{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## ART BlackBox Classifier Lookup Table - Using existing predictions from classifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this demo we will demonstrate how a set of existing samples and their predicted labels can be used in a black-box attack against a model which we no longer have access to.\n", "This will be demonstrated on the Nursery dataset (original dataset can be found here: https://archive.ics.uci.edu/ml/datasets/nursery).\n", "\n", "We have already preprocessed the dataset such that all categorical features are one-hot encoded, and the data was scaled using sklearn's StandardScaler." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.insert(0, os.path.abspath('..'))\n", "\n", "from art.utils import load_nursery\n", "\n", "(x_train, y_train), (x_test, y_test), _, _ = load_nursery(test_set=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train neural network model" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Base model accuracy: 0.9720592775548008\n" ] } ], "source": [ "import numpy as np\n", "import torch\n", "from torch import nn, optim\n", "from torch.utils.data import DataLoader\n", "from torch.utils.data.dataset import Dataset\n", "from art.estimators.classification.pytorch import PyTorchClassifier\n", "\n", "class ModelToAttack(nn.Module):\n", "\n", " def __init__(self, num_classes, num_features):\n", " super(ModelToAttack, self).__init__()\n", "\n", " self.fc1 = nn.Sequential(\n", " nn.Linear(num_features, 1024),\n", " nn.Tanh(), )\n", "\n", " self.fc2 = nn.Sequential(\n", " nn.Linear(1024, 512),\n", " nn.Tanh(), )\n", "\n", " self.classifier = nn.Linear(512, num_classes)\n", " # self.softmax = nn.Softmax(dim=1)\n", "\n", " def forward(self, x):\n", " out = self.fc1(x)\n", " out = self.fc2(out)\n", " return self.classifier(out)\n", "\n", "mlp_model = ModelToAttack(4, 24)\n", "mlp_model = torch.nn.DataParallel(mlp_model)\n", "criterion = nn.CrossEntropyLoss()\n", "optimizer = optim.Adam(mlp_model.parameters(), lr=0.0001)\n", "\n", "class NurseryDataset(Dataset):\n", " def __init__(self, x, y=None):\n", " self.x = torch.from_numpy(x.astype(np.float64)).type(torch.FloatTensor)\n", "\n", " if y is not None:\n", " self.y = torch.from_numpy(y.astype(np.int8)).type(torch.LongTensor)\n", " else:\n", " self.y = torch.zeros(x.shape[0])\n", "\n", " def __len__(self):\n", " return len(self.x)\n", "\n", " def __getitem__(self, idx):\n", " if idx >= len(self.x):\n", " raise IndexError(\"Invalid Index\")\n", "\n", " return self.x[idx], self.y[idx]\n", "\n", "train_set = NurseryDataset(x_train, y_train)\n", "train_loader = DataLoader(train_set, batch_size=100, shuffle=True, num_workers=0)\n", "\n", "for epoch in range(20):\n", " for (input, targets) in train_loader:\n", " input, targets = torch.autograd.Variable(input), torch.autograd.Variable(targets)\n", "\n", " optimizer.zero_grad()\n", " outputs = mlp_model(input)\n", " loss = criterion(outputs, targets)\n", "\n", " loss.backward()\n", " optimizer.step()\n", "\n", "mlp_art_model = PyTorchClassifier(model=mlp_model, loss=criterion, optimizer=optimizer, input_shape=(24,), nb_classes=4)\n", "\n", "pred = np.array([np.argmax(arr) for arr in mlp_art_model.predict(x_test.astype(np.float32))])\n", "\n", "print('Base model accuracy: ', np.sum(pred == y_test) / len(y_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a set of predictions while we have access to the model" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "attack_train_ratio = 0.5\n", "attack_member_size = int(len(x_train) * attack_train_ratio)\n", "attack_nonmember_size = int(len(x_test) * attack_train_ratio)\n", "\n", "# For training the attack model\n", "attack_x_member = x_train[:attack_member_size].astype(np.float32)\n", "attack_x_nonmember = x_test[:attack_nonmember_size].astype(np.float32)\n", "\n", "predicted_y_member = mlp_art_model.predict(attack_x_member)\n", "predicted_y_nonmember = mlp_art_model.predict(attack_x_nonmember)\n", "\n", "# For testing the attack model\n", "attack_x_member_test = x_train[attack_member_size:].astype(np.float32)\n", "attack_x_nonmember_test = x_train[attack_nonmember_size:].astype(np.float32)\n", "\n", "predicted_y_member_test = mlp_art_model.predict(attack_x_member_test)\n", "predicted_y_nonmember_test = mlp_art_model.predict(attack_x_nonmember_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a black-box classifier based on existing predictions" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from art.estimators.classification import BlackBoxClassifier\n", "\n", "existing_samples = np.vstack((attack_x_member, attack_x_nonmember, attack_x_member_test, attack_x_nonmember_test))\n", "existing_predictions = np.vstack((predicted_y_member, predicted_y_nonmember, predicted_y_member_test, predicted_y_nonmember_test))\n", "\n", "classifier = BlackBoxClassifier((existing_samples, existing_predictions), x_train[0].shape, 4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Black-box attack" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We no longer need access to the model, and the attack is running using the set of predictions we have made earlier." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Member Accuracy 0.4949058351343007\n", "Non-Member Accuracy 0.7063908613769683\n", "Accuracy 0.6006483482556345\n" ] } ], "source": [ "from art.attacks.inference.membership_inference import MembershipInferenceBlackBox\n", "\n", "bb_attack = MembershipInferenceBlackBox(classifier, attack_model_type='rf')\n", "\n", "# train attack model\n", "bb_attack.fit(attack_x_member, y_train[:attack_member_size], attack_x_nonmember, y_test[:attack_nonmember_size])\n", "\n", "# infer \n", "inferred_member_bb = bb_attack.infer(attack_x_member_test, y_train[attack_member_size:])\n", "inferred_nonmember_bb = bb_attack.infer(attack_x_nonmember_test, y_test[attack_nonmember_size:])\n", "\n", "# check accuracy\n", "member_acc = np.sum(inferred_member_bb) / len(inferred_member_bb)\n", "nonmember_acc = 1 - (np.sum(inferred_nonmember_bb) / len(inferred_nonmember_bb))\n", "acc = (member_acc * len(inferred_member_bb) + nonmember_acc * len(inferred_nonmember_bb)) / (len(inferred_member_bb) + len(inferred_nonmember_bb))\n", "\n", "print(\"Member Accuracy\", member_acc)\n", "print(\"Non-Member Accuracy\", nonmember_acc)\n", "print(\"Accuracy\", acc)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" } }, "nbformat": 4, "nbformat_minor": 2 }