```{r, include = F} knitr::opts_chunk$set(echo = F, comment = NA) ``` Introduction to Open Data Science ======================================================== incremental: false autosize: true transition: rotate University of Helsinki, spring 2017 - Tuomo Nieminen and Emma Kämäräinen with - Adjunct professor Kimmo Vehkalahti
Powered by Rpresentation. The code for this presentation is [here]( https://raw.githubusercontent.com/TuomoNieminen/Helsinki-Open-Data-Science/master/docs/index.Rpres) From data wrangling to exploration and modelling ======================================================== type: prompt
```{r, fig.align = "center", fig.width = 9} library(ggplot2); library(ggExtra) learning2014 <- read.table("http://www.helsinki.fi/~kvehkala/JYTmooc/learning2014.txt", sep = "\t", header = TRUE) df <- learning2014[learning2014$points > 0,] theme_set(theme_grey(base_size = 18)) p <- qplot(attitude, points, col = gender, data = df) + geom_smooth(method = "lm") ggMarginal(p,type="histogram", bins=15, colour="white") ``` Contents ======================================================== type: prompt
1. Regression and model validation 2. Logistic regression 3. Clustering and classification 4. Dimensionality reduction techniques ```{r child ="regression.md"} ``` ```{r child = "logistic_regression.md"} ``` ```{r child = "cluster_classification.md"} ``` ```{r child = "dimensionality_reduction.md"} ``` ======================================================== type: prompt