be a subspace of codimension 1 in g, containing [g, g]. It is an ideal of g, hence we have

g =bh®Fa (direct sum of vector spaces), [a,bh] < b.

Since b is solvable of dimension d — 1, by the inductive hypothesis, V;’, # 0 for some linear
function X\ on b.

By Lie’s Lemma, V)f’, is g-invariant. In particular aV/\h, c V;’/. Since F is algebraically
closed, there exists a non-zero v in V/\h,, such that av = fv for some ¢ € F. Define a linear
function A on g, letting

Ah 4 pa) = A(h) + pb.

Then v € V!, and the proof is complete. [

Exercise 5.2. Consider the following representation of heis; = {p, q, ¢} in F[x]:

¢ Ipp), p+— -, ¢+ multiplication by .
dx
Show that zPF[z] is an invariant subspace with respect to heisy if char F = p, and
that heis; has no weight in V' = F[z]/2PF[z]. This shows that Lie’s Theorem fails if
char F = p. Explain why this example also shows that Lie’s Lemma fails over fields of
characteristic p.

Exercise 5.3. Prove the following two corollaries of Lie’s Theorem:

(a) For any representation 7 of a solvable Lie algebra g in a finite-dimensional vector
space V over an algebraically closed field F of characteristic 0 there exists a basis
of V' for which the matrices of 7(g) are upper triangular.

(b) Under the same assumption on V' and F, a subalgebra of gl;, is solvable if and
only if it is contained in a subalgebra of upper triangular matrices for some basis
of V.

Proposition 5.1. Let g be a finite-dimensional solvable Lie algebra over an alge-
braically closed field of characteristic 0. Then [g, g] is a nilpotent Lie algebra.

Proof. Recall that g/Z(g) is a subalgebra of gl , and that it is solvable since g is. By
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Exercise 5.3(b) this subalgebra is contained in the subalgebra of upper triangular matrices in
some basis of g. Hence [g/Z(g),9/Z(g)] is a nilpotent Lie algebra since it consists of strictly
upper triangular matrices. The proposition follows, using the following exercise. [ |

Exercise 5.4. Prove that [g, g] is a nilpotent Lie algebra if [g/Z(g),9/Z(g)] is (for
any Lie algebra g).

Remark. Not any nilpotent subalgebra of gly, is a subalgebra of strictly upper trian-
gular matrices in some basis of V. For example, the Lie algebra of diagonal matrices
in gl,,(IF) is abelian, hence nilpotent.

Note that, due to Exercise 5.3(a), the subspace n of a solvable Lie algebra b over a field F
of characteristic 0, consisting of ad-nilpotent elements, is the maximal nilpotent subalgebra
in b.

Another application of Lie’s Lemma and Lie’s Theorem is the following proposition.

Proposition 5.2. Let b be a finite-dimensional solvable Lie algebra over an alge-
braically closed field F of a characteristic 0, and let n be its maximal nilpotent subal-
gebra. Then for any derivation D of b we have D(b) < n.

Proof. 1t is by induction on dim b. By Lie’s Theorem there exists a linear function A\ on
b, such that the weight space by for the adjoint representation is non-zero. Consider the Lie
algebra g = FD @b (direct sum of vector spaces) with b an ideal and [D, b] = D(b) for b € b.
Then, by Lie’s Lemma, [g, by] € by. In particular,

[D, b)\] c by, and [b, b)\] c by, and [[D,a] , b)\] c by for all a € b.
Since all eigenvalues of ad [D, a] in by are equal to A([D, a]), we conclude that
0 = try, [ad D, ad a] = trp,ad [D, a] = A ([D, a]) dim b,.

Hence ad [D, a] is a nilpotent operator on by.

Applying the inductive assumption to b = b/by, we see that D (E) € n and therefore
D (b) < n. ]

Exercise 5.5. By going to the algebraic closure of F, remove the condition that I is
algebraically closed in Proposition 5.2.

Remark. Lie’s Theorem and its corollary in Exercise 5.3(a) is important for differential
Galois theory.

In the usual Galois theory one associates to a polynomial P(x) = 2™ + a2 ! + -+ - + ay,
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where a; € C, the field extension E 2 F where F < C is the field generated by ay,--- ,a,
(the minimal subfield of C containing ay,--- ,a,), and E = F[ay,- -+, a,] where «; are all
the roots of P(z). The Galois group Gal(E,F) is the (finite) group of all automorphisms of
the field E that fix all elements of F.

Galois’ Theorem says that the roots of P(x) can be expressed in terms of radicals (solved
in radicals) of elements of F if and only if the group Gal(E, F) is solvable.

Similarly, in differential Galois theory, one considers a linear differential equation

Y™+ ay(z)y" Y + - an(x) =0, (%)
where ay(z), -, a,(z) are “nice” functions in z, for example, polynomials with coefficients
in C. Let F be the field, genereated over C by a;(z), -+ ,a,(z), and E = F(ay(z), -, an(x)),
where o (z), -+, a,(z) is a basis of solutions of the equation (). The Galois group

G = Gal(E, F)

is the algebraic group of automorphisms of the field E, fixing all elements of F.

Then E can be obtained from F by adding §a, el with a € F or algebraic functions
over F if and only if Lie G is a solvable Lie algebra (such extensions are called Liouville
extensions).

Example. " — ay = 0, where a € C[z]. Then
(a) G = {1} if and only if a = 0,
(b) G =~ {diagonal invertible 2 x 2 matrices} if and only if a € C\ {0},

(c) G = By (2 x 2 upper triangular invertible matrices) if and only if a = V' + b* for
some b € C[z]\C,

(d) G =~ SL, if and only if a # ¥/ + b? for any b € C[x].
For example, the differential equation
y' —xy =0 (Airy equation)

is not solvable in the above sense, since its differential Galois group is SLs, hence its
Lie algebra sly(C) is not solvable.
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Lecture 6

Representation Theory of Nilpotent Lie Algebras and Generalized Weight Spaces

Definition 6.1. Let A be a linear operator on a vector space V over a field F and let
A € F. Then the subspace

Voy={veV|(A- My)Nv = 0 for some N e Zso}

is called a generalized eigenspace of A with eigenvalue A\. Note that the eigenspace
V) of A in V with eigenvalue A is a subspace of V(y).

Example 6.1. A is a nilpotent operator on V' if and only if V' = V(o).

Recall from linear algebra:

Proposition 6.1. Let A be a linear operator on a finite-dimensional vector space
V over an algebraically closed field F, and let Ay, --- , A; be all eigenvalues of A with

multiplicities my, - -+ , m, respectively. Then one has the generalized eigenspace de-
composition
V= @ Vir,),  where dim V) = m;. (1)
j=1

Each V(,,) is A-invariant, and A |V<A~): Ajlm; + Nj where Nj is a nilpotent operator
J
on Vix).-

From Proposition 6.1 we obtain the following decomposition of the linear operator A,
called the classical Jordan decomposition:

A=A, + A, (2)
where A, ‘V(A-): Ajln, and A, |V<A->: Nj;. It has the following three properties:
(i) A is a diagonalizable operator (usually called semisimple),

(ii) A, is a nilpotent operator,

(i) AyA, = A, A,.

Indeed, (i) and (ii) are obvious, while (iii) holds since each V{y,) is A-invariant, and A; [v;, ;=
AL,

Definition 6.2. A decomposition (2) of a linear operator A with properties (i), (ii),
(iii) is called a Jordan decomposition of A.
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We established its existence, provided that dim V' < oo and F is an algebraically closed
field.

Proposition 6.2. Jordan decomposition is unique if V' is a finite-dimensional vector
space over an algebraically closed field.

The proof of this proposition uses

Lemma 6.1. Let A and B be commuting operators on a vector space V, i.e. AB =
BA. Then

(a) All generalized eigenspaces of A are B-invariant.

(b) If A = Ay + A, is the classical Jordan decomposition, then B commutes with
both A, and A,

Proof. (a) is immediate from the definition of a generalized eigenspace. (b) follows from

(a) since each V(»;) 1s B-invariant and A, |V(/\-): AjlLy,;, therefore B and A, commute
J

on each V{y,), hence commute on V. O

Proof of Proposition 6.2 on uniqueness of a Jordan decomposition.
Consider a Jordan decomposition A = AL+ A/, and let A = A, + A, be the classical Jordan
decomposition. Taking the difference, we get:

Ay — AL = A — A, (3)

But A’ commutes with A/ and itself, hence with A. Hence, by taking B = A’ in Lemma
6.1(b), we conclude that A’ commutes with A; and A,. Therefore A], = A — A’ also
commutes with A; and A,. So in (3) we have differences of commuting operators on both
sides. Hence LHS of (3) is a diagonalizable, and RHS of (3) is a nilpotent operator. Hence
both sides of (3) are 0. |

Bonus Problem. Prove that a Jordan decomposition of a linear operator A in any
vector space is unique (if it exists).

Exercise 6.1. Show that any non-abelian 3-dimensional nilpotent Lie algebra is
isomorphic to heis,.

After this digression to linear algebra, we turn to representation theory.

Let g be a finite-dimensional Lie algebra and 7 its representation in a finite-dimensional
vector space V', both over an algebraically closed field F of characteristic 0. We have the
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following generalized eigenspace decomposition for fixed a € g:

V= @V(‘f\), where V5, = {veV | (r(a) = AXI)¥v =0 for some N € Zo}.

AelF
g= (—Dg‘{a), where g(,) = {g9eg]| (ad(a) — al)¥g = 0 for some N € Z-}.
aclF

We shall prove the following theorem.

Theorem 6.1. 7 (g‘(la)> Vs € Vi for a, A e F.

A+a)?

In order to prove this theorem, we need a lemma whose proof is similar to that of Lemma
3.1(b).

Lemma 6.2. Let i be an associative unital algebra over a field F, and let a,b € 4,
A, a € F. Then

(a—a—NVb= Z (]]V) ((ad @ — al)ib) (a — AV (4)

Proof. Let L, (resp. R,) be the operator of left (resp. right) multiplication by a. They
commute by associativity of 4. We have

Liorx=L,—al =X =(ada)+R,—al =M =(ada—al)+ R,_. (5)

Since the operators in the RHS of (5) commute, (4) follows from the binomial theorem
by rising both sides of (5) to the N-th power. ]

Proof of Theorem 6.1. Applying Lemma 6.2 to {4 = End V, 7(a) and 7(g), we have:

(r(a) o~ 3)¥r(g) = 2 () (st —aryee) ) -0 @
where g € g,. Apply both sides to v € V(‘;) with N > dim V(‘i\) + dim 9l Then either
Jj > dimg“a or N —j > dimV(‘f\)

If j > dim g(,,, then (ad 7(a) — al)Yin(g) = 0since g € (s Otherwise N —j > dim V5,
so (m(a) — /\])N Jv = 0 since v e V3,

This makes the RHS of (6) zero, when applied to v € V(§,, so (7(a) — o — MNV7(g)v = 0.
Since this holds for all g € 9y VE V(‘f\), Theorem 6.1 follows. |

Now we turn to representation theory of nilpotent Lie algebras.
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Definition 6.3. Let g be a Lie algebra and let © be a representation of g in a vector
space V over a field F. Let A : ¢ — F be a linear function on g. The generalized
weight space of g in V| attached to A, is

V(f\) = {v eV | (n(g) — Mg)Iv)"v = 0 for some N € Z-, depending on g € g} :

Note that the notion of a weight space Vy introduced in Lecture 5 is a special case of
this, and that V(%\) > VY.

Theorem 6.2. Let h be a nilpotent Lie algebra and 7 its representation in a finite-
dimensional vector space V over an algebraically closed field of characteristic 0. Then
we have the generalized weight space decomposition

V=03V (6)

Aeh*

Proof. Case 1. For each a € b, m(a) has only one eigenvalue. Then V is a generalized
eigenspaace V(‘;(a)), so we just need to check the linearity of \.

Since b is a nilpotent Lie algebra, it is solvable, and we may apply Lie’s Theorem, which
guarantees the existence of X' € h* with a non-zero weight space V(?\,). Then N(a) is the

eigenvalue of 7(a) on V&,), so A=\ eb*

Case 2. For some ag € b, m(ap) has at least two distinct eigenvalues. Since b is a

nilpotent Lie algebra, ad a is a nilpotent operator on § for all a € b, hence h = []Zro()a ),
Therefore, by Theorem 6.1,
() VLY € VY for all a e b, (7)

Since F is algebraically closed, V' is a direct sum of the generalized eigenspaces for 7(ay).
Since each V(3§ is 7(h)-invariant by (7), it is also a representation of h. Since 0 < dim V&SGO) <
dim V for some A € F, we may apply induction on dim V. [

If g is a finite-dimensional Lie algebra over an algebraically closed field F of characteristic
0 and b is a nilpotent subalgebra of g, we may apply Theorem 6.2 to the adjoint representation
of h on g, to obtain the generalized root space decomposition with respect to h:

o=@ g, whereg) ={acg](ad(h)—a(h)l)"™%a=0forallheh}. (8

aegh*®
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Theorem 6.3. Let g and h be as above, and let 7 be a representation of g in a finite-
dimensional vector space V', so that we have the generalized weight space decomposition
(6) with respect to m(h). Then

b b b
G (%)) Voo € Voay: 9)

Proof. If g € g?a), then g € I a(a)) for all a € . By Theorem 6.1, W(g)V&(a)) c V((i(a)m(a))
forall a € h. Hence, ifv € ﬂaeb Vi) then 7(g)v € ﬂaeh Vi@ +a(a)- Since ﬂaeh Vi@ iala) =
V(?\), this establishes (9). =

If V =g and 7 = ad, we obtain the following corollary of Theorem 6.3.

Corollary 6.1. [g‘(’a),g?ﬁ)] - 9?a+5)'

Exercise 6.2. Let I be a field of characteristic 2, and V' = F[x]/2*F[x] be the repre-
sentation of heis,, given by p — f—m, q — x,c+— Iy. Show that V = ‘/(b/\e)w3, but A is not
a linear function on heis;. Compute A.

Exercise 6.3. By the example of the adjoint representation of the 2-dimensional non-
abelian solvable Lie algebra, show that the generalized weight space decomposition
fails for solvable Lie algebras that are not nilpotent.

Exercise 6.4. Let g = gl,(F) and h = {diagonal matrices}. Find the generalized
weight space decomposition for the tautological and adjoint representations with re-
spect to b, and show that (9) and Corollory 6.1 hold. They are actually weight space
decompositions.
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Lecture 7

Regular Elements and Rank of a Finite-Dimensional Lie Algebra

For further development of the theory of Lie algebras we need the notions of a topological
space and Zariski topology.

Definition 7.1. A topological space is a set X with a collection of subsets .%, called
the closed subsets, satisfying the following axioms:

1. Xe% and 9 € .7,
2. the union of a finite collection of closed subsets is a closed subset,
3. the intersection of an arbitrary collection of closed subsets is a closed subset,

4. (weak separation axiom) for any two distinct points x,y € X, there exists F' € Z,
such that x € F, but y ¢ F.

Given a closed subset F' € .%, its complement F° in X is called an open subset. The
axioms for a topological space can also be phrased in terms of open subsets.

Definition 7.2. Let X = F” where F is a field. The Zariski topology on X is
defined as follows: A subset in X is closed if and only if it is the set of common zeros
of a (possibly infinite) collection of polynomials { P, (x)} on F".

For a collection of polynomials S = {P,(z)}, we denote F(S) the set of common
zeros of all polynomials from S. If S contains precisely one non-constant polynomial,
then F(S) is called a hypersurface in F".

Exercise 7.1. Prove that the Zariski topology is indeed a topology.

Example 7.1. If X =T, the closed subsets in Zariski topology are precisely @, F and
finite subsets of F.

Theorem 7.1. Let F be an infinite field and n a positive integer. Then

(a) The complement to a hypersurface in F” is an infinite set. Consequently, the
complement to F'(S), where S contains a non-zero polynomial, is an infinite set.

(b) Every two non-empty Zariski open subsets in F” have a non-empty intersection.

(c) If a polynomial p(x) vanishes on a non-empty Zariski open subset, then p(z) is
the zero polynomial.

Proof. We prove (a) by induction on n. When n = 1, since any non-zero polynomial p(x)
has at most degp(z) roots, F(p(z))¢ is an infinite set (since F is). If n > 1, then any non-
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constant polynomial p(z1,--- ,x,) can be written, after a permutation of the indeterminates
as
p('xh U 7xn) = p0($27 e ,.Tn>$[11 +p1<x27 e 7xn)I(11_1 +oeeey
where pg(xg,- -+ ,x,) is a non-zero polynomial. By the inductive hypothesis, we can find
x5, -+, x5 € F, such that po(z3,--- ,z) # 0. Now fixing these values, we get
o o o o\,.d ) 0\ ,.d—
p(m1,~- ,ZEn) :p0($2,--- 7$n)x1 +p1(x27 T ,l‘n)l’l SRS )

so we are back to the n = 1 case. Hence we can find an infinite number of values zJ € F,
such that p(z9,---,z;) # 0.

To prove the second claim of (a), just observe that if S is a collection of polynomials con-
taining a non-zero polynomial p(x), then F'(S)¢ > F(p(z))¢, hence, by the first claim, F'(5)¢
is an infinite set.

(b) Let S; and Sy be two sets of polynomials, each containing a non-zero polynomial p; ()
and po(x) respectively. It suffices to prove that F'(pi(z))¢ n F(pa(z))© is non-empty. But
F(pip2) = F(p1) v F(pa), so F(pip2)¢ = F(p1)¢ n F(p2)¢, which is an infinite set by (a),
hence non-empty.

(c) If p(z) vanishes on F'(S)¢ for S containing a non-zero polynomial ¢(x), then p(x) vanishes
on F(q)¢. If p(z) were non-zero, then by (b), F(q)° n F(p)® # &, a contradiction. |

Remark. The condition that [F be infinite is essential. For example, if F = Fy = {0, 1},
the polynomial p(z) = 2% + x vanishes on F, but is not the zero polynomial, hence (c)
fails.

Let g be a finite-dimensional Lie algebra of dimension d over a field F. Note that,
as a vector space, it is isomorphic to F¢. Consider the characteristic polynomial of an
endomorphism ad a for some a € g:

dety (ad a — M) = (=A)? + cq_1(a)(=N)?"" + -+ - + dety(ad a).

Note that ¢4(a) = 1, hence this polynomial has degree d, and its constant term cy(a) =
dety(ad a) is a zero polynomial, since (ad a)a = [a,a] = 0, so that the determinant of the
operator ad a on g is 0.

Exercise 7.2. Show that ¢;(a) is a homogeneous polynomial on g of degree d — j.
(Since g =~ F¢ as vector spaces, a polynomial p(v) on g is a polynomial p(xy,--- ,xq)
where v = x1e1 + -+ + T4€4.)
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Definition 7.3. The smallest positive integer r, such that ¢.(a) is a non-zero poly-
nomiial on g, is called the rank of g. The non-zero polynomial ¢,.(a) of degree d —r
is called the discriminant of the Lie algebra g. An element a € g is called regular if
¢(a) # 0. Note that 1 <r < d.

Theorem 7.2. Let g be a Lie algebra of dimension d and rank r, over a field F. Then
(a) r = d if and only if the Lie algebra g is nilpotent.

(b) The set of regular elements coincides with g if and only if g is a nilpotent Lie
algebra.

(c) If g is not a nilpotent Lie algebra, then the set of regular elements is the com-
plement to a hypersurface, hence it is infinite if I is.

Proof. (a) r = d means that det(ad AI) = (=) for all a € g. This holds if and only if
all the eigenvalues of ad a are 0, which happens if and only if ad a is a nilpotent operator
for all @ € g. By Engel’s characterization theorem this happens if and only if g is a nilpotent
Lie algebra.

(b) By (a), g is a nilpotent Lie algebra if and only if det(ad M) = (=)\)?, i.e. c.(a) = cy(a) =
1, so all a € g are regular.

(c) If g is not a nilpotent Lie algebra, then r < d, so that F(c.(z))¢ is a complement to a
hypersurface, defined by a homogeneous polynomial ¢,(z) of degree d — r > 0. By Theorem
7.1(a) the complement to a hypersurface is an infinite set if F is infinite. |

Exercise 7.3.

(a) Show that the Jordan decomposition of ad a in gl,,(F) is given by
ad a = (ad as) + (ad a,),
where a = a5 + a,, is the Jordan decomposition of a € g, (F).

(b) If Ay,---, A, are all the eigenvalues of a,, then \; — \; are all the eigenvalues of
ad ag.

(c) ad as has the same eigenvalues as ad a.
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Exercise 7.4.
(a) rank(gl, (F)) =n.
(b) The discriminant of gl,,(IF) is given by
en(a) =] [ = A)),
i#j
where \;’s are all eigenvalues of a € gl,,(F) (over F), taken with their multiplicities.
(c) Show that the discriminant cy(a) of g = gly(F) is equal to 4det a — (tr a)?.

Bonus Problem. It follows from Exercise 7.4 that for n x n matrix A over F the
function [, (A — A;), where the \;’s are all eigenvalues of A taken with their multi-
plicities, is a polynomial of degree n? — n over I, in the entries of A. Find an explicit
formula for this polynomial (called the discriminant of the matrix A). The correspond-
ing hypersurface consists of the A, which have equal eigenvalues.

40



Lecture 8

Cartan Subalgebras

Definition 8.1. Let g be a Lie algebra, and h a subalgebra of g. Then

Ny(h) = f{aeg][a b] < b}

is a subalgebra of g, called the normalizer of b in g.

The fact that Ny(h) is a subalgebra is immediate by Jacobi identity. Note also that
Ny(b) is the maximal subalgebra of g, containing b as an ideal.

Bonus problem. Let GG be an algebraic group, and H be an algebraic subgroup of
G. Let No(H) = {ge G | gHg ' = H} be the normalizer of H in G. Prove that it is
an algebraic subgroup, whose Lie algebra is Ny(h), where g = Lie G and h = Lie H.

Lemma 8.1. Let g be a nilpotent Lie algebra and h < g a proper subalgebra. Then
h is a proper subalgebra of Ny(h).

Proof. Since g is a nilpotent Lie algebra, its central series has the form:

g=g 2¢"=[g,9]2¢"=[0.9°] 2 2g" =0,

for some positive integer n (note that g # 0). Take j to be the maximal positive integer
such that g/ < h. Clearly we have that 1 < j < n. But then, by the choice of j,

[¢.b] < b.
Hence g/ = Ny(h), but g/ < h. Therefore h # Ny(h). [ |

Definition 8.2. A Cartan subalgebra of a Lie algebra g is a subalgebra b, satisfying
the following two conditions:

(i) b is a nilpotent Lie algebra,
(i) Ny(h) =bh.

Corollary of Lemma 8.1. Any Cartan subalgebra of a Lie algebra g is a maximal
nilpotent subalgebra.

01

Exercise 8.1. Let g = sly(F) with char F # 2. Let h = F (O 0

). This is a maximal

nilpotent subalgebra, but not a Cartan subalgebra.
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The following simple, but important, theorem allows one to construct Cartan subalge-
bras.

Theorem 8.1. Let g < gl,(F) be a subalgebra, containing a diagonal matrix a =
ay 0
with distinct a;’s. Then the subalgebra b of all diagonal matrices in g
0 an,
is a Cartan subalgebra of g.

Proof. Since the subalgebra b is abelian, it is a nilpotent Lie algebra. It remains to check
that b coincides with its normalizer in g. Let b = 3./, _, b;; E; € g, such that [b,h] = h. Here
E;; are the matrix units (1 at entry (¢,j) and 0 otherwise). Then, in particular, [a,b] is a
diagonal matrix. But

la,b] = [Z kB, Y bij By
k %,]

which is a diagonal matrix only if b;; = 0 for ¢ # j. Hence [a,b] € b only if b e h. [ |

= Z(ai - aj)bijEijy

1]

Cartan’s Theorem. Let g be a finite-dimensional Lie algebra over an algebraically
closed field F. Let a € g be a regular element (which exists since F is infinite), and let

g=Pot, (1)

a€elF

be the generalized eigenspace decomposition of g with respect to ad a. Then h = 900)
is a Cartan subalgebra of g.

Proof. The proof uses the fact that any two non-empty Zariski open sets have a non-
empty intersection (Theorem 7.1(b)). Recall also that [g‘(la), g‘(lﬁ)] S (a4 ). and, in particu-

lar, if a = 0,
[9.9f] = gl )
Let V' = @, 9{,) then by (1) and (2) we have:
g =h@V (direct sum of vector spaces); [h,V]< V. (3)
Consider the following two subsets of h:

U={hebh|adh|, is not a nilpotent operator},

R=1{heb|adhl|y isanon-singular operator} .
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Both U and R are Zariski open subsets of b.

Now, we shall prove that § is a nilpotent Lie algebra. Suppose the contrary, then by
Engel’s characterization theorem, there exists h € b, such that ad h is not a nilpotent operator
on h. But then h € U, hence U # @. Also a € R since all eigenvectors with zero eigenvalues
of ad a in g, lie in b, since a is a regular element of g. Hence R # &.

Therefore, U n R # &, and we take be U n R.

Then ad b |5 is not a nilpotent operator, and ad b |y is a non-singular operator. Hence,
by (3), 9?0) < b, which contradicts the choice of a as a regular element (since for regular
a, dim 9o Is minimal among all a € g). This contradiction completes the proof that b is a
nilpotent Lie algebra.

Finally, we prove that Ny(h) = h. If b € Ny(h), so that [b,h] < b, we have that, in
particular, [b,a] € b.

But since a € h and b is a nilpotent Lie algebra, then ad a |, is a nilpotent operator
on h. In particular, 0 = (ad a)V[a,b] = (ad a)¥*'b for some positive integer N. Hence
be g‘(lo) = b, which completes the proof of the theorem. [

Remark. The dimension of the Cartan subalgebra of g, constructed in the proof of
Cartan’s theorem equals rank g, by definitions.

Proposition 8.1. Let g be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic 0, and let h = g be a Cartan subalgebra. Consider the
generalized weight space decomposition of g with respect to b:

9= D ay

Aeh*

Then 9?0) =b.

Proof. Since b is a nilpotent Lie algebra, ad h |, is a nilpotent operator for all h € b.
Hence h 9?0)'

But by definition of 9?0)7 ad h |g? ) is a nilpotent operator for all h € h. Hence ad h \g? o
0 0
is nilpotent operator for all h € h. Therefore, by Engel’s theorem, there exists a non-zero
element b € 9?0) /b, which is annihilated by all ad h |g? o h € b. Taking a preimage b € g of
0

b under the map g?o) — g?o)/f), this means that [b, h] < h. Hence b e N,y(h), but b ¢ b, which
contradicts the fact that b is a Cartan subalgebra. |
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Corollary. Under the assumptions of Proposition 8.1, we have the generalized root
space decomposition

g=b® @ gf,, whereh=gf and [g?a), g?ﬂ)] = . (4)
ach*
a#0

Next, we use the generalized root space decomposition to classify all Lie algebras of
dimension 3 over an algebraically closed field ' of characteristic 0.

We know that for 3-dimensional g, rank g = 3,2, or 1, and rank g = 3 if and only if g is
a nilpotent Lie algebra.

o If rank g = 3: then by Exercise 6.1, g ~ abs or heis;.

e If rank g = 2: in this case dim fh = 2, and since b is a nilpotent Lie algebra, it must be
abelian (the only non-abelian 2-dimensional Lie algebra is not nilpotent). Hence the
generalized root space decomposition (4) in this case is

g=bh®Fc, wherec# 0 and [h,c| < Fe.

Since h = Ny(h), then [h, c] # 0. AlsoFe = g?)\), where ) is a non-zero linear function on
h = Fa®Fb, [a,b] = 0. We can choose the basis a, b of h, such that A(a) = 1, \(b) = —1,

which means that
la,c] =¢, [byc]=—c, [a,b]=0.

This 3-dimensional Lie algebra is isomorphic to the Lie algebra by (F) of upper-triangular
2-by-2 matrices by letting

G B (I B (3

e If rank g = 1: in this case g = Fh @V, where dimV = 2, [h, V] S V.
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Exercise 8.2. Show that in the last case g is isomorphic to one of the following Lie
algebras with basis h, a, b:

(i) [h,a] = a,[h,b] = a+b,[a,b] =0,
(ii) [h,a] = a,[h,b] = Ab, where A € F\ {0}, [a,b] =0,
(iii) [h,a] = a,[h,b] = —b,[a,b] = h.

Exercise 8.3. Show that all Lie algebras from (i) and (ii) are solvable and find
conditions of their isomorphism. Show that (iii) is isomorphic to sly(F), and that it is
not solvable.
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Lecture 9

Chevalley Conjugacy Theorem

In the last lecture we defined Cartan subalgebras and gave a construction, using regular
elements. In this lecture, we will show that this construction gives all Cartan subalgebras
by proving the Chevalley conjugacy theorem on conjugacy of Cartan subalgebras.

To state the theorem, we need the notion of the exponential of a nilpotent operator.

Definition 9.1. Let A be a nilpotent operator on a vector space V over a field F of
characteristic 0. Define

1 1
A _ L2 a3
e —I+A+2!A +3!A +

(as A is nilpotent, this is a finite sum).

Exercise 9.1. If A and B are commuting nilpotent operators on a vector space over
a field of characteristic 0, so that A + B is nilpotent as well, show that

€A+B _ 6A€B.

Deduce that e*e™ = I, hence e is an invertible operator.

Exercise 9.2. Let g be an arbitrary (not necessarily Lie) algebra over a field F
of characteristic 0, and let D be a derivation of the algebra g. Show that e is an
automorphism of the algebra g, provided that D is a nilpotent operator.

We are now ready to state the main result of the lecture.

Chevalley Theorem. Let g be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic 0. Denote by G the group of automorphisms of the Lie
algebra g, generated by automorphisms of the form e*! ¢, for a € g such that ad a is a
nilpotent operator on g. Then any two Cartan subalgebras h; and by of g are conjugate
by G, i.e. there exists o € G, such that o(h;) = bs.

Before proving this theorem, we give a corollary that addresses the question with which
we opened the lecture.

Corollary. Let g and [ be as in the Chevalley Theorem. Then any Cartan subalgebra
h of g is of the form g‘(lo) for some regular element a € g, and, in particular, rank
g = dimb. Also, all such subalgebras 8o are isomorphic.

Proof. Fix a regular element a € g. By the Chevalley theorem, any Cartan subalgebra b
of g is conjugate to 90> say, h=o (g‘@) for some o € G. Hence dimbh = dim 90) = rank g.
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Next, because o is an automorphism of the Lie algebra g, it is easy to check that

o (%) = 90>

and that o(a) is a regular element of g. Finally the last claim is immediate since conjugate
subalgebras are isomorphic. [ |

In order to prove Chevalley’s theorem, we need two lemmas

Lemma 9.1. Let h < g be a Cartan subalgebra of g and suppose there is a regular
element a € g, which is in . Then § = 9(0)-

Proof. The Lie algebra b is nilpotent since it is a Cartan subalgebra. Hence ad a [y is a
nilpotent operator, and so h < 9((10)' But, being a Cartan subalgebra, g‘(lo) is a nilpotent
Lie algebra, and, being a Cartan subalgebra, b is a maximal nilpotent subalgebra of g
(by Corollary of Lemma 8.1). Hence b = gf;,. O

The next lemma is a special case of a general result from algebraic geometry.

Lemma 9.2. Let F be an algebraically closed field of characteristic 0. Let f : F™ — F™
be a polynomial map, i.e.

fly, - am) = (flzn o zm), o (@, m),
where the f;’s are polynomials. Suppose that for some a € F™ the linear map
(df) |o=a: F™ — F™
is non-singular. Then f(F™) contains a non-empty Zariski open subset of F™.

Exercise 9.3. Recall that

(df) [e=a (b) = % f(a+th).

t=0

ofi "
Show that (df) |,=, is a linear operator on F” with the matrix <(9f (a))
L

1,j=1
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Bonus Problem. Prove Lemma 9.2 by the following steps, using Exercise 9.3.

1. If F is a non-zero polynomial in m indeterminates, such that F(fi, -, fu) is

identically zero, then det (gj: 1) is identically 0.
J

2. Given algebraically independent polynomials yq,- - , ¥y, in Flzq, -, x,], show
that the field extension F(xy,- -, x,) 2 F(y1, - ,ym) is finite, i.e. each z;
satisfies a non-zero polynomial equation over F(yi, -+, ym).

3. For each ¢ = 1,---,m, take a polynomial equation satisfied by z; over
F(f1, -, fm), clear the denominators to get a polynomial over F[f1, -+, ful,

and let p;(fi,---, fm) be the leading coefficient of this polynomial. Show that
the set of points

{yeF™ | pi(y) #0 fori=1,--- ,m}

is contained in f(F™).

Example 9.1. Consider the map f : R — R, given by f(z) = 2% Then f(R) =
R-, which doesn’t contain a non-empty Zariski open subset (which is either R or the
complement to a finite set). Thus, the algebraic closure assumption in Lemma 9.2 is
essential.

However, f(R) contains an open subset in the metric topology. In fact, for each a € R
with (df) |z—, non-singular, the image of f contains an open neighborhood of f(a)
in the metric topology for any smooth map f : R™ — R™ by the Inverse function
theorem.

Proof of Chevalley’s Theorem. Let h be any Cartan subalgebra of g. Since b is a nilpotent
Lie algebra, we have the corresponding generalized root space decomposition

b b b b b
0= @D gl whereh =g, [9<a>>9<ﬁ>] S Blarp): (1)

aeh*
(Recall that b = 9?0) by Proposition 8.1). Then for any x € g?a), with a # 0, the operator
ad z is nilpotent on g. Indeed, by (1), (ad x)Ng?ﬁ) c g?ﬁ+Na). As a # 0 and char F = 0,
{f+ Na | N € Z-o} is an infinite set of distinct linear functions on h. But there are only

finitely many of them, for which the attached generalized weight space is non-zero. Hence
(ad x)Ng?ﬁ) = 0 for N big enough.

Next, we show that there is a Zariski open subset of g, consisting of images of elements
of h under the action of the group G. Let A = {« € h*} be the (finite) set of non-zero linear
functions on b, such that g?a) # 0, and let {bj};”:l be a basis of V = @ A g? compatible

)’
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with its decomposition. Then any element of g has a unique expression of the form

h + Z xjb;, where hebh,xz; eF.

J=1

Define a map f: g — g by

f (h + Z ijj) _ 6x1ad(b1)6x2ad(b2) L 6xmad(bm)(h)‘
j=1

The map f is polynomial since all operators ad b; are nilpotent on g.

Let us compute (df) |,=q for a € b, applied to b + h, where he b, b = > z;b;:

fla+tb+h))

t=0

(@) lowa (4 1) = &

4
dt|,_,

6tm1ad(b1)emzad(b2) o etzmad(bm)(a + th)

To compute this derivative, it suffices to expand the function that we are differentiating to
the first order in . We find

(df) |oa (b+ R) = % | [ Ty + tajad(b))) (a + th))
t=0 j=1
=3 . a—i—th—i—Jthxj [bj,a]>

i =h+[ba].

Thus, the linear operator (df) |z=q restricts to the identity operator on b, and to —ad(a) on
V. On each subspace g , of V' the only eigenvalue of —ad(a) is —a(a).

Since each subset {h € h | a(h) = 0} is Zariski closed in b, their intersection
(V{aebla(a) =0}
aeA

is Zariski closed. Hence its complement in § is non-empty. Thus, we can find a € b such that
a(a) # 0 for each aw € A. But then (df) |, is an invertible operator on each g?a), a e A,
50 (df) |z=a is an invertible linear operator on g.

Then, by Lemma 9.2, the image of the map f contains a non-empty Zariski open subset
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in g, which we denote by Q. Recall that, by definition, the image of f (and thus the subset
Q) consists of points o (h) for some o € G, all h € b.

The above arguments hold for any Cartan subalgebra of g. Taking arbitrary Cartan
subalgebras h; and by of g, we obtain the corresponding non-empty Zariski open subsets (2,
and Qy,. Let €2, be the subset of all regular elements of g; this is also a non-empty Zariski
open subset. The intersection €2y, N €y, N €2, is then non-empty as well. Rephrasing this,
there exists a regular element x € g, elements hy € by, hy € b, and automorphisms oy, 05 € G
of g, such that

O'l(hl) =T = O'Q(hg).

Since x is a regular element and o is an automorphism of g, the element h; = o;'(z) is

regular as well. Hence, by Lemma 9.1, h; = g?ol). Similarly, by = g?oz).

The automorphism ¢ = ¢, '0; € G maps hy to hy, and so
o(h
o(h) =0 (g?&)> = 9(0() V= 9]{5) = bo.

This finishes the proof of Chevalley’s Theorem. [

0 -1 0
Cartan subalgebras, but they are not conjugate by any automorphism of g.

Exercise 9.4. Let g = E[Q(R)- Show that h; = R (1 _01) and by = R ( " 1) are

Bonus Problem. Any Cartan subalgebra of sly(R) is conjugate by its automorphism
to one of these two.
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Lecture 10
Trace Form and Cartan’s Criterion

Definition 10.1. Let g be a Lie algebra over a field F and let © be a representation
of g in a finite-dimensional vector space V over F. The associated trace form is a
bilinear form on g given by the following formula:

(a,b)y = try w(a)w(b).

Proposition 10.1.

(a) The trace form is symmetric, i.e.
(CL, b)V = (b, a)v.

(b) The trace form is invariant, i.e.

([a7 b]:c)v = (aa [bv C])V' (1>

Proof. (a) follows from the fact that tr AB = tr BA. For (b), we compute

Exercise 10.1. As above, a bilinear form (e, e) on a Lie algebra g is called invariant
if ([a,b],c) = (a,[b,c]). Check that invariance of (e, e) means that all operators ad a
are skew-adjoint with respect to this form, i.e.

((ad a)b,c) = — (b, (ad a)c) .

Exercise 10.2. Let g be a Lie algebra over a field F of characteristic 0, and let (e, )
be an invariant bilinear form on g. Let D be a derivation of g, which is a nilpotent
operator, skew-adjoint with respect to (e, e). Then

(e”a,e”b) = (a,b) for all a,be g.

In particular, (g(a), g(b)) = (a,b) for all g € G from Chevalley’s Theorem. This exercise
explains why (1) is called the invariance property of the trace form.

93



Trace Form and Cartan’s Criterion

Definition 10.2. If dimg < oo, then the trace form of the adjoint representation is
called the Killing form:

k(a,b) = try(ad a)(ad b), a,beg.

Exercise 10.3.

(a) Show that the trace form of g = gl,(F) (resp. of g = sl,(IF)), associated to the
tautological representation of g is non-degenerate (resp. if char F ¢ n).

(b) Show that the Killing form on sl (F) is non-degenerate, provided that char F { 2n.
Find the radical of the Killing form on gl,,(F) and s, (F).

Cartan’s Lemma. Let g be a finite-dimensional Lie algebra over an algebraically
closed field F of characteristic 0 (so that F > Q). Let m be a representation of g
in a finite-dimensional vector space V. Let h be a Cartan subalgebra of g, and con-
sider the generalized weight space decomposition of V' and the generalized root space
decomposition of g with respect to b (see Theorem 6.2 and 6.3):

V=@ V), (2)

Aeh*
g= @ 9(a); [G(a),g(ﬁ)] S G(at+B), 9(0) = b, (3)
aeh*
T (9@) Vo € Virta)- (4)

Pick € € g(a), f € §(—a), s0 that h := [e, f] € go) = h. Suppose that V() # 0. Then
A(h) =7 a(h), (5)

where r € QQ is independent of A.

Proof. Let U = @,,c; Voogna) S V. Then dimU < oo, and U is w(e)- ,7(f)- and m(h)-
invariant, due to (4). Since 7(h) = [n(e),7(f)], try 7(h) = 0, hence we have:

0=try w(h) = Z Ve T (R, (6)

neZ

and since 7(h) on V{x4nq) has in some basis an upper triangular matrix with (A +na)(h) on
the diagonal, (6) can be rewritten as

A(h) > dim Viainay = —a(h) Y ndim Viypa). (7)

nez neZ
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Since V{(») # 0, (5) follows. |

Corollary of Cartan’s Lemma. Let V' be a finite-dimensional vector space over an
algebraically closed field of characteristic 0. If g < gl is a non-zero subalgebra, such
that [g, g] = g, then (a,a)y # 0 for some a € g.

Proof. Since [g,g] = g, due to the generalized root space decomposition (3), we have

h = Z [g(a)ag—a] . (8)

aeh*

We will prove that (h,h)y # 0 for some h € h. Suppose the contrary. Then we have for
ho € [8(a) 9-a]:

0= (ha, ha)v = try w(ha)® = D try, w(ha)? = D A(ha)® dim Viy). (9)
Aeh* Aeh*

By Cartan’s Lemma we have
A ho) = rara(hy) for some r, ) € Q, independent of h,,. (10)

Substituting this in (9), we obtain

0= > rZ2 dimVjy) |a(ha)” (11)
At Vi #0

It follows that A(h,) = 0. Indeed, in the contrary case, by (10), 7o # 0 and a(h,) # 0,
which contradicts (11).

Since, by (8), b is spanned by all h,’s, it follows that A = 0, hence V' = V|q).

Since 7 (g(a)) V=nm (g(a)) Vioy € Via) = 0 if o # 0, it follows that g() = 0 for all a # 0.
Hence g = b is a nilpotent Lie algebra, which contradicts our assumption that [g,g] = g. B

Cartan’s Criterion. Let g be a subalgebra of gly,, where V' is a finite-dimensional
vector space over an algebraically closed field of characteristic 0. Then the following
properties of g are equivalent:

(a) (g,[9,9])y =0,1ie. (a,b)y =0foralacgbelg,gl
(b) (a,a)y =0 for all a € [g, g],

(c) g is a solvable Lie algebra.
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Proof. (a) = (b) is obvious. (¢) = (a) follows from Lie’s Thorem, since in some basis of V'
all matrices of elements of g are upper triangular, hence of that of [g, g] are strictly upper
triangular, and so [a,b]y =0ifa € g,b€ [g,g].

Finally, we prove the nontrivial part that (b) = (¢). Suppose that (a,a)y = 0 for all
a € [g,g], but g is not a solvable Lie algebra. Then the derived series of g stabilizes at g(™:

(g, g™] = g = 0

for some n. By the Corollary to Cartan’s Lemma, (a,a)y # 0 for some a € g™, which
contradicts (b). |

Corollary of Cartan’s Criterion. A finite-dimensional Lie algebra g over an alge-
braically closed field of characteristic 0 is solvable if and only if « (g, [g,g]) = 0.

Proof. Consider the adjoint representation
ad : g — gl

Its kernel is Z(g), hence g is solvable if and only if ad g = gl is a solvable subalgebra. But,
by Cartan’s criterion applied to the subalgebra ad g in gl;, ad g is solvable if and only if

k(g,[9,0]) =0. L

Exercise 10.4. Consider the following 4-dimensional solvable Lie algebra D = beis; +
Fd, where beis; = Fp + Fq + Fe, with brackets

[p.dl=c lepl=leql =0,
[d7p] =D, [da Q] = —q, [d7 C] = 0.

Define on D the bilinear form
(p,q) = (c,d) =1, and the rest are 0.

Show that D is a solvable Lie algebra, (e, e) is a non-degenerate symmetric invariant
bilinear form on D, but (D,[D, D]) # 0, so Cartan’s criterion fails for this bilinear
form. (Hence it is not a trace form on some finite-dimensional representation of D).

One often can remove the condition that F is algebraically closed by the following trick.
Let F 2 F be the algebraic closure of F. Given a Lie algebra g over F, let § = F®p g. In
other words, choosing a basis eq, ey, -+ of g over F, so that g = @, Fe;, let g = P, Fe;,
which is a Lie algebra over F.
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Trace Form and Cartan’s Criterion

Exercise 10.5.
(a) g is solvable (resp. nilpotent) if and only if § is.
(b) Derive Cartan’s criterion and its Corollary for char F = 0, but not necessarily
F=F.
(c) Show that [g, g] is nilpotent if g is solvable over any F of characteristic 0.
(d) 8o s a Cartan subalgebra for every regular element a € g, for any field F.

(e) Prove Proposition 5.1 for any field I of characteristic 0.
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Lecture 11

The Radical and Semisimple Lie Algebras

Exercise 11.1. Let g be a Lie algebra. Show that

(a) If a,b < g are ideals, then a + b and a n b are ideals; if, moreover, a and b are
solvable Lie algebras, then a + b and a n b are solvable.

(b) If a < g is an ideal and b < g is a subalgebra, then a + b is a subalgebra.

Definition 11.1. A radical R(g) of a finite-dimensional Lie algebra g is a solvable
ideal in g of maximal dimension.

Proposition 11.1. R(g) contains all solvable ideals of g. Consequently R(g) is the
sum of all solvable ideals of g and therefore it is unique.

Proof. 1f a is a solvable ideal of g, then a+R(g) is again a solvable ideal, by Exercise 11.1(a).
Since R(g) has maximal dimension among solvable ideals, we conclude that a+ R(g) = R(g),
hence a € R(g). Therefore, R(g) is the sum of all solvable ideals, hence it is unique. |

Definition 11.2. A finite-dimensional Lie algebra is called semisimple if it is non-
zero and its radical is zero.

Proposition 11.2. A non-zero finite-dimensional Lie algebra g is semisimple if and
only if either of the following two conditions holds:

(i) any solvable ideal of g is zero;

(ii) any abelian ideal of g is zero.

Proof. (i) is obviously equivalent to semisimplicity of g, and (i) = (ii) is obvious as well.
Suppose now that g contains a non-zero solvable ideal v. Then for some k£ > 1 we have the
derived series for t:

hence t*~Y is a non-zero abelian ideal of g. Hence (ii) = (i). [
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The Radical and Semisimple Lie Algebras

Remark 11.1. Let g be a finite-dimensional Lie algebra over a field F, and R(g) its
radical. Then s := g/R(g) is a semisimple Lie algebra.

Indeed, suppose the contrary: s contains a non-zero solvable ideal ¢, then its preimage
t in g contains R(g) properly, so that t/R(g) ~ v, which is solvable. Hence t is a larger
solvable ideal than R(g), a contradiction.

So an arbitrary finite-dimensional Lie algebra g ‘reduces’ to a solvable Lie algebra R(g)
and a semisimple Lie algebra s = g/R(g).

In the case char F = 0 a stronger result holds:

Levi decomposition theorem. If g is a finite-dimensional Lie algebra over a field
of characteristic 0, then there exists a semisimple subalgebra s < g, complementary to
R(g), i.e.

g=5®R(g) (direct sum as vector spaces). (1)

We shall prove this theorem later in the course after developing a structure theory of
semisimple Lie algebras.

The decomposition (1) is a special case of a semidirect product.

Definition 11.3. A decomposition g = h @ ¢, which is a direct sum of subspaces §
and t, where b is a subalgebra and v is an ideal of g, is called a semzi-direct product
of h and ¢, and it is denoted by

g=bhxr

The special case when b is an ideal too, corresponds to the direct product g = h x .

Note that the open end of x goes on the side of the ideal. When both are ideals, we use
x (or @), and we have direct product (or sum) of ideals.
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Exercise 11.2. Let h and ¢ be Lie algebras and let v : h — Der(r) be a Lie algebra
homomorphism. Let g = §h @ ¢t be the direct sum of vector spaces, and extend the
bracket on h and on t to the whole g by letting

[h,r] = —[r,h] =~v(h)(r) for hebh, rer.

Show that this provides g with a Lie algebra structure, denoted by g = b » t. Show
that any semidirect product of Lie algebras is obtained in this way. Finally, show that
g = b x vis the direct product of Lie algebras if and only if v = 0.

Cartan-Jacobson Theorem. Let g be a subalgebra of gl;,, where V is a finite-
dimensional vector space over an algebraically closed field of characteristic 0. Suppose
that V is irreducible with respect to g, i.e. any g-invariant subspace of V' is either 0
or V. Then one of the two possibilities holds:

1. g is a semisimple Lie algebra,

2. g=(gnsly)®FIy and g n sly is semisimple (hence R(g) = FIy ).

Proof. If g is not semisimple, then R(g) is a non-zero solvable ideal of g. By Lie’s Theorem,
there exists a linear function A on R(g), such that the weight space V) is non-zero. By Lie’s
Lemma, V) is g-invariant. Hence, by irreducibility, V) = V.

Hence a = A(a)ly for all a € R(g), so R(g) = FIy. Hence (g nsly) n R(g) = 0, which
proves we have case 2, as g N sly is semisimple since it is the complement of the radical. B

Exercise 11.3. Let V be a finite-dimensional vector space over an algebraically closed
field of characteristic 0. Show that gl;, and sly are irreducible. Deduce that sly is a
semisimple Lie algebra.

Exercise 11.4. Let V be a finite-dimensional vector space with a symmetric bilinear
form (e,e). Let U < V be a subspace, such that the restriction (e,e) |y is non-
degenerate. Denote UL = {v e V| (v,U) = 0}. Then

V=UU".
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The Radical and Semisimple Lie Algebras

Proposition 11.3. Let g be a finite-dimensional Lie algebra, and (e, ) a symmetric
invariant bilinear form on g. Then

(a) If a € g is an ideal, then a' is also an ideal.

(b) If, moreover, (o,®) |4y is non-degenerate, then g = a @ at, a direct sum of Lie
algebras.

Proof. (a) v € a* means that (v,a) = 0. If b e g, then ([v,b],a) = (v, [b,a]) = 0, since the
bilinear form is invariant and a is an ideal. Hence a* is an ideal of g. (b) follows from (a)
and Exercise 11.4. [

Theorem 11.1. Let g be a finite-dimensional Lie algebra over a field of characteristic
0. Then the Killing form s on g is non-degenerate if and only if g is semisimple.
Furthermore, if g is semisimple and a g is an ideal, then & |4« is also non-degenerate
and coincides with the Killing form of a.

Proof. Suppose that the Killing form x on g is non-degenerate. If a < g is an abelian ideal,
and z € g, y € a, then (ad z)(ad y)z = [z, [y, z]] € a for all z € g. It follows that for a basis

e1, -, e of a, contained in the basis ey, -+, eg, €xy1,- -+ , €, of g the matrix of (ad z)(ad y)
is of the form (8 8) Since the trace of this matrix is 0, we deduce that x(g,a) = 0, and

since K is non-degenerate, we obtain that a = 0. Hence g is semisimple.

Conversely, let g be a semisimple Lie algebra. Let a be an ideal of g. If Kk [4xq i
degenerate, so that b = a n at # 0, then b is a non-zero ideal of g, such that x(b,b) = 0 for
all b € b. By Cartan’s Criterion (which holds if char F = 0), it follows that b is a non-zero
solvable ideal of g, which contradicts semisimplicity of g. Thus, if g is semisimple, the Killing
form is non-degenerate, by taking a = g, and also k |4x, is non-degenerate.

Hence, by Proposition 11.3(b), g is a direct sum of a and at. Therefore the Killing form
of a coincides with the Killing form of g, restricted to a. |

Definition 11.4. A Lie algebra g is called stmple if its only ideals are 0 and g, and
g is not abelian.

Corollary 11.1 Any semisimple finite-dimensional Lie algebra over a field of charac-
teristic 0 is isomorphic to a direct sum of simple Lie algebras. Conversely, a direct sum
of simple Lie algebras is semisimple.

Proof. 1f g is semisimple, but not simple, and if a is a proper ideal, then, by Theorem 11.1,
the Killing form, restricted to a is a non-degenerate, hence g is isomorphic to the direct sum
of a and at, both semisimple and having smaller dimension than g. After finitely many steps
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we obtain a decomposition of g in a direct sum of simple Lie algebras.

The converse statement is obvious. [ |

Exercise 11.5. Let g be a simple Lie algebra over a field F of characteristic p. Let
A, = F|z]/2PF[z]. Show that

- d
=F— x (A
g=F (4 &g
is a semisimple Lie algebra, which is not isomorphic to a direct sum of non-zero simple
ideals. Actually the only proper non-zero ideal of g is A, ® g. (If A is a commutative
associative algebra and g is a Lie algebra, both over a field F, then A ®r g is a Lie
algebra with bracket [f ® a,g®b] = fg® [a,b], a,be g, f,g€ A).

Theorem 11.2. Let g < gl;, be a semisimple subalgebra, where V' is a finite-
dimensional vector space over a field IF of characteristic 0. Then the trace form (e, o)y
is non-degenerate on V.

Proof. Let go < g be the kernel of (e,e);. Since, by Corollary 11.1, go is semisimple,
go = [90, 90] and (a,a)y = 0 for all a € go. It follows from Corollary of Cartan’s lemma in
Lecture 10 that go = 0. [
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Lecture 12
Structure Theory of Semisimple Lie Algebras 1

In this lecture and a few that follow, we will study the structure of finite-dimensional
semisimple Lie algebras over an algebraically closed field F of characteristic 0 with the aim
of classifying them. This will amount to a detailed knowledge of the generalized root space
decomposition. The first step is to use the Killing form to understand Cartan subalgebras
and their actions under the adjoint representation.

Unless otherwise stated, we will assume throughout, that our base field F is algebraically
closed of characteristic 0.

Exercise 12.1. Show that the Lie algebra sl,,(IF) is simple for n > 2, iff char F doesn’t
divide 2n, with no other assumptions on F.

Definition 12.1. Let g be a Lie algebra over an arbitrary field F. An abstract
Jordan decomposition of an element a € g is a decomposition of the form

a = ag + Gy,
where
(a) ad as is a diagonalizable (semisimple) operator on g,
(b) ad a, is a nilpotent operator on g,
(¢) [as,a,] =0.

An element a is called semisimple (resp. nilpotent) if ad a is a semisimple (resp.
nilpotent) operator on g.

Exercise 12.2. Abstract Jordan decomposition in a finite-dimensional Lie algebra g
is unique, when it exists, if and only if its center Z(g) = 0.

Theorem 12.1. Let g be a finite-dimensional semisimple Lie algebra over F. Then
(a) Z(g) = 0.
(b) All derivations of g are inner.

(¢) Any a € g admits a unique Jordan decomposition.

Proof. (a) holds since Z(g) is an abelian ideal of g.
(b) By (a) the homomorphism ad : g — Der g is an embedding g < Der g. Consider the
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trace form
(dl, dg) = trg dldg, dl, d2 € Der g.

Its restriction to g is the Killing form, hence non-degenerate since g is semisimple, by The-
orem 11.1. Hence, by Proposition 11.2 from Lecture 11, we have:

Der g = (ad g) ® (ad g)* (direct sum of ideals).

Take D € (ad g)t. For a € g we have [D,ad a] = 0. Recall from Exercise 2.1 that
[D,ad a] = ad D(a). Hence D(a) € Z(g), and, by (a), D(a) = 0 for all a € g. Therefore
Der g = ad g.

(c): Fix a € g, and consider the classical Jordan decomposition
ada= A, + A,

where A; is diagonalizable on g, Ay is nilpotent, and [A;, A,] = 0. Consider the generalized
eigenspace decomposition of g with respect to ad a:

g= @g?)\), where As |gfb>\): )\], [g((l/\)7 g((l“)] - g((L)\JrM).
€

First, we show that A, is a derivation of g. Indeed, for = € 90y, Y€ 8, we have:

As([z,9]) = A+ p)[x, y] = [Az,y] + [z, py]
= [Asz,y] + [, Asy] = As€Derg.

By part (b), A; = ad a, for some as € g. Letting a, = a — a5, we have ad a, = A,. It
remains to check that [as,a,] = 0. Since

ad ([as, an]) = [ad as,ad a,] = [As, An] =0,

part (a) gives the result. |
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Theorem 12.2. Let g be a semisimple Lie algebra over F, let h < g be a Cartan
subalgebra, and consider the generalized root space decomposition of g with respect
to b:

9= Do)y b=090; [8)85)] S dars):

aeh*
Let x be the Killing form on g. Then
K(8(a), 8(8) = 0if a + 5 # 0.
K |g(ay xa(_ay 15 NON-degenerate. In particular, £ [xp is non-degenerate.
b is an abelian subalgebra of g.

b consists of semisimple elements, i.e. each ad h for h € b is diagonalizable.
Consequently,

9@ = 0o = {a€g|[h a] = a(h)a, for all he b}

is a root space.

Proof. (a) If a € g(a),b € g(s), then

((ad a)(ad b))™ @) S v+ N(as5))-

Since the RHS is 0 for N » 0 if a + § # 0, we conclude that the operator (ad a)(ad b) is
nilpotent, hence its trace on g is 0.

(b) Since the Killing form x is non-degenerate on g by semisimplicity of g, and & (g(a), 9(s)) =
0if a+ 8 # 0, by (a), necessarily |g(a)xg(_a)is non-degenerate.

(c) Note that & |5y is the trace form on h under the adjoint representation of it on g.
Since, being nilpotent, b is a solvable Lie algebra, by (the easy part of) Cartan’s Criterion,
we find that

0 = try (ad b, [ad h,ad b]) = x (b, [h, b]) .
But by part (b), & |5« is non-degenerate. Hence [h, h] = 0, so h is an abelian Lie algebra.

(d) Let h € h. By Theorem 12.1(c), h has abstract Jordan decomposition h = hg + h,,
where ad hg is diagonalizable, ad h,, is a nilpotent operator, and [hs, h,] = 0.

By part (c), [h,h] = 0. Hence for any h’' € h we have: 0 = ad [h/,h] = [ad h/,ad h].
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Hence, by Lemma 6.1, we know that [ad /', (ad h)s] = 0, yielding
0= [ad ', (ad h),] = [ad I, ad hy] = ad ([I', h]) .

Since Z(g) = 0, it follows that [h’, hs] = 0 for all &’ € h. Since b is a Cartan subalgebra, we
conclude that hg € b.

It remains to show that h, = 0. Recall that h, = h — hg, hence h,, € b.

Since h is a solvable Lie algebra, Lie’s Theorem implies that, in some basis of g, all
matrices of elements of ad h are upper triangular. As ad h,, is a nilpotent operator, its matrix
is strictly upper triangular. Hence (b, h,) = 0. Since, by (b), & |pxy is non-degenerate, we
conclude that h,, = 0, implying that h = h is a semisimple element. |

Thus, for a semisimple Lie algebra g the generalized root space decomposition is actually
a root space decomposition:

g=h@<@ga>, 0o = {a€g|[h,a] = a(h)a for all h € b},

aceA

where A = {a € b* | a # 0, g, # 0}.

Definition 12.2. Elements a € A are called roots of g, and g, are called the
corresponding root spaces.

Next, we’ll be gathering information about roots of g and the root spaces g,.

We have a canonical linear map of vector spaces
v:h—bh*, h — k(h,e).

Since the Killing form & |yxy is non-degenerate by Theorem 12.2(b), v is injective, and since
dimbh = dim bh* < oo, v is a vector space isomorphism.

Definition 12.3. The Killing form  on h induces a non-degenerate bilinear form on
b*, using the isomorphism v:

(7, Y) =6 (),v7(Y),  fory,y eb”.

Note that (v(h),v(h')) = v(h)(h') = v(h')(h), for h, k' € b.
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Theorem 12.3.

(a) fae A, e€ gy, f € _q, then
le, ] = kle, flv™! ().

(b) If a € A, then k(a, ) # 0.

Proof. (a) We know that [e, f] € h. Since, by Theorem 12.2(b), K |5xp is non-degenerate, it
is enough to show that & ([e, f] — (e, f)v~(a),h) = 0 for all h € h. We compute:

LHS = '%([67 f]> h) - K’(ev f)’%(y_l(a)a h)
= (e, [f, h]) — k(e, fla(h) by invariance of &.

But f € g_q, hence [f, h] = a(h)f, hence
RHS = a(h)k(e, f) — k(e, f)a(h) =0,

proving (a).

(b) Since, by Theorem 12.2(b), £ |g,xg . is non-degenerate, there exist e € g, and
f € g_a, such that (e, f) = 1, hence, by part (a),

[e. /] = v (a).

Also [v7Y(a),e] = a(v™(a)) e = k(a, a)e, and similarly
[ Ha), f1 = —a(v (@) f = —r(a,a)f.
Suppose the contrary to (¢): that x(a,a) = 0. Then by the above relations, the Lie algebra
a=Fe+Ff+Fvia)

is isomorphic to the nilpotent Lie algebra heis; with center Fv—1(a) = [a, a.

Applying Lie’s Theorem to the adjoint representation of a on g, we can find a basis of
g, such that ad e and ad f have upper triangular matrices, and hence ad v~!(«) has strictly
upper triangular matrix. Hence v~!(«) is an nilpotent element of g. But v~ () € b is a
semisimple element of g. So we conclude that v~ '(a) = 0, hence o = 0. This contradicts
the fact that a € A. |
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Exercise 12.3.
(a) Show that all derivations of the 2-dimensional non-abelian Lie algebra are inner.

(b) Describe the Lie algebra Der(heis;). Namely, show that it is isomorphic to the
semidirect product of sly(F) and a 3-dimensional radical, provided that char
[F # 2, while inner derivations form a 2-dimensional abelian ideal.

Bonus Problem. Prove that all derivations of the subalgebra of upper-triangular
matrices in sl,(IF) are inner.

Exercise 12.4. Let g be a finite-dimensional Lie algebra over a field F of characteristic
0. Show that g is semisimple if and only if the Killing form on g is non-degenerate.
Show that Theorem 12.1 and Theorem 12.2(c) hold (i.e. F is not necessarily alge-
braically closed).
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Structure Theory of Semisimple Lie Algebras 11

Throughout this and next lecture, g is a finite-dimensional semisimple Lie algebra over
an algebraically closed field F of characteristic 0.

So far we have proved:

1. The Killing form s on g is non-degenerate.

2. Pick a Cartan subalgebra b in g. Then § is abelian and consists of semisimple elements
of g, and we have the root space decomposition:

g:b®(@ga)> gOZba
aeA

where
A={aebh*|a+0,g, # 0}

is the set of roots; and
0o = {a€g]|[h,a] = a(h)a for all h € b}
is the root space, attached to a € A;

(00> 98] S Gass-

3. Kk defines a pairing between g, and g_,, i.e. the map g, — g*,, defined by a — x(a, o)

is a vector space isomorphism. In particular, dim g, = dimg_, and o € A if and only
if —aeA.

4. K |pxp is & non-degenerate bilinear form, hence we have an isomorphism v : h — bh*,

defined by v(h)(h') = k(h,}') for all h,h' € h. The map v defines a bilinear form on
h* by

ko, B) = B~ () = a(v™!(B)) for a, B e b,
We proved that x(a, ) # 0 if a € A.

5. fae A ee gy, f€g_q, then
le, f] = r(e, flvH () €b.

2
k(a,a)

Next, given o € A, pick a non-zero F € g, and F € g_,, such that x(E, F) =

(which is possible by 3 and the last claim in 4.), and let H = 2:(: (ac;) Then we have:

[H,E| =2E, [H,F|=-2F, |[E,F]=H.
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Indeed, we have by 5.:

next, [H,B] = [y (@), B] = ——a (v () B = 25.

k(a, @)

The verification of the second equality is similar.

Thus, for each root o € A, we constructed a 3-dimensional subalgebra a, = FE+FH+FF
of g, isomorphic to sly(F), via the map

0 1 10 0 0
(o 0) 7= ) =)

Exercise 13.1. Describe the root space decomposition of sl,(IF) and find all a, in it,
for h = traceless diagonal matrices.

Key sl Lemma. Let F be a field of characteristic 0. Let m be a representation of
slo(F) in a vector space V over F (not necessarily finite-dimensional ), and let v € V
be a non-zero vector, such that 7(E)v = 0 and 7(H)v = Av, where A € F (such vector
is called a singular vector of weight A\). Then

(a) m(H)w(F)"v = (A —2n)w(F)™v for any n € Zs,.
(b) m(E)w(F)"v =n(A—n+ 1)x(F)" v for any n € Z,.

(c) If dimV < o, then X\ € Zs, the vectors w(F)/v for 0 < j < ) are linearly
independent, and 7(F)* v = 0. Consequently, in this case the eigenvalues of
7(H) on the span of the vectors w(F)/v, where je Zsq, are A, A —2, A —4, ..., —\.

(d) If X\ ¢ Z=, then all 7(F)/v for j € Z, are linearly independent, hence dim V' =
0.

Proof. (a) We prove this by induction on n. For n = 0 it is given to us. Suppose it holds for
n =k — 1 for some k£ > 0. Then

n(H)m(F)*v = m(H)m(F)x(F)*
= [w(H),x(F)] 7 (F) o+ 7 (F) (n(H)m(F)* o)
= —2m(F)" + 7 (F)(A = 2(k — 1))m(F)" 1o
= (A= 2k)m(F)kv.

(b) is proved in a similar way, by induction on n € Z>4, and is left as an exercise.
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In order to prove (c) and (d), note that by (a), all vectors w(F)/v for j € Z=o have
distinct eigenvalues with respect to w(H). Hence, by linear algebra, those of them which are
non-zero, are linearly independent.

Now the first claim of (c) follows from (b). The second claim of (c) follows from (b) as
well, since, if 7(F) v # 0, (b) implies that all 7(F)"v # 0 for n > X + 1, which contradicts
that V' is finite-dimensional .

(d) follows from (b) as well by the same argument. [

Exercise 13.2. Prove claim (b).

Exercise 13.3. (the F-analogue of the key sl; lemma) Using the notation of the key
sly lemma, if v instead satisfies 7(F')v = 0 and 7(H)v = Av, then we have:

(a) 7(H)m(E)"v = (A + 2n)m(E)™v for n € Zy.
(b) 7(F)w(E)*v = —n(A +n— 1)m(E)" v for n € Zs;.

(c) If dimV < oo, then —\ € Z, the vectors 7(F)’v are linearly independent for
0<j<-A\ and m(E) v =0.

(d) If =X\ & Z=o, then all 7(E)’v for j € Z=q are linearly independent, hence dim V' =
0.

Hint: One can do it by a direct computation. Alternatively, introduce the automor-
phism ¢ of slo(IF) by ¢(F) = F,p(F) = E,p(H) = —H and its representation 7o ¢ in
V.

In order to state the next theorem on the properties of the root space decomposition, we
introduce the following notation:

2
App = M for a, 8 € A, called Cartan integers,
’ k(a, a)
A=Au{0}.
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Theorem 13.1. The root space decomposition of g with respect to a Cartan subal-
gebra h and the set of roots A < h*\ {0} satisfy the following properties:

(a) dimg, = 1 for all « € A.
(b) (String property) If o, B € A, then {f + na}, _, N A is a finite connected string
{B—pa,p—(p—1a, -, 8,8+, ,B+qa}
where p,q € Zzp and p — q = A, 3 € Z.

(c) If o, B, + B € A, then [gq, 98] = Gats-
(d) If a« € A, then naw € A for n € F if and only if n =1 or n = —1.

Proof. Suppose the contrary to (a): dimg, > 1 for some a € A. Then, by 3., dimg_,, > 1,
and there exists a non-zero vector v € g_,, such that x(E,v) = 0, where FE+FH +FF = a,,

H = 21/—1(04)’ Ay =~ 5[2(]F)-

k(o)

Consider the adjoint representation of a, on g. We have (ad E)v = x(E,v)r~(a) = 0,
and
2yt 2a(v! 2
(ad H)v — [H,v] - [V (), 0] 2a( (@) 26, a)v o

ko, ) k(a, @) k(a, @)

Hence, by the key sly lemma (d), dim g = o0, a contradiction.

(b) Consider the following subspace of g

Ua,ﬁ = (‘Dgﬁ+na-

nez

It is obviously ad a,-invariant. The maximal eigenvalue of ad H on U, s is equal to

Amax = Aap + 2¢, (13.1)
and its minimal eigenvalue is equal to

Amin 1= Aapg — 2p. (13.2)

But by the key sly lemma (c), the string is connected and A, = —Anax. Hence, adding

(13.1) and (13.2), we obtain that p — ¢ = A, . Both p and ¢ are non-negative integers since
beA.

(c) Pick the largest integers p and ¢, such that § — pa, 8 + qa € A, and pick a non-zero
vector v € gg_po. Then (ad F')v = 0 and (ad H)v = (Aap — 2p)v.
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By Exercise 13.2, (ad E)/v # 0 for 0 < j < 2p— A,s = p+q. But ¢ > 1 since a+ 3 € A,
so (ad F)P™wv # 0. The root of this vector is « + 8 and (ad E)Pv € gg, hence [E, gg] # 0.
Therefore [ga, 8] = gatps since dim g, = 1 by (a).

d) Let 8 = na, n # 0, be a root. Then, since by (b), Ag, € Z, we conclude that
( 8

Agy = % 2 = 2 ¢ Z; also Aag = 2n € Z. Hence the possible values of n are

2,1,—-1,-2,%,—1. However [g,,8.] = 0 since dimg, = 1, so 2a ¢ A by (c¢). Similarly
%a ¢ A. Since v € A if and only if —y € A by 3., we conclude that —2a ¢ A and —%oz ¢ A
as well. m

Exercise 13.4. Find which p and ¢ are possible for s, (F).

Exercise 13.5. Show that an element h € b is regular if and only if a(h) # 0 for all
ae A.

Exercise 13.6. Show that an elmeent a € g is regular only if it is semisimple.

Remark. By definition, for g = sl,(F) an element a € g is semisimple if and only if it
is contained in a Cartan subalgebra of g. It is known that this fact holds for any semisimple
Lie algebra g.
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Lecture 14
Structure Theory of Semisimple Lie Algebras 111

Recall the root space decomposition

g=h®<(—Bga>, b=g0, [h,0]=0, A={aeb’[a#0,g,#0},

aeA
go ={acg|[hal =a(h)aforall heh}, dimg,=1ifaecA, A=Au{0}.

By Theorem 13.1, the set of roots A satisfies the properties:

(i) If « € A, then nav € A for n € F if and only if n = 1 or —1.

(i) (String property) If o, B € A, then {f + na}, , N A is a finite connected string

{ﬁ—p&,ﬁ—(p—l)a,'--,ﬁ,ﬁ+a,'--,ﬂ+q04}

2r(a,8)
K(a,a) *

where p,q € Zzpand p —q = A, 5 1=
The Killing form « is non-degenerate on g, as well as its restriction to h. We have an
isomorphism v : h — b* defined by v(h)(h') = k(h,}'), h,h' € b.

Using the root space decomposition of g, we can rewrite x on h as a sum over roots.
Namely, for hi, he € h we have (since dimg, = 1 if &« € A and b is abelian)

k(h1, ha) = trg (ad hn)(ad ha) = > a(hn)a(hy). (1)

acA

Hence, using v, we deduce the following formula for x on h*:

KA A2) = Do a (v (M) a (v (M) = D KA, )k(Ae,a). (2)

aeA acA

Definition 14.1. The Q-span of A in b is denoted by bg.

Theorem 14.1.
(a) A spans h* over F.
(b) k(a,8) € Q for o, 5 € A.

(c) K |h5xf)(§ is a positive definite symmetric bilinear form with values in Q.

Proof. (a) Suppose the contrary: h* is not spanned by A over F. Then there exists a non-zero
h € b, such that a(h) = 0 for all a € A.
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This implies that [h,g.] = 0 for all &« € A, and since |h,h] = 0, we conclude that
h e Z(g). Hence h = 0 since the center of g is zero, which is a contradiction.

(b) From equation (2) we obtain for A € h*,

KAL) = D k(N ). (3)

aeA

Recall that (5, 5) # 0 for § € A, so, by (3), taking A\ = § and multiplying both sides by

(ﬁf7 we obtain:

i B ) -

aeA acEA

Since, by the string property, Ag, € Z, we conclude that x(f3, 5) € Q¢ for any root 3. Since

Anp = 2&%5) € Z, we conclude that x(a, 8) € Q for a, 8 € A, proving (b).

(c) It follows from (b) that x(A, ) € Q for any A, 1 € hg. Since, by (a), A spans h*, and
K |pxp is non-degenerate, we see that « | bt % is non-degenerate as well.

By equation (3), x(\, A) = 0 for all A € b since it is a sum of rational squares. This
proves part (c) since a non-degenerate symmetric positive semi-definite bilinear form s on
ho 1s positive definite. [ |

The following simple lemma is very important in representation theory, and will be used
to prove our next theorem.

Lemma 14.1. Let h be a Lie algebra over an infinite field F and let 7 be its represen-
tation in a vector space V, such that V' has a weight space decomposition

V=0V, where V) = {ve V | m(h)v = A(h)v, h e b}.

Aeh*

If U < V is w(h)-invariant subspace, then

U=@PUnW).
Aeh*

Proof. Any u € U can be written as

n

u = Z vy, Wwhere vy, € V3,\ {0}, A\ # ;. (4)

i=1

We will prove by induction on n that all vy, e U. Forn =1, vy, =ue U. If n > 1, we apply
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7(h) to both sides of (4):

ﬂMu:Z&MWM (5)

where h is chosen such that A\;(h) # Aj(h) for i # j (here we use that F is infinite).
From (4) we obtain:
a(h)u— A(h)yu =Y (Ai(h) = A(h)) vy,
i=2
where each coeflicient is not 0.

Hence, by the inductive assumption vy, € U for all 7 > 2, hence also vy, € U. |

Exercise 14.1. Recall that a semisimple Lie algebra g = @;V:l s; is a direct sum

of simple ideals. Prove that any ideal of g is a subsum of this sum and that this
decomposition is unique up to permutation of summands.

Next, we examine how a decomposition of g in a direct sum of (semisimple) ideals,
g = g1 @D go, corresponds to a decomposition of the set of roots A of g. Choose Cartan
subalgebras bh; and by of g; and g, respectively; then h = bh; @ b, is a Cartan subalgebra of
g. Let Ay < b} and Ay < b3 be the sets of roots for g; and go, so that we have root space
decompositions

g:h@<@ga>a gz:hz®<@ga) for i =1,2.

aeA a€A;

Then A = Ay [[Ag, and for v € Ay, B € Ay we have [ga, 93] = 0, hence a+f ¢ A = Au{0}.

Definition 14.2. Let A be a finite subset of non-zero vectors in a vector space V.
This set is called tndecomposable if it cannot be decomposed into a disjoint union
of non-empty subsets A; and A,, such that

a+B¢AifaeA,BeN,. (5)

The following theorem provides a simple way to check if a finite-dimensional Lie algebra
is semisimple (resp. simple).
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Theorem 14.2. Let g = hP ((—Bae Ach* ga> be a decomposition of a finite-dimensional

Lie algebra g over a field F into a direct sum of subspaces, such that the following
properties hold:

(i) b is an abelian subalgebra, g, = {a € g | [h,a] = a(h)a,h € b}, and dimg, = 1
for all o € A,

(i) [gas 8—a] = Fhy, where h, € b is such that a(h,) # 0,
(iii) b* is spanned by A.

(All these properties hold for a semisimple g over an algebraically closed field of char-
acteristic 0.) Then g is a semisimple Lie algebra, and b is its Cartan subalgebra.
Moreover g is simple if and only if the set A is indecomposable.

Proof. We need to prove that if a is an abelian ideal of g, then a = 0. Note that, since a is
an ideal, it is ad bh-invariant. Hence, by Lemma 14.1, if a # 0, then either g, < a for some
ae A, or hnaz#0, by the properly that dimg, = 1.

In the first case [ga,9-o] = Fhy S a, and, since a(hy) # 0, [ha, 0] = 8o S a. So a
contains a non-abelian subalgebra Fh,, + g,, which is impossible since a is abelian.

In the second case, a contains a non-zero element h from h. By condition (iii), a(h) # 0
for some o € A, hence [h,g,] = go S a, and a again contains a non-abelian subalgebra
Fh + g., which is again impossible. So a = 0, which proves that g is semisimple.

It is obvious that § is a Cartan subalgebra of g.

Finally, why g is simple if the set A < b* is indecomposable? In the contrary case,
g = g1@go, where gy and go are (non-zero) semisimple ideals, and by the discussion preceding
Definition 14.2, this implies that the set A is not indecomposable. [ |

Exercise 14.2. Prove that if a semisimple Lie algebra g with the set of roots A is
simple, then the set A is indecomposable.

The following is an easy method to check if a set A is indecomposable.

Exercise 14.3. Show that a finite subset A of non-zero vectors in a vector space V' is
indecomposable if and only if for any «, 8 € A, there exists a sequence vy, ,7s € A,
such that o« = v1, 8 =7, and v; + v, € AU {0} fori=1,--- ;s — 1.
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Lecture 15

Examples of Classical Semisimple and Simple Lie Algebras

Recall Theorem 14.2, which says that if g is a finite-dimensional Lie algebra over an
infinite field IF, decomposed in a direct sum of subspaces

g=bhd ( @ ga) ) (1)
acACh*\{0}
where b is an abelian subalgebra,
ga ={acg|[ha] = a(h)a, heb}, dimg, =1,
[00,0 o] =Fho€b, «alhy) #0, and b*is spanned by A, (2)
then g is a semisimple Lie algebra, and b is its Cartan subalgebra.

Moreover g is simple if and only if A is an indecomposable set, meaning that for any
a,B € A,a # [, these exists a sequence of elements from A, a = v1,7,--- ,7s = [, such
that 7, + vi,1 € Au {0} foralli=1,--- s—1.

Example 15.1. g = sl,,(F), n > 2 (special linear Lie algebra). Let D be the subalgebra
of all diagonal matrices in gl,,(F), and let h = D nsl,(IF) be the subspace of all traceless
diagonal matrices. It is a Cartan subalgebra of sl,(F) (by Theorem 8.1). Denote by
ai
g; € D* the linear function, defined by e¢; =a;, 1 =1,---,n. They
a/n
form a basis of D*. Their restrictions to b, also denoted by ¢;, are linearly dependent:
€1+ -+ ¢, = 0. However, the vectors

€1 —€9,€2 —E€3, " ,Ep—1 —Ep,E1 T E2+ -+ &y

form a basis of D* if char F { n, since

1 -1 0 - 0
o 1 -1 ---0
Exercise 15.1. |, . . | =n.
1 1 1 1
Hence {€1 —e3,60 — €3, -+ ,€,_1 — €, } is a basis of h*. We have the decomposition (1),
where
Ag,r) ={ci—¢j |4, =1,---,n, i # j}, ge,—c;, = FEj;. (3)
We have: [Eiijji] = E,L — Ej' = hsifgj, and (81' — €J)(E“ — Ejj) =2#0 if char F #* 2.

Hence condition (2) holds if char F # 2 and char F { n (by Exercise 15.1).

81



Examples of Classical Semisimple and Simple Lie Algebras

Therefore sl,(F) is semisimple if char F 1 2n. To check simplicity, consider two roots:
a=¢;—¢j, [B=¢er—¢cs5, wherei#j, k+#s,

and construct the sequences a = vy,--- ,v, = 8. If j = k, the sequence a = v1,7% = (3
works. If j # k, the sequence o = 71,72 = € — €k, 73 = [ works. Hence sl,,(FF) is a simple
Lie algebra if char F 1 2n.

This series of simple Lie algebras is denoted by A, (since rank sl,(F) =n—1), n > 2.
This is called the classical series of type A,, n > 1.

Example 15.2. Let B be a non-degenerate symmetric bilinear form on N-dimensional
vector space V over F. Recall the corresponding orthogonal Lie algebra.

oys(F) = {a e gly(F) | B(au,v) + B(u,av) =0, u,ve V} < gl (F), (4)

where char F # 2. Choosing a basis of V' and denoting again by B the matrix of the
bilinear form in this basis (which is non-singular symmetric), we proved that we get
the subalgebra of gl (F) (see Exercise 1.4)

on5(F) = {aecgly(F) |a'B+ Ba=0}, (5)

where a' is the transposition of a with respect to the principal diagonal.
If F is algebraically closed, one can choose a basis of V' in which B is any symmetric
non-singular N x N matrix. We choose a basis, such that

and denote by soy(FF) = g the corresponding Lie algebra oy p(IF).

Exercise 15.2. Show that
son(F) = {ae gly(F) | a+d =0},
where o’ is the transposition of @ with respect to the anti-diagonal.

Exercise 15.3.

(a) s0o(F) = {<8 _Oa) |ae IF} is 1-dimensional abelian, hence not semisimple.

(b) Show that so,(F) < sl,(F).
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We consider separately two cases.

Case 1. N =2n + 1, where n is a positive integer. Let

ai

h = 0 (= son(F) n D).

This is a Cartan subalgebra by Theorem 8.1, since it contains a diagonal matrix with distinct

entries.

Case 2. N = 2n, where n > 2 is an integer. Let

a1

h = (=son(F)n D).

This is a Cartan subalgebra for the same reason. In both cases, dimh = n and e, - - -

form a basis of h*. Note that
EN+1—j b= —€j |p and ei1)2 [p= 0 if N is odd.
Next, all the eigenvectors for ad fh on g are the elements
Eij— Enyi—jN+1—i, 4, ]€ {L,---, N},
and the corresponding root is €; — ¢; |. Therefore, the set A of roots is

N=2n+1: A5°N(]F) = {5i_€j’i(€i+€j)ui5i|i7je{17"‘ 7n}727é.]};
N =2n: AsaN(IF) I{é?i—éfj,i(gi'i‘&j)|i,j€{1,--- ,n},z#]}

»En

(6)

Exercise 15.4.

(b) Show that soy(F) is simple if N =3 or N > 5.

(a) Using the root space decomposition, prove that sox(F) is semisimple if N > 3.
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Example 15.3. Consider the special case g = s04(F). In this case A =
{£(e1 —e2)} [ [{£(e1 + €2)} is the decomposition in a union of two indecomposable
subsets A = {+(g7 —e2)} and Ay = {£(e; + £2)}. Then g decomposes in a direct sum
of two subalgebras, isomorphic to sly(F) with the sets of roots A; and As.

Let ey = B3 — Eay, f1 = Fo) — By, e = E31 — By, f2 = P13 — Eyy. Then
[61762] =0, [617f2] =0, [627f1] = ()

Hence g ~ g1 @ g2, where g; = Fe; + Ff; + Fle;, fi] (i = 1,2) are the two ideals of g
isomorphic to sly(F).

Bonus Problem. Consider the Lorentz Lie algebra o4p5(R), where B =
1 0
- 1 (see (5)). Prove that this is a simple 6-dimensional Lie algebra
0 -1
over R. Note that its complexification 04 5(C) ~ s504(C) is not simple. Thus, though
semisimplicity of g remains under field extensions, this is false for simplicity.

The series of simple Lie algebras §09,,1(F) for n > 1 is called the series of type B,, of
classical Lie algebras. The series s09,(IF) of simple Lie algebras, where n > 3, is called the
series of type D, of classical Lie algebras. In both cases, n is the rank.

Example 15.4. Consider the Lie algebra oy g, defined by (4), where V is the N-
dimensional vector space over a field I of characteristic # 2, and B is skew-symmetric
non-singular bilinear form. By linear algebra, N = 2n must be even, and there exists
a basis of V' in which the bilinear form B has matrix

—1

We denote sp,, (F) the Lie algebra ogen g, where B is the matrix (9). This Lie algebra
is called the symplectic Lie algebra.
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Exercise 15.5. Repeat the discussion we've done for sos,(F) in the case of g =

5p2n (F) .

First, show that sp,,, (IF) consists of 2n x 2n matrices of the form ((Z 2) , where a, b, c,d

are n X n matrices over IF, and

where ’ is the transposition with respect to the antidiagonal.
Next, let h be the set of all diagonal matrices in sp,,, (IF):

( al

a
h =< " . , where a,--- ,a, €T .
—Un

\ —ai y
Show that b is a Cartan subalgebra of sp,, (), and find the root space decomposition.
Show that the set of roots is:

Ny = i —€j, (&5 +¢5), 42 | 4,5 € {1,--- ,n},i # j}.
Show that this set is indecomposable.

Prove that sp,,(F) is a simple Lie algebra for all n > 1.

These Lie algebras are called type C), classical simple Lie algebras.

Thus, we have constructed four series of classical simple Lie algebras of rank n:

A, = sl (F) (n > 1), B, =50,11(F) (n > 1),
Cn = 59y, (F) (n > 1), D,, = 509,(F) (n = 3).

We conclude the lecture by a discussion on invariant bilinear forms.
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Proposition 15.1. Let g be a simple finite-dimensional Lie algebra over an alge-
braically closed field F. Then

(a) Any symmetric invariant bilinear form on g is either non-degenerate or identically
7€T0.

(b) Any two non-degenerate symmetric invariant bilinear forms on g are proportional:
(a,b); = A(a,b)s for some A\ € F, independent of a and b.

Proof. (a) If (e,e) is a symmetric invariant bilinear form on g, its kernel is an ideal of g,
hence on simple g the kernel is either g or 0.

(b) Choose a basis of g, and let B; be the matrix of (e, e); in this basis, i = 1,2. Then
det(By — ABs) = (det By)(det(By By — \I)).

If \o is an eigenvalue of the matrix B, By, then det(B; — A\¢B;) = 0. Hence the bilinear
form (a,b); — Ao(a, b)s is degenerate, and therefore is identically zero by (a). |

Corollary 15.1. If g < gly(F) is a simple Lie algebra and F is algebraically closed,
then x(a,b) = Atrpn (ab) for all a,b € g for some non-zero A € F, independent of a, b.

Example 15.5. On gly(F) we have trp~ (E;jEys) = 6505, hence for the induced
bilinear form on D*, where D is the subalgebra of all diagonal matrices, we have

(6ia€j) = 5ij7 Z7.] = 1a 7N' (10)

By Corollary 15.1 and Theorem 14.1(c), for all classical Lie algebras, the Killing form
on b is a multiple of the bilinear form (10) with positive rational coefficient.
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Lecture 16

Root Systems

The discussion in previous lectures leads to the following definition.

Definition 16.1. Let V be a finite-dimensional real Euclidean space, i.e. V is a
finite-dimensional vector space over R with symmetric positive definite bilinear form
(e,0). Let A = V be a subset. Then the pair (V,A) is called a root system if

(i) A is finite, 0 ¢ A, A spans V over R;

(ii) (string condition) for any «, 5 € A, the set {5 + ja | j € Z} n (AU {0}) is a string

/B_paaﬁ_(p_l)aa"'7ﬂ_a7576+aa“'7ﬂ+qaa

where p,q € Zso and p — g = 2((03’5))(2: Aap);

(iii) for all & € A, k € Z, we have ka € A if and only if k =1 or —1.

Elements of A are called roots and r = dimg V' is called the rank of (V, A).

Remark 16.1. Multiplying the bilinear form (e, ) by a positive real number, we again get
a root system.

Basic Example. Let g be a finite-dimensional semisimple Lie algebra over an alge-
braically closed field of characteristic 0. Choose a Cartan subalgebra b in g, let A < h*
be the set of roots, and hg the Q-span of A. Then we know that the Killing form r
on b is Q-valued and positive definite, by Theorem 14.1(b), (c).

Let V = R®g b, i.e. linear combination of roots with real coefficeints, and extend the
Killing form from b to V' by bilinearity to a real-valued positve definite symmetric
bilinear form on V. Then the pair (V,A) is a root system, called the root system
attached to g.

This construction is independent of the choice of b, due to Chevalley’s Theorem.

Exercise 16.1. Let (V,A) be a root system. Then the set A is indecomposable if
and only if there doesn’t exist a decomposition (V,A) = (V1, A1) + (V2, Ag), where
V=VieW V,#0,V LV A cV,and A = Ay uA,. (Hint: use the string
condition,)

Moreover, the decomposition A = [].A; into indecomposable sets corresponds to
decomposition of the root system in the orthogonal direct sum of indecomposable root
systems.
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Definition 16.2. (of Remark 16.1) An isomorphism of indecomposable root systems
(Vi, Ay) and (Va, Ay) is a vector space isomorphism ¢ : Vi — V5, such that p(A;) = Ay
and (¢(a),¢(8))y = c(a, )1, for all «, B € A, where ¢ € R is independent of a and
B.

Example 16.1. Any root system of rank 1 is isomorphic to (R,A = {1,—1}) and
(v, B) = a. This root system is indecomposable, and it is a root system, isomorphic
to that, attached sly(IF), s03(F) and spy(F).

Proposition 16.1. Let (V,A) be an indecomposable root system with the bilinear
form (e, e) on V. Then

(a) Any other bilinear form (e, e); on V, satisfying the string property, is (a,b); =
¢(a,b), where ¢ € R is independent of a and b.

(b) If (a, ) € Q for some a € A, then (5,7v) € Q for all g,y € A.

Proof. Fix a € A. Since (V, A) is indecomposable by Exercise 16.1, for any 5 € A there exists
a sequence of roots vy, - -+ , s, such that & = v, 8 = 75 and (y;, V1) #0fori=1,---  s—1.

Define ¢ € R by (a,a); = ¢(a,«). By the string property, p — ¢ = 2((23) = 2((2’531, hence
(o, 72)1 = e, 72).

Likewise, by the string property ?Egzj)) = 2((2’331, hence (72,72)1 = ¢(72,72). Continuing
this way, we show that (v3,73)1 = c(73,73), -+, (8, 8)1 = c(B, B).

Since % = %, we conclude that (a, 8); = c¢(a, 8). Since A spans V', we conclude
that (a) holds. The same argument proves (b). |

Now we turn to the construction of roots systems beyond the classical ones.

Definition 16.3. A lattice in a finite-dimensional real Euclidean space V' is a discrete
subgroup L with respect to the addition operation in V', which spans V' over R. The
integer r = dimg V' is called the rank of L.

A lattice L is called integral if (a, 8) € Z for all o, € L, and it is called even if
(o, c0) € 2Z for all € L.

Exercise 16.2. Show that any even lattice is integral.
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Example 16.2. For N € R, %Z" is a lattice in R™ with the standard bilinear form

(a,b) = iaiﬁi, where a = (ay, -+ ,04,),b= (B, , Bn).
=1

Proposition 16.2. If A is a finite subset in a finite-dimensional Euclidean space V,
spanning V' over R, such that (a,b) € Q for all o, 5 € A, then the Z-span of A is a
lattice in V.

Proof. The only thing to prove is that ZA is a discrete set. For this choose a basis 51, , 3.
of V' among the vectors of A. Then for any a € A, we have a = > /_, ¢;3;, where ¢; € R.
Hence

T

(. B5) = Y cilBi B), j =1+, (1)

i=1

But ((5;, 53‘)):,]':1 is a Gramm matrix of a linear independent set in a Euclidean space, hence
it is non-singular. Hence the ¢; can be computed by Cramer’s rule, so all ¢; € Q, hence
ZA < Q{pB1,- -, B} But since the set A is finite, we conclude that ZA < %Z {B1, -, B},
where N is a positive integer. But %Z {B1,- -, B} is a discrete set, hence ZA is discrete as
well. [ |

Bonus Exercise. Show that Z {1, \/5} is not a discrete subset of R.

Definition 16.4. Let (V,A) be a root system. Then the Z-span of A is called the
root lattice of this root system.

By Propositions 16.1(b) and 16.2, the root lattice is indeed a lattice if (V,A) is inde-
composable (since we can always normalize the bilinear form, such that (o, o) € Q for some
a € A), hence it holds for any root system.

We list below the four series of indecomposable root systems (V; A) and their root lattices
L, attached to the simple classical Lie algebras (see Lecture 15).
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Type g 4 A L
r+1 r+1
A 5I;+;(11F)» ; i chbiaf iRvO S ; Wi iL;ie:ZO
B, 50?«;1(115‘), gaisi a;eR | g —¢j, (e +¢5), e gaiai a; €7
C, 5‘;2;([?’ ;aiei a;, €R | g —ej, (e +g5), +2¢ ;ai& Zac;eeZQZ
D, 5$2;<IE;))’ gaiei a; € R gi—¢€j,x(e; +€5)i gaisi ZaciieeZQZ

In the column A, i # jand 1 <i,j <.

Explanation of L for A,. Clearly Z {e; —¢; | i # j} is contained in L. To show the reverse
inclusion, write

r+1
Z aig; = ar(e1—¢€2) + (a1 +ag)(e2—e3)+- -+ (a1 +---+a,)(er —€rg1) + (a1 4 - -+ ry1)Ers1-
im1

r+1

Since Z a; = 0, it follows. For B, the explanation is obvious.
i=1

Exercise 16.3. Explain the root lattices in cases C, and D,.
Remarks 16.2.

(a) The root lattices of type A, and D, are even, hence integral. The root lattice of
type B, is integral, but not even.

(b) The “best” normalization of the bilinear form (e, e) is such that maAX(a, a) = 2.
075

For types A,, B, and D, we have this normalization. However, for type C,, in
order to get this normalization, we need to multiply this bilinear form by 1/+/2.
Then we get an integral, but not even, lattice.

Now we turn to the construction of “exceptional” root systems. For that we construct
some “exceptional” lattices.

Consider the Euclidean space V" = @._, Re;, with the bilinear form (g;,¢;) = d;,

90



Root Systems

1,7 =1,---,r. Consider the following lattices in V":

; 1
. {Eae\el er all a; € Z or a ae2+ }

=1

oI, = {fyziaisreF;]iaiEZZ}.
=1 i=1

Proposition 16.3.
(a) I" is a lattice, such that («, ) € Z for all a € Z, if and only if r is divisible by 4.

(b) T', is an even (hence integral) lattice if and only if r is divisible by 8.

Proof. Let a = Y[ oye; € T If all a; € Z, (a, @) is obviously an integer. If all a; € 5 + Z,
we write a = 3 + p, where 8 = Y,7_, be; with the b; € Z, and p = 1>, ;. Then

T

(@,0) = (b:0) +2(p.) + (p,p) = D, (67 +bi) + 7. 2)

i=1
This is an integer if and only if r is divisible by 4, proving (a).

To prove (b), notice that ¢® £ ¢ € 2Z for ¢ € Z. Hence (,) = X0 a7 = >,

(mod 2), and (o, ) € 2Z if a € T, and all a; € Z. Finally, (o, «) € 2Z for a = § + p as above
if and only if r is divisible by 8, by (2). [ |

Theorem 16.1. Let L be an integral lattice in a finite-dimensional Euclidean space
V,let A ={aeL|(a,a)=2} and assume that A spans V over R. Then (V,A) is a
root system.

Proof. Axioms (i) and (iii) of a root system are clear. It remains to prove the string condition.
It is clear that the string condition for a;, 5 € A holds if and only if it holds for —«, 5. Hence,
without loss of generality we may assume that (a, 3) = 0. Note that

0<(a=p,a=p)=(xa)=2ap)+(5,0) =4-2a,pb)

since (a, ) = (B,5) = 2. But (o, 8) € Zxg since L is an integral lattice and we assumed
that (a, ) = 0. Hence the only possibilities for (a, 3) are

(o, 3) = 0,1, or 2.

If (a, 5) =0, then (¢ £ f,a £ 8) =4, hencea+ ¢ Ajandp=q=0,s0p—q=0=Aup
and the string condition holds.
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If (a, B) = 1, then (B + ja, B+ ja) = 2+ 25 + 252, by (3), hence 3 + ja € A if and only
if j=0or —1. Hencep=1,¢g=0and p—q=1= A, 3, and the string condition holds.

Finally, if (o, 5) = 2, then, by (3), (a — 5, — ) = 0, hence a = 5. But then, by
axiom (iii), S + ja € A u {0} if and only if j = 0,—1,—2. Hence p = —2,q = 0, and
p—q=—2= A,p, and the string condition again holds. [ |

Exercise 16.4. Show that for L = I, with r divisible by 8, the root system, given by
Theorem 16.1, is of type D, if r > 8.

Exercise 16.5. Let L be a lattice, such that 2(«, 8) € Z if (a,a) = 1 and (o, 5) € Z
if (a,) =2 for o, 8 € L. Let

A={ael|(a,a)=2o0r 1},

and let V' = RA. Show that (V,A) is a root system.
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Lecture 17
Root Systems and Cartan Matrices

Let V., = @,_, Re; be an r-dimensional Euclidean vector space with the symmetric
bilinear form defined by (e;,¢;) = 05, 4,5 = 1,--- ,r. Consider in Vg the lattice Lg, := T's.
Recall that

8
Lg, = {Zai&

i=1

8
1
Zai € 27, and either all a; € Z or all a; € 5 + Z} .

i=1
As was explained in the last lecture, Lg, is an even lattice, and
A, ={a€eLg, | (a,a) =2} = V4

is a root system. It is immediate to see that

1
Apgy ={teitej|i#j}u {§(i51 + .-+ + £g)| even number of minus signs} )

Exercise 17.1. Show that |Ag| = 240 and that Lg, is the root lattice for the root
system (Vg, Agy).

The root system (Vg, Ag,) (of rank 8) is called the exceptional root system of type
Eg. This root system contains two important root subsystems, of type E7; and Eg. In order
to construct them, let (as before) p = %2?21 g; and £ = €7 + €5 be two roots from Ag,. Let

VE7:{UEVS|(pvv):0}DVE6:{UEVE7|(€7U):0}:

and let Ly, = Vg, n Lg,, Ag, = Vg, n Ag,, where i = 7 or 6.

Exercise 17.2.

(a) Show that (Vg,, Ag,) is a root system of rank 7, for which Lg, is the root lattice.
Describe Ag, and show that |Ag.| = 126.

(b) Show that (Vg,, Ag,) is a root system of rank 6, for which Lg, is the root lattice.
Describe Ag, and show that |Ag,| = 72.

The next exceptional root system is of type Fy, which has rank 4. In order to construct
it, consider in Vj, the lattice I"), which we denote by Lp,. Recall that

4
Lp, = {Z a;&;

=1

1
either all a; € Z or all a; € 3 + Z} .

This lattice satisfies conditions of Exercise 16.5, hence (Vj, Ag,) is a root system, where
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Ap, ={aeLp | (a,a) =2 or 1}.

It is straightforward to see that

1
AF4 = {ieiiej;igi|i,je{1,2,3,4},i¢j}u {§(i€1i52i83i84)}.

Exercise 17.3. Show that Lp, is the root lattice for the root system (Vy, Ag,), and
that ’AF4‘ = 48.

The last exceptional root system is of type Gy (of rank 2). In order to construct it, recall
the root system of type As: (Va,,Aa,), where Vy, = {Z?:l aiei| a; € R, ay + as + a3 = 0},
(€i,€5) = 0i;; the root lattice is La, = {Z?Zl ai5i| a; € Z,a1 + as + az = 0}, the set of roots
Ay, ={ae Ly, | (,a) =2} ={e —¢;|i,5€{1,2,3},i # j}.

We let Vi, = Va,. Let Lo, = La,,
Ag, ={a€ Lg, | (a,a) =2 or 6} (D Ay,).
It is straightforward to see that
Ag, = Ay, v {£(2e; —gj —ex) | 4,7,k € {1,2,3} are distinct}.

Obviously, Lg, is the root lattice for this root system.

Exercise 17.4. Prove that (V,, Ag,) is an indecomposable root system with [Ag,| =
12.

Bonus Problem. Is it true that for an even lattice L the set {a € L | (o, ) = 2 or 6}
satisfies the string condition?

In order to construct the root space decomposition of a semisimple Lie algebra g, we
needed to “break symmetry”: choose a Cartan subalgebra. This has led to the root system
(V,A) of g, which is independent, up to isomorphism, of this choice.

In order to study (general) root systems, we need to break symmetry again.

94



Root Systems and Cartan Matrices

Definition 17.1. Let (V,A) be a root system and let f € V* be a linear R-valued
function on V, such that f(«) # 0 for all & € A. Then

(i) a € A is called positive if f(«) > 0 and negative if f(«) < 0;

(ii) A positive root is called simple if it cannot be written as a sum of two positive
roots;

(iii) A highest root 6 is that on which f takes maximal value.

Notation 17.1. A, (resp. A_) is the set of positive (resp. negative) roots; I € A, is the
set of simple roots. The set II is called tndecomposable if it cannot be represented as a
union of two non-empty subsets, which are orthogonal to each other.

Dynkin Theorem.

e ye A, and so a = 3 + , which contradicts « € II,

e oryeA_,and so f = a+ (—7), which contradicts g € II.

Finally, (o, ) < 0 due to the string condition.

(b) If @« € A, is simple, there is nothing to prove. Otherwise o = f + v for some
B,v € A, and then f(a) = f(B8) + f(7), so both f(5) and f(v) are strictly less than f(«).

Repeat this process until all summands are simple (which must happen in finitely many

steps since A is finite), thus yielding « as a sum of simple roots.
(c) If a«—~ ¢ A for all v € I, then the string condition would imply that oy —q <0,

()
hence (o, ) < 0 for all 7y € II. Then, by (b),

(v, @) = (a, Z kfy) <0, whereall k&, >0,

~vyell
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which would imply that o = 0, which is impossible since « is a root. Hence a — vy € A for
some v € II. Finally, if o —v ¢ A,, we have « —y = € A_, and then v = a+ (—/3), which
would contradict v being simple.

(d) By (b), A, < ZII, hence, since A_ = —=A, A=A, uA_ < ZII. Thus L = ZII,
hence V' is spanned by II over R. To prove linear independence of the set II over R, suppose
the contrary: there is a non-trivial linear combination of elements from II, which is 0.
Splitting it into positive and negative parts, and moving the negative part to the other side,
we obtain

v o= Zaiozi = Z bjay, (1)
i J

where all a; and b; are positive integers, the set of i’s is non-empty, and 7 # j.

However, by (a) we obtain
(1,7) = O ain, Y biay) <0,
i J

hence v = 0. But then we have from (1): 0 = f(y) = .. a;f(os) > 0, a contradiction.

(e) If (V,A) is decomposable, then by (d), so is II. Conversely, suppose that IT de-
composes as II; [ [II; in two non-empty sets, with II; L Ily, then we will show that A =
(ZI1y n A) U (ZI13 N A).

For this we need to show that any a € A, lies in one of the sets ZII; n A,, i =
1,2. Suppose the contrary, and take the a € A, with minimal sum of coefficients in its
decomposition as Z’yEH k,v. By (c), there is vy € II, such that « —y € A, and by the above
minimality, a — ~y lies in one of the sets ZII; n A, , so o = 8 + v, where v € II; and § € Ils.

But then 2((;/’36)) =2+ 2((575)) = 2. By the string condition, it follows that v — § is a root,

which contradicts (a). |

Definition 17.2. Let IT = {1, -, a,} be the set of simple roots of A, corresponding
to the choice of f. This is a basis of V, by Dynkin Theorem (d). Let A;; = Hairoy)

(aiya3) 7
which are integers, by the string condition. The matrix A = (A;;);;_, is called the
Cartan matriz of the root system (V, A). (We will show later that it is independent

of the choice of f, up to a permutation of the set II.)
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Proposition 17.1. The Cartan matrix A = (A;;) of the root system (V,A) has all
entries integers, and satisfies the following properties:

(a) Aj =2 for all ;
(b) IfZ #* j, then Aij < O, and Aij =0= Aji = 07

(c¢) All principal minors of A are positive, in particular, det A > 0.

Proof. (a) is immediate, and (b) follows from Dynkin Theorem (a), since (o, ) > 0 for
a # 0. In order to prove (c), note that

2/(ou, o) 0
A= ((aiﬂaj)):,jzl‘
2/ (o, o)

Hence every principal minor of A is equal to the product of a positive number and a principal
minor of the Gram matrix of the set II. The result follows by the Sylvester criterion. [ |

Definition 17.3. Let 6 be a highest root of A, and let ay = —0, I = {ag, -, a}.
The (r + 1) x (r + 1) matrix A = (Ay);;_, is called the extended Cartan matriz
of the root system (V, A).

Exercise 17.5. The extended Cartan matrix A satisfies all properties of Proposition
17.1, except that det A = 0.

Definition 17.4. An r xr matrix, satisfying all properties of Proposition 17.1 is called
an abstract Cartan matriz.

We will classify abstract Cartan matrices and prove that to each of them corresponds a
semi-simple finite-dimensional Lie algebra, in the subsequent lectures.
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Lecture 18

Classification of Abstract Cartan Matrices and their Dynkin Diagrams

Recall that an abstract Cartan matrix is an r x r matrix A = (A4;;) with integer entries,
satisfying the following properties:

(a) Aj =2 for all 4;
(b) if 1 # j, then Aij <0, and Aij <0= Aji < 0;

(c) all principal minors of A are positive, in particular, det A > 0.

In this lecture we classify abstract Cartan matrices A, rather their Dynkin diagrams.
If r = 1, then, of course A = (2), and this is the Cartan matrix of type A;.

There are more possibilities for r = 2. In this case A = —2b —2a), where either
a =0b=0, or a and b are positive integers, such that ab < 4 (since det A > 0). Thus, we

have 6 possibilities:

2) (5301520 (9D (5 2) | (5 3)

In the second row the Dynkin diagrams of these abstract Cartan matrices are depicted.
For an arbitrary abstract Cartan r x r matrix its Dynkin diagram D(A) is a graph with r

vertices, which are connected by edges as follows: if i, 5 € {1,--- ,r},i # j, the corresponding
principal submatrix ( A” A” > is, obviously 2 x 2 abstract Cartan matrix, listed above, and
Ji JJ

we connect them as in the above table.

Remark 18.1. A permutation of the set of simple roots IT = {ay, -+ ,a,} corresponds to
the permutation of the rows and the same permutation of the columns of its Cartan matrix,
which corresponds to a permutation of vertices of the Dynkin diagram. Hence the sets of
simple roots of root systems are classifed by the Dynkin diagrams.

In particular, there are only 4 Dynkin diagrams with 2 vertices:

O O 0—O 0=0 0=0 (1)

Next we find Cartan matrices and their (connected) Dynkin diagrams of all indecompos-
able root systems that we constructed so far.
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Remarks 18.2.

(a) For a decomposable root system, the Dynkin diagram is a disjoint union of connected
Dynkin diagrams, corresponding to indecomposable components by Dynkin Theorem

(e).

(b) Any subdiagram of a Dynkin diagram of an abstract Cartan matrix is again the Dynkin
diagram of an abstract Cartan matrix.

~

(c) D(A), the extended Dynkin diagram, is NOT a Dynkin diagram of an abstract Cartan
matrix, since det A = 0.

The list of these connected Dynkin diagrams and their extended Dynkin diagrams is as
follows:

+
(b) B, O—O— -+ —O0=0 B —O0—0

. +

(c) C,O0—O—  —O&=0 C.O—=>0—0— - —0&=0
—I—

(d) Dro—o—mj—o ﬁro—&mj—o Dy
(r >4)

- T
(e)EsOOOOgOOEsOOOOOgO
(ﬂ&ooogoo Eooogcom

%4‘
(g)Eﬁoogoo B, O—O0—0—0—0

- T
(h)  F,O—0O0=0—0 F,O—0O0—0=0—0
. - T
i) G, 0=0 G, O—0=0

Figure 1: Dynkin diagrams and extended Dynkin diagrams of all the indecomposable root
systems constructed so far. Here + corresponds to the vertex added to D(A).
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The basic idea is to choose the function f : V — R, which takes non-zero values on
roots, to have integer values on roots, such that |{a« € A, | f(a) =1} | = r. Then II is the
set of these o/s.

Example 18.1. A, (r=1), A ={e; —¢; |1 <i,j <r+1,i+#j}.

Take f(‘€1> :T7f(€2) :r_lf"f(g?’) = 17f(€7’+1) = (0. Thenf |A7é 07
Ay ={ei—gli<j},
I={e—¢em|i=1- 1},

9261—6r+1,
2 -1 -+ 0

This is precisely the first row of Figure 1.

Exercise 18.1. Show that D(A) and D(A) are as in the rows 2 and 3 of Figure 1 for
B, and C,.

We show this below for D, and FEj.

Example 18.2. D, (r=23), A ={te; *¢;|i,5e{l,---,r},i # j}.
Take f(€1>:T—1’f(€2>:T—2,'-' 7f(€7“):0' Thenf‘A;éO?
Ay ={eite;|i<y},

II={e1—¢e2,60—€3,-"+ ,Er_1 — &, Er—1 + &1},

9251+€2:—Oéo.

~.

So D(A) and D(A) are as in row 4 of Figure 1. Note that D(D3) = D(As3).

Example 18.3. Es, A = {*¢; +¢; | i # jlu{i(+e1 £+ - +&5) | even number of —}.
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Let f(gl) = 237f(€2> = 67f(€3) = 57 T 7f(€7> = 17f(€8> = 0. Then f |A7é 07 and f
takes integer values on A,

1
A+={8,-—5j|1<i<j<8}u{§(€1i~~-i88)|evennumberof—},

1
H={52—53753—547‘” 757_587§<51_52_"’_57+€8) ,

0:€1+€2=—O£0.

So D(A) and D(A) are as in Figure 1.

Exercise 18.2. Show that D(A) and D(A) are as in rows 6 and 7 for E; and Eg in
Figure 1.

Exercise 18.3. Show that D(A) and D(A) are as in rows 8 and 9 for F; and Gy in
Figure 1.

Now we turn to classification of connected Dynkin diagrams of abstract Cartan matrices.
Note that D(Al) = D(Bl) = D(Cl), D(BQ) = D(CQ), and D(Dg) = D(Ag)

Theorem 18.1. A complete non-redundant list of connected Dynkin diagrams D(A)
of abstract Cartan matrices coincides with that of the constructed indecomposable root
systems, and is as follows:

D(A,) (r=2), D(B,) (r=3), D(C,) (r=1), D(D,) (r =4),
D(E(;), D(E7), D(Eg), D(F4), and D(Gg)

Proof. We have to prove that there are no other connected Dynkin diagrams. To do this,
we find all connected graphs with connections of four types in (1), such that any subgraph
corresponds to a principal submatrix with positive determinant (since any subgraph must
be a Dynkin diagram).

In particular, Dynkin diagrams don’t contain any extended Dynkin diagrams, since the
corresponding principal submatrix has determinant 0.

Part 1. We first classify all simply-laced connected Dynkin diagrams, i.e. diagrams
having only O O or O——O0 connections (which correspond to symmetric Cartan matri-
ces).

~

Such a diagram contains no cycles, since otherwise it contains D(Ag) for some s > 2. It
has simple edges, and it may or may not contain branching vertices. If there are no branching

~

vertices, we get D(A,.). If there are 2 branching vertices, the Dynkin diagram contains D(Dy)
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for some s > 5, which is impossible. If there is precisely one branching vertex, the Dynkin
diagram has 3 branches, since otherwise it contains D(D,) as a subgraph.

Therefore, it remains to consider the case when D(A) is a graph of the form 7}, , ., where
p=q=1=2:

If » = 3, then T}, , 3 contains D(EG) = T3 33, which is impossible, so r = 2, i.e. D(A) has
the form

Thgo: with p > ¢ > 2.
O— -+ i -0
» q

If g =2, we get T}, ;0 = D19, so it remains to consider the case ¢ > 3.

If ¢ > 3, then D(A) contains D(Eﬁ = Ty 42, which is impossible. So we are left with

the case
T 32 - with p = 3.
P O— - i O—O

|
p

If p = 3,4, or 5, we get Fg, F7, or Eg respectively. In the case p > 6, D(A) contains
Ts32 = D(FEg), which is impossible. This completes the proof in the simply-laced case.

Part 2. We now classify non-simply-laced connected diagrams D(A), i.e. containing
O—0 or =0 as subdiagrams. This can be done by computing many large determinants
(which we completely avoided in the simply-laced case). But we would rather argue by the
following simple result on determinants:
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Exercise 18.4. Let A be an r x r matrix, r > 3, and let B (resp. C) be the
submatrices of A, obtained by removing the first row and column (resp. the first two
rows and columns). Then

(a) If the first row (resp. column) of A is (2 —a 0 --- 0) (resp.
(2 b 0--- 0)", then

det A = 2det B — abdet C.

(b) If . —ay b,
—b1 (&) —a9 0
A — —bg C3
—Qr_2
0 _br—Q Cr—1 —Qr—1
— 0y _br—l Cr

then det(A — ¢Ejp) = det A — e (bydet C + [ [_,a;). In particular, if b; > 0,
a; >0fori=2--- r detC >0, and € > 0, then det(A — eE}5) < det A.

Exercise 18.4(b) implies that a non-simply laced Dynkin diagram D(A) has no cycles,
since otherwise det A < det A, = 0, a contradiction.

Next, if D(A) without cycles contains the Dynkin diagram of Gy and is connected, the
matrix A contains the following principal submatrix

2 —a 0
M=|-b 2 -1 with a,b > 0,
0 -3 2

2 -1

then in Exercise 18.4(a), we have B = (_3 5

abdet C' = 2(1 — ab) < 0, a contradiction.

), C = (2), so that det M = 2det B —

It remains to consider the case when D(A) has only simple or > 1 double connections.

Recall that Cs with s > 2 cannot be a subdiagram. By Exercise 18.4(a) the subdiagrams
with flipped arrow directions also cannot be subdiagrams, since they are obtained from the
corresponding matrix of D(Cy) by replacing some of A, B or C' by their transposes, which
does not change any of the determinants in the calculation. Hence, by Exercise 18.4(a) each

of these variants is impossible.

Therefore D(A) may contain only one double connection. But then it cannot have a
branching point, since D(B,) contains a double edge and a branching point. So the only
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remaining case is the diagram

If p=1 (resp. ¢ = 1), we get the Dynkin diagram of C,41 (resp. Byi1. Ilf p =2 =g,
we get F;. The diagram D(F}) has p = 3,q = 2 and the corresponding transpose Cartan
matrix has p = 2, ¢ = 3, so both cases are impossible. [ |

Bonus Problem. Prove that the list of all abstract extended Dynkin diagrams (i.e.
connected Dynkin diagrams of the matrices, satisfying all properties, listed in Propo-
sition 17.1, except that the determinant is 0), consists of those in the right column of
Figure 1, those obtained from them by reversing the arrows, and the Dynkin diagrams

) 2 =2 2 -4
of 2 x 2 matrices (_2 9 ) and <_1 9 )
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Lecture 19

Classification of Simple Finite Dimensional Lie Algebras over
an Algebraically Closed Field of Characteristic 0

Since any semisimple Lie algebra decomposes uniquely, up to permutation, in a direct
sum of simple ones, the classification of the former reduces to the latter.

Our strategy schematically is as follows:

_ choose b indecomposable indecomposable
simple g ———  root system c abstract
attached to g root system
(V =bi, A) (V. A)
¢ lchoose fev*
abstract Cartan Cartan matrix
Lie algebra g(A) ¢—— matrix A with 2 A of (V,A) with
connected D(A) connected D(A)

Semisimple Lie algebras over an algebraically closed field ' of characteristic 0 are clas-
sified by the following theorem.

Classification Theorem.

(a) Finite-dimensional semisimple Lie algebras are isomorphic if and only if they
have the same Dynkin diagram.

(b) A complete non-redundant list of simple finite-dimensional Lie algebras over F is
the following:

sh(F) (n>2), 50,(F) (n>7), spy,(F) (n > 2),
FEe, E; Es, F,, G,.

Corollary 19.1.

(a) An arbitrary root system (V,A) is isomorphic to a root system, attached to a
semisimple finite-dimensional Lie algebra over F.

(b) Any abstract Cartan matrix is that of a finite-dimensional semisimple Lie algebra
over [F.

Exercise 19.1. Deduce from the Classification Theorem (a) the following isomor-
phisms:

sly(F) ~ so3(F) ~ sp,(F), 504(F) ~ sly(F) @ sly(F),
s505(F) ~ sp, (), s506(F) ~
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Beginning of proof of Classification Theorem (a). Let g be a semisimple finite-dimensional
Lie algebra over IF. Choose a Cartan subalgebra h and consider the root space decomposition:

g:h@<®ga>u (1>

aEA

where A < bh* is the set of roots. Choose a linear function on b, which takes non-zero integer
(or rational) values on A, and let Ay = {a e A | f(a) >0}, A_ ={ae A| f(o) < 0}. Then
A=A, JJA_, where A_ = —A,. Let I € A, be the set of simple roots. We will prove
later that nothing depends on the choice of f.

Let ny = @ A, Oa, and n_ = @, can_ 9o, which are obviously subalgebras of g. Then
(1) implies the triangular decomposition

g=n_@®hdn,; (direct sum of vector spaces). (2)

Exercise 19.2. Show that for g = sl,(F),so0,(F), or sp,(F), choosing b to be all
diagonal matrices in g, then n, (resp. n_) consists of all strictly upper (resp. lower)
triangular matrices in g. (Hence the name triangular decomposition)

Continuation of proof of Classification Theorem (a). Recall that for each v € A, we can
Choose EO( € ga and Fa € g—a, SuCh that /{(EO” E_a) = _2 SO that’ ].ettlng HO! — 2’/71(0‘)

K(a,a)? K(a,a)
we obtain a subalgebra FE, ®FH, ® FF,, isomorphic to sly(IF). For the set of simple roots
II={a, .}, set

Then we have:

(a) [Hi, H;] =0,

(b) [Hi, Ej] = Ay Ej,
(c) [H;, Fy] = —Aij F},
(d) [E:, F] = 0;H;,

where A = (A;;) is the Cartan matrix of g. Indeed, (a) holds since b is abelian; (b) and (c)
hold since E; € g,, and F} € g_,. Finally (d) holds for i = j by construction, and for i # j
by Dynkin Theorem (a) (difference of distinct simple roots is not a root).

Definition 19.1. The relations (a)-(d) are called the Chevalley relations. The
elements F;, F;, H; are called Chevalley generators.
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Exercise 19.3. Prove that the F; satisfy the following relations:
(ad B E; =0 fori#j,
and similarly the F;. These are called Serre relations.

(In the simply-laced case these relatoins mean that [E;, E;| = 0 (resp. [[E;, Ej], E;] =
0) if ¢ and j are not connected (resp. connected) in the Dynkin diagram of g.)

Lemma 19.1. The elements Fy,--- , F, (resp. Fy,---,F,) generate n, (resp. n_).
Consequently the Chevalley generators indeed generate the Lie algebra g.

Proof. We have to prove that for each o € A the root space g, lies in the subalgebra n’, of
n,, generated by Ei,--- , E,., and similarly g_, lies in n’_, generated by the Fj’s.

Given o € A,, writing o = Y7, m;;, where m; are non-negative integers, we call
Y. m; (= 1) the height of o, and prove the claim by induction on the height. When height
a = 1, this root is simple, so E, € n/,.

For the inductive step, recall that for a non-simple « there exists a simple root «;, such
that & — a; € Ay (by Dynkin Theorem (c) in Lecture 17), hence g, = [ga—a,, £i]. By the
inductive assumption, g,—_q, € 0, hence g, € n’.. For n_ the proof is the same. |

Definition 19.2. Let A be an abstract Cartan matrix. Denote by g(A) the Lie algebra
on generators E;, F; and H;, 1 <i < r, subject to the Chevalley relations (a)-(d). Note
that this Lie algebra depends only on A.

The Lie algebra g(A) is infinite-dimensional if > 1 (we will not need this fact), but is
closely related to g, as we have an obvious surjective homomorphism ¢ : §(A) — g, sending
E;, — FE;, F,— F;, H; — H;. Surjectivtiy of ¢ follows from Lemma 19.1.

Lemma 19.2. Let n, (resp. n_) be the subalgebra of g(A), generated by Ey,--- | E,
(resp. Fi,---, F.), and let b be the span of Hy,- -, H,. Then

(a) (A) =7, ®h@u_ (direct sum of vector spaces).
(b) If I is an ideal of g(A), then

I=@,nD@®bBrD@®G_nI).

(¢) Provided that the Lie algebra g is simple, the Lie algebra g(A) contains a unique
proper maximal ideal I(A).
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Proof. (a) Let §(A) = i, + b +%_, which is a subspace of §(A4). It is obvious, by the Jacobi
identity, that

[b.5(47| < §(ay. 3)
We will show that

[E: 5(AY] < §(4). (4

[F,8(4)] = §(4). (5

Since an arbitrary element of g(A) is an iterated bracket of the E;, F;, H;, by the Jacobi
identity, (3), (4) and (5) together would imply that g(A) < g(A)’, hence g(A) = g(A)'".

Inclusion (5) is proved in the same way as (4). To prove (4), note that, obviously
[Ei,ny] € ny, and [E;, b] < 0. Finally, [E;,n_] € b + n_ because [E;, F;] € b, and, by the
Jacobi identity, for s > 2 we have:

[Ez [517'.. JFiS]] :5ii1 [Hh?}?iz?.” 7~F1L'S:| ++5zzs [EU..' 755717Hi ] Cﬁ*7

by the Chevalley relations (d) and (c). Here [ay, ..., as] stands for an s-fold commutator with
brackets taken in arbitrary order.

To show that the sum in g(A) =n, + E + n_ is direct, let hg € b satisfy «;(hg) = 1 for
all i. Writing ho = ), ; T;H;, finding such an hyg is equivalent to solving the linear system of
equations

ZAZ‘]'QZZ':L j=1,~~,r,

which is possible since det A # 0.

Then ad hg acts with positive (resp. negative) eigenvalues (equal to height o and resp.

—height ) on 1y (resp. n_) and 0 eigenvalue on b, proving that the sum is direct.

To prove (b), we invoke Lemma 19.1, which said for any ho-module V' = @Aebak V) and
any ho-invariant subspace U < V, we have U = @, (U n Vy). Applying this to the adjoint
representation and by = Fhg, we see that 1, (resp. n_) is the sum of ad ho-eigenspaces with
positive (resp. negative) eigenvalues and h has 0 eigenvalue, proving (b).

(d) Since g is simple, its Dynkin diagram D(A) is connected. Let I be a proper ideal of
3(A). Then I nh = 0. Indeed, if a € I b is non-zero, then a;(a) # 0 for some 4, hence
la, E;] = ai(a)E; # 0, so E; € I. Hence H; € I by Chevalley relation (d). Also, by the
Chevalley relations (b) and (c), £ and Fj are contained in [ for all j, such that A;; # 0.
Since D(A) is connected, it follows that all £; and F} are contained in I, hence, by Chevalley
relation (d), all H; € I, contradicting properness of I.
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Thus we have the decomposition
I=MmynD)®m_nlI).

for any proper ideal, hence for the sum of all proper idealsm, I(A). Hence I(A) is the unique
proper maximal ideal. [ |

Continuation of proof of the Classification Theorem. By part (c) of Lemma 19.2; the Lie
algebra

g(A) = §(A)/1(4)

depends only on the abstract Cartan matrix A, if D(A) is connected. So if g is a simple
Lie algebra, the kernel of the surjective homomorphism ¢ is a maximal proper ideal, hence,
by Lemma 19.2(a), ¢ induces an isomorphism g(A) ~ g. This proves the “if” part of
Classification Theorem (a). The “only if” part will follow once we show the independence
of A from the choice of f. This will be proved in Lecture 21.

Claim (b) will follow from the classification of Dynkin diagrams of abstract Cartan
matrices, once we show that dim g(A) < oo for A = Fg, Er, Es, Fy, G2, This will be proved
in Lecture 20. We will prove this by exhibiting an explicit construction of the Lie algebras
g(A) for these five abstract Cartan matrices A.

Exercise 19.4. Prove that dimg(A) = oo if r > 1.

Remark 19.1. The Lie algebra g(A), for which A satisfies (i), (ii), but not necessarily (iii)
is called a Kac-Moody algebra. It is infinite-dimensional if (iii) doesn’t hold. Especially
important are the Lie algebras g(ﬁ), where A is an extended Cartan matrix, called affine
Lie algebras.
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Lecture 20

Explicit Construction of Exceptional Simple Lie Algebras, and the Compact Form

In the previous lecture we proved that any simple classical Lie algebra g is isomorphic
to the Lie algebra g(A), where A is the Cartan matrix of g. One of the two things that
remained, in order to complete the proof of the Classification Theorem, is to show that the
Lie algebra g(A) is finite-dimensional for all five exceptional abstract Cartan matrices. We
do this by an explicit construction of simple Lie algebras with an abstract Cartan matrix A.
Of course, for classical A we recover all clasical (finite-dimensional) simple Lie algebras.

We shall consider two cases: simply laced case, consisting of symmetric abstract Cartan
matrices A of type A,, D,, Es, E7, Eg, for which the set of roots A consists of vectors «, such
that (o, @) = 2 in the even root lattice L = ZA; and the non-simply laced case, of A of type
BT, CT, F4, GQ.

Case 1: simply-laced. Let L be an even lattice of rank r such that A = {a € L | (o, ) = 2}
spans L over Z. Then we know that (V = R®z L, A) is a root system, with a symmetric

Cartan matrix A = (e, a;)); ;-

We expect the corresponding simple Lie algebra to be of the form

g=h® (EI—) IFEQ> ,  where h = F®; A (direct sum of vector spaces) (1)
aEA

with the following brackets, where h, h' € h, and «, f € A:
<a> [h7h/] =0,
(b) [h, Es] = (o, h)E, = —[Ea, h],
(C) [EOHE—Oé] = —q
(d) [Ea, Es] =0if a + 3¢ A v {0},

(e) [Ea, Es| = e(a, B)Eq4p for some e(a, f) e F* if a + f € A.

For this algebra g to be a Lie algebra we need to construct the non-zero constants e(a, ) for
all a, 5 € A such that a + g € A, for which skew-commutativity and Jacobi identity hold.
Remarkedly, we can arrange so that e(«, 5) € {1} for all o, 5 € L.

Once we prove that g is a Lie algebra, it will automatically be simple by the criterion
from Lecture 14, noting that «(h) means the same as (a, h) if we identify h with b*, using
the bilinear form (e,e) on L. Then [h, E,] = a(h)E, for h € h,a € A and a(v™(a)) =
(a, @) # 0.
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Proposition 20.1. There exists a map
e: L xL— {£1}
with the following two properties:

(a) (bimultiplicativity) e(a, S+7) = e(a, B)e(a, ), and (e(a+5,7) = (o, v)e(B,7);
this implies e(,0) = €(0, @) = 1 and e(—a, ) = (e, B) = e(a, — ).

() e(la,a) = (=1)@*/2 for all @« € L; by expanding e(a + B,a + B) =
e(a,a)e(p, Be(a, B)e(B, a), it follows that

e(a, B)e(B,a) = (=1)*P) if o, fe A. (2)

Proof. Choose a set of simple roots Il = {ay, - ,a,} for A and consider the Dynkin
diagram. Direct the edges of the Dynkin diagram arbitrarily and set
(i) e(ay, ;) = —1 for all 4

(ii) e(o, ;) = —e(ay, ) = —1if ¢ # j and there is an edge o; — «; in the Dynkin
diagram;

iii) e(ay, ;) = e(a;, a5) = 1 if o; and «a; are not connected in the Dynkin diagram.
J J J

This implies that
(i, aj)e(aj, o) = (—1) @) for 4, j = 1,--- |,

since (o, ;) = —1 (resp. = 0) if a; and «a; are connected in D(A) (resp. not connected).

Then we extend ¢ from II x IT — {£1} to ¢ : L x L — {£1} by bimultiplicativity, so we
get bimultiplicativity of ¢ for free, and twe just need to check that e(a, a) = (—1)@%/2 for
a e A. Write a = >, k;a;, where k; € Z. Then we have:

e(a,0) = | [ el o)™ = Hg(OKi,Oéj)k? [ (elas, ay)e(ay, ai))™™

i,j=1

— (_1)21"%2 1_[ (_1)kikj — (_1)21"‘71'2(%7%)/2 l_[ (_1)kikj(ai7aj) — (_1)(0101)/2'

o —a Qi

;=

In the second equality we used bimultiplicativity of €. In the third equality we used that
t,7 for which o; and «; are not connected contribute 1 to the product, and in the final
two equalities we used that (a;, ;) = 2 and (a4, o) = —1 if ; and «; are connected, and
(e, ) = 0 if o and o are not connected in D(A). |
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Theorem 20.1. If e : L x L — {£1} satisfies properties (a) and (b) of Proposition
20.1, then skew-commutativity and Jacobi identity holds for the Lie algebra g, given
by (1), with brackets (a) - (e). Consequently g is a Lie algebra.

Proof. Note that, since « is a root if and only if (o, @) = 2, we have for o, § € A:
at+feA ifandonlyif («,8)=F1. (3)

Hence, by (2), e(o, B)e(B,a) = =1 if o, B, + f € A, proving that [E,, Eg] = —[Ejs, E,] in
this case (see (e)). In all other cases (a) - (d), the skew-commutativity is obvious.

As we did for skew-commutativity, it is enough to show, in order to prove the Jacobi
identity, that

[[x,y],z] + [[ya Z],JZ‘] + [[va]ay] =0 (4>

if x,y, z are either in b, or one of the FE,.

If one of the elements x,y, z lies in b, it is immediate to see that (4) holds for any map
e: L x L — F*. It remains to check (4) if v = E,,y = Eg, 2z = E, for a, 3,7 € A.

If o+ B, 0+, B+~ are not in A U {0}, then all brackets [E,, Es|, [Ea, E,], [Es, E,] are
zero, hence (4) trivially holds.

So we may assume without loss of generality that o + € A u {0}.

Case 1. o+ = 0. In this case the LHS of (4) is
[0 By) + [[E-ar By, Bul + [y, Bul, E-a]. )
If v = +a, then (5) becomes
$2E4_ra + [iOé, EJ_ra] + [ia, Eia] = 07

so in this case Jacobi identity holds for any map ¢.

Hence we may assume that v+ a # 0. If y + a ¢ A, then [E4,, E,] =0 and (a,y) =0
by (3), so all three terms in (5) vanish.

Otherwise assume that v+« € A, so that y—a ¢ A by (3), whence [E_,, E,] = 0. Then
the Jacobi identity becomes

—(o,7)E, +e(y,a)e(y + a, —a)E, = 0.

115



Explicit Construction of Exceptional Simple Lie Algebras, and the Compact Form

This is equivalent to

—<Oé, 7) + 8(77 OJ)&T(’Y, —04)8(04, —Oé) = 07

which holds since (a, ) = —1 by (3), and &(v, a)e(y, —a)e(a, —a) = (7, a)e(y, a) e(a, a) =
—1. The case when 7y —a € A and v+ «a ¢ A is similar.

Case 2. a+ f,a+ 7,0+~ € A. In this case (o, ) = (o,7) = (68,7) = —1 by (3).
This implies that (o« +  +v,a+8,7) =2+2+2—-6-1=0,s0 a+ +v = 0. Then
v=—a— €A, and (4) becomes equivalent to showing that

[[EOM Eﬁ]? E*a*ﬁ] + [[Eﬁa E,a,g], Ea] + [[E,a,g, Ea]? Eﬁ]
= 8(0&, 6) [Ea+5’ E—Oé—ﬁ] + 5(6, -0 = 5) [E—OM Eoé] + 5(—@ - 57 a)[E—/37 Eﬁ]
= —¢(a, B)(a+ B) —e(B,a)a — (B, a) B vanishes.

But e(a, B)e(B,a) = (—1)(# = —1 by (3), so the Jacobi identity holds in this case too. W

Remark 20.1. The dimension of g, given by (1), is equal to |A| + r, hence
dim Eg = 72, dim E; = 133, dim Fy = 248, dim F, = 52, dim Gy = 14.
Exercise 20.1. Define on the Lie algebra g, given by (1), the following bilinear form:
e On h = F®;y L it is the bilinear form (e, e) on L extended by bilinearity,
e (h,E,) =0 forall e A,
o (B, Ep) = —64_pifa,feA.
Show that this is a non-degenerate symmetric invariant bilinear form on g.

Exercise 20.2. On the lattice L = @)]_, Ze; with (g;,¢;) = d;; consider the bimulti-
plicative function € : L x L — {£1}, defined by

1 ifi<j,
6<€i7€j) = { 1 if 4 2]

Show that the restriction of € to L4, , and Lp, satisfies properly (b) of Proposition
20.1.

We have explicitly constructed the simple finite-dimensional Lie algebra of type A, (r =
1), D,(r = 4), Eg, E7, Es. The bilinear form, defined by Exercise 20.1, is the unique invariant
symmetric non-degenerate bilinear form on these Lie algebras, up to a non-zero constant
factor.

Now we turn to the non-simply laced case.
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Case 2: non-simply laced. It remains to show that the (simple) Lie algebras g(A) for A
of type Fy and G, are finite-dimensional . We construct them by constructing embeddings
F, © Fg and Gy < D, as follows. Consider the Dynkin diagrams of Eg and D, with the
following orientations and their automorphism of order 2 and 3 respectively, preserving these
orientations:

Es D,
6 4
1 2 3 4 5 1 2 3
~ Y 7 ~_
09 o3

Since the Dynkin diagram and its orientation is invariant under these automorphisms,
we see that e(o(a),0(8)) = e(o, f) and Ay(;),0(j) = Aij for 0 = 01 or o, hence the brackets
(a) - (d) are preserved by o.

Also o preserves all Chevalley relations (a)—(d) from Lecture 19, hence induces an au-
tomorphism of the Lie algebra g(A), so that the surjective homomorphism ¢ : g(A) — g
is o-equivariant. Due to its uniqueness, the maximal ideal I(A) of g(A) in Lemma 19.2 is
o-invariant. Hence o descends to an automorphism of g(A), which is again denoted by o.

Exercise 20.3. Show that for oy the elements X; + X5, Xo + X4, X3, X4, where
X = FE, F or H, lie in the fixed point set of o5 in Ejg, and satisfy the Chevalley relation
of F,. Likewise, for o3 the elements X + X3+ X, and X are fixed by the automorphism
o3 of Dy, and satisfy the Chevalley relations of Gs.

Denote in both cases the elements of g = E4 or D,, fixed by o = 05 or o3 respectively,
by g?. By Exercise 20.3, there are surjective homomorphisms from respective subalgebras:

9(Ee)™ £ g(Fy) and  g(Dy)"* 2> g(Ga).

It follows that both g(Fy) and g(G3) are finite-dimensional (simple) Lie algebras.

Exercise 20.4. Show that dim g(F)?* = 52 and dim g(D,)?® = 14, and therefore, by
Remark 20.1, both homomorphisms o5 and o3 are isomorphisms.

In the last part of this lecture we assume that FF = C, and define the compact form
fgecom © @ where g is a simple finite-dimensional Lie algebra over C, and g..m, is a Lie algebra
over R, whose complexification is g.

Let gr = hr®(P .o RE,), which is a Lie algebra over R, whose complexification CQg gr
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is g. First, assume that g is simply laced. Define an automorphism wg of gg by letting it act
as —1 on hg, and let wg(E,) = E_,.

Exercise 20.5. Check that wg is an automorphism of the Lie algebra gg in the simply
laced case.

Next, we extend wg from gr to g = C ®g gr to be an antilinear automorphism w, by
w(Aa) = \w(a) for A € C,a € gg.

Definition 20.1. The fixed point set of w in g is a Lie algebra over R, called the
compact form of g, denoted geom.

Exercise 20.6. If g = s[,(C), then w(A) = —ZT7 and
Ycom = SUp = {A € 5[n<(C) | zT _ —A}7

which is called the special unitary Lie algebra.

Proposition 20.2. The restriction of the invariant bilinear form (e, e) on g, defined
in Exercise 20.1, is negative definite on geom.

Proof. We can write

fom = (vThi) ( 5 R<EQ+E_Q>) ® ( 3 ﬁR(Ea—E_a>>7 ©)

OLEA+ OéEA+

and these 3 subspaces are orthogonal to each other. Obviously, g is the complexification
of geom- It remains to show that the bilinear form is negative definite on each of these 3
subspaces.

This is true because (v/—1h,+/—1h) = —(h,h) <0 for h e hg, (Eq + E_o, Eg + E_3) =
204,14, and (vV=1(Ea — E_5),v/=1(Es — E_g)) = =20, 15 for o, € A.

In the non-simply laced cases the automorphisms o9 and o3 of Eg and D, commute with
w on the simply laced Lie algebras Eg and Dy, hence the bilinear form (e, @) remains negative
definite on g.

The non-simply laced classical Lie algebras B, and C, for r > 2, are fixed point sets of
the transposition with respect to the anti-diagonal of the Lie algebras As, = sly,_1(C) and
Ay,—1 = sly,.(C) which commutes with w as well, hence the propositoin holds for them too.H

118



Explicit Construction of Exceptional Simple Lie Algebras, and the Compact Form

Remark 20.2 g.., is the Lie algebra of a maximal compact subgroup of a complex
algebraic group whose Lie algebra is g, hence the name “compact form”.

Bonus Problem. Let g © g’ be the non-simply laced subalgebra of type B,.,C,, F,
or Gy in the simply laced Lie algebra As,, As,._1, Fg and Dy respectively, as above.
Describe the structure constants of g in terms of those of g’. Show that the root
vectors E, can be chosen in such a way that, for o, 8, + § € A, one has [E,,Eg| =
+(p + 1)E,+p, where p is the maximal non-negative integer such that a — pf e A.
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Lecture 21

The Weyl Group of a Root System

Let V be a finite-dimensional Euclidean vector space, i.e. a vector space over R with a
positive-definite symmetric bilinear form (e,e). For a non-zero vector a € V', denote by r,
the orthogonal reflection relative to a, i.e. a linear operator on V' such that

ro(a) = —a, r.(v)=v if (v,a) =0. (1)
Obviously, it is given by the following formula

=9 — 2(a, U>a vE
ro(v) = o V. (2)

Denote by Oy (R) the group of all invertible linear operators on V', preserving the bilinear
form (e, @), i.e.

Oy (R) = {Ae GLy(R) | (Au, Av) = (u,v), u,ve V}.

It is called the orthogonal group. It is a compact subset of the vector space End V.

Exercise 21.1. Prove the following properties of the reflection r,:

Definition 21.1. Let (V,A) be a root system. Let W be the subgroup of Oy (R),
generated by all r,, where a € A. This group is called the Weyl group of the root
system (V,A), and of the corresponding semisimple Lie algebra g.

Proposition 21.1. Let (V,A) be a root system, and let W be its Weyl group. Then
(a) w(A) =A for all we W.
(b) W is a finite subgroup of Oy (R).

Proof. For (a) we need to show that

ro(B)(= —Aapa)e A if a,f e A, where A, 3 =
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The Weyl Group of a Root System

First, r, is non-singular, since det r, = —1. Second, recall the string property of (V, A):
{B—kalkeZin(Auv{0}) ={B—pa,---,53,- B +qa}
where p,q € Z=o, p — ¢ = A, 3. Hence
p = Aup, q=—A,p.

So, if (o, 5) < 0 (resp. = 0), we can add « to  at least —A, g times (resp. subtract o from
B at least A, times), which means that § — A, ga € A U {0}. But it cannot be 0 since 7,
is a non-singular operator.

(b) If an element w of W fixes all elements of A, it musst be [y since A spans V', so the
group W embeds in the group of permutations of the finite set A. Therefore W is a finite
group. [

Proposition 21.1 shows that the string property of a root system (V, A) implies that A
is W-invariant.

Bonus Problem. Show that the converse is true: if we replace the string property
by W-invariance of A and that A, s = 2(3:“5)) € Z for all o, € A, then we get an
equivalent definition of a root system.

Hint: One has to check this only in the case dimV = 2, i.e. the four rank 2 root
systems.

Definition 21.2. Fix f € V* which doesn’t vanish on A, and let, as before, A, =
{ae A| f(a) > 0} be the set of positive roots, and IT = {ay, -+ ,a,.} € A, be the set
of simple roots (r = dim V). Then the reflections s; = r,, (i = 1,---,r) are called
sitmple reflections.

Theorem 21.1.
(a) AL\ {a;} is s;-invariant.

(b) If @ € A \II, then there exists i, such that height s;(«) < height o (height
Zi kiOéi = Zz k’z)

(c) If @ e AL\II, then there exists a sequence of simple reflections s;,,- - ,s;,, such
that s;, - -+ s;, () € I, and also sy, - - 55, (o) € Ay forall 1 < j < k.

(d) The group W is generated by simple reflections.

Proof. (a) Recall that each v € A can be written as o = > ko, where all k; € Z, and
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aq, -+, are linearly independent. Since s;(«) = o + na; € A, where n € Z, we conclude
that s;(a) € A, if at least two of the k;’s are positive, i.e. if @ € ANIL If o = o, j # 1,
then s;(a;) = o — Ajj0; € Ay since A;; <0 for ¢ # 3.

(b) Since s;(a) = a — %ai, we see that if height s;(a)) > height « for all 4, then
(a, ;) < 0 for all ¢, and then (o, ) = >} ki(a, ;) < 0, hence o = 0, a contradiction,
proving (b).

(c) Just apply (b) finitely many times until we get a simple root.

(d) Denote by W’ the subgroup of W, generated by simple reflections. By (c), for any
a € Ay there exists w € W’ such that

w(a) = a; € 1L

Hence, by Exercise 21.1(d), r, = w™'s;w, which lies in W’. So W’ contains all r, with
a € A,. Since r, = r_,, W' contains all reflections, hence W/ = W. [ |

Example 21.1. Recall the root system of type A,:

r+1
A:{gi_gj"é,je{l,"',T—i—l},i?&j}‘cvz{ZCI,Z’EZ"Z(MZO,G,Z'ER}
=1 [

r+1

C RT+1 = (—DREZ with (57;,53') = 51]
i=1

We have
s ifs#1o0ry
Tei—e;(€s) = €5 — (65,65 —€5)(6i —€5) = { &5 ifs=i
&; if s = j

So ¢, ¢, is the transposition of €; and ¢;, and the Weyl group Wa, = S;,1, the group
of permutations of the set {e1,- -, .41}

Exercise 21.2. Compute the Weyl groups for the root system of type B,,C, and
D,.. In particular, show that for B, and C, the Weyl groups are isomorphic, but not
isomorphic for D,.

123



The Weyl Group of a Root System

Definition 21.3. Consider the root system (V, A), and let T, be the hyperplane in V,
perpendicular to a € A;; consider V' with the usual metric topology and in it the open
set V\ U, ea Ta. The connected components of this subset are called open chambers,
their closures are called closed chambers. The subset

C={veV|(av) >0 for all o; € IT} (3)

is called the fundamental chamber, and its closure is called the closed funda-
mental chamber.

Exercise 21.3. Show that the open fundamental chamber C' is an open chamber.
(Hint: if a,be C, thenta+ (1 —t)be C for 0 <t <1.)

Example 21.2. For the root system of type As, there are 6 open (closed) chambers,

as depicted below:
\/ N
4 T,

aq

where a; and ay are simple roots and i) = 60°. The angle between T,,, and T}, is the
fundamental chamber.

Exercise 21.4. Show that a similar picture holds for all other rank 2 root systems
Ay + Ay, By, Gy with ¢ = 90°,45°,30° respectively. Deduce that (s;s2)™ = e, where
m = 2,3,4,6 for the root systems of type A; + Ai, Ay, By, Go respectively, and the
number of open chambers is 2m.

Theorem 21.2.

(a) The Weyl group W permutes all open (hence closed) chambers transitively, i.e.
for any two open chambers C; and C; there exists w € W, such that w(C;) = C;.

(b) Let Ay and A’ be two subsets of positive roots, defined by the linear functions
f and f" € V* respectively. Then there exists w € W, such that w(Ay) = A’
In particular, the Cartan matrix of the root system (V; A) is independent of the
choice of f.

Proof. (a) Choose a segment connecting points in C; and C;, which doesn’t intersect all
T, nTs, o, € AL,a0 # 3. Let’s move along this segment until we hit a hyperplane T,,.
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Then replace C; by 7,C;. After finitely many such steps we hit the chamber C}

Cj
/ TB Cj = TgTaCi.

(67

(b) Any linear function f on V' can be written as f,(v) = (a,v), and it doesn’t vanish on
all roots if and only if a lies in one of the open chambers. If we move a around this chamber,
the set A, defined by f remains unchanged. If we cross the hyperplane T, the chamber C
changes to r,(C). Hence all the subsets of positive roots in A are labelled by open chambers,
and if w(C') = C’, then for the corresponding sets of positive roots A, and A’ we get that
w(AL) = AL [

Definition 21.4. Let s1,---,s, be the simple reflections in W (they depend on
the choice of A,). By Theorem 21.1(d), any w can be written as w = s; ---s;,.
Such a decomposition with minimal possible number of factors ¢ is called a reduced
decomposition, and in this case t = ¢(w) is called the length of w.

Note that detyw = (—1)4®) (since detys; = —1). For example £(e) = 0,£(s;) =
1,0(s;sj) =2 if i # j, but = 0 if ¢ = j since s? = e.

Exchange Lemma. Suppose that s; ---s;_,(;,) € A_ where «;, € II. Then the
expression w = s;, - -+ 8;, is not reduced. More precisely, w = s;, -~ -8;, 1 Si,. .\ Si,_,
for some 1 <m <t —1.

Proof. Consider the roots
B = Siy,1Sipss S (06,) for 0 <k <t—1.

Then By e A_ and ;1 = «a;, € A,. Hence there exists a positive integer m < t — 1, such
that B,,_1€ A_, B € AL

But f,,-1 = i, (Bm), hence, by Theorem 21.1(a), 3, = «;,, € IL.

Let W = s;,,., "+ $i, ,. Since W(qy,) = w,,, by Exercise 21.1(d) it follows that ws;, w ! =

s;,, or ws;, = s; w. The result follows by multiplying both sides of the last equation by
Siy -+ Si,, on the left. |

Corollary 21.1. The Weyl group W acts simply transitively on the set of chambers,
i.e. for chambers C; and C; there exists a unique w € W, such that w(C;) = C;.
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Proof. By Theorem 21.2(a), W acts transitively on the set of chambers . So we need only
to prove that if C' is the fundamental chamber, w € W, and w(C) = C, then w = 1.

In the contrary case, w(C') = C' for some w # e, hence w(A,) = A, for A, correspond-
ing to C. Take a reduced expression w = s;, - -+ s;,, t = 1. Then w(oy,) = s;y -+ 85, (—ay,) €
Ay, hence s;, -8, ,(a;,) € A_. Therefore, w = s;, ---s;, is not a reduced expression, a
contradiction. |

Remark 21.1. As we have seen (Exercise 21.4), the generators sy, - - , s, of the Weyl
group W satisfy the relations

st =e, (sis;)™ =eifi# j, where m;; € Zx, (4)
and the possible values of m;; are 2, 3, 4 and 6. One can show that relations (4)
generate all relations, i.e. W is a Coxeter group, defined as a group on generators
s; (i = 1,---,r), and relations (4). This property of the Weyl group holds for any
Kac-Moody Lie algebra, with the possible values of m;; being 0, 2, 3, 4, and 6. Such a
Coxeter group is called crystallographic: in some basis the matrices of the generators
s; have integer entries.
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Lecture 22

The Universal Enveloping Algebra of a Lie Algebra and the Casimir Element

Throughout the lecture g will denote a Lie algebra, not necessarily finite-dimensional,
over any field .

Definition 22.1. An enwveloping algebra of g is a pair (¢, U), where U is a unital
associative algebra and ¢ : g — U_ is a Lie algebra homomorphism. (recall that U_ is
a Lie algebra structure on U with bracket [a,b] = ab — ba).

Example 22.1. If ¢ : ¢ — End V is a representation of g, then (¢, End V) is an
enveloping algebra of g.

Definition 22.2. The universal enveloping algebra of g is an enveloping algebra
(®,U(g)) which has the universal mapping property, namely, for any enveloping algebra
(p,U) of g there exists a unique associative algebra homomorphism f : U(g) — U,
such that ¢ = f o ®. This condition can be rephrased as saying that the following
diagram is commutative:

i o
o]

U(g)

Exercise 22.1. Prove that the universal enveloping algebra is unique, up to unique
isomorphism, if such an algebra exists.

In order to prove existence, recall that a tensor algebra T (V') over a vector space V
over [F is the following vector space over F:

TV)=FaVe(VeV)ea(VeVeV)®- -,

with the concatenation product. This is a unital associative algebra.

Let J(g) be the two-sided ideal in the algebra T'(g), generated by the set
{a®b—b®a—[a,b] |a,beg}.
Let U(g) = T'(g)//(g), and define the map ® : g — U(g) by letting

®(a) =aegcT(g) mod J(g).
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Exercise 22.2. Show that (®,U(g)) is the universal enveloping algebra of the Lie
algebra g.

The basic result on the universal enveloping algebras is the following Poincare-Birkhoff-
Witt (PBW) theorem.

PBW Theorem. Choose a basis of the Lie algebra g, {a;}
set I. Then the monomials

1> indexed by an ordered

1,ai1ai2~-ai with ’Ll <22 < - <lk (].)

k

form a basis of U(g).

Proof. We need to show that the monomials (1) span U(g), which is the easy part, and that
these monomials are linearly independent, which is the hard part.

For both parts introduce the following (partial) ordering on the set of all monomials
A=uaq; a,:1<a <a;ifi <j, and A <A = aj ---a; if either k < s, or k = s
but the number of inversions in A is strictly smaller than in A’. Here by an inversion in the
monomial A we mean a pair (a;,,,a;,) such that i,,,i, € I,i, < i,, but a;, > a; . Both
parts are proved by induction on this ordering.

Easy part. Let the monomial A have an inversion:
A = AjabA,

where A; and A, are some monomials, and a and b are elements of the basis of g, such that
a > b. Then, replacing ab by ba + [a, b], we obtain

A= AleLAQ + Al [CL, b]A2 (2)

In the first summand the number of inversions is smaller than in A, and the second summand
has degree smaller than the degree of A. In both cases we may apply induction on our
ordering to write both summands as a linear combination of monomials from (1).

Hard part. Let B be a vector space over F with basis

Define the linear map o : T'(g) — B by (we shall skip the ® signs):
() o1) = ooy - -as) = by b

i if iy < - <,
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(ii) if 4541 < 75, let inductively for A = Aja;,a;,,,As (cf. (2)):

o(A) = o(Arai,,,a;,A2) + o(Afai,, a;,,, ] Az).

By induction on our ordering, we can use (ii) to reduce o(a;, - - - a;,) to a linear combination
of o, applied to the ordered monomials (1) and use (i). The difficulty is to show that o is
well-defined, i.e. independent of the order, in which the inversions are resolved.

Case 1. We swap the order of two inversions which don’t overlap. Namely, consider the
monomial

A= Al CLbAQCdAg,

where Ay, Ag, A3 are some monomials and a,b, ¢, d are basis elements of g, such that a >
b and ¢ > d. Then

O'(A) = AleLAQCdAg + Al [a, b]AQCdAg (4)
or
O'(A) = AlabAQdCAg + AlabAg [C, d]Ag (5)

By the inductive assumption, the map o is well-defined on each summand of (4) and (5)
so it suffices to show that there exists further reduction of (4) and (5) that gives the same
result. Indeed, if we replace ab by ba + [a,b] in (4), and cd by dc + [¢,d] in (5), we obtain
the same result.

Note that in this case we didn’t use axioms of a Lie algebra at all.

Case 2. We swap the order of two inversions which overlap. Namely, consider the
monomial

A = AicbaAs,,
where a, b, c are elements of the basis of g, such that ¢ > b > a. We have two reductions:
0(A) = AjbcaAs + Aic, blaAs, (6)
or
0(A) = AjcabAy + Aiclb, a]As. (7)

Hence, by the inductive assumption, the map o is well-defined on each summand of (6) and
(7), so it suffices to show that there exist further reductions of (6) and (7) that give the same
result.

129



The Universal Enveloping Algebra of a Lie Algebra and the Casimir Element

The further reductions of (6) and (7) ignoring the irrelevant factors A; and A,, are as
follows, respectively:

bea + [¢, bla — bac + blc, a] + [¢,bla — abc + [b, alc + b[c,a] + [¢, bla (8)
cab + c[b,a] — acb + [¢,a]b + c[b, a] — abc + a[c,b] + [¢, a]b + ¢[b, a] (9)

Consider the summand [b, a]c in the last reduction in (8). The element [b,a] is a linear
combination of some elements of the basis {a;},.;. If such an element, say d, is less than c,
we keep dc unchanged in [b, a]c; otherwise we replace dc by ed + [d, ¢], so that [b,a]c gets
replaced by cd + [d, c]. We do the same with the term c[b, a] in (9).

As a result the difference of the reductions of this term in (8) and the corresponding
term c[b, a] in (9) becomes [[b, a], c].

Indeed, if a non-zero multiple of a basis element in [b,a], which we denote by [b, a];,
is smaller than ¢, we keep [b, a];c unchanged; otherwise we replace it by [[b, al;, c] + ¢[b, a];
in (8). We reduce similarly the term c[b,a] in (9): if [b,a]; < ¢, we replace c[b,a]; by
[c, [b, al;] + [b, alic, and if [b, a]; > ¢, we keep c[b, a]; unchanged.

The difference between these two reductions is —[c, [b, a];] in the first case and [[b, al;, c]
in the second, which is the same due to skew-commutativity in g.

We perform similar reductions for the remaining two pairs:

e blc,a] in (8) and [c,a]b in (9), and
e [c,bla in (8) and a[c,b] in (9).

As a result, we obtain that the two reductions differ by

[0, al, c] + [b, [, al] + [[¢, 0], a],

which is 0 by the Jacobi identity in g since [b, [c, a]] = [[a, ¢], b] by the skew-commutativity
in g.

Next, we need to show that J(g) lies in kero. But J(g) is an ideal of T'(g), generated by
the elements

ab — ba — a,b], where a <b,a,beg, (10)

since ba — ab — [b.a] = (10) with the — sign.

Applying o to (10), we obtain ab — ([b, a] + ab) — [a,b] = 0 due to skew-commutativity
in g.

Hence o induces a linear map: U(g) — B, which is surjective, and since monomials (3)
form a basis of B, monomials (1) form a basis of U(g). |
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Now, that we have an understanding of U(g), we define a very important element of this
algebra. For that we need

Exercise 22.3. Let V be a d-dimensional vector space over F, and let {ay,--- ,aq} be
a basis of V. Let (e, o) be a non-degenerate bilinear form of V. Then there exists a
unique dual basis {by,--- ,bs} of V, so that (a;,b;) = 0;; fori,5 =1,--- ,d.

Definition 22.3. Let g be a d-dimensional Lie algebra over I, equipped with a non-
degenerate invariant symmetric bilinear form (e,e). Choose a basis {ai, - ,aq} of
g, and let {by,---,bs} be the dual basis. Then the Casimir element (2 € U(g) is
defined as Q = 37 | a;b

Exercise 22.4. Show that ) is independent of the choice of the basis {ai,- - ,aq} of
g. (Hint: Write a change of basis as (a] - - - a};) = (a1 - - - ag) A, where A is a non-singular
d x d matrix over F.)

Lemma 22.1. Let g be a d-dimensional Lie algebra over F with a non-degenerate sym-
metric invariant bilinear form (e, o). Let {a1, - ,aq} be a basis of g, and {by,- - , by}
the dual basis. For x € g write

d
[z, a;] Z apag, [z,b5] = Z Bikbr.-
=1

Then Ozij = _/le

Proof. We have:

([, a;], Zalkak, Z aip(ag, b Z QikOrj = Qij, (11)

and similarly

([, 5], a;) = Bji, (12)
Using invariance of the bilinear form (e, ), we obtain from (11) and (12):
aij = ([z, @], b5) = (2, [ai, b;]) = —(, [bj, ai]) = = ([, b;], ai) = =Fji- u
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Exercise 22.5. Using Lemma 22.1 show that the Casimir element €2 is a central
element of the algebra U(g), i.e. af2 = Qa for any a € U(g).

(Hint: use the fact that in an associative algebra the operator ad a, defined by (ad a)b =
ab — ba, is a derivation of this algebra.)
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Lecture 23

Vanishing of First Cohomology, and the Weyl, Levi and Maltsev Theorems

First, note that, by the universality property of U(g), any representation 7 of the Lie
algebra g in a vector space V extends uniquely to an associative algebra homomorphism
U(g) — End V (cf. Example 22.1)

We will use the more efficient language of g-modules instead of representations 7 of g
in V:

m(a)v =a-v (or av) for a€ g,v eV, so that

[a,b]v = abv — bav for a,be g,ve V.

Definition 23.1. A 1-cocycle of a g-module V is a linear map f : g — V, such that

F([a,B) = a- f(B) —b- f(a) forabeg. (1)

Example 23.1. For any v € V we have a trivial 1-cocyle f,(a) = a - v for all a € g.
This is a 1-cocycle since the LHS of (1) is equal to [a,b] - v, and its RHS is abv — bav,
which are equal by the definition of a g-module.

Definition 23.2. Denote by Z'(g, V') the vector space of all 1-cocycles of the g-module
V, and by Bl(g,V) the subspace of trivial ones. The first cohomology of g with
coefficients in V is defined as the factor space

H'(g,V) = Z'(g,V)/B'(g,V).

So H'(g,V) = 0 means that all 1-cocycles are trivial.

The key result of this lecture is the

First cohomology vanishing theorem. Let g be a finite-dimensional semisimple Lie

algebra over a field F' of characteristic 0, and let V' be a finite-dimensional g-module.
Then H'(g,V) = 0.

The proof of this theorem is based on the following technical lemma, which holds over
an arbitrary field.
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Lemma 23.1. Let g be a d-dimensional Lie algebra with a non-degenerate invariant
symmetric bilinear form (e,e). Let {a;} be a basis of g and {b;} the dual basis.

Let fe Z'(g,V) for a g-module V. Then for any a € g we have
d
a Y a;f(b;) = Qf(a).
j=1

where Q € U(g) is the Casimir element of U(g).

Exercise 23.1. Prove this lemma, using Lemma 22.1 on dual bases, and that ), a;b; =
> bia; (which follows from Exercise 22.4).

Corollary 23.1(cf. Exercise 22.5). {2 commutes with the action of g in any g-module V.

Proof. Take f = f,, ve V, then Lemma 23.1 becomes aQ2(v) = Qa(v). |

Exercise 23.2. For any g-modules V; and V5, we have:

H'(g,Vi®Vs) = H' (g, Vi) ® H' (g, V2).

Proof of the 1st cohomology vanishing theorem. First, we may assume that the g-module V is
faithful. Indeed, if its kernel gg is non-zero, it is a semisimple ideal of g since g is semisimple.
In particular, go = [go, go]. If f € Z'(g,V), then

f([a,b]) = af(b) —bf(a) =0 if a,b € go.

Hence f(go) = f([g0,90]) = 0. This means that f induces a well-defined 1-cocycle on g/go
with values in V. Replacing g by g/go, we may assume that g < gl,,. By Theorem 11.2, the
trace form (e, e)y is non-degenerate on g, hence we may consider the corresponding Casimir
element 2 = ). a;b; for g, where a; and b; are dual bases of g with respect to (e, e)y.

We prove the theorem by induction on dim V. With respect to the operator {2 we have
the decomposition

V =V @V’ (direct sum of vector spaces), (2)

where V(g is the generalized 0-th eigenspace of 2 and V' = QN(V) for sufficiently large N.
(If IF is algebraically closed, we can take V' = @, _, Vin).)

By Corollary 23.1, g commutes with € on V, hence V(o) and V" are submodules of the
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g-module V. By Exercise 23.2, we have
Hl(gv V) = Hl(Q? ‘/(0)) S Hl(Qa V/)

Hence, by the inductive assumption, H'(g,V) = 0 if both V(o) are V' are non-zero.
Thus, the proof reduces to two cases:
Case 1. Q is invertible on V.
Case 2. () is a nilpotent operator on V.

In Case 1, we use Lemma 23.1, which says that for m = Z?ifigajf(bj), where f €
Z'(g,V), we have:

hence Q7 (am) = aQ~'(m) by Corollary 23.1, and therefore f(a) = Q7' (am) = a(Q7(m)).

Hence f = fo-1(m) is a trivial 1-cocycle.
In Case 2 we have

dimg dimg

trVQ = Z trvaibi = Z (ai7bi)\/ = dlmg

i=1 =1

But since €2 is a nilpotent operator, it follows that its trace is 0, hence g = 0. But then, of
course, H'(g,V) = 0. |

Bonus Problem. Does the converse hold, that if H'(g, V') = 0 for a finite-dimensional
g and any finite-dimensional g-module V', then g is a semisimple Lie algebra?

Next, we use the first cohomology vanishing theorem to prove the following three fun-
damental theorems, which hold over any field F of characteristic 0.

Weyl’s Complete Reducibility Theorem. Let g be a finite-dimensional semisimple
Lie algebra and let V' be a finite-dimensional g-module. Then for any submodule
U < V, there exists a complementary submodule U’ so that V = U @ U’.

Levi’s Theorem. Let g be a finite-dimensional Lie algebra and let R(g) be its radical.
Then there exists a subalgebra s of g, complementary to R(g), so that g = s x R(g).
(Note that s is automatically semisimple)

Maltsev’s Theorem. In the notation of Levi’s theorem, any semisimple subalgebra s,
of g is conjugate to s, that is there exists an automorphism o of g, such that o(s1) < s.
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The proofs of all three theorems use the first cohomology vanishing theorem, and the
notion of a projector P of a vector space V onto a subspace U. Recall that a linear operator
P on V is called a projector onto U if it has the following two properties:

(i) P(V)<U,

(ii) P(u) = u for ue U.

Note that P? = P and
V = (Ker P)@ U, (3)

since v = (v — P(v)) + P(v) and P(v — P(v)) = 0 by P? = P.

Observe also that, given a projector P : V — U, any other projector P, : V — U is
obtained as P; = P + A where A is an operator satisfying

A(V)YS U and A(U) = 0. (4)

Proof of Weyl’s theorem. Consider End V' as a (finite-dimensional) g-module with a € g
acting as a - A = aA — Aa. Pick an arbitrary projector Py : V' — U and consider the
following (trivial) 1-cocycle f for the g-module End V:

fla)=a-Py=aPy— Pya, acg. (5)

Let M < End V be the subspace, consisting of all A such that A(V) < U, A(U) = 0.

Exercise 23.3.
(a) M is a submodule of the g-module End V.

(b) The 1-cocycle f defined by (5) is actually a 1-cocycle with values in M.

Thus, f defines a class [f] € H'(g, M). Since H'(g, M) = 0, f is a trivial cocycle, hence
there exists A € M, such that f(a) = a- A for all @ € g. This means that

aPy — Pya(= f(a)) =a-A=aA— Aa, forallacg.
Rearranging terms, we see that
a(Py—A)=(Py— A)a, forallacg.
Thus P := Py — A is a projector of V onto U which commutes with each operator from g.
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Hence ker P is g-invariant, and so
V =U®®ker P

is the desired decomposition of V' in a direct sum of g-submodules. |

Proof of Levi’s theorem. We proceed by induction on dim g. First, we reduce to the case when
the radical R(g) is abelian. If not then g = g/[R(g), R(g)] has smaller dimension than g, and
so, by the inductive assumption, § = §x R(g), where § is a complementary subalgebra. Hence
g = g1 + R(g), where g is the preimage of 5 in g. Obviously, dim g; < dim g, and applying
the inductive assumption to g;, we obtain g, = s x R(g1). Hence g = s x (R(g1) + R(g)).

Exercise 23.4. Prove that R(g;) + R(g) is a solvable ideal of g (hence actually
R(g1) < R(g)).

It remains to prove the theorem in the case R(g) is abelian.
Consider the following g-module structure on End g:
a-m = (ad a)m —m(ad a) for a e g,m € End g.
Further, consider the following g-submodule of End g:

M = {m e End g | m(g) < R(g); m(R(g)) = 0}.

It is trivial to see that M is a submodule. (In that, it is a particular case of the submodule
M, constructed in the proof of Weyl’s theorem with V' = g, U = R(g), and g acting by the
adjoint action.)

Consider also the submodule of the g-module M:
R={ada|aecR(g)}.

It is a submodule since R(g) is an abelian ideal of g. Hence M = ]\7/1?2 is a g-module.

We now see that R(g) acts trivially on M. Indeed, if r € R(g) and m € M, then for any
b e g we have

(r-m)(b) = (ad r)m(b) — m(ad r)(b) = [r,m(b)] — m[r,b].

Since m(b) € R(g), which is abelian, we see that [r,m(b)] = 0. Since R(g) is an ideal and
m - R(g) = 0, we see that m - [r,b] = 0. Hence r - m = 0, as was claimed, and M is actually
a module over the semisimple Lie algebra s = g/R(g).

Now let Py : g — R(g) be an arbitrary projector, and consider the following 1-cocycle
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f:s—> M,
f(a) = (ad @) Py — Py(ad a),

where @ is any preimage of a € s under the canonical map g — g/R(g) = s.

Exercise 23.5. Check that f:s — M is a well-defined 1-cocycle.

Thus f defines a cohomology class [f] € H'(s, M) = 0, hence we can find m € M, such
that

a-m = (ad @) Py — Py(ad @), ac€s.
This just means that
(ad @)(Py — m) — (Py — m)(ad @) = ad 7y, (6)
where i € M is a lift of m under the canonical map M — M, and r, € R(g) is an element,
depending on a € s.
Now, consider the projector P = Py —m : g — R(g).

Case 1. All the r, = 0 in (6). Then all ad @ commute with the projector P, and
g = (ker P) ® R(g) is a direct sum of ideals, and, in particular, ker P is a complementary
subalgebra to g.

Case 2. r, # 0 for some a € g. Let g = {aeg|[P,ad a] =0}. Then g, is a proper
subalgebra of g. Since R(g) is an abelian ideal of g, we have

((ad )P — P(ad 7))(b) = [r, P(b)] — P([r,b]) =0 — [r,b] = —(ad 7)(D)
for any r € R(g) and b € g. Thus we may write
(ad a)P — P(ad a) = ad r, = P(ad r,) — (ad 7,) P,
or P(ad(a +r,)) = (ad(a + 14)) P.
That is, any element a of g differs from an element of g; by an element of R(g), i.e.
g=01+ R(g) = s+ (R(a) + R(g)),

where we have the decomposition g; = s + R(g;) by the inductive assumption. But by
Exercise 23.4, the ideal R(g;) + R(g) is solvable, hence coincides with R(g), since R(g) is
the maximal solvable ideal. Hence g = s + R(g). |

Proof of Maltsev’s theorem. By Levi’s theorem, g = s+ R(g). Suppose that s; is a semisimple
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subalgebra of g. We need to construct an automorphism o of g, such that o(s;) < s.

First, consider the case when R(g) is abelian. Let P, and Pg be the projections of g
onto s and R(g) respectively with respect to the decomposition g = s @ R(g) (direct sum
of vector spaces). Since R(g) is a ideal, it is easy to see that P, is a homomorphism of Lie
algebras. Also note that P + Pr = I, the identity map. Consider the map f : s; — R(g),
defined by

f(a) = Pg(a). (7)

Note that R(g) is an s;-module by the adjoint action, and we claim that f is a 1-cocycle of
this s;-module, i.e. fe Z'(sy, R(g)).

Exercise 23.6. Prove that claim.

Thus f defines a class [f] € H'(s1, R(g)), which is trivial by the vanishing of the first
cohomology of the module R(g) over the semisimple Lie algebra s;. Hence there exists an
element r € R(g), such that Pr(a) = a-r = [a,r] for all a € 5,. Hence

Pr=—adr on §. (8)

Now consider the automorphism o = ¢! 7. Since R(g) is an abelian ideal, (ad r)? = 0, so
that o = I; 4+ ad 7. Hence, if a € 51, we have by (8):

o(a) = (Ig+ad r)(a) = (I; — Pr)(a) = Ps(a) € s.

Hence o(s1) < s, as desired. This finishes the case when R(g) is abelian.

The general case uses this one by the following exercise.

Exercise 23.7. Let N(g) be the subalgebra R(g), consisting of nilpotent elements

(a) Using Proposition 5.2, show that

s1(= [s1,51]) € 5+ N(g).

(b) Prove by induction on k that there exists r, € N(g), such that e ™(s;) <
s+ N(g)®.

Since N(g)® = 0 for sufficiently large k, this completes the proof of Maltsev’s theorem.
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Lecture 24

Height Weight Modules over a Semisimple Lie Algebra

In the remainder of the course F is an algebraically closed field of characteristic 0, and
g is a finite-dimensional semisimple Lie algebra over F.

Choose a Cartan subalgebra § of g and consider the root space decomposition:

g:h®<®ga>a
aeA

where A < h* is the set of roots, and
o ={a€g]|[h,a] =a(h)aorall hebh}

is the root space attached to o € A. Recall that dimg, = 1 and choose a non-zero vector
E, € g, for each a € A.

Choose a subset of positive roots Ay < A, and let ny = @QEA+ g+o- Then we have the
triangular decomposition

g=n_@®hdn,; (direct sum of vector spaces), (1)
where n, and n_ are subalgebras of g with bases {Ea}aeA+(reSp. a,) Let Ay = {B1,-+,On}
be the set of all positive roots, then —A, = {—5,--- , =0y}, and let {Hy, -, H,} be a basis
of . Then the set

{Eataca, Y il U{Ea}aen, (2)

is an ordered basis of g. Hence, by the PBW theorem, the monomials
E™ - ETMN H{ - HIES - EGN with my, ki, 55 € Zsg
form a basis of the universal enveloping algebra U(g), while the monomials
E™ - ETY  (vesp. ES'--- E5Y) (3)
form a basis of U(n_) (resp. U(ny)). It follows that
U(g) =Un_)®@U(h) ®U(n;) (tensor product of vector spaces) (4)

The subalgebra b = h + n, is called a Borel subalgebra of g.

Exercise 24.1. Show that n, and n_ are maximal nilpotent subalgebras of g and b
is a maximal solvable subalgebra of g, and that [b,b] = n,.

Since, by Weyl’s complete reducibility theorem, any finite-dimensional g-module de-
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composes into a direct sum of irreducible g-modules, it suffices to study finite-dimensional
irreducible g-modules in order to understand all the finite-dimensional ones.

Proposition 24.1. Let V be a finite-dimensional irreducible g-module. Then there
exists A € h* and a non-zero vector vy € V with the following three properties:

(i) hox = A(h)vy for h e b,
(ii) nyop =0,
(i) U(g)va = V.
It follows from (4) and (i) that (iii) is equivalent to
(ii') U(n_)up = V.

Proof. By Lie’s theorem, the solvable Lie algebra b has a non-zero vector v € V, such that
bv = A(b)v for some A € b*.

But A([b, b]) = 0 since Fv is a 1-dimensional b-module, hence, by Exercise 24.1, A(n;) = 0.
Hence (i) and (ii) hold for vy = v. Property (iii) follows from the irreducibility of the
g-module V' since U(g)v is a non-zero submodule of V.

Definition 24.1. A g-module V (not necessarily finite-dimensional), satisfying the
three properties (i)-(iii) from Proposition 24.1, is called a highest weight module
with highest weight A, and v, is called a highest weight vector.

Definition 24.2. For an arbitrary g-module V', for A € h*, we denote by V) =
{veV |hv=Ah)v, all h e b} the weight space of h in V, attached to A\. A non-zero
vector v € V), is called singular of weight X if n,v = 0; if such a vector exists, then A
is called a stngular weight of the g-module V.

Example 24.1. Any A € h* is a singular weight of a highest weight g-module with
highest weight A.

Notation. Given A€ b*, let D(A) = {A = Y5 kot | ko € Zo ).
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Theorem on Highest Weight Modules. Let V' be a highest weight g-module with
highest weight A € h*. Then

(a) V= C—B)\eD(A) Vi
(b) Vi = Fu, and dim V), < co.

(
d

)
)
¢) V is an irreducible g-module if and only if A is the only singular weight of V.
) V contains a unique proper maximal submodule.

)

(e) If v is a singular vector with weight A, then
Qv) = (A+2p, M)y,

where (e, ®) is a non-degenerate symmetric invariant bilinear form on g, € is the
corresponding Casimir element, and

p=5 2 a

OéEA+

(£) 9 lv= (A +2p, M)y
(g) If A is a singular weight of V', then

A+p,A+p) = (A +p,A+p)

(h) If A € by, then the number of singular weights of the g-module V' is finite.

Proof. By property (iii’) of a highest weight module,
V =U(n_)op = Y FE™S - E" v,

But the weight of E™} -+ E™) vy is A — SV miB; € D(A), proving (a) and (b).

In order to prove (c¢) and (d), note that any g-submodule U of V' we have, by Lemma
14.1 and (a),

U= P (UnW). (5)

AeD(A)

Choose A = A — > A, ko€ D(A) with minimal >\ ka height o, such that U n'Vy # 0,
and let v be a non-zero vector there. Then E,v = 0 for all € A,. Hence v is a singular
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vector, and therefore

which is a proper submodule, unless A = A, proving (c).

The sum of all proper submodules of V' is again a proper submodule because it doesn’t
contain vy by (5). Then, this sum is a unique (proper) maximal submodule, proving (d).

In order to prove (e), consider the basis (2) of g, where we choose Ejs, and E_g;, such
that (Eg,, E_g;) = 1. Then the basis of g, dual to (2), is

{E—a}aeA+ v {Hl}::I o {ECY}QEA+ )
where {H'} is the basis of b, dual to {H;}.

Then, by the definition, we obtain the following formula for the Casimir element:

r N N
Q=>HH +) EgE 5+ > E_3Ep.

i=1 j=1 J=1

Using that [E,, E_,] = v !(a) if (E,, E_,) = 1, we can rewrite this as follows
N r ' N
Q=2 E 3B + ) HH +) v7'(8).
=1 i—1 j=1
Since the last sum is 2v7!(p), applying this to a singular vector vy, we obtain
Quy = (Z MNH)NH vy + 2(p, A)) Uy
i—1

Since Y M(H)MH') = (A, \), (e) is proved.

Here we used

Exercise 24.2. Let V be a finite-dimensional vector space with a non-degenerate
symmetric bilinear form (e, e). Then it induces a bilinear form (e, ) on V*, and for

dual bases {a;} and {b;} of V' we have

dim V'

(AMA) = D Ma)A(b;)  for any Ae V™,
i=1

End of the proof of the Theorem. Claim (f) follows from (e) since Q2 commutes with U(g) on
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V', hence
QB BV 0n) = B BT (0
and we can use (e).

Claim (g) follows from (f) and (e). Finally, by (g), the set of singular weights lies in a
compact set in by = R ®q b, and since it also lies in a discrete set D(A), their intersection
is finite. [

Exercise 24.3. Let V be a g-module, and v € V' be such that U(g)v = V (then v is
called a eyclic vector of the g-module V). Let Ann v = {a € U(g) | av = 0}. This is a
left ideal of the associative algebera U(g), and V is isomorphic to U(g)/Ann v (with g
acting by multiplication on the left), as g-modules. Show that if V"’ is another g-module
with cyclic vector v/, and Ann v 2 Ann v, then the g-module V’ is isomorphic to a
factor module of V.

Definition 24.3. Given A € h*, a Verma module M (A) is a highest weight g-module
with highest weight A, such that any other highest weight module with highest weight
A is a factor module of M(A).

Proposition 24.2.
(a) For any A € h*, there exists a Verma module M (A), unique up to isomorphism.

(b) M(A) has a unique proper maximal submodule J(A), so that the factor-module
L(A) = M(A)/J(A) is irreducible.

(¢) The g-modules M(A) and M(A’) (resp. L(A) and L(A’)) are isomorphic if and
only if A = A’.

(d) The vectors E™} --- E™} vy with my, -+ ,my € Zzo form a basis of M(A).

Proof. (a) It is clear from the definition and Exercise 24.2 that
M(A) = U(g)/U(g)(ny + {h — A(h) with h € b})
with g acting by multiplication on the left.

(b) follows from the Theorem on highest weight modules (d), and (c) follows from (b).
In order to prove (d), note that by (3) and the PBW theorem we have

Umn_)nU(g)(ny + {h—A(h) with h e h}) = 0.
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Hence the map U(n_) — M(A), defined by u — u-v, is injective, but by (iil’) it is surjective.
Hence M(A) is a free module of rank 1 over U(n_), and (d) follows from the PBW theorem
for n_. |

Exercise 24.4. Let g =sly(F) =FF+FH +FE,sothat h =FH,n_ =FF n, =FF.
Then A € h* is identified with A(H) € F, and M (A) = span {F"vy | n € Zxo}, on which
sly(IF) acts according to the key sl; lemma. This module is irreducible, i.e. isomorphic
to L(A) if and only if A(H) ¢ Zso, by this lemma, and, if A(H) € Zso, then J(A) =
span {F"vy | n > A(H)}, so that L(A) = M(A)/J(A) = span{F"v, | 0 < n < A(H)}
is (A(H) + 1)-dimensional.

146



Lecture 25

Dimensions and Characters of Finite-Dimensional Irreducible Modules over
Semisimple Lie Algebras

Let g be a finite-dimensional semisimple Lie algebra, choose a Cartan subalgebra b, let
A < b* be the set of roots, and

II={a, - ,a} SAL A

be the subsets of simple and positive roots. We have the corresponding triangular decom-
position

g=n_@f)@n+,

and let b = h @ n, be the Borel subalgebra, recall that [b, b] = n,. Let, as before,

1 *
P=3 Z a € b (1)
CXGA+
Fix a non-degenerate invariant symmetric bilinear form (e, e) on g, and let v : h — h* be
the corresponding vector space isomorphism; it induces a non-degenerate symmetric bilinear

form (e,e) on h*, and (o, ) # 0 for all a € A.

Let {E;, I}, H;};_, be the Chevalley generators of g, where H; = 22’6;1(()2‘;)

0_a,;, so that F;, H;, F; form the standard basis of the subalgebra a;, isomorphic to sly(F).
Define the set of dominant weights

7Ei egaiaF’i €

P+={)\e[)*|)\(Hi)eZ>0foralli=1,...’7,}_

The two main theorems of finite-dimensional representation theory of g are the following.

Cartan’s Theorem. The set of g-modules {L(A)}, p is, up to isomorphism, a
complete non-redundant list of all irreducible finite-dimensional g-modules. (Recall
that L(A) is the irreducible highest weight g-module with highest weight A € h*.)

Weyl’s Dimension Formula. If A € P, then

dim L(A) = [] %
aEA L Z

Proof of Cartan’s Theorem. By Proposition 24.1, any irreducible finite-dimensional g-module
is isomorphic to one of the L(A), A € h*. Note that vy € L(A) satisfies E;up = 0, Hyupy =
A(H;)vy. Hence, by the key sly lemma, A(H;) € Zso for all i = 1,--- ,r, if L(A) is finite-
dimensional, and so A € P,. Conversely, if A € P,, then, by Weyl’s dimensional formula,
which will be proved shortly, dim L(A) < oo (we shall see in a moment that (p,a) # 0 for

147



Dimensions and Characters of Finite-Dimensional Irreducible Modules over
Semisimple Lie Algebras

a € A). That {L(A)},.p, is a non-redundant list follows from Proposition 24.2(c). [

The g-modules L(A) with A € P, are depicted by labeled Dynkin diagrams, by writing
A =37 miA;, where A; € h* are the fundamental weights, defined by A;(H;) = ¢;;, and
m; € Z=q, by putting m; against the ¢-th node of the Dynkin diagram of g if m; # 0.

Example 25.1. Let g = sl,(F), and choose its triangular decomposition such that
b consists of traceless diagonal matrices, and n, (resp. n_) of strictly upper (resp.
lower) triangular matrices. Then H; = E;; — Ej11,41 for ¢ = 1,--- ., n—1. Let V},
be the space of all homogeneous polynomials in x,--- ,x, of degree m, and define a
g-module structure on V,,, by letting

(@) Plary— ) = 3 aga L)

It is easy to see that this is a g-module. If P(zq,--- ,x,) is annihilated by n,, i.e. by

all xi% with ¢ < j, then % = 0 for all 7 > 2, hence P is a constant multiple of x7".
J J

In other words, Fz!" are all singular vectors of the g-module V,,. Also, since, up to a

non-zero constant factor,

k k1
o\ 0 e
T, — v | 2g— ™ = ™ ko k"QJkl . -LL‘k”
1 1 2 n
(9.731 (%1

we see that U(n_)a" = V,,. Thus V,, is a highest weight module over g with the highest
weight vector z1", Fz* being the only singular vectors. Since H; = xiaiwi —xiﬂﬁ, we
see that the weight of 2" is mA;. Hence, by the Theorem on highest weight modules,

m
the g-module V,, is isomorphic to L(mA;), and its Dynkin diagram is oG- O

Exercise 25.1. Prove that for g = sl,,(F) with n > 2, s0,,(F) with n > 7 and sp,, (F)
with n > 4, the tautological module is irreducible, and is depicted by the following
labeled Dynkin diagrams:

1 1
1 1
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Exercise 25.2. Show that for the adjoint representation of simple Lie algebras of type
A. (r=2),B, (r=3),C. (r =21),D, (r = 4), Es, E7, Eg, Fy, Gy, the labeled Dynkin
diagrams are respectively

1 1 1 2
O—O - 00 0O - 0=0 O—O - OL0

NP O %&}ol b odooo
b ooo0boo b oo o b

Now we turn to the proof of Weyl’s dimension formula. First we take care of vector p.

Lemma 25.1. Recall p, given by formula (1). Then p(H;) =1 foralli=1,--- 7.

Proof. Consider the simple reflection s; = r,,, and recall that the set A; = AL\ {a;}
is s;-invariant. Hence p = %ai + p1, where p; = %ZQEA\{%}@ is fixed by s;. So
si(p) = =304 + p1 = p — oy. But s;(X) = X\ — N(H;)a, hence p(H;) = 1. O

Corollary 25.2. (p,«a) # 0 for all v € A,.

Proof. We can take the normalization of the bilinear form (e, e) such that (a,a) > 0

for all &« € A. Since H; = 22’;,1%), we see that

1
(p, i) = 5(0%0%'), =1, (2)
Hence for a = ) ki € A, (p, ) = %Zl ki(ov, ;) > 0. O

Exercise 25.3. For a root system (V,A) with Cartan matrix A, let AY =

{av = %Z(g)) |ae A}, where v : V' — V* is the vector space isomorphism induced

by the bilinear form on V. Show that

(a) (V* AV)is aroot system (called the dual root system) and its Cartan matrix
is AT.
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(b) Show that if IT = {ay, -, .} is a set of simple roots for (V,A), then IIV =
{ay, -+ ,a)} is a set of simple roots for the dual root system and p(a;’) = 1 for
alli =1,---,r. Consequently,

p(a”) = height " for ¥ € AY.

(c) The Weyl dimension formula can be rewritten as a ratio of two positive integers:

[T cas (Aa) + height a*)
HaveAi height av

dim L(A) = (3)

Example 25.2. Let g = sl(F). By Cartan’s theorem, all irreducible finite-
dimensional g-modules are, up to isomorphism, V,, = L(mA;) which has dimension
m + 1. This is consistent with (3), whose numerator is m + 1 and denominator is 1.

Exercise 25.4. Let g = sl3(F) and A = myA; + moAs (whose Dynkin diagram is

My M2
O—CO where my,mg € Zsg). Then A(ey) = my, ¢ = 1,2, the set of positive

coroots is ay, oy, oy + o', and we have
A+p)(e))=m;+1, i=12  (A+p)(ay +a5) =my +ms+ 2,
so that the Weyl dimension formula gives

dim L(A) = (Tt Dme + ;)(ml tmyt2)

(However, to construct explicitly the sl3(IF)-modules L(A) with m; > 0 and m;+mg > 2

1 1
is a rather hard problem; recall that O——CO is the adjoint module).

Exercise 25.5. Given a finite-dimensional g-module V', show that V* is a g-module
as well, letting

(a-N)v) =—=fla-v).

Show that for A = >" | m;A;, where m; € Zs,, the A,-module L(A)* is isomorphic to
L(A*), where = : P, — P, is defined by

*(Az) = An—i+17 L= 17 e,

We shall deduce the Weyl dimension formula from the Weyl character formula, intro-
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duced below. For this and for the proof of the Weyl character formula we shall need the
following framework.

Definition 25.1. Recall that for an abelian group V' its group ring Z[V] is defined
as the unital commutative associative ring with basis {€* | a € V'} over Z and product
e%e® = et for a,b € V. We shall consider Z[V] with V' = b, and its “completion”
Z[[V]], consisting of all sums ] _,, mee® where m, € Z. This completion is a module
over the ring Z[V], but it is not a ring.

Definition 25.2. A g-module M is called a weight module if M = @, M, as
h-module, where dim M, < oo for all A (recall that M, denotes the weight space,
attached to the weight \). The character of a weight module M is

ch M = @P(dim M, )e*.
eV

(This is an element of Z[[V']], and it lies in Z[V'] if and only if dim V' < o0.)

Introduce the Weyl denominator

R=[[—-eyez[V] (4)

CVGA+

Wey!’s character formula. For A € P, (c V) we have

e’R ch L(A) = ) (—1)“ewA+e), (5)
weW
Corollary 25.3 (Weyl’s denominator identity) e’R = Z (—1) @) (6)
weWw
Proof. Since L(0) is the trivial 1-dimensional g-module, its character ch L(0) = 1.
Hence (6) follows from (5) with A = 0. O

For the dual Lie algebra g(A") we obtain a similar formula

e”  RY = Z (_1)4(W)ew(/?v), (7)

weW

where (p¥,q;) =1 and RY =[] (1—e).

\'2
agAY

We first deduce Weyl’s dimension formula from Weyl’s character formula (5), and then
prove (5) next time.
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Let PY, ={ eV | (\, ;) € Zz1}. Given pe Py

., define a ring homomorphism

Fprzlle e = 2llall Fle™) = g%,

Formula (5) can be rewritten as

Re™ ch L(A) = ) (—1)ftWenhta=(o), (8)
weW
Its LHS lies in Z[[e=**,--- ,e *"]. It follows from Lemma 26.1 from the next lecture that

this holds for the RHS as well. Recall p¥ € V, defined by (p¥, ;) =1 fori=1,---,r, and
apply F,v to both sides of (8). We obtain in the LHS:

[T =q"") ) (dim L(A),)g™ "), 9)

Next in the RHS we have:

Z (_1)€(w)q—(A+p,pV)+(w(A+p),pv)’
weW

and using the W-invariance of the bilinear form (e, o), we get:

q*(/\ﬂupv) Z (_1)€(w)q(w(/\+p)7pv) - q*(Aer,pV)FAer Z (_1)f(w)ew(pv)*p7
weW weW

which, by (7), is equal to HaeAi(l — ¢ +2)). From this and (9) we obtain

H 1— g’ ZdlmL (A_)"pv)z H (1—q(A+p’av)).

agAY A aceA 4

Hence 3, dim L(A)xg ") = [ ,cn, ‘Thmmor

O{EA+ 1—q(P’0‘v)

As g — 1, by L’Hopital’s rule, the limit of each factor in the RHS is A(+p O‘) ) hence the

limit of the LHS exists and is equal to dim L(A). This proves the Weyl dimension formula
in the form (3).
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Example 25.3. Let g = sl(F). By Example 25.2, all finite-dimensional irreducible
g-modules are L(mA;), whose highest weight is mA; = T o where a is the positive
root of g and m € Z~. Its weight space decomposition is

L(mA;) = P L( mA1 s
7=0
where L(mAl)(m_j)a = FFv,,5, are 1-dimensional. Hence

ch L(mA,) = e2™ 4 e2(m 2 | yes(m—ha . 4 4 em3e (10)
which also can be written as

(e%“ — ez ) ch L(mA;) = ez(mila _ o=g(mil)a (11)

Formuala (11) coincides with the Weyl character formula for g = sly(F), since p = 3.
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Lecture 26

Proof of the Weyl Character Formula

As in the previous lecture, let V' = hg). We view V' as an abelian group with respect to
the addition operation and consider its group ring Z[V']. Consider also the set Z[[V]] of all
linear combinations )},  are*, where ay € Z. It is an abelian group, but not a ring. We
have the inclusion Z[V] < Z[[V]] as abelian groups, with the action of the Weyl group W,
given by w Y, axe* = 3, aye?™.

Also the abelian group Z[[V']] is a module over the ring Z[V], with a compatible action
of W:

w(pf) = wp)w(f)  for pe Z[V], f e Z[[V]].

Of course, the character of any weight g-module lies in Z[[V]].

Lemma 26.1. If A € P, then w(ch L(A)) = ch L(A).

Proof. Consider the subalgebra a; = FE;+FH;+FF;+T,, of g, where T,,, = {h € b | a;(h) = 0},
so that h =T, ®FH,.

By the key sly-lemma, E; (F}A(Hi)ﬂv,\) = 0, also F; <FiA(Hi)+1vA> = 0 for j # i, since

[E;, F;] = 0 in this case. So, FiA(Hi)HvA is a singular vector of L(A), and since L(A) is an
irreducible g-module, it has no singular weights different from A, and therefore EA(HZ')HUA =
0. But L(A) = U(g)va and ad F; is locally nilpotent on g, hence on U(g), hence F; is locally
nilpotent on L(A). The same obviously holds for the E;. We use here Lemma 6.2 with

a=\=0.

(Recall that an operator A on a vector space V is called locally nilpotent, if for any
veV, ANy =0for N »0.)

It follows that any weight vector v € L(A) lies in an a;-invariant finite-dimensional
subspace. Hence, by the Weyl complete reducibility theorem, applied to sly(F), L(A) de-
composes in a direct sum of finite-dimensional sly(F)-modules, which are also h-modules,
hence a;-modules. But the character of such a module is of the form (see Example 25.3)

emai/Q + 6(771—2)041-/2 + e(m—4)ai/2 4ot e—mozi/Q’ me Z;Oa

which is r,,-invariant. Hence ch L(A) is r,,-invariant for all ¢, and therefore W-invariant.ll

Lemma 26.2. R ch M(A) = e*, where R = [Toea, (1 —e7%), and Ae V.
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Proof. By Proposition 24.2(d), we have

ch M(A) = Z eA—mifi——mnpN

(ma, ,mn)eZY,

_ e/\ Z e—mlﬁl—“'—mNﬁN

my)eZl,
A H 1 - Ol -1
CMEA+
by the geometric progression: Y, _ e " = (1 —e )7L |

Lemma 26.3. w(e’R) = (—1)"™ePR for w e W, i.e. e’R is W-anti-invariant.

Proof. Since the group W is generated by the simple reflections s; = r,,, it suffices to check
that s;(e?R) = —e”R. For that we rewrite R as

R=(1—-e")Ry, where Ry = H (1—e™).

el \{ai}

Since AL\ {«} is s;- invariant Ry is s;-invariant, hence s;(R) = (1 — e®*) Ry, and s;(e’R) =
e’ (1 —eY )Ry = eP(e™™ — 1)R1 = —e’R. |

Lemma 26.4. Let A € V and let M be a highest weight module over g with
highest weight A. Recall D(A) = {A—=>_ ko | ki € Z>o} and let B(A) =
{AeDA) [ (A+p,A+p)=(A+p,A+p)}. Thench V =3}, p,yax ch L(A), where
apn =1 and ay € Z=.

Proof. 1t is by induction on >}, p,) dim Vy, which is finite since dim V) < o0 and B(A) is a
finite set by Theorem on highest weight modules (h) from Lecture 24.

If >, B(A) dim V), = 1, then A is the only singular weight of V', hence, by Theorem on
highest weight modules (c) from Lecture 24, V' = L(A), so ch V' = ch L(A). If there is
another singular weight A # A, then A € B(A) by Theorem on highest weight modules (g),
and let vy be a corresponding singular vector, let U = U(g)v,, and consider the following
exact sequence of g-modules

0>U—-V > V/U=D0.

Then ch V' = ch U +ch V /U, and we can apply the inductive assumption to each of the two
terms on the right. |
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Lemma 26.5. In the assumptions of Lemma 26.4, and V' = L(A), we have

ch L(A) = ) by ch M()), where by =1, by € Z. (1)
AeB(A)

Proof. By Lemma 26.4, we have for any p € B(A),

ch M(p) = > axuch L(X xy € Lo, pyp = 1.
AeB(A)

Let B(A) = {\1,- -, A}, and order this set in such a way that \;—X; & {37, ki | ki € Zzo}
if i > j. We get a system of linear equations

ch M(\ ZanghL j=1--- 'm,

where a;; € Z, a;; = 1 and a;; = 0 for ¢ > j. So the matrix (al-j)?fj:l of this system is upper
triangular with 1’s on the diagonal and integers over the diagonal. Hence its inverse, which
expresses the ch L(\;)’s in terms of the ch M (\;)’s is an upper triangular matrix with 1’s on
the diagonal and integers over the diagonal. In particular, this proves (1). [ |

End of Proof of Weyl’s Character Formula. Multiply both sides of (1) with A € P, which
lie in Z[[V']], by e’R € Z[V'], and use Lemma 26.2 to obtain

e?Rch L(A) = ) b, by=1beZ (2)

AeB(A)

By Lemma 26.1, ch L(A) is W-invariant, hence, by Lemma 26.3, the LHS of (2) is W-anti-
invariant, so the RHS is as well. Hence, using simple transitivity of the action of W on open
Weyl chambers and that A + p lies in the open fundamental chamber, we can rewrite (2) as
follows

e’Rch L(A) = Y (=1)/™ev®) 1 N py 3 (1) e Ay pe P (3)
weW AeB(A\{A}  weW

It remains to show that the second sum in the RHS of (3) is zero. For that it suffices to
show that the set

{Ae BA) [N~ A X+ pe P}

is empty. In the contrary case, for A from this set we have A\ = A — . k;a;, where k; € Zx
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and not all of them are 0, and also (A + p, A+ p) = (A + p, A + p). Hence we have

O0=A+pA+p)—(A+p,A+p)
= (A=XNA+A+2p)

— (Z kia/i,A> + (Z kiai,)\—kp) + <Z kiOéi,P) . (4)

Since (A, ;) = 23 > 0 and similarly (A + p, ;) = 0, and (p, ;) = (g, ;) > 0, where

(i)

we use the Killing 7form, the RHS of (4) is positive, which is a contradiction. |
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