Tristan Chaang July 19, 2024
Topology Notes

Based on Pieloch’s lecture
notes for 18.901 Fall ’23

1 Topological Spaces

Definition 1.1.
1. A topology on a set X is a set 7 of subsets of X called open sets such that

e . XeT
e 7' T — U U e 7. (Preserved under arbitrary unions)
UeJ'’
o Uy, U, T = ﬂ U; € 7. (Preserved under finite intersections)
i=1
(X,.7) —or just X when 7 is understood — is a (topological) space.

2. Suppose 7, 7" are two topologies on X with .7 < .7’. We say .7’ is finer than
Z and 7 is coarser than 7.

3. A € X is closed if X\A is open. Hence @, X are closed, and closedness is
preserved under finite unions and arbitrary intersections.

Example 1.1.
1. The discrete topology on X is . = Z(X).
2. The trivial topology on X is 7 = {@, X}.

3. X ={1,2,3}):

&
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Definition 1.2. A set % of subsets of X is a basts if

e X=|[JB

Be%#

e 1€ DBy N Bywith B),Boe B = (IBe€ XA)(x € B< By n By)

Theorem 1.1. A basis # generates a topology .7 via

UeJ < (VzeU)(3BeAB)(zxeBcU).

Proof. @ € . (vacuously) and X € .7 since # covers X. We then verify the union and
intersection properties:

e Suppose U, < X are open, then | J, U, is open because

erUa = ¢ € U, for some a = xeBagUQQUUa
o (0%

e Suppose Uy, Us are open, then U; n U, is open because

x € B; < U, for some By € #

x € By € U, for some By, € A = ve€BS BinBcUnl

zelU nlUy = {

for some B € 4. By induction, any finite intersection of open sets is open. [

Example 1.2. Let X = R. We can construct three topologies via the bases:
1. {(a,b) : a,b e R} (the standard topology on R)
2. {[a,b) 1 a,be R}
3. {UcR:U=R\{xy, - ,x,} for some zy,---,x, € R}

Note, (2) is finer than (1), and (1) is finer than (3).

Remark.

1. Infinite intersections may not be open. E.g. (1 (—=1/n,1/n) = {0} is not open in
the standard topology on R.

2. Different bases could generate the same topology. E.g. For X = R2, open balls
generate the same topology as open squares do.
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Definition 1.3. Let X be a space, and A < X.
1. int(A) = |J{U < A : U is open} is the interior of A.
2. A=(){C 2 A:C is closed} is the closure of A.
3. Ais dense if A= X.

Example 1.3.
1. int(A) = A = A in the discrete topology.
2. int(A) = @; A = X in the trivial topology for any A # @, X.
3. Qis dense in R.

Warning. A, B dense does not imply A n B dense, e.g. take Q and Q + /2.

Theorem 1.2.
1. Aopen <& A =int(A)
2. Aclosed & A=A

Definition 1.4.
1. A neighborhood of x € X is an open set that contains x.
2. z € X is a limit point of Aif Ve eUe T)(AnU\{z} # 3.)
3. z € X is an adherent point of Aif (VxeUe T)(AnU # @.)
4. The boundary of Ais 0A = {x € X : z adh pt of A and X\A} = A n X\A.

Theorem 1.3.
1. A = {adherent pts of A} = A U {limit pts of A} = int(A) L 0A.
2. X =int(A) u A uint(X\A).

Theorem 1.4. If Uy, U, are dense and open, then U; n Us is dense and open.

Proof. Suppose x € X. We want to show that for any = € U open we have U n(U; nUs) # .
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Since U; is dense, U n Uy # @. Since Us is also dense, U n Uy n Uy # @. |

2 Metric Spaces

Definition 2.1.
1. A metric on a set X is a function d : X? — R such that

e d(x,y) = 0 and equality holds if and only if x =y
o d(z,y) = d(y,x)
o d(z,y) + d(y, 2) = d(, 2)

The set B,(e) = {y : d(x,y) < &} is the (open) e-ball centered at x.
2. The metric topology on (X, d) is the topology generated by the basis

B ={B,(r):xe X,r> 0}

Example 2.1. The euclidean metric d on R" is d(x,y) = />, (x;i — v:)%.

3 Subspace Spaces

Definition 3.1. Let (X,.7) be a space and A € X. The subspace topology on A
(with respect to X) is

TIy={AnU:UeT}.

We call A with this topology a subspace of X.

Theorem 3.1. A basis £ for .7 defines a basis %4 for 4 via

%AZ{A(\BZBE%}.

Remark. If (X, d) is a metric space and A € X then (A, d,) is a metric space where
dA(Cll, CZQ) = d(al, &2).




Tristan Chaang Topology Notes

Theorem 3.2. Let (X, d) be a metric space. Then the metric topology on A € X
agrees with the subspace topology of A € X.

Proof. The subspace topology on A has basis Zs = {A N B,(r)},.x whereas the metric
topology on A has basis By = {B2(r)} = {A " B,(r)},c4 © Ps. On the other hand, given
any open U in the subspace topology and z € U € A, we have z € A n B,(r) < U for some
r > 0, but this is just z € B2{(r) € U. Since x € U was arbitrary, U is open in the metric
topology too. [ |

Definition 3.2. A € X (space) is discrete if its subspace topology is discrete.

Example 3.1. Is X = {0} u, {1/n} discrete in R? No. {0} is not open in X. If it
were, then 3(a, b) such that (a,b) n X = {0}, but 1/n < b for large n.

Warning. B = A =R x {0} € X = R? are examples for the following statements:
1. B open in A does not imply B open in X.

2. Suppose A € Y < X, then the int(A) in Y may not be Y nint(A).

But these versions are true:

Theorem 3.3.
1. B open in A, and A open in X, then B open in X.

2. Suppose A €Y < X, the closure of Ain Y is Y n (closure of A in X).

4 Product Spaces

Definition 4.1. Let {X,}_, be a collection of spaces.

1. The product topology on X; x --- x X,, is generated by the basis

PB={Yy x--xY,: Yy, - Y, open}

2. More generally, the product topology on [ [, X, is generated by the basis

% ={[1,Ya: Y, open for all a, and only finitely many Y, # X,}
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Theorem 4.1.

1. If A< X; B € Y are subspaces, then the subspace topology and product topology
on A x B agree.

2. The metric topology on R" agrees with the product topology on R".

5 Quotient Space

Definition 5.1.

e Let X be a space, Y be a set, and ¢ : X — Y be surjective. The quotient
topology on Y induced by the quotient map q is given by

B={UcY :q'(U) open in X}
e Let A C X be a subset and define z 2 y < x=yorx,yec A We denote

X /A the space on X/ 2 with quotient topology induced by the canonical map
qg: X » X/ £

Remark. An equivalence relation ~ on X determines the surjective canonical map
q: X — X/ ~ defined by ¢(x) = equivalence class of z.

Example 5.1.

1. Consider the unit 2-disk X = D? = {z x y:2® + 3> < 1}. If we identify to-
gether all points on the boundary 0D?, we get the quotient space D?/dD?
that is homeomorphic with the subspace of R? called the unit 2-sphere S? =
{rxyxz:a?2+y?+22 =1}
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2. We can construct a torus S* x St from the rectangle [0,1] x [0, 1].

3. We can patch two disks D? L D? along their boundaries to obtain S2. Formally,
given a homeomorphism ¢ : 0D} — D2 we have (D? u D3)/ ~ = S? where
r~y e x=yorxecdD?yecdD3 o(x)=2y.

6 Continuous Functions

Definition 6.1. Let X, Y be spaces. A function f: X — Y is
e continuous at x € X if f~1(V) is open in X for all neighborhoods V' of f(z).
e continuous if f~1(V) is open in X for all V open in Y.

e a homeomorphism if f is bijective, and f and f~! are continuous.

Theorem 6.1.

1. Let & be a basis of X. The map f: X — Y is continuous if and only if f~(B)
is open for all B € A.

2. A composition of continuous functions is continuous.
3. Let A € X be a subspace and f : X — Y be continuous. Then f |4 is continuous.

4. Let f: Z — X xY where f = fx x fy. Then f is continuous if and only if
fx, fy are continuous.

5. Any quotient map is continuous. Given a quotient map q: X - Y, f:Y — Z
is continuous if and only if g = f o ¢ is continuous.

X
q
Y e y 7

6. The following are equivalent to f : X — Y being continuous:

(1) f7Y(C) is closed for all closed C' S Y.
(2) Given any z € X and f(z) € V open, there exists open U with f(U) < V.
(3) f(A) = f(A) for all A< X.
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Proof of (6).
e Continuity is equivalent to (1) by taking complements.

e For (2), say f is continuous, then U = f~! (V) works. Conversely, say (2) is true. Then
for any open V € Y any v € V admits a neighborhood within V', which has an open
preimage U, € X. Then f~(V) = |J,.y Uy is open, and thus f is continuous.

e (1) = (3). Since A < f7(f(A4) < [ (M) which is closed, we have A <
! m> and thus f (4) < f(A).

e (3) = (1). Let C <Y be closed. Then f (f—1(0)> = f(f~1(C)) < C = C and hence
7O c [ ( f—1(0)> c f~1(C) and thus f~(C) is closed. n

Corollary 6.1. Say X,Y are metric spaces. f: X — Y is continuous if and only if

(Vze X,e> 0) (30> 0) (Vdx(z,y) < ) (dy (f(z), f(y)) < ).

Theorem 6.2. (Pasting Lemma) Let X = AU B be a space where A, B are closed.
If faA: A—Y and fp: B — Y are continuous and fa(x) = fp(x) for all z € A n B,
then f: X — Y defined by

fa(z) xze A
f(x):{fB(x) reB

1S continuous.

7 Limits and Continuity

Definition 7.1. {z,},. in X converges to x € X if any neighborhood of = contains
all but finitely many x,,. Write x,, — z.

Warning. Limits may not be unique:
1. In the trivial topology, any sequence converges to all points.

2. In Ry uRy/ ~ where x ~y < z€R;,ye Ry, z =1y +# 0, we have

1/n—0; and 1/n— 0y (fat point)
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Theorem 7.1. If z,, — x, then z € {z,},,.

Definition 7.2. A space X is first-countable if for any x € X, there exists a count-
able number of neighborhoods Uy, Us, - - - such that any neighborhood of z contains
some U;. The {U;} is called a neighborhood basis of x.

Theorem 7.2. If X is first-countable,
1. z€e A = 311,29, - € A such that z,, — .

2. f: X — Y is continuous if and only if (z,, » ) = (f(x,) — f(z)).

8 Connectedness

Definition 8.1. A space X is connected if there is no nontrivial clopen (closed and
open) set A < X.

Example 8.1. The subspace (0,1) u (2,3) of R is not connected.

Theorem 8.1. [a,b] < R is connected.

Proof. Suppose the contrary, that [a,b] = A 1 B where A, B are closed and non-empty.
WLOG Assume b € B. Then s = supA < b. If s € A, since A is also open, there exists
(s—e,s+¢e) € A = supA > s+ ¢, a contradiction. Hence s € B instead. Since B is
open, there exists (s —e,s + ¢) € B and thus sup A < s — ¢, a contradiction. [ |

Definition 8.2. A space X is path-connected if every pair z,y € X can be joined
by a path in X: a continuous map 7 : I = [0,1] — X such that y(0) = z and (1) = v.

Example 8.2.

1. R™ is path-connected. Use the path y(t) = tx + (1 — t)y.

t 1—-1¢
2. S™ is path-connected. Use the path y(t) = ]txi El t;y|'
x+ (1 —t)y

3. A torus is path-connected: Start with a path in /2 and then take the quotient.
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Theorem 8.2.
1. Any path-connected space is connected.
2. If f: X — Y is continuous and surjective,

o X connected = Y connected.

e X path-connected = Y path-connected.
3. Quotients of a (path-)connected space is (path-)connected.

4. A product of (path-)connected spaces is (path-)connected.

Example 8.3. The topologist’s sine curve defined by
X = {(z xsin(1/z)) : x > 0} U {0} x [-1,1]

is connected but not path-connected.

N
W\

Definition 8.3. The equivalence relation x ~ y where there is a (path-)connected
subspace containing both x, y partitions the space into (path-)connected components.

9 Compactness

Definition 9.1.

1. An open cover of X is a collection of open sets that cover X. A space X is
compact if every open cover of X admits a finite subcover.

2. A space X is sequentially compact if every sequence of points in X admits a
convergent, subsequence.

10
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Theorem 9.1. Ist-countable + compact = sequentially compact.

Proof. Suppose {xz,}, does not have a convergent subsequence. Let x € X, then there exists
a countable neighborhood basis Uy, Us,---. We can safely let Uy 2 Uy, 2 --- by taking
successive intersections. Since there is no subsequence that converges to z, only finitely
many z, lie in U, for some sufficiently large n. Hence, every x € X has a neighborhood U,
that intersects {x,}, at a finite number of points. Taking the union of all U, and applying
compactness shows that {z,}, is finite, so we can conclude by the pigeonhole principle. W

Theorem 9.2.
1. Every closed subspace of a compact space is compact.
2. A continuous function maps compact spaces to a compact image.

3. Suppose X is compact and C; 2 C5 2 - - - is a sequence of closed and non-empty
sets. Then [ J, C,, is non-empty.

4. A product of compact spaces is compact (Infinite case is hard: Tychonoff’s Thm)

5. [a,b] is compact.

Proof of (4). Suppose [a,b] = |, Us. Then
S ={z € [a,b] : [a,b] can be covered by finitely many U, }

contains a € S and is bounded above by b. Hence S has a supremum s.

Claim. s€ S.
Proof. Let s € Ug for some f3, so there exists (s —e,s +¢) € Us. If s¢ S, just add Up

to the finite subcover of [a, s —£/2]. O

Claim. s = b.

Proof. If not, then similarly, just add Uz to the finite subcover of [a, s]. m
Therefore [a, b] can be covered by finitely many U, [

Theorem 9.3. (Heine-Borel)
A subspace A of R" is compact if and only if it is closed and bounded.

Proof.

o (<) X © [-M,M]"is a closed subset of a compact space, so X is compact.

11
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¢ (=) Compactness on the open cover {By(r)},., shows X is bounded. We then show
any limit pt  of X is in X: For all n € N*, (), := B,1/nn X # &, and thus
M, Cn = X n {z} is non-empty. |

10 Hausdorff Spaces

Definition 10.1. A space X is Hausdorff if for any distinct z,y € X there exists
disjoint neighborhoods x € U,y € V.

Example 10.1.
1. The trivial topology is not Hausdorff. The discrete topology is.
2. Metric spaces are Hausdorff.
3. The finite complement topology on R is not Hausdorff.

4. The space R; U Ry/ ~ containing the fat point is not Hausdorff.

Theorem 10.1. X is Hausdorff if and only if A = {(z x z) : z € X} < X? is closed.

Proof.

e (=) If X is Hausdorff, for any = # y there exists disjoint neighborhoods U,V of z,y
respectively. Then U x V' is a neighborhood of (z x y) € X x Y disjoint from A. Taking
the union over all (z x y) implies A is closed.

o (<) If A is closed, given any = # y there exists a basis neighborhood U x V of (z x y)
disjoint from A. Then U,V are the desired neighborhoods. [ |

Theorem 10.2.
1. In a Hausdorff space, a sequence of points converge to at most one point.
2. One-point sets in a Hausdorff space are closed.
3. A subspace of a Hausdorff space is Hausdorff.
4. A finite product of Hausdorff spaces is Hausdorff.

5. A compact subspace of a Hausdorff space is closed.

Warning. A quotient of a Hausdorff space may not be Hausdorft.

12
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11 Normal Spaces

Definition 11.1.
1. X is Ty if one-point sets are closed.

2. A space is normal if it is T3, and, for any pair of disjoint closed sets A, B € X
there exists disjoint open sets U,V < X such that Ac U, B<c V.

Remark.
1. Normal = Hausdorff = Tj.

2. A quotient, subspace, or product of normal space(s) need not be normal.

Example 11.1.
1. The fat point R; L Ry/ ~ is T} but not Hausdorft.

2. The K-topology on R generated by {(a,b)} U {(a,b)\ |, {1/n}} is Hausdorff but

not normal.

3. The topology R, on R generated by {[a,b)} is normal, but R? is not normal.

Theorem 11.1.
1. A closed subspace A of a normal space X is normal.

2. Compact + Hausdorff = Normal.

Proof of (2). Suppose A, B € X are disjoint and closed. Fix a € A. Then for each b € B
there exists disjoint neighborhoods a € U,,b € V;,. Since B is also compact, there exists
finitely many Vj, that cover B. The union of such finitely many V} and the intersection of
their corresponding U, form disjoint open sets containing a and B respectively. Repeat the
same procedure for every a € A and then apply compactness of A. [ |

Theorem 11.2. Metric spaces are normal.

Proof. We can show that, for any subset A € X, the point-to-set distance d(—, A) : X - R
given by d(z, A) = in£ d(x,a) is continuous. For disjoint closed sets A, B, the open sets
ac

U={x:d(z,A) <d(z,B)}, V ={z:d(z,A) > d(z, B)}

contain A, B respectively and are disjoint. [

13
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Theorem 11.3. X is normal if and only if for any closed A and open U such that
A < U, there exists an open set V such that AcV <V cU.

Theorem 11.4. (Urysohn’s Lemma)
Let X be normal and A, B be disjoint closed sets of X. There exists a continuous map

f:X—>1

such that f(A) = {0} and f(B) = {1}.

Proof. Define open sets U, for each p e Q n [0, 1] as follows: Enumerate Q n [0, 1] such that
1 and 0 are the first two elements. Define U; = X — B and by normality pick Uy such that
A c Uy c Uy < Uy. By induction, say we defined U, for a finite number of p’s and let r
be the next rational in the enumeration. We must have p < r < g where U,, U, are already
defined. By normality we pick U, such that Fp cU,cU < U,.

Additionally, we let U, = & for all rationals p < 0 and U, = X for all rationals p > 1. Hence,
p<q = U,cU,

We then define f(z) = inf{p:z € U,}. It is easy to see f(A) = {0} and f(B) = {1}. We

show that f is continuous.

Lemma 1. v e U, = f(z)<r

Proof. If x € U,, then z € U, for every s > r. Hence f(z) <. O
Lemma 2. z ¢ U, = f(z)>r.
Proof. 1f x ¢ U,, then x ¢ U, for any s < r. Hence f(x) = r. O]

Given a ball I = (f(x) — 6, f(x) + J), we wish to find a neighborhood U of z such that
f(U) € I. First we choose rational numbers p, q € I such that p < f(z) < ¢. Then the open
set U,\U, is the desired neighborhood using the lemmas above. n

Theorem 11.5. (Tietze Extension Theorem)
Let A be closed in a normal space X. Any continuous map from A to I can be extended
to a continuous map from X to I. True also for R instead of I.

14
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Proof. We show for [—1,1] instead of I, and then for (—1,1) instead of R.

Lemma. If f : A — [—¢,¢] is continuous, there exists continuous g : X — R with
9(X) < [=¢/3,¢/3] and (g — f)(A) < [-2¢/3,2¢/3].

Proof. Applying the Urysohn Lemma on the disjoint closed sets L = f~!([—¢, —¢/3])
and R = f~!([¢/3,¢]), there exists g : X — [—¢/3,¢/3] such that g(L) = {—/3} and
g(R) = {¢/3}. This g works. O

Now let f : A — [—1,1] be continuous. Then we can find g; : X — [—1/3,1/3] such that
|f(a) — g1(a)| < 2/3 for all a € A. Then we apply the Lemma on f — g; again, so we get
g2 X — [—2/9,2/9] such that |f(a) — g1(a) — g2(a)| < 4/9. Recursively, we get a sequence
of functions g, such that g, : X — [—(2/3)"/3,(2/3)"/3] and

(@) = (@) — - — gua(a)] < (;)

a0
By the Weierstrass M-test, g(x) = Z gn(z) converges to the desired function (Exercise).
n=1

To show the (—1, 1) version, take g from the [—1, 1] case. Apply the Urysohn Lemma to the
disjoint closed sets A and D = g~'({—1}) u g *({1}) to get a continuous ¢ : X — [0,1] so
that ¢(D) = {0} and p(A) = {1}. Then h(z) = p(z)g(x) works (|h(x)| < 1). |

Urysohn Metrization Theorem

Definition 11.2.
1. A space is second-countable if it has a countable basis.

2. A space is metrizable if it is homeomorphic to a metric space.

Theorem 11.6. (Urysohn Metrization Theorem)
2nd countable + Normal = Metrizable.

Proof. We first note that I¥ = {x = (z1, 22, --) : x; € I} with the metric

d(x,y) = sup [#n = ya|
n n

is a metric space. Let X be normal with a countable basis 4. We will embed X into I¥.

15
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Lemma. There exists a collection {f, : X — I}, of continuous functions such that
given any x € X and any neighborhood U, there exists some f, that is positive at x
but vanishes outside U.

Proof. For each B,C € % with B < C, apply the Urysohn Lemma to construct a
continuous function ggc : X — I such that gpc (B) = {1} and gpc(X\C) = {0}.
{9p.c : B < C} is the desired collection. It is countable because % x % is countable,
and given any x with neighborhood U, we can choose by Theorem 11.3 the sequence
of open sets € B < B < C < U, and then use 9B,C- O

Using {fn},cy from the Lemma, define F': X — [* such that
F(z) = (fo(z), fi(z), fa(x), )
e F'is injective because given x # y, there exists some f,(z) > 0 = f,(y) (Hausdorff!).

e F'is continuous: Let B,(¢) < I“. Fix an integer N > 2/e. Since each f,, is continuous,
for each 1 < n < N there exists a neighborhood z € U, such that y € U, =—
|fn(x) — fuly)] < /2. Hence for any ye Uy n--- n Uy,

4(F(@). F(y)) = sup 20— 10

n n

< e sup o)~ S0, )= o0

1<n<N n n>N n

< = ! <
< a _, .
e\ Nyr)
e For each open set U in X, F(U) is open in F(X): Let z € U and f(z) = z. Choose a
fn that is positive at x but vanishes outside U. Let
W =F(X)nmy ((0,1])

be open in F(X). We claim that z € W < F(U). Firstly, we have z = F(x) e W
because fy(x) > 0. Secondly, given any F(y) € W, we must have fy(y) > 0. Since fy
vanishes outside U, y must be in U, so F(y) € F(U).

Therefore, X is homeomorphic to its image under F', a subspace of the metric space I¥,
which is also a metric space. [ |

12 Manifolds

Definition 12.1. An n-manifold is a 2nd countable Hausdorff space X such that
each z € X has a neighborhood homeomorphic with an open subset of R™. We also
write X = X”. A l-manifold is a curve, and a 2-manifold is a surface.

16
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Theorem 12.1. X™ x Y™ is an (n + m)-manifold.

Proof. Hausdorffness and 2nd Countability follow immediately. Fix (x x y) € X x Y, then
there exists neighborhoods U, V' of z,y homeomorphic to R", R™ respectively. Then U x V'
is a neighborhood of (z x y) homeomorphic to R” x R™ ~ R™*"™. [ |

Example 12.1.
1. R™ is an n-manifold.
2. 8™ is an n-manifold. (Write S™ = e U e} where " = int (D") = R").

3. The real projective space RP" = S"/ ~ (where x ~ y < 1z = ty) is an
n-manifold.

4. T" = S' x ... S' is an n-manifold. T2 is a torus.
—

n

5. Fact: Every connected curve is homeomorphic to either R and S*.

Theorem 12.2. A compact n-manifold X can be embedded in R" for some N € N.

Proof. Fach x € X admits a neighborhood U”* with a homeo ¢* : R* — U*. We can
choose a basis x € B* < ¢” (By(1)), and hence by compactness of X via the B* there exists
Ui,---, U, with homeos ¢; : R" — U; and X < |, ¢ (Bo(1))

By Urysohn’s Lemma, there exists p; : X — [ such that p; (gp,- (Bo(l))> = {1} and
pi (X\@; (Bo(2))) = {0}. Via the pasting lemma, let ¢; : X — R" be the continuous function

_ [ pi@)git(x) zel;
Vi) = { (0,---,0)  otherwise

wi(Bo(2)) a i wi(Bo(1))

Panre 0 1

Then F(x) = (p1(z), -+, pm(z), 1 (), -+ , Y (x)) embeds X into R™"+1), |
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13 Paracompactness

Definition 13.1.

e An open cover {U,}, of X is locally finite if every z € X has a neighborhood
that intersects only finitely many Ul,.

e A refinement of an open cover {U,}, of X is an open cover {Vj}, such that
each Vj is contained in some U, (depends on j3).

e A space X is paracompact if it is Hausdorff, and, every open cover of X admits
a locally finite refinement.

Warning.
1. Some sources do not require Hausdorffness in the definition.

2. Quotient/Subspace/Product of paracompact space(s) may not be paracompact.

Example 13.1. R" is paracompact. Let B(r) be the open ball of radius r centered at
the origin. Given any open covering .7, for each n € N* we can pick a finite number
of elements of o that covers B(n). Intersect them with R™\ B(n — 1). The union of
these open sets is a desired locally finite refinement.

Theorem 13.1.
1. A closed subspace of a paracompact space is paracompact.
2. Compact + Hausdorff = Paracompact

3. Metric space = Paracompact.

4. Paracompact = Normal.

Proof of (4). Let A, B be closed and disjoint. We first prove the case when A = {a}. For
each b € B pick disjoint neighborhoods a € U,,v € V}. Since (X\B) u, V}, is an open cover
of X, by paracompactness there exists a locally finite refinement of V,,’s that cover B. Also,
x has a neighborhood W that intersects only finitely many V,, say V,,---,Vs,. Then the
opensets U =Up, n---nUy, and V =V, n---nV, form a desired pair.

For the general case, we update the notation so that for each a € A there exists disjoint

open sets a € U,, B € V,. Let {U,} be a locally finite refinement that covers A, so b € B
admits a neighborhood W), that intersects finitely many U,, say U,,, - ,U,,. We then let
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Vo =Wy Va,. Then U = |, U, and V' = J,.5 Vo give the desired separation. [ |

Definition 13.2. A partition of unity on X for a locally finite open cover {U,},,
is a collection of continuous p, : X — [ such that

e po(x) >0 = zel,

® > pa(z) =1 (well-defined due to local finiteness)

Theorem 13.2. Every cover of a paracompact space admits a refinement that has a
partition of unity.

Proof. Let {U,} be a cover of X. For each x € X there is an x € U,, and hence we can
pick x € W, € W, € U, by normality. Let {V;3} be a locally finite refinement of {I,}. By
Urysohn’s Lemma, there exists ¢5 : X — I such that ¢ (V3) = {1} and ¢ (X\U,,) = {0}.
Then pg(z) = ¥s(x)/ 3., ¥ () is a desired partition of unity. [

Theorem 13.3. Manifold = Paracompact.

Proof. We first prove that a manifold X can be a limit of increasing compact sets.

Lemma. 3K, Ky, -- compact with K, < int (K1) and X = [, int(K,).
Proof. Let U; with homeos ¢; : R" — U; such that {¢;(By(1))} covers X. Then take

the compact spaces K, = (J;_; U}, i (B(](j)) for n e N*, O

Let X = |J,Us. Then for each n there exists U}, -, U]’ that cover the compact space
K,. Then V' = UMK, form a locally finite refinement: Any z € X is contained within
some int(/,), which means it can only be in the sets V;™ (1 < j <t,,)(1 <m < n). This is
similar to Example 13.1. [ |
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14 Covering Dimension

Definition 14.1.
1. The covering dimension of a space X is the infimum over n € N such that
(V open cover {U,}) (3 refinement {Vz}) (Vx € X) (z is in < n + 1 of the Vj)
or equivalently
dim X = max min (max]{Be%:xeBH) -1

</ open cover X | £ refmt of &/ \ xzeX

(. J/

Nz
order of

2. A Lebesgue number for an open cover {U,} of a compact metric space is a real
0 > 0 such that any subset of X of diameter < ¢ is contained within some Ul,.

Theorem 14.1. (Lebesgue’s Covering Lemma)
Any open cover {U,} of a compact metric space (X, d) has a Lebesgue number.

Proof. Since X is compact, assume {U,} = {Uy,--- ,U,}. Themap f(z) = max d(z, X\U;) >

0 is continuous on a compact space and thus f(X) has a minimum § > 0. [ |

Example 14.1.

1. Any compact subspace of R has dimension at most 1.

Proof. Note that € = {(n,n + 1), (n — 3,n + 3) : n € Z} has order 2. Let & be
any open covering of a compact subspace X of R, with some Lebesgue number
d > 0. The image .# of € under f : x — Jz/2 is an open covering whose elements
have diameter 0/2 < 0, and hence is an open refinement subcover of <. Hence

dim X = max min (order of #) | — 1
</ open cover X | % open refinement

subcover of &/

< max _[2]—-1=1
</ open cover X
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2. dim/ = 1.

Proof. We show that there is some open covering 7 such that any open refine-
ment subcover of o/ has order at least 2. Let o/ = {[0,1),(0,1]} and let £ be
any open refinement subcovering. Since 0 and 1 cannot belong to the same re-
finement, % has at least two elements. Partition £ into two nonempty parts %;
and %By. If Z had order 1 then | J %, and | ] %, disconnect [0, 1], a contradiction.

3. Fact: dim I™ = n, and every compact subspace of R” has dimension < n.

Theorem 14.2.
e If Y is a closed subspace of a finite dimensional space X, then dimY < dim X.

o If X =Y U Z where Y, Z are closed finite dimensional subspaces of X, then
dim X = max(dim Y, dim 7).

e Every compact subspace of RY has dimension at most N.

Tangent: Baire’s Theorem, Function Spaces and Geometry

Definition 14.2. Let X be a compact metric space.

1. C(X,R") = {f: X —> R" cts} is the metric space equipped with the uniform
metric d(f, g) = sup | f(z) — g(z)|.

2. For A< X, diam(A) = sup d(z,y).

z,yeA

3. A(f) = sup {diam(f~1{z}) : z € f(X)} (Deviation of f from injectivity).

Remark. ﬂUl/n ={f: A(f) = 0} = {f injective}.

Theorem 14.3. (Baire’s Theorem)
Let {U,} be a countable collection of dense open sets in a compact Hausdorff space X.

Then (), U, is dense in X.

Proof. Let Wi be an open set. We want to show W, n, U,, # @.
e Since U; is dense and open, there exists 1 € W7 n Uy open.

e Inductively, since X is normal, there exists z, € W,, € W,, € W,_1 N U,_1.
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Definition 14.3.

1. {20, ,2m} S R"™ are geometrically independent if

Moo+ Amzm =0, Ao+ +An =0 = Ag=-=Apn =0

2. A< R" is in general position if any subset of size n + 1 are geom. ind.

Theorem 14.4. Given {2z, - ,2z,} S R" and 6 > 0, there exists {yo, -+ ,ym} S R"
that is in general position such that all |z; — y;| < 4.

Back to dimension theory

Theorem 14.5. (Embedding Compact Metric Spaces)
Every compact metric space X of dimension n can be embedded in R?*"*!,

Define U. = {f € C (X, R*™"1) : A(f) < €}.

Claim. U is open.
Proof. Let f e U., we want to show 3B;(J) < U.. Pick ¢ < b < A(f) and define
A=A{(zxy):d(z,y) > b} = X

Note that f(z) = f(y) = d(z,y) <A(f) <b = (zxy)¢ A Hence |f(z) — f(y)|
has a positive minimum 2§ on A. Now if g € By(6), then for any (z x y) € A,

1f(z) —g(@)] <6, |fly)—gWw)l <9, [f(x)—fly)l=20

so g(x) # g(y). In other words, g(z) = g(y) = d(z,y) <b = Ag<b<e. O
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Claim. U. is dense. (Difficult!)

Proof. Let f e C(X,R**1) and § > 0, we want to find a g € B¢(d) n U.. Firstly, we
cover X with Vq,---,V,, such that

(1) diam(V;) < ¢/2
(2) diam(f (V7)) < 6/2
(3) Each x € X is in at most n + 1 of the V.

To do this, pick a Lebesgue number 0 < x < £/4 such that any B, (k) < f~! (B,(§/4))
for some y. Since dim X < n, there exists a refinement {Vs}, of {B, ()}, such that
(3) holds. Since V3B, (k) for some z(3), (1) and (2) also hold. By compactness, we
can find a finite cover using V;.

Let ¢; : X — R be a partition of unity associated to the U;. Also, fix z; € U; and
z; € R?™ guch that |f(x;) — 2| < /2 and {z;} is in general position. Define

g(r) = Z%’(iﬂ)%

Then d(f, g) < 0 because

l9(x) = f(a)] = Z%(ﬂﬁ)(% — f(xi)) —I—Zgoi(:z:)(f(xi) - f(z))

< Zi:goi(x) (g + g) = 0.

and g € U because g(z) = g(y) = 2 (vil@) = ¢iy)) 2 = 0 = @i(x) = @ily) Vi
since x,y are in < 2(n+ 1) of the U;. Since y;(x) > 0 for some i, we have z,y € U; —
d(z,y) < e/2. Therefore A(g) <e/2 <e. O

By Baire’s theorem, (), Uy, is dense and hence non-empty, i.e. there is a continuous injective
f: X — R*™ Also since X is compact and f(X) is Hausdorff, f sends closed sets to closed
sets (i.e. is closed). Hence f embeds X into R?"*1, [

Theorem 14.6. (Embedding Manifolds)
Every manifold can embedded in some R¥.

Proof. Let X be an m-manifold.
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Lemma 1. Let f : X — RY such that f~!(compact) = compact. Then f is closed
(sends closed sets to closed sets).

Proof. Let C < X be closed. Suppose y € RY\f(C). By Heine-Borel, B,(¢) is
compact and hence K = C' n f~! (By(s)) is compact = f(K) < f(C) is compact
— V = By(e)\f(K) is a neighborhood of y. Note that

zeVnf(O) = 3xe f1(By(s) nC < K with f(z) = 2
= zef(K) = VnflC)=9

and thus f(C) is closed. O

Lemma 2. There exists continuous f : X — R such that f~!(compact) = compact.

Proof. Using the Lemma from Theorem 13.3, we can write X as a limit of increasing
compact sets |, K, where K,, < int(K,1). Since manifold — paracompact —
normal, we can use Urysohn’s Lemma to construct continuous maps ¢,, : X — I such

that ¢, (K,) =0 and ¢, <X\Kn+1> = 1. Then we define f: X > Rby f=3"_ ¢,

e re K, = ¢,(r) = pur1(x) = -+ =0 and hence f is well-defined.
e 1 ¢ K, = ¢, 1(x) =¢,o(x)=-=1= f(r)=n—1

e fis continuous: Given any (a,b) € R, f~'((a,b)) S Kpto) and hence f~((a, b))
[b+1]

w1 ®n (a continuous map) which is open.

is the preimage of (a,b) under >

e f71(C) is compact for any compact C' = R: Since C is closed and bounded,
f7HC) is closed and contained within some Ky (compact), and hence f~(C) is
compact (closed subspace of a compact space). O

Take K, and f from Lemma 2, and denote R,, = K,\int(K,_;) and U, = int(K,,+1)\Kp_a.
By Urysohn’s Lemma again, construct p, : X — R with p,(R,) =1, p, (X\U,) = 0.

Since D,, = K, ;1\int(K,,_2) is compact and metrizable (normal and 2nd countable), there
exists a cts closed inj f,, : D,, < R?™*! Then define 1, : X — R¥"*1 ) : X — R¥™*3 a5

bala) = { @) EE ) - ( > ). Y wn<x>,f<x>>.

otherwise
even n odd n

Y is injective (Exercise: f(z) = f(y) = =,y € Ry, and 3,_ ,¥i(z) = Yu(x) = fi(z) =
fely) = x = y) and closed (for any compact K < R¥ ¢~!(K) is closed and contained
within the compact f~!(7y(K))). Thus ¢ embeds X into R*™*3, |

24



Tristan Chaang Topology Notes

15 Homotopies

From now on, assume all ‘maps’ are continuous.

Definition 15.1.

1. Given fy, f1 : X = Y, a homotopy from f, to f;is H : X x I — Y such that
fo(z) = H(z,0), fi(x) = H(xz,1). We sometimes write H(x,t) = f;(x). If such
homotopy exists, we say fo, fi are homotopic (fy ~ f1).

2. A homotopy relative to A < X (homotopy rel A) is a homotopy H : XxI — Y
such that H(a,t) = H(a,0) for all a € A.

3. A reparameterization of o : [ — X isamap f: 1 — X such that § =aor
where r : [ — I satisfies 7(0) = 0,r(1) = 1.

4. X,Y are homotopy equivalent (X ~Y) if there exists f: X - Y,g: Y - X
(called homotopy equivalences) such that fog~ 1y and go f ~ 1x.

5. X is contractible if X ~ point. f: X — Y is nullhomotopic if f ~ constant.

6. A retraction of X onto A< X isamap r: X — X with r [4= 14,7(X) = A.
If it exists, A is a retract of X.

7. A deformation retraction of X onto A € X is a homotopy rel A from the
identity on X to a retraction of X onto A. If it exists, A is a deformation
retract of X.

Example 15.1.
(L) Which paths f: S* — T? # T? are homotopic?

(R) D*\{xg, 21} deformation retracts to which blue sets?

@3)

S
B
D ®
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Remark.
1. If B is a reparameterization of o then av ~ g rel {0, 1}.
2. X =Y = X ~Y but not converse, e.g. Mobius band ~ S* ~ Band S x I.

3. Fact: X ~Y <= 37 that deformation retracts to both X and Y.

16 CW Complexes

Definition 16.1. A CW complex / cell complex is a space X built as such:
1. Start with a discrete set X°, whose points are 0-cells.

2. Let D" be n-balls (with D" = S™~1). Inductively, form the n-skeleton X" as
the quotient space of X" L1, D" by identifying z ~ ¢, (z) where ¢, : 0D —
X" ! are the attaching maps. This makes X" = X" ! 1, int (D") as a set.
The e = int (D7) are called n-cells.

3. One can stop after finite n, setting X = X". Or one can set X = U;O:o X",
giving it the weak topology: U < X is open < U n X" is open in X" for all n.

The characteristic map of a cell el is the map

Bo: DR > XL DY BN X s X

Example 16.1.

1. A 1-dim CW complex is a graph, whose 0-cells are nodes and 1-cells are edges.

0 0
1
60 61
2 1
€2
1
e €1 €

2. X = T?isa CW complex, with X? = {ed}, X; = X?1el Lie) where ¢, = ¢, = €]
being constant, and X? = X! 1 ¢? with attaching map ¢ : ST — X! given by

quot / e g . quot b a
L By L, 55
b

Note: If we swap the direction of two adjacent leaves in the middle step, we get
a Klein bottle. Attaching maps matter!
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3. The n-sphere S™ is a cell complex with two cells €® and e”, with the attaching
map S ! — €°. Or, we can inductively attach two n-cells to the equator S™~!.

4. RP" = S"/(v ~ —v) = D"/(v ~ —v : v € dD") is a cell complex by attaching an
n-cell to RP"! via the map S"~! — RP"!. We can also have RP* = | J, RP".

Definition 16.2. A subcomplex of a CW complex X is a closed subspace A € X
that is a union of cells of X. The pair (X, A) is a CW pair.

Example 16.2.
1. RP* < RP" is a subcomplex (k < n).

2. S¥ < S™ is not a subcomplex with the two-cell structure, but is a subcomplex
using the recursive CW structure.

Theorem 16.1.

o If X,V are cell complexes, then X x Y is a cell complex, whose cells are e x ef
where e, ef; are cells of X, Y respectively.

o If (X, A) is a CW pair, then the quotient space X /A is a cell complex, whose
cells are the cells of X\ A, and one new 0-cell: the image of A in X/A.

Definition 16.3. A < X has the homotopy extension property if given any map
fo: X — Y and a homotopy f; |a: A — Y of fy |4, we can extend f; |4 to a homotopy
fi on X. Equivalently, given any maps H; : X x {0} - Y and Hy : A x [ — Y that
agree on A x {0}, there exists a map H : X x [ — Y such that H agrees with both
H,, Hy where their domains meet.

Theorem 16.2. A < X has the homotopy extension property if and only if

X x {0} U A x [0,1] is a retract of X x [0,1].

Proof. Let Z = X x {0} u A x [0, 1].
e If A< X has h.e.p then given the maps H; : X x {0} - Z and Hy : A x [ — Z with
Hi(z,0) = (x,0) and Hs(a,t) = (a,t)

we can get an extension H : X x [ — Z constant on Z. Hence H is the retraction.
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e The converse is easy if we assume A is closed. Say r : X x [ — Z is a retraction. Given
any Hi, Hy as in the definition, we can combine them via the Pasting Lemma to get
Hy;:Z - Y. Then Hyor : X x I — Y is the required homotopy. For the full proof
where A is not necessarily closed, see appendix of [Hatcher]. [

Theorem 16.3. If (X, A) is a CW pair, A has the homotopy extension property.

Proof. To prove X x {0} u A x [ is a retract of X x I, we first prove

Lemma. D" x {0} u dD" x I is a deformation retract of D" x I.

Proof. Consider radial projection r from (0,2) € D" x R:

Then fy =t-7r+ (1 —1¢) -1 is a deformation retract. O

Applying the deformation retraction to every D" attached to X”~! that is not in A", we
get a deformation retraction H, from X™ x I onto X™ x {0} u (X"~1 U A™) x I. Note that
concatenating adjacent H, and H,,; gives a deformation retraction

X [ A YL {0} U (XU AT x T
Aoy X7 {0} U (X" x {0} u (X" U A™) x I) U (A" x 1))
= X" x {0} u (X" oA x T

and thus by concatenating all Hy, Hy,--- into [1/4,1/2],[1/8,1/4],--- we get a deformation
retract from X x I onto X x {0} U A x I. (In the infinite case, there is no continuity problem
at t = 0 since X is given the weak topology). [ |

Theorem 16.4. If (X, A) is a CW pair and A is contractible, then the quotient map
X — X/A is a homotopy equivalence.

Proof. Let f; : X — X be a homotopy extension of the contraction of A with fo = 1x. Since
fi(A) € A and f1(A) = pt, we can construct well-defined maps f;, g satisfying

x 2y x x 1, x
q| K a] K
X/A—> X/A XA
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Then gogq = fi ~ fo = 1x and q(g([2])) = a(g(a(x)) = a(f1(2)) = fia(2)) = fi([z]) and

hence gog = fi ~ fo = 1x,4, S0 g,q are homotopy equivalences.

Example 16.3.

g
I¢

*‘\‘9
D%co

© -
e -} - -

17 Fundamental Groups

Definition 17.1.
1. A path on X is a: [ — X. Define Q,,(X) = {path o | a(0) = a(1) = z0}.
2. Given paths «, 5 € ,,(X), define the concatenation o - (€ €, (X) by

a(2s) 0<
(- B)(s) = { B(2s—1) 0.5

3. Given a path v € §2,,(X), define the reversed path 7(t) = v(1 —t).

< 0.5
s<1

s<0
<s <

4. The fundamental group of X based at zq is the group

7T1(X7 'rO) = Qwo(X>/ ~
where a ~ 8 < «a ~ frel {0, 1}, with group law [a][3] = [a- 5] and [y]™! = 7.

Theorem 17.1. Let v be a path from zy to z;. The map @, : m (X, z1) — m (X, z0)
by ®([a]) = [y« - 7] is an isomorphism.

Corollary. If X is path-connected, 71 (X, z) are isomorphic over all z € X (say m1(X)).

Theorem 17.2. If XY are path-connected, w1 (X x Y) = m(X) x m (V).

Definition 17.2. X is simply connected if X is path-connected and 71 (X) is trivial.
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Definition 17.3.
1. Write f: (X,2z0) = (Y,yo) if f: X — Y and f(z0) = 0.
2. The homomorphism induced by f : (X, z) — (Y, o) is the homomorphism
fo 1 (X, 20) — m1(X, yo)

given by fu([a]) = [f o a].

Theorem 17.3.
L (fog)s = fsogs
2. If f,g: X — Y are homotopic rel zq, then f, = g,.

3. If f: X - Y is a homotopy equivalence, then f, is an isomorphism.

Theorem 17.4. 7(S?) = Z.

Proof. Let p: R — S! given by p(\) = (cos(27\),sin(27))). The following two facts will be
proven in the Covering Spaces chapter.

1. Given any path v of S!, there exists a unique path 4 of R such that §(0) = 0
and v =po7.

2. Given any homotopy f; : [ — S, there exists a unique homotopy f; : I — R
such that f; = po f;

The map ®([y]) = (1) € Z is then a well-defined isomorphism. |

Theorem 17.5. If A is a retract of X, then the inclusion i : A — X induces an
injective homomorphism i,. If A is a defo retract of X, then i, is an isomorphism.

Proof. Let r : X — A be a retraction. Then roi =1 = r,oi, =1 = 1, injective.
If there is a deformation retraction, then ¢ is a homotopy equivalence and hence i, is an
isomorphism. [ |

Theorem 17.6. (Brouwer’s Fixed Point Theorem)
f:D?*— D? = f(z) =z for some x € D

Proof. Otherwise, the map r defined by
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r(z)

is a retract from D? to S, so i : S' — D? induces an injective i, : Z — {0}, contradiction.l

Theorem 17.7. (Fundamental Theorem of Algebra)
Every complex polynomial of positive degree has a root.

Proof. Let f(z) = 2™ + a,_ 12" ' + -+ + ag where n > 0. Assume f has no roots. Then
F(s,t,r) = (7’627”5)“ + Gy (rezms)n_lt + - 4apt" #0 Vs, t,r.

Then the homotopy

~—

F(s,0,1) t F(s,1,1) T F(s,1,0
|F(s,0,1)] — [F(s,1,1)] ~ [F(s,1,0)|

brings the path e2™"  that loops around the circle n times, to the trivial path 1. This is a
contradiction since they correspond to different elements in 7y (S'). |

18 Van Kampen’s Theorem

Definition 18.1. Let ;1 : H — Gy and iy : H — Gy be homomorphisms. The
amalgamated free product of G, and G5 along H, denoted as G = G =y Go, is the
unique group (up to isomorphism) that satisfies

(1) There exists homomorphisms ¢; : G; — G with ¢ 0 i3 = @y 0 is.

(2) For any other homomorphisms 9; : G; — K with ¢y 04y = 1)y 0 iy, there exists a
unique homomorphism ¢ : G — K with ¥ o ¢; = ;.

(31
H— Gy
izl l@l ;
1
Go E) G;”w
\;;JK
(>

If H = {0}, then G «* Gy = G #y G5 is just the free product of G; and Gs.
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Remark.
1. Such a group always exists, e.g. if G; = (S; | R;) then
G+ Gy = <Sl LSy | Ry Ry {il(h)ig(hfl) che H}>
Uniqueness follows from the uniqueness of ) between two such possible groups.

2. Think of G =g G5 by first treating H as a common subgroup of Gy, G5, then
construct all possible words of finite length with letters from G U Gy. When two
adjacent letters in a word both come from the same G, or if they both belong
to H, we can further simplify the word.

Example 18.1.

1. The free group with n letters is simply F,, = Z = --- = Z,.
|

2. The free product of Zy = {1,a,a* = 1} and itself Zy = {1,b,b* = 1} is
Lo+ Lo = {1,a,b,ab, ba, aba, bab, - - -}

(This is the semi-direct product of Z = {(c:= aby,Zy = {a) with ac = ¢ 'a,
sometimes called the infinite dihedral group.)

3. If we embed H = Z, into the two Z,’s above by h — a and h — b, then the free
product collapses into

Zy vy Lo = {1,h,h* =1} = Z,

Theorem 18.1. (Van Kampen’s Theorem, two-set version)

Suppose X = UuV where U, V, UV are open and path-connected, then for xy € UnV
we have 7T1(X, .’Ko) = 7T1(U, .2?0) *11 (UnV,zo) 7T1(V, 1’0) (Wlth 7T1(U M ‘/,113'0) — 7T1(U, 1130)
and m (U NV, x9) — m(V, o) being the maps induced by the inclusions U n'V — U
and U n'V — V respectively).

Example 18.2. m(S™) = {0} for n > 2 (high-dim spheres are simply connected).

S™ is the union of open neighborhoods of the north and south hemisphere, intersecting
at the equator ~ S™~1. Hence m;(S™) = my(€") #x, (gn-1) m1 (™) = {0} %7, (gn-1) {0} = {0}.
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Definition 18.2. Suppose zg € X,yp € Y. The wedge sum (X, zq) v (Y,yo) is the
space (X uY)/{xo,yo} (gluing X and Y together at xg,yo). Lazy: X vY.

Example 18.3. S! v S!is the figure-eight, homemorphic to the shape oo.

Theorem 18.2. If 3 neighborhoods =g € U,yp € V in X, Y such that {zo}, {yo} are
deformation retracts of U, V' respectively, then 71 (X v Y) = m(X) x m(Y).

Proof. Let H, : U — U,G,; : V — V be deformation retracts onto xg, 3o respectively.
e We can define G, : X vV — X vV by

1I_1Gt
XuV —m—m X uV

a] I
XvV —mXvV
Gy

which is a deformation retraction of X v V onto X v {yo} = X. Hence X v V
deformation retracts onto X and (similarly) U v Y deformation retracts onto Y.

e We claim that U vV < X vY is contractible. The map F; : UvV — U vV defined by

Htl_th
UV ——UuV

0| I

U\/VTU\/V
t

is a deformation retraction onto xqge U v V.

e By Van Kampen, m(X vY) =m(X v V)s vy m(UvY)=m(X)+m(Y). R

Corollary 18.2. 1 (\/[_, S') = F,.

Theorem 18.3. If I' is a connected graph, then m(I') = Fi_,r) where x(I') =
\V(I')| — |E(T)| is the Euler characteristic of I

Proof. Let T be a spanning tree of I', which is contractible. Then by collapsing T, the graph
['/T ~ T is a wedge sum of |E(I" — T)| circles. Hence m1(I") = F), where

n=[E@)] - [EM)] = [ED)] - (V(T)]-1) =1=Xx(T). =
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Theorem 18.4. If i : H - G = (S| R), then Gy {0} = (S| RUi(H))

Example 18.4. We can compute 7, (7%?) as follows:

a a a
> 4 >
U= b4 i i4b V=>b4 40D UnV = b4ii iigb
\ .'....\.... et
L4 L4 4
a a a

m(T?) = m(U) tmwav) (V) = {a,b) +z {0} = <a, b| aba‘lb_1> _ 72

Fundamental Group of CW Complexes

Theorem 18.5.

1. Let X? be a CW complex obtained from X' by attaching 2-cells €2 via ¢, :
0D? — X', For each «, let 7, be a path on X! from x( to a point z, € 0D2.

7T1(X2,fl,‘0) = 7T1(X1,£L'0)/N

where N is the normal closure of the subgroup of (X, zg) generated by paths
[Ya * @a - Vol (treating ¢, as a closed path based at z,).

2. Attaching n-cells (n = 3) does not change the fundamental group, i.e.

(X, 2o) = 7T1(X2>$0)

Example 18.5.

g

1. For the Klein bottle K, we have m;(K) = {a,b) /N where N
is generated by aba'b, so 71 (K) = {a,b | aba™'b). by b

3Q

2. If X is obtained by attaching a single 2-cell to a circle C* via ¢(z) = z

, then
m(X) = {z | 2") = Z,. In particular, m (RP?) = Z,.

Corollary 18.5. Given any group G, there exists a space X with m(X) = G.

Proof. Write G = (S | R) and attach 2-cells (according to R) to the wedge sum \/ ¢ S!. B
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Proof of Theorem 18.5. First expand X? by bulging up the €2’s and then adding strips
S, = I x I along each ~,. Pick a y, € €2 that is not on the strip. Call this larger space Z.

We then slice this space along half the height of the S,’s, and consider an open neighborhood
of the top and bottom parts U,V respectively (e.g. U = Z\X"' and V = 2\, {va}). U is
contractible while V' deformation retracts to X'. Hence

7T1(X2, Io) = 7T1(Z7 xo) = 7T1(U7 xo) *m1(UnV,z0) 7T1(V, on) = {0} *r1(UnV,z0) 7T1(X17$0)-

So it remains to show that (U n V,xq) is generated by the [y, - o - Ta]: We can apply
Van Kampen again on U n'V' by covering it with the open sets A, = U n V\ |J Bra Dg which
deformation retract to a circle and hence is generated by 7, - ¢o - 7o This shows (1).

To show (2), we perform the same procedure. However, in the last step, the A, deformation
retract to spheres, which are simply connected. The finite X™ case follows from induction.
If X is infinite-dimensional, any closed loop at xy is compact and hence is contained in some
finite X™ anyway. [

Definition 18.3.
1. Let X, Y’ be surfaces. The connect sum, ¥ # Y’ is defined by
(S\int (D?)) u (Z\int (D?)) / ~
where ~ identifies boundary points.

2. The surface of genus gis %, = T> # - # T # S? (The g-holed torus).

Example 18.6.
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Theorem 18.6. m (3,) = {a1,bi,a2,bs, -+ , a4, by | arbray by - - agbgag_lbg_1>

Diagram. a

h b

C 2}

el

19 Covering Spaces

Definition 19.1.

1. A covering space of X is a space X with a map p : X — X such that every
z € X admits a neighborhood U such that f~%(U) = | |, U, (a disjoint union
of open sets) where each p |5 is a homeomorphism. We say that U is evenly
covered by the sheets U,.

2. Aliftofamap f:Y > Xisamap f:Y — X with f =po f.

Pt
— g

Y

36



Tristan Chaang Topology Notes
Example 19.1.
1. p:R— S p()\) = 2™,

U U
U
2. pn: St — S pu(2) = 2™
{ X

b

-
!
;

\

3. A few covering spaces of S' v S!, as

b
OO0
b

S
&

3
T

-
N
a

Theorem 19.1. Let Y be a connected space and f : Y — X. If two lifts fi,fo: Y >
X agree at some point y € Y, then f; = fs.

Proof. For any z € Y, there is a neighborhood U of f(z) that is evenly covered by sheets U,.

o {z eY: fi(z) = fg(z)} is open: Suppose f1(z) = fo(2) € Us, then by continuity there
exists a neighborhood z € V with f,(V), fo(V) € Us. Then

filv =p |{]; oplg,ofilv=p |Eﬁl o flv=falv.

e {26V fi(2) = u9)} s closed: fi(2) # fol2) = () € U fo(2) € Uy (81 #
). By continuity there exists a neighborhood z € V with f;(V)) < Us,.
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Since Y is connected, Y = {z €Y : fi(z) = fg(z)} [

Theorem 19.2. (Homotopy Lifting Property) .
Given a homotopy f; : ¥ — X and a lift fo : ¥ — X of fo, there exists a unique
homotopy f; : Y — X of f; that agrees with f.

Remark. The two facts used in Theorem 17.4 follow from the case Y = pt and Y = [.

Proof. Use the H(z,t) = fi(x) notation.

Lemma. For any y € Y, there exists open ye V and 0 =ty < t; < --- < t, =1 such
that each H (V' x [t;,t;41]) is contained in some evenly covered Us;.

Proof. Fix y. For each t € I there exists a neighborhood Uy of H(y,t) that is evenly
covered, and there exists a basis V; x Wy € Y x [ with (y,t) € Vi, x W, < H ' (U,).
Since the W; cover I which is compact, we have a finite subcover Wy, --- Wy of I
and hence we can take V =V, n---n 'V,  and ¢; the endpoints of all I, .

We first prove the theorem by fixing y and restricting f; on a neighborhood V' < Y. By
induction, suppose H has been constructed over V x [0,t;]. Let U 2 H(V x [t;,t;11]) be
evenly covered by sheets U,. Let H (y,t;) € U 3, then by the pasting lemma we can construct
H lvix[0t:.1] DY composing H with p \5;, after restricting V' to V' by intersecting the pre-
image of Uﬁ. Relabelling V' as V, after a finite number of steps, we constructed f, on a
neighborhood V' of y. Note that such ft is unique at each y € V since {y} x I is connected.

To construct f; on the entire Y, we construct a unique f on a neighborhood V, at every
y € Y. By uniqueness on each {y} x I, the f’s agree on the overlaps, so it is well-defined.
By the same uniqueness, the entire f is unique. [ |

Theorem 19.3. Let p, : m (X',.f:o) — (X, z9) be induced by p.
1. p, is injective.

2. Im(py) = {[a] € m (X, z0) : @(0) = &(1) = Zo}.

Proof. Suppose p, ([#]) = 0. Then po 8 ~ constant rel {0,1}. This nullhomotopy has a
unique lift in X, which gives a nullhomotopy for 3, i.e. [3] = 0. This proves (1).

For (2), we have p,([8]) = [po §] = [5]. n

38



Tristan Chaang Topology Notes

Theorem 19.4. If X, X are path-connected, then [p~'(zo)| = [m1(X, z0) : Im(ps)]
(There is a bijection between each preimage of xy and each coset of Im(p,)).

Definition 19.2. A space Y is locally [insert property] if for all y € Y and any
neighborhood y € U, there exists a neighborhood y € V < U that has the property.

Theorem 19.5. Say f : (Y, yo) — (X, x¢) where Y is path-conn and locally path-conn.

3F: (Vo) > (X.3) < Im(£,) < Im(p.)

Proof. For (=), f=po f = f.=p.ofs For (<), suppose Im (f,) < Im (p,). Pick for
each y € Y a path v, from y, to y, then define f(y) = f o~,(1) where f o~,(0) = Z.

e [ is well-defined: Let 41,2 be two paths from vy, to y. Then [71 - 72| € m (Y, y) and
hence exists [a] € m <)~(, jg) with poa ~ f o~ 73 rel {0,1}. This homotopy H; has

a unique lift H, with Hy = o. Since H; = (f om) - (f ©72), by uniqueness we have
Hy = fovy - foy, and thus fov (1) = H1(0.5) = foy(l).

o Fisalift: po f(y) = po Fomy(1) = fomn(l) = F()

o fis continuous: Let W be a neighborhood of f(y). Let f(y) € U be evenly cov-
ered by U,, and f(y) € U. Since f is continuous, 3 neighborhood y € V' with
fVhcop (U N W) By local path-connectedness, let y € V < V' be a path-connected

neighborhood. Then any path from yo to y can be extended to a path from yo to any
z € V. This eventually shows f(V) < U n W. |

Definition 19.3.

1. A space X is semilocally simply connected if for all x € X there exists a
neighborhood x € U where m1 (U, z) — 7 (X, z) is trivial.

2. X is ‘nice’ if it is path-conn, locally path-conn and semilocally simply conn.
3. p: X — X is a universal cover of X if X is path-conn and X is simply conn.

4. Two covering spaces p; : X, — X are isomorphic if there exists a homeomor-
phism ¢ : X7 — X5 with py o ¢ = p;.

Theorem 19.6. CW complexes are locally contractible and locally path-connected.
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Example 19.2. The Hawaiian Earring H consisting of the union of all circles in R?
with center (1/n,0) and radius 1/n for each n € N* is not semilocally simply connected
because any neighborhood of (0,0) contains a full circle, which contains loops that

cannot be nullhomotopic in H.

However, if we consider the cone obtained from H, defined by CH = (H x I)/(H x
{0}), which is simply connected since it is contractible, then C'H is semilocally simply
connected. If we join the tip of the cone to the limit point at the base, then we
form a space that is not simply connected (it is homotopy equivalent to S') but still
semilocally simply connected.

Theorem 19.7.
1. If X is nice, then X has a universal cover.

2. If X is nice, for any subgroup H < m (X, zo) there exists a covering space py :
Xy — X such that Im (pyy) = H.

Proof of (1). We use a Lemma and 5 steps.

Lemma. # = {U < X : U open, path-conn, m(U) — m(X) trivial} is a basis for the
topology of a nice X.

Proof. 2 covers X since X is nice. Suppose x € U nV where U,V € A. Since
X is locally path-conn, there exists path-connected x € W < U n V', which means
m(W,z) > m(U,z) 25 m(X,2) = W e B. Hence & is a basis. To prove
the second part, given any open x € W, choose open x € V via semilocal simply
connectedness, then pick a open and path-connected U < V n W via local path-
connectedness. Then U € & with U < W. |

1. Define X = {[v] |7 : I — X,9(0) = 2o} with [y] = [6] & v =~ drel {0,1}. Define the
covering map p : X — X by p([v]) = v(1).

2. Define the topology on X as follows: Given U € 2 and [v] € X with (1) € U, define
U =Aly-nl In: 1 — U with n(0) = v(1)}
Then {UM}M is a basis (Exercise; (¥) Note that [0] € Uy = Ups) = Upy)), and we
generate the topology from it.
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3. Claim: p : U, — U is a homeomorphism.

e Surjective: U path-conn = Vx € U,dpath n from v(1) to x = p([y-n]) = «.

e Injective: p([v-n]) = p([v-7']) = n(1) =7'(1). Since m (U) — m(X) is trivial,
n=n = [y-nl=1[l

e Homeo: Note that {B n U}, and {Bp n Upy},_, are bases for U and Upy,
respectively, and (1) p (B[(;] N Uh]) =BnU;and (2) p ' (BnU)nUpy = B n
Uty for any [d] € Up,y with 6(1) € B since B < Upy ® Uly) and p |y, is bijective.

4. pis a covering map: Given any U € B, p~}(U) = Ul Uy which is a disjoint union of
equivalence classes due to (*).

5. X is simply connected: Let [z0] = class of constant paths. Given any [y] € X, the path
Y¢(s) = y(min(s, t)) form v(0) to y(t) brings [zo] to [y], and thus X is path-connected.

To show m; (X, [x0]> = 0, we show Im(p,) = {0}:
[a] € Im(ps) = [x0] = @(0) =a(l) = [a] = [a] =0. |

Proof of (2). Consider the equivalence relation ~ on the universal cover X defined by

[v] ~ [0] < (1) =0(1) and [y -] € H.

Then Xy = X/ ~ is a covering space of X. To show Im (pg,) = H: For any [a] € m (X, z0),
we have a lift & = o from [7] to [a], so

[a]e H < [Z] ~ [a] & a(0) =a(l) < [a] € Im(pys)

Theorem 19.8. Let X be path-connected. Then p, (7r1 (5( ,:E())) is conjugate to

Dx <7T1 (X,f1)> for any Zo, 1 € p~! (o).

Proof. Conjugate using any path from x4 to z;. [

Theorem 19.9. (Classification Theorem of Covering Spaces)
If X is nice, there is a bijective Galois correspondence between

conj. classes of isom. classes of path-
subgrps of 1 (X, ) conn. covers X — X

Proof. We prove that p; : X; — X and py : Xo — X are isomorphic if and only if Im(p14)
and Im(pos) are conjugate in 1 (X).

41



Tristan Chaang Topology Notes

o Assume p; = py. Then Im(prs) = Im(pos 0 vu) = Pos (7?1 <)~(2,g0(i1)>> which is

conjugate to poy <7r1 ()Q, i2>> since pg 0 @ (Z1) = p1 (1) = o = pa (T2).

e Suppose Im(py) = [a] Tm(pe)[]. Let & : I — X, be a lift of a based at #,. Then

1 (30609 - 1 (m (5.2

so there exists Lifts f, : (Xl,:zl) o (XQ,&(l)) By (X'Q,&(l)) o (X’l,:zl) with

Al

X1—>X

Since ps o p; and 1 agree at Z; and ar both lifts of p; : X, —» X to Xl, we have
P2 o p1 = 1 and similarly p; o po = 1. Thus p; = ps. [ |

20 Regular Coverings

Definition 20.1.

1. A deck transformation is a self-isomorphism X — X of a _covering space
p: X — X. The group of deck transformations is denoted Aut(X).

2. A covering space is regular if for each z € X and 7,7’ € p~!(x), there exists
v € Aut(X) with o(Z) = 7.

Example 20.1. Aut(R) = Z.

Theorem 20.1. ¢ € Aut(X) is completely determined by ¢(i,) when X is path-
connected and locally path-connected.

Proof. ¢ is a lift to X, which is uniquely determined by where it sends some point. [ |

Theorem 20.2. Suppose X is nice. Then p : X — X is regular if and only if Im(py)
is normal. When this is true, Aut(X) = (X, zo)/Im(py).

Proof. p is regular < for any 7,1’ € p~'(x) there exists a lift ¢ where
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(Xj:) — X

which is equivalent to p, <7r1 (f(, :%)) = Dy (7?1 <)~(,f’>> VI, 2, ie. py <7T1 ( X, ~>> is nor-
mal. To prove the second part, consider the map m (X, o) — Aut(X) is p«(m1 (X, 20)) given
by [a] — ¢a where ¢ (a(0) = Zo) = a(1).

e It is a homomorphism: Since a lift of - 3 is & - o (3), s0
[][8] = @as(Z0) = 5 © Yalfo) = Pas = PsPa-
e It is injective: [a] — 0 < [a] € ps <7T1 <)~(,:Z'>>

e It is surjective: Fix a path v in X from &, to &; € p~'(z). Then [po 7] € m (X, x0)
has lift ~. [ |

Example 20.2. A covering space of S! v S

Im(p,) = (a? ab™', aby < {a,by = m;(S* v S, zp) is normal, hence

Aut(X) = {a,b|a® ab™", aby = Zs.

43



