
AR488 GPIB Controller
User Manual

Version:

0.51.18

Dated:

27th February 2023

Twilight Logic
01001010 01000011 01001000

- 1 -

The AR488 GPIB Controller

The AR488 GPIB controller is an Arduino-based controller for interfacing with IEEE488 GPIB
devices. The code has been tested on Arduino Uno and Nano 328p boards, the Mega 2560 board,
Micro and Leonardo 32U4 boards and MicroCore ATMega644 and ATMega1024 boards. It
provides a low cost alternative to other commercial interfaces.

To build an interface, at least one of the aforementioned Arduino boards will be required to act as
the interface hardware. Connecting to an instrument will require a 16 core cable and a suitable
IEEE488 connector. This can be salvaged from an old GPIB cable or purchased from electronics
parts suppliers. Alternatively, a PCB board can be designed to incorporate a directly mounted
IEEE488 connector.

The project can be expanded by optionally adding the SN75160 and SN75161 GPIB transceiver
integrated circuits. These devices provide proper tri-state IO and buffering between the Arduino
and the GPIB bus. Details of construction as well as mapping of the Arduino pins to GPIB control
signals and the data bus are explained in the Building an AR488 GPIB Interface section.

The interface firmware supports standard Prologix commands (with the exception of ++help) and
adheres closely to the Prologix syntax, but there are some minor differences. In particular, due to
issues with the longevity of the Arduino EEPROM memory, the ++savecfg command has been
implemented differently. A number of additional custom commands have also been implemented.
Details of all commands can be found in the Command Reference section.

Installation

Windows 7, Windows 10 and Windows 11 will automatically recognize the FTDI and CH340G
chipsets used by Arduino boards and automatically install the drivers from Windows Update.

The official source for FTDI drivers is here:
https://www.ftdichip.com/FTDrivers.htm

The VCP driver provides a virtual COM port for communication while the D2XX (direct) driver
allows direct access via a DLL interface.

The official CH340G driver source is here:
http://www.wch.cn/download/CH341SER_EXE.html

Linux Mint appears to automatically recognize both chipsets as well. Since Linux Mint is based on
Ubuntu, it is expected that Ubuntu should also automatically recognize both chipsets.

- 2 -

https://www.ftdichip.com/FTDrivers.htm
http://www.wch.cn/download/CH341SER_EXE.html

Firmware Upgrades

The firmware is upgradeable via the Arduino IDE by compiling and uploading the sketch over USB
in the usual manner. An AVR programmer can also be used to upload firmware to the Arduino
microcontroller. Updates are available from https://github.com/Twilight-Logic/AR488

A third-party library called DEVNULL is also required. Please see the Building an AR488 Interface
section on page 33 for further details.

Client Software

The interface can be accessed via a number of software client programs.

 Terminal software (e.g. PuTTY)
 EZGPIB (http://www.ulrich-bangert.de/html/downloads.html)
 KE5FX GPIB Configurator (http://www.ke5fx.com/)
 Luke Mester’s HP3478 Control (https://mesterhome.com/gpibsw/hp3478a/)
 Python scripts
 Anything else that can use the Prologix syntax!

Terminal clients connect via a virtual COM port and should be set to 115200 baud, no parity, 8
data bits and 1 stop bit when connecting to the interface. On Linux, the port will be a TTY device
such as /dev/ttyUSB0 or /dev/ttyACM0.

Specific considerations apply when using an Arduino based interface with EZGPIB and the KE5FX
toolkit. These are described in the Working with EZGPIB and KE5FX section.

Operating Modes

The interface can operate in both controller and device modes.

Controller mode

In this mode the interface can control and read data from various instruments including Digital
multimeters (DMMs). oscilloscopes, signal generators and spectrum analyzers. When powered on,
the controller and sends out an IFC (Interface Clear) to the GPIB bus to indicate that it is now the
Controller-in-Charge (CIC).

All commands are preceded with the ++ sequence and terminated with a carriage return (CR),
newline [a.k.a. linefeed] (LF) or both (CRLF). Commands are sent to or affect the currently
addressed instrument which can be specified with the ++addr command (see command help for
more information).

By default, the controller is at GPIB address 0.

As with the Prologix interface, the controller has an auto mode that allows data to be read from
the instrument without having to repeatedly issue ++read commands. After ++auto 1 is issued, the

- 3 -

https://github.com/Twilight-Logic/AR488

controller will continue to perform reading of measurements automatically after the next ++read
command is used and using the parameters that were specified when issuing that command.

Device mode

The interface supports device mode allowing it to be used to send data to GPIB devices such as
plotters via a serial USB connection. All device mode commands are supported.

Transmission of data

Interrupting transmission of data

While reading of data for the GPIB bus is in progress, the interface will still respond to the ++
sequence that indicates a command. For example, under certain conditions when the instrument
is addressed to talk (e.g. when eos is set to 3 [no terminator character] and the expected
termination character is not received from the instrument, or read with eoi and the instrument is
not configured to assert eoi, or auto mode is enabled), data transmission may continue
indefinitely. The interface will still respond to the ++ sequence followed by a command (e.g. +
+auto 0 or ++rst). Data transmission can be stopped and the configuration can then be adjusted.

Sending Data and Special characters

Carriage return (CR, hex 0D, decimal 13), newline [a.k.a linefeed] (LF, hex 0A, decimal 10), escape
(hex 1B, decimal 27) and ‘+’ (hex 2B, decimal 43) are special “control” characters. Carriage return
and newline terminate command strings and direct instrument commands, whereas a sequence of
two ‘+’s precedes a command token. Special care needs to be taken when sending binary data to
an instrument, because in this case we do not want control characters to prompt some kind of
action. Rather, they need to be treated as binary data and transmitted as part of the binary data
stream.

When sending binary data, the above mentioned characters must be ‘escaped’ by preceding them
with a single escape (hex 1B, decimal 27) byte. For example, consider sending the following binary
data sequence:

54 45 1B 53 2B 0D 54 46

It would be necessary to escape the 3 control characters and send the following:

54 45 1B 1B 53 1B 2B 1B 0D 54 46

Without these additional escape character bytes, the special control characters present in the
sequence will be interpreted as actions and an incomplete or incorrect data sequence will be sent.

It is also necessary to prevent the interface from terminating the binary data sequence with a
carriage return and newline (0D 0A) as this will confuse most instruments. The command ++eos 3

- 4 -

can be used to turn off termination characters. The command ++eos 0 will restore default
operation. See the command help that follows for more details.

Receiving data

Binary data received from an instrument is transmitted over GPIB and then via serial over USB to
the host computer PC unmodified. Since binary data from instruments is not usually terminated by
CR or LF characters (as is usual with ASCII data), the EOI signal can be used to indicate the end of
the data transmission. Detection of the EOI signal while reading data can be accomplished with
the ++read eoi command, while an optional character can be added as a delimiter with the
++eot_enable command (see the command help that follows). The instrument must be configured
to send the EOI signal. For further information on enabling the sending of EOI see your instrument
manual.

Listen-only (lon), talk-only (ton) and promiscuous modes

In device mode, the interface supports “listen-only”, “talk-only” and promiscuous modes (for
further details see the ++lon, ++ton and ++prom commands. Talk-only and listen-only modes are
non-addressed modes and cannot have GPIB address to be set. Any GPIB address already set is
ignored. In either of these modes, devices are not controlled by the CIC. Data characters are sent
using standard GPIB handshaking , but GPIB commands are ignored. The bus acts as a simple one
way transmission medium. In lon mode, the device will receive any data placed on the bus by a
talker in Talk-Only Mode. In ton mode the device is in Talk-Only mode and cannot receive data
from other devices on the bus. Only one talker can exist on the bus, but it is possible to have many
listeners.

Promiscuous mode can be used when there is a controller on the bus. In this mode, the interface
will ignore addressing and receive any data being sent across GPIB bus by a controller or any
addressed device. It will ignore command bytes and send only the received data to the serial port.

Wireless communication

The AR488 interface can communicate using a Bluetooth HC05 module and the sketch supports
auto-configuration of this master module. The details can be found in the Configuration section
and the AR Bluetooth Support supplement. It is possible to use Bluetooth with the HC06 slave
module, however automatic configuration is not possible so although the HC06 can be used to
provide Bluetooth communication, it has to be configured manually.

- 5 -

Configuration

Configuration of the AR488 is achieved be editing the AR488_Config.h file. This is a C++ style
header file containing various definition statements, also known as ‘define macros’ , starting with
keyword ‘#define’, that can be used to configure the firmware. The AR488_config.h file must be
included in the main AR488 sketch as well as any other module header file (e.g.
AR488_Layouts.cpp and AR488_Layouts.h) with an include statement:

#include "AR488_Config.h

A number of these definition statements are contained within an #ifdef .. #endif construct, some
of which may contain additional #else or #elif elements. The presence of these constructs is
necessary and they should not be changed or removed. Only the definitions within them should be
changed as required. Nothing should need to be changed in any other file.

Firmware version

This is in the format:
#define FWVER "AR488 GPIB controller, ver. 0.51.09, 20/06/2022"

This entry should not exceed 47 characters and should not be changed.

Board Selection

The AR488 supports a number of Arduino AVR boards and also a custom GPIO pin layout which
can be defined by the user in the Custom Board Layout section. If a custom GPIO pin layout is to be
used, then following entry must have the comment characters (preceding ‘//’) removed:

//#define AR488_CUSTOM

Otherwise, the comment characters should remain in place which has the effect of disabling the
definition by designating it as a comment. The compiler ignores comment statements. Following
this is an #ifdef statement containing several sections preceded by an #elif keyword. Each of these
is followed by a token that corresponds to known Arduino definitions for microprocessor types.
The structure looks like this:

/*
 * Configure the appropriate board/layout section
 * below as required
 */
#ifdef AR488_CUSTOM
…
#elif __AVR_Atmega328P__
…
#elif __AVR_Atmega32U4__
...
#elif __AVR_Atmega2560__
…
#endif // Board/layout selection

- 6 -

When the custom layout is selected, all other layouts are ignored. If the custom layout is not
selected, then the section corresponding to the automatically detected Arduino microprocessor
will apply. Each section contains a definition referencing one or more pre-defined board layouts
as well as serial port definitions corresponding to the features of specific boards. For example here
are the definitions for boards based on the 328p microprocessor which are found within the
__AVR_Atmega328P__ section of the #ifdef statement:

/*** UNO and NANO boards ***/
#elif __AVR_ATmega328P__
 /* Board/layout selection */
 #define AR488_UNO
 //#define AR488_NANO

The section contains definitions for two boards, namely the Uno and the Nano. Only ONE of these
should be selected by removing the preceding comment characters:

#define AR488_UNO
//#define AR488_NANO

The default entry is AR488_UNO, which selects the pre-defined template for the Arduino UNO
board in AR488_Hardware.h. Selecting AR488_NANO will select the pre-defined template for the
Nano board. In order to compile the sketch for the selected board, in addition to selecting the
template in Config.h, the correct board must be selected in the Board Manager within the Arduino
IDE (see Tools | Board:).

It is important to make sure that the correct board is selected in the Arduino IDE Boards
Manager (Tools => Board) otherwise the sketch will not compile correctly.

Serial port configuration

The firmware implements separate ports for data flow and debug messages. These can be enabled
activating or de-activating the DATAPORT_ENABLE and DEBUG_ENABLE flags by adding or
removing the preceding comment ‘//’ character sequence. In order to receive data from
instruments and responses to commands, DATAPORT_ENABLE must be defined, otherwise the
port will be disabled and there will be no output. It is not recommended to comment this flag out.

Here is an example of the serial port configuration section for the data port:

/***** Communication port *****/
#define DATAPORT_ENABLE
#ifdef DATAPORT_ENABLE
 // Serial port device
 #define AR_SERIAL_PORT Serial
 // #define AR_SERIAL_SWPORT
 // Set port operating speed
 #define AR_SERIAL_SPEED 115200
 // Enable Bluetooth (HC05) module?
 //#define AR_SERIAL_BT_ENABLE 12 // HC05 enable pin
 //#define AR_SERIAL_BT_NAME "AR488-BT" // Bluetooth device name
 //#define AR_SERIAL_BT_CODE "488488" // Bluetooth pairing code
#endif

AR_SERIAL_PORT specifies the port name to use.

- 7 -

AR_SERIAL_SPEED specifies the baud rate to use.

On most interfaces the primary serial interface is called Serial, however interfaces come in various
flavours. Boards such as the UNO, Nano and Mega2560 implement a hardware UART chip. The
primary port on boards that are based on the 32u4 microcontroller, such as Micro Pro and
Leonardo, is implemented in firmware and called a CDC port. In addition, these boards have a
hardware port called Serial1 implemented on the Rx/Tx pins.

The Mega 2560 has 4 hardware serial ports so either of ‘Serial’, ‘Serial1’, ‘Serial2’ or ‘Serial3’
should be selected. Most likely the default port named Serial will be used although other options
are possible if required. However, please note that the default GPIO pin layout for the Mega 2560
board (AR488_MEGA2560_D) uses the pins assigned to Serial2 for other purposes, so this cannot
be used as a serial port when that particular layout definition is in use. However, it can be used
with the E1 and E2 definitions.

Since the format for serial port names is standard for both hardware and CDC ports, the Arduino
handles this automatically behind the scenes.

SoftwareSerial library

A serial port can also be implemented using a library called SoftwareSerial which allows a pair of
arbitrary GPIO pins to be used to run a serial port. The AR488 supports this option, although ports
implemented using this library have a practical speed limitation of 57600 baud. Ports implemented
using the SoftwareSerial library need additional configuration options to be specified.

To define a SoftwareSerial port, the entry:

#define AR_SERIAL_PORT Serial

Needs to be commented out. Instead the line:

// #define AR_SERIAL_SWPORT

Needs to be uncommented by removing the preceding ‘//‘.
The SoftwareSerial port section then needs to be configured by specifying the RX and TX pins as
shown in the example below:

#if defined(AR_SERIAL_TYPE_SW) || defined(DB_SERIAL_TYPE_SW)
 #define SW_SERIAL_RX_PIN 11
 #define SW_SERIAL_TX_PIN 12
#endif

It should be noted only ONE SoftwareSerial port can be set per board, and only ONE serial port can
be enabled in within the data port section.

- 8 -

Bluetooth configuration

The AR488 firmware also supports Bluetooth using the HC05 module. Since communication
between the Arduino and the HC05 module is via serial, it is important that a serial port is
configured as indicated above first.

Once that is done, Bluetooth can be enabled by un-commenting and configuring the following 3
lines:

 //#define AR_SERIAL_BT_ENABLE 12 // HC05 enable pin
 //#define AR_SERIAL_BT_NAME "AR488-BT" // Bluetooth device name
 //#define AR_SERIAL_BT_CODE "488488" // Bluetooth pairing code

AR_SERIAL_BT_ENABLE sets the GPIO pin that is connected to the EN(able) pin on the HC05.

AR_SERIAL_BT_NAME sets the device name that is broadcast by the HC05.

AR_SERIAL_BT_CODE sets the Bluetooth pairing code.

More detailed information can be found in the Bluetooth supplement, AR488-Bluetooth.pdf.

Configuring the Debug serial port

The Debug port is configured in a similar way to the data port. It can be set to the same port as the
data port, or to a separate one, allowing debug messages to be sent to a separate interface.

 Here is an example of the configuration:

//#define DEBUG_ENABLE
#ifdef DEBUG_ENABLE
 // Serial port device
 // #define DB_SERIAL_PORT Serial
 #define DB_SERIAL_SWPORT
 // Set port operating speed
 #define DB_SERIAL_SPEED 57600
#endif

DEBUG_ENABLE enabled or disables the debug port.

DB_SERIAL_PORT sets the port name.

DB_SERIAL_SWPORT alternatively sets a SoftwareSerial port. The Tx and Rx pins need to be set in
the SoftwareSerial port configuration section. Only ONE SoftwareSerial port can be set per board.

DB_SERIAL_SPEED sets the baud rate for the port.

To enable this feature, first uncomment #define DEBUG_ENABLE. Set the serial port to the port
that will receive the debug messages and configure the baud rate. If using SoftwareSerial,
comment out DB_SERIAL_PORT and un-comment DB_SERIAL_SWPORT instead. Next, configure
the GPIO pins to be used, for example:

- 9 -

#if defined(AR_SERIAL_SWPORT) || defined(DB_SERIAL_SWPORT)
 #define SW_SERIAL_RX_PIN 50
 #define SW_SERIAL_TX_PIN 51
#endif

The above example will configure a SoftwareSerial port at 57600 baud on GPIO pins 50 and 51.
Please note that the maximum advisable speed for a SoftwareSerial port is 57600 baud.

The next step is to select the debug message you require to view. Selectively enabling debug levels
can be helpful when trying to diagnose a problem. They should not be required or left enabled for
normal running of the interface, but only enabled when required for debugging. One or more of
the following can be enabled by removing the preceding // comment characters:

 // Main module
 //#define DEBUG_SERIAL_INPUT // serialIn_h(), parseInput_h()
 //#define DEBUG_CMD_PARSER // getCmd()
 //#define DEBUG_SEND_TO_INSTR // sendToInstrument();
 //#define DEBUG_SPOLL // spoll_h()
 //#define DEBUG_DEVICE_ATN // attnRequired()
 //#define DEBUG_IDFUNC // ID command

 // AR488_GPIBbus module
 //#define DEBUG_GPIBbus_RECEIVE // GPIBbus::receiveData(), GPIBbus::readByte()
 //#define DEBUG_GPIBbus_SEND // GPIBbus::sendData()
 //#define DEBUG_GPIBbus_CONTROL // GPIBbus::setControls()
 //#define DEBUG_GPIB_COMMANDS // GPIBbus::sendCDC(), GPIBbus::sendLLO(),
GPIBbus::sendLOC(), GPIBbus::sendGTL(), GPIBbus::sendMSA()
 //#define DEBUG_GPIB_ADDRESSING // GPIBbus::sendMA(), GPIBbus::sendMLA(),
GPIBbus::sendUNT(), GPIBbus::sendUNL()
 //#define DEBUG_GPIB_DEVICE // GPIBbus::unAddressDevice(),
GPIBbus::addressDevice

 // GPIB layout module
 //#define DEBUG_LAYOUTS

 // EEPROM module
 //#define DEBUG_EEPROM // EEPROM

 // AR488 Bluetooth module
 //#define DEBUG_BLUETOOTH // bluetooth

Provided that ENABLE_DEBUG has been set and one of the above options has been selected,
debug messages will be sent to the configured debug serial port. This can be the same port as the
data port or, where the board provides additional serial ports or where sufficient GPIO pins are
available to use SoftwareSerial, this can be an alternative serial port. The advantage of sending
debug messages to another port is that they will not interfere with normal interface
communications. Debug messages can be viewed on the alternative ‘debug’ port while normal
interface operations are in progress on the communications port.

Debug messages do not include messages shown when verbose mode is enabled with the
++verbose command. When the interface is being directly controlled by another program, verbose
mode should be turned off otherwise verbose messages may interfere with normal operations.

- 10 -

Serial Handling

When working with programs and scripts (e.g. Python), it should be bourne in mind that the
Arduino is only 64 bytes in size. Due to the memory constraints of the Arduino, the additional
processing buffer provided by the AR488 program is also limited to only 128 bytes. The UART ICs
on some boards provide no handshaking between the PC and the Arduino serial port. Although the
Arduino can keep up pretty well, the serial input buffer can easily overflow with loss of characters
if too much data is passed too quickly. This means that a bit of trial and error may be required
when working with scripts to establish whether and how much delay is required between
commands. A short delay may sometimes be needed to avoid a buffer overflow. The amount of
delay will depend on factors such as the interface hardware being used, the time taken for the
instrument to respond, as well as the GPIB speed of the instrument being addressed.

Macro support

Macros in this context are short sequences of commands that can be used to accomplish a
particular task. Controlling an instrument usually requires sequences of commands to be sent to
the device to configure it, or to perform a particular task. Sometimes such sequences are
performed frequently or repetitively. In those circumstances, it may be more efficient to pre-
program the required sequence and then execute it when required using a single command.

The AR488 supports a macro feature which allows user programmed command sequences to be
run when the interface starts up, as well as up to 9 user defined command sequences to be
executed at runtime.

Macros must be programmed before the sketch is compiled and uploaded to the interface. Macros
can be added to the designated AR488 MACROS SECTION in the AR488_Config.h file. Both
interface ++ commands and direct instrument commands can be included in macros. Programming
specific instruments is beyond the scope of this manual as commands will be specific to each
instrument or implemented according to the manufacturers choice of programming language or
protocol. However, in general, in order to create macros, a few simple rules will need to be
followed.

Firstly, macros need to be enabled. In the AR488_Config.h file there are two definitions under the
heading ‘Enable Macros’:

#define USE_MACROS // Enable the macro feature
#define RUN_STARTUP // Run MACRO_0 (the startup macro)

The #define USE_MACROS construct enables or disables the macro feature. When this line is
commented out by preceding it with ‘//’ then macros are disabled. Removing the preceding ‘//’
will enable the macro feature.

The #define RUN_STARTUP statement controls whether the start-up macro will run when the
interface is powered up or re-started. The start-up macro is designated MACRO_0 and if #define
RUN_STARTUP is enabled, this macro will run when the interface is powered on or reset.

When #define USE_MACROS is disabled, then the start-up macro will not be activated when the
interface is powered up or reset and none of the user macros (1-9) will be available at runtime.

- 11 -

When enabled, MACRO_0 will run when the interface is powered up or reset but only if #define
RUN_STARTUP is also enabled. The user macros (1-9) will always be available and can be executed
by the user at runtime by using the ++macro command. For more information please see the
++macro command heading in the Command Reference.

The start-up macro can be used in addition to the interface settings that can be saved using the +
+savecfg command, to not only to set up the interface, but also to initialise and configure the
instrument for a specific function. In this way, instrument commands that select function, range
and other control features can be sent automatically as the interface starts up.

Unless steps have been taken to disable the automatic reset that occurs when a USB serial
connection is opened to the interface, the start-up macro will run every time that a serial
connection is initiated to the interface. On the other hand, disabling reset prevents the Arduino
from being programmed via USB, so is not advised unless the intention is to program the Arduino
using a suitable AVR programmer.

In the AR488_Config.h file, sketch, below the help information there is a section that starts:

/********************************/
/***** AR488 MACROS SECTION *****/
/***** vvvvvvvvvvvvvvvvvvvv *****/
#ifdef USE_MACROS

Macros are defined here. The first macro is the startup macro, an example of which might be
defined as follows:

#define MACRO_0 "\
++addr 9\n\
++auto 2\n\
*RST\n\
:func 'volt:ac'
"
/* End of MACRO_0 (Startup macro)*/

Note that the macro code itself, is shown in bold, and has been inserted immediately after the
#define MACRO_0 line and before the ending comment:

#define MACRO_0 “\
macro
“

/*<-End of startup macro*/.

All macro commands comprising the macro must be placed after the ‘\’ on the first line and before
the final quote on the line before the ending comment. Nothing outside of these lines, including
the quote marks and the ‘\’ and after the macro name should be modified. The final quote mark
can be appended to the last command in the sequence if preferred. It is shown here on a separate
line for clarity. Everything between the two quote marks is a string of characters and must be
delimited. The ‘\’ character indicate to the pre-processor that the string continues on the next line.
Each command ends with ‘\n’ which is the newline terminator and serves to delimit each
command. The actual sequence shown above is therefore comprised of 4 commands, each
command ending with ‘\n’ and then a ‘\’ to indicate that the next command is to follow on the
next line. Try to avoid leaving or including any unnecessary spaces.

- 12 -

Each of these commands is either a standard AR488 interface command found in the command
reference, or an instrument specific command. All AR488 interface Prologix style commands begin
with ++ so the first two commands set the GPIB address to 7 and auto to 1. The next two
commands are direct instrument commands using the SCPI protocol, the first of which resets the
instrument and the second selects the instrument AC voltage function.

As shown, each command must be terminated with a ‘\n’ (newline) or ‘\r’ (carriage return)
delimiter character.

User defined macros that can be run using the ++macro command follow next, and have a similar
format, e.g:

#define MACRO_2 "\

"
/*<-End of macro 2*/

Once again, the required command sequence must be placed between the two quotes and after
the first ‘/’ and be terminated with a ‘\n’ or ‘\r’ delimiter. Each line must be wrapped with ‘\’.

There is a slightly shorter method of defining a macro by placing all commands on a single line. For
example this:

#define MACRO_1 "++addr 7\n++auto 1\n*RST\n:func 'volt:ac'"

Is exactly the same as this:

#define MACRO_1 "\
++addr 7\n\
++auto 1\n\
*RST\n\
:func 'volt:ac'\
"

The first definition is more condensed and requires no line wrap characters, but it is perhaps
easier to see what is going on in the latter example. Either will function just the same and take up
the same amount of memory.

The macro definition area provided in the sketch ends with:

#endif
/***** ^^^^^^^^^^^^^^^^^^^^ *****/
/***** AR488 MACROS SECTION *****/
/********************************/

Anything outside of this section does not relate to macros.

Provided that the commands have been specified correctly and the syntax is correct, the sketch
should compile and can be uploaded to the Arduino. The start-up macro will run as soon as the
upload is completed so the instrument should respond immediately. Please be aware that, unless
serial reset has been disabled, it will run again when a USB serial connection is made to the
interface. The instrument will probably respond and reconfigure itself again.

- 13 -

Please note that, although AR488 interface ++ commands are verified by the interface, and will
respond accordingly, there is no sanity checking by the interface of any direct instrument
commands. These command sequences are sent directly to the instrument, which should respond
as though the command sequence were typed directly into the terminal or sent from a suitable
instrument control program. Please consult the instrument user manual for information about the
behaviour expected in response to instrument commands.

Macro sequences can include any number delimiter separated of commands, but any individual
command sequence should not exceed 126 characters. This may be particularly relevant to SCPI
commands which can be composed of multiple instructions separated by colons.

SN7516x GPIB transceiver support

Support for the SN75160 and SN75161 GPIB transceiver integrated circuits can be enabled by
uncommenting the following line:

//#define SN7516X

The pins used to control the ICs are defined in the section that follows:

#ifdef SN7516X
 #define SN7516X_TE 6
// #define SN75161_DC 13
#endif

Specify the pin to be used for the SN7516X_TE signal. The above example shows pin 6 being used
and this is connected to the talk-enable (TE) pin on both ICs. The SN75161 handles the GPIB
control signals and in addition to the TE pin, also has a direction-control (DC) pin. This is used to
determine controller or device mode operation. A GPIO pin can be assigned to drive this pin, in
which case the SN75151_DC definition shown above should be uncommented and an appropriate
GPIO pin number assigned.

Alternatively, since the REN signal is asserted in controller mode and un-asserted in device mode,
this signal can be used to drive the DC pin of the SN75161. In this case, the SN75161_DC definition
should remain commented out and the GPIO pin assigned to the REN signal should be connected
to both DC and REN on the SN75161 IC. There is one small caveat when using this configuration.
The custom ++REN command, which is used to turn the REN line on and off, cannot be used and
will just return:

Unavailable.

If a separate GPIO pin is used to control DC then the ++REN command will return the status of REN
as usual. (See ++REN in the Custom Comands section of the Command Reference).

- 14 -

Custom Board Layout Section

The custom board layout section in the Config.h file can be used to create a custom pin layout for
the AR488. This can be helpful for non-Arduino boards and where an adjustment to the layout is
required in order to accommodate additional hardware. By default, the definition implements the
Uno layout:

#define DIO1 A0 /* GPIB 1 */
#define DIO2 A1 /* GPIB 2 */
#define DIO3 A2 /* GPIB 3 */
#define DIO4 A3 /* GPIB 4 */
#define DIO5 A4 /* GPIB 13 */
#define DIO6 A5 /* GPIB 14 */
#define DIO7 4 /* GPIB 15 */
#define DIO8 5 /* GPIB 16 */

#define IFC 8 /* GPIB 9 */
#define NDAC 9 /* GPIB 8 */
#define NRFD 10 /* GPIB 7 */
#define DAV 11 /* GPIB 6 */
#define EOI 12 /* GPIB 5 */

#define SRQ 2 /* GPIB 10 */
#define REN 3 /* GPIB 17 */
#define ATN 7 /* GPIB 11 */

To make use of a custom layout, AR488_CUSTOM must be selected from the list of boards at the
beginning of the Config.h file and the pin numbers/designations in the centre column (shown in
bold) should be configured as required.

Please note that on some MCU boards, a number of GPIO pins may not be available as inputs
and/or outputs despite a pad or connector being present. Please check the board documentation.
Sometimes such information is revealed only in online forum discussions or blogs.

When AR488_CUSTOM is defined, interrupts cannot be used to detect pin states and therefore
USE_INTERRUPTS will not be defined and interrupts will not be activated. Pin states will be
checked on every iteration of void loop() instead.

- 15 -

Command Reference

The controller implements the standard commands prefixed with two plus (++) character
sequence to indicate that the following sequence is an interface command. Commands, with the
exception of the ++savecfg command, should be fully compatible with the Prologix GPIB-USB
controller. However, the interface also implements a number of additional custom commands.

++addr

This is used to set or query the GPIB address. At present, only primary addresses are supported. In
controller mode, the address refers to the GPIB address of the instrument that the operator
desires to communicate with. The address of the controller is 0. In device mode, the address
represents the address of the interface which is now acting as a device.

When issued without a parameter, the command will return the current GPIB address.

Modes: controller, device

Syntax: ++addr [1-29]
where 1-29 is a decimal number representing the primary GPIB address of the
device.

++auto

Configure the instrument to automatically send data back to the controller. When auto is enabled,
the user does not have to issue ++read commands repeatedly. This command has additional
options when compared with the Prologix version.

When set to zero, auto is disabled.

When set to 1, auto is designed to emulate the Prologix setting. The controller will automatically
attempt to read a response from the instrument after any instrument command or, in fact, any
character sequence that is not a controller command beginning with ‘++’, has been sent.

When set to 2, auto is set to “on-query” mode. The controller will automatically attempt to read
the response from the instrument after a character sequence that is not a controller command
beginning with ‘++’ is sent to the instrument, but only if that sequence ends in a ‘?’ character, i.e.
it is a query command such as ‘*IDN?’.

When set to 3, auto is set to “continuous” mode. The controller will execute continuous read
operations after the first ++read command is issued, returning a continuous stream of data from
the instrument. The command can be terminated by turning off auto with ++auto 0 or performing
a reset with ++rst.

Modes: controller

Syntax: ++auto [0|1|2|3]
where 0 disables and 1 enables automatically sending data to the controller

- 16 -

Note:
Some instruments generate a “Query unterminated or “-420” error if they are addressed after
sending an instrument command that does not generate a response. This simply means that the
instrument has no information to send and this error may be ignored. Alternatively, auto can be
turned off (++auto 0) and a ++read command issued following the instrument command to read
the instrument response.

++clr

This command sends a Selected Device Clear (SDC) to the currently addressed instrument. Details
of how the instrument should respond may be found in the instrument manual.

Modes: controller

Syntax: ++clr

++eoi

This command enables or disables the assertion of the EOI signal. When a data message is sent in
binary format, the CR/LF terminators cannot be differentiated from the binary data bytes. In this
circumstance, the EOI signal can be used as a message terminator. When ATN is not asserted and
EOI is enabled, the EOI signal will be briefly asserted to indicate the last character sent in a multi-
byte sequence. Some instruments require their command strings to be terminated with an EOI
signal in order to properly detect the command.

The EOI line is also used in conjunction with ATN to initiate a parallel poll, however, this command
has no bearing on that activity.

When issued without a parameter, the command will return the current configuration

Modes: controller, device

Syntax: ++eoi [0|1]
where 0 disables and 1 enables asserting EOI to signal the last character sent

++eos

Specifies the GPIB termination character. When data from the host (e.g. a command sequence) is
received over USB, all non-escaped LF, CR or Esc characters are removed and replaced by the GPIB
termination character, which is appended to the data sent to the instrument. This command does
not affect data being received from the instrument.

When issued without a parameter, the command will return the current configuration

- 17 -

Modes: controller, device

Syntax: ++eos [0|1|2|3]
where 0=CR+LF, 1=CR, 2=LF, 3=none

++eot_enable

This command enables or disables the appending of a user specified character to the USB output
from the interface to the host whenever EOI is detected while reading data from the GPIB port.
The character to send is specified using the ++eot_char command.

When issued without a parameter, the command will return the current configuration.

Modes: controller, device

Syntax: ++eot_enable [0|1]
where 0 disables and 1 enables sending the EOT character to the USB output

++eot_char

This command specifies the character to be appended to the USB output from the interface to the
host whenever an EOI signal is detected while reading data from the GPIB bus. The character is a
decimal ASCII character value that is less than 256.

When issued without a parameter, the command will return a decimal number corresponding to
the ASCII character code of the current character.

Modes: controller, device

Syntax: ++eot_char [<char>]
where <char> is a decimal number that is less than 256.

++help

Returns a description of the command. The returned information is on the format:

++ver: [P] Display firmware version

where ++ver is the command, [P] or [C] indicate whether this is a Prologix command or a custom
command, and the remaining text is the command description.

Modes: controller, device

Syntax: ++help command
where command is a name of a valid command without the ++ prefix

- 18 -

++ifc

Assert the GPIB IFC signal for 150 microseconds, making the AR488 the Controller-in-Charge on
the GPIB bus.

Modes: controller

Syntax: ++ifc

++llo

Disable front panel operation on the currently addressed instrument. In the original HPIB
specification, sending the LLO signal to the GPIB bus would lock the LOCAL control on ALL
instruments on the bus. In the Prologix specification, this command disables front panel operation
of the addressed instrument only, in effect taking control of that instrument. The AR488 follows
the Prologix specification, but adds a parameter to allow the simultaneous assertion of remote
control over all instruments on the GPIB bus as per the HPIB specification.

This command requires the Remote Enable (REN) line to be asserted otherwise it will be ignored.
In controller mode, the REN signal is asserted by default unless its status is changed by the ++ren
command.

When the ++llo command is issued without a parameter, it behaves the same as it does on the
Prologix controller. The LLO signal is sent to the currently addressed instrument and this locks out
the LOCAL key on the instrument control panel. Because the instrument has been addressed and
REN is already asserted, the command automatically takes remote control of the instrument. Most
instruments will display REM on their display or control panel to indicate that remote control is
active and front/rear panel controls will be disabled.

If the ++llo command is issued with the ‘all’ parameter, this will send the LLO signal to the bus,
putting every instrument into remote control mode simultaneously. At this point, instruments will
not yet show the REM indicator and it may still be possible to operate the front panel controls. On
some instruments the LOCAL key may be locked out. However, as soon as an instrument has been
addressed and sent a command (assuming that a LOC signal has not been sent yet first), the
controller will automatically lock in remote control of that instrument , the REM indicator will be
displayed and front/rear panel controls will be disabled.

Modes: controller

Syntax: ++llo [all]

++loc

Relinquish remote control and re-enable front panel operation of the currently addressed
instrument. This command relinquishes remote control of the instrument by de-asserting REN and
sending the GTL signal.

- 19 -

The Remote Enable (REN) line must be asserted and the instrument must already be under remote
control otherwise the command has no effect.

In the original HPIB specification, this command would place all instuments back into local mode,
re-enabling the LOCAL key and panel controls on ALL instruments currently connected to the GPIB
bus. In the Prologix specification, this command relinquishes remote control of the currently
addressed instrument only. The AR488 follows the Prologix specification, but adds a parameter to
allow the simultaneous release of remote control over all instruments currently addressed as
listeners on the GPIB bus as per the HPIB specification.

If the command is issued without a parameter, it will re-enable the LOCAL key on the control panel
on the currently addressed instrument and relinquish remote control of the instrument. If issued
with the ‘all’ parameter, it puts all devices on the GPIB bus in local control state. The REM
indicator should no longer be visible when the instrument has returned to local control state.

Modes: controller

Syntax: ++loc [all]

++lon

The ++lon command configures the controller to listen only to traffic on the GPIB bus. In this mode
the interface does not need to have a GPIB address assigned so the assigned GPIB address is
ignored. The talker must be in Talk-Only mode and traffic is received irrespective of the currently
set GPIB address. The interface can receive data in lon mode, but cannot send data, so effectively
becomes a “listen-only” device. When issued without a parameter, the command returns the
current state of “lon” mode. When lon mode is enabled, ton or prom modes are automatically
disabled.

Modes: device

Syntax: ++lon [0 |1]
where 0=disabled; 1=enabled

++mode

This command configures the AR488 to serve as a controller or a device.

In controller mode the AR488 acts as the Controller-in-Charge (CIC) on the GPIB bus, receiving
commands terminated with CRLF over USB and sending them to the currently addressed
instrument via the GPIB bus. The controller then passes the received data back over USB to the
host.

In device mode, the AR488 can act as another device on the GPIB bus. In this mode, the AR488 can
act as a GPIB talker or listener and expects to receive commands from another controller (CIC). All
data received by the AR488 is passed to the host via USB without buffering. All data from the host
via USB is buffered until the AR488 is addressed by the controller to talk. At this point the AR488

- 20 -

sends the buffered data to the controller. Since the memory on the controller is limited, the AR488
can buffer only 120 characters at a time.

When sending data followed by a command, the buffer must first be read by the controller before
a subsequent command can be accepted, otherwise the command will be treated as characters to
be appended to the existing data in the buffer. Once the buffer has been read, it is automatically
cleared and the parser can then detect the ++ command prefix on the next line. Therefore
sufficient delay must be allowed for the buffer to be read before sending a subsequent command.

If the command is issued without a parameter, the current mode is returned.

Modes: controller, device

Syntax: ++mode [0|1]
where 0=device, 1=controller

++read

This command can be used to read data from the currently addressed instrument. Data is read
until:

 the EOI signal is detected
 a specified character is read
 timeout expires

Timeout is set using the read_tmo_ms command and is the maximum permitted delay for a single
character to be read. It is not related to the time taken to read all of the data. For details see the
description of the read_tmo_ms command.

Modes: controller

Syntax: ++read [eoi|<char>]
where <char> is a decimal number corresponding to the ASCII character to be used
as a terminator and must be less than 256.

++read_tmo_ms

This specifies the timeout value, in milliseconds, that is used by the ++read (and ++spoll)
commands to wait for a character to be transmitted while reading data from the GPIB bus. The
timeout value may be set between 0 and 32,000 milliseconds (32 seconds).

Modes: controller

Syntax: ++read_tmo_ms <time>
where <time> is a decimal number between 0 and 32000 representing milliseconds

- 21 -

++rst

Perform a reset of the controller.

Please note that the reset may fail and hang the board under certain circumstances. These
include:

 the board has an older bootloader. The older bootloader had an problem with not clearing
the MCUSR register which triggers another reset while the bootloader is being executed,
which causes a perpetual restart cycle. The solution here is to update the bootloader. The
newer Optiboot bootloader does not have this problem.

 using a 32u4 board (Micro, Leonardo) programmed with an AVR programmer with no
bootloader. There is at present no solution to this problem. When programming with an
AVR programmer, use a recent IDE version to export the binaries and upload the version
with the bootloader to the board.

Modes: controller, device

Syntax: ++rst

++savecfg

This command saves the current interface configuration. On the Prologix interface setting this to 1
would enable the saving of specific parameters whenever they are changed, including addr, auto,
eoi, eos, eot_enable, eot_char, mode and read_tmo_ms.

Frequent updates wear out the EEPROM and the Arduino EEPROM has a nominal lifetime of
100,000 writes. In order to minimize writes and preserve the longevity of the EEPROM memory,
the AR488 does not, at any time, write configuration parameters “on the fly” every time they are
changed. Instead, issuing the ++savecfg command will update the complete current configuration
once. Only values that have changed since the last write will be written.

The configuration written to EEPROM will be automatically re-loaded on power-up. The
configuration can be reset to default using the ++default command and a new configuration can
be saved using the ++savecfg command.

Most, if not all Arduino AVR boards support EEPROM memory, however boards from other
vendors may not provide this support. If the command is run on a board that does not support
EEPROM, then the following will be returned:

EEPROM not supported.

The ++savecfg command will save the following current parameter values: addr, auto, eoi, eos,
eot_enable, eot_char, mode, read_tmo_ms and verstr.

Modes: controller, device

Syntax: ++savecfg

- 22 -

++spoll

Performs a serial poll. If no parameters are specified, the command will perform a serial poll of the
currently addressed instrument. If a GPIB address is specified, then a serial poll of the instrument
at the specified address is performed. The command returns a single 8-bit decimal number
representing the status byte of the instrument.

The command can also be used to serial poll multiple instruments. Up to 15 addresses can be
specified. If the all parameter is specified (or the command ++allspoll is used), then a serial poll of
all 30 primary instrument addresses is performed.

When polling multiple addresses, the ++spoll command will return the address and status byte of
the first instrument it encounters that has the RQS bit set in its status byte, indicating that it has
requested service. The format of the response is SRQ:addr,status, for example: SRQ:3,88 where 3
is the GPIB address of the instrument and 88 is the status byte. The response provides a means to
poll a number of instruments and to identify which instrument raised the service request, all in
one command. If SRQ was not asserted then no response will be returned.

When ++srqauto is set to 1 (for details see the ++srqauto custom command), the interface will
automatically conduct a serial poll of all devices on the GPIB bus whenever it detects that SRQ has
been asserted and the details of the instrument that raised the request are automatically returned
in the format above.

Modes: controller

Syntax: ++spoll [<PAD>|all|<PAD1> <PAD2> <PAD3>...]
where <PAD> and <PADx> are primary GPIB address and all specifies that all
instruments should be polled

++srq

This command returns the present status of the SRQ signal line. It returns 0 if SRQ is not asserted
and 1 if SRQ is asserted.

Modes: controller

Syntax: ++srq

++status

Set or display the status byte that will be sent in response to the serial poll command. When bit 6
of the status byte is set, the SRQ signal will be asserted indicating Request For Service (RQS). The
table below shows the values assigned to individual bits as well as some example meanings that
can be associated with them. Although the meaning of each bit will vary depending on the
instrument and the manufacturer, bit 6 is always reserved as the RQS bit. Other bits can be
assigned as required.

- 23 -

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

128 64 32 16 8 4 2 1

Always
zero

RQS Calibration
enabled or
error

Output
available.
Front/rear
switch.

Remote
control

Auto-zero Autorange
enabled.
Front/rear
switch.

Operational
error.

The values of the bits to be set can be added together to arrive at the desired status byte value.
For example, to assert SRQ, a value of 64 would be sufficient. However if we wanted to use bit 1 to
indicate an operational error, then a value of 65 might be used in the event of the error occurring.

Modes: device

Syntax: ++status [byte]
where byte is a decimal number between 0 and 255.

++trg

Sends a Group Execute Trigger to selected devices. Up to 15 addresses may be specified and must
be separated by spaces. If no address is specified, then the command is sent to the currently
addressed instrument. The instrument needs to be set to single trigger mode and remotely
controlled by the GPIB controller. Using ++trg, the instrument can be manually triggered and the
result read with ++read.

Modes: controller

Syntax: ++trg [pad1 … pad15]

++ver

Display the controller firmware version. If the version string has been changed with ++setvstr, then
++ver will display the new version string. Issuing the command with the parameter ‘real’ will
always display the original AR488 version string.

Modes: controller, device

Syntax: ++ver [real]

- 24 -

Custom commands

This section details ++ commands that are not part of the original Prologix implementation but
represent custom commands that have been added and are specific to the AR488 firmware.

++allspoll

Alias equivalent to ++spoll all. See ++spoll for further details.

++dcl

Send Device Clear (DCL) to all devices on the GPIB bus.

Modes: controller

Syntax: ++dcl

++default

This command resets the AR488 to its default configuration.

When powered up, the interface will start with default settings in controller mode. However, if the
configuration has been saved to EEPROM using the savecfg command, the controller will start with
the previously saved settings. This command can be used to reset the controller back to its default
configuration.

 The interface is set to controller mode with the following parameters:

auto 0

eoi 0 (disabled)

eor 0 (CR+LF)

eos 0 (CR+LF)

eot_enable 0 (disabled)

eot_char 0

GPIB address - controller 0

GPIB address - primary 1

GPIB address - secondary 0

mode controller

read_tmo_ms 1200

status byte 0

version string default version string

- 25 -

NOTE: Unless the ++savecfg command is used to overwrite the previously saved configuration,
the previous configuration will be re-loaded from non-volatile memory the next time that
the interface is powered up. To ensure that settings are saved, after using the ++default
command, configure the interface as required and then use ++savecfg to save the settings
to EEPROM*. The interface can be returned to its default state by using ++default
followed by ++savecfg without making any further configuration changes.

* this assumes that the board being used supports saving to EEPROM.

Modes: controller, device

Syntax: ++default

++eor

End of receive. While ++eos (end of send) selects the terminator to add to commands and data
being sent to the instrument, the ++eor command selects the expected termination sequence
when receiving data from the instrument.

The following termination sequences are supported:

Option Sequence Hex

0 CR + LF 0D 0A

1 CR 0D

2 LF 0A

3 None N/A

4 LF + CR 0A 0D

5 ETX 03

6 CR + LF + ETX 0D 0A 03

7 EOI signal N/A

The default termination sequence is CR + LF. If the command is specified with one of the above
numeric options, then the corresponding termination sequence will be used to detect the end of
the data being transmitted from the instrument. If the command is specified without a parameter,
then it will return the current setting. If option 7 (EOI) is selected, then ++read eoi is implied for all
++read instructions as well as any data being retuned by the instrument in response to direct
instrument commands. An EOI is expected to be signalled by the instrument with the last
character of any transmission sent. All characters sent over the GPIB bus are passed to the serial
port for onward transmission to the host computer.

Modes: controller

Syntax: ++eor[0-9]

- 26 -

++id

This command sets the identification parameters for the interface. Here you can set the
instrument name and optional serial number. This command also sets the information that can be
used by the interface to respond to a SCPI *idn? which may be useful where the instrument itself
cannot provide such a response. For further information also see the ++idn command.

The command has one of four invocations and an optional parameter:

++id fwver

Displays the actual version of the controller firmware.

++id name
Displays or sets a short descriptive name for the interface. The name can be up to 15 characters
long and should not include spaces. If the command is specified without a parameter, it will return
the current name of the interface. If specified with a character string, the command will set the
interface name to the provided string. By default, the name is not set and the command will not
return a value.

++id serial
Displays or sets an optional serial number for the interface. In the event that there are multiple
instances of identical instruments on the bus, each instrument can be given a unique serial
number up to 9 digits long. When specified without a parameter, the command returns the
currently configured serial number. When specified with a parameter, the command sets the serial
number to the provided alphanumeric numeric string. By default the serial number is not set and
the command will return ‘000000000’.

++id verstr
Displays or sets the user-defined version string that the controller responds with on boot-up and
in response to the ++ver command. This may be helpful where software on the computer is
expecting a specific string from a known controller, for example ‘GPIB-USB’. When no parameter is
given, the command returns the current version string. When provided with a character string of
up to 47 characters, the command will set the version string to the supplied character string.

Examples:

++id fwver
++id name HP3478A
++id serial 347800001
++id verstr GPIB-USB
++id verstr

Modes: controller

Syntax: ++id fwver
++id name [name]
++id serial [serialnum]
++id verstr [version string]

- 27 -

++idn

This command is used to enable the facility for the interface to respond to a SCPI *idn? Command.
Some older instruments do no respond to a SCPI ID request but this feature will allow the interface
to respond on behalf of the instrument using parameters set with the ++id command. When set to
zero, response to the SCPI *idn? command is disabled and the request is passed to the instrument.
When set to 1, the interface responds with the name set using the ++idn name command. When
set to 2, the instrument also appends the serial number using the format name-99999999.

Modes: controller

Syntax: ++idn[0-2]

++macro

Instrument control usually requires a sequence of commands to be sent to the instrument to set it
up or to perform a particular task. Where such a sequence of commands is performed regularly
and repeatedly, it is beneficial to have a means to pre-program the sequence and to be able to run
it with a single command.

The AR488 allows up to 9 sequences to be programmed into the Arduino sketch that can be run
using the ++macro command. When no parameters have been specified, the macro command will
return a list of numbers indicating which macros have been defined and are available to use.
When called with a single number between 1 and 9 as a parameter, the command will run the
specified macro.

Programming macros is beyond the scope of this manual and will be specific to each instrument or
implemented programming language or protocol.

Modes: controller

Syntax: ++macro [1-9]

- 28 -

++ppoll

When many devices are involved, Parallel Poll is faster than Serial Poll but is not widely used. With
a Parallel Poll, the controller can query up to eight devices quite efficiently using the DIO lines.
Since there are 8 DIO lines, up to 8 devices can be queried at once. In order to get an unambiguous
response, each device should ideally assign to a separate data line. Devices assigned to the same
line are simply OR’ed. Devices respond to the parallel poll by asserting the DIO line they have been
assigned.

Response to a Parallel Poll is a data byte corresponding to the status of the DIO lines when the
Parallel Poll request is raised. The state of each individual bit of the 8-bit byte corresponds to the
state of each individual DIO line. In this way it is possible to determine which instrument raised the
request.

Because a single bit can only be 0 or 1, the response to a parallel poll is binary, simply indicating
whether or not an instrument has raised the request. In order to get further status information, a
Serial Poll needs to be conducted on the instrument in question.

Modes: controller

Syntax: ++ppoll

++prom

Promiscuous mode allows data sent between a controller and device on the bus to be monitored.
It is similar to lon mode, except that lon mode works only with a Talk-Only node and where no
controller is present on the GPIB bus, whereas prom mode can operate when a controller is
present and addressing is used. Command bytes are ignored but the interface will receive data
sent across the bus between the controller and any device. When prom mode is enabled, lon and
ton modes are automatically disabled.

Modes: device

Syntax: ++prom[0|1]

- 29 -

++ren

In controller mode, this command turns the REN signal on and off. When REN is asserted, the
controller can remote-control any device on the BUS. With the REN signal turned off, the
controller can no longer remote-control devices, but can still communicate with them. This is used
primarily for diagnostics.

When set to 0, REN is un-asserted. When set to 1, REN is asserted. By default, in controller mode,
REN will be asserted.

When REN is used to control the SN75161 GPIB transceiver integrated-circuit, this command is
unavailable and will simply return Unavailable. (see the Configuration and the Building an AR488
GPIB Interface sections for more information). When issued without a parameter, the command
returns the current status of the REN signal.

Modes: controller

Syntax: ++ren [0|1]

++repeat

Provides a way of repeating the same command multiple times, for example, to request multiple
measurements from the instrument.

Between 2 and 255 repetitions can be requested. It is also possible to request a delay between 0
to 10,000 milliseconds (or 10 seconds) between each repetition. The parameter buffer has a
maximum capacity of 64 characters, so the command string plus any parameters cannot exceed 64
characters in total. Once started, there is no mechanism to stop the repeat loop once it has begun.
The command will run the number of iterations requested and stop only when the request is
complete.

Modes: controller

Syntax: ++repeat count delay cmdstring
where:

count is the number of repetitions from 2 to 255
delay is the time to wait between repetitions from 0 to 10,000 milliseconds
cmdstring is the command to execute

++setvstr

This command is DEPRECATED and will be removed in future versions. Please refer to the notes for
the ++id verstr command instead. It sets the version string that the controller responds with on
boot-up and in response to the ++ver command. This may be helpful where software on the
computer is expecting a specific string from a known controller, for example ‘GPIB-USB’.

The ++ver command can be used to confirm that the string has been set correctly.

- 30 -

Modes: controller, device

Syntax: ++verstr [string]
where [string] is the new version string

++srqauto

When conducting a serial poll using a Prologix controller, the procedure requires that the status of
the SRQ signal be checked with the ++srq command. If the response is a 1, indicating that SRQ is
asserted, then an ++spoll command can be issued to determine the status byte of the currently
addressed instrument or optionally an instrument at a specific GPIB address.

When polling multiple devices, the AR488 will provide a custom response that includes the
address and status byte of the first instrument encountered that has the RQS bit set. Usually, the +
+spoll command has to be issued manually to obtain this information.

When ++srqauto is set to 0 (default), in order to obtain the status byte when SRQ is asserted, a
serial poll has to be conducted manually using the ++spoll command.

When ++srqauto is set to 1, the interface will automatically detect when the SRQ signal has been
asserted by an instrument and will automatically conduct a serial poll, returning the address and
status byte of the first instrument encountered that has the RQS bit set in its status byte. If
multiple instruments have asserted SRQ, then another subsequent serial poll will be conducted to
determine the next instrument that has requested service. The process continues until all
instruments that have requested service have had their status byte read and the SRQ signal has
been cleared.

Without parameters, this command returns the present status of the SRQauto. It returns 0 if a
serial poll is not automatically executed (default) and 1 if a serial poll is automatically executed.

Modes: controller

Syntax: ++srqauto [0|1]
where 0=disabled, 1=enabled

- 31 -

++ton

The ++ton command configures the interface to send data in non-addressed mode on the GPIB
bus. When in this mode, the interface does not require a GPIB address to be assigned, therefore
any address that is already set will be ignored. Only one talker can exist on the bus, but multiple
receivers in listen-only (lon) mode can listen to and accept the transmitted data. In ton mode, the
interface can send, but not receive, so effectively becomes a “talk-only” device.

There are two talk modes:

Unbuffered mode (1) – this is the default. In this mode, characters sent to the serial port are
immediately transmitted to the GPIB bus. No attempt is made to buffer or filter the data. Once the
++ton 1 command has been entered, a reset will be required (by powering off the interface or
pressing the reset button) to exit the mode.

Buffered mode (2) – in this mode, data sent over USB is buffered in the same way as in controller
mode. Special characters such as carriage return (CR, hex 0D, decimal 13), newline [a.k.a linefeed]
(LF, hex 0A, decimal 10), escape (hex 1B, decimal 27) and ‘+’ (hex 2B, decimal 43) all need to be
escaped with the Escape character hex 0x1B. In this mode, the interface will continue to parse the
serial buffer and accept commands so it is possible to turn ton mode off with the ++ton 0
command.

When issued without a parameter, the command returns the current state of the ton mode.

Modes: device

Syntax: ++ton [0|1|2]
where 0=disabled; 1=enabled, unbuffered; 2=enabled, buffered;

++verbose

Toggle verbose mode ON and OFF

Modes: controller, device

Syntax: ++verbose

- 32 -

Building an AR488 GPIB Interface

Construction of an Arduino GPIB interface is relatively straightforward and requires a single
Arduino UNO, NANO or MEGA2560 board, a length of cable that is at minimum 16-way and
preferably screened, and an IEEE488 connector. An old GPIB cable could be re-purposed by
removing one end, or an old parallel printer cable could be used, in which case a separate 24-way
IEEE488 connector will need to be purchased.

New GPIB/IEEE488 cables are expensive. Cheaper cables can be found from various sellers on
eBay. Connectors can be found by searching for ‘Centronics 24’ rather than ‘IEEE488’ or ‘GPIB’. In
the UK, RS Components sell these as part number 239-1207, for £2.86. They can also be found on
eBay. Old parallel printer cables can still be found on charity/thrift shops or on market stalls.

For connection details and wiring diagrams for specific boards, please see:

 Appendix A – Uno and Nano
 Appendix B – Mega 2560
 Appendix C – Micro 32u4

Ideally, in a GPIB cable, ground pins 18, 19, 20, 21, 22, 23 should be connected to a ground wire
that forms a twisted pair with the DAV, NRFD, NDAC, IFC, SRQ and ATN control wires, and a
shielded twisted pair cable with sufficient multiple pairs would be required. However, if such a
cable is not available, then linking them together and connecting them to GND on the Arduino side
should suffice, especially if sufficient numbers of conductors are not available.

Further information can be found by following the links below:

Additional GPIB pinout information - Link 1
Additional GPIB pinout information - Link 2

Once the cable has been completed, the sketch should then be downloaded to the Arduino board
and the interface should be ready to test.

The project requires an additional third-party library called DEVNULL. This needs to be installed
prior to compiling the sketch and can be done from within the Arduino IDE.
To install this library, please follow these steps:

1. within the IDE go to Tools -> Manage Libraries... After a second or two, this should display a
list of available libraries. In version 2.0rc9.x, the list ,may not appear the first time around.
In that case, just go to Tools->Manage Libraries... again.

2. in the search box type 'DEVNULL'. This should filter the list of libraries leaving only the
DEVNULL library by Rob Tillaart listed.

3. click the 'Install' button. This will install the latest version of the DEVNULL library.

- 33 -

https://allpinouts.org/pinouts/connectors/buses/ieee-488-gpib-hpib/
https://www.electronics-notes.com/articles/test-methods/gpib-ieee-488-bus/pinout-pin-connections.php

In order to provide multi-platform compatibility, the AR488 firmware sketch is modular and comes
in several files:

Filename: Purpose:

AR488.ino This is the main AR488 firmware sketch

AR488_Config.h This is the configuration file. All configuration
options are set here.

AR488_ComPorts.h Communication ports header file

AR488_ComPorts.cpp Communication ports implementation

AR488_Eeprom.h EEPROM functions header file

AR488_Eeprom.cpp EEPROM functions implementation

AR488_GPIBbus.h GPIB functions header file

AR488_GPIBbus.cpp GPIB functions implementation

AR488_Layouts.h Board layout header file

AR488_Layouts.cpp Board layout functions implementation

The firmware is supplied in a ZIP file. Download and unpack all files into a directory called AR488.
Load the main sketch, AR488.ino into the Arduino IDE. All the other files should be automatically
loaded by the IDE into separate tabs. Edit the AR488_Config.h file as required and save. Then
select the correct board from the list of boards within the Arduino IDE, Tools | Board menu option
and compile and upload the sketch.

An example of a completed Arduino GPIB adapter

The following section details further hardware tweaks that may be required to make the board
work correctly with specific GPIB software.

- 34 -

Multiple Arduinos on the bus and problems with instruments

The AR488 can be used in both controller mode and device mode and only ONE controller can be
active at any one time. When there is just one Arduino controller on the bus controlling one or
more instruments, this does not present a problem, provided that the Arduino is operating within
its current handling limits.

However, it is possible to have one AR488 operating as a controller and another as a device
simultaneously on the bus along with other instruments. In this situation and without any
additional buffering (see the following section: SN7516x GPIB transceiver integrated circuits),
problems can arise when two or more Arduinos are connected to the GPIB bus and one of them is
powered down. Such problems are manifest by instruments failing to respond to the ++read or
other commands, failing to respond to direct instrument commands, or other erratic bus
communication problems.

The reason for this is because when powered down, Arduino control pins do not present with a
high impedance. In a powered down state, voltages present on the various signal and data lines
are passed via protection diodes internal to the ATMega processor, to the +VCC rail on the
powered down interface. This then causes all pins on the unpowered Arduino to effectively go
HIGH. Furthermore, enough power may be present on the +VCC rail to at least partially power the
processor, which, even if it does manage to operate, is likely to do so in an unpredictable manner
the result of which may be the aforementioned interference with the proper functioning of other
equipment on the GPIB bus. This is a parasitic power phenomenon that is not specific to Arduino
microcontrollers and that affects various other devices also. Further information regarding this
phenomenon can be found here:

https://www.eevblog.com/forum/blog/eevblog-831-power-a-micro-with-no-power-pin!/

Consequently, unpowered Arduino devices will adversely affect other devices on the GPIB bus. It is
therefore essential to either keep Arduino devices powered on, or physically disconnected from
the bus. This is NOT an issue when there is just ONE Arduino-based GPIB controller remotely
controlling instruments on a bus. Therefore, other than when an Arduino is operating as a
controller, it is not recommended to leave unpowered Arduino’s connected to the bus.

SN7516x GPIB transceiver integrated circuits

The AR488 firmware supports SN75160 and SN75161 GPIB transceiver integrated circuits. These
ICs provide a buffer between the Arduino and the GPIB bus and allow the full 48mA drive current
for a GPIB device. In addition, when powered down, these devices present a high impedance to
the GPIB bus so that the connected device does not interfere with the operation of the bus. This
solves the ‘parasitic power’ problem that ocurrs when using Arduinos connected directly without
buffering to the the GPIB bus and means that theinterface can be safely powered down without
affecting communication on the GPIB bus.

In order to use these GPIB transceiver ICs, at least one SN75160 and one SN75161 will be required
and a separate daughterboard will have to be built. The SN75160 provides 3-state outputs for the
data bus, whereas the SN75161 provides similar isolation for the GPIB control signals. Connection
details can be found in Appendix A, which details connections for the Uno board. A similar
approach can be used for any other board using available GPIO pins.

- 35 -

https://www.eevblog.com/forum/blog/eevblog-831-power-a-micro-with-no-power-pin!/

Operation of the SN75160 is simple. The Arduino outputs are connected to the ‘Terminal I/O
ports’ side of the IC and the GPIB bus DIO lines to the ‘GPIB I/O ports side. The PE pin should be
connected to VCC in order to provide 3-state output. The TE (talk-enable) pin is connected to a
GPIO pin on the Arduino. The GPIO pin is defined in Config.h. For further details see the
Configuration section.

The operation of the SN75161 is a little more complex as part of the IC is controlled by the TE pin,
but also by the DC (direction-control) pin. The TE pin is connected to the same GPIO pin as the
75160 TE pin. The DC pin needs to be driven separately. This can be achieved by connecting DC to
a seperate GPIO pin which can also be defined in Config.h. Alternatively, it can be controlled by the
REN signal. The REN signal is asserted (LOW) in controller mode and un-asserted (HIGH) in device
mode which conveniently corresponds to the drive signal required for DC to switch between
controller and device mode. When REN is being used to control DC, it cannot be turned off as this
would switch the IC into device mode and communication would fail. For this reason, the ++REN
command is not available in this configuration (see ++REN in the Custom Commands section for
details on the behaviour of this command).

The SN75162 IC differs from the SN75161 in that the REN and IFC signals are independently
controlled. The input required is the inverse of the DC signal. Conceivably a separate GPIO pin
could be used to drive the SC pin of the SN75162 but this is currently untested and unsupported.
Alternatively some means of hardware inversion could be devised and the pin connected to DC,
but in this case, experiment at your own risk.

- 36 -

Arduino brownout detection setting

The first three bits of the Arduino extended fuse determine the brownout detection (BOD) setting.
BOD will hold the processor in the reset state when the power rail voltage falls below a specific
threshold. There are three threshold levels that can be set depending on the bits that is set.

On the boards that were used for development, the default setting of the Extended Fuse seems to
be FD, which means that the last three bits will be 101 and therefore that the BOD level is set to
BODLEVEL1.

It has been reported that when BOD is disabled (e.g. fuse set to FF) and the Arduino signal pins are
connected to power, that under some circumstances the Arduino flash memory can get corrupted
and the sketch will have to be downloaded again. It is therefore inadvisable to disable BOD on an
Arduino being used as a GPIB interface.

Arduino BOD settings are as follows:

BOD Level: Bit setting Threshold

DISABLED 111 BOD disabled

BODLEVEL0 110 1.7 – 2.0v (avg 1.8v)

BODLEVEL1 101 2.5 – 2.9v (avg 2.7v)

BODLEVEL2 100 4.1 – 4.5v (avg 4.3v)

 To check the extended fuse setting, the following AVRDUDE command line can be used:

UNO/NANO:
avrdude -P /dev/ttyACM0 -b 19200 -c usbasp -p m328p -v

MEGA 2560:
avrdude -P /dev/ttyACM0 -b 115200 -c usbasp -p m2560 -v
MEGA 32u4:
avrdude -P /dev/ttyACM0 -b 115200 -c usbasp -p m32u4 -v

The ATMega328p part can be specified as -p m328p or -p atmega328p. The Mega 2560 and Mega
32u4 can also be specified using either convention. If your Arduino has a 328pb processor IC, then
this will have a different signature to the 328p and the -p parameter needs to be specified as -p
m328pb or -p atmega328pb.

- 37 -

Working with EZGPIB and KE5FX

FTDI serial vs CH340G serial

EZGPIB is an IDE programming environment that can be used to work with GPIB devices. KE5FX
provides testing tools that can be used with various instruments that support GPIB. Both programs
support the Prologix interface and when communicating with it, both programs assert RTS and
expect a CTS response to confirm that the interface is ready to accept data.

The CH340G chipset present in many Arduino compatible boards does not respond with the CTS
signal. There appear to be two possible workarounds, one of which requires very good soldering
skills. The RTS and CTS signals are exposed via pins 14 and 9 respectively on the CH340G chip.
While pin 9 connects to an easily accessible pad for soldering, pin 14 is not connected to anywhere
and because it is very small, attaching a wire to it is rather tricky. For this reason, workaround 2 is
easier to implement. Disclaimer: please proceed only if you are confident in your soldering skills. I
take no responsibility for damaged Arduino boards so if in doubt, ask a qualified or skilled person
for assistance.

Workaround 1

The workaround requires that pin 14 be connected to pin 9 on the CH340G chip. When RTS is
asserted by the host over USB, the signal is passed to the RTS output on pin 14 of the CH340G. This
signal would ordinarily be passed to a serial hardware device which would respond by sending a
response to the CTS input on pin 9 of the the CH340G to indicate that it is ready to send. The
workaround passes this signal back to the CTS input via the link so that a CTS response will always
be echoed back to the host over USB. While this does not provide proper RTS/CTS handshaking, it
does allow the interface to respond with a CTS signal and, in turn, the host to be able to accept
responses to the commands sent to the interface, even when RTS/CTS handshaking is used.

Workaround 2

Pin 9 of the CH340G needs to be connected to GND. This will keep CTS signal asserted on the
Arduino at all times, so again, proper handshaking is not provided. Simply solder a short wire to
the pad and connect to a convenient ground point.

A big thanks goes to Hartmut Päsler, who is currently looking after the EZGPIB program, for
informing me that the CH340G exposes the RTS/CTS signals via pins and that it might be possible
to make use of these pins to devise a solution.

Where Arduino boards are recognized as FTDI serial devices, the functionality is embedded within
the ATMEGA MEGA 16U2 chip. This chip does not expose the RTS/CTS signals so this modification
is not possible nor is it required in order to be able to work with the KE5FX toolkit. An Arduino
board running with the 16U2 chip running AR488 will work fine with the KE5FX GPIB toolkit, but
for some reason, it is not recognized by the EZGPIB program.

- 38 -

EZGPIB and the Arduino bootloader

On older Arduino boards it was necessary to press the reset button to program the board. This
causes the board to reset and the bootloader to run. The bootloader will expect a particular
sequence of bytes within a timeout period and it will then expect a new compiled sketch to be
uploaded into memory. On completion of the upload, program control is passed to the newly
uploaded code. The timing of the upload is rather tricky and if the timeout period expires or the
upload is started too soon, then it will fail and the board will start with the current program code.

Current versions of the board allow code to be uploaded via USB without having to use the reset
button. This is accomplished by triggering a reset of the board each time a serial connection is
opened. The bootloader is then re-loaded and if the required sequence of bytes is received, and an
upload of code proceeds automatically. When this is finished, program execution passes to the
new code as before.

The problem with this is that the bootloader is loaded every time that the serial port is opened.
This causes a delay of about 1 second before the compiled user program is actually run and the
interface is initialised. EZGPIB (and possibly other programs) that do not re-try the connection
attempt after waiting a second or so, fails to establish a connection to the interface. Closing the
program and immediately trying again usually results in a successful connection.

The solution is to eliminate the delay caused by the board re-starting and the bootloader being re-
loaded into memory. This can be done quite easily by placing a 10μF capacitor between the RST
and GND pins on the Arduino. This causes the reset pulse, which is generated by activating the
serial DTR signal, to be drained to ground without affecting the RESET input on the AtMega328P
processor. Since it’s a capacitor, there is no direct DC coupling between RESET and GND. When the
serial port is now opened, the interface will just respond without the delay caused by re-booting.
Assuming the sequence “GPIB-USB” exists in the response to the ++ver command, EZGPIB will now
recognize it first time.

The drawback of this approach is that placing a capacitor permanently in this position will prevent
the Arduino IDE from being able to program the board. The reset button now has to be used or a
switch added to provide an on to run, off to program facility.

Hacking the EZGPIB binary

If you are familiar with using a hex editor, there is another approach that involves editing the
EZGPIB.EXE binary to prevent it looking for an RTS signal being asserted. If the standard Windows
USBSER.SYS driver is used, this never happens, so EZGPIB will never find the GPIB adapter. This
workaround involves changing a specific byte in the RTS Check routine.

Open up a copy of EXGPIB.EXE version 20121217 in a hex editor. Look for the HEX sequence:

F6 04 24 10 74 06

Note, that these instructions can also be found on http://www.dalton.ax/gpib/, but show the
sequence as F6 02 24 10 74 06. I found the sequence to be as above. I’m not sure whether this
is an error or because my binary is different from the one that the author was working with. If you
can’t find the sequence with 04, check for the one with 02.

- 39 -

That sequence is the check for RTS. Change the penultimate byte to 75, so that the sequence now
reads:

F6 04 24 10 75 06

Now look for sequence:

24 04 10 0F 95

Change the last byte to 94 so that the sequence now reads:

24 04 10 0F 94

- 40 -

Save the file and close the hex editor. EZGPIB should now find your adapter.

- 41 -

Working with the KE5FX Toolkit

Setting the version string

The Prologix GPIB Configurator program that is part of the KE5FX GPIB tools looks for a specific
character sequence in the string returned by the ++ver command in order to identify a Prologix
interface. The response to the ++ver command must contain the sequence ‘version 6’
somewhere in the returned version string.

On the AR488, the version string displayed with the ++ver command can be set to anything
convenient by using the following example commands:

++id verstr AR488 GPIB-USB version 6
++savecfg

This will set the version string to 'AR488 GPIB-USB version 6' and should be enough to get the
interface recognized by the Prologix GPIB Configurator program. The version number does not
actually require a '.1' suffix, but:

 ++id verstr AR488 GPIB-USB version 6.1

would work just as well. The ++savecfg command saves the setting to EEPROM. This is important
since the value of the version string that has been set needs to survive a reset. That the string has
been saved can be confirmed by resetting or power cycling the adapter and using the command:

++id verstr

This should display the version string entered using the previous command.

Alternatively, the version string could be set by changing the value of the FWVER variable set using
a #define statement near the beginning of the AR488_Config.h file. This will set the default version
string in the compiled program which will be stored along with the code in program memory and
will not require EEPROM storage.

- 42 -

Appendix A – Connection and technical information for Uno and Nano boards

Connection details:

These connections are required between the Arduino UNO/Nano and the IEEE488 connector:

Arduino: GPIB connector: Function:

D2 10 SRQ

D3 17 REN

D7 11 ATN

D8 9 IFC

D9 8 NDAC

D10 7 NRFD

D11 6 DAV

D12 5 EOI

A0 1 DIO1

A1 2 DIO2

A2 3 DIO3

A3 4 DIO4

A4 13 DIO5

A5 14 DIO6

D4 15 DIO7

D5 16 DIO8

GND 12 Shield

GND 18,19,20,21,22,23 GND

- 43 -

Wiring diagram:

When using SN75160 and SN75161 integrated circuits, the connections involve at least one extra
pin to control the talk-enable (TE) pin of the IC. The PE pin on the SN75160 is connected to VCC to
maintain a 3-state outputs when TE is high. Connecting PE to ground will allow the outputs to
function in pullup-enable mode when TE is high.

- 44 -

On the SN75161, the DC pin can be connected to a separate GPIO pin on the Uno/Nano, or, since
ren is always asserted when in controller mode and de-asserted in device mode, to the GPIO pin
used for the REN signal.

- 45 -

Appendix B – Connection and technical information for Mega 2560 boards

Connection details:

The pinout on the Mega 2560 is as follows:

Arduino: GPIB connector: Function:

D6 7 NRFD

D7 6 DAV

D8 5 EOI

D9 17 REN

D10 10 SRQ

D11 11 ATN

D16 8 NDAC

D17 9 IFC

A0 1 DIO1

A1 2 DIO2

A2 3 DIO3

A3 4 DIO4

A4 13 DIO5

A5 14 DIO6

A6 15 DIO7

A7 16 DIO8

GND 12 Shield

GND 18,19,20,21,22,23 GND

The layout on the Mega was chosen so as to leave pins A8-A15 and the two rows of pins at the top
of the board free for expansion including for displays and other peripherals.

Pins 16 and 17 correspond to Serial2. As these have been used for controlling signals on the GPIB
bus, they cannot be used for serial communication. If Serial2.begin is added to the sketch, these
pins will be enabled for serial communication and will no longer function as GPIB control signals. In
addition to the default serial port (RX0 and TX0), Serial1 and Serial3 are still available for
expansion if required. These two pins were chosen for GPIB signals as they belong to port H along
with pins 6 – 9.

- 46 -

Wiring Diagram (default layout - AR488_MEGA2560_D):

- 47 -

Wiring Diagram (layout E1 and E2):

- 48 -

IEEE488 and Mega 2560 E1/E2 layout pinout details

- 49 -

Appendix C – Connection and technical information for 32u4 based boards

Micro Connection details:

The pinout on the Micro is as follows:

Arduino: GPIB connector: Function:

A2 7 NRFD

A1 6 DAV

A0 5 EOI

D5 17 REN

D7 10 SRQ

D2 11 ATN

A3 8 NDAC

D4 9 IFC

D3 1 DIO1

D15 2 DIO2

D16 3 DIO3

D14 4 DIO4

D8 13 DIO5

D9 14 DIO6

D10 15 DIO7

D6 16 DIO8

GND 12 Shield

GND 18,19,20,21,22,23 GND

The Micro is a very small form factor board that can be adapted to fit on the back of an IEEE488
connector. The design was contributed by Artag:

https://www.eevblog.com/forum/projects/ar488-arduino-based-gpib-adapter/msg2718346/
#msg2718346

Adapter boards are available from:
https://oshpark.com/shared_projects/HrS1HLSE

- 50 -

Leonardo R3 Connection details:

The pinout on the Leonardo R3 is as follows:

Arduino: GPIB connector: Function:

D2 10 SRQ

D3 17 REN

D7 11 ATN

D8 9 IFC

D9 8 NDAC

D10 7 NRFD

D11 6 DAV

D12 5 EOI

A0 1 DIO1

A1 2 DIO2

A2 3 DIO3

A3 4 DIO4

A4 13 DIO5

A5 14 DIO6

D4 15 DIO7

D5 16 DIO8

GND 12 Shield

GND 18,19,20,21,22,23 GND

The Leonardo R3 has a similar form factor to the Uno. It uses a 32u4 MCU rather than a 328P and
has a micro USB port. Instead of a CH340 UART it uses USB CDC emulated serial ports and has one
separate hardware serial port available on on RX1 and TX1, whereas the Uno shares these pins
with USB. It requires no modification to work with KE5FX tools. The board pin layout is the same as
the Uno and the above pinout is identical to the Uno.

- 51 -

Appendix D – XDIAG command notes

The ++xdiag command can be used to test whether individual signals are being asserted or un-
asserted. The command takes two parameters: mode and value. To manipulate the GPIB control
signals use mode 1. For data signals use mode 0. To assert a signal/data bit, simply specify one of
the values in the table below. To assert multiple signals/bits simultaneously, simply add the values
of the signals to be asserted. To leave a signal un-asserted while asserting all remaining signals,
subtract its value from 255. To leave multiple signals un-asserted while asserting all remaining
signals, subtract their combined value from 255. Depending on which interface mode is set at the
time of testing, signals will automatically revert back to either controller or device mode after 10
seconds. Please note that GPIB signals are HIGH when inactive, LOW when active.

The following two tables list the GPIB signals and the command used to assert them.

Command signals:

Assert IFC ++xdiag 1 1

Assert NDAC ++xdiag 1 2

Assert NRFD ++xdiag 1 4

Assert DAV ++xdiag 1 8

Assert EOI ++xdiag 1 16

Assert REN ++xdiag 1 32

Assert SRQ ++xdiag 1 64

Assert ATN ++xdiag 1 128

Assert ALL ++xdiag 1 255

Un-assert ALL ++xdiag 1 0

Data bits:

Assert DA01 ++xdiag 0 1

Assert DA02 ++xdiag 0 2

Assert DA03 ++xdiag 0 4

Assert DA04 ++xdiag 0 8

Assert DA05 ++xdiag 0 16

Assert DA06 ++xdiag 0 32

Assert DA07 ++xdiag 0 64

Assert DA08 ++xdiag 0 128

Assert ALL ++xdiag 0 255

Un-assert ALL ++xdiag 0 0

- 52 -

