1 Real Numbers

- 1. A field is a set F equipped with operations $+$ and \times such that
	- $(F,+)$ and $(F \setminus \{0\}, \times)$ are Abelian groups
	- $x(y + z) = xy + xz$ for all $x, y, z \in F$. (Distributivity)
- 2. A field F is ordered if there exists a relation \lt on F (with $x > y$ meaning $y < x, x \leq y$ meaning $x < y$ or $x = y$, etc) such that for all $x, y, z \in F$,
	- Exactly one of $x = y, x < y, x > y$ holds. (Trichotomy) • $x < y$ and $y < z$ implies $x < z$. (Transitivity)
	- $x < y$ implies $x + z < y + z$. (Additivity)
	- $x < y$ and $z > 0$ implies $xz < yz$. (Multiplicativity)

We define $P = \{x \in F : x > 0\}.$

3. Let F be an ordered field.

- $u \in F$ is an upper bound for a subset $S \subseteq F$ if $x \le u$ for all $x \in S$. If an upper bound for S exists, we say S is *bounded above.*
- $\ell \in F$ is a lower bound for a subset $S \subseteq F$ if $x \geq \ell$ for all $x \in S$. If an upper bound for S exists, we say S is bounded below.
- If $S \subseteq F$ is bounded above and below, we say that it is *bounded*.
- $u \in F$ is the maximum of S, denoted max S, if u is an upper bound and $u \in S$.
- $\ell \in F$ is the minimum of S, denoted min S, if ℓ is a lower bound and $\ell \in S$.
- $u \in F$ is the *supremum* of S, denoted sup S, if it is the least upper bound for S. More precisely, we say that S has supremum

 $\sup S = \min\{x \in F : x \text{ is an upper bound for } S\}$ if it exists.

• $\ell \in F$ is the *infimum* of S, denoted inf S, if it is the greatest lower bound for S. More precisely, we say that S has infimum

 $\sup S = \max\{x \in F : x \text{ is an lower bound for } S\}$ if it exists.

- By convention, $\inf \emptyset = \infty$ and $\sup \emptyset = -\infty$. If S is unbounded above (below) we say sup $S = \infty$ (inf $S = -\infty$).
- We say that F is *complete* if it satisfies the *completeness axiom*: Every nonempty subset of F that is bounded above has a supremum.

2 Sequences

1. The absolute value function is defined by

$$
|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}
$$

- 2. A sequence ${x_n}_{n\in\mathbb{N}} = {x_0, x_1, \dots}$ is an ordered list of real numbers. Explicitly, we have a function $x : \mathbb{N} \to \mathbb{R}$ and we denoted $x_n = x(n)$.
- 3. Let $\{x_n\}_{n\in\mathbb{N}}$ is said to *converge* to $\ell \in \mathbb{R}$ if

 $(\forall \varepsilon > 0)$ $(\exists N \in \mathbb{N})$ $(\forall n \ge N)$ $(|x_n - \ell| < \varepsilon)$

If this is true, we write $\lim_{n\to\infty}x_n=\ell$.

- 4. ${x_n}_{n\in\mathbb{N}}$ is bounded if $\exists M \in \mathbb{R}$ such that $|x_n| < M$ for all $n \in \mathbb{N}$.
- 5. ${x_n}_{n\in\mathbb{N}}$ is said to *diverge to* ∞ , written as $x_n \to \infty$, if for all $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $x_n \geq M$ for all $n \geq N$. The case $x_n \to -\infty$ is analogous.
- 6. ${x_n}_{n\in\mathbb{N}}$ is monotone if it is either nonincreasing $(x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$) or nondecreasing $(x_n \leq x_{n+1} \text{ for all } n \in \mathbb{N})$
- 7. A subsequence of $\{x_n\}_{n\in\mathbb{N}}$ is any ordered infinite subset. Precisely, it is some $\{x_{n_j}\}_{j\in\mathbb{N}}$ where $n_0 < n_1 < n_2 < \cdots$ are natural numbers.
- 8. A sequence $\{x_n\}_{n\in\mathbb{N}}$ is *Cauchy* if

$$
(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall m, n \ge N)(|x_n - x_m| < \varepsilon)
$$

9. The *limit superior* and *limit inferior* of $\{x_n\}_{n\in\mathbb{N}}$ are defined by

$$
\limsup x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right), \qquad \liminf x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)
$$

3 Series

1. Given a sequence $\{x_n\}_{n\in\mathbb{N}}$, we define the series

$$
\sum_{k=0}^{n} x_k = x_0 + x_1 + \dots + x_n \quad \text{and} \quad \sum_{k=0}^{\infty} x_k = \lim_{n \to \infty} \sum_{k=0}^{n} x_k \text{ if it converges.}
$$

- 2. The series $\sum_{n=1}^{\infty}$ $_{k=0}$ a_k converges absolutely if \sum^{∞} $_{k=0}$ $|a_k|$ converges.
- 3. The exponential function is defined as

$$
\exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}
$$

4. A series $\sum_{n=1}^{\infty}$ $_{k=0}$ x_k is unconditionally convergent if any reordering of the x_k gives a series converging to the same number.

4 Topology of R

- 1. An open interval of $\mathbb R$ is $(a, b) = \{x \in \mathbb R : a < x < b\}$ for some $a, b \in \mathbb R \cup \{\pm \infty\}.$
	- A closed interval of $\mathbb R$ is $[a, b] = \{x \in \mathbb R : a \le x \le b\}$ for some $a, b \in \mathbb R \cup \{\pm \infty\}$. For a given set $E \subseteq \mathbb{R}$, we say that $p \in E$ is
		- an *interior point* of E if there exists $a < p < b$ such that $(a, b) \subseteq E$.
		- an *isolated point* of E if there exists $a < p < b$ such that $(a, b) \subseteq E = \{p\}.$
		- a boundary point if for all $a < p < b$, (a, b) intersects both E and E^c.
		- a *limit point* (or accumulation point) if for all $a < p < b$, $(a, b) \cap E$ is infinite.

and we say E is

- open if every $p \in E$ is an interior point of E.
- *closed* if E contains all limit points of E .
- 2. The *interior* of E, denoted \tilde{E} or $\text{int}(E)$, is the set of its interior points.
	- The *closure* of E, denoted \overline{E} , is the union of E and its limit points.
- 3. The *interior* of E, denoted \tilde{E} or $\text{int}(E)$, is the set of its interior points.
	- The *closure* of E, denoted \overline{E} , is the union of E and its limit points.
- 4. A set S is *countable* if there exists a surjection $f : \mathbb{N} \to S$.
- 5. An open cover U of $E \subseteq \mathbb{R}$ is a collection of open sets ${O_{\alpha}}_{\alpha \in I}$ such that such that $E \subseteq \bigcup_{\alpha \in I} O_{\alpha}$.
	- $K \subseteq \mathbb{R}$ is (covering) *compact* if every open cover of K admits a finite subcover.
	- $K \subseteq \mathbb{R}$ is sequentially compact if every sequence in K admits a converging subsequence in K .

5 Metric Spaces

- 1. A metric space (X, d) is a set X equipped with a metric d, which is a function d: $X \times X \to \mathbb{R}_{\geq 0}$ such that for all $x, y, z \in X$,
	- $d(x, y) = 0 \Leftrightarrow x = y$
	- $d(x, y) = d(y, x)$ (Symmetry)
	- $d(x, z) \leq d(x, y) + d(y, z)$ (Triangle Inequality)
- 2. Convergence: $(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n > N) (d(x_n, \ell) < \varepsilon).$
	- Cauchy sequence: $(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall m, n \ge N) (d(x_n, x_m) < \varepsilon).$
	- Open/Closed balls: $\mathcal{B}(x,r) = \{y : d(x,y) < r\}, \overline{\mathcal{B}}(x,r) = \{y : d(x,y) \le r\}.$
	- Open set: $(\forall x \in E) (\exists r > 0) (\mathcal{B}(x, r) \subseteq E)$. Closed set: E^c is open.
	- Neighborhood of $x \in X$: Any open set containing x.
	- Diameter of E: diam $(E) = \sup \{d(x, y) : x, y \in E\}$. Bounded set: diam $(E) < \infty$.
	- Limit point of E : Any neighborhood of it intersects E infinitely much.
	- Isolated point of E : Exists some neighbourhood that intersects E at only itself.
	- Closure of $E: \overline{E} = E \cup \{\text{limit points of } E\}.$
	- Interior of $E: \mathring{E} = \{x \in E : \text{exists neighborhood of } x \text{ contained in } E\}.$
	- E is dense in F if $F \subseteq \overline{E}$. (Equivalently, all neighborhoods of all points in F must intersect $E.$)
	- $K \subset X$ is *compact* if every open cover of K admits a finite subcover.
	- $K \subseteq X$ is totally bounded if $(\forall \varepsilon > 0) (\exists x_1, \dots, x_n) (K \subseteq \mathcal{B}(x_1, \varepsilon) \cup \dots \cup \mathcal{B}(x_n, \varepsilon)).$
	- $K \subset X$ is *complete* if every Cauchy sequence converges.
	- $K \subseteq X$ is *separable* if it has a countable dense subset.

6 Continuous Functions

- 1. Let $(X, d_X), (Y, d_Y)$ be metric spaces. We say $f : X \to Y$ is continuous at $x \in X$ if for every $x_n \to x$ we have $f(x_n) \to f(x)$.
	- $f: X \to Y$ is *continuous* if it is continuous at every $x \in X$.
- 2. $f: X \rightarrow Y$ is uniformly continuous if

 $(\forall \varepsilon > 0)$ $(\exists \delta > 0)$ $(\forall d_X(x, y) < \delta)$ $(d_Y(f(x), f(y)) < \varepsilon)$.

Remark: Here δ does not depend on x!

3. If X is compact, we define the *uniform metric* on $\mathcal{C}(X) = \{f : X \to \mathbb{R} \text{ continuous}\}\$:

$$
d(f, g) = \sup \{ |f(x) - g(x)| : x \in X \}
$$

- 4. Let $\{f_n: X \to \mathbb{R}\}_{n \in \mathbb{N}}$ be a sequence of continuous functions.
	- We say f_n converges pointwise to f if $f_n(x) \to f(x)$ for all $x \in X$.
	- We say f_n converges uniformly to f if $\sup_{x \in X} |f_n(x) f(x)| \to 0$ as $n \to \infty$.

This is equivalent to f_n converging in $(C(X), d)$, so we can write $f_n \stackrel{d}{\to} f$.

- 5. A set $K \subset \mathcal{C}(X)$ is uniformly bounded if there exists an $M \in \mathbb{R}$ such that $f(x) \leq$ M for all $f \in K$ and $x \in X$.
	- A set $K \subseteq \mathcal{C}(X)$ is *(uniformly) equicontinuous* if

 $(\forall \varepsilon > 0)$ $(\exists \delta > 0)$ $(\forall f \in K, d_X(x, y) < \delta)$ $(d_Y(f(x), f(y)) < \varepsilon)$.

7 Derivatives

- 1. Let $f: I \to \mathbb{R}$ where $I \subseteq R$. Then we say $\lim_{x \to x_0} f(x) = \ell$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in I$ with $0 < |x - x_0| < \delta$.
	- Let I be an open interval. We say that $f: I \to \mathbb{R}$ is differentiable at x_0 if

$$
\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\delta \to 0} \frac{f(x_0 + \delta) - f(x_0)}{\delta} \in \mathbb{R}
$$

exists, in which case we denote the limit by $f'(x_0)$, called the *derivative* at x_0 . We say f is differentiable if f is differentiable at all points in I .

- $\frac{f(x) f(x_0)}{g(x)}$ $x - x_0$ is called the *difference quotient* and represents the slope.
- 2. $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is said to have directional derivative at $x_0 \in \Omega$ in direction $v \in \mathbb{R}^n$ if

$$
Df(x_0)[v] := \lim_{\delta \to 0} \frac{f(x_0 + \delta v) - f(x_0)}{\delta}
$$

exists. We say f is differentiable at x_0 if $Df(x_0): \mathbb{R}^n \to \mathbb{R}^n$ is a linear map.

3. • A function $f: I \to \mathbb{R}$ is convex if for all $x_1 < x_2$ in I and any $0 < \alpha < 1$,

$$
f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2).
$$

We say that f is *strictly convex* if the inequality is always strict.

• A function $f: I \to \mathbb{R}$ is *concave* if for all $x_1 < x_2$ in I and any $0 < \alpha < 1$,

$$
f(\alpha x_1 + (1 - \alpha)x_2) \geq \alpha f(x_1) + (1 - \alpha)f(x_2).
$$

We say that f is *strictly concave* if the inequality is always strict.

• Define the *right and left derivative*

$$
f'_{+}(x_0) = \lim_{\delta \to 0^{+}} \frac{f(x_0 + \delta) - f(x_0)}{\delta}, \qquad f'_{-}(x_0) = \lim_{\delta \to 0^{-}} \frac{f(x_0 + \delta) - f(x_0)}{\delta}
$$

- 4. A function $f: I \to \mathbb{R}$ is in \mathcal{C}^1 if it is differentiable and f' is continuous.
	- If $f'(x_0) = 0$, we say x_0 is a critical point and $f(x_0)$ is a critical value.
	- We say $y \in \mathbb{R}$ is a *regular value* if it is not a critical value.
	- A set $S \subseteq \mathbb{R}$ has *measure zero* if for all $\varepsilon > 0$ there exists countably many intervals that (i) covers S and (ii) have total combined length $\lt \varepsilon$.

8 Riemann Integral

- 1. A partition of [a, b] is a finite set of points $\sigma = \{a = x_0 < \cdots < x_N = b\}.$
	- The size $|\sigma|$ of σ is $\max_{1 \leq i \leq N} |x_i x_{i-1}|$.
	- A partition σ' is a refinement of σ if $\sigma' \supseteq \sigma$.
	- Given a bounded $f : [a, b] \to \mathbb{R}$ and a partition σ of $[a, b]$,
		- The upper (Riemann) sum is $S(f, \sigma) = \sum$ N $i=1$ $(x_i - x_{i-1})$ sup $x \in [x_{i-1},x_i]$ $f(x)$. N

- The lower (Riemann) sum is
$$
s(f, \sigma) = \sum_{i=1}^{\infty} (x_i - x_{i-1}) \inf_{x \in [x_{i-1}, x_i]} f(x)
$$
.

- Given a bounded $f : [a, b] \to \mathbb{R}$,
	- The upper (Riemann) integral is $\mathcal{I}^+(f) = \inf_{\forall \sigma} S(f, \sigma)$.
	- The lower (Riemann) integral is $\mathcal{I}^{-}(f) = \sup$ ∀σ $s(f,\sigma).$
- A bounded $f : [a, b] \to \mathbb{R}$ is *Riemann integrable* if $\mathcal{I}^{-}(f) = \mathcal{I}^{+}(f) := \int^{b}$ a $f(x) dx$. Denote by $\mathcal{R}(a, b)$ the set of all Riemann integrable functions on [a, b].
- Given $f : [a, b] \in \mathbb{R}$ and $I \subseteq [a, b]$ an interval, define $\underset{I}{\text{osc}} f = \underset{I}{\text{sup}}$ I $f - \inf_I f$.
- 2. The *oscillation of f at point x* is $\operatorname{osc}(f, x) = \lim_{\delta \to 0^+} \operatorname{osc}_{[x-\delta, x+\delta]} f \ge 0$
- 3. An ordinary differential equation (ODE) is a problem in the form

$$
y'(x) = f(x, y(x)),
$$
 $y(x_0) = y_0$

where $y(x)$ is a differentiable function from $\mathbb{R} \to \mathbb{R}^n$ to be solved.

4. • Let ${a_k}_{k\in\mathbb{N}}$ be a sequence and $c \in \mathbb{R}$. A *power series* is a series in x of the form

$$
\sum_{k=0}^{\infty} a_k (x - c)^k.
$$

For each $x \in \mathbb{R}$ for which the series converges we get a function $f(x)$.

• The *radius of convergence* of a power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ is

$$
R = \frac{1}{\limsup_{k \to \infty} |a_k|^{1/k}} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.
$$

- 5. A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is infinitely differentiable $(f \in C^{\infty}(I))$ if the n-th derivative $f^{(n)}$ exists for all $n \in \mathbb{N}$.
	- A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is *analytic* if there exists a power series that is equal to $f(x)$ for all $x \in I$.
	- Given a function $f \in \mathcal{C}^{\infty}$, the associated *Taylor series* of f at $c \in \mathbb{R}$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k
$$