
PL /SQL
& SQL

CODING GUIDELINES
VERSION 2.0

PL/SQL
& SQL
Coding Guidelines
Trivadis AG

Document Version 2.0
©2011 Trivadis AG

PL/SQL Coding Guidelines 2

Foreword

Coding Guidelines are an important quality standard for any programming
language. Not only that coding based on standards results in better software
products, standards also help programmers to work in teams. These coding
guidelines represent many years of experience – not only delightful ones -
in constructing and maintaining PL/SQL and SQL programs. These programs

are pieces of software to implement business logic in order to support high end data
processing. Or in other words to get value out of one of the most important assets of a
company - the company's information. From small functions to help to automate a database
administrators work to complex frameworks for historization or other purposes. Many
software products are programmed fully in PL/SQL or in SQL. I am convinced that these
PL/SQL and SQL Coding Guidelines are a valuable contribution to enhance software quality
and improve team performance.

May the code be with you.

Urban Lankes
CEO Trivadis

"Roger and his team have done an excellent job of providing a
comprehensive set of clear standards that will undoubtedly improve the
quality of your code. If you do not yet have standards in place, you
should give strong consideration to using these as a starting point."

Steven Feuerstein
PL/SQL Evangelist

Coding Guidelines are a crucial part of software development. It is a
matter of fact, that code is more often read than written – therefore we
should take efforts to ease the work of the reader, which is not necessarily
the author.
I am convinced that this standard may be a good starting point for your
own guidelines.

Roger Troller
Senior Consultant Trivadis

PL/SQL Coding Guidelines 3

License
Trademarks

All terms that are known trademarks or service marks have been capitalized. All trademarks
are the property of their respective owners.

Disclaimer

The authors and publisher shall have neither liability nor responsibility to any person or
entity with respect to the loss or damages arising from the information contained in this
work. This work may include inaccuracies or typographical errors and solely represent the
opinions of the authors. Changes are periodically made to this document without notice.
The authors reserve the right to revise this document at any time without notice.

Revision History
Vers Who Date Comment
0.1 Troller 17.03.2009 Created.
0.2 Kulessa 04.05.2009 Extended.
0.3 Reiner 12.05.2009 Extended with comments in code.
0.4 Troller 14.05.2009 Extended formatting.
0.5 Kulessa 20.05.2009 Added more CodeXpert rules.
0.6 Troller 22.05.2009 Formatting changes. Added categories to rules.
0.7 Reiner 10.06.2009 Extended with example code commenting.
0.8 Troller 18.06.2009 Finalized.
0.9 Bushnell 23.06.2009 Translation
1.0 Troller 01.07.2009 Ready for inspection
1.1 Troller 19.08.2009 Added Inspection results AFl
1.2 Troller 21.08.2009 Added Inspection results ThM
1.3 Troller April 2010 Several Corrections

New Rule Oracle Supplied Packages
1.3.1 Troller October 2010 Some formatting
2.0 Troller August 2011 Added Error Handling Section

Added Rule 23
Added Rule 30
Added Rule 31
Added Rule 43

PL/SQL Coding Guidelines 4

Table of Contents
1. Introduction ... 6

1.1. Scope .. 6

1.2. Document Conventions ... 6

1.2.1 Coloring & Emphasis: .. 6

1.2.2 Keywords .. 6

1.2.3 Icons ... 6

2. Why are standards important .. 7

3. Naming Conventions ... 7

3.1. General Guidelines ... 7

3.2. Naming Conventions for variables ... 8

3.3. Database Object Naming Conventions ... 8

3.4. Database Object Check Scripts .. 11

4. Coding Style .. 12

4.1. Formatting ... 12

4.1.1 Tool support .. 13

4.1.2 Code Formatting Files .. 13

4.2. Code Commenting .. 13

4.2.1 IDE Templates ... 16

5. Language Usage ... 17

5.1. General ... 17

5.2. Variables & Types .. 19

5.2.1 General ... 19

5.2.2 Numeric Data Types .. 22

5.2.3 Character Data Types ... 22

5.2.4 Boolean Data Types ... 23

5.2.5 Large Objects .. 24

5.3. DML and SQL ... 24

5.3.1 BULK OPERATIONS .. 26

5.4. Control Structures .. 27

5.4.2 CURSOR ... 27

5.4.3 CASE / IF / DECODE / NVL / NVL2 / COALESCE... 32

5.4.4 Flow Control ... 34

PL/SQL Coding Guidelines 5

5.5. Exception Handling ... 38

5.6. Dynamic SQL .. 42

5.7. Stored Objects ... 43

5.7.1 Packages ... 45

5.7.2 Procedures .. 45

5.7.3 Functions... 46

5.7.4 Oracle Supplied Packages .. 46

5.7.5 Object Types ... 46

5.7.6 Trigger ... 46

5.8. Patterns ... 47

5.8.1 Checking the Number of Rows ... 47

5.8.2 Access objects of foreign application schemas .. 48

6. Complexity Analysis .. 49

6.1. Halstead Metric ... 49

6.1.1 Calculation .. 49

6.1.2 CodeXpert ... 50

6.2. Cyclomatic Complexity (McCabe’s) .. 52

6.2.1 Description .. 52

6.2.2 CodeXpert ... 53

7. Code Reviews .. 54

8. Tool Support .. 55

8.1. Development .. 55

8.2. Documentation ... 55

8.3. Code Formatting .. 55

8.4. Unit Tests .. 55

8.5. Code Analyzers ... 55

9. References ... 55

Bibliography ... 55

PL/SQL Coding Guidelines 6

1. Introduction
This document describes rules and recommendations for developing applications using the
PL/SQL & SQL Language.

1.1. Scope
This document applies to the PL/SQL and SQL language as used within ORACLE databases
and tools which access ORACLE databases.

1.2. Document Conventions

1.2.1 Coloring & Emphasis:

Blue Text colored blue indicates a PL/SQL or SQL keyword.
Bold Text with additional emphasis.

1.2.2 Keywords

Always Emphasizes this rule must be enforced.
Never Emphasizes this action must not happen.
Do Not Emphasizes this action must not happen.
Avoid Emphasizes that the action should be prevented, but some exceptions may

exist.
Try Emphasizes that the rule should be attempted whenever possible and

appropriate.
Example Precedes text used to illustrate a rule or recommendation.
Reason Explains the thoughts and purpose behind a rule or recommendation.

1.2.3 Icons

Information Tag

Caution

Performance relevance

Maintainability

Readability

PL/SQL Coding Guidelines 7

2. Why are standards important
For a machine executing a program, code formatting is of no importance. But for the human
eye, well-formatted code is much easier to read. Modern tools can help to implement format
and coding rules.

Implementing formatting and coding standards has the following advantages for PL/SQL
development:

• Well formatted code is easier to read, analyze and maintain (not only for the author
but also for other developers).

• Developers do not have to think about where to search for something - it is already
defined.

• The developers do not have to think about how to name something - it is already
defined.

• The code has a structure that makes it easier to avoid making errors.
• The code is more efficient with regards to performance and organization of the

whole application.
• The code is more modular and thus easier to use for other applications.

This document only defines possible standards. These standards are not written in stone, but
are meant as guidelines. If standards already exist, and they are different from those in this
document, it makes no sense to change them.

3. Naming Conventions
3.1. General Guidelines

1. Do not use names with a leading numeric character.

2. Always choose meaningful and specific names.

3. Avoid using abbreviations unless the full name is excessively long.

4. Avoid long abbreviations. Abbreviations should be shorter than 5 characters.

5. Any abbreviations must be widely known and accepted. Create a glossary with all
accepted abbreviations.

6. Do not use ORACLE reserved words as names. A list of ORACLE’s reserved words
may be found in the dictionary view V$RESERVED_WORDS.

7. Avoid adding redundant or meaningless prefixes and suffixes to identifiers.
Example: CREATE TABLE EMP_TABLE.

8. Always use one spoken language (e.g. English, German, French) for all objects in
your application.

9. Always use the same names for elements with the same meaning.

PL/SQL Coding Guidelines 8

3.2. Naming Conventions for variables
In general ORACLE is not case sensitive with names. A variable named personname is equal
to one named PersonName, as well as to one named PERSONNAME. Some products (e.g.
TMDA by Trivadis, APEX, OWB) put each name within double quotes (“) so ORACLE will
treat these names to be case sensitive. Using case sensitive variable names force developers
to use double quotes for each reference to the variable. Our recommendation is to write all
names in lowercase.

A widely used convention is to follow {prefix_} variablecontent_{_suffix} pattern.
The following table shows a possible set of naming conventions.

Naming Conventions for PL/SQL

Identifier Prefix / Suffix Example
Global Variable P: g g_version
Local Variable P: l l_version
Cursor P: c c_employees
Record P: r r_employee
Array / Table P: t t_employees
Object P: o o_employee
Cursor Parameter P: cp cp_empno
In Parameter P: in in_empno
Out Parameter P: out out_ename
In/Out Parameter P: io io_employee
Type Definitions S: type r_employee_type
Exception P: e e_employee_exists
Constants P: co co_empno

3.3. Database Object Naming Conventions

Naming Conventions for Database Objects

Never enclose object names (table names, column names, etc.) in double quotes to enforce
mixed case or lower case object names in the data dictionary.

Identifier Naming Convention
Collection Type • A collection type should include the name of the collected objects

in their name. Furthermore they should have the suffix “_ct” to
identify it as a collection.

Examples: - employees_ct

- orders_ct

Column • Singular name of what is stored in the column
o unless the column data type is a collection, then you use a

plural name

• Add a comment to the database dictionary for every column.

PL/SQL Coding Guidelines 9

Identifier Naming Convention
DML / Instead of
Trigger

Choose a naming convention that includes:

Either
• the name of the object the trigger is added to,
• any of the triggering events:
o _br_iud  Before Row on Insert, Update and Delete
o _io_id  Instead of Insert and Delete

Or
• the name of the object the trigger is added to,
• the activity done by the trigger,
• the suffix “_trg”

Examples: - employees_br_iud

- orders_audit_trg
- orders_journal_trg

Foreign Key Constraint • Table abbreviation followed by referenced table abbreviation

followed by a “_fk” an and optional number suffix.

• Optionally prefixed by a project abbreviation.

Examples: - empl_dept_fk

- sct_icmd_ic_fk1

Function • Name is built from a verb followed by a noun. The name of the
function should answer the question “What is the outcome of the
function?”

Examples: get_employee

• If more than one function provides the same outcome, you have to

be more specific with the name.

Examples: get_employee_by_name
 get_employee_by_email
 get_employee_by_phone_no

Index • Indexes serving a constraint (primary, unique or foreign key) are
named accordingly.

• Other indexes should have the name of the table and columns (or
their purpose) in their name and should also have _idx as a suffix.

Object Type • The name of an object type is built by its content (singular)

followed by an “_ot” suffix.

Examples: employee_ot

PL/SQL Coding Guidelines 10

Identifier Naming Convention
Package • Name is built from the content that is contained within the package.

Examples: - employees_api (API package for the employee
 table).

- logging_up (Utility package including logging
support).

Primary Key Constraint • Table name or table abbreviation followed by the suffix “_pk”.

• Optionally prefixed by a project abbreviation.

Examples: - employees_pk

- departments_pk
- sct_contracts_pk

Procedure • Name is built from a verb followed by a noun. The name of the

procedure should answer the question “What is done?” Procedures
and functions are often named with underscores between words
because some editors write all letters in upper case in the object
tree (e.g. Quest), so it is difficult to read them.

Examples: - calculate_salary

- set_hiredate
- check_order_state

Sequence • Name is built from the table name (or its abbreviation) the

sequence serves as primary key generator and the suffix _seq or the
purpose of the sequence followed by a _seq.

Examples: - employees_seq

- order_number_seq

Synonym • Synonyms should be used to address an object in a foreign schema
rather than to rename an object. Therefore synonyms should share
the name with the referenced object.

System Trigger • Name of the event the trigger is based on.

• Activity done by the trigger.
• Suffix “_trg”.

Examples: - ddl_audit_trg

logon_trg

Table • Plural name of what is contained in the table.
o unless the table is designed to always hold one row only – then

you should use a singular name
• Optionally prefixed by a project abbreviation.
• Add a comment to the database dictionary for every table.

Examples: - employees

- departments
- sct_contracts
- sct_contract_lines
- sct_incentive_modules

PL/SQL Coding Guidelines 11

Identifier Naming Convention
Temporary Table
(Global Temporary Table)

• Naming as described for tables.
• Optionally suffixed by “_tmp”

Examples: - employees_tmp

- contracts_tmp

Unique Key Constraint • Table name or table abbreviation followed by the role of the unique
constraint, an “_uk” and an optional number suffix.

• Optionally prefixed by a project abbreviation.

Examples: - employees_name_uk

- departments_deptno_uk
- sct_contracts_uk
- sct_coli_uk
- sct_icmd_uk1

View • Plural name of what is contained in the view.

• Optionally prefixed by a project abbreviation.
• Optionally suffixed by an indicator identifying the object as a view

(mostly used, when a 1:1 view layer lies above the table layer)
• Add a comment to the database dictionary for every view and every

column.

Examples: - active_orders

- orders_v (a view to the orders table)

3.4. Database Object Check Scripts

List of Check Scripts

Script Checks
Check_naming_conventions.sql Checks - Table Comments

- Column Comments
- Sequence Suffix
- Unique Constraint Suffix
- Primary Key Suffix
- Foreign Key Suffix

PL/SQL Coding Guidelines 12

4. Coding Style
4.1. Formatting

PL/SQL Code Formatting

Rule Description
1 Keywords are written uppercase, names are written in lowercase.
2 3 space indention.
3 One command per line.
4 Keywords THEN, LOOP, IS, ELSE, ELSIF, WHEN on a new line.
5 Commas in front of separated elements.
6 Call parameters aligned, operators aligned, values aligned.
7 SQL keywords are right-aligned within a SQL command.
8 Within a program unit only line comments "--" are used.

PROCEDURE set_salary(in_empno IN emp.empno%TYPE)

IS

CURSOR c_emp(cp_empno emp.empno%TYPE)

IS

SELECT ename

,sal

FROM emp

WHERE empno = cp_empno

ORDER BY ename;

--

r_emp c_emp%ROWTYPE;

l_new_sal emp.sal%TYPE;

BEGIN

OPEN c_emp(in_empno);

FETCH c_emp INTO r_emp;

CLOSE c_emp;

--

get_new_salary (p_empno_in => in_empno

,p_sal_out => l_new_sal);

--

-- Check whether salary has changed

IF r_emp.sal <> l_new_sal

THEN

UPDATE emp

SET sal = l_new_sal

WHERE empno = in_empno;

END IF;

END set_salary;

















PL/SQL Coding Guidelines 13

4.1.1 Tool support

Formatting your code as described above may be achieved using various tools. We have
written templates for

• SQL Navigator
• Toad
• PL/SQL Developer

4.1.2 Code Formatting Files

Formatting Tool and Templates

Tool File Name
Quest SQL
Navigator

SQLNavigatorFormating.opt

Quest Toad SQLNavigatorFormating.opt
www.sqlinform.com
PL/SQL Developer PL-SQL-Developer-Beautifier.zip
TORA

4.2. Code Commenting
Inside a program unit only use the line commenting technique “--“.
To comment the source code for later document generation, comments like /** … */ are
used. Within these documentation comments, tags may be used to define the
documentation structure. Tags beginning with % are always on a new line (exception
{%link…}.
Documentation generation can be done using PLSQLDoc (Plugin to PL/SQL Developer and
therefore only available when working with this tool) or PLDoc (Open Source Product – no
longer improved and therefore not recommendable).

Commenting Tags

Tag Meaning and Pattern Program Example
{*} enumeration within another tag

{*} <value> <description>
PLSQLDoc {*} 0 this is zero

{*} 1 this is one
{*} other all others

author author of an object
%author <name>

PLSQLDoc %author Max Mustermann

deprecated old version of a program unit
%deprecated

PLDoc %deprecated

link link within text to a location in the
documentation or on the Web
with alternate display text
{%link <link> <display text>}

PLSQLDoc .. {%link EMP.html EMP}…
…{%link
http://www.trivadis.com
Trivadis-Homepage}…

param parameter of a procedure or
function
%param <parameter>
<description>

PLDoc
PLSQLDoc

%param p_deptno
departmentno.

raises raised exception in a program unit
%raises <exception>
<description>

PLSQLDoc %raises
NO_DATA_FOUND
description

PL/SQL Coding Guidelines 14

Tag Meaning and Pattern Program Example
return return value of a function

%return <value or description>
PLDoc
PLSQLDoc

%return sum_sal

see reference to a site in the
documentation or in the web
%see <link>

PLSQLDoc %see EMP.html
%see
http://www.trivadis.com

skip the current comment is not used
for generating documentation
{%skip}

PLSQLDoc …
{%skip}
….

throws thrown exception in a program
unit
%throws <exception>
<description>

PLDoc %throws
NO_DATA_FOUND
description

usage usage of an object
%usage <description>

PLSQLDoc %usage This object is used
to figure out the salary.

value possible values of parameters,
results or other variables
%value <value> <description>

PLSQLDoc %value 0 OK
%value 1 exception

version version number of an object
%version <number of version>

PLSQLDoc %version 3.2.1

To format text in the documentation HTML tags are used inside comment blocks.

HTML Tags

HTML Meaning Excample
 Bold text in bold
<i> Italic <i>text in italic</i>
<u> underline <u>underlined text</u>

 new line …

<hr> horizontal line <hr>
<code> example in courier font <code>if…else…</code>

unnumbered list
first
second

<table>
<tr>
<td>

insert a table <table>
<tr>

<td>…</td>
<td>…</td>

</tr>
…
</table>

PL/SQL Coding Guidelines 15

Example Code for PLSQLDoc

CREATE OR REPLACE FUNCTION get_SalProzent (in_empno IN NUMBER)
RETURN NUMBER

IS
/**

General Information about <i>function</i> to show HTML-
formatting

To show the cross-reference the name of the procedure D1D_faktor is
noticed here.

The tag ‘link’ can appear within another text as shown below:
The employees are listed in the table {%link emp.html EMP}.
And the {%link http://www.trivadis.com Trivadis}-Company has a
website.

%param in_empno Number of employee
%return part in percent

%value 100 return value is 100%
%value 0 return value is 0%.
%value 25 return value is 25%.

%raises NO_DATA_FOUND If no salary is found, no part of salary
can be issued.

%author Scott Tiger
%version 1.2.3
%usage description of the function

%see sal_info.get_sal;2
%see http://www.trivadis.com

*/
l_sal NUMBER(7,2);
l_summe NUMBER(7,2);

BEGIN
SELECT sal

INTO l_sal
FROM emp

WHERE empno = in_empno;
(…)

END get_SalProzent;

PL/SQL Coding Guidelines 16

4.2.1 IDE Templates

Code Templates

Templates are stored in the templates subfolder of each tool.

Object Type

QUEST
SQL
Navigator

QUEST
Toad

Allround
Automations
 PL/SQL Developer

ORACLE
SQL Developer

Function Func.txt Function.fnc Function.fnc Function.sql
Package
Specification

Pkgspec.txt Package.spc Package.pks Package.pks

Package Body Pkgbody.txt Packagebody.pkb Packagebody.bdy Packagebody.pkb
Procedure Proc.txt Procedure.prc Procedure.prc. Procedure.sql
Object Type
Specification

Typspec.txt Type.tps Type.tps Type.sql

Object Type Body Typbody.txt Typbody.tpb Typebody.tpb Typebody.sql

PL/SQL Coding Guidelines 17

5. Language Usage
The language usage section is partly based on the rules defined within the tool CodeXpert
by Quest Software (www.quest.com). All text taken directly from this source is marked by
(CodeXpert). Every rule, that may be checked by CodeXpert ist marked with a red label
including the rule number within CodeXpert.

5.1. General

 1. Try to label your sub blocks.
[CodeXpert 4403]

 2. Always have a matching loop or block label.
[CodeXpert 4403]
Reason: Use a label directly in front of loops and nested anonymous blocks:

 To give a name to that portion of code and thereby self-
document what it is doing.

 So that you can repeat that name with the END statement of that
block or loop.

Example:

-- Good

BEGIN

<<prepare_data>>

BEGIN

…;

END prepare_data;

…

<<process_data>>

BEGIN

…

END process_data;

END;

 3. Avoid defining variables that are not used.
[CodeXpert 6405]

 4. Avoid dead code in your programs.
[CodeXpert 6801]

Reason: Any part of your code, which is no longer used or cannot be reached,
should be eliminated from your programs.

 5. Avoid using literals in your code.
[CodeXpert 4602]

Reason: Literals are often used more than once in your code. Having them defined
as a constant reduces typos in your code.

 All constants should be collated in just one package used as a library. If
these constants should be used in SQL too it is good practice to write a
get_<name> deterministic package function for every constant.

PL/SQL Coding Guidelines 18

Example:

-- Bad

DECLARE

l_function player.function_name%TYPE;

BEGIN

SELECT p.function

INTO l_function

FROM player p

WHERE …

--

IF l_function = ‘LEADER’

THEN

…

-- Good

CREATE OR REPLACE PACKAGE constants_up

IS

co_leader CONSTANT player.function_name%TYPE := 'LEADER';

END constants_up;

/

DECLARE

l_function player.function_name%TYPE;

BEGIN

SELECT p.function

INTO l_function

FROM player p

WHERE …

--

IF l_function = constants_up.co_leader

THEN

 6. Avoid storing ROWIDs or UROWIDs in a table. (CodeXpert)
[CodeXpert 5801]

Reason: It is an extremely dangerous practice to store ROWIDs in a table, except for
some very limited scenarios of runtime duration. Any manually explicit or
system generated implicit table reorganization will reassign the row's
ROWID and break the data consistency.

 7. Avoid nesting comment blocks. (CodeXpert)
[CodeXpert 2401]

Reason: A start-of-comment (/*) was found within comments. This can make the
code more difficult to read.
This situation can arise as you go through multiple modifications to code.

PL/SQL Coding Guidelines 19

5.2. Variables & Types

5.2.1 General

 8. Try to use anchored declarations for variables, constants and types.
Reason Changing the size of the database column ename in the emp table from

VARCHAR2(10) to VARCHAR2(20) will result in an error within your code
whenever a value larger than 10 bytes is read. This can be avoided using
anchored declarations.

Example:

-- Bad

DECLARE

l_ename VARCHAR2(10);

BEGIN

SELECT e.ename

INTO l_ename

FROM emp e

WHERE …

END;

-- Good

DECLARE

l_ename emp.ename%TYPE;

BEGIN

SELECT e.ename

INTO l_ename

FROM emp e

WHERE …

END;

 9. Try to have a single location to define your types. This single type could either be a type
specification package or the database (database defined types).
[CodeXpert 2812]

Reason: Single point of change when changing the data type.
 No need to argue where to define types or where to look for existing

definitions.

 10. Try to use subtypes for constructs used often in your application.
[CodeXpert 2812]

Reason: Single point of change when changing the data type.
 Your code will be easier to read as the usage of a variable/constant may be

derived from its definition.
Example:

-- Bad

l_code_section VARCHAR2(30) := ‘TEST_PCK’;

-- Good

l_code_section types_pck.ora_name_type := ‘TEST_PCK’;

PL/SQL Coding Guidelines 20

List of possible subtype definitions

Type Usage
ora_name_type Object corresponding to the ORACLE naming conventions

(table, variable, column, package, etc.)
max_vc2_type String variable with maximal VARCHAR2 size.
array_index_type Best fitting data type for array navigation.
id_type Data type used for all primary key (id) columns.

 11. Never initialize variables with NULL.
[CodeXpert 5003]

Reason: Variables are initialized to NULL by default.

 12. Avoid comparisons with null value, consider using IS [NOT] NULL. (CodeXpert)
[CodeXpert 5001]

Reason: The NULL value can cause confusion both from the standpoint of code
review and code execution. You should always use the IS NULL or IS NOT
NULL syntax when you need to check to see if a value is or is not NULL.

 13. Avoid initializing variables using functions in the declaration section.
[CodeXpert 2802]

Reason: If your initialization fails you will not be able to handle the error in your
exceptions block.

Example:

-- Bad

DECLARE

l_code_section VARCHAR2(30) := 'TEST_PCK';

l_company_name VARCHAR2(30) := util_pck.get_company_name(in_id => 47);

BEGIN

…

END;

-- Good

DECLARE

l_code_section VARCHAR2(30) := 'TEST_PCK';

l_company_name VARCHAR2(30);

BEGIN

<<init>>

BEGIN

l_companyName := util_pck.get_company_name(inId => 47);

EXCEPTION

WHEN VALUE_ERROR

THEN

...;

END init;

END;

PL/SQL Coding Guidelines 21

 14. Never overload data structure usages.
[CodeXpert 6401,6407]

Example:

-- Bad

<<main>>

DECLARE

l_variable VARCHAR2(30) := 'TEST_PCK';

BEGIN

<<sub>>

DECLARE

l_variable VARCHAR2(30) := 'TEST';

BEGIN

DBMS_OUTPUT.PUT_LINE(l_variable || ' -' || main.l_variable);

END sub;

END main;

 15. Never use quoted identifiers.
[CodeXpert 6413]

Reason: Quoted identifiers make your code hard to read and maintain.
Example:

-- Bad

DECLARE

"sal+comm" NUMBER(10);

BEGIN

...

 16. Avoid using overly short names for declared or implicitly declared identifiers.
(CodeXpert)
[CodeXpert 6414]

Reason: You should ensure that the name you’ve chosen well defines its purpose
and usage. While you can save a few keystrokes typing very short names,
the resulting code is obscure and hard for anyone besides the author to
understand.

 17. Avoid the use of ROWID or UROWID (CodeXpert)
[CodeXpert 2801]

Reason: Be careful about your use of Oracle-specific data types like ROWID and
UROWID. They might offer a slight improvement in performance over
other means of identifying a single row (primary key or unique index
value), but that is by no means guaranteed.
Use of ROWID or UROWID means that your SQL statement will not be
portable to other SQL databases. Many developers are also not familiar with
these data types, which can make the code harder to maintain.

PL/SQL Coding Guidelines 22

5.2.2 Numeric Data Types

 18. Avoid declaring NUMBER variables or subtypes with no precision.
[CodeXpert 2829]

Reason: If you do not specify precision NUMBER is defaulted to 38 or the maximum
supported by your system, whichever is less. You may well need all this
precision, but if you know you do not, you should specify whatever
matches your needs.

 19. Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer
values (no decimal point).
[CodeXpert 2831]

Reason: PLS_INTEGER having a length of -2,147,483,648 to 2,147,483,647, on a
32bit system.
There are many reasons to use PLS_INTEGER instead of NUMBER:
• PLS_INTEGER uses less memory
• PLS_INTEGER uses machine arithmetic, which is up to three times faster

than library arithmetic which is used by NUMBER.

With ORACLE 11g, the new data type SIMPLE_INTEGER has been
introduced. It is a sub-type of PLS_INTEGER and covers the same range.
The basic difference is that SIMPLE_INTEGER is always NOT NULL. When
the value of the declared variable is never going to be null then you can
declare it as SIMPLE_INTEGER. Another major difference is that you will
never face a numeric overflow using SIMPLE_INTEGER as this data type
wraps around without giving any error. SIMPLE_INTEGER data type gives
major performance boost over PLS_INTEGER when code is compiled in
‘NATIVE’ mode, because arithmetic operations on SIMPLE_INTEGER type
are performed directly at the hardware level.

5.2.3 Character Data Types

 20. Avoid using CHAR data type.
[CodeXpert 2804]

Reason: CHAR is a fixed length data type which should only be used when
appropriate. CHAR columns/variables are always filled to the specified
length, this may lead to side-effects.

 21. Avoid using VARCHAR data type.
[CodeXpert 2805]

Reason: The VARCHAR data type is a subtype of VARCHAR2. There is a strong
possibility, that the meaning of VARCHAR might change in future version
of ANSI SQL Standard. ORACLE recommends that you avoid using
VARCHAR and use VARCHAR2 instead.

PL/SQL Coding Guidelines 23

 22. Never use zero-length strings to substitute NULL.
[CodeXpert 5002]

Reason: Today zero-length strings and NULL are handled similarly by ORACLE.
There is no guarantee that this will still be the case in future releases,
therefore if you mean NULL use NULL.

Example:

-- Bad

l_char := '';

-- Good

l_char := NULL;

 23. Always define your VARCHAR2 variables using CHAR SEMANTIC.
Reason: Changes to the NLS_LENGTH_SEMANTIC will only be picked up by your

code after a recompilation.

Example:

-- Good

DECLARE

l_name VARCHAR2(10 CHAR);

...

BEGIN

...

5.2.4 Boolean Data Types

 24. Try to use boolean data type for values with dual meaning.
[CodeXpert 4210] [CodeXpert 4204]

Reason: The use of TRUE and FALSE clarifies that this is a boolean value and makes
the code easier to read.

Example:

-- Bad

DECLARE

l_bigger NUMBER(1);

BEGIN

IF l_newFile < l_oldFile

THEN

l_bigger := 1;

ELSE

l_bigger := 0;

END IF;

...

PL/SQL Coding Guidelines 24

-- Good

DECLARE

l_bigger BOOLEAN;

BEGIN

IF l_newFIle < l_oldFile

THEN

l_bigger := TRUE;

ELSE

l_bigger := FALSE;

END IF;

...

-- Better

DECLARE

l_bigger BOOLEAN;

...

BEGIN

l_bigger := NVL(l_newFile < l_oldFile, FALSE);

...

5.2.5 Large Objects

 25. Avoid using the LONG and LONG RAW data types.
[CodeXpert 2803]

Reason: LONG and LONG RAW data type support will be discontinued in future
ORACLE releases.

5.3. DML and SQL

 26. Always specify the target columns when executing an insert command.
Reason: Data structures often change. Having the target columns in your insert

statements will lead to change-resistant code.
Example:

-- Bad

INSERT INTO messages

VALUES (l_mess_no

,l_mess_typ

,l_mess_text);

-- Good

INSERT INTO messages (mess_no

,mess_typ

,mess_text)

VALUES (l_mess_no

,l_mess_typ

,l_mess_text);

PL/SQL Coding Guidelines 25

 27. Always use table aliases when your SQL statement involves more than one source.
[CodeXpert 5809]

Reason: It is more human readable to use aliases instead of writing columns with no
table information.

Example:

-- Good

SELECT a.pid ,a.name

,a.birthday ,b.country

FROM person a JOIN country b ON (a.cid = b.cid)

WHERE …

 28. Try to use ANSI-join syntax, if supported by your ORACLE version.
Reason: ANSI-join syntax does not have as many restrictions as the ORACLE join

syntax. Furthermore ANSI join syntax supports the full outer join. A third
advantage of the ANSI join syntax is the separation of the join condition
from the query filters.

Example:

-- Good

SELECT a.pid ,a.name

,a.birthday ,b.country

FROM person a JOIN country b ON (a.cid = b.cid)

WHERE …

 29. Try to use anchored records as targets for your cursors.
[CodeXpert 5803]

Reason: Using cursor-anchored records as targets for your cursors enables the
possibility of changing the structure of the cursor without regard to the
target structure.

Example:

-- Bad

DECLARE

CURSOR c_user IS

SELECT user_id, firstname, lastname

FROM user;

--

l_user_id user.user_id%TYPE;

l_firstname user.firstname%TYPE;

l_lastname user.lastname%TYPE;

BEGIN

OPEN c_user;

FETCH c_user INTO l_user_id, l_firstname, l_lastname;

WHILE c_user%FOUND

LOOP

-- do something with the data

FETCH c_user INTO l_user_id, l_firstname, l_lastname;

END LOOP;

CLOSE c_user;

END;

PL/SQL Coding Guidelines 26

-- Good

DECLARE

CURSOR c_user IS

SELECT user_id, firstname, lastname

FROM user;

r_user c_user%ROWTYPE;

BEGIN

OPEN c_user;

FETCH c_user INTO r_user;

<<process_user>>

WHILE c_user%FOUND

LOOP

-- do something with the data

FETCH c_user INTO r_user;

END LOOP process_user;

CLOSE c_user;

END;

5.3.1 BULK OPERATIONS

 30. Use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to
repeatedly execute a DML or SELECT command for more than 4 times.

Reason: Context switches between PL/SQL and SQL are extremely costly.

(Depending on the PLSQL_OPTIMIZE_LEVEL parameter this will be done
automatically.)

Example:

-- Bad

DECLARE

TYPE t_employee_type IS TABLE OF emp.empno%TYPE;

t_employees t_employee_type := t_employee_type(7369,7698,7839,7844,7876);

BEGIN

FOR i IN 1..t_employees.COUNT()

LOOP

UPDATE emp

SET sal = sal * 1.1

WHERE empno = t_employees(i);

END LOOP;

END;

PL/SQL Coding Guidelines 27

-- Good

DECLARE

TYPE t_employee_type IS TABLE OF emp.empno%TYPE;

t_employees t_employee_type := t_employee_type(7369,7698,7839,7844,7876);

BEGIN

FORALL i IN 1..t_employees.COUNT()

UPDATE emp

SET sal = sal * 1.1

WHERE empno = t_employees(i);

END;

5.4. Control Structures

5.4.2 CURSOR

 31. Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor was
successful.
[CodeXpert 2613]

Reason: The readability of your code will be higher when you avoid negative
sentences.

Example:

-- Bad

LOOP

FETCH c_employees INTO r_employee;

EXIT WHEN NOT c_employees%FOUND;

...

END LOOP;

-- Good

LOOP

FETCH c_employees INTO r_employee;

EXIT WHEN c_employees%NOTFOUND;

...

END LOOP;

PL/SQL Coding Guidelines 28

 32. Avoid using %NOTFOUND directly after the FETCH when working with BULK
OPERATIONS and LIMIT clause. Use [array_name].COUNT() instead to check whether
further FETCHs are needed.

Reason: %NOTFOUND is set to TRUE as soon as less then the number of rows
defined in the LIMIT clause have been read.

Example:

-- This example will only show 10 of 14 employees

DECLARE

TYPE t_employee_type IS TABLE OF emp%ROWTYPE;

t_employees t_employee_type;

CURSOR c_emp

IS SELECT *

FROM emp

ORDER BY empno;

BEGIN

OPEN c_emp;

<<process_emp>>

LOOP

FETCH c_emp BULK COLLECT INTO t_employees LIMIT 5;

EXIT process_emp WHEN c_emp%NOTFOUND;

<<display_emp>>

FOR i IN 1..t_employees.COUNT()

LOOP

sys.dbms_output.put_line(t_employees(i).ename);

END LOOP display_emp;

END LOOP process_emp;

CLOSE c_emp;

END;

-- This example does 4 fetches where 3 were sufficient

DECLARE

TYPE t_employee_type IS TABLE OF emp%ROWTYPE;

t_employees t_employee_type;

CURSOR c_emp

IS SELECT *

FROM emp

ORDER BY empno;

BEGIN

OPEN c_emp;

<<process_emp>>

LOOP

FETCH c_emp BULK COLLECT INTO t_employees LIMIT 5;

EXIT WHEN t_employees.COUNT() = 0;

<<display_emp>>

PL/SQL Coding Guidelines 29

FOR i IN 1..t_employees.COUNT()

LOOP

sys.dbms_output.put_line(t_employees(i).ename);

END LOOP display_emp;

END LOOP process_emp;

CLOSE c_emp;

END;

-- This examples does the trick (3 fetches only and process all rows)

DECLARE

TYPE t_employee_type IS TABLE OF emp%ROWTYPE;

t_employees t_employee_type;

CURSOR c_emp

IS SELECT *

FROM emp

ORDER BY empno;

BEGIN

OPEN c_emp;

<<process_emp>>

LOOP

FETCH c_emp BULK COLLECT INTO t_employees LIMIT 5;

<<display_emp>>

FOR i IN 1..t_employees.COUNT()

LOOP

sys.dbms_output.put_line(t_employees(i).ename);

END LOOP display_emp;

EXIT WHEN t_employees.COUNT() = 0 OR c_emp%NOTFOUND;

END LOOP process_emp;

CLOSE c_emp;

END;

PL/SQL Coding Guidelines 30

 33. Always close locally opened cursors.
[CodeXpert 2601]

Reason: Any cursors left open can consume additional System Global Area (i.e.
SGA) memory space within the database instance, potentially in both the
shared and private SQL pools. Furthermore, failure to explicitly close
cursors may also cause the owning session to exceed its maximum limit of
open cursors (as specified by the OPEN_CURSORS database initialization
parameter), potentially resulting in the Oracle error of “ORA-01000:
maximum open cursors exceeded”. For example, the following procedure
opens and fetches, but does not close its cursor – which may cause
problems like those described above.

Example:

-- bad

CREATE PROCEDURE not_close_cursor (out_count OUT INTEGER)

AS

CURSOR c1

IS

SELECT COUNT (*)

FROM all_users;

BEGIN

out_count := 0;

OPEN c1;

FETCH c1

INTO out_count;

END not_close_cursor;

...

-- Good

CREATE PROCEDURE close_cursor (out_count OUT INTEGER)

AS

CURSOR c1

IS

SELECT COUNT (*)

FROM all_users;

BEGIN

out_count := 0;

OPEN c1;

FETCH c1

INTO out_count;

CLOSE c1

END close_cursor;

PL/SQL Coding Guidelines 31

 34. Avoid procedure or function calls between a SQL operation and an implicit cursor
test. (CodeXpert)
[CodeXpert 2603

Reason: Oracle provides a variety of cursor attributes, such as %FOUND and
%ROWCOUNT, that you can use to obtain information about the status of
your cursor, either implicit or explicit. You should avoid inserting any
statements between the cursor operation and the use of an attribute against
that cursor. Interposing such a statement can affect the value returned by
the attribute, thereby potentially corrupting the logic of your program. In
the following example, a procedure call is inserted between the DELETE
statement and a check for the value of SQL%ROWCOUNT, which returns
the number of rows modified by that last SQL statement executed in the
session.

Example:

-- Bad

CREATE PROCEDURE remove_emp_and_process (in_id IN emp.empno%TYPE)

AS

BEGIN

DELETE FROM emp

WHERE empno = in_id

RETURNING deptno INTO l_deptno;

process_department (...);

IF SQL%ROWCOUNT > 1

THEN

-- Too many rows deleted! Rollback and recover...

ROLLBACK;

END IF;

END remove_emp_and_process;

PL/SQL Coding Guidelines 32

5.4.3 CASE / IF / DECODE / NVL / NVL2 / COALESCE

 35. Try to use CASE rather than an IF statement with multiple ELSIF paths.
[CodeXpert 4213]

Reason: IF statements containing multiple ELSIF tend to become complex quickly.
Example:

-- bad

IF l_color = 'red'

THEN

...

ELSIF l_color = 'blue'

THEN

...

ELSIF l_color = 'black'

THEN

...

-- Good

CASE l_color

WHEN 'red' THEN ...

WHEN 'blue' THEN ...

WHEN 'black' THEN ...

END

 36. Try to use CASE rather than DECODE.
[CodeXpert 5816]

Reason: DECODE is an old function that has been replaced by the easier-to-
understand and more common CASE function. Contrary to the DECODE
statement CASE may also be used directly within PL/SQL.

Example:

-- Bad

BEGIN

SELECT DECODE(dummy, 'A', 1

, 'B', 2

, 'C', 3

, 'D', 4

, 'E', 5

, 'F', 6

, 7)

INTO l_result

FROM dual;

...

PL/SQL Coding Guidelines 33

-- Good

BEGIN

l_result := CASE dummy

WHEN 'A' THEN 1

WHEN 'B' THEN 2

WHEN 'C' THEN 3

WHEN 'D' THEN 4

WHEN 'E' THEN 5

WHEN 'F' THEN 6

ELSE 7

END;

...

 37. Always use COALESCE instead of NVL, if parameter 2 of the NVL function is a
function call or a SELECT statement.

Reason: The NVL function always evaluates both parameters before deciding which
one to use. This can be harmful if parameter 2 is either a function call or a
select statement, as it will be executed regardless of whether parameter 1
contains a NULL value or not.

 The COALESCE function does not have this drawback.
Example:

-- Bad

SELECT NVL(dummy, function_call())

FROM dual;

-- Good

SELECT COALESCE(dummy, function_call())

FROM dual;

 38. Always use CASE instead of NVL2 if parameter 2 or 3 of NVL2 is either a function call
or a SELECT statement.

Reason: The NVL2 function always evaluates all parameters before deciding which
one to use. This can be harmful, if parameter 2 or 3 is either a function call
or a select statement, as they will be executed regardless of whether
parameter 1 contains a NULL value or not.

Example:

-- Bad

SELECT NVL2(dummy, 'Yes', 'No')

FROM dual;

-- Good

SELECT CASE

WHEN dummy IS NULL THEN 'No'

ELSE 'Yes'

END

FROM dual;

PL/SQL Coding Guidelines 34

5.4.4 Flow Control

 39. Never use GOTO statements in your code.
[CodeXpert 4001,4002,4003]

 40. Always label your loops.
[CodeXpert 4402,4403,4405]

Example:

-- Good

BEGIN

<<process_employees>>

FOR r_employee IN (SELECT * FROM emp)

LOOP

…

END LOOP process_employees;

END;

 41. Always use a CURSOR FOR loop to process the complete cursor results unless you are
using bulk operations.

Example:

-- Good

BEGIN

<<read_employees>>

FOR r_employee IN c_employee

LOOP

…

END LOOP read_employees;

END;

 42. Always use a NUMERIC FOR loop to process a dense array.
Example:

-- Good

BEGIN

<<process_employees>>

FOR i IN 1..t_employees.COUNT()

LOOP

…

END LOOP process_employees;

END;

 43. Use 1 as lower boundary and COUNT() as upper boundary when looping over a
dense array.

Reason: Doing so will not raise a VALUE ERROR when looping over an empty

array. If you want to use FIRST()..LAST(), you need to check the array for
emptiness.

PL/SQL Coding Guidelines 35

Example:

-- Good

DECLARE

t_employees t_employee_type := t_employee_type();

BEGIN

<<process_employees>>

FOR i IN 1..t_employees.COUNT()

LOOP

…

END LOOP process_employees;

END;

Example:

-- Good

DECLARE

t_employees t_employee_type := t_employee_type();

BEGIN

<<process_employees>>

IF t_employees IS NOT EMPTY

THEN

FOR i IN t_employees.FIRST()..t_employees.LAST()

LOOP

…

END LOOP process_employees;

END IF;

END;

Example:

-- Bad (raises a VALUE ERROR as FIRST and LAST return NULL)

DECLARE

t_employees t_employee_type := t_employee_type();

BEGIN

<<process_employees>>

FOR i IN t_employees.FIRST()..t_employees.LAST()

LOOP

…

END LOOP process_employees;

END;

PL/SQL Coding Guidelines 36

 44. Always use a WHILE loop to process a loose array.
Example:

-- Good

DECLARE

l_index PLS_INTEGER;

BEGIN

l_index := t_employees.FIRST();

<<process_employees>>

WHILE l_index IS NOT NULL

LOOP

…

l_index := t_employees.NEXT(l_index);

END LOOP process_employees;

END;

 45. Avoid using EXIT to stop loop processing unless you are in a basic loop.
[CodeXpert 4804]

 46. Always use EXIT WHEN instead of an IF statement to exit from a loop.
[CodeXpert 4801] [CodeXpert 4802]

Example:

-- Bad

BEGIN

<<process_employees>>

LOOP

...

IF ...

THEN

EXIT process_employees;

END IF;

...

END LOOP process_employees;

END;

-- Good

BEGIN

<<process_employees>>

LOOP

...

EXIT process_employees WHEN (...);

END LOOP process_employees;

END;

PL/SQL Coding Guidelines 37

 47. Try to label your EXIT WHEN statements.
Example:

-- Good

BEGIN

l_outerlp := 0;

<<outerloop>>

LOOP

l_innerlp := 0;

l_outerlp := NVL(l_outerlp,0) + 1;

<<innerloop>>

LOOP

l_innerlp := NVL(l_innerlp,0) + 1;

DBMS_OUTPUT.PUT_LINE('Outer Loop counter is ' || l_outerlp ||

' Inner Loop counter is ' || l_innerlp);

EXIT outerloop WHEN l_innerlp = 3;

END LOOP innerloop;

END LOOP outerloop;

END;

 48. Do not use a cursor for loop to check whether a cursor returns data.
Example:

-- Bad

DECLARE

l_employee_found BOOLEAN := FALSE;

…

BEGIN

<<check_employees>>

FOR r_employee IN c_employee

LOOP

l_employee_found := TRUE;

END LOOP check_employees;

END;

-- Good

DECLARE

l_employee_found BOOLEAN := FALSE;

…

BEGIN

OPEN c_employee;

FETCH c_employee INTO r_employee;

l_employee_found := c_employee%FOUND;

CLOSE c_emplyoee;

END;

PL/SQL Coding Guidelines 38

 49. Avoid use of unreferenced FOR loop indexes. (CodeXpert)
[CodeXpert 4806]

Reason: The loop index is not used for anything but traffic control inside the loop.
This is one of the indicators that a numeric FOR loop is being used
incorrectly. The actual body of executable statements completely ignores
the loop index. When that is the case, there is a good chance that you don't
need the loop at all.

 50. Avoid hard-coded upper or lower bound values with FOR loops. (CodeXpert)
[CodeXpert 4807]

Reason: Your LOOP statement uses a hard-coded value for either its upper or lower
bounds. This creates a "weak link" in your program because it assumes that
this value will never change. A better practice is to create a named constant
(or function) in a package specification and reference this named element
instead of the hard-coded value.

5.5. Exception Handling

 51. Never handle unnamed exceptions using the error number.
Example:

-- Bad

BEGIN

...

EXCEPTION

WHEN OTHERS

THEN

IF SQLCODE = -2291

THEN

...

END IF;

END;

-- Good

DECLARE

e_parent_missing EXCEPTION;

PRAGMA EXCEPTION_INIT(e_parent_missing,-2291);

...

BEGIN

...

EXCEPTION

WHEN e_parent_missing

THEN

...

END;

PL/SQL Coding Guidelines 39

 52. Never assign predefined exception names to user defined exceptions.
[CodeXpert 3010]

Reason: This is error-prone because your local declaration overrides the global
declaration. While it is technically possible to use the same names, it
causes confusion for others needing to read and maintain this code.
Additionally, you will need to be very careful to use the prefix
"STANDARD" in front of any reference that needs to use Oracle’s default
exception behavior.

 53. Avoid use of WHEN OTHERS clause in an exception section without any other
specific handlers. (CodeXpert)
[CodeXpert 3001]

Reason: There isn't necessarily anything wrong with using WHEN OTHERS, but it
can cause you to "lose" error information unless your handler code is
relatively sophisticated. Generally, you should use WHEN OTHERS to grab
any and every error only after you have thought about your executable
section and decided that you are not able to trap any specific exceptions. If
you know, on the other hand, that a certain exception might be raised,
include a handler for that error. By declaring two different exception
handlers, the code more clearly states what we expect to have happen and
how we want to handle the errors. That makes it easier to maintain and
enhance. We also avoid hard-coding error numbers in checks against
SQLCODE

Example:

--Bad

EXCEPTION

WHEN OTHERS

THEN

IF SQLCODE = -1

THEN

update_instead (...);

ELSE

err.log;

RAISE;

END IF;

--Good

EXCEPTION

WHEN DUP_VAL_ON_INDEX

THEN

update_instead (...);

WHEN OTHERS

THEN

err.log;

RAISE;

PL/SQL Coding Guidelines 40

 54. Avoid use of EXCEPTION_INIT pragma for a -20,NNN error (CodeXpert)
[CodeXpert 3002]

Reason: If you are not very organized in the way you allocate, define and use the
error numbers between -20999 and -20000 (those reserved by Oracle for its
user community), it is very easy to end up with conflicting usages. You
should assign these error numbers to named constants and consolidate all
definitions within a single package. Oracle allocates 1000 error numbers,
between -20999 and -20000, for users to use for their own application-
specific errors (such as "Employee must be 18 years old" or "Reservation
date must be in the future"). Define all error numbers and their associated
messages in a database table or operating system file. Build a package that
gives names to these errors, and then raise the errors using those names and
not any hard-coded values. Here is a fairly typical hard-coded, error-prone
program with RAISE_APPLICATION_ERROR. This procedure is designed to
stop updates and inserts when an employee is younger than 18 and is
based on the assumption that no one has used error -20734 yet:

Example:

--Bad

CREATE OR REPLACE PROCEDURE check_hiredate (date_in IN DATE)

IS

BEGIN

IF date_in < ADD_MONTHS (SYSDATE, -1 * 12 * 18)

THEN

RAISE_APPLICATION_ERROR (

-20734,

'Employee must be 18 years old.');

END IF;

END check_hiredate;

--Good

CREATE OR REPLACE PROCEDURE check_hiredate (date_in IN DATE)

IS

BEGIN

IF emp_rules.emp_too_young (date_in)

THEN

err.raise (errnums.emp_too_young);

END IF;

END check_hiredate;

PL/SQL Coding Guidelines 41

 55. Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded -
20,NNN error number or hard-coded message. (CodeXpert)
[CodeXpert 3003]

Reason: If you are not very organized in the way you allocate, define and use the
error numbers between -20,999 and -20,000 (those reserved by Oracle for
its user community), it is very easy to end up with conflicting usages. You
should assign these error numbers to named constants and consolidate all
definitions within a single package. When you call
RAISE_APPLICATION_ERROR, you should reference these named elements
and error message text stored in a table. Use your own raise procedure in
place of explicit calls to RAISE_APPLICATION_ERROR. If you are raising a
"system" exception like NO_DATA_FOUND, you must use RAISE. But
when you want to raise an application-specific error, you use
RAISE_APPLICATION_ERROR. If you use the latter, you then have to
provide an error number and message. This leads to unnecessary and
damaging hard-coded values. A more fail-safe approach is to provide a
predefined raise procedure that automatically checks the error number and
determines the correct way to raise the error.

Example: see rule 54

 56. Avoid unhandled exceptions
[CodeXpert 3005]

Reason: This may be your intention, but you should review the code to confirm this
behavior.
If you are raising an error in a program, then you are clearly predicting a
situation in which that error will occur. You should consider including a
handler in your code for predictable errors, allowing for a graceful and
informative failure. After all, it is much more difficult for an enclosing block
to be aware of the various errors you might raise and more importantly,
what should be done in response to the error.
The form that this failure takes does not necessarily need to be an
exception. When writing functions, you may well decide that in the case of
certain exceptions, you will want to return a value such as NULL, rather
than allow an exception to propagate out of the function.

 57. Avoid using Oracle’s predefined exceptions (CodeXpert)
[CodeXpert 3006]

Reason: You have raised an exception whose name was defined by Oracle. While it
is possible that you have a good reason for "using" one of Oracle's
predefined exceptions, you should make sure that you would not be better
off declaring your own exception and raising that instead.
If you decide to change the exception you are using, you should apply the
same consideration to your own exceptions. Specifically, do not "re-use"
exceptions. You should define a separate exception for each error
condition, rather than use the same exception for different circumstances.

Being as specific as possible with the errors raised will allow developers to
check for, and handle, the different kinds of errors the code might produce.

PL/SQL Coding Guidelines 42

5.6. Dynamic SQL

 58. Always use a string variable to execute dynamic SQL.
Reason: Having the executed statement in a variable makes it easier to debug your

code.
Example:

-- Bad

DECLARE

l_empno emp.empno%TYPE := 4711;

BEGIN

EXECUTE IMMEDIATE 'DELETE FROM emp WHERE epno = :p_empno' USING l_empno;

END;

-- Good

DECLARE

l_empno emp.empno%TYPE := 4711;

l_sql VARCHAR2(32767);

BEGIN

l_sql := 'DELETE FROM emp WHERE epno = :p_empno';

EXECUTE IMMEDIATE l_sql USING l_empno;

EXCEPTION

WHEN others

THEN

DBMS_OUTPUT.PUT_LINE(l_sql);

END;

 59. Try to use output bind arguments in the RETURNING INTO clause of dynamic
INSERT, UPDATE, or DELETE statements rather than the USING clause. (CodeXpert)
[CodeXpert 5814]

Reason: When a dynamic INSERT, UPDATE, or DELETE statement has a
RETURNING clause, output bind arguments can go in the RETURNING
INTO clause or in the USING clause.
You should use the RETURNING INTO clause for values returned from a
DML operation. Reserve OUT and IN OUT bind variables for dynamic
PL/SQL blocks that return values in PL/SQL variables.

PL/SQL Coding Guidelines 43

Example:

DECLARE

sql_stmt VARCHAR2(200);

my_empno NUMBER(4) := 7902;

my_ename VARCHAR2(10);

my_job VARCHAR2(9);

my_sal NUMBER(7,2) := 3250.00;

BEGIN

sql_stmt := 'UPDATE emp SET sal = :1 WHERE empno = :2

RETURNING ename, job INTO :3, :4';

/* OLD WAY: Bind values returned through USING clause. */

EXECUTE IMMEDIATE sql_stmt

USING my_sal, my_empno, OUT my_ename, OUT my_job;

/* NEW WAY: Bind values returned through RETURNING INTO clause. */

EXECUTE IMMEDIATE sql_stmt

USING my_sal, my_empno RETURNING INTO my_ename, my_job;

END;

5.7. Stored Objects

 60. Try to use named notation when calling program units.
Reason: Named notation makes sure that changes to the signature of the called

program unit do not affect your call.
This is not needed for standard functions like (TO_CHAR, TO_DATE, NVL,
ROUND, etc.) but should be followed for any other stored object having
more than one parameter.

Example:

-- Good

BEGIN

r_emp := read_employee(p_empno_in => l_empno

,p_ename_in => l_ename);

END;

 61. Always add the name of the program unit to its end keyword.
[CodeXpert 4404]

Example:

-- Good

FUNCTION get_emp (in_empno IN emp.empno%TYPE)

RETURN emp%ROWTYPE

IS

BEGIN

…;

END get_emp;

PL/SQL Coding Guidelines 44

 62. Always use parameters or pull in definitions rather than referencing external variables
in a local program unit. (CodeXpert)
[CodeXpert 6404]

Reason: Local procedures and functions offer an excellent way to avoid code
redundancy and make your code more readable (and thus more
maintainable). Your local program makes a reference, however, to an
external data structure, i.e., a variable that is declared outside of the local
program. Thus, it is acting as a global variable inside the program.
This external dependency is hidden, and may cause problems in the future.
You should instead add a parameter to the parameter list of this program
and pass the value through the list. This technique makes your program
more reusable and avoids scoping problems, i.e. the program unit is less
tied to particular variables in the program. In addition, unit encapsulation
makes maintenance a lot easier and cheaper.

 63. Always ensure that locally defined procedures or functions are referenced.
[CodeXpert 5603]

Reason: This can occur as the result of changes to code over time, but you should
make sure that this situation does not reflect a problem. And you should
remove the declaration to avoid maintenance errors in the future.
You should go through your programs and remove any part of your code
that is no longer used. This is a relatively straightforward process for
variables and named constants. Simply execute searches for a variable's
name in that variable's scope. If you find that the only place it appears is in
its declaration, delete the declaration.
There is never a better time to review all the steps you took, and to
understand the reasons you took them, then immediately upon completion
of your program. If you wait, you will find it particularly difficult to
remember those parts of the program that were needed at one point, but
were rendered unnecessary in the end.

 64. Try to remove unused parameters or modify code to use the parameter.
[CodeXpert 5406]

Reason: This can occur as the result of changes to code over time, but you should
make sure that this situation does not reflect a problem in your code.
You should go through your programs and remove any part of your code
that is no longer used.

PL/SQL Coding Guidelines 45

5.7.1 Packages

 65. Try to keep your packages small. Include only few procedures and functions that are
used in the same context.

 66. Always use forward declaration for private functions and procedures.

 67. Avoid declaring global variables public. (CodeXpert)
[CodeXpert 5202]

Reason: You should always declare package-level data inside the package body.
You can then define "get and set" methods (functions and procedures,
respectively) in the package specification to provide controlled access to
that data. By doing so you can guarantee data integrity, change your data
structure implementation, and also track access to those data structures.
Data structures (scalar variables, collections, cursors) declared in the
package specification (not within any specific program) can be referenced
directly by any program running in a session with EXECUTE rights to the
package.

 Instead, declare all package-level data in the package body and provide
"get and set" programs - a function to GET the value and a procedure to SET
the value - in the package specification. Developers then can access the
data using these methods - and will automatically follow all rules you set
upon data modification.

 68. Avoid using a IN OUT parameters as IN / OUT only. (CodeXpert)
[CodeXpert 5402][CodeXpert 5401][CodeXpert 5405]

Reason: By showing the mode of parameters, you help the reader. If you do not
specify a parameter mode, the default mode is IN. Explicitly showing the
mode indication of all parameters is a more assertive action than simply
taking the default mode. Anyone reviewing the code later will be more
confident that you intended the parameter mode to be IN /OUT.

5.7.2 Procedures

 69. Avoid standalone procedures – put your procedures in packages.

 70. Avoid using RETURN statements in a PROCEDURE. (CodeXpert)
[CodeXpert 5601]

Reason: Use of the RETURN statement is legal within a procedure in PL/SQL, but it
is very similar to a GOTO, which means you end up with poorly-structured
code that is hard to debug and maintain.
A good general rule to follow as you write your PL/SQL programs is: "one
way in and one way out". In other words, there should be just one way to
enter or call a program, and there should be one way out, one exit path
from a program (or loop) on successful termination. By following this rule,
you end up with code that is much easier to trace, debug, and maintain.

PL/SQL Coding Guidelines 46

5.7.3 Functions

 71. Avoid standalone functions – put your functions in packages.

 72. Try to use no more than one RETURN statement within a function.
[CodeXpert 3803]

 73. Always make the RETURN statement the last statement of your function.
[CodeXpert 3801]

 74. Never use OUT parameters to return values from a function.
[CodeXpert 3801]

Reason: A function should return all its data through the RETURN clause. Having an
OUT parameter prohibits usage of a function within SQL statements.

 75. Never return a NULL value from a BOOLEAN function.

5.7.4 Oracle Supplied Packages

 76. Alwas prefix ORACLE supplied packages with owner schema name.

Reason: The signature of oracle supplied packages is well known and therefore it is
quite easy to provide packages with the same name as those from oracle
doing something completely different without you noticing it.

Example:

-- Bad

BEGIN

DBMS_OUTPUT.PUT_LINE('Hello World');

END;

-- Good

BEGIN

SYS.DBMS_OUTPUT.PUT_LINE('Hello World');

END;

5.7.5 Object Types

There are no object type-specific recommendations to be defined at the time of writing.

5.7.6 Trigger

 77. Avoid cascading triggers.
Reason: Having triggers that act on other tables in a way that causes triggers on that

table to fire lead to obscure behavior.

PL/SQL Coding Guidelines 47

5.8. Patterns

5.8.1 Checking the Number of Rows

 78. Never use SELECT COUNT(*) if you are only interested in the existence of a row.
[CodeXpert 5804]

Reason: If you do a SELECT count(*) all rows will be read according to the WHERE
clause, even if only the availability of data is of interest. For this we have a
big performance overhead. If we do a SELECT count(*) .. WHERE
ROWNUM = 1 there is also a overhead as there will be two
communications between the PL/SQL and the SQL engine. See the
following example for a better solution.

Example:

-- Bad

...

BEGIN

SELECT count(*)

INTO l_count

FROM cust_order

WHERE …

IF l_count > 0

THEN

SELECT p.part_nbr, p.name, p.unit_cost

FROM part p

WHERE …

-- Good

...

BEGIN

SELECT p.part_nbr, p.name, p.unit_cost

FROM part p

WHERE EXISTS (SELECT 1

FROM cust_order co

WHERE co.part_nbr = p.part_nbr)

…

PL/SQL Coding Guidelines 48

5.8.2 Access objects of foreign application schemas

 79. Always use synonyms when accessing objects of another application schema.
[CodeXpert 5810]

Reason: If a connection is needed to a table that is placed in a foreign schema, using
synonyms is a good choice. If there are structural changes to that table (e.g.
the table name changes or the table changes into another schema) only the
synonym has to be changed no changes to the package are needed (single
point of change). If you only have read access for a table inside another
schema, or there is another reason that doesn’t allow you to change data in
this table, you can switch the synonym to a table in your own schema. This
is also good practice for testers working on test systems.

Example:

-- Bad

…

SELECT p.lastname

INTO l_lastname

FROM personal.persons p

WHERE p.pnbr = p_pnbr_in

…

-- Good

CREATE SYNONYM rech_s_person FOR personal.persons

…

SELECT p.lastname

INTO l_lastname

FROM rech_s_person p

WHERE p.pnbr = p_pnbr_in

…

PL/SQL Coding Guidelines 49

6. Complexity Analysis
Using software metrics like complexity analysis will guide you towards maintainable and
testable pieces of code by reducing the complexity and splitting the code into smaller
chunks.

6.1. Halstead Metric

6.1.1 Calculation

First we need to compute the following numbers, given the program:
• n1 = the number of distinct operators
• n2 = the number of distinct operands
• N1 = the total number of operators
• N2 = the total number of operands

From these numbers, five measures can be calculated:

• Program length:

• Program vocabulary:

• Volume:

• Difficulty :

• Effort:

The difficulty measure D is related to the difficulty of the program to write or understand,
e.g. when doing code review.
The volume measure V describes the size of the implementation of an algorithm.

PL/SQL Coding Guidelines 50

6.1.2 CodeXpert

The calculation of the Halstead volume can be done using CodeXpert for example.

Operators

The following are counted as operators within CodeXpert

If fetch <>

else open <=

elsif open for >=

case open for using =

when pragma !=

loop exception ;

for-loop procedure call = 1
Operator

,

forall function call = 1
operator

:=

while-loop begin end = 1 operator .

exit () = 1 operator -

exit when [] = 1 operator +

goto and *

return or /

close not %

 like <

 between >

Operands

The following are counted as operands within CodeXpert

identifiers numbers characters

strings exception <=

PL/SQL Coding Guidelines 51

Analysis Result

The table below shows the threshold values used by CodeXpert:

Halstead
Volume

Complexity Evaluation

0 – 1000 Reasonable: An average programmer should be able to comprehend and
maintain this code.

1001 – 3000 Challenging: More senior skills most likely required to comprehend and
maintain this code.

> 3000 Too complex: Candidate for re-design or re-factoring to improve
readability and maintainability.

PL/SQL Coding Guidelines 52

6.2. Cyclomatic Complexity (McCabe’s)
Cyclomatic complexity (or conditional complexity) is a software metric used to measure the
complexity of a program. It directly measures the number of linearly independent paths
through a program's source code.
Cyclomatic complexity is computed using the control flow graph of the program: the nodes
of the graph correspond to indivisible groups of commands of a program, and a directed
edge connects two nodes if the second command might be executed immediately after the
first command. Cyclomatic complexity may also be applied to individual functions,
modules, methods or classes within a program.

6.2.1 Description

The cyclomatic complexity of a section of source code is the count of the number of linearly
independent paths through the source code. For instance, if the source code contains no
decision points, such as IF statements or FOR loops, the complexity would be 1, since there
is only a single path through the code. If the code has a single IF statement containing a
single condition there would be two paths through the code, one path where the IF
statement is evaluated as TRUE and one path where the IF statement is evaluated as FALSE.

Mathematically, the cyclomatic complexity of a structured program is defined with reference
to a directed graph containing the basic blocks of the program, with an edge between two
basic blocks if control may pass from the first to the second (the control flow graph of the

program). The complexity is then defined as:
where
M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

Take, for example, a control flow graph of a simple program. The program begins executing
at the red node, then enters a loop (group of three nodes immediately below the red node).
On exiting the loop, there is a conditional statement (group below the loop), and finally the
program exits at the blue node. For this graph, E = 9, N = 8 and P = 1, so the cyclomatic

complexity of the program is 3.

A control flow graph of a simple program. The program begins
executing at the red node, then enters a loop (group of three
nodes immediately below the red node). On exiting the loop, there
is a conditional statement (group below the loop), and finally the
program exits at the blue node. For this graph, E = 9, N = 8 and P =
1, so the cyclomatic complexity of the program is 3.

PL/SQL Coding Guidelines 53

BEGIN

FOR i IN 1..3

LOOP

dbms_output.put_line('in loop');

END LOOP;

--

IF 1 = 1

THEN

dbms_output.put_line('yes');

END IF;

--

dbms_output.put_line('end');

END;

For a single program (or subroutine or method), P is always equal to 1. Cyclomatic
complexity may, however, be applied to several such programs or subprograms at the same
time (e.g., to all of the methods in a class), and in these cases P will be equal to the number
of programs in question, as each subprogram will appear as a disconnected subset of the
graph.

It can be shown that the cyclomatic complexity of any structured program with only one
entrance point and one exit point is equal to the number of decision points (i.e., 'if'
statements or conditional loops) contained in that program plus one.

Cyclomatic complexity may be extended to a program with multiple exit points; in this case

it is equal to:
where π is the number of decision points in the program, and s is the number of exit points.

6.2.2 CodeXpert

A common application of cyclomatic complexity is to compare it against a set of threshold
values. The calculation of the cyclomatic complexity can be done using CodeXpert for
example.

Analysis Result

The table below shows the threshold values used by CodeXpert:

Cyclomatic
Complexity

Risk Evaluation

1 – 10 A simple program, without much risk
11 – 20 A more complex program, with moderate risk.
21 – 50 A complex, high risk program.
> 50 An un-testable program with very high risk.

PL/SQL Coding Guidelines 54

7. Code Reviews
Code reviews check the results of software engineering. According to IEEE-Norm 729, a
review is a more or less planned and structured analysis and evaluation process. Here we
distinguish between code review and architect review.

To perform a code review means that after or during the development one or more reviewer
proof-reads the code to find potential errors, potential areas for simplification, or test cases.
A code review is a very good opportunity to save costs by fixing issues before the testing
phase.

What can a code-review be good for?

• Code quality
• Code clarity and maintainability
• Quality of the overall architecture
• Quality of the documentation
• Quality of the interface specification

For an effective review, the following factors must be considered:

• Definition of clear goals.
• Choice of a suitable person with constructive critical faculties.
• Psychological aspects.
• Selection of the right review techniques.
• Support of the review process from the management.
• Existence of a culture of learning and process optimization.

Requirements for the reviewer:

• He must not be the owner of the code.
• Code reviews may be unpleasant for the developer, as he could fear that his code

will be criticized. If the critic is not considerate, the code writer will build up
rejection and resistance against code reviews.

PL/SQL Coding Guidelines 55

8. Tool Support
8.1. Development

8.2. Documentation
Tool Supplier Description
PLDoc SourceForge
PLSQLDoc Allround

Automations
Plug-In for PL/SQL Developer

8.3. Code Formatting
Tool Supplier Description
SQL and PL/SQL
Formatter

ORACLE Faq’s Online formatting tool at
www.orafaq.com/utilities/sqlformatter.htm

PL/SQL Tidy
Formatter Plus Quest Software Add-on to Toad and SQL Navigator
SQL Developer ORACLE Standard rules not configurable.

8.4. Unit Tests

8.5. Code Analyzers
Tool Supplier Description
CodeXpert Quest Supports

• rule enforcement
• measurement of the number of statements
• Halstead Volume (Computational Complexity)
• McCabe’s (Cyclomatic Complexity)
• maintainability index

9. References

Bibliography
Feuerstein, S. (2007). ORACLE PL/SQL Best Practices. O'Reilly Media.
Quest Software, CodeXpert,
Trivadis AG P. Pakull, D. Liebhart. (2008). Modernisierung von PL/SQL und Forms
Anwendungen.

Version 2.0
© 2011 Trivadis AG

Info-Tel. 0800 874 823 47
www.trivadis.com

UNSERE STANDORTE
Basel
BERN
Lausanne
ZÜrich
DÜsseldorf
Frankfurt a. M.
Freiburg i. Br.
Hamburg
MÜnchen
Stuttgart
Wien

UNSERE LÖSUNGEN
	 Business Integration Services
	 Business Intelligence
	A pplication Development
	I nfrastructure Engineering
	 Managed Services
	 Training

