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notes for 18.901 Fall ’23

1 Topological Spaces

Definition 1.1.

1. A topology on a set X is a set T of subsets of X called open sets such that

• ∅, X P T

• T 1 Ď T ùñ
ď

UPT 1

U P T . (Preserved under arbitrary unions)

• U1, ¨ ¨ ¨ , Un P T ùñ

n
č

i“1

Ui P T . (Preserved under finite intersections)

pX,T q – or just X when T is understood – is a (topological) space .

2. Suppose T ,T 1 are two topologies on X with T Ď T 1. We say T 1 is finer than
T and T is coarser than T 1.

3. A Ď X is closed if XzA is open. Hence ∅, X are closed, and closedness is
preserved under finite unions and arbitrary intersections.

Example 1.1.

1. The discrete topology on X is T “ PpXq.

2. The trivial topology on X is T “ t∅, Xu.

3. X “ t1, 2, 3u:
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Definition 1.2. A set B of subsets of X is a basis if

• X “
ď

BPB

B

• x P B1 X B2 with B1, B2 P B ùñ pDB P Bq px P B Ď B1 X B2q

Theorem 1.1. A basis B generates a topology T via

U P T ô p@x P Uq pDB P Bq px P B Ď Uq .

Proof. ∅ P T (vacuously) and X P T since B covers X. We then verify the union and
intersection properties:

• Suppose Uα Ď X are open, then
Ť

α Uα is open because

x P
ď

α

Uα ùñ x P Uα for some α ùñ x P Bα Ď Uα Ď
ď

α

Uα

• Suppose U1, U2 are open, then U1 X U2 is open because

x P U1 X U2 ùñ

"

x P B1 Ď U1 for some B1 P B
x P B2 Ď U2 for some B2 P B

ùñ x P B Ď B1 X B2 Ď U1 X U2

for some B P B. By induction, any finite intersection of open sets is open. ■

Example 1.2. Let X “ R. We can construct three topologies via the bases:

1. tpa, bq : a, b P Ru (the standard topology on R)

2. tra, bq : a, b P Ru

3. tU Ď R : U “ Rz tx1, ¨ ¨ ¨ , xnu for some x1, ¨ ¨ ¨ , xn P Ru

Note, p2q is finer than p1q, and p1q is finer than p3q.

Remark.

1. Infinite intersections may not be open. E.g.
Ş

np´1{n, 1{nq “ t0u is not open in
the standard topology on R.

2. Different bases could generate the same topology. E.g. For X “ R2, open balls
generate the same topology as open squares do.
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Definition 1.3. Let X be a space, and A Ď X.

1. intpAq “
Ť

tU Ď A : U is openu is the interior of A.

2. A “
Ş

tC Ě A : C is closedu is the closure of A.

3. A is dense if A “ X.

Example 1.3.

1. intpAq “ A “ A in the discrete topology.

2. intpAq “ ∅;A “ X in the trivial topology for any A ‰ ∅, X.

3. Q is dense in R.

Warning. A,B dense does not imply A X B dense, e.g. take Q and Q `
?
2.

Theorem 1.2.

1. A open ô A “ intpAq

2. A closed ô A “ A

Definition 1.4.

1. A neighborhood of x P Xx P Xx P X is an open set that contains x.

2. x P X is a limit point of A if p@x P U P T q pA X Uz txu ‰ ∅.q

3. x P X is an adherent point of A if p@x P U P T q pA X U ‰ ∅.q

4. The boundary of A is BA “ tx P X : x adh pt of A and XzAu “ A X XzA.

Theorem 1.3.

1. A “ tadherent pts of Au “ A Y tlimit pts of Au “ intpAq \ BA.

2. X “ intpAq \ BA \ intpXzAq.

Theorem 1.4. If U1, U2 are dense and open, then U1 X U2 is dense and open.

Proof. Suppose x P X. We want to show that for any x P U open we have UXpU1XU2q ‰ ∅.
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Since U1 is dense, U X U1 ‰ ∅. Since U2 is also dense, U X U1 X U2 ‰ ∅. ■

2 Metric Spaces

Definition 2.1.

1. A metric on a set X is a function d : X2 Ñ R such that

• dpx, yq ě 0 and equality holds if and only if x “ y

• dpx, yq “ dpy, xq

• dpx, yq ` dpy, zq ě dpx, zq

The set Bxpεq “ ty : dpx, yq ă εu is the (open) εεε-ball centered at xxx.

2. The metric topology on pX, dq is the topology generated by the basis

B “ tBxprq : x P X, r ą 0u

Example 2.1. The euclidean metric d on Rn is dpx,yq “
a

ř

ipxi ´ yiq2.

3 Subspace Spaces

Definition 3.1. Let pX,T q be a space and A Ď X. The subspace topology on A
(with respect to X) is

TA “ tA X U : U P T u .

We call A with this topology a subspace of X.

Theorem 3.1. A basis B for T defines a basis BA for TA via

BA “ tA X B : B P Bu .

Remark. If pX, dq is a metric space and A Ď X then pA, dAq is a metric space where
dApa1, a2q “ dpa1, a2q.
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Theorem 3.2. Let pX, dq be a metric space. Then the metric topology on A Ď X
agrees with the subspace topology of A Ď X.

Proof. The subspace topology on A has basis BS “ tA X BxprquxPX whereas the metric
topology on A has basis BM “

␣

BA
x prq

(

“ tA X BxprquxPA Ď BS. On the other hand, given
any open U in the subspace topology and x P U Ď A, we have x P A X Bxprq Ď U for some
r ą 0, but this is just x P BA

x prq Ď U . Since x P U was arbitrary, U is open in the metric
topology too. ■

Definition 3.2. A Ď X (space) is discrete if its subspace topology is discrete.

Example 3.1. Is X “ t0u Yn t1{nu discrete in R? No. t0u is not open in X. If it
were, then Dpa, bq such that pa, bq X X “ t0u, but 1{n ă b for large n.

Warning. B “ A “ R ˆ t0u Ď X “ R2 are examples for the following statements:

1. B open in A does not imply B open in X.

2. Suppose A Ď Y Ď X, then the intpAq in Y may not be Y X intpAq.

But these versions are true:

Theorem 3.3.

1. B open in A, and A open in X, then B open in X.

2. Suppose A Ď Y Ď X, the closure of A in Y is Y X pclosure of A in Xq.

4 Product Spaces

Definition 4.1. Let tXαuα be a collection of spaces.

1. The product topology on X1 ˆ ¨ ¨ ¨ ˆ Xn is generated by the basis

B “ tY1 ˆ ¨ ¨ ¨ ˆ Yn : Y1, ¨ ¨ ¨ , Yn openu

2. More generally, the product topology on
ś

αXα is generated by the basis

B “ t
ś

α Yα : Yα open for all α, and only finitely many Yα ‰ Xαu
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Theorem 4.1.

1. If A Ď X;B Ď Y are subspaces, then the subspace topology and product topology
on A ˆ B agree.

2. The metric topology on Rn agrees with the product topology on Rn.

5 Quotient Space

Definition 5.1.

• Let X be a space, Y be a set, and q : X Ñ Y be surjective. The quotient
topology on Y induced by the quotient map q is given by

B “
␣

U Ď Y : q´1
pUq open in X

(

• Let A Ď X be a subset and define x
A
„ y ô x “ y or x, y P A. We denote

X{A the space on X{
A
„ with quotient topology induced by the canonical map

q : X ↠ X{
A
„.

Remark. An equivalence relation „ on X determines the surjective canonical map
q : X ↠ X{ „ defined by qpxq “ equivalence class of x.

Example 5.1.

1. Consider the unit 2-disk X “ D2 “ tx ˆ y : x2 ` y2 ď 1u. If we identify to-
gether all points on the boundary BD2, we get the quotient space D2{BD2

that is homeomorphic with the subspace of R3 called the unit 2-sphere S2 “

tx ˆ y ˆ z : x2 ` y2 ` z2 “ 1u.
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2. We can construct a torus S1 ˆ S1 from the rectangle r0, 1s ˆ r0, 1s.

3. We can patch two disks D2 \D2 along their boundaries to obtain S2. Formally,
given a homeomorphism φ : BD2

1 Ñ D2
2, we have pD2

1 \ D2
2q{ „ “ S2 where

x „ y ô x “ y or x P BD2
1, y P BD2

2, φpxq “ y.

6 Continuous Functions

Definition 6.1. Let X, Y be spaces. A function f : X Ñ Y is

• continuous at x P Xx P Xx P X if f´1pV q is open in X for all neighborhoods V of fpxq.

• continuous if f´1pV q is open in X for all V open in Y .

• a homeomorphism if f is bijective, and f and f´1 are continuous.

Theorem 6.1.

1. Let B be a basis of X. The map f : X Ñ Y is continuous if and only if f´1pBq

is open for all B P B.

2. A composition of continuous functions is continuous.

3. Let A Ď X be a subspace and f : X Ñ Y be continuous. Then f |A is continuous.

4. Let f : Z Ñ X ˆ Y where f “ fX ˆ fY . Then f is continuous if and only if
fX , fY are continuous.

5. Any quotient map is continuous. Given a quotient map q : X Ñ Y , f : Y Ñ Z
is continuous if and only if g “ f ˝ q is continuous.

Y

X

Z

g
q

f

6. The following are equivalent to f : X Ñ Y being continuous:

(1) f´1pCq is closed for all closed C Ď Y .

(2) Given any x P X and fpxq Ď V open, there exists open U with fpUq Ď V .

(3) f
`

A
˘

Ď fpAq for all A Ď X.
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Proof of (6).

• Continuity is equivalent to (1) by taking complements.

• For (2), say f is continuous, then U “ f´1pV q works. Conversely, say (2) is true. Then
for any open V Ď Y , any v P V admits a neighborhood within V , which has an open
preimage Uv Ď X. Then f´1pV q “

Ť

vPV Uv is open, and thus f is continuous.

• p1q ñ p3q. Since A Ď f´1pfpAqq Ď f´1
´

fpAq

¯

which is closed, we have A Ď

f´1
´

fpAq

¯

and thus f
`

A
˘

Ď fpAq.

• p3q ñ p1q. Let C Ď Y be closed. Then f
´

f´1pCq

¯

“ f pf´1pCqq Ď C “ C and hence

f´1pCq Ď f´1f
´

f´1pCq

¯

Ď f´1pCq and thus f´1pCq is closed. ■

Corollary 6.1. Say X, Y are metric spaces. f : X Ñ Y is continuous if and only if

p@x P X, ε ą 0q pDδ ą 0q p@dXpx, yq ă δq pdY pfpxq, fpyqq ă εq .

Theorem 6.2. (Pasting Lemma) Let X “ AYB be a space where A,B are closed.
If fA : A Ñ Y and fB : B Ñ Y are continuous and fApxq “ fBpxq for all x P A X B,
then f : X Ñ Y defined by

fpxq “

"

fApxq x P A
fBpxq x P B

is continuous.

7 Limits and Continuity

Definition 7.1. txnunPN in X converges to x P X if any neighborhood of x contains
all but finitely many xn. Write xn Ñ x.

Warning. Limits may not be unique:

1. In the trivial topology, any sequence converges to all points.

2. In R1 \ R2{ „ where x „ y ô x P R1, y P R2, x “ y ‰ 0, we have

1{n Ñ 01 and 1{n Ñ 02 (fat point)
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Theorem 7.1. If xn Ñ x, then x P txnun.

Definition 7.2. A space X is first-countable if for any x P X, there exists a count-
able number of neighborhoods U1, U2, ¨ ¨ ¨ such that any neighborhood of x contains
some Ui. The tUiu is called a neighborhood basis of x.

Theorem 7.2. If X is first-countable,

1. x P A ùñ Dx1, x2, ¨ ¨ ¨ P A such that xn Ñ x.

2. f : X Ñ Y is continuous if and only if pxn Ñ xq ùñ pfpxnq Ñ fpxqq.

8 Connectedness

Definition 8.1. A space X is connected if there is no nontrivial clopen (closed and
open) set A Ď X.

Example 8.1. The subspace p0, 1q Y p2, 3q of R is not connected.

Theorem 8.1. ra, bs Ď R is connected.

Proof. Suppose the contrary, that ra, bs “ A \ B where A,B are closed and non-empty.
WLOG Assume b P B. Then s “ supA ă b. If s P A, since A is also open, there exists
ps ´ ε, s ` εq Ď A ùñ supA ě s ` ε, a contradiction. Hence s P B instead. Since B is
open, there exists ps ´ ε, s ` εq Ď B and thus supA ď s ´ ε, a contradiction. ■

Definition 8.2. A space X is path-connected if every pair x, y P X can be joined
by a path in X: a continuous map γ : I “ r0, 1s Ñ X such that γp0q “ x and γp1q “ y.

Example 8.2.

1. Rn is path-connected. Use the path γptq “ tx ` p1 ´ tqy.

2. Sn is path-connected. Use the path γptq “
tx ` p1 ´ tqy

|tx ` p1 ´ tqy|
.

3. A torus is path-connected: Start with a path in I2 and then take the quotient.
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Theorem 8.2.

1. Any path-connected space is connected.

2. If f : X Ñ Y is continuous and surjective,

• X connected ùñ Y connected.

• X path-connected ùñ Y path-connected.

3. Quotients of a (path-)connected space is (path-)connected.

4. A product of (path-)connected spaces is (path-)connected.

Example 8.3. The topologist’s sine curve defined by

X “ tpx ˆ sinp1{xqq : x ą 0u Y t0u ˆ r´1, 1s

is connected but not path-connected.

´1

1

Definition 8.3. The equivalence relation x „ y where there is a (path-)connected
subspace containing both x, y partitions the space into (path-)connected components .

9 Compactness

Definition 9.1.

1. An open cover of X is a collection of open sets that cover X. A space X is
compact if every open cover of X admits a finite subcover.

2. A space X is sequentially compact if every sequence of points in X admits a
convergent subsequence.
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Theorem 9.1. 1st-countable ` compact ùñ sequentially compact.

Proof. Suppose txnun does not have a convergent subsequence. Let x P X, then there exists
a countable neighborhood basis U1, U2, ¨ ¨ ¨ . We can safely let U1 Ě U2 Ě ¨ ¨ ¨ by taking
successive intersections. Since there is no subsequence that converges to x, only finitely
many xn lie in Un for some sufficiently large n. Hence, every x P X has a neighborhood Ux

that intersects txnun at a finite number of points. Taking the union of all Ux and applying
compactness shows that txnun is finite, so we can conclude by the pigeonhole principle. ■

Theorem 9.2.

1. Every closed subspace of a compact space is compact.

2. A continuous function maps compact spaces to a compact image.

3. Suppose X is compact and C1 Ě C2 Ě ¨ ¨ ¨ is a sequence of closed and non-empty
sets. Then

Ť

nCn is non-empty.

4. A product of compact spaces is compact (Infinite case is hard: Tychonoff’s Thm)

5. ra, bs is compact.

Proof of (4). Suppose ra, bs “
Ť

α Uα. Then

S “ tx P ra, bs : ra, bs can be covered by finitely many Uαu

contains a P S and is bounded above by b. Hence S has a supremum s.

Claim. s P S.
Proof. Let s P Uβ for some β, so there exists ps ´ ε, s ` εq Ď Uβ. If s R S, just add Uβ

to the finite subcover of ra, s ´ ε{2s.

Claim. s “ b.
Proof. If not, then similarly, just add Uβ to the finite subcover of ra, ss.

Therefore ra, bs can be covered by finitely many Uα. ■

Theorem 9.3. (Heine-Borel)
A subspace A of Rn is compact if and only if it is closed and bounded.

Proof.

• pðq X Ď r´M,M sn is a closed subset of a compact space, so X is compact.
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• pñq Compactness on the open cover tB0prqurą0 shows X is bounded. We then show

any limit pt x of X is in X: For all n P N˚, Cn :“ Bx1{n X X ‰ ∅, and thus
Ş

nCn “ X X txu is non-empty. ■

10 Hausdorff Spaces

Definition 10.1. A space X is Hausdorff if for any distinct x, y P X there exists
disjoint neighborhoods x P U, y P V .

Example 10.1.

1. The trivial topology is not Hausdorff. The discrete topology is.

2. Metric spaces are Hausdorff.

3. The finite complement topology on R is not Hausdorff.

4. The space R1 \ R2{ „ containing the fat point is not Hausdorff.

Theorem 10.1. X is Hausdorff if and only if ∆ “ tpx ˆ xq : x P Xu Ď X2 is closed.

Proof.

• pñq If X is Hausdorff, for any x ‰ y there exists disjoint neighborhoods U, V of x, y
respectively. Then UˆV is a neighborhood of pxˆyq P XˆY disjoint from ∆. Taking
the union over all px ˆ yq implies ∆ is closed.

• pðq If ∆ is closed, given any x ‰ y there exists a basis neighborhood U ˆ V of pxˆ yq

disjoint from ∆. Then U, V are the desired neighborhoods. ■

Theorem 10.2.

1. In a Hausdorff space, a sequence of points converge to at most one point.

2. One-point sets in a Hausdorff space are closed.

3. A subspace of a Hausdorff space is Hausdorff.

4. A finite product of Hausdorff spaces is Hausdorff.

5. A compact subspace of a Hausdorff space is closed.

Warning. A quotient of a Hausdorff space may not be Hausdorff.
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11 Normal Spaces

Definition 11.1.

1. X is T1T1T1 if one-point sets are closed.

2. A space is normal if it is T1, and, for any pair of disjoint closed sets A,B Ď X
there exists disjoint open sets U, V Ď X such that A Ď U,B Ď V .

Remark.

1. Normal ùñ Hausdorff ùñ T1.

2. A quotient, subspace, or product of normal space(s) need not be normal.

Example 11.1.

1. The fat point R1 \ R2{ „ is T1 but not Hausdorff.

2. TheKKK-topology on R generated by tpa, bquYtpa, bqz
Ť

n t1{nuu is Hausdorff but
not normal.

3. The topology Rℓ on R generated by tra, bqu is normal, but R2
ℓ is not normal.

Theorem 11.1.

1. A closed subspace A of a normal space X is normal.

2. Compact ` Hausdorff ùñ Normal.

Proof of (2). Suppose A,B Ď X are disjoint and closed. Fix a P A. Then for each b P B
there exists disjoint neighborhoods a P Ub, b P Vb. Since B is also compact, there exists
finitely many Vb that cover B. The union of such finitely many Vb and the intersection of
their corresponding Ub form disjoint open sets containing a and B respectively. Repeat the
same procedure for every a P A and then apply compactness of A. ■

Theorem 11.2. Metric spaces are normal.

Proof. We can show that, for any subset A Ď X, the point-to-set distance dp´, Aq : X Ñ R
given by dpx,Aq “ inf

aPA
dpx, aq is continuous. For disjoint closed sets A,B, the open sets

U “ tx : dpx,Aq ă dpx,Bqu , V “ tx : dpx,Aq ą dpx,Bqu

contain A,B respectively and are disjoint. ■
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Theorem 11.3. X is normal if and only if for any closed A and open U such that
A Ď U , there exists an open set V such that A Ď V Ď V Ď U .

Theorem 11.4. (Urysohn’s Lemma)
Let X be normal and A,B be disjoint closed sets of X. There exists a continuous map

f : X Ñ I

such that fpAq “ t0u and fpBq “ t1u.

Proof. Define open sets Up for each p P QX r0, 1s as follows: Enumerate QX r0, 1s such that
1 and 0 are the first two elements. Define U1 “ X ´ B and by normality pick U0 such that
A Ď U0 Ď U0 Ď U1. By induction, say we defined Up for a finite number of p’s and let r
be the next rational in the enumeration. We must have p ă r ă q where Up, Uq are already
defined. By normality we pick Ur such that Up Ď Ur Ď Ur Ď Uq.

Additionally, we let Up “ ∅ for all rationals p ă 0 and Up “ X for all rationals p ą 1. Hence,

p ă q ñ Up Ď Uq.

We then define fpxq “ inf tp : x P Upu. It is easy to see fpAq “ t0u and fpBq “ t1u. We
show that f is continuous.

Lemma 1. x P Ur ñ fpxq ď r
Proof. If x P Ur, then x P Us for every s ą r. Hence fpxq ď r.

Lemma 2. x R Ur ñ fpxq ě r.
Proof. If x R Ur, then x R Us for any s ă r. Hence fpxq ě r.

Given a ball I “ pfpxq ´ δ, fpxq ` δq, we wish to find a neighborhood U of x such that
fpUq Ď I. First we choose rational numbers p, q P I such that p ă fpxq ă q. Then the open
set UqzUp is the desired neighborhood using the lemmas above. ■

Theorem 11.5. (Tietze Extension Theorem)
Let A be closed in a normal space X. Any continuous map from A to I can be extended
to a continuous map from X to I. True also for R instead of I.

14



Tristan Chaang Topology Notes

Proof. We show for r´1, 1s instead of I, and then for p´1, 1q instead of R.

Lemma. If f : A Ñ r´ε, εs is continuous, there exists continuous g : X Ñ R with
gpXq Ď r´ε{3, ε{3s and pg ´ fqpAq Ď r´2ε{3, 2ε{3s.

Proof. Applying the Urysohn Lemma on the disjoint closed sets L “ f´1pr´ε,´ε{3sq

and R “ f´1prε{3, εsq, there exists g : X Ñ r´ε{3, ε{3s such that gpLq “ t´ε{3u and
gpRq “ tε{3u. This g works.

Now let f : A Ñ r´1, 1s be continuous. Then we can find g1 : X Ñ r´1{3, 1{3s such that
|fpaq ´ g1paq| ď 2{3 for all a P A. Then we apply the Lemma on f ´ g1 again, so we get
g2 : X Ñ r´2{9, 2{9s such that |fpaq ´ g1paq ´ g2paq| ď 4{9. Recursively, we get a sequence
of functions gn such that gn`1 : X Ñ r´p2{3qn{3, p2{3qn{3s and

|fpaq ´ g1paq ´ ¨ ¨ ¨ ´ gn`1paq| ď

ˆ

2

3

˙n`1

.

By the Weierstrass M -test, gpxq “

8
ÿ

n“1

gnpxq converges to the desired function (Exercise).

To show the p´1, 1q version, take g from the r´1, 1s case. Apply the Urysohn Lemma to the
disjoint closed sets A and D “ g´1pt´1uq Y g´1pt1uq to get a continuous φ : X Ñ r0, 1s so
that φpDq “ t0u and φpAq “ t1u. Then hpxq “ φpxqgpxq works (|hpxq| ă 1). ■

Urysohn Metrization Theorem

Definition 11.2.

1. A space is second-countable if it has a countable basis.

2. A space is metrizable if it is homeomorphic to a metric space.

Theorem 11.6. (Urysohn Metrization Theorem)
2nd countable ` Normal ùñ Metrizable.

Proof. We first note that Iω “ tx “ px1, x2, ¨ ¨ ¨ q : xi P Iu with the metric

dpx,yq “ sup
n

|xn ´ yn|

n
.

is a metric space. Let X be normal with a countable basis B. We will embed X into Iω.
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Lemma. There exists a collection tfn : X Ñ IunPN of continuous functions such that
given any x P X and any neighborhood U , there exists some fn that is positive at x
but vanishes outside U .

Proof. For each B,C P B with B Ď C, apply the Urysohn Lemma to construct a
continuous function gB,C : X Ñ I such that gB,C

`

B
˘

“ t1u and gB,CpXzCq “ t0u.
␣

gB,C : B Ď C
(

is the desired collection. It is countable because B ˆ B is countable,
and given any x with neighborhood U , we can choose by Theorem 11.3 the sequence
of open sets x P B Ď B Ď C Ď U , and then use gB,C .

Using tfnunPN from the Lemma, define F : X Ñ Iω such that

F pxq “ pf0pxq, f1pxq, f2pxq, ¨ ¨ ¨q

• F is injective because given x ‰ y, there exists some fnpxq ą 0 “ fnpyq (Hausdorff!).

• F is continuous: Let Bxpεq Ď Iω. Fix an integer N ą 2{ε. Since each fn is continuous,
for each 1 ď n ď N there exists a neighborhood x P Un such that y P Un ùñ

|fnpxq ´ fnpyq| ď ε{2. Hence for any y P U1 X ¨ ¨ ¨ X UN ,

d pF pxq, F pyqq “ sup
n

|fnpxq ´ fnpyq|

n

ď max

ˆ

sup
1ďnďN

|fnpxq ´ fnpyq|

n
, sup
nąN

|fnpxq ´ fnpyq|

n

˙

ď max

ˆ

ε

2
,

1

N ` 1

˙

ă ε.

• For each open set U in X, F pUq is open in F pXq: Let x P U and fpxq “ z. Choose a
fN that is positive at x but vanishes outside U . Let

W “ F pXq X π´1
N pp0, 1sq

be open in F pXq. We claim that z P W Ď F pUq. Firstly, we have z “ F pxq P W
because fNpxq ą 0. Secondly, given any F pyq P W , we must have fNpyq ą 0. Since fN
vanishes outside U , y must be in U , so F pyq P F pUq.

Therefore, X is homeomorphic to its image under F , a subspace of the metric space Iω,
which is also a metric space. ■

12 Manifolds

Definition 12.1. An nnn-manifold is a 2nd countable Hausdorff space X such that
each x P X has a neighborhood homeomorphic with an open subset of Rn. We also
write X “ Xn. A 1-manifold is a curve , and a 2-manifold is a surface .

16
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Theorem 12.1. Xn ˆ Y m is an pn ` mq-manifold.

Proof. Hausdorffness and 2nd Countability follow immediately. Fix px ˆ yq P X ˆ Y , then
there exists neighborhoods U, V of x, y homeomorphic to Rn,Rm respectively. Then U ˆ V
is a neighborhood of px ˆ yq homeomorphic to Rn ˆ Rm – Rn`m. ■

Example 12.1.

1. Rn is an n-manifold.

2. Sn is an n-manifold. (Write Sn “ en1 Y en2 where en “ int pDnq – Rn).

3. The real projective space RPn “ Sn{ „ (where x „ y ô x “ ˘y) is an
n-manifold.

4. T n “ S1
ˆ ¨ ¨ ¨S1

looooomooooon

n

is an n-manifold. T 2 is a torus .

5. Fact: Every connected curve is homeomorphic to either R and S1.

Theorem 12.2. A compact n-manifold X can be embedded in RN for some N P N.

Proof. Each x P X admits a neighborhood Ux with a homeo φx : Rn Ñ Ux. We can
choose a basis x P Bx Ď φx pB0p1qq, and hence by compactness of X via the Bx there exists
U1, ¨ ¨ ¨ , Um with homeos φi : Rn Ñ Ui and X Ď

Ť

i φi pB0p1qq

By Urysohn’s Lemma, there exists ρi : X Ñ I such that ρi

´

φi pB0p1qq

¯

“ t1u and

ρi pXzφi pB0p2qqq “ t0u. Via the pasting lemma, let ψi : X Ñ Rn be the continuous function

ψipxq “

"

ρipxqφ´1
i pxq x P Ui

p0, ¨ ¨ ¨ , 0q otherwise
.

φipB0p1qqφipB0p2qq

Ui – Rn

X

ψi

0 1

Then F pxq “ pρ1pxq, ¨ ¨ ¨ , ρmpxq, ψ1pxq, ¨ ¨ ¨ , ψmpxqq embeds X into Rmpn`1q. ■
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13 Paracompactness

Definition 13.1.

• An open cover tUαuα of X is locally finite if every x P X has a neighborhood
that intersects only finitely many Uα.

• A refinement of an open cover tUαuα of X is an open cover tVβuβ such that
each Vβ is contained in some Uα (depends on β).

• A space X is paracompact if it is Hausdorff, and, every open cover of X admits
a locally finite refinement.

Warning.

1. Some sources do not require Hausdorffness in the definition.

2. Quotient/Subspace/Product of paracompact space(s) may not be paracompact.

Example 13.1. Rn is paracompact. Let Bprq be the open ball of radius r centered at
the origin. Given any open covering A , for each n P N˚ we can pick a finite number
of elements of A that covers Bpnq. Intersect them with RnzBpn ´ 1q. The union of
these open sets is a desired locally finite refinement.

Theorem 13.1.

1. A closed subspace of a paracompact space is paracompact.

2. Compact ` Hausdorff ùñ Paracompact

3. Metric space ùñ Paracompact.

4. Paracompact ùñ Normal.

Proof of (4). Let A,B be closed and disjoint. We first prove the case when A “ tau. For
each b P B pick disjoint neighborhoods a P Ub, v P Vb. Since pXzBq Yb Vb is an open cover
of X, by paracompactness there exists a locally finite refinement of Vα’s that cover B. Also,
x has a neighborhood W that intersects only finitely many Vα, say Vb1 , ¨ ¨ ¨ , Vbn . Then the
open sets U “ Ub1 X ¨ ¨ ¨ X Ubn and V “ Vb1 X ¨ ¨ ¨ X Vbn form a desired pair.

For the general case, we update the notation so that for each a P A there exists disjoint
open sets a P Ua, B Ď Va. Let tUαu be a locally finite refinement that covers A, so b P B
admits a neighborhood Wb that intersects finitely many Uα, say Ua1 , ¨ ¨ ¨ , Uan . We then let

18
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Vb “ Wb Xi Vai . Then U “
Ť

α Uα and V “
Ť

bPB Vb give the desired separation. ■

Definition 13.2. A partition of unity on X for a locally finite open cover tUαuα
is a collection of continuous ρα : X Ñ I such that

• ραpxq ą 0 ùñ x P Uα

•
ř

α ραpxq “ 1 (well-defined due to local finiteness)

Theorem 13.2. Every cover of a paracompact space admits a refinement that has a
partition of unity.

Proof. Let tUαu be a cover of X. For each x P X there is an x P Uαx and hence we can
pick x P Wx Ď Wx Ď Uαx by normality. Let tVβu be a locally finite refinement of tWxu. By
Urysohn’s Lemma, there exists ψβ : X Ñ I such that ψ

`

Vβ
˘

“ t1u and ψ
`

XzUαβ

˘

“ t0u.
Then ρβpxq “ ψβpxq{

ř

γ ψγpxq is a desired partition of unity. ■

Theorem 13.3. Manifold ùñ Paracompact.

Proof. We first prove that a manifold X can be a limit of increasing compact sets.

Lemma. DK1, K2, ¨ ¨ ¨ compact with Kn Ď int pKn`1q and X “
Ť

n intpKnq.
Proof. Let Ui with homeos φi : Rn Ñ Ui such that tφipB0p1qqu covers X. Then take

the compact spaces Kn “
Ťn

i“1

Ťn
j“1 φi

´

B0pjq
¯

for n P N˚.

Let X “
Ť

α Uα. Then for each n there exists Un
1 , ¨ ¨ ¨ , Un

tn that cover the compact space
Kn. Then V n

j “ Un
j zKn´1 form a locally finite refinement: Any x P X is contained within

some intpKnq, which means it can only be in the sets V m
j p1 ď j ď tmqp1 ď m ď nq. This is

similar to Example 13.1. ■
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14 Covering Dimension

Definition 14.1.

1. The covering dimension of a space X is the infimum over n P N such that

p@ open cover tUαuq pD refinement tVβuq p@x P Xq px is in ď n ` 1 of the Vβq

or equivalently

dimX “ max
A open cover X

»

—

—

–

min
B refmt of A

´

max
xPX

|tB P B : x P Bu|

¯

looooooooooooooomooooooooooooooon

order of B

fi

ffi

ffi

fl

´ 1

2. A Lebesgue number for an open cover tUαu of a compact metric space is a real
δ ą 0 such that any subset of X of diameter ă δ is contained within some Uα.

Theorem 14.1. (Lebesgue’s Covering Lemma)
Any open cover tUαu of a compact metric space pX, dq has a Lebesgue number.

Proof. SinceX is compact, assume tUαu “ tU1, ¨ ¨ ¨ , Unu. The map fpxq “ max
1ďiďn

dpx,XzUiq ą

0 is continuous on a compact space and thus fpXq has a minimum δ ą 0. ■

Example 14.1.

1. Any compact subspace of R has dimension at most 1.

Proof. Note that C “
␣

pn, n ` 1q,
`

n ´ 1
2
, n ` 1

2

˘

: n P Z
(

has order 2. Let A be
any open covering of a compact subspace X of R, with some Lebesgue number
δ ą 0. The image I of C under f : x ÞÑ δx{2 is an open covering whose elements
have diameter δ{2 ă δ, and hence is an open refinement subcover of A . Hence

dimX “ max
A open cover X

»

– min
B open refinement

subcover of A

porder of Bq

fi

fl ´ 1

ď max
A open cover X

r2s ´ 1 “ 1.
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2. dim I “ 1.

Proof. We show that there is some open covering A such that any open refine-
ment subcover of A has order at least 2. Let A “ tr0, 1q, p0, 1su and let B be
any open refinement subcovering. Since 0 and 1 cannot belong to the same re-
finement, B has at least two elements. Partition B into two nonempty parts B1

and B2. If B had order 1 then
Ť

B1 and
Ť

B2 disconnect r0, 1s, a contradiction.

3. Fact: dim In “ n, and every compact subspace of Rn has dimension ď n.

Theorem 14.2.

• If Y is a closed subspace of a finite dimensional space X, then dimY ď dimX.

• If X “ Y Y Z where Y, Z are closed finite dimensional subspaces of X, then
dimX “ maxpdimY, dimZq.

• Every compact subspace of RN has dimension at most N .

Tangent: Baire’s Theorem, Function Spaces and Geometry

Definition 14.2. Let X be a compact metric space.

1. C pX,Rnq “ tf : X Ñ Rn ctsu is the metric space equipped with the uniform
metric dpf, gq “ sup

x
|fpxq ´ gpxq|.

2. For A Ď X, diampAq “ sup
x,yPA

dpx, yq.

3. ∆pfq “ sup tdiampf´1 tzuq : z P fpXqu (Deviation of f from injectivity).

Remark.
č

n

U1{n “ tf : ∆pfq “ 0u “ tf injectiveu.

Theorem 14.3. (Baire’s Theorem)
Let tUnu be a countable collection of dense open sets in a compact Hausdorff space X.
Then

Ş

n Un is dense in X.

Proof. Let W1 be an open set. We want to show W1 Xn Un ‰ ∅.

• Since U1 is dense and open, there exists x1 P W1 X U1 open.

• Inductively, since X is normal, there exists xn P Wn Ď Wn Ď Wn´1 X Un´1.
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Since X is compact and W1 Ě W2 Ě ¨ ¨ ¨ , we have

∅ ‰
č

n

Wn Ď
č

n

pUn X Wnq Ď W Xn Un. ■

Definition 14.3.

1. tz0, ¨ ¨ ¨ , zmu Ď Rn are geometrically independent if

λ0z0 ` ¨ ¨ ¨ ` λmzm “ 0, λ0 ` ¨ ¨ ¨ ` λm “ 0 ùñ λ0 “ ¨ ¨ ¨ “ λm “ 0

2. A Ď Rn is in general position if any subset of size n ` 1 are geom. ind.

Theorem 14.4. Given tz0, ¨ ¨ ¨ , zmu Ď Rn and δ ą 0, there exists ty0, ¨ ¨ ¨ , ymu Ď Rn

that is in general position such that all |zi ´ yi| ă δ.

Back to dimension theory

Theorem 14.5. (Embedding Compact Metric Spaces)
Every compact metric space X of dimension n can be embedded in R2n`1.

Define Uε “ tf P C pX,R2n`1q : ∆pfq ă εu.

Claim. Uε is open.

Proof. Let f P Uε, we want to show DBf pδq Ď Uε. Pick ε ă b ă ∆pfq and define

A “ tpx ˆ yq : dpx, yq ě bu Ď X2

Note that fpxq “ fpyq ùñ dpx, yq ď ∆pfq ă b ùñ pxˆ yq R A. Hence |fpxq ´ fpyq|

has a positive minimum 2δ on A. Now if g P Bf pδq, then for any px ˆ yq P A,

|fpxq ´ gpxq| ă δ, |fpyq ´ gpyq| ă δ, |fpxq ´ fpyq| ě 2δ

so gpxq ‰ gpyq. In other words, gpxq “ gpyq ùñ dpx, yq ă b ùñ ∆g ď b ă ε.
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Claim. Uε is dense. (Difficult!)

Proof. Let f P C pX,R2n`1q and δ ą 0, we want to find a g P Bf pδq X Uε. Firstly, we
cover X with V1, ¨ ¨ ¨ , Vm such that

(1) diampViq ă ε{2

(2) diampfpViqq ă δ{2

(3) Each x P X is in at most n ` 1 of the Vi.

To do this, pick a Lebesgue number 0 ă κ ă ε{4 such that any Bxpκq Ď f´1 pBypδ{4qq

for some y. Since dimX ď n, there exists a refinement tVβuβ of tBxpκqux such that
(3) holds. Since VβBxpβqpκq for some xpβq, (1) and (2) also hold. By compactness, we
can find a finite cover using Vi.

Let φi : X Ñ R be a partition of unity associated to the Ui. Also, fix xi P Ui and
zi P R2n`1 such that |fpxiq ´ zi| ă δ{2 and tziu is in general position. Define

gpxq “
ÿ

i

φipxqzi.

Then dpf, gq ă δ because

|gpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

φipxqpzi ´ fpxiqq `
ÿ

i

φipxqpfpxiq ´ fpxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ÿ

i

φipxq

ˆ

δ

2
`
δ

2

˙

“ δ.

and g P Uε because gpxq “ gpyq ùñ
ř

i pφipxq ´ φipyqq zi “ 0 ùñ φipxq “ φipyq @i
since x, y are in ď 2pn`1q of the Ui. Since φipxq ą 0 for some i, we have x, y P Ui ùñ

dpx, yq ă ε{2. Therefore ∆pgq ď ε{2 ă ε.

By Baire’s theorem,
Ş

n U1{n is dense and hence non-empty, i.e. there is a continuous injective
f : X Ñ R2n`1. Also since X is compact and fpXq is Hausdorff, f sends closed sets to closed
sets (i.e. is closed). Hence f embeds X into R2n`1. ■

Theorem 14.6. (Embedding Manifolds)
Every manifold can embedded in some RN .

Proof. Let X be an m-manifold.
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Lemma 1. Let f : X Ñ RN such that f´1pcompactq “ compact. Then f is closed
(sends closed sets to closed sets).

Proof. Let C Ď X be closed. Suppose y P RNzfpCq. By Heine-Borel, Bypεq is

compact and hence K “ C X f´1
´

Bypεq
¯

is compact ùñ fpKq Ď fpCq is compact

ùñ V “ BypεqzfpKq is a neighborhood of y. Note that

z P V X fpCq ùñ Dx P f´1
pBypεqq X C Ď K with fpxq “ z

ùñ z P fpKq ùñ V X fpCq “ ∅

and thus fpCq is closed.

Lemma 2. There exists continuous f : X Ñ R such that f´1pcompactq “ compact.

Proof. Using the Lemma from Theorem 13.3, we can write X as a limit of increasing
compact sets

Ť

nKn where Kn Ď intpKn`1q. Since manifold ùñ paracompact ùñ

normal, we can use Urysohn’s Lemma to construct continuous maps φn : X Ñ I such

that φnpKnq ” 0 and φn

´

XzKn`1

¯

” 1. Then we define f : X Ñ R by f “
ř8

n“1 φn.

• x P Kn ùñ φnpxq “ φn`1pxq “ ¨ ¨ ¨ “ 0 and hence f is well-defined.

• x R Kn ùñ φn´1pxq “ φn´2pxq “ ¨ ¨ ¨ “ 1 ùñ fpxq ě n ´ 1.

• f is continuous: Given any pa, bq Ď R, f´1ppa, bqq Ď Krb`2s and hence f´1ppa, bqq

is the preimage of pa, bq under
řrb`1s

n“1 φn (a continuous map) which is open.

• f´1pCq is compact for any compact C Ď R: Since C is closed and bounded,
f´1pCq is closed and contained within some KN (compact), and hence f´1pCq is
compact (closed subspace of a compact space).

Take Kn and f from Lemma 2, and denote Rn “ KnzintpKn´1q and Un “ intpKn`1qzKn´2.
By Urysohn’s Lemma again, construct ρn : X Ñ R with ρnpRnq ” 1, ρn pXzUnq ” 0.

Since Dn “ Kn`1zintpKn´2q is compact and metrizable (normal and 2nd countable), there
exists a cts closed inj fn : Dn ãÝÑ R2m`1. Then define ψn : X Ñ R2m`1, ψ : X Ñ R4m`3 as

ψnpxq “

"

ρnpxqfnpxq x P Un

0 otherwise
ψpxq “

˜

ÿ

even n

ψnpxq,
ÿ

odd n

ψnpxq, fpxq

¸

.

ψ is injective (Exercise: fpxq “ fpyq ùñ x, y P Rℓ, and
ř

i”2ℓ
ψipxq “ ψℓpxq “ fℓpxq “

fℓpyq ùñ x “ y) and closed (for any compact K Ď RN , ψ´1pKq is closed and contained
within the compact f´1pπNpKqq). Thus ψ embeds X into R4m`3. ■
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15 Homotopies

From now on, assume all ‘maps’ are continuous.

Definition 15.1.

1. Given f0, f1 : X Ñ Y , a homotopy from f0 to f1 is H : X ˆ I Ñ Y such that
f0pxq “ Hpx, 0q, f1pxq “ Hpx, 1q. We sometimes write Hpx, tq “ ftpxq. If such
homotopy exists, we say f0, f1 are homotopic (f0 » f1).

2. A homotopy relative to AAA Ď X (homotopy relA) is a homotopyH : XˆI Ñ Y
such that Hpa, tq “ Hpa, 0q for all a P A.

3. A reparameterization of α : I Ñ X is a map β : I Ñ X such that β “ α ˝ r
where r : I Ñ I satisfies rp0q “ 0, rp1q “ 1.

4. X, Y are homotopy equivalent (X » Y ) if there exists f : X Ñ Y, g : Y Ñ X
(called homotopy equivalences) such that f ˝ g » 1Y and g ˝ f » 1X .

5. X is contractible if X » point. f : X Ñ Y is nullhomotopic if f » constant.

6. A retraction of X onto A Ď X is a map r : X Ñ X with r |A“ 1A, rpXq “ A.
If it exists, A is a retract of X.

7. A deformation retraction of X onto A Ď X is a homotopy rel A from the
identity on X to a retraction of X onto A. If it exists, A is a deformation
retract of X.

Example 15.1.

(L) Which paths f : S1 Ñ T 2 # T 2 are homotopic?

(R) D2ztx0, x1u deformation retracts to which blue sets?
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Remark.

1. If β is a reparameterization of α then α » β rel t0, 1u.

2. X – Y ùñ X » Y but not converse, e.g. Möbius band » S1 » Band S1 ˆ I.

3. Fact: X » Y ðñ DZ that deformation retracts to both X and Y .

16 CW Complexes

Definition 16.1. A CW complex / cell complex is a space X built as such:

1. Start with a discrete set X0, whose points are 0-cells .

2. Let Dn
α be n-balls (with BDn

α “ Sn´1
α ). Inductively, form the nnn-skeleton Xn as

the quotient space of Xn´1 \α D
n
α by identifying x „ φαpxq where φα : BDn

α Ñ

Xn´1 are the attaching maps. This makes Xn “ Xn´1 \α int pDn
αq as a set.

The enα “ int pDn
αq are called nnn-cells .

3. One can stop after finite n, setting X “ Xn. Or one can set X “
Ť8

n“0X
n,

giving it the weak topology : U Ď X is open ô U X Xn is open in Xn for all n.

The characteristic map of a cell enα is the map

Φα : Dn
α ãÑ Xn´1

\β D
n
β

quot
ÝÝÑ Xn ãÑ X

Example 16.1.

1. A 1-dim CW complex is a graph , whose 0-cells are nodes and 1-cells are edges .

e00 e02

e01 e03
e10

e11

e12 e12

2. X “ T 2 is a CW complex, with X0 “ te00u, X1 “ X0\e0a\e0b where φa ” φb ” e00
being constant, and X2 “ X1 \ e2 with attaching map φ : S1 Ñ X1 given by

quot / ‚
b

b
a

a quot b a

Note: If we swap the direction of two adjacent leaves in the middle step, we get
a Klein bottle . Attaching maps matter!
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3. The n-sphere Sn is a cell complex with two cells e0 and en, with the attaching
map Sn´1 Ñ e0. Or, we can inductively attach two n-cells to the equator Sn´1.

4. RPn – Sn{pv „ ´vq – Dn{pv „ ´v : v P BDnq is a cell complex by attaching an
n-cell to RPn´1 via the map Sn´1 ↠ RPn´1. We can also have RP8 “

Ť

nRPn.

Definition 16.2. A subcomplex of a CW complex X is a closed subspace A Ď X
that is a union of cells of X. The pair pX,Aq is a CW pair .

Example 16.2.

1. RPk Ď RPn is a subcomplex pk ď nq.

2. Sk Ď Sn is not a subcomplex with the two-cell structure, but is a subcomplex
using the recursive CW structure.

Theorem 16.1.

• If X, Y are cell complexes, then X ˆ Y is a cell complex, whose cells are emα ˆ enβ
where emα , e

n
β are cells of X, Y respectively.

• If pX,Aq is a CW pair, then the quotient space X{A is a cell complex, whose
cells are the cells of XzA, and one new 0-cell: the image of A in X{A.

Definition 16.3. A Ď X has the homotopy extension property if given any map
f0 : X Ñ Y and a homotopy ft |A: A Ñ Y of f0 |A, we can extend ft |A to a homotopy
ft on X. Equivalently, given any maps H1 : X ˆ t0u Ñ Y and H2 : A ˆ I Ñ Y that
agree on A ˆ t0u, there exists a map H : X ˆ I Ñ Y such that H agrees with both
H1, H2 where their domains meet.

Theorem 16.2. A Ď X has the homotopy extension property if and only if

X ˆ t0u Y A ˆ r0, 1s is a retract of X ˆ r0, 1s.

Proof. Let Z “ X ˆ t0u Y A ˆ r0, 1s.

• If A Ď X has h.e.p then given the maps H1 : X ˆ t0u Ñ Z and H2 : A ˆ I Ñ Z with

H1px, 0q “ px, 0q and H2pa, tq “ pa, tq

we can get an extension H : X ˆ I Ñ Z constant on Z. Hence H is the retraction.
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• The converse is easy if we assume A is closed. Say r : XˆI Ñ Z is a retraction. Given
any H1, H2 as in the definition, we can combine them via the Pasting Lemma to get
H3 : Z Ñ Y . Then H3 ˝ r : X ˆ I Ñ Y is the required homotopy. For the full proof
where A is not necessarily closed, see appendix of [Hatcher]. ■

Theorem 16.3. If pX,Aq is a CW pair, A has the homotopy extension property.

Proof. To prove X ˆ t0u Y A ˆ I is a retract of X ˆ I, we first prove

Lemma. Dn ˆ t0u Y BDn ˆ I is a deformation retract of Dn ˆ I.

Proof. Consider radial projection r from p0, 2q P Dn ˆ R:

Then ft “ t ¨ r ` p1 ´ tq ¨ 1 is a deformation retract.

Applying the deformation retraction to every Dn attached to Xn´1 that is not in An, we
get a deformation retraction Hn from Xn ˆ I onto Xn ˆ t0u Y pXn´1 Y Anq ˆ I. Note that
concatenating adjacent Hn and Hn`1 gives a deformation retraction

Xn`1
ˆ I

Hn`1
ÝÝÝÑ Xn`1

ˆ t0u Y
`

Xn
Y An`1

˘

ˆ I

Hn
ÝÝÑ Xn`1

ˆ t0u Y
``

Xn
ˆ t0u Y

`

Xn´1
Y An

˘

ˆ I
˘

Y
`

An`1
ˆ I

˘˘

“ Xn`1
ˆ t0u Y

`

Xn´1
Y An`1

˘

ˆ I

and thus by concatenating all H0, H1, ¨ ¨ ¨ into r1{4, 1{2s, r1{8, 1{4s, ¨ ¨ ¨ we get a deformation
retract from Xˆ I onto Xˆ t0u YAˆ I. (In the infinite case, there is no continuity problem
at t “ 0 since X is given the weak topology). ■

Theorem 16.4. If pX,Aq is a CW pair and A is contractible, then the quotient map
X ↠ X{A is a homotopy equivalence.

Proof. Let ft : X Ñ X be a homotopy extension of the contraction of A with f0 “ 1X . Since
ftpAq Ď A and f1pAq “ pt, we can construct well-defined maps ft, g satisfying

X{A X{A

XX
ft

q

ft

q

X{A

XX
f1

g
q
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Then g ˝ q “ f1 » f0 “ 1X and qpgprxsqq “ qpgpqpxqq “ qpf1pxqq “ f1pqpxqq “ f1prxsq and
hence q ˝ g “ f1 » f0 “ 1X{A, so g, q are homotopy equivalences.

Example 16.3.

1.

2.

17 Fundamental Groups

Definition 17.1.

1. A path on X is α : I Ñ X. Define Ωx0pXq “ tpath α | αp0q “ αp1q “ x0u.

2. Given paths α, β P Ωx0pXq, define the concatenation α ¨ β P Ωx0pXq by

pα ¨ βqpsq “

"

αp2sq 0 ď s ď 0.5
βp2s ´ 1q 0.5 ď s ď 1.

3. Given a path γ P Ωx0pXq, define the reversed path γptq “ γp1 ´ tq.

4. The fundamental group of X based at x0 is the group

π1pX, x0q “ Ωx0pXq{ „

where α „ β ô α » β rel t0, 1u, with group law rαsrβs “ rα ¨ βs and rγs´1 “ γ.

Theorem 17.1. Let γ be a path from x0 to x1. The map Φγ : π1pX, x1q Ñ π1pX, x0q
by Φprαsq “ rγ ¨ α ¨ γs is an isomorphism.

Corollary. IfX is path-connected, π1pX, xq are isomorphic over all x P X (say π1pXq).

Theorem 17.2. If X, Y are path-connected, π1pX ˆ Y q “ π1pXq ˆ π1pY q.

Definition 17.2. X is simply connected ifX is path-connected and π1pXq is trivial.
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Definition 17.3.

1. Write f : pX, x0q Ñ pY, y0q if f : X Ñ Y and fpx0q “ y0.

2. The homomorphism induced by f : pX, x0q Ñ pY, y0q is the homomorphism

f˚ : π1pX, x0q Ñ π1pX, y0q

given by f˚prαsq “ rf ˝ αs.

Theorem 17.3.

1. pf ˝ gq˚ “ f˚ ˝ g˚.

2. If f, g : X Ñ Y are homotopic rel x0, then f˚ “ g˚.

3. If f : X Ñ Y is a homotopy equivalence, then f˚ is an isomorphism.

Theorem 17.4. π1pS
1q “ Z.

Proof. Let p : R Ñ S1 given by ppλq “ pcosp2πλq, sinp2πλqq. The following two facts will be
proven in the Covering Spaces chapter.

1. Given any path γ of S1, there exists a unique path γ̃ of R such that γ̃p0q “ 0
and γ “ p ˝ γ̃.

2. Given any homotopy ft : I Ñ S1, there exists a unique homotopy f̃t : I Ñ R
such that ft “ p ˝ f̃t

The map Φprγsq “ γ̃p1q P Z is then a well-defined isomorphism. ■

Theorem 17.5. If A is a retract of X, then the inclusion i : A ãÝÑ X induces an
injective homomorphism i˚. If A is a defo retract of X, then i˚ is an isomorphism.

Proof. Let r : X ↠ A be a retraction. Then r ˝ i “ 1 ùñ r˚ ˝ i˚ “ 1 ùñ i˚ injective.
If there is a deformation retraction, then i is a homotopy equivalence and hence i˚ is an
isomorphism. ■

Theorem 17.6. (Brouwer’s Fixed Point Theorem)
f : D2 Ñ D2 ùñ fpxq “ x for some x P D2.

Proof. Otherwise, the map r defined by
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fpxq

x

rpxq

is a retract from D2 to S1, so i : S1 Ñ D2 induces an injective i˚ : Z Ñ t0u, contradiction.■

Theorem 17.7. (Fundamental Theorem of Algebra)
Every complex polynomial of positive degree has a root.

Proof. Let fpxq “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 where n ą 0. Assume f has no roots. Then

F ps, t, rq “
`

re2πis
˘n

` an´1

`

re2πis
˘n´1

t ` ¨ ¨ ¨ ` a0t
n

‰ 0 @s, t, r.

Then the homotopy

F ps, 0, 1q

|F ps, 0, 1q|

t
»

F ps, 1, 1q

|F ps, 1, 1q|

r
»

F ps, 1, 0q

|F ps, 1, 0q|

brings the path e2πisn, that loops around the circle n times, to the trivial path 1. This is a
contradiction since they correspond to different elements in π1pS

1q. ■

18 Van Kampen’s Theorem

Definition 18.1. Let i1 : H ãÝÑ G1 and i2 : H ãÝÑ G2 be homomorphisms. The
amalgamated free product of G1 and G2 along H, denoted as G “ G1 ˚H G2, is the
unique group (up to isomorphism) that satisfies

(1) There exists homomorphisms φi : Gi Ñ G with φ1 ˝ i1 “ φ2 ˝ i2.

(2) For any other homomorphisms ψi : Gi Ñ K with ψ1 ˝ i1 “ ψ2 ˝ i2, there exists a
unique homomorphism ψ : G Ñ K with ψ ˝ φi “ ψi.

G2 G

G1H

K

i1

φ1

φ2

i2

ψ2

ψ1

ψ
D!

If H “ t0u, then G1 ˚ G2 “ G1 ˚H G2 is just the free product of G1 and G2.
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Remark.

1. Such a group always exists, e.g. if Gi “ xSi | Riy then

G1 ˚H G2 “
@

S1 \ S2 | R1 Y R2 Y
␣

i1phqi2ph
´1

q : h P H
(D

.

Uniqueness follows from the uniqueness of ψ between two such possible groups.

2. Think of G1 ˚H G2 by first treating H as a common subgroup of G1, G2, then
construct all possible words of finite length with letters from G1 YG2. When two
adjacent letters in a word both come from the same Gi, or if they both belong
to H, we can further simplify the word.

Example 18.1.

1. The free group with n letters is simply Fn “ Z ˚ ¨ ¨ ¨ ˚ Z
loooomoooon

n

.

2. The free product of Z2 “ t1, a, a2 “ 1u and itself Z2 “ t1, b, b2 “ 1u is

Z2 ˚ Z2 “ t1, a, b, ab, ba, aba, bab, ¨ ¨ ¨u

(This is the semi-direct product of Z “ xc :“ aby ,Z2 “ xay with ac “ c´1a,
sometimes called the infinite dihedral group.)

3. If we embed H “ Z2 into the two Z2’s above by h ÞÑ a and h ÞÑ b, then the free
product collapses into

Z2 ˚H Z2 “
␣

1, h, h2 “ 1
(

“ Z2

Theorem 18.1. (Van Kampen’s Theorem, two-set version)
SupposeX “ UYV where U, V, UXV are open and path-connected, then for x0 P UXV
we have π1pX, x0q “ π1pU, x0q ˚π1pUXV,x0q π1pV, x0q (with π1pU X V, x0q ãÝÑ π1pU, x0q
and π1pU X V, x0q ãÝÑ π1pV, x0q being the maps induced by the inclusions U X V ãÝÑ U
and U X V ãÝÑ V respectively).

Example 18.2. π1pS
nq “ t0u for n ě 2 (high-dim spheres are simply connected).

Sn is the union of open neighborhoods of the north and south hemisphere, intersecting
at the equator » Sn´1. Hence π1pS

nq “ π1pe
nq˚π1pSn´1qπ1pe

nq “ t0u˚π1pSn´1q t0u “ t0u.
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Definition 18.2. Suppose x0 P X, y0 P Y . The wedge sum pX, x0q _ pY, y0q is the
space pX \ Y q{ tx0, y0u (gluing X and Y together at x0, y0). Lazy: X _ Y .

Example 18.3. S1 _ S1 is the figure-eight, homemorphic to the shape 8.

Theorem 18.2. If D neighborhoods x0 P U, y0 P V in X, Y such that tx0u , ty0u are
deformation retracts of U, V respectively, then π1pX _ Y q “ π1pXq ˆ π1pY q.

Proof. Let Ht : U Ñ U,Gt : V Ñ V be deformation retracts onto x0, y0 respectively.

• We can define Gt : X _ V Ñ X _ V by

X _ V X _ V

X \ VX \ V
1 \ Gt

q

Gt

q

which is a deformation retraction of X _ V onto X _ ty0u – X. Hence X _ V
deformation retracts onto X and (similarly) U _ Y deformation retracts onto Y .

• We claim that U_V Ď X_Y is contractible. The map Ft : U_V Ñ U_V defined by

U _ V U _ V

U \ VU \ V
Ht \ Gt

q

Ft

q

is a deformation retraction onto x0 P U _ V .

• By Van Kampen, π1pX _ Y q “ π1pX _ V q ˚π1pU_V q π1pU _ Y q “ π1pXq ˚ π1pY q. ■

Corollary 18.2. π1 p
Žn

i“1 S
1q “ Fn.

Theorem 18.3. If Γ is a connected graph, then π1pΓq “ F1´χpΓq where χpΓq “

|V pΓq| ´ |EpΓq| is the Euler characteristic of Γ.

Proof. Let T be a spanning tree of Γ, which is contractible. Then by collapsing T , the graph
Γ{T » Γ is a wedge sum of |EpΓ ´ T q| circles. Hence π1pΓq “ Fn where

n “ |EpΓq| ´ |EpT q| “ |EpΓq| ´ p|V pT q| ´ 1q “ 1 ´ χpT q. ■
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Theorem 18.4. If i : H Ñ G “ xS | Ry, then G ˚H t0u “ xS | R Y ipHqy

Example 18.4. We can compute π1 pT 2q as follows:

a

a

bbU “

a

a

bbV “

a

a

bbU X V “

π1pT
2
q “ π1pUq ˚π1pUXV q π1pV q “ xa, by ˚Z t0u “

@

a, b | aba´1b´1
D

“ Z2.

Fundamental Group of CW Complexes

Theorem 18.5.

1. Let X2 be a CW complex obtained from X1 by attaching 2-cells e2α via φα :
BD2

α Ñ X1. For each α, let γα be a path on X1 from x0 to a point zα P BD2
α.

π1pX
2, x0q “ π1pX1, x0q{N

where N is the normal closure of the subgroup of π1pX1, x0q generated by paths
rγα ¨ φα ¨ γαs (treating φα as a closed path based at zα).

2. Attaching n-cells pn ě 3q does not change the fundamental group, i.e.

π1pX, x0q “ π1pX2, x0q

Example 18.5.

1. For the Klein bottle K, we have π1pKq “ xa, by {N where N
is generated by aba´1b, so π1pKq “ xa, b | aba´1by.

a

a

bb

2. If X is obtained by attaching a single 2-cell to a circle Cˆ via φpzq “ zn, then
π1pXq “ xx | xny “ Zn. In particular, π1pRP2q “ Z2.

Corollary 18.5. Given any group G, there exists a space X with π1pXq “ G.

Proof. Write G “ xS | Ry and attach 2-cells (according to R) to the wedge sum
Ž

sPS S
1
s . ■
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Proof of Theorem 18.5. First expand X2 by bulging up the e2α’s and then adding strips
Sα “ I ˆ I along each γα. Pick a yα P e2α that is not on the strip. Call this larger space Z.

We then slice this space along half the height of the Sα’s, and consider an open neighborhood
of the top and bottom parts U, V respectively (e.g. U “ ZzX1 and V “ Zz

Ť

α tyαu). U is
contractible while V deformation retracts to X1. Hence

π1pX
2, x0q “ π1pZ, x0q “ π1pU, x0q ˚π1pUXV,x0q π1pV, x0q “ t0u ˚π1pUXV,x0q π1pX

1, x0q.

So it remains to show that π1pU X V, x0q is generated by the rγα ¨ φα ¨ γαs: We can apply
Van Kampen again on U XV by covering it with the open sets Aα “ U XV z

Ť

β‰αD
2
β which

deformation retract to a circle and hence is generated by γα ¨ φα ¨ γα. This shows (1).

To show (2), we perform the same procedure. However, in the last step, the Aα deformation
retract to spheres, which are simply connected. The finite Xn case follows from induction.
If X is infinite-dimensional, any closed loop at x0 is compact and hence is contained in some
finite Xn anyway. ■

Definition 18.3.

1. Let Σ,Σ1 be surfaces. The connect sum , Σ # Σ1 is defined by

`

Σzint
`

D2
˘˘

\
`

Σ1
zint

`

D2
˘˘

{ „

where „ identifies boundary points.

2. The surface of genus ggg is Σg “ T 2 # ¨ ¨ ¨ # T 2
loooooooomoooooooon

n

# S2 (The g-holed torus).

Example 18.6.
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Theorem 18.6. π1 pΣgq “
@

a1, b1, a2, b2, ¨ ¨ ¨ , ag, bg | a1b1a
´1
1 b´1

1 ¨ ¨ ¨ agbga
´1
g b´1

g

D

Diagram.

19 Covering Spaces

Definition 19.1.

1. A covering space of X is a space X̃ with a map p : X̃ Ñ X such that every
x P X admits a neighborhood U such that f´1pUq “

Ů

α Ũα (a disjoint union
of open sets) where each p |Ũα

is a homeomorphism. We say that U is evenly

covered by the sheets Ũα.

2. A lift of a map f : Y Ñ X is a map f̃ : Y Ñ X̃ with f “ p ˝ f̃ .

Y X

X̃

p
f̃

f
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Example 19.1.

1. p : R Ñ S1, ppλq “ e2πiλ.

Ũ Ũ Ũ
U

2. pn : S1 Ñ S1, pnpzq “ zn.

3. A few covering spaces of S1 _ S1, as
b a

:

b

b

a a b

b

b

b

aa aa

bb a a

a

a

a

a

a

a

b b b b b

Theorem 19.1. Let Y be a connected space and f : Y Ñ X. If two lifts f̃1, f̃2 : Y Ñ

X̃ agree at some point y P Y , then f̃1 “ f̃2.

Proof. For any z P Y , there is a neighborhood U of fpzq that is evenly covered by sheets Ũα.

•
!

z P Y : f̃1pzq “ f̃2pzq

)

is open: Suppose f̃1pzq “ f̃2pzq P Ũβ, then by continuity there

exists a neighborhood z P V with f̃1pV q, f̃2pV q Ď Ũβ. Then

f̃1|V “ p |
´1

Ũβ
˝ p |Ũβ

˝ f̃1 |V “ p |
´1

Ũβ
˝ f |V “ f̃2|V .

•
!

z P Y : f̃1pzq “ f̃2pzq

)

is closed: f̃1pzq ‰ f̃2pzq ùñ f̃1pzq P Ũβ1 , f̃2pzq P Ũβ2 pβ1 ‰

β2q. By continuity there exists a neighborhood z P V with f̃ipV q Ď Ũβi
.
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Since Y is connected, Y “

!

z P Y : f̃1pzq “ f̃2pzq

)

. ■

Theorem 19.2. (Homotopy Lifting Property)
Given a homotopy ft : Y Ñ X and a lift f̃0 : Y Ñ X̃ of f0, there exists a unique
homotopy f̃t : Y Ñ X̃ of ft that agrees with f̃0.

Remark. The two facts used in Theorem 17.4 follow from the case Y “ pt and Y “ I.

Proof. Use the Hpx, tq “ ftpxq notation.

Lemma. For any y P Y , there exists open y P V and 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 such
that each H pV ˆ rti, ti`1sq is contained in some evenly covered Ui.

Proof. Fix y. For each t P I there exists a neighborhood Ut of Hpy, tq that is evenly
covered, and there exists a basis Vt ˆ Wt Ď Y ˆ I with py, tq P Vt ˆ Wt Ď H´1 pUtq.
Since the Wt cover I which is compact, we have a finite subcover Ws0 , ¨ ¨ ¨ ,Wsm of I
and hence we can take V “ Vs0 X ¨ ¨ ¨ X Vsm and ti the endpoints of all Wsk .

We first prove the theorem by fixing y and restricting ft on a neighborhood V Ď Y . By
induction, suppose H̃ has been constructed over V ˆ r0, tis. Let U Ě HpV ˆ rti, ti`1sq be
evenly covered by sheets Ũα. Let H̃py, tiq P Ũβ, then by the pasting lemma we can construct
H̃ |V 1ˆr0,ti`1s by composing H with p |

´1
Uβ
, after restricting V to V 1 by intersecting the pre-

image of Ũβ. Relabelling V 1 as V , after a finite number of steps, we constructed f̃t on a
neighborhood V of y. Note that such f̃t is unique at each y P V since tyu ˆ I is connected.

To construct f̃t on the entire Y , we construct a unique f̃ on a neighborhood Vy at every
y P Y . By uniqueness on each tyu ˆ I, the f̃ ’s agree on the overlaps, so it is well-defined.
By the same uniqueness, the entire f̃ is unique. ■

Theorem 19.3. Let p˚ : π1

´

X̃, x̃0

¯

Ñ π1pX, x0q be induced by p.

1. p˚ is injective.

2. Impp˚q “ trαs P π1pX, x0q : α̃p0q “ α̃p1q “ x̃0u.

Proof. Suppose p˚ prβsq “ 0. Then p ˝ β » constant rel t0, 1u. This nullhomotopy has a
unique lift in X̃, which gives a nullhomotopy for β, i.e. rβs “ 0. This proves (1).

For (2), we have p˚prβsq “ rp ˝ βs “

”

β̃
ı

. ■
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Theorem 19.4. If X, X̃ are path-connected, then |p´1px0q| “ rπ1pX, x0q : Impp˚qs

(There is a bijection between each preimage of x0 and each coset of Impp˚q).

Definition 19.2. A space Y is locally [insert property] if for all y P Y and any
neighborhood y P U , there exists a neighborhood y P V Ď U that has the property.

Theorem 19.5. Say f : pY, y0q Ñ pX, x0q where Y is path-conn and locally path-conn.

Df̃ : pY, y0q Ñ

´

X̃, x̃0

¯

ðñ Im pf˚q Ď Im pp˚q

Proof. For pñq, f “ p ˝ f̃ ùñ f˚ “ p˚ ˝ f̃˚. For pðq, suppose Im pf˚q Ď Im pp˚q. Pick for

each y P Y a path γy from y0 to y, then define f̃pyq “ Čf ˝ γyp1q where Čf ˝ γyp0q “ x̃0.

• f̃ is well-defined: Let γ1, γ2 be two paths from y0 to y. Then rγ1 ¨ γ2s P π1pY, y0q and

hence exists rαs P π1

´

X̃, x̃0

¯

with p ˝ α » f ˝ γ1 ¨ γ2 rel t0, 1u. This homotopy Ht has

a unique lift H̃t with H̃0 “ α. Since H1 “ pf ˝ γ1q ¨ pf ˝ γ2q, by uniqueness we have

H̃1 “ Čf ˝ γ1 ¨ Čf ˝ γ2, and thus Čf ˝ γ1p1q “ H̃1p0.5q “ Čf ˝ γ2p1q.

• f̃ is a lift: p ˝ f̃pyq “ p ˝ Čf ˝ γyp1q “ f ˝ γyp1q “ fpyq.

• f̃ is continuous: Let W be a neighborhood of f̃pyq. Let fpyq P U be evenly cov-
ered by Ũα, and f̃pyq P Ũ . Since f is continuous, D neighborhood y P V 1 with

fpV 1q Ď p
´

Ũ X W
¯

. By local path-connectedness, let y P V Ď V 1 be a path-connected

neighborhood. Then any path from y0 to y can be extended to a path from y0 to any
z P V . This eventually shows f̃pV q Ď Ũ X W . ■

Definition 19.3.

1. A space X is semilocally simply connected if for all x P X there exists a
neighborhood x P U where π1pU, xq Ñ π1pX, xq is trivial.

2. X is ‘nice’ if it is path-conn, locally path-conn and semilocally simply conn.

3. p : X̃ Ñ X is a universal cover of X if X is path-conn and X̃ is simply conn.

4. Two covering spaces pi : X̃i Ñ X are isomorphic if there exists a homeomor-
phism φ : X̃1 Ñ X̃2 with p2 ˝ φ “ p1.

Theorem 19.6. CW complexes are locally contractible and locally path-connected.
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Example 19.2. The Hawaiian Earring H consisting of the union of all circles in R2

with center p1{n, 0q and radius 1{n for each n P N˚ is not semilocally simply connected
because any neighborhood of p0, 0q contains a full circle, which contains loops that
cannot be nullhomotopic in H.

However, if we consider the cone obtained from H, defined by CH “ pH ˆ Iq{pH ˆ

t0uq, which is simply connected since it is contractible, then CH is semilocally simply
connected. If we join the tip of the cone to the limit point at the base, then we
form a space that is not simply connected (it is homotopy equivalent to S1) but still
semilocally simply connected.

Theorem 19.7.

1. If X is nice, then X has a universal cover.

2. If X is nice, for any subgroup H Ď π1pX, x0q there exists a covering space pH :
X̃H Ñ X such that Im ppH˚q “ H.

Proof of (1). We use a Lemma and 5 steps.

Lemma. B “ tU Ď X : U open, path-conn, π1pUq Ñ π1pXq trivialu is a basis for the
topology of a nice X.

Proof. B covers X since X is nice. Suppose x P U X V where U, V P B. Since
X is locally path-conn, there exists path-connected x P W Ď U X V , which means

π1pW,xq Ñ π1pU, xq
triv
ÝÝÑ π1pX, xq ùñ W P B. Hence B is a basis. To prove

the second part, given any open x P W , choose open x P V via semilocal simply
connectedness, then pick a open and path-connected U Ď V X W via local path-
connectedness. Then U P B with U Ď W . ■

1. Define X̃ “ trγs | γ : I Ñ X, γp0q “ x0u with rγs “ rδs ô γ » δ rel t0, 1u. Define the
covering map p : X̃ Ñ X by pprγsq “ γp1q.

2. Define the topology on X̃ as follows: Given U P B and rγs P X̃ with γp1q P U , define

Urγs “ trγ ¨ ηs | η : I Ñ U with ηp0q “ γp1qu

Then
␣

Urγs

(

rγs
is a basis (Exercise; (˚) Note that rδs P Urγs ùñ Urδs “ Urγs), and we

generate the topology from it.
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3. Claim: p : Urγs Ñ U is a homeomorphism.

• Surjective: U path-conn ùñ @x P U, Dpath η from γp1q to x ùñ pprγ ¨ ηsq “ x.

• Injective: pprγ ¨ηsq “ pprγ ¨η1sq ùñ ηp1q “ η1p1q. Since π1pUq Ñ π1pXq is trivial,
η » η1 ùñ rγ ¨ ηs “ rγ ¨ η1s.

• Homeo: Note that tB X UuBPB and
␣

Brδs X Urγs

(

BPB
are bases for U and Urγs

respectively, and (1) p
`

Brδs X Urγs

˘

“ BXU ; and (2) p´1 pB X Uq XUrγs “ Brδs X

Urγs for any rδs P Urγs with δp1q P B since Brδs Ď Urδs

p˚q
“ Urγs and p |Vrδs

is bijective.

4. p is a covering map: Given any U P B, p´1pUq “
Ť

rγs
Urγs which is a disjoint union of

equivalence classes due to p˚q.

5. X̃ is simply connected: Let rx0s “ class of constant paths. Given any rγs P X̃, the path
γtpsq “ γpminps, tqq form γp0q to γptq brings rx0s to rγs, and thus X̃ is path-connected.

To show π1

´

X̃, rx0s

¯

“ 0, we show Impp˚q “ t0u:

rαs P Impp˚q ùñ rx0s “ α̃p0q “ α̃p1q “ rαs ùñ rαs “ 0. ■

Proof of (2). Consider the equivalence relation „ on the universal cover X̃ defined by

rγs „ rδs ô γp1q “ δp1q and rγ ¨ δs P H.

Then XH “ X̃{ „ is a covering space of X. To show Im ppH˚q “ H: For any rαs P π1pX, x0q,
we have a lift α̃ “ αt from rx̃0s to rαs, so

rαs P H ô rx̃0s „ rαs ô α̃p0q “ α̃p1q ô rαs P ImppH˚q

Theorem 19.8. Let X̃ be path-connected. Then p˚

´

π1

´

X̃, x̃0

¯¯

is conjugate to

p˚

´

π1

´

X̃, x̃1

¯¯

for any x̃0, x̃1 P p´1px0q.

Proof. Conjugate using any path from x̃0 to x̃1. ■

Theorem 19.9. (Classification Theorem of Covering Spaces)
If X is nice, there is a bijective Galois correspondence between

"

conj. classes of
subgrps of π1pX, x0q

*

ÐÑ

"

isom. classes of path-

conn. covers X̃ Ñ X

*

Proof. We prove that p1 : X̃1 Ñ X and p2 : X̃2 Ñ X are isomorphic if and only if Impp1˚q

and Impp2˚q are conjugate in π1pXq.
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• Assume p1 – p2. Then Impp1˚q “ Impp2˚ ˝ φ˚q “ p2˚

´

π1

´

X̃2, φ px̃1q
¯¯

which is

conjugate to p2˚

´

π1

´

X̃2, x̃2

¯¯

since p2 ˝ φ px̃1q “ p1 px̃1q “ x0 “ p2 px̃2q.

• Suppose Impp1˚q “ rαs´1Impp2˚qrαs. Let α̃ : I Ñ X̃2 be a lift of α based at x̃2. Then

p2˚

´

π1

´

X̃2, α̃p1q

¯¯

“ p1˚

´

π1

´

X̃1, x̃1

¯¯

so there exists lifts p̃1 :
´

X̃1, x̃1

¯

Ñ

´

X̃2, α̃p1q

¯

, p̃1 :
´

X̃2, α̃p1q

¯

Ñ

´

X̃1, x̃1

¯

with

X̃1 X

X̃2

p2
p̃1

p̃2

p1

Since p̃2 ˝ p̃1 and 1 agree at x̃1 and ar both lifts of p1 : X̃1 Ñ X to X̃1, we have
p̃2 ˝ p̃1 “ 1 and similarly p̃1 ˝ p̃2 “ 1. Thus p1 – p2. ■

20 Regular Coverings

Definition 20.1.

1. A deck transformation is a self-isomorphism X̃ Ñ X̃ of a covering space
p : X̃ Ñ X. The group of deck transformations is denoted AutpX̃q.

2. A covering space is regular if for each x P X and x̃, x̃1 P p´1pxq, there exists
φ P AutpX̃q with φpx̃q “ x̃1.

Example 20.1. AutpRq “ Z.

Theorem 20.1. φ P AutpX̃q is completely determined by φpx̃0q when X̃ is path-
connected and locally path-connected.

Proof. φ is a lift to X̃, which is uniquely determined by where it sends some point. ■

Theorem 20.2. Suppose X is nice. Then p : X̃ Ñ X is regular if and only if Impp˚q

is normal. When this is true, AutpX̃q “ π1pX, x0q{Impp˚q.

Proof. p is regular ô for any x̃, x̃1 P p´1pxq there exists a lift φ where
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´

X̃, x̃
¯

X

´

X̃, x̃1

¯

p
φ

p

which is equivalent to p˚

´

π1

´

X̃, x̃
¯¯

“ p˚

´

π1

´

X̃, x̃1

¯¯

@x̃, x̃1, i.e. p˚

´

π1

´

X̃, x̃
¯¯

is nor-

mal. To prove the second part, consider the map π1pX, x0q Ñ AutpX̃q is p˚pπ1pX, x0qq given
by rαs ÞÑ φα where φαpα̃p0q “ x̃0q “ α̃p1q.

• It is a homomorphism: Since a lift of α ¨ β is α̃ ¨ φαpβ̃q, so

rαsrβs ÞÑ φα¨βpx̃0q “ φβ ˝ φαpx̃0q ùñ φα¨β “ φβφα.

• It is injective: rαs ÞÑ 0 ô rαs P p˚

´

π1

´

X̃, x̃
¯¯

.

• It is surjective: Fix a path γ in X̃ from x̃0 to x̃1 P p´1px0q. Then rp ˝ γs P π1pX, x0q

has lift γ. ■

Example 20.2. A covering space of S1 _ S1:

bb a a

Impp˚q “ xa2, ab´1, aby Ď xa, by “ π1pS1 _ S1, x0q is normal, hence

AutpX̃q “
@

a, b | a2, ab´1, ab
D

“ Z2.
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