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18.100B Theorems

1 Real Numbers

1. The set R of real numbers is the unique complete ordered field.

2. (Existence of
√
2)

There exists r ∈ R with r2 = 2.

3. (Archimedean Property)
Let x, y be reals. Then

A) y > 0 =⇒ ∃ n ∈ N such that ny > x.

B) x < y =⇒ ∃ q ∈ Q such that x < q < y. (Q is dense in R)

4. (Principle of Induction)
For a property P (n) (n ∈ N), if P (0) and P (n) =⇒ P (n+ 1) (n ∈ N) are true, then
P (n) is true for all n ∈ N.

2 Sequences

1. (Triangle Inequality)
|x+ y| ≤ |x|+ |y| for all x, y ∈ R.

2. If a sequence {xn}n∈N converges to both ℓ and ℓ′, then ℓ = ℓ′.

3. If lim
n→∞

xn = ℓ and lim
n→∞

yn = ℓ′, then

• lim
n→∞

(xn + yn) = ℓ+ ℓ′

• lim
n→∞

(xnyn) = ℓℓ′

• if ℓ ̸= 0 and xn ̸= 0 for all n ∈ N, lim
n→∞

(xn + yn) = 1/ℓ

4. (Squeeze Theorem)
If lim

n→∞
xn = lim

n→∞
yn = ℓ and xn ≤ zn ≤ yn for all n ∈ N, then lim

n→∞
zn = ℓ.

5. (Monotone Convergence Theorem)
If {xn}n∈N is nondecreasing and bounded above, then it converges. Similarly, if it is
nonincreasing and bounded below, then it converges.

6. Every sequence {xn}n∈N admits a monotone subsequence.

7. (Bolzano-Weierstrass)
Every bounded sequence has a convergent subsequence.
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8. In R, a sequence converges if and only if it is Cauchy.

9. {xn}n∈N converges if and only if lim supxn = lim inf xn ∈ R.

3 Series

1. (Comparison Test)

If |ak| ≤ bk for all k ≥ N0 and
∞∑
k=0

bk converges, then
∞∑
k=0

ak converges.

2. (Alternating Series Test)

If xk ≥ 0 is non-increasing and xk → 0, then
∞∑
k=0

(−1)kxk converges.

3. (Ratio Test)

If all xk ̸= 0 and lim
n→∞

∣∣∣∣xk+1

xk

∣∣∣∣ < 1, then
∞∑
k=0

xk converges.

4. e := exp(1) is irrational.

5. ex = lim
n→∞

(
1 +

x

n

)n
for all x ∈ R.

6. (Products of Series)

If
∞∑
k=0

ak and
∞∑
k=0

bk converge absolutely, then
∞∑
k=0

(
k∑

ℓ=0

aℓbk−ℓ

)
=

∞∑
k=0

ak

∞∑
k=0

bk.

7. (Dirichlet)

If
∞∑
k=0

xk is absolutely convergent, it is unconditionally convergent.

8. (Riemann)

If
∞∑
k=0

xk converges but not absolutely, then for any ℓ ∈ R or ℓ = ±∞ there exists some

rearrangement σ such that
∞∑
k=0

xσ(k) = ℓ.

4 Topology of R
1. R is not countable (uncountable).

2. Every open set of R is a countable union of disjoint open intervals.
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3. Let K ⊆ R. The following are equivalent:

(a) K is compact.

(b) K is sequentially compact.

(c) K is closed and bounded.

4. (Cantor’s Intersection Theorem)
Let {Kn}n∈N be a sequence of nonempty compact sets in R such that K0 ⊇ K1 ⊇
K2 ⊇ · · · . Then K =

⋂
n∈N is compact and nonempty.

5 Metric Spaces

1. Let K ⊆ R. The following are equivalent:

(a) K is compact.

(b) K is sequentially compact.

(c) K is complete and totally bounded.

2. (Baire)
Let (X, d) be a complete metric space and On is open and dense in X for all n ∈ N.
Then O =

⋃
n∈NOn is dense in X.

6 Continuous Functions

1. f : X → Y is continuous at x if and only if

(∀ε > 0) (∃δ > 0) (∀dX(x, y) < δ) (dY (f(x), f(y)) < ε) .

2. f : X → Y is continuous if and only if for all open sets U in Y , f−1(U) is open in X.

3. (Banach Fixed Point Theorem)
Let (X, d) be complete and f : X → X be α-Lipschitz for some 0 < α < 1 (such
functions are called contractions). Then f has a unique fixed point: f(a) = a.

4. If X is compact and f : X → Y is continuous, then f(X) is compact.

5. (Heine-Cantor)
If X is compact and f : X → Y is continuous, then f is uniformly continuous.

6. If X is compact, f : X → R is continuous, then f(X) has a maximum and minimum.

7. (Intermediate Value Theorem)
If f : [a, b] → R is continuous and f(a) < µ < f(b), there exists c ∈ [a, b] with f(c) = µ.
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8. (C(X), d) is complete.

9. (Arzelà-Ascoli)
Let X be compact. K ⊆ C(X) is relatively compact (i.e. K is compact) if and only if
it is uniformly bounded and uniformly equicontinuous.

7 Derivatives

1. If f is differentiable at x0, then it is continuous at x0.

2. (Chain Rule)
If f, g are differentiable at x0, then f ◦ g is differentiable at x0, with

(f ◦ g)′(x0) = f ′(g(x0))g
′(x0).

3. If f : [a, b] → R is differentiable, then the maximum of f occurs at either a, b or a point
x0 with f ′(x0) = 0. Note: Maximum exists since [a, b] is compact.

4. (Rolle’s)
If f : [a, b] → R is continuous, f is differentiable on (a, b), and f(a) = f(b), then there
exists c ∈ (a, b) with f ′(c) = 0.

5. (Mean Value Theorem)
If f : [a, b] → R is continuous, f is differentiable on (a, b), then there exists c ∈ (a, b)

with f ′(c) =
f(b)− f(a)

b− a
.

6. (L’Hôpital’s Rule)
Let f, g be differentiable on I, and let x0 ∈ I such that f(x0) = g(x0) = 0, and

g′(x) = 0 on some B (x0, ε), and lim
x→x0

f ′(x)

g′(x)
exists.

Then lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

7. Say f is convex on I. Then f ′
−(x) ≤ f ′

+(x) ≤ f ′
−(y) ≤ f ′

+(y) for all x < y in I.

8. If f is convex, f ′ exists except at countably many points.

9. (Sard’s Theorem)
Let f : R → R be in C1. Then {critical values of f} ⊆ R has measure zero.

10. Any regular value of f : [a, b] → R in C1 has a finite pre-image.

4



Tristan Chaang 18.100B Theorems

8 Riemann Integral

1. The following are equivalent:

• f ∈ R(a, b).

• (∀ε > 0) (∃σ) (S(f, σ)− s(f, σ) < ε).

• (∀ε > 0) (∃δ > 0) (∀|σ| < δ) (S(f, σ)− s(f, σ) < ε).

• (∀ε > 0) (∃N > 0) (∀n ≥ N) (S(f, σn)− s(f, σn) < ε) where

σn =

{
a+

k

n
(b− a) : 0 ≤ k ≤ n

}
(equipartition)

• (∃I ∈ R) (∀ε > 0) (∃δ > 0) (∀|σ| < δ) (∀ξi ∈ [xi−1, xi]):∣∣∣∣∣
N∑
i=1

(xi − xi−1)f(ξi)− I

∣∣∣∣∣ < ε.

2. Continuous functions are Riemann integrable.

3. (Fundamental Theorem of Calculus / FTC)
If f : [a, b] → R is continuous, then F (x) =

∫ x

a
f is differentiable with F ′ = f .

4. (Integral Form of FTC)

If F : [a, b] → R is in C1, then
∫ b

a
F ′ = F (b)− F (a).

5. (Integration by Parts)

If f, g : [a, b] → R are in C1, then
∫ b

a
f ′g = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′.

6. (Characterization of Riemann Integrability)
f ∈ R(a, b) if and only if

• f is bounded, and

• The set of points of discontinuity of f has measure zero.

7. (Picard-Lindelöf/Cauchy-Lipschitz)
Let D ⊆ R2 be open and (x0, y0) ∈ D. Let f : D → R be L-Lipschitz in the second
variable (namely |f(x, y1)− f(x, y2)| ≤ L |y1 − y2|). Then for some ε > 0 there exists
a unique solution y : (x0 − ε, x0 + ε) → R to the ODE

y′(x) = f(x, y(x)), y(x0) = y0.

8. • If R = 0, the series converges only at x = c.

• If R = ∞, the series converges absolutely for all x ∈ R.
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• If 0 < R < ∞, the series converges absolutely for |x − c| < R and does not
converge for |x− c| > R.

9. Let f(x) =
∞∑
k=0

akx
k be a power series and let |x| < R. Then the partial sums fn =

n∑
k=0

akx
k converge uniformly to f on any compact interval [a, b] ⊆ (−R,R).

10. Given f(x) =
∞∑
k=0

akx
k on (−R,R) we have that f is differentiable on (−R,R) with

f ′(x) =
∞∑
k=0

kakx
k−1.

11. Let f ∈ Cn((−R,R)) for some R > 0 and pn(x) be its n-th Taylor polynomial

pn(x) =
n∑

k=0

f (k)(0)

k!
xk.

Then lim
x→0

|f(x)− pn(x)|
|x|n

= 0. (We also write this as f(x) = pn(x) + o(xn).)

12. (Weierstrass Approximation)
For all f ∈ C([a, b]) there exists a sequence of polynomials pn such that pn → f
uniformly. In other words, {polynomials} is dense in C([a, b]).
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