{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Running attribute inference attacks on regression models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial we will show how to run a black-box attribute inference attack on a regression model. This will be demonstrated on the diabetes dataset from scikitlearn (https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Attacking a categorical feature\n", "We start by trying to infer the 'sex' feature, which is a binary feature." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.insert(0, os.path.abspath('..'))\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "from art.utils import load_diabetes\n", "\n", "(x_train, y_train), (x_test, y_test), _, _ = load_diabetes(test_set=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train MLP model" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Base model score: -0.053305975661749994\n" ] } ], "source": [ "from sklearn.tree import DecisionTreeRegressor\n", "from art.estimators.regression.scikitlearn import ScikitlearnRegressor\n", "\n", "model = DecisionTreeRegressor()\n", "model.fit(x_train, y_train)\n", "art_regressor = ScikitlearnRegressor(model)\n", "\n", "print('Base model score: ', model.score(x_test, y_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Attack\n", "### Black-box attack\n", "The black-box attack basically trains an additional classifier (called the attack model) to predict the attacked feature's value from the remaining n-1 features as well as the original (attacked) model's predictions.\n", "#### Train attack model" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from art.attacks.inference.attribute_inference import AttributeInferenceBlackBox\n", "\n", "attack_train_ratio = 0.5\n", "attack_train_size = int(len(x_train) * attack_train_ratio)\n", "attack_x_train = x_train[:attack_train_size]\n", "attack_y_train = y_train[:attack_train_size]\n", "attack_x_test = x_train[attack_train_size:]\n", "attack_y_test = y_train[attack_train_size:]\n", "\n", "attack_feature = 1 # sex\n", "\n", "# get original model's predictions\n", "attack_x_test_predictions = np.array([np.argmax(arr) for arr in art_regressor.predict(attack_x_test)]).reshape(-1,1)\n", "# only attacked feature\n", "attack_x_test_feature = attack_x_test[:, attack_feature].copy().reshape(-1, 1)\n", "# training data without attacked feature\n", "x_test_for_attack = np.delete(attack_x_test, attack_feature, 1)\n", "\n", "bb_attack = AttributeInferenceBlackBox(art_regressor, attack_feature=attack_feature)\n", "\n", "# train attack model\n", "bb_attack.fit(attack_x_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Infer sensitive feature and check accuracy" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6126126126126126\n" ] } ], "source": [ "# get inferred values\n", "values = [-0.88085106, 1.]\n", "inferred_train_bb = bb_attack.infer(x_test_for_attack, pred=attack_x_test_predictions, values=values)\n", "# check accuracy\n", "train_acc = np.sum(inferred_train_bb == np.around(attack_x_test_feature, decimals=8).reshape(1,-1)) / len(inferred_train_bb)\n", "print(train_acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This means that for 74% of the training set, the attacked feature is inferred correctly using this attack.\n", "Now let's check the precision and recall:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0.5816326530612245, 0.9661016949152542)\n" ] } ], "source": [ "def calc_precision_recall(predicted, actual, positive_value=1):\n", " score = 0 # both predicted and actual are positive\n", " num_positive_predicted = 0 # predicted positive\n", " num_positive_actual = 0 # actual positive\n", " for i in range(len(predicted)):\n", " if predicted[i] == positive_value:\n", " num_positive_predicted += 1\n", " if actual[i] == positive_value:\n", " num_positive_actual += 1\n", " if predicted[i] == actual[i]:\n", " if predicted[i] == positive_value:\n", " score += 1\n", " \n", " if num_positive_predicted == 0:\n", " precision = 1\n", " else:\n", " precision = score / num_positive_predicted # the fraction of predicted “Yes” responses that are correct\n", " if num_positive_actual == 0:\n", " recall = 1\n", " else:\n", " recall = score / num_positive_actual # the fraction of “Yes” responses that are predicted correctly\n", "\n", " return precision, recall\n", " \n", "print(calc_precision_recall(inferred_train_bb, np.around(attack_x_test_feature, decimals=8), positive_value=1.))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To verify the significance of these results, we now run a baseline attack that uses only the remaining features to try to predict the value of the attacked feature, with no use of the model itself." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6666666666666666\n" ] } ], "source": [ "from art.attacks.inference.attribute_inference import AttributeInferenceBaseline\n", "\n", "baseline_attack = AttributeInferenceBaseline(attack_feature=attack_feature)\n", "\n", "# train attack model\n", "baseline_attack.fit(attack_x_train)\n", "# infer values\n", "inferred_train_baseline = baseline_attack.infer(x_test_for_attack, values=values)\n", "# check accuracy\n", "baseline_train_acc = np.sum(inferred_train_baseline == np.around(attack_x_test_feature, decimals=8).reshape(1,-1)) / len(inferred_train_baseline)\n", "print(baseline_train_acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case, the black-box attack does significantly better than the baseline." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Attacking a numerical feature\n", "Now we will try to infer the bmi level feature." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "54.80737471036833\n" ] } ], "source": [ "attack_feature = 3 # bmi\n", "\n", "# only attacked feature\n", "attack_x_test_feature = attack_x_test[:, attack_feature].copy().reshape(-1, 1)\n", "# training data without attacked feature\n", "x_test_for_attack = np.delete(attack_x_test, attack_feature, 1)\n", "\n", "bb_attack = AttributeInferenceBlackBox(art_regressor, attack_feature=attack_feature)\n", "\n", "# train attack model\n", "bb_attack.fit(attack_x_train)\n", "\n", "inferred_train_bb = bb_attack.infer(x_test_for_attack, pred=attack_x_test_predictions)\n", "# check MSE\n", "train_acc = np.sum((attack_x_test_feature - inferred_train_bb) ** 2) / len(inferred_train_bb)\n", "print(train_acc)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "67.66769489356126\n" ] } ], "source": [ "baseline_attack = AttributeInferenceBaseline(attack_feature=attack_feature)\n", "\n", "# train attack model\n", "baseline_attack.fit(attack_x_train)\n", "# infer values\n", "inferred_train_baseline = baseline_attack.infer(x_test_for_attack)\n", "# check MSE\n", "baseline_train_acc = np.sum((attack_x_test_feature - inferred_train_baseline) ** 2) / len(inferred_train_baseline)\n", "print(baseline_train_acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The attack succeeds better than the baseline (a lower MSE means higher accuracy)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 2 }