Tristan Chaang

1 Real Numbers

- 1. The set \mathbb{R} of real numbers is the unique complete ordered field.
- 2. (Existence of $\sqrt{2}$) There exists $r \in \mathbb{R}$ with $r^2 = 2$.
- 3. (Archimedean Property)

Let x, y be reals. Then

- A) $y > 0 \implies \exists n \in \mathbb{N}$ such that ny > x.
- B) $x < y \implies \exists q \in \mathbb{Q}$ such that x < q < y. (\mathbb{Q} is dense in \mathbb{R})

4. (Principle of Induction)

For a property P(n) $(n \in \mathbb{N})$, if P(0) and $P(n) \implies P(n+1)$ $(n \in \mathbb{N})$ are true, then P(n) is true for all $n \in \mathbb{N}$.

2 Sequences

- 1. (Triangle Inequality) $|x+y| \le |x|+|y|$ for all $x, y \in \mathbb{R}$.
- 2. If a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to both ℓ and ℓ' , then $\ell = \ell'$.
- 3. If $\lim_{n \to \infty} x_n = \ell$ and $\lim_{n \to \infty} y_n = \ell'$, then
 - $\lim_{n \to \infty} (x_n + y_n) = \ell + \ell'$
 - $\lim_{n \to \infty} (x_n y_n) = \ell \ell'$
 - if $\ell \neq 0$ and $x_n \neq 0$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} (x_n + y_n) = 1/\ell$

4. (Squeeze Theorem)

If $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = \ell$ and $x_n \le z_n \le y_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} z_n = \ell$.

5. (Monotone Convergence Theorem)

If $\{x_n\}_{n\in\mathbb{N}}$ is nondecreasing and bounded above, then it converges. Similarly, if it is nonincreasing and bounded below, then it converges.

6. Every sequence $\{x_n\}_{n\in\mathbb{N}}$ admits a monotone subsequence.

7. (Bolzano-Weierstrass)

Every bounded sequence has a convergent subsequence.

- 8. In \mathbb{R} , a sequence converges if and only if it is Cauchy.
- 9. $\{x_n\}_{n\in\mathbb{N}}$ converges if and only if $\limsup x_n = \liminf x_n \in \mathbb{R}$.

3 Series

1. (Comparison Test)

If $|a_k| \le b_k$ for all $k \ge N_0$ and $\sum_{k=0}^{\infty} b_k$ converges, then $\sum_{k=0}^{\infty} a_k$ converges.

2. (Alternating Series Test)

If $x_k \ge 0$ is non-increasing and $x_k \to 0$, then $\sum_{k=0}^{\infty} (-1)^k x_k$ converges.

3. (Ratio Test)

If all $x_k \neq 0$ and $\lim_{n \to \infty} \left| \frac{x_{k+1}}{x_k} \right| < 1$, then $\sum_{k=0}^{\infty} x_k$ converges.

4. $e := \exp(1)$ is irrational.

5.
$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
 for all $x \in \mathbb{R}$.

6. (Products of Series)

If
$$\sum_{k=0}^{\infty} a_k$$
 and $\sum_{k=0}^{\infty} b_k$ converge absolutely, then $\sum_{k=0}^{\infty} \left(\sum_{\ell=0}^k a_\ell b_{k-\ell} \right) = \sum_{k=0}^{\infty} a_k \sum_{k=0}^{\infty} b_k$.

7. (Dirichlet)

If $\sum_{k=0} x_k$ is absolutely convergent, it is unconditionally convergent.

8. (Riemann)

If $\sum_{k=0} x_k$ converges but not absolutely, then for any $\ell \in \mathbb{R}$ or $\ell = \pm \infty$ there exists some

rearrangement σ such that $\sum_{k=0}^{\infty} x_{\sigma(k)} = \ell$.

4 Topology of \mathbb{R}

- 1. \mathbb{R} is not countable (*uncountable*).
- 2. Every open set of \mathbb{R} is a countable union of disjoint open intervals.

- 3. Let $K \subseteq \mathbb{R}$. The following are equivalent:
 - (a) K is compact.
 - (b) K is sequentially compact.
 - (c) K is closed and bounded.
- 4. (Cantor's Intersection Theorem) Let $\{K_n\}_{n \in \mathbb{N}}$ be a sequence of nonempty compact sets in \mathbb{R} such that $K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots$. Then $K = \bigcap_{n \in \mathbb{N}}$ is compact and nonempty.

5 Metric Spaces

- 1. Let $K \subseteq \mathbb{R}$. The following are equivalent:
 - (a) K is compact.
 - (b) K is sequentially compact.
 - (c) K is complete and totally bounded.

2. (Baire)

Let (X, d) be a complete metric space and O_n is open and dense in X for all $n \in \mathbb{N}$. Then $O = \bigcup_{n \in \mathbb{N}} O_n$ is dense in X.

6 Continuous Functions

1. $f: X \to Y$ is continuous at x if and only if

 $(\forall \varepsilon > 0) (\exists \delta > 0) (\forall d_X(x, y) < \delta) (d_Y(f(x), f(y)) < \varepsilon).$

2. $f: X \to Y$ is continuous if and only if for all open sets U in Y, $f^{-1}(U)$ is open in X.

3. (Banach Fixed Point Theorem)

Let (X, d) be complete and $f : X \to X$ be α -Lipschitz for some $0 < \alpha < 1$ (such functions are called *contractions*). Then f has a unique fixed point: f(a) = a.

4. If X is compact and $f: X \to Y$ is continuous, then f(X) is compact.

5. (Heine-Cantor)

If X is compact and $f: X \to Y$ is continuous, then f is uniformly continuous.

6. If X is compact, $f: X \to \mathbb{R}$ is continuous, then f(X) has a maximum and minimum.

7. (Intermediate Value Theorem)

If $f: [a, b] \to \mathbb{R}$ is continuous and $f(a) < \mu < f(b)$, there exists $c \in [a, b]$ with $f(c) = \mu$.

8. $(\mathcal{C}(X), d)$ is complete.

9. (Arzelà-Ascoli)

Let X be compact. $K \subseteq \mathcal{C}(X)$ is relatively compact (i.e. \overline{K} is compact) if and only if it is uniformly bounded and uniformly equicontinuous.

7 Derivatives

1. If f is differentiable at x_0 , then it is continuous at x_0 .

2. (Chain Rule)

If f, g are differentiable at x_0 , then $f \circ g$ is differentiable at x_0 , with

$$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

3. If $f : [a, b] \to \mathbb{R}$ is differentiable, then the maximum of f occurs at either a, b or a point x_0 with $f'(x_0) = 0$. Note: Maximum exists since [a, b] is compact.

4. (Rolle's)

If $f : [a, b] \to \mathbb{R}$ is continuous, f is differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ with f'(c) = 0.

5. (Mean Value Theorem)

If $f: [a, b] \to \mathbb{R}$ is continuous, f is differentiable on (a, b), then there exists $c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$.

6. (L'Hôpital's Rule)

Let f, g be differentiable on I, and let $x_0 \in I$ such that $f(x_0) = g(x_0) = 0$, and g'(x) = 0 on some $\mathcal{B}(x_0, \varepsilon)$, and $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists.

Then
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

- 7. Say f is convex on I. Then $f'_{-}(x) \leq f'_{+}(x) \leq f'_{-}(y) \leq f'_{+}(y)$ for all x < y in I.
- 8. If f is convex, f' exists except at countably many points.
- 9. (Sard's Theorem)

Let $f : \mathbb{R} \to \mathbb{R}$ be in \mathcal{C}^1 . Then {critical values of f} $\subseteq \mathbb{R}$ has measure zero.

10. Any regular value of $f : [a, b] \to \mathbb{R}$ in \mathcal{C}^1 has a finite pre-image.

8 Riemann Integral

- 1. The following are equivalent:
 - $f \in \mathcal{R}(a, b)$.
 - $(\forall \varepsilon > 0) (\exists \sigma) (S(f, \sigma) s(f, \sigma) < \varepsilon).$
 - $(\forall \varepsilon > 0) (\exists \delta > 0) (\forall |\sigma| < \delta) (S(f, \sigma) s(f, \sigma) < \varepsilon).$
 - $(\forall \varepsilon > 0) (\exists N > 0) (\forall n \ge N) (S(f, \sigma_n) s(f, \sigma_n) < \varepsilon)$ where

$$\sigma_n = \left\{ a + \frac{k}{n}(b-a) : 0 \le k \le n \right\} \quad \text{(equipartition)}$$

• $(\exists \mathcal{I} \in \mathbb{R}) \ (\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall |\sigma| < \delta) \ (\forall \xi_i \in [x_{i-1}, x_i]):$

$$\left|\sum_{i=1}^{N} (x_i - x_{i-1}) f(\xi_i) - \mathcal{I}\right| < \varepsilon$$

- 2. Continuous functions are Riemann integrable.
- 3. (Fundamental Theorem of Calculus / FTC) If $f : [a, b] \to \mathbb{R}$ is continuous, then $F(x) = \int_a^x f$ is differentiable with F' = f.
- 4. (Integral Form of FTC) If $F : [a, b] \to \mathbb{R}$ is in \mathcal{C}^1 , then $\int_a^b F' = F(b) - F(a)$.
- 5. (Integration by Parts) If $f, g: [a, b] \to \mathbb{R}$ are in \mathcal{C}^1 , then $\int_a^b f'g = f(b)g(b) - f(a)g(a) - \int_a^b fg'$.
- 6. (Characterization of Riemann Integrability) $f \in \mathcal{R}(a, b)$ if and only if
 - f is bounded, and
 - The set of points of discontinuity of f has measure zero.

7. (Picard-Lindelöf/Cauchy-Lipschitz)

Let $D \subseteq \mathbb{R}^2$ be open and $(x_0, y_0) \in D$. Let $f : D \to \mathbb{R}$ be *L*-Lipschitz in the second variable (namely $|f(x, y_1) - f(x, y_2)| \leq L |y_1 - y_2|$). Then for some $\varepsilon > 0$ there exists a unique solution $y : (x_0 - \varepsilon, x_0 + \varepsilon) \to \mathbb{R}$ to the ODE

$$y'(x) = f(x, y(x)), \qquad y(x_0) = y_0.$$

- If R = 0, the series converges only at x = c.
 - If $R = \infty$, the series converges absolutely for all $x \in \mathbb{R}$.

• If $0 < R < \infty$, the series converges absolutely for |x - c| < R and does not converge for |x - c| > R.

9. Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ be a power series and let |x| < R. Then the partial sums $f_n = \sum_{k=0}^{n} a_k x^k$ converge uniformly to f on any compact interval $[a, b] \subseteq (-R, R)$.

10. Given $f(x) = \sum_{k=0}^{\infty} a_k x^k$ on (-R, R) we have that f is differentiable on (-R, R) with

$$f'(x) = \sum_{k=0}^{\infty} k a_k x^{k-1}$$

11. Let $f \in \mathcal{C}^n((-R,R))$ for some R > 0 and $p_n(x)$ be its *n*-th Taylor polynomial

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k.$$

Then $\lim_{x \to 0} \frac{|f(x) - p_n(x)|}{|x|^n} = 0.$ (We also write this as $f(x) = p_n(x) + o(x^n).$)

12. (Weierstrass Approximation)

For all $f \in \mathcal{C}([a, b])$ there exists a sequence of polynomials p_n such that $p_n \to f$ uniformly. In other words, {polynomials} is dense in $\mathcal{C}([a, b])$.