{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sensitivity analysis for the Ishigama function using PCE\n", "\n", "Run an EasyVVUQ campaign to analyze the sensitivity for the Ishigami function\n", "\n", "This is done with PCE." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.244157Z", "start_time": "2021-06-07T14:42:41.768114Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:33:52.869112Z", "iopub.status.busy": "2025-07-18T11:33:52.868973Z", "iopub.status.idle": "2025-07-18T11:34:12.250919Z", "shell.execute_reply": "2025-07-18T11:34:12.250176Z", "shell.execute_reply.started": "2025-07-18T11:33:52.869104Z" } }, "outputs": [], "source": [ "# Run an EasyVVUQ campaign to analyze the sensitivity for the Ishigami function\n", "# This is done with PCE.\n", "%matplotlib inline\n", "import os\n", "import easyvvuq as uq\n", "import chaospy as cp\n", "import pickle\n", "import numpy as np\n", "import matplotlib.pylab as plt\n", "import time\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.248425Z", "start_time": "2021-06-07T14:42:46.245314Z" }, "execution": { "iopub.execute_input": "2025-07-18T11:34:12.259360Z", "iopub.status.busy": "2025-07-18T11:34:12.259114Z", "iopub.status.idle": "2025-07-18T11:34:12.267453Z", "shell.execute_reply": "2025-07-18T11:34:12.266569Z", "shell.execute_reply.started": "2025-07-18T11:34:12.259336Z" } }, "outputs": [ { "data": { "text/plain": [ "'1.26.4'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.__version__" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.253612Z", "start_time": "2021-06-07T14:42:46.249610Z" }, "code_folding": [ 0, 1 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.269811Z", "iopub.status.busy": "2025-07-18T11:34:12.268342Z", "iopub.status.idle": "2025-07-18T11:34:12.276632Z", "shell.execute_reply": "2025-07-18T11:34:12.275829Z", "shell.execute_reply.started": "2025-07-18T11:34:12.269772Z" } }, "outputs": [], "source": [ "# Define the Ishigami function\n", "def ishigamiSA(a,b):\n", " '''Exact sensitivity indices of the Ishigami function for given a and b.\n", " From https://openturns.github.io/openturns/master/examples/meta_modeling/chaos_ishigami.html\n", " '''\n", " var = 1.0/2 + a**2/8 + b*np.pi**4/5 + b**2*np.pi**8/18\n", " S1 = (1.0/2 + b*np.pi**4/5+b**2*np.pi**8/50)/var\n", " S2 = (a**2/8)/var\n", " S3 = 0\n", " S13 = b**2*np.pi**8/2*(1.0/9-1.0/25)/var\n", " exact = {\n", " 'expectation' : a/2,\n", " 'variance' : var,\n", " 'S1' : (1.0/2 + b*np.pi**4/5+b**2*np.pi**8.0/50)/var,\n", " 'S2' : (a**2/8)/var,\n", " 'S3' : 0,\n", " 'S12' : 0,\n", " 'S23' : 0,\n", " 'S13' : S13,\n", " 'S123' : 0,\n", " 'ST1' : S1 + S13,\n", " 'ST2' : S2,\n", " 'ST3' : S3 + S13\n", " }\n", " return exact\n", "\n", "Ishigami_a = 7.0\n", "Ishigami_b = 0.1\n", "exact = ishigamiSA(Ishigami_a, Ishigami_b)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.257741Z", "start_time": "2021-06-07T14:42:46.255954Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.278321Z", "iopub.status.busy": "2025-07-18T11:34:12.277837Z", "iopub.status.idle": "2025-07-18T11:34:12.281917Z", "shell.execute_reply": "2025-07-18T11:34:12.281131Z", "shell.execute_reply.started": "2025-07-18T11:34:12.278301Z" } }, "outputs": [], "source": [ "# define a model to run the Ishigami code directly from python, expecting a dictionary and returning a dictionary\n", "def run_ishigami_model(input):\n", " import Ishigami\n", " qois = [\"Ishigami\"]\n", " del input['out_file']\n", " return {qois[0]: Ishigami.evaluate(**input)}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.261995Z", "start_time": "2021-06-07T14:42:46.258868Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.283083Z", "iopub.status.busy": "2025-07-18T11:34:12.282933Z", "iopub.status.idle": "2025-07-18T11:34:12.286417Z", "shell.execute_reply": "2025-07-18T11:34:12.285844Z", "shell.execute_reply.started": "2025-07-18T11:34:12.283069Z" } }, "outputs": [], "source": [ "# Define parameter space\n", "def define_params():\n", " return {\n", " \"x1\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"x2\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"x3\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"a\": {\"type\": \"float\", \"min\": Ishigami_a, \"max\": Ishigami_a, \"default\": Ishigami_a},\n", " \"b\": {\"type\": \"float\", \"min\": Ishigami_b, \"max\": Ishigami_b, \"default\": Ishigami_b},\n", " \"out_file\": {\"type\": \"string\", \"default\": \"output.csv\"}\n", " }" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.265476Z", "start_time": "2021-06-07T14:42:46.263562Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.287070Z", "iopub.status.busy": "2025-07-18T11:34:12.286934Z", "iopub.status.idle": "2025-07-18T11:34:12.289744Z", "shell.execute_reply": "2025-07-18T11:34:12.289337Z", "shell.execute_reply.started": "2025-07-18T11:34:12.287056Z" } }, "outputs": [], "source": [ "# Define parameter space\n", "def define_vary():\n", " return {\n", " \"x1\": cp.Uniform(-np.pi, np.pi),\n", " \"x2\": cp.Uniform(-np.pi, np.pi),\n", " \"x3\": cp.Uniform(-np.pi, np.pi)\n", " }" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T14:42:46.272337Z", "start_time": "2021-06-07T14:42:46.266543Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.290613Z", "iopub.status.busy": "2025-07-18T11:34:12.290351Z", "iopub.status.idle": "2025-07-18T11:34:12.296274Z", "shell.execute_reply": "2025-07-18T11:34:12.295894Z", "shell.execute_reply.started": "2025-07-18T11:34:12.290597Z" } }, "outputs": [], "source": [ "# Set up and run a campaign\n", "def run_campaign(pce_order=2, use_files=False):\n", "\n", " times = np.zeros(7)\n", "\n", " time_start = time.time()\n", " time_start_whole = time_start\n", "\n", " # Set up a fresh campaign called \"Ishigami_pce.\"\n", " my_campaign = uq.Campaign(name='Ishigami_pce.')\n", "\n", " # Create an encoder and decoder for PCE test app\n", " if use_files:\n", " encoder = uq.encoders.GenericEncoder(template_fname='Ishigami.template',\n", " delimiter='$',\n", " target_filename='Ishigami_in.json')\n", "\n", " decoder = uq.decoders.SimpleCSV(target_filename=\"output.csv\",\n", " output_columns=[\"Ishigami\"])\n", "\n", " execute = uq.actions.ExecuteLocal('python3 %s/Ishigami.py Ishigami_in.json' % (os.getcwd()))\n", "\n", " actions = uq.actions.Actions(uq.actions.CreateRunDirectory('/tmp'), \n", " uq.actions.Encode(encoder), execute, uq.actions.Decode(decoder))\n", " else:\n", " actions = uq.actions.Actions(uq.actions.ExecutePython(run_ishigami_model))\n", "\n", " # Add the app (automatically set as current app)\n", " my_campaign.add_app(name=\"Ishigami\", params=define_params(), actions=actions)\n", "\n", " # Create the sampler\n", " time_end = time.time()\n", " times[1] = time_end-time_start\n", " print('Time for phase 1 = %.3f' % (times[1]))\n", "\n", " time_start = time.time()\n", " # Associate a sampler with the campaign\n", " my_campaign.set_sampler(uq.sampling.PCESampler(vary=define_vary(), polynomial_order=pce_order))\n", "\n", " # Will draw all (of the finite set of samples)\n", " my_campaign.draw_samples()\n", " print('Number of samples = %s' % my_campaign.get_active_sampler().count)\n", "\n", " time_end = time.time()\n", " times[2] = time_end-time_start\n", " print('Time for phase 2 = %.3f' % (times[2]))\n", "\n", " time_start = time.time()\n", " # Run the cases\n", " my_campaign.execute(sequential=True).collate(progress_bar=True)\n", "\n", " time_end = time.time()\n", " times[3] = time_end-time_start\n", " print('Time for phase 3 = %.3f' % (times[3]))\n", "\n", " time_start = time.time()\n", " # Get the results\n", " results_df = my_campaign.get_collation_result()\n", "\n", " time_end = time.time()\n", " times[4] = time_end-time_start\n", " print('Time for phase 4 = %.3f' % (times[4]))\n", "\n", " time_start = time.time()\n", " # Post-processing analysis\n", " results = my_campaign.analyse(qoi_cols=[\"Ishigami\"])\n", " \n", " time_end = time.time()\n", " times[5] = time_end-time_start\n", " print('Time for phase 5 = %.3f' % (times[5]))\n", "\n", " time_start = time.time()\n", " # Save the results\n", " pickle.dump(results, open('Ishigami_results.pickle','bw'))\n", " time_end = time.time()\n", " times[6] = time_end-time_start\n", " print('Time for phase 6 = %.3f' % (times[6]))\n", "\n", " times[0] = time_end - time_start_whole\n", "\n", " return results_df, results, times, pce_order, my_campaign.get_active_sampler().count" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:53.564255Z", "start_time": "2021-06-07T14:42:46.274613Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:34:12.296950Z", "iopub.status.busy": "2025-07-18T11:34:12.296810Z", "iopub.status.idle": "2025-07-18T11:53:51.802386Z", "shell.execute_reply": "2025-07-18T11:53:51.801981Z", "shell.execute_reply.started": "2025-07-18T11:34:12.296931Z" }, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 1 = 0.035\n", "Number of samples = 8\n", "Time for phase 2 = 0.042\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████████| 8/8 [00:00<00:00, 2215.40it/s]\n", "Traceback (most recent call last):\n", " File \"/Volumes/UserData/dpc/GIT/EasyVVUQ/env_3.12/lib/python3.12/site-packages/easyvvuq/analysis/pce_analysis.py\", line 495, in analyse\n", " dY_hat = build_surrogate_der(fit, verbose=False)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/Volumes/UserData/dpc/GIT/EasyVVUQ/env_3.12/lib/python3.12/site-packages/easyvvuq/analysis/pce_analysis.py\", line 347, in build_surrogate_der\n", " assert(sum(sum(np.array(Y_hat[t].exponents))) == 0)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", "AssertionError\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.023\n", "Time for phase 4 = 0.003\n", "Time for phase 5 = 0.031\n", "Time for phase 6 = 0.002\n", "Time for phase 1 = 0.010\n", "Number of samples = 27\n", "Time for phase 2 = 0.059\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████████| 27/27 [00:00<00:00, 5205.29it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.010\n", "Time for phase 4 = 0.002\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 0.102\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "Number of samples = 64\n", "Time for phase 2 = 0.091\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████████| 64/64 [00:00<00:00, 5930.44it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.016\n", "Time for phase 4 = 0.002\n", "Time for phase 5 = 0.167\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Number of samples = 125\n", "Time for phase 2 = 0.147\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 125/125 [00:00<00:00, 6213.12it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.027\n", "Time for phase 4 = 0.003\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 0.305\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "Number of samples = 216\n", "Time for phase 2 = 0.192\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 216/216 [00:00<00:00, 6028.10it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.046\n", "Time for phase 4 = 0.006\n", "Time for phase 5 = 0.485\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "Number of samples = 343\n", "Time for phase 2 = 0.240\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 343/343 [00:00<00:00, 2419.45it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.154\n", "Time for phase 4 = 0.006\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 0.766\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "Number of samples = 512\n", "Time for phase 2 = 0.319\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 512/512 [00:00<00:00, 6729.86it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.093\n", "Time for phase 4 = 0.007\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 1.293\n", "Time for phase 6 = 0.004\n", "Time for phase 1 = 0.007\n", "Number of samples = 729\n", "Time for phase 2 = 0.414\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 729/729 [00:00<00:00, 6692.38it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.131\n", "Time for phase 4 = 0.009\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 2.202\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.007\n", "Number of samples = 1000\n", "Time for phase 2 = 0.561\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1000/1000 [00:00<00:00, 6859.50it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.172\n", "Time for phase 4 = 0.011\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 3.796\n", "Time for phase 6 = 0.002\n", "Time for phase 1 = 0.025\n", "Number of samples = 1331\n", "Time for phase 2 = 0.813\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1331/1331 [00:00<00:00, 6505.47it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.240\n", "Time for phase 4 = 0.015\n", "Time for phase 5 = 6.412\n", "Time for phase 6 = 0.002\n", "Time for phase 1 = 0.008\n", "Number of samples = 1728\n", "Time for phase 2 = 0.850\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1728/1728 [00:00<00:00, 6791.62it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.299\n", "Time for phase 4 = 0.094\n", "Time for phase 5 = 10.218\n", "Time for phase 6 = 0.009\n", "Time for phase 1 = 0.015\n", "Number of samples = 2197\n", "Time for phase 2 = 1.097\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 2197/2197 [00:00<00:00, 6577.30it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.396\n", "Time for phase 4 = 0.140\n", "Time for phase 5 = 17.613\n", "Time for phase 6 = 0.016\n", "Time for phase 1 = 0.011\n", "Number of samples = 2744\n", "Time for phase 2 = 1.335\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 2744/2744 [00:00<00:00, 6627.28it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.602\n", "Time for phase 4 = 0.028\n", "Time for phase 5 = 25.524\n", "Time for phase 6 = 0.012\n", "Time for phase 1 = 0.022\n", "Number of samples = 3375\n", "Time for phase 2 = 1.766\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 3375/3375 [00:00<00:00, 6642.32it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.594\n", "Time for phase 4 = 0.099\n", "Time for phase 5 = 38.722\n", "Time for phase 6 = 0.005\n", "Time for phase 1 = 0.014\n", "Number of samples = 4096\n", "Time for phase 2 = 2.180\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 4096/4096 [00:00<00:00, 6635.85it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.727\n", "Time for phase 4 = 0.043\n", "Time for phase 5 = 58.738\n", "Time for phase 6 = 0.006\n", "Time for phase 1 = 0.012\n", "Number of samples = 4913\n", "Time for phase 2 = 2.675\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 4913/4913 [00:00<00:00, 6714.53it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.942\n", "Time for phase 4 = 0.047\n", "Time for phase 5 = 85.127\n", "Time for phase 6 = 0.005\n", "Time for phase 1 = 0.018\n", "Number of samples = 5832\n", "Time for phase 2 = 3.358\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 5832/5832 [00:00<00:00, 6390.76it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.097\n", "Time for phase 4 = 0.133\n", "Time for phase 5 = 121.527\n", "Time for phase 6 = 0.007\n", "Time for phase 1 = 0.013\n", "Number of samples = 6859\n", "Time for phase 2 = 3.828\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 6859/6859 [00:01<00:00, 6721.68it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.287\n", "Time for phase 4 = 0.070\n", "Time for phase 5 = 172.143\n", "Time for phase 6 = 0.017\n", "Time for phase 1 = 0.033\n", "Number of samples = 8000\n", "Time for phase 2 = 4.975\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 8000/8000 [00:01<00:00, 6451.04it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.556\n", "Time for phase 4 = 0.085\n", "Time for phase 5 = 250.738\n", "Time for phase 6 = 0.012\n", "Time for phase 1 = 0.034\n", "Number of samples = 9261\n", "Time for phase 2 = 6.199\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 9261/9261 [00:01<00:00, 6093.26it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.871\n", "Time for phase 4 = 0.099\n", "Time for phase 5 = 340.794\n", "Time for phase 6 = 0.015\n" ] } ], "source": [ "# Calculate the polynomial chaos expansion for a range of orders\n", "\n", "R = {}\n", "for pce_order in range(1, 21):\n", " R[pce_order] = {}\n", " (R[pce_order]['results_df'], \n", " R[pce_order]['results'], \n", " R[pce_order]['times'], \n", " R[pce_order]['order'], \n", " R[pce_order]['number_of_samples']) = run_campaign(pce_order=pce_order, use_files=False)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:53.741252Z", "start_time": "2021-06-07T15:00:53.565998Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:51.803988Z", "iopub.status.busy": "2025-07-18T11:53:51.803600Z", "iopub.status.idle": "2025-07-18T11:53:51.919314Z", "shell.execute_reply": "2025-07-18T11:53:51.918997Z", "shell.execute_reply.started": "2025-07-18T11:53:51.803972Z" } }, "outputs": [], "source": [ "# save the results\n", "\n", "pickle.dump(R, open('collected_results.pickle','bw'))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:53.767105Z", "start_time": "2021-06-07T15:00:53.742000Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:51.920136Z", "iopub.status.busy": "2025-07-18T11:53:51.920044Z", "iopub.status.idle": "2025-07-18T11:53:51.968542Z", "shell.execute_reply": "2025-07-18T11:53:51.968312Z", "shell.execute_reply.started": "2025-07-18T11:53:51.920127Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TotalPhase 1Phase 2Phase 3Phase 4Phase 5Phase 6
10.1360150.0352340.0420510.0228170.0028040.0313060.001599
20.1836330.0095320.0590000.0099280.0020950.1023210.000598
30.2836540.0064760.0913410.0156230.0021030.1672880.000655
40.4890750.0062870.1466440.0270740.0032820.3049700.000645
50.7348180.0062470.1917410.0457070.0055220.4845380.000784
61.1722220.0056450.2401880.1538430.0056860.7659230.000756
71.7223580.0057790.3192120.0929790.0072431.2925820.004394
82.7645930.0067140.4138560.1309830.0091362.2024590.001216
94.5483680.0072110.5606900.1715050.0107383.7959330.001979
107.5086410.0254250.8133690.2404700.0150836.4119120.002048
1111.4796590.0081790.8498650.2993160.09391110.2184610.009438
1219.2795970.0145931.0966010.3957200.13950017.6128340.016208
1327.5123930.0110291.3354610.6019540.02760225.5240380.011818
1441.2084070.0218601.7662540.5943090.09885438.7217920.004774
1561.7076340.0142102.1795760.7270410.04286758.7376260.005689
1688.8109140.0115732.6749990.9423510.04715085.1271700.005375
17126.1407290.0180243.3577941.0969670.133123121.5272270.007013
18177.3698140.0128383.8282741.2867650.070440172.1433920.016534
19257.4019740.0329024.9751531.5557080.084697250.7382680.012211
20349.0168790.0337586.1990631.8714990.098941340.7939010.014523
\n", "
" ], "text/plain": [ " Total Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6\n", "1 0.136015 0.035234 0.042051 0.022817 0.002804 0.031306 0.001599\n", "2 0.183633 0.009532 0.059000 0.009928 0.002095 0.102321 0.000598\n", "3 0.283654 0.006476 0.091341 0.015623 0.002103 0.167288 0.000655\n", "4 0.489075 0.006287 0.146644 0.027074 0.003282 0.304970 0.000645\n", "5 0.734818 0.006247 0.191741 0.045707 0.005522 0.484538 0.000784\n", "6 1.172222 0.005645 0.240188 0.153843 0.005686 0.765923 0.000756\n", "7 1.722358 0.005779 0.319212 0.092979 0.007243 1.292582 0.004394\n", "8 2.764593 0.006714 0.413856 0.130983 0.009136 2.202459 0.001216\n", "9 4.548368 0.007211 0.560690 0.171505 0.010738 3.795933 0.001979\n", "10 7.508641 0.025425 0.813369 0.240470 0.015083 6.411912 0.002048\n", "11 11.479659 0.008179 0.849865 0.299316 0.093911 10.218461 0.009438\n", "12 19.279597 0.014593 1.096601 0.395720 0.139500 17.612834 0.016208\n", "13 27.512393 0.011029 1.335461 0.601954 0.027602 25.524038 0.011818\n", "14 41.208407 0.021860 1.766254 0.594309 0.098854 38.721792 0.004774\n", "15 61.707634 0.014210 2.179576 0.727041 0.042867 58.737626 0.005689\n", "16 88.810914 0.011573 2.674999 0.942351 0.047150 85.127170 0.005375\n", "17 126.140729 0.018024 3.357794 1.096967 0.133123 121.527227 0.007013\n", "18 177.369814 0.012838 3.828274 1.286765 0.070440 172.143392 0.016534\n", "19 257.401974 0.032902 4.975153 1.555708 0.084697 250.738268 0.012211\n", "20 349.016879 0.033758 6.199063 1.871499 0.098941 340.793901 0.014523" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# produce a table of the time taken for various phases\n", "# the phases are:\n", "# 1: creation of campaign\n", "# 2: creation of samples\n", "# 3: running the cases\n", "# 4: calculation of statistics including Sobols\n", "# 5: returning of analysed results\n", "# 6: saving campaign and pickled results\n", "\n", "Timings = pd.DataFrame(np.array([R[r]['times'] for r in list(R.keys())]), \n", " columns=['Total', 'Phase 1', 'Phase 2', 'Phase 3', 'Phase 4', 'Phase 5', 'Phase 6'], \n", " index=[R[r]['order'] for r in list(R.keys())])\n", "Timings.to_csv(open('Timings.csv', 'w'))\n", "display(Timings)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:54.334136Z", "start_time": "2021-06-07T15:00:53.767797Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:51.969026Z", "iopub.status.busy": "2025-07-18T11:53:51.968938Z", "iopub.status.idle": "2025-07-18T11:53:53.242037Z", "shell.execute_reply": "2025-07-18T11:53:53.241760Z", "shell.execute_reply.started": "2025-07-18T11:53:51.969018Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAe+tJREFUeJzt3Qd4FNXXBvA3PSFA6IRQQyf0Ih0ERCkCgoAIShcEKSpYQKX5/xQVVEQQBKQJSi9SpErvEEroLfSEUFOA9P2ec4eEVNgkm8yW9/c8487MTiZ3syZ7uPfcc+0MBoMBRERERBTP/tkuEREREQkGSERERERJMEAiIiIiSoIBEhEREVESDJCIiIiIkmCARERERJQEAyQiIiKiJByTniDjxMbG4tatW8iRIwfs7Oz0bg4REREZQco/hoaGwsvLC/b2qfcTMUBKJwmOihYtqncziIiIKB2uX7+OIkWKpPo8A6R0kp6juB9wzpw59W4OERERGSEkJER1cMR9jqeGAVI6xQ2rSXDEAImIiMiyvCg9hknaREREREkwQCIiIiJKggESERERURLMQSIiItKpXExkZKTezbA6Tk5OcHBwyPB9GCARERFlMQmM/P39VZBEppcrVy54enpmqE4hAyQiIqIsLlQYEBCgejlkuvnzihVS2n+2jx8/RlBQkDouVKgQ0osBEhERURaKjo5WH+JSyTlbtmx6N8fquLm5qUcJkgoUKJDu4TaGrURERFkoJiZGPTo7O+vdFKuV7WngGRUVle57MEAiIiLSAdfxNO+fLYfYzEhMrAEH/e8jKDQcBXK4orZ3HjjY8xeIiIgoqzFAMhMbTgZg3JrTCAgOjz9XyMMVY9r6oGWl9CeZERERUdpxiM1MgqOBC3wTBUciMDhcnZfniYiIko467Lt0D6uP3VSPckymwx4kncn/0NJzlNL/1nJOBtjk+Vd9PDncRkRECkcdMh97kHQmOUdJe46SBkny/LoTt1R9ByIism0cdcgaDJB0JgnZxhi66Biq/28zuv9xAD9sOKt+AW4+fJKmoIndsUREZlrcMDLaqC00PApj/jmV6qiDGPvPaXWdMfdLy2dIkyZNMGTIEHz00UfInTs3ChYsiJkzZ+LRo0fo3bs3cuTIgdKlS+Pff/+N/5qTJ0+iVatWyJ49u7q+e/fuuHv3bvzzGzZsQMOGDVXl67x586JNmza4dOlS/PNXrlxRM9JWrFiBpk2bqun7VatWxb59+5DZ7AzslkiXkJAQeHh4IDg4GDlz5kz3fSRQ6Tpzv9q3Ryxq259FATxEEHLhYGx5xD6NYR3sJcBJ/vV53Z1RuYgHqhT2QKXCHqhSJBcK5nRJNsVRAqr//eOHomHH4+9/PXtVjGpXmd2xRERZKDw8XC0z4u3tDVdXVxWo+IzeqEtbTn/dAtmcHY0OkHx9ffHZZ5+hS5cuWLx4McaOHYvXXnsNHTp0UM///PPPWLJkCa5du6aWUylbtizee+899OjRA0+ePMHnn3+uCmX+999/6p7Lly9Xn1dVqlRBWFgYRo8erYKiY8eOqQrjsi8/p/Lly2PixIkoU6YMvvzySxw6dAgXL16Eo6OjUT/j9Hx+M0DSOUCSXpyG3/+HqqE7MdppPrzs7sc/d8uQB19H9cDxHI2xdfjLuBT0CCduPoTfjWCcuBGM87dDEZ1CL1D+HC4qYFKBUxEP3AmNwLaVf6R6//bdBjBIIiLKIpYcIMXExGDXrl3qWPblc/DNN9/E/Pnz1bnAwEC1vIf08GzZskVdu3Hjs9d248YNtbzKuXPnVPCUlPQu5c+fH35+fqhUqVJ8gDRr1iz07dtXa/Pp06hYsSLOnDmjAqfMCpCYpK0zSbz+rcYNVN07KdlznriP35wm4XiNkup/YAl4ZEMd7fnwqBicDQyF342HKmDyu6kFTRIQbT0bpDbRwv4gpjmlfv8vVjnjVZ8vmARORKQDNycHFagYm7faa86hF143t/dLqpaeMd87LapUqRK/L0t4yLBY5cqV48/JMFrcMh/Hjx/Htm3b1PBaUjKMJgHShQsXVK/RgQMHVHAUt3iv9EBJgJTS941bX02+R2oBkikwQNJbbAyqn/oOBjttxlpCEq9I/1B136+AbPcAe0fAzj5+c7WzQzU7e1RztAO87YGS9oiMAW4FR+DGwye49iAcF4PCMCRqtrp30sKicn/pgBoa9QcOXuqHemUKZOUrJyKip1Wfje3FaVQmv5qtJgnZKQ3/yJ95Tw9XdV1m/KPXyckp8fezs0t0Li69QwIdGTJr27Ytvv/++2T3iQty5PnixYurXCZZm06+TgIjGZ5L7fsm/B6ZyaYDpLVr12L48OHqhyzjojJOmuWu7gVCbiULjuKo8xEhwNZxRt1OVvYp8XRLfJOUye+PF+7h8pU9QJkOaWk5ERFlMQl6ZCq/zFaTP+2GFP7Uy/PmMCJQo0YNlWNUokSJFHOF7t27p4baJDhq1KiROrd7926YC5sNkCRJbNiwYar7T8Yia9asqZLMpLswS4XdNu66YvWBXMW0XwdDbAqbnE/+3KN7N+D+8NwLb3/t6mU1ZOeaxu5WIiLKWpIzOu3dGsnqIHmaWR2kQYMGqeCna9euKrE7T548KrF60aJFKqdIZsLJZ+6MGTNUj5IMq40YMQLmwmYDpIMHD6okr8KFC6tjmYa4adMm9UZmqezaeO0LNf0C8NYi7LRwvbwTmN/2hddVvToPwya44PU2HdG6sicXUSQiMmMSBEkBYXNev9PLywt79uxRIzQy0y0iIkINp7Vs2VLNUJPPGQmWhg4dqobVypUrh8mTJ6tkcHNgsQHSzp07MWHCBBw5cgQBAQFYuXIl2rdvn+iaqVOnqmskq17qJvz666+oXbu2eu7WrVvxwZGQ/Zs3b2b560Dx+kBOLyBECnulMqIsz8t16eBQogGeuHnC5XGgGk5LSs1htAMqOlzFb5FfYsfSxRi5ow+6deigSgYQEZF5kmCoXqmsG/XYvn17snMyyyyphJPjZVq+1DBKTfPmzdWstNS+Xobnkk62l5pJWTEB32ILRUphKgl6JAhKidRnkCG0MWPGqLoNcm2LFi1U1rtZsXcAWsYlsCWNYJ4et/xOuy6d93drO0FF6knT2dSxnR3s2vyMqGo9EWPngJcdTuC7ex/h9u9vYuL85bgdYlwhSyIiImtisQGSDIn93//9n8obSslPP/2Efv36qeqePj4+mD59uqrAOXv27Piuv4Q9RrIv51IjXYNSOyHhZjI+7YC35gM5k4wbS8+RnJfnM3h/u7fmw07ul4BdzsLqPGr1gVP7yXAYchiPK3RWxSlfdTiCTy73ge/E9vhzzSY8kelxRERENsJih9ieR6YHytDbyJEj48/JeKd05cWVJ5ehNimBLoGRJGlLafRRo0ales/x48dj3DjjZpKliwRB5V/XZrVJ4rbkJsmwWnp7jlK4v12S+9slvX+eksjWZRZw5zM8WP81cvuvQSv7fYg5/BY2HW0Mx1dGonn9usxPIiIiq2eVAZIUm5IKn3EFq+LI8dmzZ9W+TDn88ccf1douMs1fMuyfN4NNgi0ZsosjPUhSDdSkJFhJRyK2ye+fvyxy91wAQ6Afbq8eA8+ArWgVuwPRm3Zh867X4NVuFCr5PCvgRUREZG2sMkAyVrt27dRmDBcXF7XZEjvPyvB8fwUirh5C4KrRKP5gL14L34CIxVuwM3dblO08Fp6Fn1VciomOxtkDG/HkwU245S6M8nVawCGVdXLMTmxM5vXeERGRxbGQT6+0yZcvnyqBfvt24hpDcuzp6albuyyVS/GXUPzDf3H/zE7cXzMapR8fReOHKxE+Yy0OF+4Cn86jcO7gRnjtG4eKuBf/dbc358WtemNQvUVP8w5iTv8DbPhcFeyMJ/lakjyf0fwvIiKySBabpP08zs7OqvDj1q1b48/JMJoc16tXT9e2WbI8FRqj9Gfbcbn13zjnVAGudlGodWsBHH6piGp7hyK/4VlwJOS46t6hOLpxnmmCmEmVgHltgOV9tUc5lvMZve+SHomDIyFlF+R8Ru9PREQWyWIDJFnj5dixY2oTsmqv7EslTiH5QlLBc968eWrF34EDB6rSADKrjTKmZO3WKDtyLw41mIGz8IYLotU6b0nrLMUdF9o3Tg2/6R7ESN2M6EjgyUMgNBC4ewFYNzyV+lNPz20YofVcERGRTbHYIbbDhw+rBOs4cQnUPXv2xNy5c9GlSxfcuXNHrRIshSKrVauGDRs2JEvcpvSxs7fHS692wTEXN+C/7qleJ0GSJ+4h5ltPwNkdcHTRNgeXVPadAUdXwPHpo70TcPTP5wcxK98HTq0CosOBqMfPHqPk8QkQ/UR7lHOyBIvRDEDITW1YLzOT54mIbMSVK1fg7e2No0ePqs9lc2axAZKUIn9RJc3BgwerjTJPdEigUdc5xEYB4Q8zpxES+JxanravsbPXgq+YiBdfGypVzomIzIwZTS7p1asXHj58iFWrVsFaWGyAROZBZqsZ43zDX1C2WgOtd0eGueRRgpP4/aeP0REJ9iOBgGPA+Q0v/gZV3gaK1QWcsgFObs82x7h912fPyTkHJ+DKbi2X6UW2fK1dX+ENKahl1OslIspUnFyS6RggUYbIVH6ZrSYJ2Smt9RZrAG7b5UXJl98BnJzS/g38dxkXIFV/N+3DYC9cB0/YASHXgaW9gIKVtUWDy7VSS7QQEekiLi8z6d+tuLxMU6zAkIply5aposkXL15Uq1NUr15dbZLvK+IKCW/btk2N9MjC8O+//77KBZYFab/88ktYCgZIlCFS50im8uffO1QFQwmDJDkWYyO7w2HJCUzoVBXuLo7ms5hv3Dp46g+NXZL7P30hHaYDD64A+6YCt/2ARV0BrxpA0y+B0q8wUCKijJN0EUkVMHZY7d/PnpOXaaf1LJVsYtxwm/SsG/l3LCAgAF27dsUPP/yglvkKDQ3Frl270KNHDzVBSgooz5kzR12bJ08eNZmqTZs2ePXVV7FgwQI1merDDz+EpWCARBkmdY6Oyvp2+8ahYII6SEF2ebG1+DD8d7EkovwCcTEoDDO610KJfO6mDWIysphv3Dp4KXZVf/fsX2G1+wN7fwUO/A7c8gUWdgSK1gWafQl4N07f9yYiEhIcfZv6WqBpI5NLbgHfGbnSwxe3tAk0RgZI0dHRePPNN1G8eHF1rnLlyurRzc1NrVmasNagTJiSEjt//PEHXF1dUbFiRdy4cUPNKrcEDJDIZEFSzCvv4FSSStrvODqi/NX7GLDAF+dvh6HdlN34pWt1NC1XwPRBTGaug5ctD9B8DFD3A2DPJODQLOD6fmBeWy1AavoVUKxOxtpBRGTGqlatildeeUUFRS1atMBrr72GTp06IXfu3CleL8NqVapUUcFRHEuqRcgAiUw63FaxwevJztcsngdrhzTEwAVH4HvtIfrMPYRPXiuHD5qUMn7h28xezNfYdeqy5wdafAPUGwzs/gk4PAfw3wn4vwaUflXLUSpcwzRtIiLbIMNc0pNjDPkbuLDTi697Z5lxqQfyvY3k4OCAzZs3Y+/evdi0aRN+/fVXlVN04MABWCNOyaEsUTCnK/7uXxddaxdTw+0TNp7DBwt98SgiOu1BTOVO2qOea6XlLAS0ngAMPQrU6AnYOQAXNwMzmwJ/dwMCTybPG5CEc79l2iOLTxJRHPmHogxzGbOVaqb1nselGCS/GZCzsHadMfdLYx6lnZ0dGjRooBK1pZaRrFyxcuVK9SiLxCdUoUIFnDhxAuHh4fHn9u/fD0vBAImyjIujA8a/WRnfdqgMJwc7/HsyEB1+24Mrdx/BYuUqCrSbDAw5DFTtqtVXOrcOmN5Am/l251zmLZNCRLYnLi9TSRrcmCAv8zkOHDiAb7/9VhVqlqTsFStWqILMEgiVKFFCBUPnzp3D3bt3ERUVhW7duqmAql+/fjh9+jTWr1+PiRMnwlIwQKIs161OMSzqXw8FcrjE5yVtOxcEi5anpDbj7YMDQMU3tXOnVgJT6wBLunOtNyIynbi8TOnJTkh6ljJxin/OnDmxc+dOtG7dGmXLlsVXX32FH3/8Ea1atVJBULly5VCrVi3kz58fe/bsQfbs2bFmzRr4+fmpUgAyHPf993HBnfmzM7yoHDWlSKYzenh4IDg4WP1PQ2l3OyQ8Pi9JennTnJdkzm6fAv77RutNStXTEgUf+ek7XEhEWUqGnGTKuyy5kTCB2ZIraVvSz9jYz2/2IJGueUnSkyQ9SnF5SQMX+CIsLXlJ5qpgRaDuQOPXeiMiSitzysu0QgyQSFfOjvYqJ0lykyQvacOpQHSYugf+lpyXFEf+VWfK64iIKMswQCKzILPb4vKSLgRZSV6SdHkb49x64PH9zG4NERGlAQMkMhs1i+dW9ZLkMTQ8WtVLmvLfBcSlycXEGrDv0j2sPnZTPcqxWYtbJiXV6bhPnVwOTKqs5Sw9eZhVrSMioudgknY6MUk780RGx2LcmlNYeOCaOm5Z0RMtKnnihw1nERD8rJ5GIQ9XjGnrg5aVkszkMMtFJZHyMikNPwYubgECT2jHrh5AvSFA3QGAS44sby4RZV0CsUyNlyU6yPSePHmCK1euZChJmwFSOjFAynyLDl7D6NWnEBkTm+Lzcf0y096tYf5BUrJlUgo/WyYlNhY4uxbY9i1w54z2vFseoMGHQO1+Rq+TRESWQWoEXbx4EV5eXupzhEzv3r17CAoKUuUIpAJ4QgyQMhkDpKxx6Mp9dPl9H1IbTZMgydPDFbs/bwYHezMuD2DMdFy5RmonbR8P3LuonXMvoPUy1eoDOGVgOjARmQ352JVCixIoSZBkb89sF1P+bB8/fqyCo1y5cqFQoeT/eGaAlMkYIGUNyTXqOvPFpen/7lcX9UrlhVWIiQb8lgDbvwMeXtXO5fACGg8HqvcAHJ31biERZVBkZKQaZpPV7sn0JDjy9PRMsa6esZ/fXKyWzFpQaLhJr7MIDo5AtW5A5c7AsYXAjglAyA1g3XBg9y/Ay59qy5o4OD37GhaMI7IosnZZmTJlVKBEpuXk5JRsWC09GCCRWSuQw9Wk11kUCYBq9tKCoSPzgF0/AsHXgH+GALt+ApqM0IKos+tSyHHy0tZryqQlB4go42RoLUOVtClTcYgtnTjEljVkKn/D7/9DYHB4ojlgCRWyhBwkU4h6Ahz6A9j9M/D4rnYuRyEgNCCFi5/+LDJxXSYiIkvEpUbIKkjQI1P5RWrhT3nPHLD22EhxcgPqDwY+PA68MgZw8UglOBJPw8kNI7ThNyIiShMGSGT2ZAq/TOWX2WoJebhpOTjbzt3Bl6tOItbcC0eaikt2oNEw4M0ZL7iQa70REaUXc5DIYoKkV308cdD/vkrIlpyj2t55sNz3Bj5ffgJ/HbiGqOhYfNexivUPtcWJDDPuOq71RkSUZgyQyGJI4JN0Kv9btYrC2cEew5Ycw9IjNxAVE4uJnavC0cEGOkeNXevN2OuIiCieDXyKkLVrX70wfu1aA472dlh17BY+XHRMBUpWz5i13uydgGz5srJVRERWgQESWYXXqxTCb+/UgJODHdb5BWDQQl+1pptVkzpHMpVfSSVIio0CZjUDji6UErNZ2ToiIovGAImsxmsVPTGjey04O9pj0+nbGLDgCMKjrHwGl0zhl6n8OZOU05e13tpOBrwbA1GPgdUfACvfByJC9WopEZFFYR2kdGIdJPO168Id9Jt/GOFRsWhUJp8KmtycrbyqdGqVtOW8FJXc/i1giAXylAI6zwEKVdW7xUREumAdpBe4fv06mjRpAh8fH1SpUgVLly7Vu0lkIo3K5MecXrWRzdkBuy7cRZ+5h/A4MhpWTYIh70ZA5U7aY9wyI/IoS5P0Wqf1Kt2/BMxqDuyfziE3IqLnsNkepICAANy+fRvVqlVDYGAgatasifPnz8Pd3d2or2cPkvk7fOU+es05hLCIaLxUIjdm93oJOVwTrF9max7fB1YPAs6t147LtQbemApky6N3y4iIsgx7kF6gUKFCKjgSsuJvvnz5cP/+fb2bRSZUq0Qe/Nm3NnK4OuLQlQfo/sdBBD+Jgs2SQOjtv4BWPwAOzlqgNL0hC0kSEVlSgLRz5060bdsWXl5esLOzw6pVq5JdM3XqVJQoUUIt9lenTh0cPHgwXd/ryJEjiImJQdGiRU3QcjIn1Yvlxt/96iJXNiccu/4Q7846gIePbXj1bDs7oM77QN/NWj6SVNqe+zqwYwKXJCEisoQA6dGjR6hataoKglKyePFiDBs2DGPGjIGvr6+6tkWLFggKCoq/RnqIKlWqlGy7devZqufSa9SjRw/MmPGiZRvIUlUq7KGCpLzuzvC7GYy3Z+zHvbAI2DSvasD7O4AqXbTk7W3/B/zZHggN1LtlRERmwSJykKQHaeXKlWjfvn38OekxeumllzBlyhR1HBsbq3qAhgwZghEjRhh134iICLz66qvo168funfv/sJrZUs4hinfjzlIluPC7VB0m3UAd0IjUKZAdizsV0ctWWLzjv0FrBuulQOQopIdfgfKNNe7VUREmcKqc5AiIyPVsFjz5s/+iNvb26vjffv2GXUPiQt79eqFZs2avTA4EuPHj1c/0LiNw3GWp0zBHFjcvy48c7riQlAY3v59PwKDw/Vulv6qdQPe3wkUrAw8vgss7AhsGgVE2/BQJBHZPIsMkO7evatyhgoWTLzGlBzLjDRj7NmzRw3TSW6TDMXJ5ufnl+r1I0eOVNFm3CZlAsjylMyfHYvfr4vCudxw+e4jdJmxDzcfPkFMrAH7Lt3D6mM31aMc25R8ZYD3tgAv9dOO904G5rQE7vtrx5Kf5L8L8FumPTJfiYisnM0uVtuwYUM1LGcsFxcXtZHlK57XXQVJXWfux9V7j9F28m61EO6dBHlJhTxcMaatD1pWSlKh2po5uQKvT9Sqb/8zGLh5BPi9MVCjB3BqBRDyLHdPrQEny5xIJW8iIitkkT1IMiXfwcFB1TFKSI5lyj7RixTJnQ1L3q+HAjlccP9xZKLgSMjQ28AFvthwMgA2R4KeAbuBIrWBiBBg35TEwZEICQCW9ABO/6NXK4mIMpVFBkjOzs6qsOPWrVvjz0lvkBzXq1dP17aR5XhegnbcANu4Nadtb7hN5CoG9FwDOGdP5YKnP5MNIzjcRkRWyWyH2MLCwnDx4sX4Y39/fxw7dgx58uRBsWLF1BT/nj17olatWqhduzYmTZqkSgP07t1b13aT5Tjofx9BoalP95cQICA4XF1Xr1Re2Jwbh4DIsOdcYNDqKEmhSVnehIjIiphtgHT48GE0bdo0/lgCIiFB0dy5c9GlSxfcuXMHo0ePVonZkmS9YcOGZInbRKkJCg036XVWRxa+NeV1REQWxGwDJFlI9kUlmgYPHqw2ovQwtgaSzdZKyl7QtNcREVlzDtL69euxcePGZOfl3L///muqdhFlutreedRsNbvnXOPp4aqus0nF62uz1Z73E7JzABxtNIAkIquW5gBJqlRLDaKkpLfH2ArWROZApvbLVH48JwSQopI2y95Bm8r/vJ+QIUZby833z6xsGRGR+QVIFy5cgI+P9qGSUPny5RMlVRNZAqlzNO3dGqqnKCFZt83R3k4tcDv2n1MvHO616in/b80HciapB5WzsLYkSbnWQEyEVjdpzUdAtI2vcUdEtpuDJMtsXL58GSVKlEh0XoIjd3d3U7aNKMuCpFd9PJ/OagtXOUcyrLbhZCAG/+2LP/dfVQHUoKalYbNBUvnXtdlqkpAtOUcy/CY9TJXfAnb9CGz7BjgyBwj00wIqj8J6t5qIKGsXq33//ffVemeyeGypUqXig6OOHTuqxWNnzZoFW2DsYndk2ebu8cfYNafV/g+dquCtWlyDL0UXNgPL+wLhwYB7fqDTHE79JyLbWqz2hx9+UD1FMqTm7e2ttgoVKiBv3ryYOHFiRttNZFZ6NfDGwCbaPwRGrvDDf2c5pT1FZV4F+m8HClYCHt0B5r8B7JsqyYl6t4yIKGt6kIR8yebNm3H8+HG4ubmhSpUqaNy4MWwJe5Bsh/z/PnzpcazwvQlXJ3v83a8uqhfLrXezzFPkY2DNh4DfEu24Ukeg3a+AM4fficiyPr/TFSARAyRbExUTi/fmHcaO83eQO5sTlg+sj5L5U1uGw8bJn5SDM4CNXwCx0UABH6DLAiCv1hNHRGQ1AdLkyZPRv39/uLq6qv3nGTp0KGwBAyTb8ygiGl1n7seJG8EoktsNKwbWRwFbLgPwIpLUvaQn8CgIcPEA3pwBlGupd6uIyMaFmDJAkjwjWfpD8oxkP9Wb2dmpGW62gAGSbbobFoFO0/biyr3HqFAoJxa/Xxc5XZ30bpb5CgkAlvQAbhzUjl8eAbz8OWBvketkE5EV4BBbJmOAZLuu3XuMN6ftwd2wSNQvlRdzer8EF0cHvZtlvqIjgY0jgUNPZ7iWeU3rTXJjHhcRWdEstq+//hqPHz9Odv7JkyfqOSJrVyxvNsztXRvuzg7Ye+kePll6ArGx/HdGqhydgdd/BNpP05YlubAJmNEUCDypPR8bA/jvAvyWaY9yTESkszT3IDk4OCAgIAAFChRIdP7evXvqXErLkFgj9iDRrgt30HvOIUTHGtCngTdGtamghpnpOQKOA4vfBR5eAxzdgJq9gDOrgZBbz66R9d9kiRMpUElEZCk9SBJPpfQhIFP+8+Sx0UU9ySY1KpMfEztXVfuz9/hj5i7byL/LkEJVgf47gFLNgOgnwIFpiYOjhHlLp//Rq5VERMYvNZI7d24VGMlWtmzZREGS9BqFhYVhwIABmdVOIrPUvnphtTzJt+vPqk2WKZFz9BzZ8gBdFwM/eAORYSlcIJ3adsCGEdoSJ7KkCRGRuQZIkyZNUr1Hffr0wbhx41T3VBxnZ2e1Nlu9evUyq51EZqtfo5K4HRKBP3b745Olx5HH3RmNy+bXu1nm7fqBVIKjOAYg5KZWKoBLlhCROQdIPXv2VI8yzb9BgwZwdEzzOrdEVkl6U79sXQFBoRFYc/wWBi44gkX966FykWf/iKAkZNFbU15HRGRiac5BGj16NP766y81a42INPb2dpjYuYqa9v8oMga95x7E1XuP9G6W+cpe0LTXERHpHSBVr14dn3zyCTw9PdGvXz/s37/f1G0iskhSC+n37jVVAUmpkdRz9kFVWJJSULy+NltNco1S45pLu46IyBICJMlFunXrFubMmYOgoCC1SK2Pjw8mTpyI27fZHU62LYerE+b1fkktRSLVtvvMPaSWKKEkJPFapvIrqQRJ4Q+B3T9ra7sREWWxdNX7l/yjN998E6tXr8aNGzfQrVs3jBo1CkWLFkX79u3x33//mb6lRBZC1meb36e2WtRW1m0buNAX4VEx2HfpHlYfu6keY1hYUqtz9NZ8IGehxOdzFgYqPK2B9N//gA0jgdhYXZpIRLYrQ0uNHDx4UPUkLVq0SBVb6tWrF27evKlylD744APVq2StWCiSXuTotQfoNvMAnkTFwM3JHk+inn3IF/JwxZi2PmhZKUlwYIukcrbMVpOEbMk5kmE16WHa95u2RImo3Bl44zetKjcRkTmuxSbDan/++acKjC5cuIC2bdvivffeQ4sWLeJrI+3evRstW7ZUtZGsFQMkMsaEjWcxddulZOfjBpWmvVuDQdLznFgCrBoIxEYDpZtrPU7O7nq3iohs4PM7zXP1ixQpglKlSql6SNJjlD9/8novVapUwUsvvZT2VhNZERlGW+F7M8XnnpZCxLg1p/Gqjycc7LlESYqqvKUtaru4O3BxCzCvHfDOUq3YJBGROeUgbd26FWfOnMGnn36aYnAkJCLbtm2bKdpHZLEO+t9HQHB4qs9LkCTPy3X0HGVeBXr+o81qu3kYmN0SCL6hd6uIyMqlOUBq1IhVbYmMIUuQmPI6m1a0NtBnA5DDC7h7DvijBXDnvN6tIiIr5mhs7SNjVyn39fXNaJuIrIKsy2bK62xegQpA343Anx2AexeB2S2Ad5YBRWrq3TIistUASabuE1Ha1PbOo2arBQaHq+G0lMjzch0ZKVcxoM9GYGEn4NZRYF5boMufQOlX9G4ZEVmZDE3zt2WcxUbG2HAyAAMXaL2qKf2iveZTEDN61Mrydlm8iFBg8bvA5e2AvRPQYTpQuZPerSIiK/r8TlehSCIyjkzhl6n8nh6Jh9FyZXNSj5tO31bFIymNXHIA3ZYAFTsAsVHA8veAAzP0bhUR2XIPUkxMDH7++WcsWbIE165dQ2RkZKLn79+3rBk5jx8/RoUKFdC5c+c0FbZkDxKldcq/zFaThGzJOZJhtQkbz2H6jktwdbLHsgH1Uamwh97NtMwik/9+BhyapR2//DnQZCRgZM4kEdmekMzqQRo3bhx++ukndOnSRd182LBhatkRe3t7jB07Fpbmm2++Qd26dfVuBlk5qXNUr1RevFGtsHqU409blEOTcvkRHhWL/vMPc2Hb9JCK260nakGR2PE9sG64FjgREWVAmgOkhQsXYubMmRg+fLhak61r166YNWsWRo8ejf3798OSSCXws2fPolWrVno3hWyQBEm/vF0dJfO541ZwOD5Y4IvIaK45lmbSW9RkhBYoSfnNw38Ay/oA0Qw4iSgLA6TAwEBUrlxZ7WfPnl31Iok2bdpg3bp1MJWdO3eqZUy8vLxUiYFVq1Ylu2bq1KkoUaIEXF1dUadOHbU2XFp88sknGD9+vMnaTJRWHm5OKkk7h4sjDl65j6/XntK7SZardj+g02wtafv0KmBhZy2ZW3qT/HcBfsu0R/YuEZER0rXUSEBAAIoVK6aWHNm0aRNq1KiBQ4cOwcXFBaby6NEjVK1aVS1pIkN4SS1evFgN702fPl0FR5MmTVLrwZ07dw4FChRQ11SrVg3R0dHJvlbaLO0tW7as2vbu3fvC9kRERKgt4RgmkSmULpAdk96uhvfmH8aC/ddQoVBOvFOnuN7NskyV3tSWJln0DuC/A5jWEIgOB8ICn12T0wto+T3g007PlhKRtSVpjxgxQiU1ffHFFypIeffdd1UvjiRsf/zxx/juu+9M30g7O6xcuTJRPSYJimS9tylTpqjj2NhYFC1aFEOGDFFtfJGRI0diwYIFcHBwUIvqRkVFqWFDGSpMieRXSf5VUkzSJlOZuu2iStx2tLfD3/3r4qUSrI+UbjePaOu2Raa0YPbTBG5Z+JZBEpHNCTEySTvDdZD27duntjJlyqghscyQNECSmXPZsmXDsmXLEgVNPXv2xMOHD7F69eo03X/u3Lk4efLkc2expdSDJAEZAyQyFflVHPzXUazzC0C+7M74Z3BDeOVy07tZlkmG0X4qD4QFpXKBndaT9JGfluhNRDYjxMgAKc1DbEnVq1dPbVnp7t27qtxAwYIFE52XY0m6zgwyfGjKIUSilP4hMKFzFVy++whnAkLQ/8/Davq/qxM/wNPs6t7nBEfCAITc1K7z5vqSRGSiAElmf23btg1BQUFqaCuh1IaozFmvXr30bgKRks3ZETO618QbU/fg5M0QjFh+Aj93qWb0Woj0VNht015HRDYnzQGSTPEfOHAg8uXLB09Pz0R/uGU/KwIk+d6SO3T7duI/bnIsbSKyZEXzZMPUbjXw7h8HsOrYLfh45UT/xqX0bpZlyV7QtNcRkc1J8zT///u//1PFFWW6/7Fjx3D06NH4zddXW3Mqszk7O6NmzZrYunVr/DnpyZLjrB7uI8oMUkxyTFsftf/dv2ex4/wdvZtkWYrX13KM4hKyU5Itn3YdEZEpAqQHDx6oZTkym8wskwBMNuHv76/2ZbackCn+0ps1b948nDlzRvVqSWmA3r17Z3rbiLJC97rF0aVWUcQagCF/+cL/7iO9m2Q5JPFapvIrqQRJ4SHAld1Z2SoisuYASYIjqSOU2Q4fPozq1aurLS4gkv24ITxZ6kRmncmx1DuS4GnDhg3JEreJLJUMWX/dviJqFMuFkPBo9Jt/GKHhUXo3y3LIFH6Zyp+zUOLz0rPkWQWIjQT+egu4+Kwnmogo3dP8pfK0rMX2+uuvq4raTk7aquRxhg4dClvAxWopqwSFhKPdlD0IDAlH8woFMKN7LdjbM2k7TVP+1ay221rOkQyrxUYDS3oA5zcADi5AlwVA2df0bikRWXIdJG9v79RvZmeHy5cvwxYwQKKsdPz6Q3T+fZ9aq21os9IY9lo5vZtk+aIjgWW9gbNrAQdnrbepHNdlJLJ2IVlVKNJWMUCirLb8yA0MX3pc7U97pwZaVU4ydERpFxMFLO8LnF4N2DsCneawujaRlQsx8vM7zTlIRKSPjjWL4L2GWg+uBEpSTJIyyMEJ6DgbqNRRG3Zb2gs4uULvVhGRpRaKvHHjBv755x81o0yW/UhI8pOIKHOMaFUe526HYteFuyppW5YjyePurHezLJuDI9BhhtaDdGKx1qMkeUtVMn+2LhFZUYAktYbatWuHkiVLqmU9KlWqhCtXrqh1pGrUqJE5rSQixdHBHr92ra6Stq/df4zBf/lifp/a6jxlMEhqP00Lko4tBFb213qUqnXVu2VEpJM0/1UdOXIkPvnkE/j5+cHV1RXLly/H9evX8fLLL2dJfSQiW5crmzNm9awFd2cH7L10D9+sP4OYWAP2XbqH1cduqkc5pnTUTmo3BajREzDEAqsGAr5/6t0qItJJmpO0c+TIoWoOlSpVCrlz58bu3btRsWJFHD9+HG+88YbqTbIFTNImvW08FYj3/zyi9j3cnBD85FmNpEIerqoSd8tKTOROM1lf8t9PgUOztOM2PwO1+ujdKiIy9yRtd3f3+LyjQoUK4dKlS/HP3b17N73tJaI0alHRE22qaAFQwuBIBAaHY+ACX2w4GaBT6yyYvT3QeiJQZ6B2vPZj4OBMvVtFROaeg1S3bl3Va1ShQgW0bt0aw4cPV8NtK1asUM8RUdaQYbTDVx6k+Jx0C0spyXFrTuNVH084sLBk2sgi3C3Ha7lJe38F1n+ilQSo94HeLSMicw2QZJaarJMmxo0bp/YXL16MMmXKcAYbURY66H9fVddOjQRJAcHh6jpZ/JbSESS9+j/A3gnY/ROwcSQQGwU0+FDvlhGROQZIMnst4XDb9OnTTd0mIjJCUGi4Sa+jVIKkV0Zr9ZJ2fA9sHq31JDX+RO+WEVEm49xgIgtVIIerSa+j5wRJTb8Amn6pHf/3P2D7dwAXISCyaukqFElE+qvtnUfNVpOE7NQ+quV5uY5M4OXPtDpJW8cB28drPUnNvtJKAiRdDFdKBhCRRWOARGShJPFapvLLbDVJwU4pSPqidQUmaJtSo2HacNumr4BdE4E7Z4BbR4GQW8+uyekFtPyea7oRWTgOsRFZMKlzNO3dGvD0SDyMFhcSnbjxUJd2WbX6Q4CW32n7Z9clDo5ESACwpAdw+h9dmkdEOhWKTCjuS+1kjN7GsFAkmduUf5mtJgnZknP08HEkBi70Vc/N6lELzX0K6t1E6yJrtf3gDYQHp3KBndaT9JEfh9uIbKVQpJg/fz4qV64MNzc3tVWpUgV//smS/ER6kWE0mcr/RrXC6rFV5ULo08BbPTd86XHcfPhE7yZaF8k5SjU4EgYg5KZ2HRFZpDQHSFLraODAgapI5JIlS9TWsmVLDBgwAD///HPmtJKI0mxEq/KoWsRDVdmWRW2jYmL1bpL1kIRsU15HRJafpP3rr79i2rRp6NGjR/y5du3aqfXYxo4di48//tjUbSSidHB2tMeUbjXw+uRdOHrtISZsPKeStskEZLaaKa8jIsvvQQoICED9+vWTnZdz8hwRmY+iebJhQueqan/GzsvYeoY9GiYhU/klxyg+HT4FOQtr1xGRbQRIpUuXVsNqScUtN0JE5reobe8GJdQ+85FMRBKvZSq/kkqQVL4NE7SJbGmITdZf69KlC3bu3IkGDRqoc3v27MHWrVtTDJyISH8jW1WA79UHOH4jGEP+8sXi9+vByYFVPjJE6hy9NR/Y8Hniqf7O7kDkI+DQLMC7EVChrZ6tJKKsnOZ/5MgRlZB95swZdVyhQgUMHz4c1atXh63gNH+yNNfvP0brybsQGh6N9xuXxEjmI5luyn/CStpF6wJrPwSOLQQcnIFuS4BSTfVuJRGl8fM7Q3WQbBkDJLJEG04GYsCCI2p/dq9aaFaeScSZIiYaWNYLOLMGcMoG9FgNFK2td6uICJlYB8nBwQFBQUHJzt+7d089R0Tmq2UlT/Sqr+UjDVtyHLeYj5Q5HByBjn8ApZoBUY+BhZ2AQD+9W0VEaZDmACm1DqeIiAg4Ozun9XZElMVGti6PKkU88PBxFIb8fZT1kTKLowvQZYE25CZFJf/sANy9qHeriMjUSdqTJ0+OX1Zk1qxZyJ49e/xzMTExKmm7fPnyxt6OiHTi4uiAKV1r4PVfd+HI1QeYuOmcSuKmTCAJ290WA/PaaD1I898A+mwAchXVu2VE9AJG5yB5e2vLFly9ehVFihRJNJwmPUclSpTA119/jTp16sAWMAeJLN2GkwEYsEBbr435SJks7A4wpxVw7wKQp5QWJGUvoHeriGxSSGYlaTdt2hQrVqxA7ty5YcsYIJE1GPvPKczdewW5szlh3dBG8MrlpneTrFfwTWB2SyD4GlCwEtBrLeBm239HiawqSXvbtm1WExz5+/urgM/Hx0ctvvvo0SO9m0SU5flIlQt74AHzkTKfR2GgxyqtFMDtk8DCzkBEmN6tIqJU2HSluF69eqlhwdOnT2PHjh1wcXHRu0lEWZ6PNLVbDeRwcVT5SD9uOq93k6xb3lJA95WAay7gxiFgUTcgKlzvVhFRCmw2QDp16hScnJzQqFEjdZwnTx44Oqa5sDiRxSuWNxt+6FRF7U/fcQnbziYv40EmVLAi8O5ywMkd8N8BLOsDxETp3SoispQASWbFtW3bFl5eXmrm3KpVq5JdM3XqVJUc7urqqpLDDx48aPT9L1y4oGbiyfeoUaMGvv32WxO/AiLL0apyIfSsV1ztD1tyDAHBrI+UqYrUArotAhxcgHPrgNWDgFgObxKZE7MNkCQfqGrVqioISoksjjts2DCMGTMGvr6+6toWLVokKmJZrVo1VKpUKdl269YtREdHY9euXfjtt9+wb98+bN68WW2pkTpPktiVcCOyJl+8XgGVCufU8pH+Oopo5iNlLu/GwFvzAHtH4MRiYP0nUmhO71YRUVpmsZ04cQLGqlJF66o3JelBWrlyJdq3bx9/TnqMXnrpJUyZMkUdx8bGomjRohgyZAhGjBjxwntKUDR27Fhs3LhRHU+YMEE9fvrppyleL9fKQr1JcRYbWZOr9x6hzeTdCI2IxsAmpfB5S9Y2y3R+y4Dl70kZXqDhMKD5GL1bRGTVjJ3FZlTSjfTESJAisZQ8Po8UjcxskZGRasHckSNHxp+zt7dH8+bNVeBjDAmupLfpwYMH6gclQ3rvv/9+qtfL95Ieq4Q/YAnIiKxJ8bzu+L5TFXyw0BfTtl9Cbe88aFqO9XoyVeVOQEQosPYjYPdPgGtOoOHHereKyObZGzsd/vLly+px+fLlqmikDE0dPXpUbbJfqlQp9VxWuHv3rgrEChZMXNhOjgMDA426hyRkS95R48aNVa9XmTJl0KZNm1SvlxluEmkm3IisUevKhdDjaT7S8CXHmY+UFWr1Bl79WtvfMhY4NEvvFhHZPKN6kIoX1/5Yis6dO6tlR1q3bh1/TgIM6U0ZNWpUomEwc9eqVSu1EVFiX7SuAN9rD3DyZgiG/n0UC/rWge+1hwgKDUeBHK6qZ8nB/vm9yZRGDT7U1mzb9SOw7hPAOQdQtQsQGwNc3QuE3dZqKBWvD9hzYXCizJbmee1+fn7xy44kJOeknlBWyJcvn1rq5Pbt24nOy7Gnp2eWtIHImrk6afWRJB/p0JUHqPF/m/Eo4tnweSEPV4xp64OWlQrp2k6r02yUNtx2cAawaiAQdBrwWwKE3Hp2TU4voOX3gE87PVtKZPXSPIutQoUKGD9+vMoDiiP7ck6eywqy9lvNmjWxdevW+HOSpC3H9erVy5I2ENlCPtLbtbU8u4TBkQgMDsfABb5qPTcyIcnxlOCnalfAEAPsmZQ4OBIhAcCSHsDpf/RqJZFNSHMP0vTp01XtIFmwNm7Gmsxyk+TtNWvWmKxhYWFhuHjxYvyx5D8dO3ZMFXQsVqyYSpju2bMnatWqhdq1a2PSpEmqNEDv3r1N1gYiWxYTa8DaEykHQDL1VQbYxq05jVd9PDncZkr29kCbX4BTK4Ho8NR/+htGAOVf53AbkbkESBKMSML2woULcfbsWXWuS5cu6NatG9zd3U3WsMOHD6t10uLEzSCToGju3Lnqe965cwejR49Widky027Dhg3JEreJKH0O+t9HQHDqy2DIx7Q8L9fVK5U3S9tm9W4cTCU4imMAQm5quUne2moARGRa6VpbQwKh/v37IzM1adJElRV4nsGDB6uNiExPErJNeR2lgSRkm/I6IsqaStp//vknGjZsqJYBuXr1qjr3888/Y/Xq1em5HRGZIZmtZsrrKA1ktpopryOizA+Qpk2bpoa7ZHq8FFmMKwyZO3dulQdERNZBpvLLbLXUsovkvDwv15GJyVR+ma32vJ9+zsLadURkHgHSr7/+ipkzZ+LLL79UxRbjSLK0lAAgIusgidcylR+pfEzLALg8zwTtTCCJ1zKb7Xk//RbjmaBNZE4Bkswmq169eoqVpmUWGRFZD6lzNO3dGvD0SHkYzd0lXWmMZAypc/TWfCBnKrWmru3j4rZEmSjNf92kIKRMt09YXVvIDLKsqoNERFkbJMlUfpmtFldJe+2JW1h44Bo+WXocGz9qjFzZnPVupvUGSTKVP2El7dAAYEU/4MA0wKMwUH+I3q0kskppDpAk/2jQoEEIDw9Xs8wOHjyIv//+WxWKnDWL6wcRWSMZRks4lb9a0VzYd/keLt95hC9XnsSUbtVfuJA1pZMMoyWdyh8aCGweBWz6CshRSFvwlohMys7worn0KZAaSGPHjsWlS5fUscxmGzduHPr27QtbERISAg8PDwQHB3PhWrJJJ248xJu/7UV0rAE/vVUVb9YooneTbIf82d4wUutFsncCuq8AvBvr3Soiq/r8TlMOUnR0NObPn4/mzZvjwoULqtq1FGm8ceOGTQVHRARUKZILH79aVu2PXn0K1+8/1rtJtkN661p8C/i8AcRGAYveAW6f0rtVRFYlTQGSzFobMGCAGl4T2bJlQ4ECBTKrbURk5ga8XAq1iudGWEQ0hi05ppYnoSxckqTDDKBYfSAiBFjQCQi+oXeriGx3FpssNXL06NHMaQ0RWVxu0s9dqiG7iyMOXXmA33dqw+6URZxcga5/AfnLA6G3tCDpyUO9W0VkmwHSBx98gOHDh2PKlCnYt2+fWqg24UZEtqVonmzx9ZJ+2nQeJ28G690k2+KWG3hnmZasfeeMNtwWxeVfiLI8SdteunWT3sTOTs1ok8e4ytrWjknaRM/I7/8HC33x78lAlMrvjrVDGsHNmUUMs1TgSWBOK224rWIHoONsbRiOiNL1+e2YnkKRREQJyT+Ovu1QGUeuPsClO4/w3b9nMO6NSno3y7Z4VgK6LAAWdAROrQRyeAEtv9W7VUS2Nc2f2INElJKd5++gx+yDan9u75fQpBwncWS5E0uBFe9p+699A9QfrHeLiGyjBynO6dOnce3aNURGRiY6365du/TekogsXOOy+dGrfgnM3XsFny47oaps53Fnle0sVaWzlrC9eTSw6UttqZJKHfVuFZHFSXOAdPnyZXTo0EEtTBuXeyTiqujaSg4SEaVsRKvy2HPxLi4EhWHE8hP4vXtNVtnOavWHAsE3gYO/AysHAO4FklfjJqLnSnMG34cffqjWYwsKClJ1kE6dOoWdO3eiVq1a2L59e1pvR0RWxtXJAZPergYnBztsOn0bSw+zNk+Wk4C05XigQjsgJpKFJImyIkCSqf1ff/018uXLp2a0ydawYUO1FtvQoUPT0wYisjIVvTww/LVyan/cmlO4eu+R3k2yzTXc3pwJFKsHRAQ/LSR5U+9WEVlvgCRDaDly5FD7EiTdunVL7RcvXhznzp0zfQuJyCL1a1QSdbzz4FFkDD5efAzRMbF6N8k2C0m+/ReQr5yWl7SQhSSJMi1AqlSpEo4fP67269Spgx9++AF79uxRvUolS5ZM6+2IyIqrbP/4VlXkcHGE77WH+G07q2zrIlse4N3lQHZPIOi0NtwWHaF3q4isL0D66quvEBur/UtQgiKpi9SoUSOsX78ekydPzow2EpGFKpI7G/7XXquH9MvWCzh2nb0XushVFHh3GeCcA7i6W0vcfvp3nIgysQ7S/fv3kTt3bpuaqcI6SETGkT8xQxcdw5rjt+Cdzx3rhjZENud0VxihjLi8XctFio0C6g0GXv0auLoXCLsNZC8IFK+v5S4RWTFjP78zFCBdv35dPRYtWhS2hgESkfGCH0eh5S87ERAcjnfqFMM3HSrr3STbdWIJsKKftu/ioSVwx8kp1be/B3xYz46sl7Gf32keYouOjsaoUaPUzUuUKKE22Zeht6ioqIy2m4iskEc2J/zYuaraX3jgGraeua13k2xXlbe0TSQMjkRIALCkB3D6H12aRmRO0hwgDRkyBDNmzFDJ2UePHlWb7P/xxx+c5k9EqapfOh/6NfJW+58vP4G7YUwU1kVsDHBldypPPh1Q2DBCu47IhqV5iE16ixYtWoRWrVolOi9J2l27dlVdVraAQ2xEaRcRHYM3puzB2cBQNK9QADN71LKp3EWz4L8LmNfmxdf1XMvq22SVMm2IzcXFRQ2rJSXVtZ2dueYSEaXOxVGrsu3sYI8tZ4Lw90Etj5GykCRkm/I6IiuV5gBp8ODB+N///oeIiGfd47L/zTffqOeIiJ6nvGdOfNZSq7L9v7WncflOmN5Nsi0yW82U1xFZqTTPtZWco61bt6JIkSKoWlVLupTCkZGRkXjllVfw5ptvxl+7YsUK07aWiKxCnwbe2HYuCHsu3sNHi4/hsxblcO9RJArkcEVt7zyqyCRlEpnKL7PVJCE7LucoqZyFteuIbFiaA6RcuXKhY8eOic5Z6jT/n3/+GbNmzVJ1Wpo3b45ffvmF+RBEWcDe3g4TO1dFs4nbceJGMN7942D8c4U8XDGmrQ9aViqkaxutltQ5kqn8MlsNdikHSSUasB4S2TyTFIq0RHfu3EHdunVx6tQpODk5oXHjxpg4cSLq1atn1NczSZsoYzacDMCABb7Jzsf9E2XauzUYJGUmmcq/4XMgRFtPU3HNBYRLtXM7oMsCoIIRydxEFibTkrStidR0Cg8PV/WbZCtQoIDeTSKyCTGxBoxbczrF5+L+xSbPy3WUSaQY5EcntdlqHf/QHj+7DLwkRSQNWjHJAG3dTSJblOYA6d69exg0aBB8fHyQL18+5MmTJ9FmKjt37kTbtm3h5eWlhr1WrVqV7JqpU6eqGXWurq5q4dyDB591079I/vz58cknn6BYsWLqe8gQW6lSpUzWfiJK3UH/+6qqdmokLJLn5TrKRDKMJlP5K3fSHtXw23dAqWZA1GPgr7ef5ioR2Z405yB1794dFy9eRN++fVGwYMFMy9l59OiRSgLv06dPosTvOIsXL8awYcMwffp0FRxNmjQJLVq0wLlz5+J7gqpVq6Z6iZLatGkT3NzcsHbtWly5ckXtS10nCcpkqC0lMlMv4cw96aIjovQJCg036XVkQg6OQKc5wB+vAXfPAYu6Ar3WA87Z9G4ZkXkHSLt27cLu3bvjZ7BlFglYkhajTOinn35Cv3790Lt3b3UsgdK6deswe/ZsjBgxQp07duxYql+/dOlSlC5dOr7X6/XXX8f+/ftTDZDGjx+PcePGZfBVEZGQ2WqmvI5MzC0X0G0RMPMV4NZRYNUAoNNcya7Xu2VEWSbN/7eXL18eT548gZ6kpMCRI0fUsFgce3t7dbxv3z6j7iEz7/bu3atykGJiYrB9+3aUK6fVZknJyJEjVUJX3Ba3UC8RpZ1M5ZfZas/rf5bn5TrSSZ6SwNsLAXsn4PRqYPu3ereIyLwDpN9++w1ffvklduzYofKRZKgp4ZYV7t69q4IaGeJLSI4DAwONuofMYGvdujWqV6+OKlWqqPyjdu3aPbeCuGS7J9yIKH2kzpFM5RepBUlvv1SM9ZD0JrWQ2v6i7e+cAJxYoneLiMw3QJI6SBIINWvWTOX65M6dW21yXh4tiVT/PnPmjJrqP3nyZNZAIspCMoVfpvJ7eiQeRsvmrNXfWeZ7HY8jk+cQUhar/g7Q4CNtf/Vg4Lrxk2GIbCoH6Z133lF1g/76669MTdJ+Hpk95+DggNu3E68VJMeenp5Z3h4iSn+Q9KqPp5qtJgnZknPk45UTrX/Zhev3n+CHDecwtl1FvZtJr4wB7l0Ezq4FFnUD3tsK5C6ud6uIzCtAOnnypFpu5Hn5OplNFsWtWbOmWvKkffv26lxsbKw65npwRJZFhtHqlcqb6Nz3Havg3T8OYO7eK2hZyRN1SyZ+nrKYJGe/OQOY3RIIPAH8/TbQZyPgylQDsl5pHmKrVatWliQoh4WFqVlocTPR/P391f61a9fUsUzxnzlzJubNm6eGyQYOHKhKA8TNaiMiy9WwTD50rV1M7X++/ASH2syBszvQdRGQ3RMIOg0sfw+IjdG7VUTms9SITI8fO3YsPv30U1SuXFkNtyUkCc+mILPKmjZtmux8z549MXfuXLU/ZcoUTJgwQSVmS80jySOSmkhZgUuNEGWu0PAotPh5J24Fh6N3gxIY05ZDbWbh5hFgTmsgOhyoOwhoydltZFmM/fxOc4Ak0+mT3cTOTi34Ko8yu8wWMEAiynw7z99Bj9kHIamOi/vX47R/c3FqJbC0l7bfZhJQiz33ZH2f32nOQZKhLiKirNC4bH68/VJRLDp0HZ8tO45/P2wMt6ez3EhHFTsAdy8C2/4PWP+JVjOp5Mt6t4rIpNLcg0Qa9iARZY2Qp0NtsjZb34beGNVGq59EOpOPjhX9Ab8lgKsH8N5/QL7SereKyGSf3+mqG3/p0iUMGTJEVa6WbejQoeocEZGp5XR1wvg3K6v92Xv8cfgKF7A1CzLu2e5XoEhtIDwY+Ost4DHfG7IeaQ6QNm7cCB8fHxw8eFAlZMt24MABVKxYEZs3b86cVhKRTWtSrgDeqlVEdVp8uuwEwqNsI9fR7Dm5Am//BXgUA+5fApb0AGKi9G4VkT5DbLI0R4sWLfDdd98lOi8LxG7atAm+vr6wBRxiI8pawU+0obbAkHC819AbX3GozXzcPgX88RoQGQbU6AG0naz1MBHZ0hCb1Bzq27dvsvN9+vTB6dOn095SIiIjeLg9G2r7Y48/jlzlcI7ZKFgR6DQbsLMHfOcD+6bq3SKiDEtzgJQ/f/744o0JyTlZm42IKLM0LV8AnWo+HWpbyqE2s1K2BfDaN9r+pq+Acxu0QpL+uwC/ZdojC0uSBUnzNP9+/fqhf//+uHz5MurXr6/O7dmzB99//72qbk1ElJlGve6DXRfu4PLdR/hp83l80bqC3k2iOHUHAnfPAUfmAkt7Ai45gEd3nj2f0wto+T3g007PVhJlTg6SXD5p0iT8+OOPuHXrljrn5eWlKmvLbDY9Fq/VA3OQiPTz39nb6DP3MOztgKUD6qNm8dx6N4niSJL274215UiSefr58NZ8BklkfZW0EwoNDVWPOXLkgK1hgESkr2FLjmGF702UzO+O9UMbwdWJBSTNggyj/VwRCA1I5QI7rSfpIz/Anu8ZWVGStlTSvnDhQnxgFBccybkrV65kpM1EREYb06YiCuRwweU7j/DzlvN6N4fiXN37nOBIGICQm9p1RGYszQFSr169sHdv8v+xpRaSPEdElBU8sjnh2w7arLaZOy/j6LUHejeJRNht015HZCkB0tGjR9GgQYNk5+vWrZvi7DYioszS3KcgOlQvjFgWkDQf2Qua9joiSwmQJAk7LvcoIRnLi4nhHyciylpj2vogX3YXXAwKwy9bteF/0lHx+lqOUVxCdoo5SIW164isKUBq3Lgxxo8fnygYkn0517BhQ1O3j4jouXJlc8a3HSqp/d93XMLx6w/1bpJtk8RrmcqvpBQkGYDmY5mgTWYvzbPYpFq2BEm5cuVCo0aN1Lldu3aprPD//vsPlSppf6isHWexEZmXDxcdxepjt1CmQHasHdoQLo78ANbV6X+ADZ8DIVo5GEUqbRtigQrttKn+NlIWhmxomr/UP5oyZQqOHz8ONzc3tWDt4MGDkSdPHtgKBkhE5uXBo0i8+vMO3A2LxKCmpfBpi/J6N4lkyr/MVpOEbMk5sncE5rUFYqOAZqOAxp/o3UKyQSFZUQfJljFAIjI/G04GYsCCI3Cwt8PKD+qjSpFcejeJkjoyD1gzVBt+67ZYW6KEyBrqIBERmauWlTzRtqoXYmINaq22iGhOHDE7NXsCtWTBcwOw/D3g7kW9W0SUIgZIRGRVxrWriLzuzjh3OxRT/uOHr1lq+R1QrB4QEQIs6gaEh+jdIqJkGCARkVXJ4+6M/2uvTRb5bbs2q23fpXtYfeymepTeJdKZozPQeR6Qw0tb3HblACA2Vu9WEaU/B0kuvX79OgoUKABXV1fYMuYgEZm3QX/5Yt2JADja2yE6QVBUyMNV1U5qWamQru0jADePALNbATERQJORQJMRereIbEBIZuQgSYBUunRpFSQREZmzJmXzq8eEwZEIDA7HwAW+2HDyeeuFUZYoXBNo87O2v308cHa93i0iSl+AZG9vjzJlyuDevXtp+TIioiwlw2g/bU55Adu4cGncmtMcbjMH1d8Bar+v7a/oD9w5p3eLiNKXg/Tdd9/h008/xcmTJ9P6pUREWeKg/30EBIen+ryERfK8XEdmoMU3QPGGQGQo8HdX4AmroZMFBkg9evTAwYMHUbVqVVUkUopDJtyIiPQWFBpu0usokzk4AZ3nAjmLAPcvaT1JTNomnTmm9QsmTZqUOS0hIjKRAjlcTXodZYHs+YG3FwCzWwIXNgLbvwWafaV3q8iGpTlA6tmzZ+a0hIjIRGp751Gz1SQhO6UsI1kBzNPDVV1HZsSrOtB2MrCyP7BzAuBZGfB5Q+9WkY1Kc4AkYmJisGrVKpw5c0YdV6xYEe3atYODAxeHJCL9yVIjMpVfZqtJMJQ0SJJjeV6uIzNTtQsQcBzYPxVYORDIWwYo6KN3q8gGpTkH6eLFi6hQoYLKRVqxYoXa3n33XRUkXbp0CeaoQ4cOyJ07Nzp16pTsubVr16JcuXJqdt6sWbN0aR8RmZ7UOZr2bg3VU5RUNmcH1CrB3iOz9erXgHdjIOqRVmn7yQO9W0Q2KM2L1bZu3VrVQ1q4cGF8UrZM+5cgScoArFu3DuZm+/btCA0Nxbx587Bs2bL489HR0fDx8cG2bdtU0aiaNWti7969yJs37wvvyUKRRJZBpvLLbDVJyJYlSL5ZdwZnAkPRvpoXJr1dXe/mUWoe3QNmNgEeXgNKvQK8sxSw5ygFmfFitTt27MAPP/yQaMaaBBQy/V+eM0dNmjRBjhw5kp2X2XjS81W4cGFkz54drVq1wqZNm3RpIxFlDhlGq1cqL96oVhgNy+THdx2rQEbWVh27hR3n7+jdPEqNe17g7b8ARzfg0lZg69d6t4hsTJoDJBcXF9Ubk1RYWBicnZ3T3ICdO3eibdu28PLygp2dncptSmrq1KkoUaKEWt6kTp06KrAxhVu3bqngKI7s37x50yT3JiLzVLVoLvSq7632v1zph8eR0Xo3iVIjSdpvTNH290wCTi7Xu0VkQ9IcILVp0wb9+/fHgQMH1FCbbPv378eAAQNUonZaPXr0SNVUkiAoJYsXL8awYcMwZswY+Pr6qmtbtGiBoKCg+GuqVauGSpUqJdskACIiSmr4a2VROJcbbjx4gl+2XNC7OfQ8lTsBDT7U9lcPBgL99G4R2Yg0z2KbPHmymupfr149ODk5xefySHD0yy+/pLkBMqwlW2p++ukn9OvXD71791bH06dPV3lOs2fPxogR2sKGx44dQ3pIr1XCHiPZr127dorXRkREqC3hGCYRWSZ3F0f8r31F9Jl7GLN2+6NtVS9UKuyhd7MoNa+M0QKjS/9pSdv9dwDZmGRPmSvNi9VKYLBo0SKcP39eJTzLdu7cOaxcuVIlPZlSZGQkjhw5gubNmz9rsL29Ot63b1+G7y/BkCyZIoGRDBH++++/qncqJePHj1evL24rWrRohr8/EemnWfmCaFOlkEriHrnCD9ExrNxstiQ5u+MfQO4SWtL20l5ADIdGycwCpNKlS+PGjRvqUXKHZJP9zHD37l1Vc6lgwYKJzstxYGCg0feRgKpz585Yv349ihQpEh9cOTo64scff0TTpk3VMN3w4cNTncE2cuRIlfEet12/fj2Dr46I9Da6rQ9yujrC72Yw5u69ondz6Hmkx0iStp3cAf8dwJYxQGwM4L8L8FumPcoxkR5DbNJ7I/WCZFq/PFqKLVu2pPqcDA0akzslyemyEZH1kKVGvmhdASNW+OHHTefRoqIniubJpnezKDUFKwIdpgFLegD7pgDHFiaukZTTC2j5PeCT9nxYogwnact0/k8//VQNTWW2fPnyqerct2/fTnRejj09PTP9+xOR9XurVlG15MiTqBiMWn1S9ZSTGZOlRyo8DYCSFpAMCdCCp9P/6NI0svEASSpoyzR7mU3m5uam6iEl3ExJygZI8catW7fGn4uNjVXHkiRORJRR9vZ2+LZDZTg72GP7uTtYeyJA7ybR88gw2s3DqTz5NLjdMILDbZT1s9gmTZoEU5LkaFm+JI6/v7+alSbBVrFixdQUf5k1V6tWLZVULd9fSgPEzWojIsqo0gWyY1DT0vh5y3mMW3MKjcrkQ65saa/rRlng6l4g5HklXAxAyE3tOu9GWdgwsukAKSoqSlXLHjVqFLy9tUJrGXX48GGVJB1HAiIhQdHcuXPRpUsX3LlzB6NHj1aJ2ZJMvWHDhmSJ20REGTGwSSmsPXELF4LCMH79WXzfqYreTaKUhN027XVEplqLTaa4Sw+PqQIkS8W12Iisz+Er99FpujbL9e9+ddUSJWRmZLbavDYvvq7nWvYgUdauxda+ffsUlwMhIrJ0tUrkwTt1isUvQxIexTwWs1O8vjZbDXapXGAH5CysXUeUlTlIMr3/66+/xp49e1QCtbu7e6Lnhw4dmpH2EBHp6rOW5bH59G1cvvsIv227iGGvldO7SZS0aKRM5ZfZaipISjoIYgBe/Vq7jigrh9ieN7Qmi81evnwZtoBDbETW61+/AAxc6AsnBzusG9oIZQvm0LtJlJRM5d/weeKEbTt7wBALVO/+bJFbonR+fqc5QCINAyQi6yV/FvvNP4ItZ26jRrFcWDagvioHQGZGpvLLbDVJyM5eEIiOABZ20nqR2k0BanTXu4VkSzlICddJkzXYZKFaIiJrIr3hspitu7MDfK89xMKD1/RuEqVEhtEkEbtyJ+2xTHOg2Zfac+s/AQJO6N1CsmBpDpAeP36Mvn37Ilu2bKhYsSKuXdP+cAwZMkRV2SYisgaFPNxUPpL44d+zCAwO17tJZIyGw4EyLYDocGBJd+DJQ71bRLYSIMmircePH8f27dvh6uqaaEHYxYsXm7p9RES6ebducVQrmguhEdEY+88pvZtDxrC3BzpMB3IVAx5cAVYNlCUY9G4V2UKAJFP8p0yZgoYNG6pu6DjSm3Tp0iVTt4+ISDcO9nYY/2ZlONrbYcOpQGw8Fah3k8gY2fIAb80HHJyBc+uBvb/o3SKyhQBJqloXKFAg2XlZ/iNhwEREZA0qFMqJ/o1Lqv3Rq08iNDxK7yaRMbyqA61+0Pa3fq0VmCTKzABJ1kRbt25d/HFcUDRr1iwuIEtEVmnoK2VQIm823A6JwISN5/RuDhmrZi+galdt6v+yPkAIFyKmTCwU+e2336JVq1Y4ffq0msH2yy+/qP29e/eqddqIiKyNq5MDvu1QGd1mHcCf+6/ijWqFUbN4br2bRS8i/4B//SdtNlvQKWBZb6DnGsDBSe+WkTX2IEnukazFJsFR5cqVsWnTJjXktm/fPlVZm4jIGtUvnQ+dahaBVI77YoUfIqOZ+GsRnLMBXf4EXHIC1/YBW8bq3SKyECwUmU4sFElkex48isQrP+3A/UeR+LRFOQxqWlrvJlFaKm/LtH/x1p+ATzu9W0TWUihSeowiIiISnbt9+zbGjRuHzz77DLt3785Yi4mIzFxud2eMbuOj9n/ZegGX74Tp3SQylgRE9Ydo+6s+AO5e1LtFZOaMDpD69euXaCHa0NBQvPTSS5g6dSo2btyIpk2bYv369ZnVTiIis/BGNS80LptfDbF9sdJPLUtCFuKVsUCx+kBkqNabFPlI7xaRNQRIe/bsQceOHeOP58+fj5iYGFy4cEEVjhw2bBgmTJiQWe0kIjILMnP3m/aV4Opkj/2X72Px4evYd+keVh+7qR5jYhkwmS0HR6DzHMC9ABB0Glg7TBbe07tVZOk5SO7u7jh58iS8vb3V8ZtvvokiRYpg8uTJ6lhmsjVp0gRBQUGwBcxBIrJtM3Zewrfrz0IKnST8I1rIwxVj2vqgZaVCOraOnuvKbmBeO8AQA7T5GajVR+8WkSXnIMmyIk+ePIk/3r9/P+rUqZPo+bAwjscTkW0onMtNPSb9F6as2TZwgS82nGTNHbNVoiHwymht/9/PgZu+ereIzJDRAVK1atXw559/qv1du3apBO1mzZrFPy/LjHh5eWVOK4mIzIgMo/3fujMpPhcXMI1bc5rDbeaswYdAudeBmEhgSU/g8X29W0SWGiCNHj1aFYUsVaoUWrRogV69eqFQoWddyCtXrkSDBg0yq51ERGbjoP99BASHp/q8hEXyvFxHZlxEsv1vQG5vIPgasKI/F7Wl9FXSfvnll3HkyBFVGNLT0xOdO3dO1sNUu3ZtY29HRGSxgkLDTXod6cQtl1ZEclZz4OJmYNePwMuf6t0qssSlRipUqKC2lPTv399UbSIiMmsFcria9DrSkWdl4PUfgdWDgG3fAEVqAqWepY+Q7TI6QNq5c6dR1zVu3Dgj7SEiMnu1vfOo2WqSkJ1SlpHMbPP0cFXXkQWo/i5w/QDgOx9Y/h7w/k7Ao4jerSJLCZBkCr/U/xCpVQaQ56U2EhGRNXOwt1NT+WW2WtJp/nh6LM/LdWQhWk0Abh0DAk8AS3sBvdYDjs56t4osIUk7d+7cKFq0KEaNGqWKQz548CDZdv8+ExKJyDZInaNp79ZQPUVJ5XV3RpNyBXRpF6WTkyvw1nzA1QO4cQjY+AXgvwvwW6Y9xvIf/7bG6EKRkZGRaqba7Nmz1TT/1q1bo2/fvmjZsmV8z5ItYaFIIhIylV9mq0lCtoebE0YsP4HAkAgMfaUMhr1aVu/mUVqd+xf4++3k53N6AS2/5yK3VsDkhSKdnZ3RpUsXte7a2bNnUaVKFQwePFj1Kn355ZdqMVsiIlsjw2j1SuXFG9UKq16j0W0rqvPTd1zC1Xtc68vixESlfD4kAFjSAzj9T1a3iHRidICUULFixVRdpC1btqBs2bL47rvvVERGRGTrWlXyRKMy+dRitmP/OcXFbC2JDKNt+DyVJ5++jxtGcLjNRqQ5QIqIiMBff/2F5s2bo1KlSsiXLx/WrVuHPHk4W4OISFIOxrarCCcHO2w7dwdbztjG+pRW4epeIOTWcy4wACE3tevI6hkdIB08eBADBw5URSInTJiAdu3a4fr161iyZInKQyIiIk2p/NnxXqOSan/cmlMIj2KPg0UIu23a68g2pvnXrVtXDa0NHToUNWvWVOd2796d7DoJnMxNhw4dsH37drzyyitYtmxZ/HkJ8Lp3746goCA4OjqqGXpJK4QTEaXHkGalseroTdx48AS/bb/EhG1LkL2gaa8j25jFZm//4s4mc62DJMFRaGgo5s2blyhACggIUIvuyjIpgYGBKvA7f/483N3dX3hPzmIjohdZ7xeADxb6wtnRHps/bozieV/8t4V0JLlFkyppCdkplgB9Opvto5OAvUNWt47MdRZbbGzsCzdzDI7iilzmyJEj2XlZbFeCIyFDh5JPxVpORGQqTNi2MBL0yFR+xS71pUkYHNmEdM1iS82TJ0/S/DWyhEnbtm3h5eWleqBWrVqV7JqpU6eiRIkScHV1RZ06dVQ+lKnJQrwS4EnZAiIiU2DCtgWSOkdSMDJnocTns+XVHs9v1DayeiYJkGRm248//ghvb+80f+2jR49QtWpVFQSlZPHixRg2bBjGjBkDX19fdW2LFi1U3lAc6QWSGXVJt1u3njcb4RnpNerRowdmzJjx3Nco3XIJNyKiF2HCtoUGSTKM1nMt0PEP7fGTC0CdAdrzqwY+HYYjq2YwUnh4uGHEiBGGmjVrGurVq2dYuXKlOj979mxDoUKFDEWKFDF89913hoyQ5sTdN07t2rUNgwYNij+OiYkxeHl5GcaPH5+me2/bts3QsWPHFF9Xo0aNDPPnz3/u148ZM0a1L+kWHBycpnYQke15FBFlqPvtFkPxz9caftx0Tu/mUHpFhRsM0xoYDGNyGgxzXjcYYqL1bhGlg3xuG/P5bXQPkhSGnDZtmhrqunLliprt1b9/f/z888/46aef1LnPP0+twFb6yPImMvQlNZcSJovL8b59+zJ8f4nJevXqhWbNmqnZbM8zcuRIldAVt8kMOCIiY2RzdsSoNj5qnxW2LZijC9BpDuDkDlzZBez+Se8WUSYyOkBaunQp5s+fr2aBbdq0SeXryPIix48fx9tvvw0HB9Mnrd29e1d9n4IFE0+plGOZdWYsCagkoFu/fj2KFCkSH1zt2bNHDeFJ3pMM08nm5+eX4j1cXFxUtnvCjYjIWEzYthL5ygCtJ2j728YD1w7o3SLSuw7SjRs34usfSX6PBAwff/yxRSxUK0uipKRhw4Zq9h0RUVYlbLectDM+YftVH9bTsUjVugGXtwF+S4HlfYEBuwC33Hq3ivTqQZKeHFmwNo4UVsyePTsyk0y7l54pqVWUkBzLtHwiIkvChG0rIR0Dr/8E5PYGgq8D/wyVnA29W0V69SDF5etIz5EIDw/HgAEDkhVVXLFihckaJwGZ9Fpt3boV7du3V+ekx0eOBw8ebLLvQ0SUlRW2V7PCtuVzzQl0+gP44zXgzD/AkTlArT56t4r06EHq2bMnChQooKpPyvbuu++q2kVxx3FbWoWFheHYsWNqE/7+/mr/2rVr6lim+M+cOVNVwT5z5oxaD05KA/Tu3TvN34uIyBwStr9iwrZ1KFwTeGWMtr9hJHD7tN4tIj2WGsnMZUCaNm2aYkA2d+5ctT9lyhS1QK4kZksi9eTJk1XBSD1xqREiSi/5s9tj9kHsunAXTcvlx+xeL1lEPielQPJYF3YCLm0F8lcA+v0HOGfTu1Vkgs9v3QMkS8UAiYgy4tKdMJWwHRVjwMwetZiwbcnCgoBpDYBHQUDN3kDbSXq3iLJyLTYiIjIdJmxbkewFgDd/1/YlF+n0ar1bRCbAAImISMeEbS8P1/iEbbJgpZoBDT7S9v8ZAjzU8mjJcjFAIiLSCRO2rUyzr4DCtYDwYGD5e0BMtN4togxggEREpCNW2LYiDk7a1H+XnMD1A8D28Xq3iDKAARIRkRlU2HZysIuvsE0WLHcJoO0v2v6uH4HLO/RuEaUTAyQiIp0xYdvKVHoTqNFDCjoAK/oDj+7q3SJKBwZIRERmgAnbVqbl90C+ckBYILDqAy5FYoEYIBERmWHC9pW7TNi2aFIssvMcwMEFuLAR2D9N7xZRGjFAIiIyw4RtGWpjwraFK1gRaPGNtr95NHBLW1KLLAMDJCIiM8GEbSv00ntA+TZAbBSwrA8QEap3i8hIDJCIiMw4YftRRDT2XbqH1cduqseYWPYqWRRZY6/dr0DOIsD9S8D6T/VuERmJa7GlE9diI6LM8jgyGs1/3IFbweHI7uKIsIhnBQcLebhiTFsftKxUSNc2Uhpd3QvMfR0wxAIdZgBVu+jdIpsVwrXYiIgsN2H79SpaAJQwOBKBweEYuMAXG04G6NQ6Spfi9YGXR2j764YBd84D/rsAv2XaYyxLO5gbR70bQEREickw2poTKQdA0uVvp4bfTuNVH0842MsRWYTGnwD+O4Gru4Fp9bW8pDg5vbTSAD7t9GwhJcAeJCIiM3PQ/77qKUqNBEkBweHqOrIg9g5A5c7afsLgSIQEAEt6AKf/0aVplBwDJCIiMxMUGm7S68hMyDDazu9TefJpOvCGERxuMxMMkIiIzEyBHK4mvY7MKFE75NZzLjAAITe160h3DJCIiMxMbe88arZaatlFcl6el+vIgoTdNu11lKkYIBERmRlJvJap/MIulcEYeZ4J2hYme0HTXkeZigESEZEZkjpH096tAU+P5MNoEhbldHXSpV2Uwan+Mlst1b5BeWMLa9eR7lgoMp1YKJKIsmrKv8xWk4TsAjlcsOTwdaw8egt53J3xz+AGKJI7m95NpLSQWWoyW01J4eO34x9A5U5Z3SqbEsJCkURElk+G0eqVyos3qhVGvVL5MP7NKqhUOCfuP4rEgAVHEB7FGU8WReocvTUfyJmkErrd04/ja/t0aRYlxx6kdGIPEhHp5caDx2j76248eByFjjWKYGLnKmqhW7IgMpVfZqtJQrbkHEWHAwuf9hx1XQSUa6V3C60We5CIiKyUDKtN7VYDkqO93PcG/tx/Ve8mUXqKRno30obT5LHMq0C9wdpzqwcBoYF6t9DmMUAiIrJA9Uvnw4hW5dX+12tO49AVVtW2eK+MBgpWBh7fA1YNBGJj9W6RTWOARERkofo1Kok2VQohOtagFrB93vIkZAEcXYCOswBHV+DSf8CB6Xq3yKYxQCIislCSd/RDpyoo75kDd8MiMHDhEUREM2nbohUoD7T4RtvfMgYI9NO7RTaLARIRkQXL5uyI37vXRE5XRxy99hDj1pzWu0mUUbX6AmVbATGRwPL3gKgnerfIJjFAIiKycMXzuuOXrtUhE9n+OnANiw9d07tJlBHyRr4xRZvdducssGmU3i2ySTYRIHXo0AG5c+dGp04pF996/Pgxihcvjk8++STL20ZEZApNyxXAsOZl1f6oVadw7PpDvZtEGeGeD2g/Tds/NBM4t0HvFtkcmwiQPvzwQ8yfPz/V57/55hvUrVs3S9tERGRqg5qWxms+BREZE4sBfx7BndAIvZtEGVH6FaDuIG1/9QdAKBexzUo2ESA1adIEOXLkSPG5Cxcu4OzZs2jVikW5iMiy2dvb4ce3qqJUfncEhoRj0F++iIrhVHGL1nwMULASp/7bYoC0c+dOtG3bFl5eXmpGxqpVq5JdM3XqVJQoUQKurq6oU6cODh48aLLvL8Nq48ePN9n9iIj0lMPVCb93r4XsLo5qDbdv15/Ru0mU4an/fzyd+r8VOPi73i2yGboHSI8ePULVqlVVEJSSxYsXY9iwYRgzZgx8fX3VtS1atEBQUFD8NdWqVUOlSpWSbbdu3Xru9169ejXKli2rtheJiIhQ5ckTbkRE5qh0geyqJ0nM2XMFK4/e0LtJlNGp/6/9n7a/eTQQeFLvFtkER70bIENbzxve+umnn9CvXz/07t1bHU+fPh3r1q3D7NmzMWLECHXu2LFj6fre+/fvx6JFi7B06VKEhYUhKipKrcsyevToZNdKL9O4cePS9X2IiLJai4qeGNKsNH797yJGrvBDmQI5UKmwh97NovR66T3g4lbg/L/A8r5A/+2Ak5verbJquvcgPU9kZCSOHDmC5s2bx5+zt7dXx/v2ZXzFYwl6rl+/jitXrmDixIkqEEspOBIjR45UC9vFbfJ1RETm7KPmZdGkXH6ER8ViwIIjePAoUu8mUUan/rsXsP6p/7ExgP8uwG+Z9ijHOjDrAOnu3buIiYlBwYIFE52X48BA4xfyk4Cqc+fOWL9+PYoUKZKu4MrFxUX1LiXciIjMmYO9HX7pUh3F82bDjQdPMHTRUcTEGvRuFmVk6n8HK5/6f/ofYFIlYF4bradMHuVYzmcxsw6QTGXLli24c+eOqnd048YN1KtXL9k1vXr1Ur1IRETWxCObJG3XhJuTA3ZduIsJG8/p3STKiNLNgbofaPurB1nX1P/T/wBLegAhSfKHQwK081kcJJl1gJQvXz44ODjg9u3E/wPIsaenp27tIiKyJOU9c6o128T0HZew7kQArIH0hu27dA+rj91UjzbTO/ZK3NT/u1p9JGuY+h8bA2z4HEBK7+HTcxtGZOlwm1kHSM7OzqhZsya2bt0afy42NlYdp9QLREREKWtb1Qv9G5dU+58uO45zgaGwZBtOBqDh9/+h68z9+HDRMfUox3Le6jm5Ah1naVP/L26xjqn/V/cm7zlKxACE3NSus5UASWaPySy0uJlo/v7+av/aNW0tIZniP3PmTMybNw9nzpzBwIEDVWmAuFltRERknM9alEOD0nnxODIG7/95GPcfRVpkD4wEQQMX+CIgODzR+cDgcHXeJoKkAhWsa+p/2G3TXmcCdgaDQdffiO3bt6Np06bJzvfs2RNz585V+1OmTMGECRNUYrbUPJo8ebIqGKknqYPk4eGhZrQxYZuILIUERW1/3Y2bD5/AxdEeEdHPhmcKebhiTFsftKxUCOZKgjjpKUoaHMWxA+Dp4YrdnzdTSepWTT6+/34bOL8ByF8B6L/Ncqf+++/SErJfpOdawLtRlnx+6x4gWSoGSERkqWbsuIRv/z2b7HxcODHt3RpmGyRJT5cMp73IX+/VQf3S+WD1wu4A0+oDj4KA2v2B1hNgkWJjtNlqkpCdYh6SHZDTC/jID7B3yJLPb92H2IiIKGt7YObsvZLic3EfS+PWnDbL4TZZfHf+vpTbnlTfeYfRZ+4h/Lb9olpyJTwqxjoTwLPnB9o/nfp/cAZwfiMskr0D0PL7pwdJe/6eHrf8LsPBUVqwBymd2INERJbI2B6Yv/vVRb1SeWEOTt4MVkumrDl+C5HpXHzX2cEelYt4oFbx3KhVIg9qFs+NPO7OKV4rOUwSJCYcxjP74cd/RwAHpgHZ8gED9wI5EtcPtBin/9FmsyVM2M5ZWAuOfNqZ5FtwiC2TMUAiIkskPSIy6+tFPm1RDh80KaUWEdeD9NhsPh2I2XuuqB6gOFWLeODqvccIfhKV2kCMykGa2q0GfK89wJGrD3DoygPcDYtIdm2p/O6oVTwPapXQgqYSebNh46lAlehtsLThx6hwYNYrwO2TWq2krouBa/u0pObsBYHi9U3a+xITa1DvS1BoOArkcEVt7zymy/mS4bY/3wT8t2tLrLT6waRtZ4CUyRggEZE19yAJCRhaVy6E16sUgk+hnFkSLEngs/jQNczbe1UlkgtHezu0qlwIvRuUQI1iueNnsQmDEUGMfMxdu/9YBUpHrt5XjxeDwpJ977zuTgiLiEmUuG5RCeBBZ4AZTYDocMDFA4gIfvac5O/IEJYJemE2ZEUP2/L3AL+lQItvgXqDYEoMkDIZAyQiskRxs8BkSnxqf/xdnewRG2tAZMyzK7zzueP1yoVUwFShUA6TB0uX7oRh7p4rWO57Q5UhELmzOaFbnWLoXreECkxM+SEt69JJ79Jh2a7cx4kbwUYP35nT8GMyq4cAR+en8MTT9+ut+RkKkjY8DU4zvYctPkAaD9R7WjncRBggZTIGSERkqYzpgWlUJj/+Oxukqm5vOxeUqFelpARLVbSepXIFUw+WXjQMIx8/Oy/cxezd/thx/k78ebmn9Ba1r14Yrk4OWTLMI0nc07dfwqStF154rbSvWYUCqFzYQ21FcrulOWDMlCGq+JlgqRVczNhMsJisLLFgBgGSo0m/KxERmT35F74EQUl7YDyT9MBI9W3ZwiKisfXMbRUsbT9/B5fvPsKv/11Um+TxvF7FC22qFELZgjmM6uFpXDY/lvvexNw9/rh055F6TuKLV8oXQJ8G3qp3xpiAQz6ETdWTI4FYnZJ5ASMCpHO3Q9UWR3q6KhfJhcqFc6Jy4VyoUsRDvdbUXkOmDVGlpRp1GmsJhUVEY4NfQKrB0dO7q+cl8Mvw+2IGfTfsQUon9iARkaVLTy9GaHiU6llaeyIAO87dSTQsVbpAdjUM5+HmhP+tPZ3qEJ6bkz2eRGlfl93FEZ1rFUHPeiVQIp87zHn4UX4yebM74+NXy+LkzRD43XyolmyJSjAUGSdfdmdUKuyBKtLLVEQLmgrmdM3cISq/ZcDyvi++ruMfQOVO8YcR0THqNUvOV8DDcAQEP8Gt4HAEyHFwOG49fIKQ8Gijm/Fth0roVqc4MmRZX+DkMm32Wt2BMCUOsWUyBkhEZOtCwqPie5Z2nr+bpin4xfK4oXcDb3SqWQQ5XJ1gLtKaAC7BhQRJksPkJ9vNYNW7lFLdJAmaQsOjMy0JPObyTjjMb/vC62aX/hX7Y31U8CPB0N2wSKPu75YgsH0RGXpsVCaf6i2UxHpnxzSWXWSAZLkYIBERJQ6Wtpy+jQX7rsL3+sMXXr/wvTpoYKaVrjM6BCb5TGcCpIfpWdB0/nYojK016e7iACeHtNdxjomJxkYMgifuI6X4Sr5/IPKiYcQviE1SJ1oS87083FAolysKebjBy8MVXrnkWNuXRzcnhxcm+MuMw+gkLzSbswPqlcyrAqZGZfOrHLbnDaFKcPlgfnfku7IG/rVGoVjr4SadNcgAKZMxQCIiSn+dpV/eroY3qhWGuTJ1EvWTyBj8vvMSJm15cY5TRrSwP4hpTpPUfsLmxsUsA6M+QnS5Nni5bP74gEgec2VzMirva4MRPWzSY7Trwl3sunAHuy/eTdZDVTiXGxqXzacmAjQolQ8e2ZySBacjH09AO4d9GBfVHRuydzBpCQEmaRMRUZaTYMKU1+nFlAngws3ZAXW85X4vDpAmdq6KakVzpfl7HLv+EJ8s1YKgr53moiCe9eRJz5EEGxtja+PvhiXT/dpaGpng37FmEbVJuYgzgSEqYNp5/g4OX3mgcp3+PnhdbRLEVSmSC43L5FPDcD9uOq8FXk9jJgPsVI+VBGVZXaSTARIREZmM9LTIcNTzEp3lw1SuszXG/mw6VC+crt4qqVX146Zz2BRcG8ciSuOA62DVc9Qt6iscjC0PA+zV98/oz75lpUJ41cfTqB42e3s7VPTyUNuAl0vhcWQ0Dvjfx67zWg/ThaAwFdjJlhr5WcmdJSiT75tVRTq5WC0REZmMfHhJT8JzlhxVz5tlJWoL/9kkvH9cjpH0wEhCtgRHGb1/Sj1sMkwqj8beM5uzI5qWK4DRbX2wedjL2DuiGX7oWAV1SyYO2uyShJAJSwhkFQZIRERkUnHDMEmrX8ux2a5lZiU/m7j7F8jpoo7tzPxn75XLDW+9VBRdaxdL8XkJ8BKSHquswiE2IiIyubQMw9iazP7ZqPsXawT8pBXglKVRzP1nX8AMc9cYIBERkUUkOluTzP7ZxAVD8l9LeA9qm2HuGofYiIiIrJbBIvOz7Mwgd40BEhERkdUx3+G0tORnGXTMn+IQGxEREZlVftaDeX8AV4He9b0xplX6ll7JKAZIREREZDYc7O2Qz90pvrZTiuumZAEOsREREZF5stNvqJABEhERkbXRMbCwFgyQiIiIiJJggERERGTNDJYx1T8x/dvMAImIiMjqcIgtoxggERERESXBAImIiMiaWeIQm0H/NjNAIiIisjbWMovNjtP8iYiIiMwGK2mnk+Fp919ISIjeTSEiIkrscQgQ8XSYKiQYsHeARXkcqbU/7Il80Jr01nGf23Gf46mxM7zoCkrRjRs3ULRoUb2bQUREROlw/fp1FClSJNXnGSClU2xsLG7duoUcOXLAzlrGelOJtCUQlP+RcubMCWtmS6/V1l4vX6v1sqXXy9dqGhL2hIaGwsvLC/b2qWcacYgtneSH+rzI09rI/6DW/gtpi6/V1l4vX6v1sqXXy9eacR4eHi+8hknaREREREkwQCIiIiJKggESPZeLiwvGjBmjHq2dLb1WW3u9fK3Wy5ZeL19r1mKSNhEREVES7EEiIiIiSoIBEhEREVESDJCIiIiIkmCARERERJQEAyQbNn78eLz00kuqGniBAgXQvn17nDt37rlfM3fuXFU5POHm6uoKSzB27NhkbS9fvvxzv2bp0qXqGnmNlStXxvr162EJSpQokey1yjZo0CCLf1937tyJtm3bqiq40s5Vq1Ylel7mnYwePRqFChWCm5sbmjdvjgsXLrzwvlOnTlU/N3ndderUwcGDB2HurzcqKgqff/65+n/T3d1dXdOjRw9V5d/Uvwvm8N726tUrWbtbtmxpke/ti15rSr+/sk2YMMHi3tfxRnzWhIeHq79PefPmRfbs2dGxY0fcvn37ufdN7++6sRgg2bAdO3ao/yH379+PzZs3qz+2r732Gh49evTcr5OqpgEBAfHb1atXYSkqVqyYqO27d+9O9dq9e/eia9eu6Nu3L44ePap+qWU7efIkzN2hQ4cSvU55f0Xnzp0t/n2V/z+rVq2qPvRS8sMPP2Dy5MmYPn06Dhw4oAKHFi1aqD/AqVm8eDGGDRumphX7+vqq+8vXBAUFwZxf7+PHj1V7R40apR5XrFihPnjatWtn0t8Fc3lvhQRECdv9999/P/ee5vrevui1JnyNss2ePVsFPBI4WNr7usOIz5qPP/4Ya9asUf8oleslyH/zzTefe9/0/K6niUzzJxJBQUFS8sGwY8eOVK+ZM2eOwcPDw2CJxowZY6hatarR17/11luG119/PdG5OnXqGN5//32Dpfnwww8NpUqVMsTGxlrV+yr/v65cuTL+WF6fp6enYcKECfHnHj58aHBxcTH8/fffqd6ndu3ahkGDBsUfx8TEGLy8vAzjx483mPPrTcnBgwfVdVevXjXZ74K5vNaePXsa3njjjTTdxxLeW2PeV3ndzZo1e+41lvC+pvRZI7+jTk5OhqVLlxrinDlzRl2zb98+Q0rS+7ueFuxBonjBwcHqMU+ePM+9LiwsDMWLF1cLCb7xxhs4deoULIV0v0qXdsmSJfHOO+/g2rVrqV67b98+1WWbkPzrRM5bksjISCxYsAB9+vR57sLKlvy+xvH390dgYGCi903WXJJhldTeN/n5HDlyJNHXyFqLcmxp73Xc77G8z7ly5TLZ74I52b59uxqmKVeuHAYOHIh79+6leq21vLcy1LRu3TrVm/0ilvC+Bif5rJH3SHqVEr5PMjRYrFixVN+n9PyupxUDJFJiY2Px0UcfoUGDBqhUqVKq18kfJenqXb16tfrQla+rX78+bty4AXMnvziSa7NhwwZMmzZN/YI1atRIreqcEvnlK1iwYKJzciznLYnkNjx8+FDlb1jj+5pQ3HuTlvft7t27iImJsYr3WoYWJCdJhoaft8BnWn8XzIUMr82fPx9bt27F999/r4ZiWrVqpd4/a35v582bp/J3XjTkZAnva2wKnzXyXjg7OycL6p/3PqXndz2tHE1yF7J4Mj4suTUvGq+uV6+e2uLIh2iFChXw+++/43//+x/MmfwhjVOlShX1x0R6TJYsWWLUv8ws1R9//KFeu/yr0hrfV9LIv8DfeustlbgqH47W+Lvw9ttvx+9LYrq0vVSpUqpX6ZVXXoG1kn+8SG/QiyZOWML7OsjIzxpzwB4kwuDBg7F27Vps27YNRYoUSdPXOjk5oXr16rh48SIsjfxrpWzZsqm23dPTM9ksCjmW85ZCEq23bNmC9957zybe17j3Ji3vW758+eDg4GDR73VccCTvtyTBPq/3KD2/C+ZKhpHk/Uut3dbw3u7atUsl3qf1d9gc39fBqXzWyHshw6HS023s+5Se3/W0YoBkw+RfmvI/7MqVK/Hff//B29s7zfeQ7ms/Pz81zdLSSM7NpUuXUm279KhIV35C8uGTsKfF3M2ZM0fla7z++us28b7K/8PyxzHh+xYSEqJmuKT2vknXfs2aNRN9jQwDyLElvNdxwZHknkgwLNOkTf27YK5kCFhykFJrt6W/t3E9wPIaZMabpb6vhhd81sjrk3+UJXyfJCiU/KnU3qf0/K6np+FkowYOHKhmLm3fvt0QEBAQvz1+/Dj+mu7duxtGjBgRfzxu3DjDxo0bDZcuXTIcOXLE8PbbbxtcXV0Np06dMpi74cOHq9fq7+9v2LNnj6F58+aGfPnyqRkVKb1WucbR0dEwceJENaNCZojITAs/Pz+DJZDZOsWKFTN8/vnnyZ6z5Pc1NDTUcPToUbXJn7CffvpJ7cfN2vruu+8MuXLlMqxevdpw4sQJNfvH29vb8OTJk/h7yGygX3/9Nf540aJFavbL3LlzDadPnzb0799f3SMwMNBgzq83MjLS0K5dO0ORIkUMx44dS/R7HBERkerrfdHvgjm+Vnnuk08+UbOapN1btmwx1KhRw1CmTBlDeHi4xb23L/r/WAQHBxuyZctmmDZtWor3sJT3daARnzUDBgxQf6/+++8/w+HDhw316tVTW0LlypUzrFixIv7YmN/1jGCAZMPklzKlTaZ8x3n55ZfV1No4H330kfqf2NnZ2VCwYEFD69atDb6+vgZL0KVLF0OhQoVU2wsXLqyOL168mOprFUuWLDGULVtWfU3FihUN69atM1gKCXjk/Tx37lyy5yz5fd22bVuK/9/GvR6Z/jtq1Cj1OuSD8ZVXXkn2MyhevLgKeBOSD5q4n4FMDd+/f7/B3F+vfBCm9nssX5fa633R74I5vlb5MH3ttdcM+fPnV/9QkdfUr1+/ZIGOpby3L/r/WPz+++8GNzc3NX09JZbyvsKIzxoJaj744AND7ty5VVDYoUMHFUQlvU/CrzHmdz0j7J5+UyIiIiJ6ijlIREREREkwQCIiIiJKggESERERURIMkIiIiIiSYIBERERElAQDJCIiIqIkGCARERERJcEAiYiIiCgJBkhERJlk7NixqFatmt7NIKJ0YIBERGanV69esLOzU5ssOFq6dGl8/fXXiI6Ojr9GFgGYMWMG6tSpg+zZs6uVy2vVqoVJkybh8ePH8QFK3H0SbuXLl9fx1RGRJXDUuwFERClp2bIl5syZg4iICKxfvx6DBg1SK36PHDlSPd+9e3esWLECX331FaZMmYL8+fPj+PHjKkAqUaIE2rdvr66rWLGiWuU+IUdH0/7pi4qKUm3LDJl5byJKHXuQiMgsubi4wNPTE8WLF8fAgQPRvHlz/PPPP+q5JUuWYOHChfj777/xxRdf4KWXXlJB0RtvvIH//vsPTZs2TRQMyX0Sbvny5Xvu9542bRpKlSqleq/KlSuHP//8M9Hz0gsl17Rr1w7u7u745ptv1PnvvvsOBQsWRI4cOdC3b1+Eh4cnu/esWbNQoUIFuLq6qp6s3377Lf65K1euqHsvXrwYL7/8srpGXicRZT0GSERkEdzc3BAZGan2JWiQwEUCoqQkwPDw8Ej391m5ciU+/PBDDB8+HCdPnsT777+P3r17Y9u2bYmuk+G7Dh06wM/PD3369FFBm5z79ttvcfjwYRQqVChR8BPX7tGjR6uA6syZM+raUaNGYd68eYmuGzFihGqDXNOiRYt0vxYiygADEZGZ6dmzp+GNN95Q+7GxsYbNmzcbXFxcDJ988ok6V6FCBUO7du1eeJ8xY8YY7O3tDe7u7om2999/P9WvqV+/vqFfv36JznXu3NnQunXr+GP50/nRRx8luqZevXqGDz74ING5OnXqGKpWrRp/XKpUKcNff/2V6Jr//e9/6muFv7+/uvekSZNe+NqIKHMxB4mIzNLatWtV8rXk4MTGxqJbt26qh0ZoMYpxpKcpbmguTs6cOVO9Xnpt+vfvn+hcgwYN8MsvvyQ6JwnhSb9uwIABic7Vq1cvvufp0aNHuHTpkhp669evX/w1knietMcr6b2JKOsxQCIisyR5RJLnI3lAXl5eiRKry5Yti7Nnzxp1n7hZcKYmuUdpERYWph5nzpypZt4l5ODgkKF7E5HpMQeJiMySBAkS2BQrVizZrDPpTTp//jxWr16d7Oukdyk4ODjd31cSqPfs2ZPonBz7+Pi88OsOHDiQ6Nz+/fvj9yV5WwK9y5cvq9eVcPP29k53e4koc7AHiYgszltvvaWSqbt27aqm+b/22mtqmr8kTP/8888YMmRI/DR/GcIKDAxMlsgtAUtKPv30U3X/6tWrq5lza9asUeUEkpYKSEqSqqV+kwyPyZCcJGSfOnUKJUuWjL9m3LhxGDp0qBpSkzIGUsJAErofPHiAYcOGmeRnQ0SmwQCJiCyOBDh//fWXKhQ5e/ZsNStMepnKlCmDHj16JJr5JUGKzChLWkIgpSn4QgIryTeaOHGiCnqkd0fqMTVp0uS5berSpYvKMfrss8/UvTt27KjKE2zcuDH+mvfeew/ZsmXDhAkTVCAmvWSVK1fGRx99lOGfCRGZlp1kapv4nkREREQWjTlIREREREkwQCIiIiJKggESERERURIMkIiIiIiSYIBERERElAQDJCIiIqIkGCARERERJcEAiYiIiCgJBkhERERESTBAIiIiIkqCARIREREREvt//zGm9EeS7vsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the mean and standard deviation to that of the highest order\n", "\n", "mean_analytic = exact['expectation']\n", "std_analytic = np.sqrt(exact['variance'])\n", "\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "plt.semilogy([o for o in O], \n", " [np.abs(R[o]['results'].describe('Ishigami', 'mean') - mean_analytic) for o in O],\n", " 'o-', label='mean')\n", "plt.semilogy([o for o in O], \n", " [np.abs(R[o]['results'].describe('Ishigami', 'std') - std_analytic) for o in O],\n", " 'o-', label='std')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMSerror compared to analytic')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_mean_std.png')\n", "plt.savefig('Convergence_mean_std.pdf')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:54.659620Z", "start_time": "2021-06-07T15:00:54.336357Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:53.242644Z", "iopub.status.busy": "2025-07-18T11:53:53.242551Z", "iopub.status.idle": "2025-07-18T11:53:53.563667Z", "shell.execute_reply": "2025-07-18T11:53:53.563257Z", "shell.execute_reply.started": "2025-07-18T11:53:53.242635Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhCRJREFUeJzt3Qd4U9X7B/BvuieUUkpZZa+y95Y9lSUCLqYioIgMFXAwHAxRRBTBn/4BFwiKsmXvvWTvPUtZhZbSmfyf94SU7iZt0mZ8P89zTe5NcnNuY5uXc97zHo1Op9OBiIiIiBI5Pb1LRERERIIBEhEREVEKDJCIiIiIUmCARERERJQCAyQiIiKiFBggEREREaXAAImIiIgoBZeUB8g4Wq0WN27cgK+vLzQaTW43h4iIiIwg5R8jIiJQuHBhODml30/EACmLJDgqVqxYbjeDiIiIsuDq1asoWrRouo8zQMoi6Tky/IDz5MmT280hIiIiIzx8+FB1cBi+x9PDACmLDMNqEhwxQCIiIrItmaXHMEmbiIiIKAUGSEREREQpMEAiIiIiSoE5SERERHYmISEBcXFxcESurq5wdnbO9nkYIBEREdlRjZ/Q0FCEh4fDkfn5+SEoKChbdQoZIBEREdkJQ3AUGBgILy8vhytkrNPpEBUVhbCwMLVfqFChLJ+LARIREZGdDKsZgqP8+fPDUXl6eqpbCZLkZ5HV4TYmaRMREdkBQ86R9Bw5Oq8nP4Ps5GExQCIiIrIjjjasZqmfAYfYrEiCVoe9F+8hLCIagb4eqFvSH85O/B+diIgopzFAshKrj93EhOUncPNBdOKxQnk9MK5jCNpVznqSGREREZmOQ2xWEhwN/u0gbj2IQn2nE+jktFPdhj2IUsflcSIiopwazdh1/i6WHrqubmXfEbEHKZfJ/3jSc9TGaS/Guf6Cwpp7iY/d0Pnjk7jemLDcA61DgjjcRkREDjeacfPmTYwcORL79+/HuXPnMHToUEyfPt3i78sepFwmOUdVI7Zilut0BOFpcCRk/3vX6epxeR4REZGlRzOSBkci9EF0ro5mxMTEoECBAvjoo49QrVq1HHtfBki5LOzhI9VzJFJ2EBn2x7n+ik+WHsH/tp7HqdCHqhAWERFRpkUTY+ON2iKi4zBu2XGk9e2ie3I7ftkJ9TxjzmfK99Tt27dV1euJEycmHtu5cyfc3NywYcMGlChRAt988w169+6NvHnzIqdwiC2XlYk6mmxYLSUJkgrjLvLe2Y+Jq6IwcdUpFMzjjiZlC+CZcgXQpEwA8nm7wSFoE4DLO4HIW4BPQaB4Q8Ap++vtEBHZo8dxCQgZu8Ys59JJT9LDaFQZv9ao55/4pC283IwLMaR3aM6cOejSpQvatGmD8uXLo1evXhgyZAhatmyJ3MIAKZdV9I0y6nnvlb+NbxMCsPviPdx6GIO/DlxTm5R6qFokL5qW0wdM1Yv5wcXZKVfKCFj0/CeWAatHAQ9vPD2WpzDQbgoQ0in752fwRUSUazp06IABAwbglVdeQe3ateHt7Y1JkyblapsYIOUyJ98go55X6+IPmJdvDeKbdsehfG2x9pYPtp65jVOhETh87YHaZmw8B18PFzQqHaCCpWfKBaBoPq8cSbyz6PklOFrUO0lH7xMPb+qP9/gle0GSpYMvIqJc4OnqrHpyjCH/uO07d1+mz5vXr476x68x722qL7/8EpUrV8aff/6JAwcOwN3dHbnJoQOkrl27YvPmzaoL76+//sqdRkhPRZ7C0D28CU0ao79yROMqQY4GuH8JLtunojamonbROvigYU/cCn4WW64lqGBp+7k7CI+Kw+rjoWoTpQp4o7i/Fzadvp3q3IbEu1mv1sxWEGNI7NNZ4vzSsyPBS7oj4xpg9WigwrNZ6/F5EnzpoJMzPT2zfB7mCL6IiHKxmrSxw1yStiH/qJW/22n9tdXIxKG8Hup5lppRff78edy4cQNarRaXLl1ClSpVkJscOkB655130L9/f/z888+51wj5Um83RX0Zy1d00iBJvy+R3A9AmZbAqVXAkT+A8xuBa/vUVtBpDHqUbYMe1Xsi4YW2OHorWgVLsv13NRwXbj9SW1oM7zRq8VFEx2nh5eYMd1dneLg4wUNuXZ3hnnjfCe4u+n2nJL8chjIFci4naFHX6RQCEY4w+GGvtgJ0cFKPm1SmQIKiexeA0KPA6X+T9+ykdRUPrwOfFQQ88gBu3oCbDyBBpeG+W9L73k8fk9u1H6UKjoR8Durnn53gi4jIRsjfZ+nxl3/Uyt9DXZLHDH8f5XFLBUexsbF49dVX0bNnT5WD9Prrr+Po0aNqsdnc4tABUrNmzVQPUq6THooev0CTYphHo4Z5Jj/twajaXb9F3AKO/QUcXvAkiFipNmePvKheqSuqV30RQ1s0wIPoeMzbcRFfrz+rXp5WAKOFEx48jsOwhYeMbq6bBE0uTiqYkl+j2xGxaJtOHacJcb2x5kFd1X3boHQaq0s/vg/cOq7f5FrkNuwkEP/YtJ+hNg6IuqvfTJTer7vGEHxJblLJJiafl4jIlkhPv/T4p0yXCMqBOkgffvghHjx4gBkzZsDHxwerVq1SHRgrVqxQjx86pP+OioyMVLPeZF9muYWEhFisTRqdlc4Z37p1K6ZOnarGIaVI1D///KMy3JOaOXOmek5oaKiqjfDtt9+ibt26Jr2PBEjfffedyUNsDx8+VNMN5QPNkycPzCIricK3Tuh7lY78CUQk6WnxKw5U7Yn1bs3w+orwjAMYbV2UDfSBj4eL6kmKiU9ATJwW0XEJiInX38ZnUElVzi11nETSf1wYXjI4bhiO+zRCm8JRqOV+HeV0lxEUfR4+4SehkQAkLS6eQMEQwCsAOGvELIxuc/TPj32UYosE4qKe3o99el939wI0YccyPbXO0x+acu2AEo31gZJfcObtISLKYdHR0bh48SJKliwJDw8Pm1kXdPPmzWjdujU2bdqExo0bq2MyxCbf65MnT8bgwYPTXHy2ePHi6nmm/iyM/f622gDp33//xY4dO1CrVi08//zzqQKkhQsXqpoIs2fPRr169VRVTUnsOn36dGKXXPXq1REfH5/q3GvXrkXhwoVNCpCkUJVsSX/AxYoVM2+AlN3g6tI24PBC4OQyfTDwxAVtEEpqQvXDYOkEMH1fG5p2D88T8QlaRMdrEROXoG5V8BSnxYFLt9FyTStV1DKt3x/5vysOztBCAw9N6s9C3HYJwn2fsogvEAKPotUQWLYmfILK6YNDbQIeTw2Be1RomueXa4jxCoLneycyDCZj47W4HxWLe49icf9RLO7KdnwD+p4ZApNJgFSiiT5gks2YgImz5IjIRgIkexBtzwFSUhI5pgyQJCiqU6eOCm6EJHVJwPL2229j9OjRRp/b2ABp/PjxmDBhQqrjVhMgJSW9JKdWqp4l3bkNaSZ/G8in/0jjCa+Gb8BJlwAkxAEJsfohK3X/yb7cpnFMFx0OzYOrRjUrzskDN91L4ZSuOPZFF8J/MUVxWheMCOhn2iUltZ7KBPqgVIA3Ig/9g690X6njaQV47zm9i9rteyM8Kl4FQXcjYxODIUNAFBGTOjiTIcft7kPTDe7k/Lfgj92Vx6GL32VoLm8Drh8E5OeUlPTWJQuYiiV/nLPkiCgHMEB6ymEDJEnm8vLyUkFN0qCpT58+CA8Px9KlS40+t930IGU4S6tXbrcCaDsRqDcYcNLXaJL/7W5HxuBcWCTOh0Wq23O39bdS5ynVy9McIsyPCXG91BChMSQI8vd2Qz4vN31xTZ0O+a6syXR4UM5fwNcdrSoWRPtyPqjvehZuV3cCF7cBN/5LHTDlK/EkWGoCxD0GVgxPYxbekzfjLDkiMhMGSOYNkGwySfvOnTtISEhAwYIFkx2X/VOnThl9nlatWuHw4cN49OgRihYtqoboGjRokOZzpR5DbtdkyBLp6TFGmdZAYEXA2e3J5vL0vpNL+sdvnwLWfJD5+YOqJgZHhqBXxrZla1g6INlTH0bHJQZNUq5gw8kwFaSsi6mdZpK5CCnki4qF8sLf21UFP/mfBEISEBm2PB6uqWbgNZ7yGG9GAGMl+EqyFl4o9MHXFuf68HbR4HZEDBbsvYIFewFvN2c0q9AJbeoMQLMSnsh7+6B+ePPSdn3AdP+Sfvvvtwx+IGYoUUBERBZjkwGSuaxfvx52T/JdjNHonazN1CrVDNj1nb5oY3rVM2Q4SXJujCSBTI3gfGqTQpcSIAkJhnZr056x8PFzlTLMocp4Wmu0Cr7qJAm+9j0Jvma9XB3NKwRi94V7WHs8FOtO3EJYRAxWHrmpNhcnjXrfNiH90KrHaBRyjwOu7tEHTFKi4M6ZDFrAWXJERNbKJgOkgIAAODs749atW8mOy74seEepC1GaM4BJq46TvtJ1OtUzpFRBFntIZPaEMcXLjKnsmtm01t0PQtKtAi5Lucj2aefKOHL9gQqW1p64pXq5tp29o7aPlx5H1aJ50SakBNpUrY+yBatA8/frmTdi00QgaiBQuoW+lhMREeU6mwyQpPaBzG6TVX4NOUiSpC37srgd5VwAk7SOU9qJyEnqOFlp8TIJgqSQpTHTWmWITta7k+39dhVw4Xak6lWSYOnglfs4cu2B2r5cewZd/G5Cn92UiSs79ZsMWUqgKiUFyrYFAspk+ZqIiCh7rDZJW4pBnTt3Tt2vUaMGpk2bhubNm8Pf3x/BwcFqmr8kZf/www+q9pFM81+0aJHKQUqZm2QJFqmDZElpzqQqku0AJqemslt6LTlzkOBKhgMlYJJlX6TERGaz5MI1eeBX7xU4nVsH3NX//57Iv7Q+WCrXBghuCLi4pf/mLCNA5PCYpO0gs9hkdpkERClJUDRv3jx1X2afGQpFSs0jqcAp0/9zgs0FSHbwJZrTxcuyIzImHj9tu4CTG3/PdJbc8y8PQlsJ8u6eB86sAc6s1n9OUlbBwM0XKN38Se9Sa8AnSfl9lhEgIgZIjhMgWTubDJAoRy09dB3v/HHIqBIFUsm8Xil/1C+VH/VK5kcB1xjgwiZ9wHR2LfAo6WLDGqBITX2w5OIBrBvLMgJExAApt6f5y/ookiDdtm3bZMfXrFmj8oDat29v6imJ7JL0conMShSIs2GRavtt9xW1X6qAN+qVLIX6pT5EvWZfIijypH7JFeldunkYuH5Av6WLZQSIyD5GG/7++2/MmjVLrb8m9QgrVaqkijenjEPMzeQASapUy9ooKUlHlDzGAIko9Qy8tEoUGGbgLRvSGAcu38fuC3ex5+I9nAp9iAu3H6lNai+JEvm9UK/kc6hXpzcaBMah0K2twKH5wNXdGbSAZQSIyERWOGS/detWtVbbxIkT4efnh7lz56Jjx47Ys2ePylG2FJOH2Dw9PXHy5EmUKFEi2XFZME6iOim66Ag4xEbGJpfLDDykMwNPSgykTDJ/EBWHvZfuYc+Fu9h98S5O3HiYmLNkUMzfEwP9/8Or1z7JvBFNRwNNRyUr1ElE9ifbQ2xq5YXeOT5kf/v2bVSpUgVDhw7FBx/oCw/v3LkTzZo1U+uytmzZMtVrJN7o2bMnxo6VFAMrGWKTk164cCFVgCQzzry9vU09HZFdS1pnKekMvKAMZuDl9XJF65CCajNUFt+vAqZ72H3xHo5df4Cr9x5jRbgWr2YwsS3Rlsn63qYq3YAq3YGClcx6jURkpdRq4VHGD6v9+3469fJ0T4bsR+mLAxsz3ObqJUsmGPXWBQoUwJw5c1TZnjZt2qB8+fLo1auXKtuTVnAk6TwRERFqVrslmdyDNHDgQOzatUutjVa6dOnE4Khbt25q8diffvoJjoA9SJRbM/BkhpwETP8cuIJRp7tnWEYgGu5wd3GGc0KSP5KBIUCVF4DK3fTrxhGRXUjVaxL7CJhYOHca88ENwM20TpO33npLrXBRu3ZtHD16FPv27Utzia8vvvhCpfpIWZ/AwCQzenN7FpucsF27dti/f79av0xcu3YNTZo0UYlUMj7oCBggkTXMklu16H+ZlhHIU7k9Pip3BXnPLdXPiEu6Pl/RuvpepUpdAZ8CNpGwSUT2GSA9fvwYlStXxtWrV3HgwAE17JbS/PnzMWDAALUovaynmp5cG2KTscF169aphV4lJ6lq1ap45plnTD0VEWWD9ETJDDkJgsals9iuKiNw5C7+PuaD5uWH4cVnx6KZdg9cjv8FXNwKXNur32S2m3SdS7Aks94MS55YYcImERlJhrkkUDGG/CPo9xcyf94rfxm3NJW8t4nOnz+PGzduqCE0yWtOGSD98ccfeP3119XC8hkFR+bCOkhZxB4ksoZhu8ZTNqpZchpoU5UR0MEJeTxdUTLAC4euPkh8XT4vV3SuXgQvVnBBhbsbgKN/Ajf0ieSK1FaSGksy/LbjG9ZYInKEJG3pKZ5eOfN1O4cdtUgPcmxsrFoVQ4o+Sw6SrI4hw2yGIbQFCxagf//+Kkjq3LlzpufLsSE2qVD9xhtvqDeR+xmRLHRHwACJbGmW3LmwCPx14Dr+PngNYRExic+rWCgPXqhVFF2LR8P//DJ9sHT3rBHvbNk/lkSUm7PYhC5H/1H03nvv4a+//lIjUz4+PmjatKn6jl2xYoUaVpNVNL755hs8//zzia+RESx5Tq4GSPIGknOUP39+dT/dk2k0aoabI2CARNbClHXq4hO02HbuDv46cA3rjt9CbIJWHXdx0qB5hUB0r1kEzf1C4bpzOnBiSeZv3mcFaywR2VMl7ZxYtzONpcWkztGmTZvQuHFjdUyG2KpVq6aSsWXt1S1btmS49FhKXGokFzFAIlufJRceFYvlR27ir/1Xcfja0yG4/N5u+CD4OLpdHJf5Gz//E1C1uzkugYisZakRO5iYEW2GAMnkynGffPIJoqKi0sw+l8eIKOdJMNSgdH6VWyS3xpQQ8PNyQ6/6xbF0SGOsHf4MBj5TCgV83XH3USz+PJ1kodwM6DZ8Auz7PyAm0gxXQURWQYKhkk305UDk1saCI3MxuQdJ1mG7efNmqtoDd+/eVccSEhLgCNiDRPZIhuC2nr2N/20+g2k3e6dbY0n+asgfjsTH3PMA1V8G6rwOBJTN6WYTERerzf0eJImnJNcoJUmssnRVSyKyLBdnJ7SoUBAv1S+FCXH6ZM2Uy5zIvhwaGTcYR6uMAfxLAzEPgT2zge9qA792BU6t0nfTExHZKKPrIOXLl08FRrKVK1cuWZAkvUaRkZEYNGiQpdpJRFZYY+lKWD4Mad0Xzzgfg/P+H4Eza4DzG/Vb3mCgzmtAzd6AF//xRER2OsT2888/q94jqUMg9QmSTq1zc3NTa7M1aNAAjoJDbOTINZa0KTqfC+f1QM86wXipXAICT/0O/Pcr8Pj+07pKlV8A6r4OFK5hlwmhRNaAQ2y5PItNpto1atQILi4mF+G2KwyQyNFrLI3tGIJr9x9j8cFrCI/SJ3VLTlKLCoF4pWYgmsZthdPe/wGhR56+uGgdoO4bQEhnwMWdlbqJzIgBUi4HSFK86bXXXkP37t1VkSZHxQCJHIExNZai4xKw5ngo5u+5gj0X7yV7Xs/aRfFKkTAUOPkzcHwJoH0yO867ABDcADi5nJW6icyEAVIuB0jDhg1TVS1jYmLQo0cPFSzVr18fjoYBEjkKU2osnQuLxMJ9V1QhyvtJepWalw9En6peaPRwJZwPzAUiMlsfipW6iUzFAMkKCkXGx8dj2bJlKi/p33//RZkyZVRuUq9evVCwYEE4AgZIROmLiU/A6mOhWLD3CnZfeNqrFJTHAy/WKoR+usXIu/vLzE/ESt1ERmOAlMvT/IXkH8l6KEuXLsW1a9fw8ssv4+OPP0axYsXQpUsXbNy4MSunJSI74e7irIpW/vFGA2wY2RRvPFMK/t5uCH0YjembLuLjbU+H7DIkidtERLkgSwGSwd69ezFu3Dh89dVXqkjkmDFjEBAQgOeeew7vvvuu+VpJRDardAEffNChInaNaYFvX6qBhqXzI0znZ9RrtZLEHX7F4m0koqcStAnYF7oPqy6sUreyn5u2b9+uJofJerCS+1yhQgV8/fXXFn9fk6eihYWF4ddff8XcuXNx9uxZdOzYEQsWLEDbtm0TayP17dsX7dq1w5dfGtGFTkQO06vUsVphtf1zoBBuLPs+w0rd8ufE6eRS4NQKoPLzQMO3gULVcqPpRA5j/eX1mLx3Mm5FPe29LehVEKPrjkar4q1ypU3e3t4YMmQIqlatqu5LwDRw4EB1/4033rCeHqSiRYvip59+UqvoyvDaX3/9pYKhpIUj5SLq1Klj7rYSkZ1wcnbJtFL3jLguuB1QD9AlAEf/BH54Bvi5E3BuvT6CIiKzB0cjNo9IFhyJsKgwdVwet4Tbt28jKCgIEydOTDy2c+dOVWNxw4YNqFGjBl566SVUqlRJ1Vx89dVXVafMtm3bYFU9SNLYJk0yTpqUpKdNmzZlp11EZMeMrdT9d7QXPmkej8ZhC+B0YglwcYt+C6yk71Gq3A1wccvVayGyVjIH63H8Y6OeK8Nok/ZOgi5V2Q0kHpOepXpB9eBsxMxSTxfPNJclS0uBAgUwZ84clcPcpk0blC9fXk36kl6jli1bpnr+f//9pwKozz77DJaUpVlsxFlsRDlZqTvY3wvDaruj0+MlcDn0GxD3SP+Ab2Gg/mCgVl/Ag7+H5NhSztyKiotCvfn1cqUte17eAy9XL5Ne89Zbb2H9+vWoXbs2jh49in379sHd3T3ZCJb0NslM+vHjx6vJYZacxWZUD5J0bxkbCR48qK+8S0SUHqmjJMUmpVK3Dk7YrQ1JfEzzZPvihaq4Hv4YP++8hCv3ojBibRQ+926NgXV6opfbBnge/ElfT2ndx8DWqUCtPkC9wUDeIsnfjEuZENmEL7/8EpUrV8aff/6JAwcOJAuOhAypybqvu3fvxujRo1WJIRl6sxSjAiTp9iIiMiepxD3r1ZqpKnUHpajULSUC/tx/DT9uu6CWNpm4ORTT3arilVqL8GbAAeT77wfgzmlg57fA7llAle764beClbiUCTk0GeaSnhxjHLh1AG9ueDPT533f8nvUKljLqPc21fnz53Hjxg1otVpcunQJVapUSfa49AYJOX7r1i3Vi2TJAIlDbFnEITainK3UHZ+gxcqjNzF7ywWcvPlQHXNx0qBz1SAML3kZRU/8BFze/vQFQVWTrwOXiEuZkH3KTqFIyUFqu7itSshOKw9JA42azba622qjcpBMFRsbi7p166J69eoqB2n69OlqmE1KCKXlk08+UXlLEkhZVSVtYoBElFvkT9bWs3cwe/N57LpwN/G4LJI7IiQClS79DM2JpWms8ZYUlzIh+5PdStqGWWxCl+T3R4IjMa3ZNItN9X/vvffUrPjDhw/Dx8dHrfsq37ErVqzAzJkzERwcrOofia1bt2L48OEYOnRouonauRIgJSQkqAJNixYtwpUrV1TUl9S9e09no1g7mS4oPxwnJyfky5fPpJl3DJCIct/hq+H4Yet5/HssNHHmf41gP4wrfgLV9xlRrJZLmZAdMcdSI2nVQQryCsKouqMsFhxt3rwZrVu3Vt/BjRs3VsekZ6hatWqYPHmySsr+4Ycf1LXJSh6lS5fGgAEDVC0k+f7O1STtpCZMmKDqII0cORIfffQRPvzwQ3UhS5YswdixY2FrZKqgRKtEZHuqFfPD96/UwsU7j1SOkiyS+9+VcMy5dgkzjJn9z6VMiJKRIKh5seY4GHYQt6Nuo4BXAdQMrGmRYTWDZs2aIS5Ov7h10g4MCWAM3n77beQ0kwtF/v777/jxxx9VgCSRnCRIScAkwZFklhMR5bSSAd6Y2LUKto9qjreal0aEq79Rr9OGHgUS4i3ePiJbIsFQnaA66FCqg7q1ZHBkzUwOkEJDQxMzy6XnxRDhyfprK1euNFvDZIxRljEpXLiwKjEgPVQpybikRJnSfVavXj21Npwp5LwyzilVvyXwIyLbJkne77WtgF49X8YNnX+qKt0GhuE4px3TgZl1gcN/MFAiouwvNXLz5k11X8YB165dq+6nLOiUXY8ePVLjjxIEpWXhwoUYMWKEWixXai/Jc6X0uKwVZyDZ8FJTIeUm0wiFrOcitRaWLVumSpwfOZLWjBe9mJgYNW6ZdCMi6xQRq810KZPF8Y0R45YPuHce+Gcg8H094Mgifd0kInJ4JgdIXbt2VcuNGMYEpZJl2bJl0bt3b/Tv399sDWvfvr3KTpf3S8u0adNUkla/fv0QEhKC2bNnw8vLS037Mzh06BCOHTuWapNeKVGkiL6gXKFChdChQ4cMi1xOmjRJJXUZtmLFipntWonIckuZhCL5cJssZSLHR8a/ibElf8fjZz4CPPMBd88Bfw8AZkqg9CcDJSIHl+1p/rt27VKbBEkyJGYJMhT2zz//JBaslJlzEgzJlMCkRSxlAd3w8HAsXSpTfDPvoZJiVL6+vqoypwy1SZCV3iK70oMkm4H0IEmQxFlsRLa9lImPuwterxeAge7r4bl/FvD4vv6BgPJA0/eBSl1ZCoBsgmHmlqSeeHqaXqjRnjx+/FhNIMvRWWwpNWjQQG056c6dO6rcQMGCBZMdl/1Tp04ZdQ6pwmnonZJzSW9UesGRkOFDcw4hElHuLmXyxjMlseXMHZwKjcD0raH40a0aBtT9C294rIeXBEpSnXvxa/plTJqOAkK6AOlMKSayBq6uruo2KirK4QOkqKioZD+TrMhSgHT27FlVr0DyfaQXJilbmepfqlQpVZCKiBx3KZNR7XRYe+IWZmw4ixM3H2L69lv4n1t1DKizGAM91sLrwGzg9ingr35A4JNAqWKn5IES13ojK+Hs7Aw/P7/EXFwZaTF2HVV7odPpVHAkPwP5WcjPJMcCJJniP3jwYAQEBCAoKCjZD1/u50SAJO8tFy29QEnJvrSJiEhIENQ6JCjdpUycnDRoVzkIbSsVxLoTt/DNhrM4fuMhvtlxCz+61cTrtf9SgZL3gf8BYSeAP/sABSvrA6UKzwGnVnCtN7Iqhu/ApBOWHJGfn1+24wGTc5CKFy+ON998E6NGjUJOSZmDJGRav6zb8u2336p96cmSUuRDhgxRq/xaGitpE9kf+XO44WQYpm84g2PX9TNVPV2d8XodfwxyWw3v/34EYp7MYM0bDDy4ksZZuNYb5T5JHUlZfNFRuLq6ZthzZLEcpPv376N79+6wNEmcPnfuXOK+JJ7JrDR/f38VCMkUf0nKrl27tgqUZGE7SbyWWW1ERFn9x1irkIJoWTEQG0+FqR6lI9ce4Nudt/Gjax28XqsNBnushveBH9MJjoT8m1MDrB4NVHiWw22UKyRAyM7wEmWhB+m1115TycyDBg2yXKuerM3SvHnzVMclKJo3b566/91332Hq1KmqeKXUPJoxY4bqWcoJ7EEisn/y53Hz6duYvuGsWvdNuLs4YXz5y3jpvBG96FzrjcjqWGyxWqkHJDWInn32WVVRO2WGuKyu6wgYIBE5DvkzueXMbdWjJGu9dXLaiRlu32X+wm7/B1R5ISeaSES5HSBJTYF0T6bR4MKFC3AEDJCIHI/8udx29g7WrvwTnz0Yk+nzE7r+COdqPXKkbUSUywES6TFAInJcu87eQvHf6iMI9/BkQlyatBoXONV5DXjmPcCnQE42kYiy+f3NqmdERCYKexSf8VpvOuB4QjCcdPHA3h+AGdWBzZOBmIjcaTAR5UyhyGvXrqkFXq9cuaKW/UhK8pOIiBxlrbdxrr+gMO4lW+ttQlwv9fjkyvfQ88H/QXPjP2DzJGDfT8Az7wO1+gIubrl6DUSUMZOH2GSh2k6dOqlK1LKsR+XKldV6J3KamjVrYuPGjXAEHGIjclymrPVWoaAPvqx0CZVOTYfm3pMczXwlgBYfA5We5/IlRPYyxDZmzBi8++67OHr0qFoAbvHixbh69apa7DUn6iMREVnLWm/CsNbbMm1DdSv7kpbUpXoR+Hq44NStSDy3MQCvuM3AlYafAd6BwP1L+nXe/tcUOLdBPyZHRLbdg+Tr66sKNpYuXRr58uXD9u3bUalSJbWuWefOnVVvkiNgDxIRrT52M9Vab4WSrPUWHhWLWZvPY+7OS4iN169b2TkkL8YW2IL8/80CYp/kJJVsCrQaDxSpmVuXQuQwHlqqkra3t3di3lGhQoVw/vx5FSCJO3fuZKfNRER2tdabn5cbxnSoiD4NS+DrdWew+OA1LD3xACucaqBfjQUY4b4cXofnAhe3AD82Byp11Q+95S+tfwMuhEtkOz1Ish6aFIkcMGCAGmpbunQp+vbti7///lv1KK1fvx6OgD1IRGSq06ERmLrmFNaf1C8k6uHqhOF1PNAvdgHcji3SL1Pi5ALU7A0UrqFP7OZCuES2UQdJCkHKOmlVq1ZVa5+NHDkSO3fuRNmyZdUMNlnM1hEwQCKirNp36R4m/3sKBy7fV/v5vFzxUR0dutz9Cc7n1qZc1S3Jvka/z4VwibKMhSItjAESEWWH/Oldd+IWvlhzGufCItWxIn6emFgzHM/sfgMabdorsasgSXqShh3lcBtRFrBQJBGRFZOlmdpUCsLqd5pgSrcqCMrjgevhj1VSd3rBkXqd9Cs9vK7PTSIi6yoUSURE5uHi7ISedYLRqVoRzNt5CRc27TbqddqIUP4Ll8iC+PtFRGQFPN2cMbhZafRsXtuo54fvmQ9E3rZ4u4gcFQMkIiIrcj1vDdzQ+ada483AkDXqf30j8G1NYOe3QHzyJZ+IKJcDJEkyZI43EZH5BObxznghXABT47oj0r8SEPMQWPsR8H094NQqVuQmyu0A6ZdffkGVKlXg6empNpny/+uvv5qzXUREDkkKTR7xfQZvxg1DKPyTPSYL4coCuTMTuuKF+M9xtsEUfQFJWePtj5eAXzoDt47nWtuJ7InJ0/yl1tHHH3+MIUOGoFGjRuqYLDcyc+ZMfPbZZxg+fDgcAaf5E5EllzAZ/NtBOEGLOkkWwt2nrYAEOMHLzRlRsQnquc+W98XnAevgd+gHICEG0DgBtfoCzT8EvANy+1KIHKcOUsmSJTFhwgT07q3vAjb4+eefMX78eFy8eBGOgAESEeXWOm/1S+XH9PVn8evuy0jQ6uDqrME7tdzwRswvcDu9VP9k97xA0/eBum8ALm65dyFEjhIgeXh44NixYyhTpkyy42fPnlXDbtHRT3+Z7RkDJCKyNAl+0lvnTZwLi8DnK09i02n9bDZ/bzdMrvUQra9Mhyb0iP5J/qWANp8D5dtL8aXcuhQi+y8UKYHRokWyZlByCxcuVMuNEBGReUgw1KB0fnSuXkTdJg2ORJlAX8ztVxfz+tVBmUAf3HsUize2eqBD1Cc4U39y8vykX7ukzk+SxXAvbgOO/qW/lX0iyloP0uLFi9GzZ0+0atUqMQdpx44d2LBhgwqcunbtCkfAHiQisibxCVrM33sF09adQXiUvhL3s+V98Fn+tch3+Mck+Un9gOYf6Ctxrx7FxXDJ4Ty05FpsBw4cwNdff42TJ0+q/YoVK6pFa2vUqAFHwQCJiKzRg6g4fLPhLH7ZdQnxWh1cnPT5SYNif4br6WX6J7l4AfFRabz6SQ8VF8MlO8bFai2MARIRWbPztyMxceVJbDgVpvbzebmq/KQ2l7+GJuxYBq/U6HuSuBgu2SmL5SA5OzsjLEz/C5fU3bt31WNERJT7Shfwwf/1rYNf+tdFuYI+uB8Vh4HbPPF+RM9MXsnFcImyFCCl1+EUExMDNzdOJSUisibPlCuAVUOb4NPOlVQvUsyDW8a9MNLI5xHZKRdjnzhjxgx1q9Fo8NNPP8HHxyfxsYSEBGzduhUVKlSwTCuJiCjLXJyd0KtBCXSqVgRLltwCzmT+mgSvQHBMgByZ0QGSJGUbepBmz56dbDhNeo5KlCihjhMRkXXK6+WKcnXa4sZpfwThHlJUDUgmYt0U+OUtDAQkr3lH5CiMDpAMFbKbN2+Ov//+G/ny5bNku4iIyALCHsVhXlxvzHKdrha/TRokyb7sxsMZfqHbgVkNgIZvA03eBdy8crPZRNafg7Rp0ya7CY6+/PJLVKpUCZUrV8Zvv/2W280hIrI4qci9RltXLXqb1mK4g+KGoVXsVNwJegZIiAW2fQXMrAucXC5DCLnWbqKc5rDT/I8ePYo+ffpg586dathQesZWr14NPz8/o17Paf5EZKvLlzSeshGhD6KhgRZ1kyyGu1dbAdon/27O5+mCb2veRKNzU6F5cE3/4jKtgfZTgPylc/ciiKxxmr+9kCKXDRo0UGvLeXp6olq1aipAIiKyZ7JciSx4K3Rwwm5tCJZpG6pb2Tcsinv/cTxe3VEAL7rNQFj1twFnN+DcOuD7+sDGz4HYtApNEtkPqw2QZFZcx44dUbhwYTVzbsmSJameM3PmTJUcLkFOvXr1sHfvXqPPL8NqmzdvRnh4OO7fv6/uX79+3cxXQURkfdpVLoRZr9ZEUF6PZMdlf/arNbH1/eb46NmK8HZzxp6r0ai/pwG+Kfcz4ko01w+7bf0C+L4ecGpVrl0DkdUkaee0R48eqV6d/v374/nnn09zcdwRI0aomXMSHE2fPh1t27bF6dOnERgYqJ5TvXp1xMfHp3rt2rVrERISgqFDh6JFixaqq61+/fosdElEDhUktQ4Jwt6L9xAWEa1yk+qW9E9cEPf1JqXQsVphfL7yJJYdvoGv/9PhF6838V2tTqh/9ktowq/oF8Et1w5oNxnwL5nbl0SU8zlIR44cMfqEVatWhblJD9I///yDLl26JB6ToKhOnTr47rvv1L5Wq0WxYsXw9ttvY/To0Sa/x+uvv64W2n322WfTLYQpW9IxTHk/5iARkb3bee4OPl56DOdvP1L7jYI98U3h9Qg48j9AGwc4uwNNRgCN3gFcPXO7uUQ5txabk5OTClLkqXKbESkaaekAKTY2Fl5eXvjrr7+SBU2SdC1DZkuXLjXqvLJkivQ2Sa9T9+7dcfDgQbi4pN2pNn78eEyYMCHVcQZIROQIYuO1mLPjImZsOIuo2ARVHmBEDWBQ1A9wubRF/6R8JYD2XwDl2ur3tQn6JUukKrdPQaB4Q67vRjYTILmYUgNJ/Pfff3j33Xfx3nvvqSRnsWvXLnz11Vf44osvkBPu3LmjArGCBQsmOy77p06dMvo8nTt3Vj8gb29vzJ07N93gSIwZM0YN6aXsQSIicgRuLk4Y1LQ0Oj0Zdlt59Ca+PAjM834bM2t3Rt3TX0Jz/xIwvwdQvgNQpqW+RMDDG09PIovgtpsChHTKzUshMopRAVLx4sUT70tPiyw70qFDh2TDahIsfPzxx8l6dKydBHbGcnd3VxsRkSMr7OeJma/UxItnb2Pc0uO4cOcRem4PQpPgmZheag3yH/0JOL1KbTI8kXTMQffwJjSLegM9fmGQRPY3i03qB5UsmToZT46dOHECOSEgIEAlVN+6lXwxRdkPCgrKkTYQETmyJmUL4N9hTfBe2/LwcHXCtiuPUXdfU8yuMA86KQmQIjjS7+tU0ITVo/XDb0T2FCBVrFgRkyZNUnlABnJfjsljOUHWfqtVqxY2bNiQeEyStGXfMOxHRESW5e7ijLeal8GGkc3QrlKQKkK5+dApaKQUQDokSMLD6/rcJCJ7muYv0+qlPlHRokUTZ6zJLDdJpF6+fLnZGhYZGYlz584ly4M6dOgQ/P39ERwcrPKBJCm7du3aqFu3rprmL6UB+vXrZ7Y2EBFR5or4eWJ2r1rYfDoMWxfvB9KPjxJpI0KttxAfUVYCJAlGLly4gN9//z0xIbpnz554+eWXVbKzuezfv18t/2FgSJCWoGjevHnqPW/fvo2xY8ciNDRU1TySStgpE7eJiChnNCsfCL8mNYGnnfvpOh8ajrLmrwpDZDYOuxZbdnEtNiKi1Jb+dwV1ljRFEO6pUgApyTeOVItJ0LjAuel7QOPhgAsnwJCdrMX266+/onHjxmoZkMuXL6tjX3/9tdH1h4iIyD4F5vHGhLje6r42xT+/DftHE4rDWRcPbJ4EzG7MfCSySiYHSLNmzVLDXe3bt1drmBkKQ+bLl0/lARERkeOS5UqO+D6DN+OGIRT+yR4LRX4MihuGTnETsaP6F9B5BwJ3zgBz2wPLhgKP7+dau4myPcQma5hNnDhR1Tvy9fXF4cOHUapUKRw7dgzNmjVTRRwdAYfYiIjStvrYTQz+7SCcoEUdp1MIRDjC4Ie92grQJvl3eYvirpiefwnynPhdf0ACpvaTgUrP68fhiGxpiE1mk9WoUSPVcSmiKLPIiIjIsclCuLNerYnAvF7YrQ3BMm1DdVswrxdmvlwDH3aoCE9XZ2y8HIfahzvizyo/Qpu/LPAoDPirP/B7d+C+Pn2DyGZmsUlBSJlun7S6tpAZZDlVB4mIiKw/SGodEoS9F+8hLCIagb4eavjN+UnmdrvKQWoB3M2nb+O9fd74v4BJ+KnadhQ99j1wbh3wfX2g+YdAvUGAs8lfVUTZZvL/dZJ/9NZbbyE6OlotXrt3714sWLBAFYr86aefst8iIiKyCxIMNSidP83Hivl7YW7fOlhx5CYmLD+OU3di0fhOXQytWhtDo2bC5douYO2HwNFFQMdvgMKpRy6IrG6av9RAktXtz58/r/ZlNpusdP/aa6/BUTAHiYjIPB5ExWHy6pNYsPeq2i/g7Yofq55CtZNfQRMdDmicgHqDgeYfAO4+ud1ccpDvb5MCpPj4eMyfPx9t27ZVBRmjoqJUxevAwEA4GgZIRETmJcNxY/4+gvO39fmsncq4YJLXAnif+Uf/hLzFgGe/Asq11e/Lem5SIiDyFuBTECjeEHByzsUrIIcNkISXlxdOnjyZKgfJ0TBAIiIyv5j4BMzafB7fbzqP2AStSuaeVvM22l3+AprwK/onVeoKlG6hr6P08MbTF+cpDLSbAoR0yrX2kwPPYpOlRv7777/sto+IiCjNBXCHtSqHVe80UUndj+MSMHiPP7pppuF2lYGAxhk4/g+w7G3okgZHUqX74U1gUW/gxLJcaz/ZD5N7kBYtWoQxY8Zg+PDhqFWrVqr11wwL2No79iAREVmWVqvDnweuYuKqU3jwOE4tXTK6WgwGnHkDGm1cmq/RQQON9CQNO8rhNsrZITYnp9SdThqNRs1ok1tDZW17xwCJiChn3I6IwacrTmDZ4Ruo73QCf7h9lvmL+qwASjbJieaRnX5/u2SlUCQREVFOKeDrjhkv1cDzNYtg01/7gLQ7j5LRRoRmbbFRoqwGSI6enE1ERLmjWflA+DWpBWzM/LmnHrgiJCcaRXYry+VJT5w4gStXriA2NjbZ8U6dOHuAiIgs47JvNQTq/BGEeyonKT1F9n4GlC7OApOUcwHShQsX0LVrVxw9ejQx90jIfeEoOUhERJTzAvN4Y0Jcb8xynQ6tDsmCJNmX3Uh4IG/EWeDHlkCjoUDT0YCrR242m2yQyUO077zzjlqPLSwsTNVEOn78OLZu3YratWtj8+bNlmklERGRlJop6Y8jvs/gzbhhCIV/ssdCkR+D4oahVfw3iCjTGdAlANu/Bn5oAlzdm2ttJttk8iy2gIAAbNy4UU3nlyxwWYutfPny6tjIkSMdpkYSZ7EREeWO1cduYvBvB+EELeo4nUIgwhEGP+zVVoD2yb/73V2c8G2NG2h9cQo0Umlb+pbqvwm0+Ahw88rtSyB7LBQpQ2i+vr6JwdKNGzcSk7dPnz6dnTYTERFlql3lQpj1ak0E5vXCbm0IlmkbqtuCeb3wWZfKaFI2ADHxWryxLwi93GfgYfnuqkISds8EZjUELm3P7Usge8xBqly5Mg4fPqyG2erVq4cvvvgCbm5u+N///odSpUpZppVEREQpgqTWIUFq/bawiGgE+nqo4TdnJw1eqReMRfuv4rMVJ7H9ejxqh3bDVzWa4Lkrk6G5fxGY9yxQ53Wg1XjAXf8PfqJsD7GtWbMGjx49wvPPP49z587hueeew5kzZ5A/f34sXLgQLVq0gCPgEBsRkXULfRCND/45io2nwtR+nSBn/C9oGfKd+l3/hLzBQKdv9Ou6kcN4aKlK2mm5d+8e8uXLlziTzREwQCIisn7yFbfk0HWMX3ZCLVfi4qTBpBr38MK1KdA8eLL4bY1eQJvPAE+/3G4u2UuAdPXqVXVbrFgxOBoGSEREtkOG4cYuOY7Vx0PVfrVAF/xUdBUKnJinf4JvYeC5r4Hy7fT72gTg8k5AErx9CgLFG3JtNzthsQApPj4eEyZMwIwZMxAZGamO+fj44O2338a4cePg6uoKR8AAiYjI9qw8chNjlx7D3UexqobSJ9Uf4uVbU+F077z+CVV7AqWaARs/BR7qJyEpsgBuuylACIsh2zqLBUiDBw/G33//jU8++QQNGjRQx3bt2oXx48ejS5cumDVrFhwBAyQiItt071EsJiw/jqWH9AFQxQAXzC2xDkHH/w/QadN51ZMUkh6/MEiycRYLkOSkf/zxB9q3b5/s+KpVq/DSSy+pN3QEDJCIiGzbuhO38OE/RxEWEQNJof2oagT6n30LGm18Oq/Q6HuShh3lcJsNs1gdJHd3d5QoUSLVcZn2L9P9iYiIbEHrkIJYN7wputcqCukqWHf0agbBkdABD6/rc5PI7pkcIA0ZMgSffvopYmJiEo/J/c8//1w9RkREZCvyerliavdq+Ll/XZT3emTci1RlbrJ3JheKlKVENmzYgKJFi6JatWrqmBSOjI2NRcuWLVV9JAPJVSIiIrJ2TcsVQK0XmgJ/fJ3pcxO8A8EBNvtncoDk5+eHbt26JTvmiNP8iYjIvhx1roTiOn8E4Z6a4Zaeu9vnIrBwNcAjb042j3KYWQpFWruuXbti8+bNqofrr7/+SjweHh6OVq1aqdIFsr3zzjsYMGCAUedkkjYRkX1Zeug6Vi36H2a5Tlf7SYMkrU4/j01nOJ6nKND5O6B089xrMFlXkrYtksDnl19+SXVcFt3dunUrDh06hD179mDixIm4e/durrSRiIhyl6zntkZbF4PjhiEU/skeC0V+DIobhh6xYxHlEww8vAb82gVYORKINTJ3iex7iE0CiLFjx2LTpk0ICwuDVqtNteyItWnWrJnqQUrJ2dkZXl5eiYnm0pnmAB1qRESUBlnstlBeD6x9UBfrYmqjrtMpBCIcYfDDXm0FaJ/0KTwXOxm/lV2Fwmd/A/b9BJzbAHSZBRTX1wYkBw2QevXqpRapfe2111CwYMFsr78mPThTp07FgQMHcPPmTfzzzz+q4GRSM2fOVM8JDQ1VieHffvst6tatC3OQYbamTZvi7Nmz6j0CAgLMcl4iIrItzk4ajOsYgsG/HYQOTtitDUl8zPBNF+DjhgsPY9HwaAeMDamFvrenwun+RWBue6DhEKD5R4CrR65dA+VigLRt2zZs3749cQZbdj169Eidq3///slmwBksXLgQI0aMwOzZs1GvXj1Mnz4dbdu2xenTpxEYGKieU716dZVDlNLatWtRuHDhTJPOZRberVu31Pu/8MILKvAjIiLH065yIcx6tSYmLD+Bmw+iE48H5fVQwdMz5Qpgyr+n8POuy/jkREH8kfcL/Fp6CQqe/wvY+S1wZi3QdTZQpGauXgflQoBUoUIFPH78GOYiFblTVuVOatq0aSpxul+/fmpfAqWVK1dizpw5GD16tDomOUTZJUGRBGoSAEqQlJIMwSWt/SRJXkREZJ9BUuuQIOy9eE8tciu5STL8Jj1MYkLnymhbOQjv/3UEZ+4/Rr0Hz+PTirXxStg0ON05DfzUCmgyEnjmPcCFBZRtlclJ2t9//z0+/PBDbNmyReUjSaCQdDMnqa0kQ28y0yyxwU5Oal/Wf8su6TWKiIhQ9yWbXYb7ypcvn+ZzJ02apLLeDRtLGxAR2S8JhhqUzo/O1YuoW0NwZNCwdADWDHsGveoXV/sfnwzGcwlTcaf4s4AuAdj6BfBTS+DW8Vy6AsrxAEmGpCQQatGihRriypcvn9rkuNya0507d5CQkJBqyEv2JR/JWBJQde/eXa0XJwUuDcHV5cuX0aRJE9VzJLdvv/02qlSpkuY5xowZo4Iow3b16tVsXh0REdkyb3cXfNqlMua/Xg9F/DxxItwVtU+/gkUlJkDnkQ8IPQL8rxmw/WtAm5DbzSVLD7G98sorcHV1xfz5882SpJ0T1q9fn+ZxSfQ2dnhO1qCTjYiIKKmGZQKwZvgzmLTqJH7fcwXvnyqL3/N9hblFf4f/tQ3A+vHAqZVAl9lAQBn9iyRgkjXdZNkSn4JA8YZcANfWA6Rjx46p5UbSG4oyJ5lRJlPxZSgsKdkPCgqy+PsTEREZw8fdBZ93rYL2lQth1OIjOHwfqHm/P74u3wBdQr+B5to+YHZjoNV4wLcQsGY08PDG0xPkKQy0mwKEdMrNy6DsDLHVrl07x4aX3NzcUKtWLbX2m4HUXZL9Bg1Yb4KIiKxL47IBWD2sCV6qG6yKAww/HYLuTtPwoFAjIP4xsHoU8Gfv5MGReHgTWNQbOLEst5pO2e1BkjwdqUz93nvvqXwdGW5LqmrVqiadLzIyUtVVMrh48aIa9vL390dwcLCa4t+nTx8VmMmQmEzzl9IAhlltRERE1sTXwxWTnpfepCCMXnwE++8D1cPfxHdl6qPD1WnQqAVLUpJjGmD1aKDCsxxus8W12GQWWaqTaDSqArXcSlK1KaTCdfPmqdeykaBo3rx56v53332XWChSah7NmDFD1UTKTVyLjYiIMvMwOg4TV57EH/uuor7TCfzh9lnmL+qzAijZJCea55AeGvn9bXKAJDO/MlK8uH7Ko71jgERERMbafDoMGxZ9j08Tvs78yd3+D6iSuh4f5ez3t8lDbI4SABEREZlLs/KBqPlCU2Bh5gFSgncgOMCW+0wOkMT58+dVLtDJkyfVfkhIiMpLKl26tLnbR0REZBeOu1RCcZ0/gnAPKepOJkrQaXDu0mWUL5XTraNsz2Jbs2aNCoj27t2rErJl27NnDypVqoR169aZejoiIiKHEPYoDhPieqv72hTJLbIvCS/OGh3Kbx0CLB4APL6fOw2lrOUg1ahRQy0WO3ny5GTHZV00WRz24MGDcATMQSIiIlPsOn8XL/24G22d9mKc6y8orLmX+NgNXX5MjHsZFZyu4C3X5dDotPp6SZ2+Bcq2ztV22xuLJWl7eHjg6NGjKFu2bLLjZ86cUb1J0dFPVz+2ZwyQiIjIFAlaHRpP2YjQB9HQQIu6TqcQiHCEwQ97tRWggxOC8npg+yt54Lx0EHD3SQmcmr2BNp8DHvyuycnvb5OH2AoUKJDm8hxyTNZmIyIiotRkwdtxHUPUfQmGdmtDsEzbUN3KvpDHnYPrAAO3AfXf1L/w4C/ArEbAxa252XyHY3KS9oABA/DGG2/gwoULaNiwoTq2Y8cOTJkyRRV1JCIiorS1q1wIs16tiQnLT+Dmg6cjLtJzJMGRPK64eQHtJgHlOwBL3wTCrwA/dwTqDQJajtM/ThZl8hCbPF1msH311Ve4cUNfKr1w4cKqsvbQoUNtYvFac+AQGxERZWe4rcLH/yIuQYcZL1bHs1ULqx6mNMVEAGs/Bg7M1e/7lwa6zgaK1YVd0lp2IV+L5SAlFRERoW59fX3haBggERFRdlT8eDUexyVg2/vNUczfiB6hs+uBZW8DETcAjRPQcCjQ/APAxR1248Qy/Xp1FlzI12I5SLJW2tmzZxMDI0NwJMcuXbqUnTYTERFResq2At7cCVR9EZBZbjumA/9rBtxInRdss8HRIutZyNfkAKlv377YuXNnquNSC0keIyIioswZMlJMGsfxzAc8/wPQ8zfAKwAIOwH81BLYPAVIiEs+THVxG3D0L/2t7JuT1sznl9dLz1G6C/lCv5Cvua/DnEna//33Hxo1apTqeP369TFkyBBztYuIiIjSU7EjENwAWDEcOLkM2DwROL1Kn5t056xlh6lOLINu9Shokpxfl6cwNKaeP+4x8OCaPgH93IbUPUfJ6ICH1/W5STm0kK/JAZIkYRtyj5KSsbyEhJyL7IiIiGyZISVbl2aviRG8A4AevwDHFgMrRwI3DwGzGwPa+NTPNQxTyfOzEySdWAbdot6qzUlTynUS3CzqDU3S88dEAg+uAuGyXX5y/8qT/SvAozDT318St3OIyQHSM888g0mTJmHBggVwdtZnlUtgJMcaN25siTYSERFReuN0VV4AijfSJ3CfS2/JLwnCNPphqgrPZm1WmDYBj5e/C3edLtVacpKvI3O+Eha/Duet5fU9Q4+fVgpPl6s34BcMuPkA1/dl/nyZ1WatAZLUO5IgqXz58mjSRN/NtW3bNpUVvnHjRku0kYiIyO4YyuJkfS55EnkKAY2GZhAgJRmmkqKTUkdJepokp0fdGrYEfS6TNsn+k/s6bRw8VcPTux7AOSEGCD3y9KBHXiBvsD4I8iumv8375FY2yamSF8r7TK+s7+lKs0dNox8mlCn/1hogyUK1R44cwXfffYfDhw/D09MTvXv3VvlH/v7+lmklERGR3Q6xmUmkkUNWt09m6fQaI593veLrKNK0nz4gkgDJGNKjJTlMMgyo3kmX+p3bTTZrPSSzB0iGwpATJ040f2uIiIgoa4wdfpLaSUFVAScXfcChbl3S2HdNtr93+1rU3Tcs09NvQQ10LxACV2cTJ8pL7pLkMKWZYD7ZbHWQLBogERERUTYlTvM3Ux+SDD9JMJHZMFWTd7PUE5NQ7lnc2PsJgnAvVQ6S0OqAUOTHR//lxdTT69WyKR2rFkK9UvnTrxKekgRBkiNlwUraxmKAREREZA8sPExVt3QBfOj6OibGfaGCoaQxj+yLybo+yOftjruP4rBg7xW1Bfi449kqQXiuWmHUCs4Hp8yCJWlfDk3lz7AZud0AIiIiR2T2HKSkw1SStJ2U9Bxlc4q/s5MGzbr0x5txwxCK5DnH0nMkxzv0eAN7PmiF31+vhxfrFENeT1fciYzBz7suo/vsXWg0ZSM+W3ECh6+Gp9tzJuvU7Tp/F0sPXVe3sp8bsrUWmyPjWmxERJQdVcevwcPoeGwY2RSlC/jYzIKvq4/dxHt//odKcccRiHCEwQ9Xfarh405V1LBaUrHxWuw4dwfLj9zA2uO3EBnztEZTsL8XnqtaCM9VLYyKhXzVrD4594TlJ3DzQXTi8wrl9cC4jiGpzm3Vi9U6MgZIRESUHdUmrMWDx3FYP6IpygSaOUCysMn/nsTsLRfQtFwABjUtg7ol/TPNM4qOS8CWM7ex/PANbDgZphbqNShdwBsVgvJg5VHJn0rOcNZZr9Y0S5Bk7Pe3UTlINWrUSKzXkJmDBw8a30oiIiIHZeTXqlXSPGl8qQI+aFA6v1Gv8XB1RttKQWqLio1XQdKKIzew6fRtnL/9SG0ZlLhUPUutQ4KMT/jOJqMCpC5duli+JURERA7JdgdyNEZXR0rOy80FHasVVltEdBxmbT6P7zefz/AnJMNuey/eMzogy5EAady4cZZvCRERkSMmadtgfKQzY5t9PVxRPsjXqOeGRTzNTbLaaf4HDhzAyZP6apyVKlVSw3BERETkODRmGu0K9PUw6/NyJUAKCwvDiy++iM2bN8PPz08dCw8PR/PmzfHHH3+gQIEClmgnERGRfa7FBtujM3OrJclbZquFPohOr8QlgvJ6qOdZbR2kt99+GxERETh+/Dju3buntmPHjqms8KFDh1qmlURERGR1NGY6jyRey1T+tM5p2JfHcypBO0sB0urVq/H999+jYsWKyRawnTlzJv79919zt4+IiMgu2XIOEnTmn4knU/hlKr/0FCUl++aa4m/RITatVgtXV9dUx+WYPEZERET2TWeh80oQJFP5ZbaaJGRLzpExNZasogepRYsWeOedd3DjxtOVdq9fv47hw4ejZcuWsEZdu3ZFvnz58MILLyQ7fvr0aVSvXj1x8/T0xJIlS3KtnURE5DgMvS/mzufJSRoLFHOSYEim8neuXkTd5kZwlKUA6bvvvlP5RiVKlEDp0qXVVrJkSXXs22+/hTWSgO6XX35Jdbx8+fI4dOiQ2rZv3w5vb2+0bt06V9pIRESO5kmStg3GRzpbbLSlh9iKFSumqmWvX78ep06dUsckH6lVq1awVs2aNVOz7jKybNky1QMmQRIRERFlzoaLgZu/B8nQpSY9LTKjTbbsBEdbt25Fx44dUbhwYXXetIa4JAFceqw8PDxQr1497N27F+a2aNEi9OzZ0+znJSIiynCIzQY7Y3Q22OYcCZA2bNiA5557LnGITe5Lj1JWPHr0CNWqVVNBUFoWLlyIESNGqGre0nMlz23btq2qx2Qg+UOVK1dOtSXNk8qIDA/u3LkTHTp0SPc5MTEx6nlJNyIiIoemgd0yeYhNpvhLTo8kPMut2L17twouvv76a7z11lsmna99+/ZqS8+0adMwYMAA9OvXT+3Pnj0bK1euxJw5czB69Gh1THKIsmPp0qVo06aN6qFKz6RJkzBhwoRsvQ8REVGqaf42mKStg/0zuQdp4sSJKhBasGCBKgwp2/z589UxecycYmNj1ZImSYfwnJyc1P6uXbtydHhtzJgxePDgQeJ29epVs70/ERGRIy1Wa5cBkiwr0q5du1THpQdGAgdzunPnDhISElCwYMFkx2U/NDTU6PNIQNW9e3esWrUKRYsWTRZcSZslp0mG7TLi7u6OPHnyJNuIiIgcOQdJY7/xkelDbJ06dcI///yD9957L9UwleQiWaOM8qPy5s2LW7du5Wh7iIiIbJnOAQbZjAqQZsyYkWxZkc8//1xNm2/QoEFiDtKOHTswcuRIszYuICAAzs7OqQIY2Q8KCjLrexEREeUkexie0sDBAyTJL0pKqlKfOHFCbQZ+fn4qcfqjjz4yW+Pc3NxQq1YtNWuuS5cu6pgsZyL7Q4YMMdv7EBER5TR7GGKDowdIFy9etFgDIiMjce7cuWTvJbPS/P39ERwcrKb49+nTB7Vr10bdunUxffp0VRrAMKuNiIiIcofGjruQTM5BSqvUeHbWYtm/fz+aN2+euC8BkZCgaN68eWp22e3btzF27FiVmC01j1avXp0qcZuIiMiW2PI0f0eQpUKRsq5ZlSpV1OKuslWtWhW//vprlpcBkUAr5SbBkYEMp12+fFkVa9yzZ4+qpk1ERES5S2PHWUgm9yBJ4caPP/5YBS2NGjVSx2Sh10GDBqlp+cOHD7dEO4mIiOyKYfTFFvN5dIkjSLBbJgdI3377LWbNmoXevXsnm/pfqVIljB8/ngESERGRndPB/pk8xHbz5k00bNgw1XE5Jo8RERGRYwQbGtgvkwOkMmXKqKU50lpUtmzZsuZqFxERkYNM87e9EElne022/BCbLNgqM8u2bt2amIMkRSKlNlFagRMRERHZKY399iGZ3IPUrVs3NZNMqlwvWbJEbXJf1jPr2rWrZVpJRERkrz1IsD06m2x1DtRBkurWv/32m/lbQ0RERDZDA/tlcg/SwYMHcfTo0WSL1MoyIB988AFiY2PN3T4iIiK7riFki/k8Ohtss8UDpIEDB+LMmTPq/oULF1Q+kpeXF/7880+8//77lmgjERERWSGNHXchmRwgSXAky30ICYqaNm2K+fPnq8rXixcvtkQbiYiI7Di4sL3uGJ0DVNI2OUCS6YharVbdX79+PTp06KDuFytWTFXSJiIiIvsertLZYJstHiDVrl0bn332mVp7bcuWLXj22WfV8YsXL3IBWSIiIiPZQ9+Lxh4uwlwB0vTp01WitqzF9uGHH6rCkeKvv/5Ks8I2ERERZbAWG2yRDvbO5Gn+VatWTTaLzWDq1KlwdnY2V7uIiIjIymlgv7JUByktHh4e5joVERGRwwQXtpjPo7PBNlt8iI2IiIhIMAeJiIiIzMsOFqvV2HGExACJiIiITKJzgCRtkwOkTz75BFFRUamOP378WD1GREREJuQg5XI7yEwB0oQJExAZGZnquARN8hgRERGZMM3fBiMknQ22OUcqaac15nj48GH4+/ubq11ERERk5TT2m4Jk/DT/fPnyqcBItnLlyiULkhISElSv0qBBgyzVTiIiIjsdYrO97hgd7J+LKRW0pfeof//+aigtb968iY+5ubmhRIkSaNCggaXaSURERFZGY8elIo0OkPr06aNuS5YsiUaNGsHFxWw1JomIiBxO4kCMDXbH6GywzRbPQfL19cXJkycT95cuXYouXbrggw8+QGxsrLnbR0RERFZKY78dSKYHSAMHDsSZM2fU/QsXLqBnz57w8vLCn3/+iffff98SbSQiIrLb4Slb7IzRPWm1HcdHpgdIEhxVr15d3ZegqGnTppg/fz7mzZuHxYsXW6KNREREdssmh6t0sHsmJxJJorZWq1X3169fj+eee07dL1asGO7cuWP+FhIREdkhexie0ljgGhK0CTgYdhC3o26jgFcB1AysCWcnZ1h9gFS7dm189tlnaNWqFbZs2YJZs2ap4xcvXkTBggUt0UYiIiK7xWn+T62/vB6T907GrahbiccKehXE6Lqj0ap4K1j1EJtM9z948CCGDBmCDz/8EGXKlFHH//rrLzRs2NASbSQiIiI7n+a//vJ6jNg8IllwJMKiwtRxedyqA6SqVavi6NGjePDgAcaNG5d4fOrUqfj5559hba5evYpmzZohJCREtV3yppLq2rWrKoL5wgsv5FobiYjI8dj2UiM6sw+rSc9RWr1phmNT9k5Rz7PaACk9Hh4ecHV1hbWRek3S63XixAmsXbsWw4YNw6NHjxIff+edd/DLL7/kahuJiIgcOQfpYNjBVD1HKYOk0KhQ9TybC5BkLTZn55xPospMoUKFEmfdBQUFISAgAPfu3Ut8XHqXpLYTERFRTrLhOpEwd5slIducz7OqACmrXW5bt25Fx44dUbhwYdXduGTJklTPmTlzplrKRHqp6tWrh71792apfQcOHFDrxsmMOyIiIsoanZkjJJmtZs7n5egstueffz7DxyUnKekCtsaS4a5q1aqpNd7Seo+FCxdixIgRmD17tgqOZLisbdu2OH36NAIDA9VzpIcoPj4+1WtlSE0CLyG9Rr1798aPP/6IrIiJiVGbwcOHD7N0HiIiImH4yjR3Pk9O0phpjE2m8udxy4OHsQ/TTQaX2WzyPKsLkJYvX47WrVunO5Vfemayon379mpLz7Rp0zBgwAD069dP7UugtHLlSsyZMwejR49Wxw4dOpThe0hgI8uhyPOzOtNu0qRJapFeIiIic7LF8Ehn5vPtvLETkbGRGc6UG1V3VI7WQzI6QKpYsSK6deuG1157Lc3HJUhZsWKFOdum1naTYbExY8YkHnNyclI1mHbt2mXUOSQy79u3L1q0aIFevXpluS3SBunJStqDxKE6IiJy6EKRyL4jt49g5JaR0EKLmgVr4nrE9VR1kCQ4yuk6SEYHSLVq1VL1j9ILkNzd3REcHGzOtqnK3NIzlbLXSvZPnTpl1Dl27Nihhulkir8hv+nXX39FlSpV1H0JtiTBXIb6ihYtqsoANGjQIM3rk42IiMisNYRssAtJZ6ZhwYsPLuKtDW/hcfxjNCrcCN+2+BZOGifbqqQtQ1sZDaNJD5NU07Y2jRs3TlwaJS2yXAoRERHlbC/YrUe3MHDdQITHhKNy/sqY1mwaXJ315YLqBNVBbjM6QMqN3hOZki+lA27dSl4bQfZlyj4REZHNJ2nbYBeSLpuvl2TsQesH4eajmyiRpwRmtpoJL1cvWBOzTvM3Nzc3NzW0t2HDhsRj0hsk+2kNgxEREVHO0WThNdHx0Xh7w9s4F34OBTwLYHbr2fD38Ie1MXmxWnOLjIzEuXPnEvdlmE4Svv39/VVOkyRG9+nTRy2SW7duXTXNX/KFDLPaiIiIbLpQpO11IMHQhWTqNP94bTxGbR2lcox8XX0xq9UsFPEpAmuU6wHS/v370bx588R9w0wxCYrmzZuHnj174vbt2xg7dixCQ0NVzaPVq1enW26AiIjIlthigKTLwiCbJHZ/tvszbLy6EW5ObvimxTco718e1irXAyRZ6iOzbPghQ4aojYiIyG7YwTx/jQmXMPPQTCw+u1jNUpvyzBSrSMQ2Ww5SXFycWvz12LFjlmsRERGRA7Dptdh0pj3/j1N/4IcjP6j7H9b7MMdrGlk8QHJ1dVV5QVmtmk1ERET2Q2PEc9ZeWouJeyaq+29WfxM9yveALTB5FtuHH36IDz74QK1tRkRERI63FpvOyCbvvbkXo7eNVjlLPcr1wKCqg2ArTM5B+u6779SsM1kEtnjx4vD29k72uFTbJiIiIgegSb8P6eTdkxi6aSjitHFoFdwKH9T7wGyL21plgCSLvhIREZED5yBB3+r0wp2rEVcxeP1gPIp7hNoFa2PyM5NzZbmQHA2Qxo0bZ5mWEBERkc0Psd15fEctIXI3+i7K5yuPGS1mwN3Z9tYyzfI0/wMHDuDkyZPqfqVKlVCjRg1ztouIiMiuGYabbDAFKVHKETPpMXpz/ZuqB0kKQEohSF83X9gikwOksLAwvPjii9i8eTP8/PzUsfDwcFXs8Y8//kCBAgUs0U4iIiI7pbOLFsclxGHYpmE4ee+kWjrkh9Y/oICX7cYEJs9ie/vttxEREYHjx4+rmWyySV2khw8fYujQoZZpJRERkZ2xnXTl9GmeXIVWp8WH2z/E7pu74eniie9bfo/ieYrDlpncgyTLfKxfvx4VK1ZMPBYSEoKZM2eiTZs25m4fERGRnU/zh83R6rRw9jqP4w/vYu/NClh/ZT3+vfQvXDQumN5sOioFVIKtMzlA0mq1qmBkSnJMHiMiIiL7tf7yehzCJ/Aqfh/LbkBtBp81/gwNizSEPTB5iK1FixZ45513cOPG05/I9evXMXz4cLRs2dLc7SMiIrJLhuEpS3QgJWgTsC90H1ZdWKVuZd9cwdGIzSMQi/tpPm6Ls9XMWiiyU6dOKFGiBIoVK6aOXb16FZUrV8Zvv/1miTYSERGRCUHM5L2TcSvqVuKxgl4FMbru6GytgZagTVDnNdRASivgm7J3CpoXa25zNY/MEiBJUCTVsiUP6dSpU+qY5CO1amX9C88RERFZDQvkIBl6eFIGMWFRYer4tGbTjAqS4hLicC/6XrLtUNihZEFXSvKeoVGhOBh2EHWC6sAhAiR/f3+cOXMGAQEB6N+/P7755hu0bt1abURERPZGekvki/521G01Vb1mYE2L9Yqk1yNjzh4ew7HPdn8Gb1dvPIh5oAo5JgZAj+/hfsz9xPsRcRFZbof8zOyBUQFSbGysmsYvAdLPP/+MKVOmwNfXNgs/ERER5cYQlaWn+UtAl1EPj5Cg6I11bxh1PmeNM/J55FM1jWSTRXX3hO7J9HW2XPvI5ACpQYMGag22WrVqqR+Q1Dvy9PRM87lz5swxdxuJiIhyhLmGqExhriG2c/fPGfW8QM9ABOcJVkGPBED5PfLrgyBPf+Rzz6du83vkVxWwnTROyXqo2i5uq34WafVSSQ6SBJLS2+YwAZIkX3/99dc4f/68Ko3+4MEDREdHW751REREOSSzISpzJyGbY2F7qUckxRkXnV6ETVc2GfUaWTg2KzlCzk7OqhdNAkX1I9KknpE3qu4ou0jQNjpAKliwICZPnqzulyxZEr/++ivy589v6bYRERHlmMyGqMydhJydaf7h0eFYen4p/jzzJy4/vJx43NXJFXHauHTfL7s9PK2Kt1K9aO9v+gRxSab6y3klODJ375pNzWK7ePGiZVpCRESUi4xNLt55YyeqFagGN2c35CRJcTly54jqLVp9cTVitbHquCRddyzVET3K91DBkurhSZH8bc4enlbFW6GKzgfbr+zFq43y4blKFSyaxG4zARIREZE9Mja5+KejP+H3k7+rXqSGhRuicZHGCPYNVikoWVtqJOM+pKi4KKy6uEoFRrIQrEEF/woqKHq25LPwcvVSx8rmK6t6eNJKMjdrD4/OCQlRpVHFrxrqBBWFPWKAREREJAGSZwE1cytBl37VaU9nTxWMyGywrde2qk0U9SmKRkUaoVHhRqhbqK7q1cks3ylScxouea7hQqQGCdqgVD0wknS96MwiLD+/HJFxkeqYm5Mb2pVspwKjqgFV0wzKJAiSPClLlinQwf4xQCIiIocnw2bvbXkv3eDIMEQ1sclEtAxuiTP3z2DHjR3YeX0nDoQdwLXIa1h4eqHaXJxcUCOwRmLvUvl85ZMFMollBFxvwbMIMOf8H1h5c5pKgG5atKla+FXOc+DWgcTXSA+VBEWdS3eGn4dfptcjwVBOFGvUwH5pdJn17SURHx+P+fPno23btipx25FJXai8efOqGX158uTJ7eYQEVEWyFfgLyd+wbQD09SMMOmVeb7s85h1eFayIaogr6B0h6hkCEzWO9t+fbsKmq5GXE32eIBngAqWpHdJ8obG7hibbnFIH1efxN4i6c1qVqyZCozqF6qfbMp9buv1f3uw7ewdfNW9GrrVKmqX398mBUjCy8sLJ0+eRPHixeHIGCAREdm26PhojN81HisvrFT7Xcp0wUf1P1ILrmankvaVh1cSe5eksOLj+McmtauARwG8UP4FdCvbDQW9rbMzoteTAGlaj2p4vqZ9BkgmD7HVrVsXhw4dcvgAiYiIbNfNyJt4Z9M7KunZReOC9+u+jxfLv5g4FJadISopwijbSxVeQmxCLP4L+08FTOsurVNDcZn5vMnnaFC4QZbem8zH5ADpzTffxIgRI3D16lVVWdvbO3kiWtWqVc3YPCIiIvPaH7ofI7eMVOuOSeXor5p9ZbF8HSkFUK9QPbVVyFcBo7aNyvQ196Of1heydho7TkIyOUB68cUX1a0sN2IgEbeM1MltQkL62f9ERES5Rb6n/jj9B77Y+wXidfGo6F8R05tPR2GfwlZVRsAW1jLTOcA0NhaKJCIiuydDXZ/v+Rx/n/1b7bcv2R4TGk6Ap0va64paguQxST0ie1jLTPek/YbZffbI5ACJuUdERGRLJCAZvnk4jtw+omaCDa85HH0q9TG5sGN2JV3LTAILS1W6zkka+42PkKU5g7Jo7dtvv41WrVqpTYbb5Jg1klypZs2aISQkROVH/fnnn8keL1GihDpevXp1NG/ePNfaSURkb2QmmEx/X3VhlbqV/Zx2+PZhvLjiRRUcyer037f8Hn0r983x4CjlWmaBXoHJjkvPkRy3lbXMdBxiS23NmjXo1KmTCigaNWqkju3YsQOVKlXC8uXL0bp1a1gTFxcXTJ8+XbU3NDRUJZZ36NAhWXL5zp074ePjk6vtJCKyJ4nFEFMsdyE9KDkVBPxz9h98uvtTtXhrGb8y+Kb5N2p2WW4zVLruPu93HAm9ikGNamB4k7Y21XPkCEwOkEaPHo3hw4dj8uTJqY6PGjXK6gKkQoUKqU0EBQUhICAA9+7dSzX7joiIzBccyTBSyjwbGeqS45buKZGASBKxJSFbSOXrzxt/nunyHzlJgiFfVED8w/wo7l3F5oIjnQP0IJk8xCZFIl977bVUx/v3748TJ06Y3ICtW7eiY8eOKFy4sOryXLJkSarnzJw5Uw2FeXh4oF69eti7dy+y4sCBA2qWXbFixRKPyXs2bdoUderUwe+//56l8xIRkZ4Mo0nPUVpJyIZjU/ZOsdhwm0zdf2PtG4nB0ZDqQ1RAZk3BkT3l72js4SLM1YNUoEABVSiybNmyyY7LscDA5GOqxnj06BGqVaumAqznn38+1eMLFy5UdZdmz56tgiMZLpOlTk6fPp34fjJ8JsugpLR27VoVeAnpNerduzd+/PHHZM/Zvn07ihQpgps3b6p8qipVqqRZyykmJkZtSStxEhFRclJ9OumwWlpBUmhUKHbf3K0Wd82OlNWuZUaa9FDdfHRTBUSTm0xWS3VYK0NoYYudMTqbbLWFA6QBAwbgjTfewIULF9CwYcPEHKQpU6aoQMZU7du3V1t6pk2bpt6zX79+al8CpZUrV2LOnDlqWM8QnGVEApsuXbqo5xvabCDBkZBhOMlNOnjwYJoB0qRJkzBhwgSTr4+IyJFIsGKMQesHqZykYr7FVF6Q3Bb1LapuZcvjlsfkHCeD4nmKY0bzGSjlVyrL10HGsd/+oywESB9//DF8fX3x1VdfYcyYMeqY9NKMHz8+WfFIc4iNjVXDYob3EU5OTqqnZ9euXUYXBuvbty9atGiBXr16peq90mq16noiIyOxceNG9OjRI83zSBuSBoDSg5R0qI6IiEwrcijBjWz7b+1P9Vhe97xqBfukQZNhOxx2WFXCTq8X442qb9hEcJQ4PGWDnTG6J2224xE20wIkGcaaP38+Xn75ZZWoHRERoY5LgGEJd+7cUTlDBQsmX6xP9k+dOmXUOaR3S4bppFfIkN/066+/qqG0W7duoWvXruqYvI/0VEkuUlrc3d3VRkRE6ateoDo8nD0QnRCd5uOGYojzn52PG49uqJXv1fbwyW3EVdyNvosHMQ9wNOYojt45atL7y/m/Pfgtni35rM0kPtvicJUO9s/F1CnzgwYNUonalgyMzKlx48aqlygtpUqVwuHDh3O8TURE9kh67L/c/2WGwZGhGKL0NMlWrUC1VM+Liot6Gjil2G5E3sgwoDDkOElukqXWVzMXe+h80djFVZhpiK1u3br477//cqSitkzJd3Z2Vj09Scm+TNknIiLrMevwLMw/NV/df6XiKypPKGUdJAmOMpvi7+XqhfL+5dWW0vJzy/HBjg/MlgtlDWxyyrwOds/kAOnNN9/EyJEjce3aNVV0MWU9obQSnLPKzc1NvceGDRtUkrWQ3iDZHzJkiNneh4iIsue3E7+pAEmMqTsGL1d8Ge/Vfi/ZLDNZYyy7w15BPkF2s+CrPeTvaOzgGswWIL344ovqNmlCtiSaSdeq3EoujykkOfrcuXPJFsOVWWn+/v4IDg5WidF9+vRB7dq1Ve+VTPOX5GrDrDYiIspdS88txZR9U9T9t6q/pYIjIcGQuYe57GnBV1vujNHZZKstHCBJAGNO+/fvT7YGmmGmmARF8+bNQ8+ePXH79m2MHTtWLRUiNY9Wr16dKnGbiIhy3oYrGzBu5zh1v1dILwysOtCi72dfC77afveLBvbLpAApLi5OTZdfsWIFKlasaJYGyEKy0vuUERlO45AaEZF12XNzD97b8h4SdAnoXLoz3q39bo5UVjYs+JrWWm/G5DhZi8RZ/jbYGaOzwTZbNEBydXVFdHTasxOIiMhxHL19FEM3DlXrnslaZ+MbjoeTxuTVq7K94Ku5c5zIOLont8xBSuKtt95SVbN/+uknNe2fiIgcy/nw8xi8YTCi4qNQr1A9THlmClyccv77wBI5Trmz1Igtd8doYK9M/j963759ahaZrHMmxRZTzmL7+++/zdk+IiKyItcjr6vFYKWQY5WAKvim+Tdwd2YRXUcbrtLZYqMtHSD5+fmhW7dulmkNERGluxhrbg8h3Xl8BwPWDkDY4zCU8SuD71t+rxaFpayxh+EpjR1cg9kCpLlz51qmJURElOFirJKELDO4ciMJWXqMBq4bqKpZF/Epgh9a/wA/D78cb4c9ssW+GB3sX5Yy6mRNtvXr1+OHH35IXI/txo0bqqYRERFlPziSaewpV6qX2j9yXB7PSbL0x5ANQ3Dm/hkEeAbgx9Y/ItArMEfbYI/sYZkODeyXyT1Ily9fRrt27XDlyhXExMSgdevWak02SdyW/dmzZ1umpUREDjKsJj1HaSXuyjH5Up2yd4qawZUTw21xCXEqKDt0+xB83Xwxu9VsFMtTzOLv6wgSh6dsMJ9HZ3tNtnwP0jvvvKOqWt+/fx+enp6Jx7t27aqSt4mIKOsk5yhlz1F6i7HmRLA2etto7LixA54unirnKK310chxaew4CcnkHqRt27Zh586dap20pEqUKIHr16+bs21ERA7H2EVWZbjN0rOUPt39KdZeXqum8E9vNh3VA6tb9D0dTWKhSNhwHSTYL5MDJFksNq311mTxWhlqIyKirAcltx8bFyBN2z8NFx9cRIeSHVDKr5TZ2/L1wa+x+OxiVfxxSpMpaFikodnfg2x4uEpni4228BBbmzZt1IKxSbvXJDl73Lhx6NChg7nbR0TkEIHRzhs70Xd1X3y5/0ujXiNT7X848gM6L+2M7su7Y86xObgZedMs7fm/o/+Hucf0M5bH1h+LNiXamOW8ZIdJ2hrYLZN7kL766iu0bdsWISEhatmRl19+GWfPnkVAQAAWLFhgmVYSEdlpYCT5PbMPz8bh24fVMTcnN9QtVBfbr29PdzHWSU0mqeP/XvwXO6/vxKl7p9T29YGvVa2k9iXbq6DG38Pf5Db9eeZPTD+o/0fwyFoj0a0c695Zmi0WXdTB/pkcIBUtWhSHDx/GwoUL1a30Hr322mt45ZVXkiVtExFR+l+I265vww+Hf8CRO0fUMalG3b1cd/Sr3E9NoU+vDlLSxVifK/UcwqPDVZ6QBEsHbh1QyduyyWvrF6qPDqU6oEWxFvBx88m0EKXcfrrrU/XY61VeR9/KfXPsZ+KQ7KD3RWMH15CeLC2eI2uwSUAkGxERGR8Ybbm2RfUYHb97XB3zcPZA9/Ld0a9SPxWkmLoYqxRr7FG+h9pCH4VizaU1WHVxFU7cPaF6p2ST4OuZos+oniW5lf20AjCDHuV6YGiNoTnwEyFb7Y3R2WKjLRUgnTlzBuHh4ahbt27iMZnW/9lnn+HRo0fo0qULPvjgA0u1k4jIpgOjTVc3qcDo5L2T6phMm+9Zvif6VOqjii+aYzHWIO8gdT7ZLj24hH8v/YtVF1bh0sNLWHd5ndpkaZCK/hWx/9b+dM8jC9Da8/Rta2EPP2GNXVxFNgOkUaNGqcVpDQHSxYsX0bFjRzRp0gRVq1bFpEmT4OXlhWHDhlmyvURENrNemlanxcYrG1VgdPr+6cTA6MUKL6JPSB/k98xvsXaVyFsCg6sNxqCqg1R+kgzBScAkvUwZBUfyhTd131S0DG6Zq+u+OQJDEGqLvTE6m+z3slCAtH//frz//vuJ+7///jvKlSuHNWvWqH0Jkr799lsGSETkMNLLE3q/zvvqC0RmmZ29f1Yd93LxwssVX0bvkN7I55EvR7+EK+avqLZhtYZhwckFmLxvslGFKE3pvSLHonOAQkhGB0h37txRCdoGmzZtUj1IBs2aNcPIkSPN30IiIiteLy3lv6QlWBq55enfQh9Xn8TAKK97XuQmqWlkbHBmbMFKyrrElUZguzSwX0YHSP7+/rh58yaKFSumikVKj9KIESMSH4+NjbXJqYpEROZcLy3pUNWAqgOsIjBKKmkiuDmeR9lni9+dOttrsuUKRUoP0aeffoqrV6+qQpESJMkxgxMnTqjlRoiIrC2Y2Re6TyUry63sZ+eLTJb4WHBqQYbrpannQqem2VtTcCQkR0qGAdNLrpXjQV5B6nlkWfaQB6+xh4vIbg/S559/jtatW6N48eJwdnbGjBkz4O3tnfj4r7/+ihYtWliqnUREZssRGl13dGItoZQksVqCoCsPr+BKhH67+vAqLkdcxrWIa3gc/9jo97fGYSpJvJbrl+HB9ApRSq0lJmhTRhygA8n4AEl6h06ePInjx4+jQIECKFy4cLLHJ0yYkCxHiYjIGnOEJPiR4x/W/xDBvsGpAqGrEVcRq43NMI/H390fd6Lv2OwwlQSH05pNy7QQJVmWPfS9aGC/XEwtEFmtWrVkxyT3SLaUx4mIrDFHyHDss92fpft6F40LivoWRTHfYgjOE6y/9Q1W9wt7F1ZBUtvFbVWwldZ7SE+MBBvWPExlbCFKsjxbzOfR2WKjLRkgzZ07FwcPHkT9+vVVFe0xY8Zg2rRpiI+PV8Nrf/zxB/Lnt1xdDyIiY0jNn8xyhEQh70Ion688iuV5EgD5Bqv7ctzFKeM/j/YwTGVqIUoyL3vI39HY/iWYJwdJtkaNGmH+/PnYvn07lixZgk8++QROTk4qJ+mjjz7CrFmzLNtiIqI0/jUrS2tsuLJBVaw+F37OqNcNqzlMrVWWFRymIvNN87fd3hiNHQ+yGR0gzZs3D//3f/+Hl156SU3xr1evHhYtWoRu3fQrPVeuXBmDBg2yZFuJiBLFJcRh3619qlL15qubkwUpTnCCFlqL5whxmIrMwRZHq3Q22GaLBUhXrlxB48aN1f3atWurfCQJigykkrbUSSIiMtdSHSlFxkZi+43t2HRlE7Zd24aIuIjEx2QJj8ZFGqNFcAs0LNQQPVb0yJEcIQ5TUZbZQeeLxg6uIdsBUlxcHNzd3RP33dzc4Orq+vRELi5ISMh6fREicjzGTMOXwGnztc2qp2jPzT2I08YlPtffw1/14EhQJAusyir19pQjRI7BFjtjdDbZagsmaUsxyNDQ0MQx/1OnTiEyMjJxKRIiInNMwx++eTieK/kcrkRewZHbR5I9XjxPcRUQtSjWAlUCqqQb5DBHiKydPeTvaGC/TAqQWrZsmWxq33PPPZeYiS/HrTEjXyp/9+rVC2FhYaqX6+OPP0b37t3VY19++aWamSftHj16NF599dXcbi6R1TFlCMyc0/BXXFyReKxqQFU0D26ugqKSeUsa/beGOUJkC2wxn0dng222WIB08eJF2CIJimRplOrVq6ver1q1aqFDhw64cOGCmo134MABFdw1b95cBXx+fn653WQiqwhislqJOj2P4h6pStRSiHHnjZ1GTcPvVbEX+lbui0CvQGQVc4TIWllhn4LpNLBbRgdIssRIZo4dOwZrU6hQIbWJoKAgBAQE4N69e6oqeIMGDeDh4aEek0KXq1evxosvvpjLLSbKvSDGlErUMnyV9PyyRMedx3dUACSbIRi6FnlN3b8Xfc/kNlQOqJyt4IjImtnyNH8d7J9JQ2xpiYiIwIIFC/DTTz+p3hhTE7W3bt2KqVOnqtfKLLh//vkHXbp0SfacmTNnqudID5AEMt9++y3q1q1rclsN7StWrJhqtyyPEh4ernqQNm/ejHLlypl8TqLcZGoQY84hsLE7x6rFX69HXlcBkARCMQkxGZ7Xz91PVaX2dPbE3lt7bXapDiJHH67SPWm0PeRRmT1AksBG6iItXrxYrcv2/PPPq0DGVI8ePVJBT//+/dU5Ulq4cCFGjBiB2bNnq9pLMlzWtm1bnD59GoGB+n9ZyvCZVPNOae3atYlrxkmvUe/evfHjjz+q/ZCQEAwdOlRVAM+bN6+qDi6L8BLZisyCGPnDNWXvFDxT5BnEaGMQFReFqPioVLcy9JXymKxPltkQWERsBOafmp/smLPGGUHeQSoIMizVoe77FFX7vm6+iW239aU6iLLLHobYNHZwDWYJkKQHx1Aw8uHDh+jRowdiYmJURW0JOLKiffv2akuPLGUyYMAA9OvXT+1LoLRy5UrMmTNHJVaLQ4cOZfge0kbplZLnN2zYMPH4wIED1SZef/11lC1bNsNzyGYg10+UmyTnKKMgRgKP0KhQ1Pq9lsXa8EzRZ9C0aFN9MORTDEE+QXB1elr+Iz1cUZ7Itulg/4wOkDp27Kh6jZ599lnVi9OuXTvV4yIBi6XIIrgyLCZrvhnIsiatWrXCrl27jO4G7Nu3r+opktlsScnMNumFkt6ovXv3ZngtkyZNUkNyRNZCErJNIb07Xq5e8HLxUrfeLt76/TSO3X18F4vOLMr0nH0r9c1yAjSn4ZOjs4fhKQ3sl9EB0r///quGpAYPHpxhT4s5SW0lyRkqWLBgsuOyLzWYjLFjxw41TCeVvqWnS/z666+oUqUKOnfujAcPHsDb21tN95cZb+mRIE2G+pL2IEkuE1FukMD/fPh5o577TfNv0KhII7g5uRk9PV6GwLZc22LxITBOwyd6ms9jU3Swe0YHSLI4rQytyTT5ihUrqt4YW5jxJcujaLVpr8lkbC+UkCriSSuJk32x1DR5S5DAaOKeidgbmnGSsyGIkSEwU68lJ4fAOA2fHJU95O9o7OEi0uFk7BMliVkSnGWmmeTt/PHHHyoBWoKPdevWqVlh5iZT8mUY79at5HkWsi9T9onMNRNMEob7r+mPUdtGqVvZl+PWRBKop+2fhheWvaCCI1lWo12Jdml21ZsjiDEMgaWcZi9BV1ZnxxFRauxAsvEAyUCGo2TGmfQoHT16FCNHjsTkyZNVLk+nTp3M2jhZ7016rDZs2JB4TAIy2ZcaRkTmmiafMtnZME3eGoIk6X5fc2kNOi7piLnH5yJeF49mxZphSeclmNp0Kr5u9rXFghh5/ZpuazCn7RxMaTJF3a7utprBEZEZ2EPni8YOrsEidZDKly+PL774QiUwL1++XM0sM5Ws5Xbu3LlkFbtlVpq/vz+Cg4NV3k+fPn1Qu3ZtVftIEsSlNIBhVhuRpafJS45Mbg23XXxwUQ2n7b65W+0X8SmCMXXHoGmxpjmWx8MhMCJL0dhsb4wusQ6S/cp2oUghw2AyjT5lgUdj7N+/Xy3zYWBIhJagSEoK9OzZE7dv38bYsWNVmQGpeSQVr1MmblPus6U8HiFJyMZMk5dryukAQYbTfjz6I+Ydn4d4bbxKsH6tymvoX7k/PFz01d+TYhBDZLs4xGbHAVJ2NGvWLNMM/iFDhqiNHG+5C3MFYFIM8cTdEzh255jajt89ripAG2PpuaUI9g1GQW/LB+Xyu7DhygZM2TcFoY9C1bEmRZqoXqNieThrksie2MPwlMYOrsFqAySyfZZa7iKrAZgsd3Hq3ikcv3NcBUISEMlQVVbXO1p6fqnaqhaoilbBrdRmiWDl8sPLmLRnEnbc2KH2C3sXVknWMnxmzzNFiBydTa7FpoPdY4BE2WLMml2f7/kcFfNXRF63vKoIoZPGyawB2MjaI+Hj6oNjd4+poOjs/bMqkTklWQKjcv7KqBRQSS2CWj5feXRf3j3dWj/C19UXpfKWwuE7h3Hk9hG1TTswDeXylVOBUsviLVHWr2y2ApjH8Y/x09GfMPfYXMRp41Ql6n6V++H1Kq/D08Uzy+clIutmH//s0cBeMUAiiy53IWSF93aL9dPRhVRtloDG281bVW6WW7Xv6q22pPclQPhy/5cZBmDyeEr+Hv6olF8fCMkWkj8EAZ4BqZ6XWa2fTxp9onqoJIjadGUT1l9ZrxZoPXP/jNq+P/w9iucpjpbBLVXAJMFXWgFgWsOD8rxNVzepRPAbj26o5zUq3Ahj6o1R5yQix2CLvTE6G+z1MhUDJMqSyNhIrLq4CnOOGTdz0QlO0EJfsFMtihofBTw2X3sq5quIBkUaqGBIAqNC3oWM6tUxdrkLmUbfs0JPtYVHh6sEb+nZ2nljpxoak5+DbPI6FSwVb4UagTXg4uSS5vBggEcAAr0DVV6UoXdrVJ1R6rUcTiNyDPbwq66xg2tIDwMkMimB+NDtQ1h8ZjHWXl6rhoaM9WObH1EtsJoKrGSGVmRcpNoM9yWJWrak92W79OASzoafzfT8fSv3RYdSHbJ0XaZOk/fz8EPnMp3VJm3cdn0bNlzegK3XtqogSFa4ly2fez6U8y+HPTf3pDrHneg7apNeJJmZNqDKADX8SESOxxb7YnS22GgTMUCiTN2Lvofl55dj8dnFKtnZoHTe0uhSpgt+OfGLGkbLaM2uWgVrqYDD3dMd+T3zG/3eMpwlla0zI0FNdmR1mrwMA0o1a9kkOXz3jd1qGE6Gzu7H3E8zOEo5FDik+hCrLodARJaRWAHfBqMN3ZMm23EHEgMkSptWp1Vf9hIUbby6UdXiEZITJMHA82WfR7UC1dRwUFHfohZbs0t6ciTAsvSiqeYgS39IAUfZ5Of1+8nf08yPSkoCy9yos0REuc8ehqc09nAR6WCA5ECMqSMktXeWnFuCf87+k5g4LGT2V7dy3VRw5OPmk6U8nqzIyUVTzUlyjwp4GterJZ8HETku2+s/cgwMkBxERnWEpMdj69WtqrdIavBI75HwdfNFx1IdVW9Ref/yGZ7fkstdWDIAsyRjh/2yOzxIRLbJHvpeNLBfDJAcQHp1hCTYGL55uJpWL8nRBjLc061sNzWjKq1lLdJjyeUuLL3emCXY0vAgEeUeG0xBQmYrYNgDBkgOXMjRQIIjf3d/dC3bVW3WWoPH1tYbs9XhQSLKGfaQv6Ox/UtIl2kljckuCzmKyc9MxrBaw6w2OLJVhuFBqaOUlPQcmWMJFiKyfbZYdFEH+8ceJDtnbALw/ej7Fm+Lo7LF4UEiIpNKFdghBkh2jonC1sHWhgeJKOeGp2wxnUdnqINkv/ERh9jsnSFROL0oX44HeQUxUZiIKJfYYHwEWxwWNBUDJDtnSBQWKYMkJgoTEeUeex6esgcMkBwAE4WJiKyXLQ+x2TPmIDlYonDt32ojXhePqc9MRevirdlzRESUS+whf0djB9eQHvYgORAJhmT1eCHrqDE4IiLKfbaYz6OD/WOA5KC/iPZQoIyIyJbZw19hjV1cRdoYIBEREeUmG+yO0dlgm03FAMnB2GJXLhGRXddBgi3Sqf/a82AEAyQHZc/dokREtsAeUh00tn8J6WKA5Ghs858qRER2S2eD41U622uyyRggOSh7+JcLEZEts4e/whq7uIq0MUByMMxBIiKyLrbYG6OD/WOA5KDsOeonIrIJdvBnWGMH15AeBkgOhj1IRETWxRb/KutssdvLRFxqJJv/czx8+BC2JOFxArQ6LSIjIuEe757bzSEiclgxUY+gjYnC40eRtvddEi1tj8ejiId46GlbwZLhZ51ZkKfROUIYaAHXrl1DsWLFcrsZRERElAVXr15F0aJF032cAVIWabVa3LhxA76+vnY9I0wibQkE5X+kPHnywJ450rU62vXyWu2XI10vr9U8JOyJiIhA4cKF4eSUfqYRh9iySH6oGUWe9kb+B7X3X0hHvFZHu15eq/1ypOvltWZf3rx5M30Ok7SJiIiIUmCARERERJQCAyTKkLu7O8aNG6du7Z0jXaujXS+v1X450vXyWnMWk7SJiIiIUmAPEhEREVEKDJCIiIiIUmCARERERJQCAyQiIiKiFBggObBJkyahTp06qhp4YGAgunTpgtOnT2f4mnnz5qnK4Uk3Dw8PWLvx48enaneFChUyfM2ff/6pniPXV6VKFaxatQq2okSJEqmuV7a33nrL5j/XrVu3omPHjqoKrrRzyZIlyR6XeSdjx45FoUKF4OnpiVatWuHs2bOZnnfmzJnq5ybXXa9ePezduxfWfK1xcXEYNWqU+n/T29tbPad3796qwr+5fxes5bPt27dvqra3a9fO7j5bkdbvr2xTp061uc92khHfNdHR0ervU/78+eHj44Nu3brh1q1bGZ43q7/rxmKA5MC2bNmi/ofcvXs31q1bp/7gtmnTBo8ePcrwdVLV9ObNm4nb5cuXYQsqVaqUrN3bt29P97k7d+7ESy+9hNdeew3//fef+oWW7dixY7AF+/btS3at8vmK7t272/znKv9/VqtWTX3ppeWLL77AjBkzMHv2bOzZs0cFD23btlV/gNOzcOFCjBgxQk0rPnjwoDq/vCYsLAzWeq1RUVGqrR9//LG6/fvvv9WXTqdOncz6u2BNn62QgChp2xcsWJDhOW3xsxVJr1G2OXPmqIBHAgdb+2y3GPFdM3z4cCxfvlz9w1SeL4H+888/n+F5s/K7bhKZ5k8kwsLCpOSDbsuWLek+Z+7cubq8efPqbM24ceN01apVM/r5PXr00D377LPJjtWrV083cOBAnS165513dKVLl9ZptVq7+lzl/9d//vkncV+uLygoSDd16tTEY+Hh4Tp3d3fdggUL0j1P3bp1dW+99VbifkJCgq5w4cK6SZMm6az1WtOyd+9e9bzLly+b7XfBmq63T58+us6dO5t0Hnv5bOW6W7RokeFzbOWzDUvxXSO/o66urro///wz8TknT55Uz9m1a1ea58jq77op2INEiR48eKBu/f39M3xeZGQkihcvrhYS7Ny5M44fPw5bIF2v0p1dqlQpvPLKK7hy5Uq6z921a5fqrk1K/mUix21NbGwsfvvtN/Tv3z/DhZVt9XNN6uLFiwgNDU322cmaSzKskt5nJz+fAwcOJHuNrLUo+7b2ecvvsHzGfn5+ZvtdsDabN29WwzTly5fH4MGDcffu3XSfay+frQw1rVy5UvVoZ8YWPtsHKb5r5DOSXqWkn5MMDQYHB6f7OWXld91UDJBI0Wq1GDZsGBo1aoTKlSun+zz5oyRdvUuXLlVfuvK6hg0b4tq1a7Bm8ksjeTarV6/GrFmz1C9XkyZN1IrOaZFfvIIFCyY7Jvty3NZIbkN4eLjK37C3zzUlw+djymd3584dJCQk2PznLcMKkpMkQ8MZLe5p6u+CNZHhtV9++QUbNmzAlClT1FBM+/bt1ednz5/tzz//rPJ3MhtysoXPVpvGd418Fm5ubqkC+4w+p6z8rpvKxSxnIZsn48OSX5PZeHWDBg3UZiBfohUrVsQPP/yATz/9FNZK/ogaVK1aVf0hkd6SRYsWGfWvMlv2f//3f+r65V+V9va5kp7867tHjx4qaVW+GO31d+HFF19MvC/J6dL+0qVLq16lli1bwl7JP16kNyiziRO28Nm+ZeR3jTVgDxJhyJAhWLFiBTZt2oSiRYua9FpXV1fUqFED586dgy2Rf6mUK1cu3XYHBQWlmkEh+3Lclkii9fr16/H66687xOdq+HxM+ewCAgLg7Oxss5+3ITiSz1oSYDPqPcrK74I1k2Ek+fzSa7utf7Zi27ZtKvne1N9ha/xsh6TzXSOfhQyHSk+3sZ9TVn7XTcUAyYHJvzblf9h//vkHGzduRMmSJU0+h3RfHz16VE2ztCWSb3P+/Pl02y29KdKNn5R8+STtZbEFc+fOVfkazz77rEN8rvL/sPxxTPrZPXz4UM1wSe+zk679WrVqJXuNDAPIvrV/3obgSPJOJBCWKdLm/l2wZjIELDlI6bXdlj/bpD3Acg0y481WP1tdJt81cn3yj7Kkn5MEhZI/ld7nlJXf9aw0nBzU4MGD1cylzZs3627evJm4RUVFJT6nV69eutGjRyfuT5gwQbdmzRrd+fPndQcOHNC9+OKLOg8PD93x48d11mzkyJHqOi9evKjbsWOHrlWrVrqAgAA1myKt65TnuLi46L788ks1m0Jmh8gsi6NHj+pshczWCQ4O1o0aNSrVY7b8uUZEROj+++8/tcmfsGnTpqn7hplbkydP1vn5+emWLl2qO3LkiJr9U7JkSd3jx48TzyGzgb799tvE/T/++EPNfpk3b57uxIkTujfeeEOdIzQ0VGet1xobG6vr1KmTrmjRorpDhw4l+x2OiYlJ91oz+12w1uuVx9599101q0navn79el3NmjV1ZcuW1UVHR9vVZ2vw4MEDnZeXl27WrFlpnsNWPtvBRnzXDBo0SP292rhxo27//v26Bg0aqC2p8uXL6/7+++/EfWN+17ODAZIDk1/KtDaZ8m3QtGlTNbXWYNiwYep/Yjc3N13BggV1HTp00B08eFBn7Xr27KkrVKiQaneRIkXU/rlz59K9TrFo0SJduXLl1GsqVaqkW7lypc6WSMAjn+fp06dTPWbLn+umTZvS/P/WcD0y/ffjjz9W1yFfjC1btkz1MyhevLgKepOSLxrDz0Cmhu/evVtnzdcqX4Lp/Q7L69K71sx+F6z1euXLtE2bNroCBQqof6zIdQ0YMCBVoGMPn63BDz/8oPP09FTT19NiK58tjPiukaDmzTff1OXLl08FhV27dlVBVMrzJH2NMb/r2aF58qZERERE9ARzkIiIiIhSYIBERERElAIDJCIiIqIUGCARERERpcAAiYiIiCgFBkhEREREKTBAIiIiIkqBARIRERFRCgyQiIgsZPz48ahevXpuN4OIsoABEhFZnb59+0Kj0ahNFhwtU6YMPvnkE8THxyc+RxYB+N///od69erBx8dHrVxeu3ZtTJ8+HVFRUYkBiuE8SbcKFSrk4tURkS1wye0GEBGlpV27dpg7dy5iYmKwatUqvPXWW2rF7zFjxqjHe/Xqhb///hsfffQRvvvuOxQoUACHDx9WAVKJEiXQpUsX9bxKlSqple6TcnEx75++uLg41TZLsOS5iSh97EEiIqvk7u6OoKAgFC9eHIMHD0arVq2wbNky9diiRYvw+++/Y8GCBfjggw9Qp04dFRR17twZGzduRPPmzZMFQ3KepFtAQECG7z1r1iyULl1a9V6VL18ev/76a7LHpRdKntOpUyd4e3vj888/V8cnT56MggULwtfXF6+99hqio6NTnfunn35CxYoV4eHhoXqyvv/++8THLl26pM69cOFCNG3aVD1HrpOIch4DJCKyCZ6enoiNjVX3JWiQwEUCopQkwMibN2+W3+eff/7BO++8g5EjR+LYsWMYOHAg+vXrh02bNiV7ngzfde3aFUePHkX//v1V0CbHJk6ciP3796NQoULJgh9Du8eOHasCqpMnT6rnfvzxx/j555+TPW/06NGqDfKctm3bZvlaiCgbdEREVqZPnz66zp07q/tarVa3bt06nbu7u+7dd99VxypWrKjr1KlTpucZN26czsnJSeft7Z1sGzhwYLqvadiwoW7AgAHJjnXv3l3XoUOHxH350zls2LBkz2nQoIHuzTffTHasXr16umrVqiXuly5dWjd//vxkz/n000/Va8XFixfVuadPn57ptRGRZTEHiYis0ooVK1TyteTgaLVavPzyy6qHRuhjFONIT5NhaM4gT5486T5fem3eeOONZMcaNWqEb775JtkxSQhP+bpBgwYlO9agQYPEnqdHjx7h/PnzauhtwIABic+RxPOUPV4pz01EOY8BEhFZJckjkjwfyQMqXLhwssTqcuXK4dSpU0adxzALztwk98gUkZGR6vbHH39UM++ScnZ2zta5icj8mINERFZJggQJbIKDg1PNOpPepDNnzmDp0qWpXie9Sw8ePMjy+0oC9Y4dO5Idk/2QkJBMX7dnz55kx3bv3p14X5K3JdC7cOGCuq6kW8mSJbPcXiKyDPYgEZHN6dGjh0qmfumll9Q0/zZt2qhp/pIw/fXXX+Ptt99OnOYvQ1ihoaGpErklYEnLe++9p85fo0YNNXNu+fLlqpxAylIBKUlStdRvkuExGZKThOzjx4+jVKlSic+ZMGEChg4dqobUpIyBlDCQhO779+9jxIgRZvnZEJF5MEAiIpsjAc78+fNVocg5c+aoWWHSy1S2bFn07t072cwvCVJkRlnKEgJpTcEXElhJvtGXX36pgh7p3ZF6TM2aNcuwTT179lQ5Ru+//746d7du3VR5gjVr1iQ+5/XXX4eXlxemTp2qAjHpJatSpQqGDRuW7Z8JEZmXRjK1zXxOIiIiIpvGHCQiIiKiFBggEREREaXAAImIiIgoBQZIRERERCkwQCIiIiJKgQESERERUQoMkIiIiIhSYIBERERElAIDJCIiIqIUGCARERERpcAAiYiIiAjJ/T8yDPg2aS/j3gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the first sobol to that of the highest order\n", "\n", "sobol_first_exact = {'x1': exact['S1'], 'x2': exact['S2'], 'x3': exact['S3']}\n", "\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "for v in list(R[O[0]]['results'].sobols_first('Ishigami').keys()):\n", " plt.semilogy([o for o in O],\n", " [np.abs(R[o]['results'].sobols_first('Ishigami')[v] - sobol_first_exact[v]) for o in O],\n", " 'o-',\n", " label=v)\n", "plt.xlabel('PCE order')\n", "plt.ylabel('ABSerror for 1st sobol compared to analytic')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_sobol_first.png')\n", "plt.savefig('Convergence_sobol_first.pdf')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:54.981382Z", "start_time": "2021-06-07T15:00:54.660545Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:53.565462Z", "iopub.status.busy": "2025-07-18T11:53:53.565320Z", "iopub.status.idle": "2025-07-18T11:53:53.726551Z", "shell.execute_reply": "2025-07-18T11:53:53.726290Z", "shell.execute_reply.started": "2025-07-18T11:53:53.565451Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhg9JREFUeJzt3QdY1dUbB/Dv5bJxIdO99wRFRDMXjjQ1G1qWmZp7W6aVI61/apqZaZqaMzPL1EzNvRUHoubeW5kukA33/7yHQKbei8AF7vfTc5/7W/w41xvcl3Pe8x6NTqfTgYiIiIiSmD3dJCIiIiLBAImIiIgoFQZIRERERKkwQCIiIiJKhQESERERUSoMkIiIiIhSYYBERERElIp56gOkn/j4eNy9excFCxaERqMxdnOIiIhID1L+MTQ0FMWLF4eZWcb9RAyQMkmCo1KlShm7GURERJQJt27dQsmSJTM8zwApk6TnKPEfuFChQsZuDhEREenh8ePHqoMj8XM8IwyQMilxWE2CIwZIREREecvz0mOYpE1ERESUCgMkIiIiolQYIBERERGlwhwkIiKifCYuLg4xMTEwRRYWFtBqtS98HwZIRERE+ajGj7+/Px4+fAhTVqRIEbi6ur5QnUIGSERERPlEYnDk7OwMW1tbkytkrNPpEB4ejsDAQLVfrFixTN+LARIREVE+GVZLDI4cHBxgqmxsbNSzBEnyb5HZ4TYmaRMREeUDiTlH0nNk6mz/+zd4kTwsBkhERET5iKkNq2XXvwGH2HKRuNhYnD+8BREP7sDGvgSqeraB1pxvERERUU7jp28ucXzLUhT3mYgaCEk6FrDNAXe9JsCtTQ+jto2IiMjUMEDKJcFRnYNDE3aS9Qo66ULgdHAojgMMkoiIKEfExetw5Np9BIZGwrmgNRqUKwqtmekN2zEHKRcMq0nPkUj9/1/ifjGfieo6IiKi7LT59D28NHUn3llwCMN+O6GeZV+OG8u9e/fQrVs3VK5cGWZmZhg+fHiOfF8GSEYmOUcuCEkTHCWS464IUdcRERFlFwmCBvzih3uPIlMc938UqY4bK0iKioqCk5MTxo4dizp16uTY92WAZGSSkJ0oDsBRaytssrNVz3EZXJdZcfFxOOp/FJuublLPsk9ERPm4aGJ0rF6P0MgYTFh/Brr07oMEX6w/q67T537yvfUVFBSkql5//fXXSccOHjwIS0tL7NixA2XLlsX333+P999/H4ULF0ZOYQ6SkclsNbHd1gZTHOwRkGzWmktsLMaEPIB3eARsimS+Gqi6/43tmHJkCgLCA57e39YFYxqMgXcZ7xe6NxER5T4RMXGoPj5rRh900pP0OBK1vtiq1/VnJ7WBraV+IYb0Di1atAivvfYaWrdujSpVqqB79+4YPHgwWrZsCWNhD5KRyVT+1bbOGOnsiIBU1T4DtVp1XIKn2H3fI9j/VqaDo5G7R6YIjtT9wwPVcTmfF0ge1pkDG+G7Yb56Zl4WEVH+0K5dO/Tp0wfvvvsu+vfvDzs7O0yePNmobWIPkrGZafBDMUfo4kKlslWKUzqNBhqdTvUsbbl1FI/mNcLJl6ehTou39b69DKNJz5EunY5TOaaBBlOPTEXzUs2hNXvx1Y+zC8sgEBEZxsZCq3py9CGz1j5YfPS51y3p6aFmtenzvQ01ffp01KxZE3/88QeOHTsGKysrGBMDJCPzC/TD/fiwNMFR8iBJht36upRGudhQ4MwYLLwyHw5VX4K5heVz7y+9RKl7jlLcHzr4h/urdni4esBUyyCwSCcR5cdq0voOczWp5IRiha1VQnZ62UMaAK6FrdV12TXl/8qVK7h79y7i4+Nx/fp11KpVC8bETwAjCwoP0uu6I7bAERRM/Crg6lqjtCO3lUGI1/1XBqHlu5kOaNg7RUSmToKeCR2qq9lq8qtWl+xc4q9eOZ9dwVF0dDTee+89dO3aVeUgffjhhzh16pRabNZYGCAZmZOtk17XdarQCSUKlEDAjXMocG0z7BCBOJ0Z7jp4omStptBo0k8nuxN2B39d+eu59y9iVQS5kfTqqMBFkzDLz8/aCkFaLZzi4uAeGQXtf2UQjqz7AeVfegNFHFz16llLxCKdREQJ2tYshrnvuWPi32dTTPWXniMJjuR8dvn888/x6NEjzJo1CwUKFMCmTZvQq1cvbNiwQZ0/ceKEeg4LC1Oz3mRfZrlVr14929qk0RkyF4+SPH78WE03lDe0UKFCmb6P5Ai1+bONGgpLL09IcoRkttnmNzYn5Qg9CLqH60s+hNuT/Wr/tFVdOHVfBJeSFQy+fyJXW1cMrDsQHSp0gLlZ7oibI56E4sTi4fAKXv3cWX6J4nUaPNIUxCOzIgizKIpISwfE2jhCZ+cE84LOsCziAlv74ijoWByF7J0ROr2uCobS+6NIeqcCNQ5wGnuRw21ElOtFRkbi2rVrKFeuHKytrfNMJe3du3ejVatW2LVrF1566SV1TIbYpObRlClTMGDAgHQXny1Tpoy6ztB/C30/v006QOrcubN6Y2Qa4erVq40SICWfZSaSBzESHIkZzWakmYqvi4/H0bXfo+a/k2GricIj2OGK5//g/kpPg+4v+4UsC+Fx9GN1rGyhshhUdxBal20Nswx6pbJTbEw0zh74G1HHf0P1h3thp4lUwZHM5lMtT/ZDIgnsYkZgMDzCzVBAFw6tJuv/dz7T6lfUaNw+y+9LRJQbA6T8IJIB0ouR4Cg0NBRLly41aoCUUZ0i6dUZ3WD0M+sU3bp0EpGreqNS7CW1f6RIO1Tv9SMKFLLX+/4vlXgJqy6swsJTC/Ew6qE6V8W+Coa4DcHLJV9ON3LPShLsXfTbjYeHV6Bi0DY44NHT1wcnfFDKEoFas3QT2SVIcozTYXN3P9XD9iD4HkJD7iIsxB9RD+8hNjQAurBAmIcHwyoqBLYx91Eo7gGK6B7BUqNfoUzf+tNQ/9W+WfqaiYiyGgOkpxggZVGQNHv2bKMHSInDYTKbTBKmJTfJ3dldr6n3MdFR8F06Gp63l8BMo8NtjSvC2v+IqvVbGnT/sOgwLD+3HMvOLENYTJg6VsepDoa6DUWDYg2Q1W5ePIG7e5eh5J2NKKnzTzr+AIVw0dEbhRt0w8MSBdFne5/n3mtRm0UGzcKToOzEjpVwOzDwudceqfMlGnT+L0+JiCiXYoCUtQFSri0UuXfvXnTo0AHFixdXPRjr1q1Lc82cOXNUCXJ58Z6enjhy5AjyMglW5EO+Xfl26lnfukQWllbw6jMT51/5Df5wUsFGxb/fhM+iT9SQlb73L2BZAAPqDMA/r/+DnjV7wlprjZNBJ9F7a2/02doHp4JOvXAhx6C713FoxURc+rIeSv/aFA1v/6zaG66zgm8hb5x8eQFiP/JFSLu3sCxqF4bv0W9Rwn239yEyNuX6Qc+iMTND7eZdEQAHlWv0LA1OjoPftA648u9Bve9PRER5W67tQfrnn39w4MAB1KtXD6+//jrWrl2rypAnWrVqlVqXZd68eSo4mjlzpioudeHChaRpgXXr1kVsOh/SW7duVYFXbutBygqPHgTj0qK+qB+6Q+2ft6iOQt0Wo3i5qgbX+pGepvn/zsfqS6sRG5/w79isVDMMrjsYVYpWSXeqvCy8m0iCD5kqX8HzVVzY+QtsLqxB9ciTqpdLxOi0OGtbH1HVXoe5mzuO3j+O/Xf249/gfxGvizf4tduY26BhsYaq6GWTkk3gaONo0Cy25DmIEjTJ7gWLqqgaez7p+AlbL9h6f4rK7k0Nbh8RUXZiD5KRh9jeeOMNNGjQAKNHj05x/JtvvsHRo0dVkJLVpAcpdYAkQZGHh4cKboQUlipVqhSGDBmCMWPG6H1vfQMkWU1YHsn/geX75bYAKZHv+nmocuwLFNREIExng9PO7VEuaFe6AczzprFLqYC5J+bi76t/q8BFkrvblmurkrnLFCqTFGRIRs8Jm6fT8N0ioiB9VLHQwiJZvs85i+rwr9AO96tVxPHQMyooCol82i5RsUhFNCnRBI1LNMZn+z9TwVpGs/AkMCpgUQBBEU9rOUkbaznWUgFd01JNUalIpQxzqaT9Lj4Tccc6LKntxSMLIPC/f5trZ4/i/j9fw+3xrqTg7l9rD1i2GI2qDVrp+Y4QEWUvBkhGDpBkUbmdO3emqXApBZ28vb0REJBx1easCpCkoJStra0KapIHTT169MDDhw/x11/Pr/tjaID0xRdfYOLEhIKFyeXWAEncvX4Bj1Z8gGoxZ9W+vNPJY4TEoaWTjWbpVevn6qOrmHN8DrbeSFisUKsxQyvnZuh5dB3uWEZhqmPG0/CvaUrCt0wz3CpXEifDz6uhuzhdXJreH0kYl8CoWIFiBs3ya1m6Jc7fP4/dt3dj963dOBuS8JoTSQ2ppiWbqmDJw8UDFloLgxfylZypgI1fw+3hNphr4pNKLGiajkaNRu2e++9HRJSdGCAZOUCysbFRBZqk0mVy58+fh5ubGyIintakya4ASUqRlyhRAgcPHoSXl1fSdZ988gn27NmDw4cP63VfCehOnjyJJ0+eoGjRoqr3K/n98nIPUqKoiHBETymPAohIdzUTeffDYINTxd6ANi4SmphwaOMioI2NgHl8JCziImAZHwkrXcLDRheJa5Y6zClaGPtsbdQ9tDqd6j1Skn+T//7X8oyMxMUCLngQl1BKIFG5wuVUMCRBUT2XerDUWmbZLL+AJwHYc3uPehy+dxhRcU/fO+ltalS8kepdkh6xcQfGpemdelaJhTtXz+DO3/+D2/3NST1jZy1qIq7Jx6j5UieV30RElNMYIGVtgGRw9TvpOZL8n/Hjx6c4/ttvv2VrRcvssH27/qvYy6J5xl44LzMu++1CDU3GQavEMwURgUb+v+h3Qw1QIwb4MSAIx60sMdPeHn42Gfy7/BcsHbaxAeIeq6RvmQ2XGBSVLFhS79chQYrkFuk7y8/FzgVdqnRRj/CYcBy6dyghYLq1Rw3nSS9YYk9Yep61kG+J8jVQYtivuHfjAm6u/xpuwRtQPeY0sPMDXNhbBZGNRqJ2sy4pAiWu9UZElLcY/Bt63LhxKmlaFpVr0aKFOrZjxw6sXLkyW/KP0uPo6AitVptmOE/2XV1dc6QNeYV8IOvjpHV9hDvUhMbCDrC0hZmVnXqYWxWAubWdeljaFISVbQFY2RaEtW1B1LYtiPa7foTf3QXPvX+3oq9gZLsvYaXNfJCZOAvPULYWtmhRuoV6SI/R6eDTahhu07VNKr8qswv5FitTBcWGLEXgnWu4+tfXqBuwFlViLwB7++HygW/wuMEI1PXuhpPbf+Fab0RE+T1Akqn3MuX+66+/Vnk7MuRWu3Zt1RvTtGnOzOyR9VdkdpsEZonDbpKkLfuDBw/OkTbkFdJboQ/zJiPhlYlq0bblygF3n39drWpNXig4yipSHby2U231kETw0ftSTjbIKPfqWYGZc4lycB64AMH+43Fi3WTUvrcaFeOuAD6Dcc9nIurqJMGca70RUR4RHwfcOAiEBQAFXIAyjQA9y85khzVr1mDu3LkqvUdSXWrUqKHygtu0aZOt3zdTffzt27dXj+wkC9Jdvnw5aV/GEuUfR3KFSpcujZEjR6qk7Pr166tZdTLNX3KJevZMu9SGKZOhHOmteN56Y3JdZrgUcM3S63LjQsH/O/Q/7LixA+3Lt1fJ4FIvKj2OrqXg2P9HPAgah5PrpqDW7d9QTBOkAqPU//TyXsi/fTGfiYhr+S6H24godzi7Htg8Gnic7C/fQsWBtlOB6h2NVhdR1mqTjpkiRYpg8eLFqrNG8o0l9zm75NpsUl9fX/XCE1+8BESynZj71LVrV0yfPl3tS70jCZ42b94MFxcXI7c8d5EPXhnKEakLIibu3/OakOkPaMkDkhlfzyLJ1HJdbpPY9sSE7PRYmFmooTafez4Ye2Asmv3eDB/v+Ri7bu5CTFxMul9j71QMXn2+x+WXZj7z+0uQ5IoQlZtERJQrgqPf308ZHInH9xKOy/lsEBQUpNJjJABKJJOwZLRIRoakA0QmYUlpn0qVKqnr5Pnvv/9GdtLrU1F6bS5evKhyf+zt7Z+5Ntf9+/ezpGHNmjXD8ybYyXAah9SeT4ZwZCgndSFH6TmS4OhFhngkL0imwz9rGr7MNNO3KnhOSt72xIV7U7f9m5e/UevSbby2ERuvbsT1x9ex5foW9ShsVRity7RWPUtuzm5pFveNjQrN0jwxIiKDyGdoTLj+w2r/fKJ+i6dzI6h+cOlZKt9Mv+E2C9t018/MqHzQokWLVMpM69at1Sz57t27q893WUw+TVPj49U6qhKbZCe9pvnLYq5vv/22msW1ZMmSZwZIMuxlCnJrJe1nyc6ZVJldbDc30Lft8qNy9v5ZFShtvrY5RWHKYnbF8Eq5V1SwVNm+sjomy63U2NZNbUsxAD/rp0U03SMTimiKE43noW6rd3Ls9RKRiUxtj34CfJ2wakSO++wuYGln0JcMGjRI5TNL6ozUVpTi0+nNHpfC1FOmTFHlhRJXzkiNi9UaUV4MkLJbZhfbzYttl+uPBhxVwZIEWImL+4pK9pXQvlx7tCndGhbfNcVJm3B884wimg9QABerDUW910fA3CLjWlBERPk5QIqIiEDNmjVx69YtHDt2LE1BavHrr7+iT58+qiC01DLMiFECJJlef+/evTRRW0hIiDoWF/e0OnJ+xgCJEskiuXtv71XB0r47+xAT/zQ3qbjWAXdjgxN2kvW8av77sRsXGIW3wgPV9jWzMnjS/EvUbNIpp18CEeUDaYICQ4bYZNbaijeff927qxNmtWXhEFui06dPqzyjmJgYVRxaErFT11vs1auXKin0vIliRikUmVE8JVPvJKGKyNRYm1ujddnW6vEo6hG23dimgiXfAF/cjQtJ95eE7r9jP5Urg5JxPVHt/ByUi78B7Hgfx30aw/nNaaogJRFRpsnvGX17cSq0SJitJgnZ6eYhaRLOy3XZMDIgS4i99957agKW5CB9+OGHapgtsTNGai1KcCRBUnbPojc4QJo1a5Z6lvyjhQsXokCBp1OdpddIpuFVrVo1e1pJlEdI4vabld9Ujy3XtuDjvR8/83rJezJv0wqaVr1x+LfPUC9wDdzCDyB66cvwKd4Ntd6ZhAKF7HOs/URkoiTokan8MltNTVLRJTv53x95badkWz2kzz//XPXoSKwh8cWmTZtUQLRhwwY1rCb5zd9//71aqN7f3199jdRhlJ4gowdI3333XVIP0rx589RQWyLpOSpbtqw6TkQJki/G+yyS9+RR3gOeg37G9XMD8PivT1A78hi87i1D8Iz1OFvnI9TvOAhmyX7miIiynNQ56rIsgzpIU7KtDpIsGi9T+Xft2pU05LV8+XLUqVNHFYiU5c1iY2NVErc8EknQJBPHjB4gyVieaN68uapqKdP9iejFC1HamCcs+ivKVqsPXZXtOLHrdzju/wIldffgeHIcLp1eirjWk1HVs3U2tpiITJ4EQVXb52glbSnrI3lHyUmni/QoiQEDBsAYDC4UKYUZGRwRZU0hSvGlz5fYf2d/0r4sclu35dtwHnMChyoOR6jOBpXiLqPqP2/h2Led4X/zUg60nohMlgRD5ZoAtd5MeM4js5GzmsEBUtu2bVGhQgV89dVXaioeET27EKVIHSQl7jvZOCEoMggDtg/AFwe/QFj003IBllbWaPjeREQNOIoj9q8iXqdBvdCdKPxzI/j8/DEinoSmqHEldZd8N8xXz7JPRESZZ/A0/+DgYDU2KMUjz5w5gxYtWqB3796qAqYpzWLjNH/KikKUjUs0xiy/Wfjl3C9JBSe/bPwlPIt5prnP5ZMHEL1xNKpHn1L7/nDE7fqjYaa1RInDk1JUSQ+Ag1pihgvhEpmOZ01tNzWRxi4U6efnpxaNk+l3olu3bipYksSq/I4BEmVlIcqj/kcx7sA43AlLWHbk7SpvY0S9EbCVWiLJ6OLj4bd5KUoc+R9ckVDJO/EnOHk1gcR19k42msUgichEMEDKRQGSuHv3LubPn6/Kfpubm6tGeXl5qRltNWrk3zouDJAoq4XHhONb32/x+8Xf1X6pgqXwVeOv4O6SdqHfyPAw+K2ciIY356tFb9MjQZKst+c09mKWLSlDRLkXA6SsDZAMzkESkm2+evVqtGvXDmXKlMGWLVswe/ZsBAQE4PLly+rYW2+9lZlbE5ks6S0a5zUOP7X6Ca52rrgVegsfbP4A045OU9W6k7O2LYDCVZtlGBwJOeeKELX+HhERGcbgAGnIkCEoVqwY+vXrh8qVK+P48ePw8fFRVS/t7OzU1Lzp06erReSIyHCNijfCmo5r0LliZ+igw7Kzy/DW32/h36B/U1wniw7rQ9/riIjoBQKks2fP4ocfflBDa1LYSRaWS83R0VEVfCKizCloWRCTGk/CnJZz1Ey364+vo/s/3THz2ExEx0Wra2zsS+h1L32vIyKiFwiQduzYgXfeeQdWVlYZXiO5SE2bNjX01kSUysslX8baTmvRvnx7xOvi8fPpn9F1Q1ecDTmLqp5t1Gy1xITsjIT6/oYnoQ9zqslERPmCXkna69ev1/uGHTtmTyny3IZJ2pTTdtzYgUmHJuF+5H2Ya8zRp3YfePhbo57PCMiiJidsrBCk1cIpLg51I6JUmfzEmW13NC543PYHVPNsY+yXQUTZhEnaRpjFZmamX0eTLGQrC9eaAgZIZAwSHH116Ctsu7FN7VcrWg1u0S7Y+nAngs2f/pw6xsbjHcfX0MjBE47bR6qSAFJo8kixbqjbYxqsbfRc4ZuITC5Ael5Zkpy2f/9+jB49WuU2h4eHq4lgkgc9YsSIbA2Q9Jr7Gx8fb8hrIaJsUtS6KL5t+i02X9+M/x3+H87dPwf5D8mCIxFirsXsh3+jfN3mKD38MI4sGYwGDzehof8KXJ+2D7Gd5qFincZGex1ElHcK27rYuqhVAbzLeBulTTIBbPDgwahdu7baloBJAiTZ7tu3b7Z930xN8yci45Ge2lfKvYI/O/wJK236uYAy+01MPTIVdoWKoMHwlTjReC5CUBhl42+izJoO8Fk8GrExCQnfREQSHI3cPTJFcCQCwwPVcTmfHYKCguDq6oqvv/466djBgwfV6hyS9+zm5qZyn6W2osyUf++999CmTRvs27cP2SlT1eOePHmCPXv24ObNm4iOTvkLdujQoVnVNiJ6hpuhNxEVF5XheQmS/MP9VVe5h6sH6rbqhvt1msJvaT+4P9kHrxvzcHHqTlh3WYDSlevmaNuJKPtJBk1EbITew2qTj0xO+uMqucRj0rPk6eqp13CbjbmN+mNOH05OTli0aJFasqx169aoUqUKunfvrnqNWrZsmeZ6KS8kAZSsCZurAiRpmBSIlHFACZSKFi2q1meztbWFs7MzAySiHCL5AYZeV9S5BOw/Wg/fDT+hst8kVI69iIgVrXCo6nA06DIGZlrTXLWbKD+S4Mjz17TrOmZWQHgAGv3WSK9rD3c7nGappGeRuKJPnz549913Ub9+fTV8Nnny5BTXlCxZUvU2xcbG4osvvlD1F7OTwUNskhTVoUMHPHjwADY2Njh06BBu3LiBevXqqQKRRJQzJHlSH/KXXHIaMzPU7zgA4b334ZSVO2w00Wh44Ruc/aYF/G9eyqbWEhE9m8QQEvz88ccfWLFiRZpyQjKk5uvrq5YykzqMievAZheD12IrUqQIDh8+rLrAZFuqaFerVk0d69Gjh8lU0OYsNjI26RJv82cblR+QXrd4oiKWRfBJg0/wavlX03R5y+K3R/6Yhtpnp6tAKVRng/NuY1G/40AVSBFR3pF65pYhQ2zHAo5h4I6Bz73ux5Y/op5LvSwdYkt0+vRpeHh4qOXM1q5dqzpjMiLDa8uXL8eFCxdyz1psFhYWSdP+ZUhN8pCEfLNbt24ZejsiyiTJA5CZJUKDlL+IEvddbV3xMPohPtv/Gfps64Obj2+mvM7MDJ5dRyO4+06cN6+GgpoIeJz4HCemt0dIwG11TVxsLM4c2AjfDfPVs+wTUe4nAYoMc+nzkCWOZLZa6t8lieS4/D6R6/S5n6HBkeQzS/J1165d8eWXX6rhs8DAwGfOro+KyjgHMysYHCBJNvnRo0fVtlTLHj9+vOoKGz58eLrLjhBR9pFptzOazYCzrXOK4/KL7rtm32HT65swzH2Ymu12+N5hdP6rM+b/Ox8xcTEpri9VsRYqjdkPn3KDEa3Twi38IMzmesFn3kAEf1UZNbZ1Q33fUepZ9o9vWZrDr5SIjP0H1+gGo7OtHtLnn3+uenRmzZqlah7JWq+9evVS5+bMmYO///4bly5dUo+ff/5ZDcdJQJWrhthk/C80NBTNmzdX0d3777+vsskrVaqkstDr1KkDU8AhNspNnlfYTXqOvjz0JQ7dO6T2KxapiPFe4+Hm7JbmXldOHYJmbT+Uj7+u9uU3RPI/BhOXNjnZaBbc2vTI9tdGRDlXKDK9Okiutq4qOMquOki7d+9Gq1at1BquL730kjp2/fp1FU9MmTJF5SX99NNP6rXJUmYVKlRQCd1SCymjQtY5Vkmb0mKARHmN/KhvvLYR045OUxW5xVuV38LwesNRyDLl/8PhYY8RP60S7BCZIjhKHiQFahzgNPYitOaZqhZCRFksv1bSzgyj5CARUd4kOQGSqP1Xp7/QuWJndeyPi3+g49qO2HxtswqgEl07uQ8FNOkHR8JMA7giBOcPb8mp5hNRDpFgyMPVA+3Kt1PPeS04yioGB0gBAQGqgFPx4sVVV5dWq03xyCsePnyoai3UrVtX5U4tWLDA2E0iyhFFrItgUuNJWNRmEcoWKouQyBCM2jtKzWC5E3ZHXRPxIOH5efS9jogorzG4b/yDDz5QM9fGjRuHYsWKGZypnlsULFgQe/fuVQUupeClBEmvv/46HBwcjN00ohwhfxn+2fFPLDy1UD3239mvkrgH1hkI9yKuet3Dxr5EtreTiChPBEiySJwUa5Kel7xMerskOBIyVVCGF5iORabGUmuJgXUHom25tvjS50v4Bvji22PforJ9ZQy1dEKTqCDoNICftRWCtFo4xcXBPTIK0lccr9MgPjblbDgiIpMdYitVqlSOBBLSuyNFomQoT3qp1q1bl+YamfonC9dJApanpyeOHDli8DCbZMlL+fJRo0bB0dExC18BUd5RvnB5NeQ2qdEklbB98cFFDClhg0EuTmhVqjh6FXPBaGdH9dymVHFss7GBmUaHajt74vCqKargJBHlDvxjH1nyb2BwgCTlvceMGaOm4GUnGfaS4EWCoPSsWrUKI0eOxIQJE+Dn56euldV9kxeWSswvSv24e/euOi+VwE+ePKky3X/99VeVX5UR6WWSzPfkD6L8RP4Q6VypM9a/th7ty7dXtbn329monqPkArRajHR1wjxHT5hr4uF5bjKOzPkA0VGRRms7ESUUchayVqqpC//v3yDx3yQzDJ7mb29vr76x1CWQIarU3/z+/YTpw1n9i1vKjstKv4mkx0hKks+ePTupqqb0bg0ZMkQFcIYaOHAgWrRogTfffDPd87Iw3sSJE9Mc5zR/yo9kmm/z35vjQdSDdM9L4TgXW2dMDG+Ihldnq96ks5a14PrhKrUgLhEZx71799ToiKx0IZ/ReTVPOLMkpJEYRTpLpBNEcqVT03eav3lmepCMTUqSHzt2DJ9++mnSMSkW5e3trdaG04f0Fsn/PJKsLf9IMqQ3YMCADK+X7yU9Vsn/gSUgI8qPpAZKRsGRkLXf/MMDYNGmE06drYkKe4ajevQp3PuxKa6+uQLla2bdCuJEpD9X14QJFs9apsMUFClSJOnfIrMMDpBkQVpjCw4ORlxcHFxcXFIcl319F8u9ceMG+vbtm5ScLT1PtWrVyvB6WVU49crCRPmVFIjT97p2Ld7GjeKV8XDVOyip80f4Hx3gd+dbuLfpnu3tJKKUpMdIek2kB0kWfTVFFhYWWVJ2yPxFK1VKb05yeWW4qUGDBjhx4oSxm0GUK0n1XEOuK1PVHY8G78Xp+V1QM+oE3H0Gw+fuaTTsMVktiEtEOSuv1SbMjcwykzw9ePBgFZ3a2dmpnKTkj5wgs83kjU+dVC37L9qlRkRQSws8a2XvRMcCjiXNFins4IKqH2/DIae31L7XjXk4PuM1hIc9ypE2ExEZNUD65JNPsHPnTsydO1cNOS1cuFAlL8t0/GXLliEnWFpaol69etixY0fSMUnSln0vL68caQORqa/sLeacmIOJPhMRE5/QlW9uYYmGgxbiSK0vEK3Twj1sD+591wz+Ny/l8CsgIsrhAOnvv//Gjz/+iDfeeEMtNdKkSROMHTsWX3/9NVasWIGsEhYWpobAEofBZCq+bEsVbyEJ07I8yNKlS3Hu3DmVYC29Wz179syyNhCZMlm5e0azGXC2dU5xXHqWvmv2HT7z/AxmGjP8eelPDNkxBGHRYUnXNHhjBK60W4n7KIQKcVdhsaglzh/eaoRXQUSUQ9P8CxQogLNnz6J06dKqwOKaNWtUPo8EMJLkLIFNVti9ezeaN2+ebpL4kiVL1LZM8Z82bRr8/f1VzaNZs2ap6f85Qd9pgkR53bNW9t59azc+2fsJImIjVPXtOS3nwNXu6TD3vRsXEL6sKyrEXVM9SifrTIDH68OM+GqIyNQ91vPz2+AAqXbt2vjhhx/QtGlTNa1eApPp06er4OSbb77B7du3YQoYIBElOBN8BoN2DFKL3kpv048tf0SVolWSzksO0vm578H9yV61f8i5C+r3maOG44iIcuvnt8FDbDKEJdWnhRRklErXstTHiBEj1HIdRGRaajjWwIr2K9RyJYHhgeixuQcO3jmYdN62QGHUHbkOPqX7qf2Ggb/j3PQ2eHQ/oZRAXGwszhzYCN8N89Wz7BMRGZvBPUjp1ROSoo0VK1ZUvUumgj1IRCk9inqE4buGqwVvzTXmGO81Xi1dkpzf5iWo6vMJbDVRuK0phtuVuqPcxZ/hgpCkawLggLteE+DWxvg114go/8m2ITZKwACJKK3ouGiMPzgeG69uVPt9a/fF4LqDUyx3cOXUIdj9+R5cEYTE3z7JV0OI/+/YyUazGCQRUd4ZYiMiyoil1hKTX5qsAiMx/9/5+Gz/Z4iJe1rRt0KthjDrux1ROnMVGKVeKsrsv/1iPhM53EZERsMAiYiylPQWDXEbgomNJkKr0WLD1Q3ot72fGoJLFHTtDKw0GQc/EiS5IgTnD2/JoVYTEaXEAImIssXrlV5XM9rsLOxw1P8o3v/nfdwJu6PORTxIeH4efa8jIspqDJCIKNs0KtEIS9suVdP/rz66inc3vqvKAtjYl9Dr6/W9jogoVwRIcXFx+PPPP/HVV1+px9q1a9UxIqLUpCbSinYrVCFJqZXUc0tPBJawUbPVEhOyU5Pk7WAUQVXPNjndXCKizM1iu3z5Mtq3b68KQlapklAM7sKFCyhVqhQ2btyIChUqwBRwFhuRYWQpko/2fISDdw+qJUreK9gcH51YDPnT6oSNFYK0WjjFxcEtIgrmGuCJzgrX2yxBjUbtjN10IspHsm2af7t27dTq3bLuWtGiRdWxkJAQvPfeezAzM1NBkilggERkOFnU9qtDX2HNpTVq382yAm6FX0Kw+dPObKfYePS5r8M7T+4gWmeOU57TUa8d11gkolweINnZ2eHQoUNq3bXkpLp248aNs2wtttyOARJR5sivnAWnFuCH4z+ke14DDXTQYcgjR/S974d4nQZHqnyMht3G5nhbiSj/ybY6SFZWVggNDU1zXAIjS0uurUREzy8D0LtmbxS2LJzueQmOJEj6vZgWPo6dYabRoeHFaTg0byDimetIRDnE4ADp1VdfRd++fXH48GH1l6A8pEepf//+6NixY/a0kojyFb9APzyKfloXKb0gKSA8ANrXB8Cn/FB1rKH/Chyf+SaiIsNzsKVEZKoMDpBmzZqlErG9vLzUIrXykKE1WYtt5syZ2dNKIspXgsITFqp9nuDIEHi9/yWOuk1GjE6LeqE7cXlGWzx++HTtNiKi7GBu6BcUKVIEf/31l5rNdu7cOXWsWrVqKkAiItKHk62TQdd5dBqIU/bFUH5Hf9SIPolrs1ogsvc6OJcol80tJSJTZXAP0qRJkxAeHq4Cog4dOqiHbEdERKhzRETP4+7sDhdbF5VrlJGCFgXh5uSWtF/r5c649/oaVR+pXPx1xC/wxo1zx3KoxURkagwOkCZOnJjuTDUJmuQcEdHzaM20GNNgjNrOKEgKjQnFN77fIC7+aWJ2xTqNEf3BVtw0KwFXBMN+VQecPbQ5x9pNRKbD4ABJkrJlFkpqMs0/sS4SEdHzeJfxxoxmM9QyJMm52rqiY4WECR8rz6/E8N3DER7zNDG7eNkqKDRwJ86bV0MhPEGFf96D3z+Lc7z9RJS/6V0Hyd7eXgVGiXUDkgdJssyI9CrJTLY5c+bAFLAOElHWkB4imdUmiduScyTDb9LDtPX6Vny671NEx0ejpkNN/NDyBzjaOCZ9XWR4GM7N7gK38AMJtZKqfoKG73xm1NdCRCZYKHLp0qWq96hXr15qtprcPJHUPypbtqya2WYqGCARZb8TgScwZOcQPIx6iBIFSuDHlj+ifJHySefjYmPhO68PPIMTKnMfcn0XDfr8ADOt1oitJiKTrKS9Z88eNa3f3NzgCXD5CgMkopxx4/ENDNw+EDdDb6KgZUF83/x7eLh6JJ3Xxcfj0PKx8LqW0HvtW8gbtQetgKWVtRFbTUQmV0m7adOmJh8cEVHOKVOoDJa3W446TnUQGh2Kftv6YePVp2s+aszM4NXjaxyt+7WqlVT/8XZcnNGGtZKI6IUYHCAREeW0otZFsbD1QrQq00oteDtm3xgsPLVQDfsn8nhtEM63WIgnOmvUjDqB4FktEHT3uhqGO3NgI3w3zFfPsk9E9DwGD7FRAg6xEeW8eF08ZvjOwNKzS9X+G5XewNiGY2Fu9rRX+/LJ/Siy9l044iEeoCDioFXbiQLggLteE+DWpodRXgMR5dMhNiIiYzHTmOFjj4/xaYNP1fafl/7E4J2D8STmSdI1Feu8hOgeWxAIe9gjFA66p8GRcNKFoM7BoTi+JSHIIiJKDwMkIspzulXrhpnNZsJaa40Ddw7gg80fIOBJQNJ5l1IVVflJ6R9PXbbN7L/9Yj4TOdxGRC82xPb6669DX2vWJEy3ze84xEZkfKeDT2PQjkG4H3lfLV3yo/ePqGxfWeUa1djW7blff6bVr6jRuH2OtJWI8uEQm9wo8SE327FjB3x9fZPOHzt2TB1LXhuJiCi71XSsiRXtVqBc4XIICA9Aj396wOeuDyIe3NHr6/W9johMj17z9RcvflrGf/To0ejSpQvmzZsH7X/F2KSS9sCBA9mTQkQ5rmTBklj+ynIM2zUMxwKOqZpJHzq9hvp6fK2NfYkcaCERmcQsNicnJ+zfvx9VqlRJcfzChQto1KgRQkLyTu0Rqf4tQZ2ZmZlaSmXXrl16fy2H2Ihyl+i4aIw7MA6brm1S+90fROOjB/6yGi78rK0QpNXCKS4O7pFRkD/tHsEOBcbehJZ13YhMymM9P78N/s0QGxuL8+fPpwmQ5Fh8fDzymoMHD6JAgQLGbgYRvSBLrSUmN5msliRZcGoBlttb4py1E25aWCAwWRDkEhuLMSEP4B3+BIf/nA7PrmOM2m4iyp0MDpB69uyJ3r1748qVK2jQoIE6dvjwYUyZMkWdIyIyFpn6P9R9KIoXKI4vfb6Er41NwlS2ZAK0WoxwdsJ3gUHwPjcZh36NQcNu44zWZiLKJ9P8p0+fjk8++QTffvstXn75ZfWYMWMGRo0ahWnTpmVZw/bu3YsOHTqgePHi0Gg0WLduXZpr5syZo4bJrK2t4enpiSNHjhj0PeS+snSKh4cHVqxYkWVtJyLj6lyxMwpZ/dd1nnqev0ajfvYnOZdEHICGF6fj0C8TjNJOIspHPUiSryMBkjxkHE9kRw7OkydPUKdOHfTq1SvdMgOrVq3CyJEjVbK4BEczZ85EmzZtVC6Us7OzuqZu3bpqSDC1rVu3qsBLcqlKlCiBe/fuwdvbG7Vq1ULt2rXTbU9UVJR6JEp87USU+/gF+uFhVMoCkcnpoMMDTRSWl34dH9xcg4aXZ8JnaYxa042IKNOFIiXo2L59O1auXKn+EhN3795FWFhYlv2rvvLKK/jqq6/QuXPndM9Lr1WfPn3UsF716tVVoGRra4tFixYlXXPixAmcPn06zUOCIyHBkShWrBjatWsHPz+/DNszefLkFOUOSpUqlWWvlYiyVlB4kF7XOTd7Cz6l+6ltr2tz4LN4dDa3jIjybYB048YN1dPSqVMnDBo0CEFBCb+Ipk6dio8//hg5ITo6WtVekl6f5D1bsu/j46N3D1VoaKjalsBu586dqFGjRobXf/rppyrjPfFx69atLHglRJQdnGyd9L7Oq9c38Ck3SO173ZgHn58/gi4PTjghIiMHSMOGDUP9+vXx4MED2EgC5H+kp0eKReaE4OBgVXvJxcUlxXHZ9/f31+seAQEBeOmll9QwXsOGDfH++++rXKSMWFlZqaHE5A8iyp3cnd1VZW2NWnAkfY42juo6IUNrhyoOT9i+tRCHFg5nkERk4gzOQdq3b5+aGm9paZniuCRL37mTd6rSli9fHidPnjR2M4goG2jNtBjTYAxG7h6pgiTJOUqvbtKt0FsoW7is2m/43kQc+tVcJW173V2KQ/Nj4dl3NjRmXLKSyBQZ/JMvtY6k9ya127dvo2DBgsgJjo6Oqoq39AIlJ/uurq450gYiyt28y3hjRrMZcLZNmLSRyNnGGa62rngc/Ri9t/TG9UfXk87JdP/DVRPqIjX0X4HD8/qzJ4nIRBkcILVu3VrNGEskSdqSwzNhwgSV6JwTpPeqXr16KYb0JHCTfS8vrxxpAxHljSBpyxtbsKjNIkxtMlU9b31zK3579TdULFIRgRGB6LWlV4ogyfPtT3G4RkJdpIaBq3Dkxw8ZJBGZIIOXGpHk5LZt20K+7NKlSyofSZ6lV0dqFyVOsX9REnRdvnxZbbu5ualZa82bN0fRokVRunRpNc2/R48e+Omnn1TBSgnafv/9d1XRO3VuUnbgUiNEeVtIRAg+3PohLj+8DCcbJxU8JQ63iSN/zkT9f7+AmUaHww6vwWPgIpj9t/4kEeVd+n5+GxwgJU7zlwBFcngkkHF3d8e7776bImn7Re3evVsFRKlJULRkyRK1PXv2bFWcUhKzpebRrFmzVE2knMAAiSjvux95Xw2zZRQkHV03G/WOj1VB0hH7V1F/8DIGSUR5XLYESDExMahatSo2bNiAatWqwZQxQCLKn0HSz21+RrnC5ZLO+66fB7djY6DV6HC0cFu4D1nBBW6JTODz26AcJAsLC0RGRmZF+4iIcoWi1kVVUCQ5SUERQSpYuvboWtL5+h3740SD6YjVmcHj0WYcn9UVsTHRRm0zEeXCJG0pDilFIdNbwoOIKC8HSZXsK6UbJNVr/yH+bTgDMTot6j/ejpMMkojyPYNzkBILQhYoUEBV1Lazs0txfs2aNTAFHGIjyp/DbZK4fenBJVVIUnKSkg+3Hd/6C2ocGApLTRz87F5GrWGrYWamxfnDWxDx4A5s7EugqmcbDsERmWKStqx99iyLFy+GKWCARGSaQdKJHb+h+t5BsNTE4oJ5ZdjHBsMZ95POB8ABd70mwK1NDyO9AiIy2iw2YoBEZEpBkgy/lS9cPun8yV1/oPrufrDQxEF+g/63ZrcS/99v1JONZjFIIjKVJG0iIlPJSVrYeqHKSQqOCFY5SVcfXU06X7NJZ4RpbNMER8Lsv/1iPhMRx1xNojwrUwHS6tWr0aVLF7XIq9RASv4gIso3idutf043SJKcI3uEpgmOkgdJrghR1xGRiQRIUoxR8pCkWvXx48dVFWsHBwdcvXoVr7zySva0kojICOyt7dMNkiQhWx/6XkdE+SBA+vHHHzF//nz88MMPak20Tz75BNu2bcPQoUPVeB4RUX4MkirbV1ZBUq/NvXDfzkKvr5VZbURkIgHSzZs30ahRI7UtS4uEhoaq7e7du2PlypVZ30IiolwQJElOkgRJIZEh+DpwKY5aOCYlZKcmuUn+cFBT/onIRAIkV1dX3L+fMKVVFo09dOiQ2r527ZpawJaIyBSCpBGlHXHVwhwxOuCotRU22dmq59j/Erf9bSrCzIzzYIjyKoN/elu0aIH169erbclFGjFiBFq1aoWuXbuqIpJERPk9SKpiXwWP4sPxbumyaFm6JHoVc8FoZ0f13Lp0CWy3tUHdiMM4tOgjYzeZiDLJ4DpI8fHx6mH+X6XY3377DQcPHkSlSpXQr18/lZdkClgHich0PYh8gLc3vI27T+6mOaeBBjro8F1AELzDI+BTbjC8evzPKO0korRYKDKbMUAiMl1x8XFotbqVWrctPRIkFYE1dl27AC2AQ1VGo+E7n+V4O4ko85/fmVow6MGDB/j5559x7tw5tV+9enU13Fa0aNHM3I6IKE/xC/TLMDgS0oP0ABFYXvp1fHBzDRpemIqja+zg8fqwHG0nEeVgDtLevXtRrlw5VQ9JAiV5yLYck3NERPldUHjGwVFyTk3fxCGXd9R2vZMT4LtxQTa3jIiMFiANGjRIVdGWWWtr1qxRDykS+fbbb6tzRET5nZOtk17XOds5w7Pfjzjs0AlmGh3qHvkEx7f+ku3tIyIjBEiXL1/GRx99BK1WRtYTyPbIkSPVOSKi/M7d2R0uti4q1ygjzjbO6jqNmRk8Bi7G0cKtYa6JR40Dw3Bqz5ocbS8R5UCAJOutJeYeJSfH6tSpk4kmEBHlLVozLcY0GKO2MwqSzM3MERYTprbNtFq4DV4BP7uXYamJRcWd/XD20OYcbTMRGcbgWWyrVq1Sy4sMGTJELVYrpFjknDlzMGXKFFSrVi3p2tq1ayO/4iw2Itp+YzumHJmCgPCApGOONo6IjI1UwVFtx9qY33o+7Czs1LnoqEic++5V1Ik8ijCdDe52WoXK7k2N+AqITM/j7Jrm/7zKsBqNRlXUlue4uDjkVwyQiChxyr+a1RYepHKTZFjtyqMr6LWlFx5FPUI9l3qY6z0XNuY26vrI8DBcmfkKakT/i0ewQ8iba1G+pqexXwaRyXicXQHSjRs39L62TJkyyK8YIBHRs5wJPoMPt36oepIaFW+EH1r8AEttQiHdsMcPcGdWW1SJPY8QFMaTbutRunJdYzeZyCQ8ZqHI7MUAiYie53jgcfTb1g8RsRFoVqoZZjSbAQszC3Xu0YNgBM9uhQpxVxGIoojt8Q+Kl6tq7CYT5XuPszNAunv3Lvbv34/AwEC17EhyQ4cOhSlggERE+jh87zAGbh+I6PhotC3bFlOaTFFJ3uJ+4B08ntcGZeNv4a7GBeYfboFziXLGbjJRvpZtAdKSJUuS1lxzcHBQuUZJN9NoVE0kU8AAiYj0tff2XgzbNQyx8bHoVKETJjWeBDNNQj5n0N3riFrQBiV1/rhhVhIF+m2Bg0tJYzeZKN/KtgCpVKlS6N+/Pz799NPnJmznZwyQiMgQ225sw8d7Pka8Lh5dq3TF556fJ/2Bee/GBWgWt4MrgnFFWw6OA7egsIOLsZtMZNKf3wZHOOHh4apqtikHR0REhmpVphW+avyVqpu06sIqzDg2Q834FcXKVEHMu2sQjCKoEHcNAXNfVYncRGQ8Bkc5vXv3xh9//JE9rSEiysc6VOiA8V7j1faSM0sw9+TcpHOlKtVBaJfVeIgCqBx7ETdnd0DYowc4c2AjfDfMV89xsbFGbD2RaTF4iE1qG7366quIiIhArVq1YGGRMCMj0YwZM2AKOMRGRJn1y9lfMPXoVLU9ot4I9KrZK+ncpRP74Lr2LRTURCBKZwErTUzSuQA44K7XBLi16WGUdhOZ0ue3uaE3njx5MrZs2YIqVaqo/dRJ2nnFhQsX0LVr1xT7K1euxGuvvWbUdhFR/vde9fcQGReJ7/2+x3fHvoO11hrdqnVT5yrVbYKDxz+A1/W5KYIj4aQLgdPBoTgOMEgiym09SPb29vjuu+/wwQcfIL8ICwtD2bJlVRFMO7uEJQGehz1IRPSiZvnNwoJTC9T2pEaT0LlSZzWMFvxVZTjrQpDe35zxOiBQ4wCnsRehNTf4b1wik/c4u3qQrKys0LhxY+Qn69evR8uWLfUOjoiIssIQtyGqJ2n52eWYcHACrLRWKHNPhxoIkVVw02WmAVwRgjOHt6BG4/Y53WQik2FwkvawYcPwww8/ILvt3bsXHTp0QPHixdXQ3bp169JcIwvkSs+PtbU1PD09ceTIkUx9r99//z3FcBsRUU6Q322j6o/CW5Xfgg46fLb/MxwI2KvX10Y8uJPt7SMyZQb3IEkQsnPnTmzYsAE1atRIk6S9Zs2aLGnYkydPUKdOHfTq1Quvv/56mvOrVq3CyJEjMW/ePBUczZw5E23atFG5RM7OzuqaunXrIjadWR9bt25VgVdiV9vBgwfx22+/PbM9UVFR6pFIvo6IKCuCpLENxyIyNhJ/X/0bc0O3oLqNNV6KiHzm19nYl8ixNhKZIoNzkHr27PnM84sXL0Z2/AJZu3ZtigRqCYo8PDwwe/ZstS9LnkgRyyFDhmDMmDF633v58uUq6fyXX3555nVffPEFJk6cmOY4c5CIKCtIle3Re0dj642tsIzX4Uf/QNSPioKftRWCtFo4xcXBPTIKZjrgoaYQCo29xhwkotyUg5QdAZChoqOjcezYMVXNO5EUrvT29oaPj4/Bw2t9+/Z97nXyvaTHKvk/sARkRERZwdzMXK3TJjlJsjTJQFcnFIjX4b55wrptwiU2FmNCHqDJk3Bc+Xc/Krs3M2qbifKzTJfDDgoKUgvWykO2c1JwcLCqx+TikrIUv+z7+/vrfR+JHmXIUIbm9ElOl0gz+YOIKCtZaC0wo9kMVC5SGdFmZrivTfkrOkCrxQhnJ+yzs4DT+u64demk0dpKlN+ZZSY3SPKCihUrhpdfflk9JJ9HKmzLMiR5iXSxBQQEqIV3iYhyA3ONOR5GP0zYST3PX/Y1wFcOTiiEx9D++haC/W8apZ1E+Z3BAZIMM+3Zswd///03Hj58qB5//fWXOvbRRx8hJzg6OkKr1argJjnZd3V1zZE2EBFlB79APwSGBz7zmhBzYItNMRTXBeDhgtcQ+uh+jrWPyFQYHCD9+eef+Pnnn/HKK68kDTW1a9cOCxYswOrVq5ETpMenXr162LFjR9IxSdKWfS8vrxxpAxFRdggK1y9l4X7TkbiPQqgYdwXXf3wd0VHPnvVGRNkcIMkwWurcHyFT67NyiE2qW584cUI9xLVr19T2zZs3k3qyJChbunQpzp07hwEDBqjhv+fNsiMiys2cbJ30uq5KWTeEdFqBcJ0VakUdx79z3kV8XFy2t4/IVBgcIEkPzYQJExAZ+fSvFVm4VqbAZ2Xvja+vL9zc3NQjMSCS7fHjE1bClsKO06dPV/tS70iCp82bN6cbvBER5RXuzu5wsXWBJqNS2jIhxdZFXVfJ7WVcbj4XMTot6j/ejiMLhuRoW4nyM4PrIJ0+fVrN+pKiiVLIUZw8eVJVs5Z6QlI80hRwLTYiyi7bb2zHyN0JZUWkwnZq9V3qY1GbRUkLhB/960d4HE8oe3Ko0kdo+G7CH5JElPnPb4MDJCFDaStWrMD58+fVfrVq1fDuu+/CxsYGpoIBEhFld5A05cgUBIQ/nYxib2WPR1GPEI949KnVB0Pdhyad81k2Dl5XZ6ltX4/pqN++j1HaTWTSARIxQCKi7BcXH6dmtUnituQmybDausvr8IXPF+r8556f4+2qb6ttXXw8jsztA8+g1YjWaXGx1RLUfKmjkV8BUd79/DY4B2ny5MlYtGhRmuNybOrUqYa3lIiI0qU108LD1QPtyrdTz7L/RuU3MLDuQHX+68NfY8eNhNm8GjMz1O/3E/wKNIWlJg5lt/XFlX8PGvkVEOVdBgdIP/30E6pWrZrmuOQeycKxRESUvfrX7o83K7+p8pM+2fsJ/AL81HFZm636oJU4Y1kLBTQRKLzmHdy9fsHYzSUyjQBJlvKQKtqpOTk54d69e1nVLiIiyoAkZ8vwWrNSzRAdH40hO4fgysMr6py1jR1KDliHa2Zl4YiHiF3WGQ+C+LuZKNsDJFmg9cCBA2mOyzFZcoSIiHJmcdtvXv4GtZ1q43H0Y/Tf3h8BTxISugvbO8Ku9zr4wwml4+8g8KfXEPEk1NhNJsrfAVKfPn0wfPhwLF68GDdu3FAPyT8aMWKEOkdERDnDxtwGs1vMRtlCZeH/xB8DdwxEaHRCIORcohyi3v4dj2CHKrHncWH2m4iNiTZ2k4nyDINnscnlY8aMwaxZsxAdnfDDJjWQRo8enVTE0RRwFhsR5RZ3wu7gvU3vITgiWCVzz/OeB0ttwiLc549sQ9mN78BaE4Mj9q/CY8hyldBNZKoeZ/c0f1kKRJb4kNpHlSpVgpWVFUwJAyQiyk3O3z+PDzZ/gCcxT9C2bFtMfXkqzDQJgdDxrb+g9oHB0Gp08Cn1Ibx6f2vs5hLlv2n+iQoUKAAPDw/UrFnT5IIjIqLcpmrRqviu2XcqN2nz9c2Y7js96Zxb6/fgW3Os2va6tRCH/3h6jojSx35WIqJ8wqu4F75q/JXaXn52OZaeWZp0zvOtj1Xvkah/+ivVqxQXG4szBzbCd8N89Sz7RJSAlbQziUNsRJRbLTm9BN8eSxhGm9pkqio0mVht++gP3dHgwQZVbTtMY4eieJz0dQFwwF2vCXBr08NobSfK80NsRESUO/Wo0QPvVXtPbX9+4HMcundIbUtytvvAxbioraiqbdvrngZHwkkXgjoHh+L4lqc9T0SmigESEVE+LCQ5ymMU2pRtg9j4WAzfNRwX7idU1NZozFAk7j5k7ECjSfl1Zv/tF/OZyOE2Mnnm+ly0fv16vW/YsSMXRyQiMjaZwfa/l/6HkIgQ+Ab4YsD2AVjebjkenjyBGrgPaDL6OsAVIThzeAtqNG6f080mylsB0muvvab3Xy1xcXEv2iYiIsoCVlorfN/iezX9/9KDS+i/rT8+0nrr9bURD+5ke/uI8vwQW3x8vF4PBkdERLlLIctCmNtyLlztXHH98XX8ELENkanH1tJhY18iR9pHlFsxB4mIKJ9zsXNRQVJBy4K4GHkDw5yKITqD+cuSm+QPB1T1bJPTzSTK+wHSnj170KFDB1SsWFE9JO9o3759Wd86IiLKEhXtK6p12yzNLHHQzhyTHe1VkHTU2gqb7GzVc+IYwNVir0JrrlcGBlG+ZXCA9Msvv8Db2xu2trYYOnSoeshyIy1btsSvv/6aPa0kIqIX5u7irpYg0UCD1YUKoknZUuhVzAWjnR3Vc+tSJbDDzgZ17/6GK/8eNHZzifJWochq1aqhb9++GDFiRIrjM2bMwIIFC9T6bKaAhSKJKK+acHAC1lxak/5JHfBdYBBqh9tA03cXnIqXzenmEeXNQpFXr15Vw2upyTDbtWvXDG8pERHlmLj4OBy4cyDjCzTA/xwc4YD7ePTz6wgPe5STzSPKNQwOkEqVKoUdO3akOb59+3Z1joiIci+/QD8EhAc885pgcw12WxdFxbgruPDj2ywaSSbJ4Cy8jz76SOUdnThxAo0aNVLHDhw4gCVLluD777/PjjYSEVEWCQoP0uu6a/X6I2r/NLiFH8ShhUPRsP+P2d42ojwdIA0YMACurq749ttv8fvvvyflJa1atQqdOnXKjjYSEVEWcbJ10uu6OrVa4FSUPer7jkJD/xU4/EcFeL71Uba3jyjPJmlTAiZpE1FezUFq82cbBIYHQicZ2elwsXXBlje2QGumhc/i0fC6MQ+xOjOca7kEtV7mH8KUt2VbknYiX19fLF++XD2OHTuW2dsQEVEOkqBnTIMxalum+6enin0VdZ1o2GMyfAu1grkmHmV29seNc/x9T6bB4ADp9u3baNKkCRo0aIBhw4aph4eHB1566SV1joiIcjfvMt6Y0WwGnG2dUxwvYlVEPe+9sxe/nf9NbWvMzFBr4DKcs6iBQgiHxe/vICSAv+sp/zM4QPrwww8RExOj6h3dv39fPWRb1mKTc3nJ9OnTUaNGDdSsWVMVwCQiMqUgSYbRFrVZhKlNpqrn3V12Y5j7MHV+ypEp2H9nv9q2sraFa98/cVvjiuK6AAQteBOREU+M/AqIclkOklTNPnjwINzc3FIcl2E26VkKDw9HXnDq1Cn06NFDvRb5J2jevDk2b96MIkUS/oJ6HuYgEVF+JL8Pxx0Yh7+u/AU7Czsse2UZKttXVuduXjyBIr+2QyE8wbGCLeA+4k/Vw0SUl2RbDpLUOpIepNTi4uJQvHhx5BXS6+Xl5QVra2sV9NWpU0cFSEREpkyj0WCC1wTUd6mPJzFPMHjHYARHBKtzpSvXxc1WPyFGp0W90J04tHiUsZtLlG0MDpCmTZuGIUOGqCTtRLItuUgyZJVV9u7dqyp2S9AlP7Dr1q1Lc82cOXNQtmxZFeR4enriyJEjet9fhtV2796Nhw8f4sGDB2r7zp07WdZ+IqK8ykJrgZnNZ6JsobK49+Qehu4ciojYCHWuZuMOOF73C7XtdWshfNfPNXJriYxYB8ne3l4FKYmePHmiAhLz/1Z7jo2NVdu9evXCa6+9liUNk+8hvTpyz9dffz3Neam7NHLkSMybN0+1ZebMmWjTpg0uXLgAZ+eExMO6deuqtqW2detWVK9eXRW8bNGihepqa9iwIbTahFkbRESmrrBVYcxpOQfdNnXDqeBT+Hz/55jedDrMNGZo0HkofIIuwevuMtQ+NhZnncuhesO2xm4yUc7nIC1dulTvG0peT1aT4Gzt2rUpgi8JimT23OzZs9W+JInL8J/0bo0ZkzCF1RCSYN65c2e0b98+3fNRUVHqkXwMU74fc5CIKD87FnAMH279ELHxsfiw1odJSdzxcXE4MeM1uD/ZiwcoiCfvbUbJijWN3VyiLMtBMjdW0PMioqOjVVL4p59+mnTMzMwM3t7e8PHx0fs+gYGBqrdJep1keE56ozIyefJkTJw48YXbTkSUl9RzqYdJjSbhs/2fYeGphShdsDQ6V+oMM60W1Qb+iovftUDl2IsIW/EWHg3Zi8JF9avUTZTvlhpJTMiWnCBJdBYyVb5jx445NkQVHBys2uDi4pLiuOyfP39e7/vI0igSQdrZ2WHx4sVJQ4bpkWBMhvRS9yAREeV3HSp0wI3HN/DTvz9hks8klChQAg2KNYCNXUEU/fBP+M9rjlK6uzgz7w3YfLQVllbWxm4yUc4HSJcvX0a7du1UQnOVKlWSelckWNi4cSMqVKiAvMKQ3iYrKyv1ICIyRYPqDsLNxzfxz/V/MGL3CPzS7heUK1wOjq6lcfXNX/Hkj46oEX0SR+b2hMfQFZz+T3mewf8HS2KzBEG3bt2Cn5+fety8eRPlypVT53KCo6Oj6q0KCAhIcVz2ZSFdIiLK+lzQL1/6EnWc6uBx9GMM2jEIDyIfqHPla3rictMfEKfToMHDTTj0ywRjN5co5wOkPXv24JtvvkHRokWTjjk4OGDKlCnqXE6wtLREvXr1sGPHjqRjkqQt+1LbiIiIsp6V1grfN/9eDbHdCr2F4buGIzouWp2r06ILfKuNVtteV2fB75/FiIuNxZkDG+G7Yb56ln2ifBsgyTBTaGhomuNhYWEqcMkqcr8TJ06oh7h27Zralt4qIflACxYsUDPsJBdqwIABqjRAz549s6wNRESUkoONg5r+X9CiIPwC/TDh4ARVfVt4vv0pDju9qbZrHvoID78qjxrbuqG+7yj1HPxVZRzfov+saKI8FSC9+uqr6Nu3Lw4fPqx+KORx6NAh9O/fXyVqZxUpPinLmSQuaSIBkWyPHz9e7Xft2lUVppR9qXckwZNUwk6duE1ERFmrQpEK+LbZt9BqtNhwdYNK3k5Ur+9cXNZWgKUmDkV1j1J8nZMuBHUODmWQRPlzLTapPC3T/v/++29YWFioY1KMUYKjJUuWqNoCpoBrsRGRqVt9cTUm+iSUP5EFb9uVb6eG0UK+qgQn3X0kqy+cJF4HBGoc4DT2IrTPmDlMlCfqICUni7n+9ddfajZb4jT/atWqoWLFii/WYiIiylPerPymmv6/5MwStcBt8QLFYXHpDmrgPpBOcCTMNIArQnDm8BbUaJx+YV6i3CDT8zAlIJK10mTKv+QLyXpmRERkWoa7D0eLUi0QHR+t1my7EXxWr6+LeMC1LymfBUjDhw/Hzz//rLalWGPTpk3h7u6u6iDJgq9ERGQ6tGZaTG4yGdWKVsODqAf4/sk/eCzdRM9hY18iR9pHlGMB0urVq9UiskLykK5evaqqV48YMQKff/55phtCRER5k62FLWa3nA1nW2fcjQnCYOfiiMogu1VykPzhgKqebXK6mUTZGyDJMh+JxRg3bdqELl26oHLlyujVqxdOnTpl6O2IiCgfkOBIpv/bmNvguI0WXzsWRbQOOGpthU12tuo5TmYGAbhRexgTtCn/BUgyjf7s2bNqeE2m1bdq1UodDw8Pz7G12IiIKPepWrQqpjedDjONGdYUKoCXy5RCr2IuGO3sqJ5blyqOHXY2KHRuFaKjIo3dXKKsDZCkEKP0GtWsWVOVnvf29lbHpS5S1apVDb0dERHlIy+XfBmdKnRS20+0KXORAs3NMcLZEXcsruL4/L5GaiGRfgzu4/ziiy9UcCRrsb311ltJC7hK79GYMWMMvR0REeUjcfFxOHj3YMYXaDSY4mCPLbf+wuHfp8Gzy6icbB5R9hWKpAQsFElElNZR/6PotaXXc69bdC8AdSNicantClT3eiVH2kZkyOd3pusgERERpRYUHqTXdUfsasNCEwfXLX1x78aFbG8XkaEYIBERUZZxsnXS67o6r45Ta7YVxWOEL3sbEU/SLoJOZEwMkIiIKMu4O7vDxdYFmozWGgHgausKrzIvoUCPVbiPQqgQdxVn53WHLj4+R9tK9CwMkIiIKEsra49pkDBhJ6MgqXOlzuo619KV4N92AWJ0WtQL3YVDy8fmcGuJXjBAkoQmfR9ERGTavMt4Y0azGap4ZHLWWmv1/Ov5X3Er9Jbart6wLfxqfqa2Pa/+iBM7fjNCi4kyOYvNzMxM1Tx6FrmNXCMFJE0BZ7ERET1/yr9foJ9K3JbcpBoONdB7S2+cDjmNikUqYkW7FWqZEnH4hx7wDFmHMJ0NQt7ZhDJV3Y3dfDLxz2+9AqQ9e/bo/Y1l8VpTwACJiMhwAU8C8PbGtxEcEYyWpVuqniapvC2VtS9Pb4nqMadxS1MchYbuQ2F7R2M3l/KhLA2QKC0GSEREmXMi8ISqlRQTH4OBdQdiQJ0B6nhIwG3EzG0KVwTjX2sP1Ph4M9dso7xXB0nWXjt//jz+/fffFA8iIqJnqetcF+MajlPbP574ETtu7lDbDi4lEdZ5KSJ0lqgdeRRHfh5m5JaSKTM4QAoKCsKrr76KggULokaNGnBzc0vxICIieh6Zydataje1/dm+z3D5wWW1XbHOSzjT4Gu17XXvF/j+/ZNR20mmy+AAafjw4Xj48KFanNbGxgabN2/G0qVLUalSJaxfvz57WklERPnOxx4fo4FrA4THhmPorqF4FPVIHa/fvg98ir+vtmv6fo5LJ/YZuaVkigwOkHbu3IkZM2agfv36anZbmTJl8N577+Gbb77B5MmTs6eVRESU71iYWWB60+koUaCEmvY/as8oxMbHqnMNen2HkzYNYK2JQaF1PRDsn1AWgCjXBkhPnjyBs3NCbQt7e3s15CZq1aoFPz+/rG8hERHlW/bW9vi++fewMbeBzz0ffHfsO3VckrPL9fsNN81KwAUhCPq5i5rpRpRrA6QqVargwoWEhQXr1KmDn376CXfu3MG8efNQrFix7GgjERHlY1WKVsH/Xvqf2l52dhnWX0lI1yhUxAF4+1c8hi2qxZzFiZ8+5HIklHsDpGHDhuHevXtqe8KECfjnn39QunRpzJo1C19/nZBYR0REZIhWZVqhX+1+anviwYk4FXRKbZeuXBfXms5CvE6DBvf/xpHV043cUjIVL1wHKXG6vwRJjo6mU9SLdZCIiLJWvC4ew3YNw+5bu+Fs44zfXv1NVeAWh5aNQ8Ors9S6bRfb/IIajdoZu7mUR2VbHaRJkyapoCiRra0t3N3dYWdnp84RERFlhlTUnvzSZFQoXAGBEYEYvns4ouOi1TnP9ybCt2BLWGjiUHxrP9y7cQFxsbE4c2AjfDfMV8+yT2S0HiStVquG2BITtROFhISoY1yLjYiIXsTNxzfVciSh0aF4vdLr+MLrC7XWZ8STUNyZ0RQV467gLpxhjlg4437S1wXAAXe9JsCtTQ+jtp9MtAcpcVHa1E6ePImiRYsa3lIiIqJkShcqjekvT1c9SmsurcHK8yvVcRu7gijQYxVCYYviCIST7mlwJJx0IahzcCiOb1lqpJZTfqJ3gCRT+iUAkuCocuXKajvxIZFYq1at0KVLl+xtLRERmYRGJRphZL2Ravubo9/gyL0jatupeDnEwBwy9pH6b3Wz//aL+UzkcBu9ML1XAZw5c6bqPerVqxcmTpyogqJElpaWKFu2LLy8vJAbde7cGbt370bLli2xevVqvc8REZHxvF/9fZy/fx4brm7AR3s+wsr2K/Ho35OogcdA2oGMpCDJFSE4c3gLajRun9NNJlMMkHr0SBjTLVeuHBo1agQLCwvkFVKaQAI7WRLFkHNERGQ8MmIxwWsCrj26hjMhZ9QMtxGa5np9bcSDO9nePsrfDM5Batq0qVpi5M8//8RXX32lHmvXrs3VydnNmjVTi+saeo6IiIzL2twaM5vPhIO1Ay4+uIjFUQegz8wiG/sSOdA6ys8MDpAuX76MatWq4f3338eaNWvUQ9Ziq1GjBq5cuWJwA/bu3YsOHTqgePHi6q+FdevWpblmzpw5agjP2toanp6eOHIkYSyaiIjyP1c7VxUkmZuZ48iT05hRxBXxGURJctwfDqjq2Sanm0mmHiANHToUFSpUwK1bt9Taa/K4efOmGnqTc5lZ202WLJEgKD2rVq3CyJEjVdVu+V5ybZs2bRAYGJh0Td26dVGzZs00j7t37yKrREVFqamByR9ERJQz6jrXxbiG49T2EntL7LK1QYwOOGpthU12tupZxjEkNeme1wS1lhvRizD4/6A9e/bg0KFDKab0Ozg4YMqUKWjcuLHBDXjllVfUIyMzZsxAnz590LNnT7Uva75t3LgRixYtwpgxY9SxEydOILtNnjxZJacTEZFxSE0kSdqWaf+jXF1RIDYGD8yf/p3vEhuLj4MfoqxDSaO2k0y0B8nKygqhoaFpjoeFhanZbFkpOjoax44dg7e3d9IxyX+SfR8fH+SkTz/9VBWVSnxIDxoREeWsUR6jUKFIBcQgLkVwJAK05vjExQGnd/ZHSMBto7WRTDRAevXVV9G3b18cPnxYTfuXh/Qo9e/fHx07dszSxgUHB6vkbxcXlxTHZd/f31/v+0hA9dZbb2HTpk0oWbJkiuDqWedSB4ZScTP5g4iIcpYZzPA4KoMUBw1UAvdPDua4+/M7iI1JWKaEKEeG2GbNmqWm/EvNo8Sp/rGxsSo4klpJudH27dszdY6IiHIXv0A/BEUEZXyBRgN/c3NEml3A0UUfwavfDznZPDLlAKlIkSL466+/1Gy2c+fOqWMyq61ixYpZ3jhHR0e19ltAQECK47Lv6uqa5d+PiIhyt6DwIP2u02rR7t4y+G1pAPc23bO9XZT/GDzENmnSJISHh6uASKbny0O2IyIi1LmsJDlN9erVw44dO5KOxcfHq/3cWrWbiIiyj5Otk17XBRVqqp4rHxyFW5dOZnOrKD8yOECSmVySkJ2aBE2ZmeUl95JZaIkz0a5du6a2pXSAkCn+CxYsUJWupcdqwIABqjRA4qw2IiIyHe7O7nCxdYEmo7VGpG6SrSu69liEcxY1UEATgbiV7yE87FGOtpNMMECSpGwp6JjayZMnU0z915evry/c3NzUIzEgku3x48er/a5du2L69OlqX+odSfC0efPmNInbRESU/2nNtBjTIKHES0ZB0icen8Da2hZOPVciGEVQNv4mzv7UE7r4+BxuLeVlGp1EPHqwt7dXgZFMcZcZXMmDJJlpJj1BMpMto4KP+Y0UipQFexP/PYiIKOdsv7EdU45MQUB4yhzVxACpe/WEvKNzh7eg4qZ3YKGJw6Eqn6DhO58bobWUFz+/9Q6QZIhLLpWFXWW2mtw8ea6QLAViSnlBDJCIiIwrLj4uYVZbeJDKTZIikt8c/QZajRY/t/kZ9VzqqesO/folGl6cjhidFlfa/Yaqnq2N3XTKTwFS8kraUjHb3MTLuDNAIiLKXeTjbMy+Mdh0bRMcbRzx+6u/q8BJhtb8vnsd9UJ3IQj20PTfC0fX0sZuLuXyz2+Dc5CaNm1q8sERERHlPpL6McFrAioWqYjgiGB8vOdjxMTHQGNmhqp9l+C6WSk44QECF3VDTHSUsZtLuZzBARIREVFuZWthi++afYcCFgXU8Nt3x75Tx+0KFoGm6y8I09mgevQpHPt5mLGbSrkcAyQiIspXyhYui69e+kptLz+7HJuvb1bbZarUxaVGU9V2w4CVOLZpsVHbSbkbAyQiIsp3WpZuid41e6vt8QfG48rDK2rbrU0PHHJ9V21XPTwGN877GbWdlE8CpJiYGJV/dPr06exrERERURYY7DYYnq6eiIiNwPBdwxEWnVDkuH7vmThjWRt2mkjg9+4Ie/zA2E2lvB4gyeK0pUuXVnWPiIiIcjNzM3NMfXmqqrx9/fF1jD84Xs10M7ewhEuvXxGIoigTfxsX5/dgEUl68SG2zz//HJ999hnu379v6JcSERHlKAcbB8xoNkMFS9tubMPSM0vVcUfXUrjffgGidVq4h+3B4ZVfGruplMsYXAdJlgG5fPmyGm4rU6YM7OzsUpz38zON8VzWQSIiyjtWnV+Frw5/BTONGRa2XggPVw91/PCqKfA8NxmxOjNcbPsrqnu9YuymUi75/Da4oNFrr732om0jIiLKUV2qdMHJoJP4++rfqj6SFJF0sXNBg7c+ge/Mo6j/eDuct/RHUJk9cCpe1tjNpbzYg0QJ2INERJS3SLL2e5vew8UHF1HHqQ4Wt1kMC60FwsMeIWDGyygXfx3nLKqj4qjdsLC0MnZzKa9V0k507Ngx/PLLL+px/PjxzN6GiIgoR9iY22Bms5koaFFQ9SZN952ujtsWKAzzbr8gVGeDajFncWzhYGM3lfJiD1JgYCDefvtt7N69G0WKFFHHHj58iObNm+O3336Dk5MTTAF7kIiI8qY9t/Zg8M6EIGhyk8l4tfyravv41l/gdnCQ2j7qNgW2jqUR8eAObOxLoKpnG2i5zFa+kG09SEOGDEFoaCjOnDmjZrLJQ+oiyTccOnToi7abiIgoWzUt1RR9a/dV25N8JqkhN+HW+j34lPhAbdfzG4Ma27qhvu8o9Rz8VWUc35IwA45Mg8EB0ubNm/Hjjz+iWrVqSceqV6+OOXPm4J9//snq9hEREWW5gXUGolHxRiovacSuEQiNDlXHLUvUhYyrmGlSXu+kC0Gdg0MZJJkQgwOk+Ph4VTAyNTkm54iIiHI7rZkWU5pMQTG7YrgZehOf7/8cMTHRKHnkS6SXd5IYMBXzmYi42Nicbi7lhQCpRYsWGDZsGO7evZt07M6dOxgxYgRatmyZ1e0jIiLKFvbW9qqIpIWZBXbd2oVpWz6HC0LS9B4lkuOuCMH5w1tyuqmUFwKk2bNnq3yjsmXLokKFCupRrlw5deyHH37InlYSERFlg5qONfGZ52dq+7eQLThk/fzp/ZK4TfmfwSn5pUqVUtWyt2/fjvPnz6tjko/k7e2dHe0jIiLKVm9UekNN+193eR0+cXbE73f84fqMNUdlVhvlf3pN8y9atCguXrwIR0dH9OrVC99//z0KFiwIU8Zp/kRE+UdkbCS6b+qO8w/Oo2ZkFBbdC8BpaysEabVwiouDe2QUzHRAoMYBjmMvcsq/CXx+6xUgFShQAP/++y/Kly8PrVYLf39/k6l3lBEGSERE+cvt0Nt4c21nPNFFwiY+HhFmT7NQXGJjMSbkAQqbN4bHyD+N2k7KRWuxeXl5qTXY6tWrB4mnpN6RjY1NutcuWrQo860mIiIykpIFS6Jbze5YcGpBiuBIBGi1GOnsiOkBB3HG5x/U4KK2+Z5eSdqynEi7du0QFhYGjUajoq4HDx6k+yAiIsqL4uLjsP7K+vRPajTQQYNpjkXgsGUAggNu53TzKLcvNSIz1nx9feHg4ABTxiE2IqL85aj/UfTa0uu510l+krWuOqqP2s5cpDwo25YauXbtmskHR0RElP8EhQfpdd1tM2vUijqOI8s+zfY2kfEYHCARERHlR062+k0+elL+PfXseWMBTu/PYEiO8jwGSERERADcnd3hYusCDTIopQ3A1dYV77z+JY4WaQ8zjQ6u24cg+N7NHG0n5QwGSERERP+tzzamwRi1nVGQNKzeMHVdrb4/4ZpZGTjiIQIWv4vYmJgcbi3lqgApNjYWy5YtQ0BAAPKSzp07w97eHm+++WaK4w8fPkT9+vVRt25d1KxZEwsWLDBaG4mIyPi8y3ir9dmcbZ1THDfTJHxc7r29V5W7sbYtCPO3l+GJzho1ov/FkSWjjNRiyjWz2GxtbXHu3DmUKVMGecXu3bsRGhqKpUuXYvXq1UnH4+LiEBUVpV7TkydPVJCk7ww9zmIjIsrfU/79Av1U4rbkJmk1WjXDLU4Xh4mNJuL1Sq+r645tWIB6vh8jXqfBqeY/o06zN4zddDLWLLYGDRrgxIkTyEuaNWuW7tIoUhVcgiMhgZLEigbGi0RElA/JMJqHqwfalW+nnt1d3DHYbbA6N/nwZFx6cElt13u1D444dFL5SKV3D4P/7atGbjllFYMDpIEDB2LkyJGYPXs2fHx81BIkyR+G2rt3Lzp06IDixYurIpTr1q1Lc82cOXNQtmxZWFtbw9PTE0eOHEFWkWG2OnXqoGTJkhg1apRab46IiCi1XjV7oVHxRoiMi8SoPaMQERuhjtf+cC6uaMvDHqG4v/Q9xMREG7upZIwA6e2331a1kGS5kcaNG6v8HTc3t6RnQ8nQlgQoEgSlZ9WqVSogmzBhAvz8/NS1bdq0QWBgYNI1iTlEqR9379597vcvUqQITp48qV7Tr7/+mmF+lfQwSbdc8gcREZkOyUP6+qWv4WjjiCuPrmDKkSnquLWNHay7LUeYzgbVY87Ad9FIYzeVjJGDdOPGjWeef5HcJOlBWrt2rVr3LZH0GHl4eKgeKxEfH49SpUphyJAhGDMmYbaBvnlIco/kOUjp9Y61aNEiTTK3+OKLLzBx4sQ0x5mDRERkWo7cO4IPt34IHXSY3GQyXi3/qjp+/J/FcDs8PGH7pZ/g5v22kVtKOZqDJAHQsx5ZKTo6GseOHYO3t/fTBpuZqX0Z3ntR0lskydtC/qFkuK9KlSrpXvvpp5+qaxIft27deuHvT0REeU+DYg3Qv05/tf2lz5e4/ui62nZ7pSeOOCX8gV1u/0e4d+OiUdtJRqiDdOXKFdWDI4GKPGS4TY5lteDgYDXTzMXFJcVx2ff399f7PtLGt956C5s2bVK5RonBlfSGNWnSRA3bybO8plq1aqV7DysrKxVpJn8QEZFp6le7n0reDo8Nx6i9oxAVF6WO1+09G5fMK6EIwvBo+fuIjko4TiYQIG3ZsgXVq1dXidK1a9dWj8OHD6NGjRrYtm0bcqPt27cjKCgI4eHhuH37Nry8vFLMyJMcJEkw79evn7GbSkREeWSW25QmU2BvZY/z989j+tHp6riltQ3s3v0Fj2GLqrHn4LtomLGbSjkVIEnez4gRI1RQNGPGDPWQ7eHDh2P06NHISjKjTKbip06cln1XV9cs/V5ERESGkGKSXzf5Wm3/duE3bLuR0ElQvFxVXG08TW03ClgJv62/GLWdlEMBkhSJ7N27d5rjvXr1wtmzZ5GVLC0tUa9ePezYsSPpmCRpy35iLxAREZGxvFTiJfSs2VNtTzgwAbdDb6vtuq3ew2GXhCTtigc+wZ2r54zaTsqBAMnJySndQpFyzNk5ZWl2fYSFhamvTbynTLeX7Zs3Exb/kyn+sgSIVMGW4GzAgAGqNEDPngn/QxIRERnTELchqO1UG6Exofhk7yeIiUtYl8299/e4aFEFhTRP8GRFd0RGJtRNorzB3NAv6NOnD/r27YurV6+iUaNG6tiBAwcwdepUFcwYSpb2aN68edJ+4j169OiBJUuWoGvXrip/aPz48SoxW2oebd68OU3iNhERkTFYmFlg2svT8Obfb+JU8CnMOj4LH9X/CBaW1ijc/Rc8WtQMleMuwWfhEHgNXmjs5lJ21UGSy2fOnIlvv/02qRCjVMGWKtQym01qGZkCrsVGRETJ7bi5A8N3JdRBmtNyDl4u+bLa/nfnb6i9N2ESkG+DmajfjiMg+a4OUmxsLJYvX45u3bqp2WCJNYFke9iwYSYTHBEREaXWsnRLvFvtXbX9+f7P4f8koRxN7RZv43Dx7mq7yuFPcfPyaaO2k/RjUIBkbm6O/v37IzIyUu3LArDpLQJLRERkikbWG4lqRavhYdRDjN47GrHxsep4vQ++xXmL6iioiUD0yu54EvoIZw5shO+G+eo5LjbhOsrDSdpSO+j48ePZ0xoiIqI8zFJrielNp8POwg5+gX6Yd3KeOm5uaQWHD1bgAQqhYtxVYHol1NjWDfV9R6nn4K8q4/iWpcZuPr1IgCTrlX300UdqXTOpSC0FFpM/iIiITFnpQqUxwWuC2p7/73wcundIbTuVKI8LJd+EZP7aaVJW2HbShaDOwaEMkvJykrashZbmJhqNSt6WZ1kaxBQwSZuIiJ5los9ErL64Gg7WDljdcTXsLYqoniJnXQjSS9mN1wGBGgc4jb0IrbnBk8wpiz+/DX4HpE4RERERPdtoj9E4EXgClx9exqf7PsVQ246ohRAgg/lMZhrAFSE4c3gLajRun9PNpRcJkGJiYtCiRQts2LAB1apVM+RLiYiITIq1ubXKR3pn4ztqmK2EDZD+cugpRTy4kwOtoyzNQbKwsEiawUZERETPVqFIBXzm+ZnaXhNxGH5WVs/9Ghv7EjnQMsryJO1BgwapqtlSE4mIiIierVOFTuhQvgN00OFjZyfc16T/0Ss5SP5wQFXPNjneRsqCHKSjR4+qxWK3bt2KWrVqwc7OLsX5NWvWGHpLIiKifEsmMI1tOFYtQ3L98XWMc3LAdwFBOGljhSCtFk5xcXCPjFI9FrfcR8OVCdq5gsHvQpEiRfDGG29kT2uIiIjyIVsLW5WP1G1jN+y1A14uUwpPtE+ztV1iYzEm5AEKXd4BXXwfaNKZMU65fJo/JeA0fyIiyuzU//RodDrMCAxGgfKfouGbw3K8babicXasxZZI8o+2b9+On376CaGhoeqYLFwbFhaW+RYTERHlY3Hxcdh3e1+G53UaDaY62KPWqS9x+fThHG0bZcEQ240bN9C2bVvcvHkTUVFRaNWqlVqPTRK3ZX/evISy6kRERPSULD0SEB7wzGv8zc1x1sYMLn/2RGip/ShYuGiOtY9esAdp2LBhqF+/Ph48eAAbG5uk4507d1bJ20RERJRWUHiQXtdd0RZGad0dnF/YG7r4+GxvF2VRgLRv3z6MHTsWlpaWKY6XLVsWd+6wuBUREVF6nGyd9LrOwmMkYnVm8AjdicOrv832dlEWBUjx8fHprrd2+/ZtNdRGREREabk7u8PF1gWajNYakdlsti547eW+OFZpqNp3OzMVl04cyMFWUqYDpNatW2PmzJkp6jtIcvaECRPQrl07Q29HRERkErRmWoxpMEZtZxQklS5YWj036DYeJ20bwkoTA5u/euHRw5AcbStlIkD69ttvceDAAVSvXl0tO9KtW7ek4TVJ1CYiIqL0eZfxxoxmM+Bs65zieBGrIjCDGY4GHMX4g+MhmUflei+Hv8YJJXX+uLzgA+Yj5YU6SDLNf9WqVTh58qTqPXJ3d8e7776bImk7v2MdJCIiepEp/zKrTRK3JTdJht+23dyGMXvHIE4Xh44VOmJSo0m4enwvyqx/A5aaOPhUGQOvdz41dtNN5vObhSIziQESERFltS3Xt2D03tEqSHq1/Kv4qvFXOPbb12hwcTqidVpc67QWVdybGruZeVqWF4q8ePEijhw5kuKYTOtv3rw5GjRogK+//vrFWkxERGTi2pRtg2lNp8FcY44NVzfg8wOfw73LGJywe0n1IhX8+0M8uh9o7GaaBL0DpNGjR2PDhg1J+9euXUOHDh3UdH8vLy9Mnjw5RfI2ERERGa5VmVZJQdLGqxvx+cGxKN17Ee5qXFBcF4irC3swHyk3BUi+vr545ZVXkvZXrFiBypUrY8uWLfj+++9VcLRkyZLsaicREZFJJXPL4rYSJG26tglTTn2L0I7zEa0zh1v4QRz69StjNzHf0ztACg4ORsmSJZP2d+3apXqQEjVr1gzXr1/P+hYSERGZoJZlWuLbZt/C3Mwc/1z/Bwsfb4Rv9Y/VufqXZuL8Ua5ekSsCpKJFi+LevXtJxSKlR6lhw4ZJ56Ojo8F8byIioqzTonQLzGg6QwVJm69vxp8uwThcsBksNHEosrEvHgT7G7uJ+ZbeAZL0EH355Ze4deuWGk6TIEmOJTp79qyqh0RERERZp3np5viu2XcqSNp6YytW1C6Fa5ricEUwbvz8PuLTWd0iT4uPA67tA06tTniWfSPQe5q/DJ+1atUKV65cgVarxaxZszBgwICk86+99hrKlSuH7777DqaA0/yJiCgn7bm1ByN2j0BMfAy8irjjO7+NsNPE4GD5oWj0/pfIF86uh27zaGge3006pCtUHJq2U4HqHXNvHSQpEHnmzBk4OTmhePHiKc5J0UjJUXJwcIApYIBEREQ5be/tvRi+a7gKkty1pbHw8n5odGa4+MpvqN6wDfJ8cPT7+4iFDiesrRCk1cIpLg51I6NgLouzdFmWJUFSjhWKlNwjeRQoUAC5VefOnbF79260bNkSq1evTnFOhgXlH8jMzAz29vYq+VwfDJCIiMgY9t3ep4Kk6PhouEcXwMI7Z/EARaEduB8OziWQJ8XHIWJadezDI3zjaI8Ac/OkUy6xsfgk+AGaoDBsRp0FzLS5q1CkWLx4MYYMGaKm+ItPP/0UBQsWVN9Iht9CQnLnYnrDhg3DsmXLMjx/8OBBnDhxQu/giIiIyFialGyC71t8D0szS/hZhmGgSynY4z7uLOqeZ/OR4q4fwAHNI3zs4ogAbcoAKFCrVcflvFyXU/QOkP73v/9h0KBBOH/+PIYOHaryj6Tu0aRJkzBlyhR1fOzYsciNJJlcAjkiIqL84KUSL2FWi1kqSDpkq8EwZ2dUjTyGw8s+Q54RHQ5c3QPsmozwv0ZgioM91JCWRpPiMt1/+1Md7HHxyqXcFyBJMPTzzz9j27Ztqjjk/PnzMXv2bFVhe9SoUWp/06ZNBjdg7969qp6S5DRpNBqsW7cuzTVz5sxRQ2HW1tbw9PRMs+TJi5Dv2bRpU3h4eCT1jBEREeV2jUs0xg8tfoCV1gr77Kwx0sUJda//hNMH/s6dM83C7wMX/gG2jgMWtASmlAKWdQT2TMH5qFsJw2qpgqPkQZK/uTl8oh4hpzwd5HuOmzdv4qWXXlLb9evXh7m5OWrWrJl0vnbt2kl1kgzx5MkT1KlTB7169cLrr7+e5vyqVaswcuRIzJs3TwVHUmKgTZs2uHDhApydndU1devWVQnkqW3dujVNMnlq+/fvR4kSJVTbvb29UatWLfVaUouKilKP5GOYRERExtSoRCMVJA3ZOQR7bIGPXR3x+bbBuFe6Gvad34TAxzfhXKg0XmvaD5aWVlnzTc+uBzaPBpLNNEOh4kDqmWZy/sZB4KYPcMMHCDyT5lb3dEVxJL4q1kJygc4+91uHFn32Z7pRAqSYmBhYWT39x5U12CwsLJ7eyNwccZkY+5TlS5IvYZLajBkz0KdPH/Ts2VPtS6C0ceNGLFq0CGPGjFHHJH8osyQ4EsWKFUO7du3g5+eXboAka81NnDgx09+HiIgoO3gV98LslrMxeMdg7LUFgoqbIXhrRwSZ/5fLEwbMXf4T3nF8DX07/e/Fg6Pf34cOOiTv69E9vgfN7+8D9XsDsRHAjQPAg7Sra9zWlsT+6Eo4ElcFR3TVcFvniJL2tqhdMRgIe36A5Fm2PHJdgJRYDNLfP6Fqp0x+k7yjsLCwpKVIsprMjjt27JhKBk8ks82kp8fHx+eF7y+9V1LwUvKT5HXs3LkTXbp0SfdaaYP0ZCXvQSpVqtQLt4GIiOhFNSzWEHNazkH/rX1xTjozUk1QD9FqMPvBX8BfyFyQFB8PxIQD/3ySJjgSmoTsIcB3YdIxncYMATYVcSCmCrY9qQDf+CoIRmF1rnbJwuhazQXe1V1Q1bUg4nXx8Pr1O0TEhsnN0tIBRSyd4OFaD7kyQJJp8smrArz66qtJeTxyXJ6zkgRd0ivl4uKS4rjsS3CmLwmopE6TBERSq+mPP/6Al5cXAgICVAkAId9HeqokFyk90nuWvAeNiIgoN3FzqAu7uFg8MtOkm+is0enwe/Ba9Fj7EFaIA2Ijgdgo/Z7jopPu9bxPer9C3lgU5ok94eUQGmGrjlloNfCq7IhW1V3gXc0ZxQrbpPia9ZfXIyLuv+BIwowU3VMJ+xMafwbtC07xz5YA6dq1a8irtm/fnu7x8uXLq8CJiIgor1u35yc80mY890qCpABzLf698Ac8Ip/m1Ga1JcFVsSG+BgpZm6NTVWcVFDWt7ISC1k/TcpL78+Kf+MLnC7XdpEQTXHxwEQHhAUnnXexcMabBaHiX8UZO0jtAKlOmzHOvOX36NLKSo6OjWtZEenqSk31XV9cs/V5ERER5mSRk62MrKmNbTE1EwRJRsECUziLhWT0sU+1bIEqXcF1tsytYYjntufcvU7YcVrTwRINyRWHxjIBN/HHxD0zymaS236v2Hj7x+EQNt/kF+iEoPAhOtk5wd3bP0Z6jTA2xpSc0NBQrV67EwoULVb5QZhK1MyKJ4PXq1cOOHTvUWm9CcoZkf/DgwVn2fYiIiPI6ma0mCdnPU6bOG2js0RcPw6PxMDwGDyP+e1aPaDyM+G87IgaR4dEID4/B48gY7I2vg7u6onDFfcgoXmrxOsAfDqjo0RqNKzo+tx2/X/gdXx76MkVwJKk6Wo0WHq7pp7vkiQBJ6hdJXaQ///xTTaWXKfpSr8hQkhx9+fLlFEN5MiutaNGiKF26tEqM7tGjhyot0KBBAzXNX3KJEme1EREREdRUfpmtJgnZicUVU7OJ16Fz8z6ws7YDIA/9xMXrsPN8ACb+8j7mWsxUwVDyIEn2xcSY7vig0PPvu+r8Knx1+Cu1/X719/Fx/Y+zPI/5RRm01IjMYJOq2ZUqVcJbb72l1jCR2kBS3FGOZ5Tg/Cy+vr5wc3NTDyEBkWyPHz9e7Xft2hXTp09X+1LvSIKnzZs3p0ncJiIiMmVS50im8gtJyE7hv/0IMw0G7R6M4AjDZp5rzTRoUdUF/xZ8GQNjhsMfRVOcl54jOS7nZWjtWVaeX5kUHH1Q44NcGRwZtFitVLuWXqP27dvj3XffRdu2bVV+kNRCkkTn6tWrw5RwsVoiIsqN5v/1OVYGr0Ow+dM+EKfYeHgWaohdMWfwJOYJnG2dMbPZTNRyqmXQvTefvocBv/jBDPHwMDsPZzxEIIrgaHxVxMMMc99zR9uaxTL8+hXnVmDKkSlqu2eNnhhRb0SOB0f6fn7rHSBJIcjENdikBykRAyQGSERElLtER0epWW2pK2lffXQVw3cNx7VH12BhZoFxDcehc6WEcjeGBEkT/z6Le48ik44VK2yNCR2qPzM4+uXsL5h6dKra7lWzF4a7DzdKz1GWB0iHDh1SOUey9Ee1atXQvXt3vP3226oCNQMkBkhERJQ3hEWH4fP9n2PnrZ1qv2uVrhjtMRoW2vSn4WeUk3Tk2n0EhkbCuaC1GlaTYbiMLD+7HN8c/UZtf1jrQwx1G2q0YbUsD5ASSYK0BEmy1IcsGiuz1mQ5EFlLTSpSmwoGSERElFfJVPoF/y7AnBNzVGXsuk51MaPZDDWtPqstO7MM03wTygP0qdUHQ9yGGDXnKNsCpORkwVjpVVq+fDkePnyIVq1aYf369TAFDJCIiCiv23t7L8bsHYPQmFA42TipIKmuc90su//SM0sx3Xe62u5Xux8G1R1k9IRsfT+/DZrFllqVKlXwzTff4Pbt26oWEhEREeUdL5d8GStfXYkKhSsgKCIIPbf0VPWJssLi04uTgqMBdQZgsNtgowdHhnihHiRTxh4kIiLKL8JjwjH2wFhsu7FN7b9R6Q185vkZLLWWmbrfz6d+xky/mWp7YJ2BGFB3AHKLHOlBIiIiorzP1sIW3zb9NmFmGTT489Kf6Lm5JwKepFzqSx8LTy18GhzVzV3BkSEYIBEREZEa/updqzfmes9FIctC+Df4X3Td0BXHAo7pfY/5/87H937fq+3BdQerobW8igESERERJWlcojF+e/U3VLavjJDIEHy45UNV/fp5GTnzTs7DD8d/UNsyjb9fnX7Iy5iDlEnMQSIiovyel/TFwS/wz/V/1H6nCp0wzmscrLRWiIuPg1+gH4LCg1RpgCP3jmDev/PUdcPch6laR7lVjkzzN2UMkIiIKL/T6XRYdnYZZhyboWon1XCogTcqv4GfTv6EgPC0+UmydIhUyc4Pn9/mOdoqIiIiylN5ST1q9ECVolUwas8onAk5gzM+ZzK8vnTB0sgvmINEREREz9SwWEOsaL8C5pqM+1Vk9tvUI1PV8Ft+wACJiIiInivgSQBidbEZnpclS/zD/VVuUn7AAImIiIieKyg8KEuvy+0YIBEREdFzOem5kG12LHhrDAyQiIiI6Lncnd3hYuuico3SI8ddbV3VdfkBAyQiIiJ6Lq2ZFmMajFHbqYOkxP3RDUar6/IDBkhERESkF+8y3pjRbAacbZ1THJeeJTku5/ML1kEiIiIivXmX8UbzUs1TVNKWYbX80nOUiAESERERGURrpoWHqwfyMw6xEREREaXCAImIiIgoFQZIRERERKkwQCIiIiJKhQESERERUSoMkIiIiIhSYYBERERElAoDJCIiIqJUGCARERERpcJK2pmk0+nU8+PHj43dFCIiItJT4ud24ud4RhggZVJoaKh6LlWqlLGbQkRERJn4HC9cuHCG5zW654VQlK74+HjcvXsXBQsWhEajQX6OtCUIvHXrFgoVKoT8zJReq6m9Xr7W/MuUXi9fa9aQsEeCo+LFi8PMLONMI/YgZZL8o5YsWRKmQv4Hze8/kKb4Wk3t9fK15l+m9Hr5Wl/cs3qOEjFJm4iIiCgVBkhEREREqTBAomeysrLChAkT1HN+Z0qv1dReL19r/mVKr5evNWcxSZuIiIgoFfYgEREREaXCAImIiIgoFQZIRERERKkwQCIiIiJKhQGSCZs8eTI8PDxUNXBnZ2e89tpruHDhwjO/ZsmSJapyePKHtbU1crsvvvgiTburVq36zK/5448/1DXy+mrVqoVNmzYhryhbtmya1yuPQYMG5fn3de/evejQoYOqgivtXLduXYrzMu9k/PjxKFasGGxsbODt7Y1Lly49975z5sxR/27yuj09PXHkyBHk5tcaExOD0aNHq/837ezs1DXvv/++qvCf1T8LueW9/eCDD9K0vW3btvnuvRXp/fzKY9q0aXnuvZ2sx2dNZGSk+v3k4OCAAgUK4I033kBAQMAz75vZn3V9MUAyYXv27FH/Qx46dAjbtm1Tv3Bbt26NJ0+ePPPrpKrpvXv3kh43btxAXlCjRo0U7d6/f3+G1x48eBDvvPMOevfujePHj6sfaHmcPn0aecHRo0dTvFZ5f8Vbb72V599X+f+zTp066kMvPd988w1mzZqFefPm4fDhwyp4aNOmjfoFnJFVq1Zh5MiRalqxn5+fur98TWBgIHLraw0PD1dtHTdunHpes2aN+tDp2LFjlv4s5Kb3VkhAlLztK1eufOY98+J7K5K/RnksWrRIBTwSOOS193aPHp81I0aMwN9//63+MJXrJdB//fXXn3nfzPysG0Sm+ROJwMBAKfmg27NnT4bXLF68WFe4cGFdXjNhwgRdnTp19L6+S5cuuvbt26c45unpqevXr58uLxo2bJiuQoUKuvj4+Hz1vsr/r2vXrk3al9fn6uqqmzZtWtKxhw8f6qysrHQrV67M8D4NGjTQDRo0KGk/Li5OV7x4cd3kyZN1ufW1pufIkSPquhs3bmTZz0Juer09evTQderUyaD75Jf3Vl53ixYtnnlNXnlvA1N91sjPqIWFhe6PP/5IuubcuXPqGh8fn3TvkdmfdUOwB4mSPHr0SD0XLVr0mdeFhYWhTJkyaiHBTp064cyZM8gLpOtVurPLly+Pd999Fzdv3szwWh8fH9Vdm5z8ZSLH85ro6Gj88ssv6NWr1zMXVs6r72ty165dg7+/f4r3TtZckmGVjN47+fc5duxYiq+RtRZlP6+93/IzLO9xkSJFsuxnIbfZvXu3GqapUqUKBgwYgJCQkAyvzS/vrQw1bdy4UfVoP09eeG8fpfqskfdIepWSv08yNFi6dOkM36fM/KwbigESKfHx8Rg+fDgaN26MmjVrZnid/FKSrt6//vpLfejK1zVq1Ai3b99GbiY/NJJns3nzZsydO1f9cDVp0kSt6Jwe+cFzcXFJcUz25XheI7kNDx8+VPkb+e19TS3x/THkvQsODkZcXFyef79lWEFykmRo+FmLexr6s5CbyPDasmXLsGPHDkydOlUNxbzyyivq/cvP7+3SpUtV/s7zhpzywnsbn85njbwXlpaWaQL7Z71PmflZN5R5ltyF8jwZH5b8mueNV3t5ealHIvkQrVatGn766Sd8+eWXyK3kl2ii2rVrq18k0lvy+++/6/VXWV72888/q9cvf1Xmt/eVEshf3126dFFJq/LBmF9/Ft5+++2kbUlOl/ZXqFBB9Sq1bNkS+ZX88SK9Qc+bOJEX3ttBen7W5AbsQSIMHjwYGzZswK5du1CyZEmDvtbCwgJubm64fPky8hL5S6Vy5coZttvV1TXNDArZl+N5iSRab9++HR9++KFJvK+J748h752joyO0Wm2efb8TgyN5ryUB9lm9R5n5WcjNZBhJ3r+M2p7X31uxb98+lXxv6M9wbnxvB2fwWSPvhQyHSk+3vu9TZn7WDcUAyYTJX5vyP+zatWuxc+dOlCtXzuB7SPf1qVOn1DTLvETyba5cuZJhu6U3Rbrxk5MPn+S9LHnB4sWLVb5G+/btTeJ9lf+H5Zdj8vfu8ePHaoZLRu+ddO3Xq1cvxdfIMIDs5/b3OzE4krwTCYRlinRW/yzkZjIELDlIGbU9L7+3yXuA5TXIjLe8+t7qnvNZI69P/ihL/j5JUCj5Uxm9T5n5Wc9Mw8lEDRgwQM1c2r17t+7evXtJj/Dw8KRrunfvrhszZkzS/sSJE3VbtmzRXblyRXfs2DHd22+/rbO2ttadOXNGl5t99NFH6nVeu3ZNd+DAAZ23t7fO0dFRzaZI73XKNebm5rrp06er2RQyO0RmWZw6dUqXV8hsndKlS+tGjx6d5lxefl9DQ0N1x48fVw/5FTZjxgy1nThza8qUKboiRYro/vrrL92///6rZv+UK1dOFxERkXQPmQ30ww8/JO3/9ttvavbLkiVLdGfPntX17dtX3cPf31+XW19rdHS0rmPHjrqSJUvqTpw4keJnOCoqKsPX+ryfhdz6euXcxx9/rGY1Sdu3b9+uc3d311WqVEkXGRmZr97bRI8ePdLZ2trq5s6dm+498sp7O0CPz5r+/fur31c7d+7U+fr66ry8vNQjuSpVqujWrFmTtK/Pz/qLYIBkwuSHMr2HTPlO1LRpUzW1NtHw4cPV/8SWlpY6FxcXXbt27XR+fn663K5r1666YsWKqXaXKFFC7V++fDnD1yl+//13XeXKldXX1KhRQ7dx40ZdXiIBj7yfFy5cSHMuL7+vu3btSvf/28TXI9N/x40bp16HfDC2bNkyzb9BmTJlVNCbnHzQJP4byNTwQ4cO6XLza5UPwYx+huXrMnqtz/tZyK2vVz5MW7durXNyclJ/rMjr6tOnT5pAJz+8t4l++uknnY2NjZq+np688t5Cj88aCWoGDhyos7e3V0Fh586dVRCV+j7Jv0afn/UXofnvmxIRERHRf5iDRERERJQKAyQiIiKiVBggEREREaXCAImIiIgoFQZIRERERKkwQCIiIiJKhQESERERUSoMkIiIiIhSYYBERJRNvvjiC9StW9fYzSCiTGCARES5zgcffACNRqMesuBoxYoVMWnSJMTGxiZdI4sAzJ8/H56enihQoIBaubx+/fqYOXMmwsPDkwKUxPskf1StWtWIr46I8gJzYzeAiCg9bdu2xeLFixEVFYVNmzZh0KBBasXvTz/9VJ3v3r071qxZg7Fjx2L27NlwcnLCyZMnVYBUtmxZvPbaa+q6GjVqqJXukzM3z9pffTExMapt2SE7701EGWMPEhHlSlZWVnB1dUWZMmUwYMAAeHt7Y/369erc77//jhUrVmDlypX47LPP4OHhoYKiTp06YefOnWjevHmKYEjuk/zh6Oj4zO89d+5cVKhQQfVeValSBcuXL09xXnqh5JqOHTvCzs4O//vf/9TxKVOmwMXFBQULFkTv3r0RGRmZ5t4LFy5EtWrVYG1trXqyfvzxx6Rz169fV/detWoVmjZtqq6R10lEOY8BEhHlCTY2NoiOjlbbEjRI4CIBUWoSYBQuXDjT32ft2rUYNmwYPvroI5w+fRr9+vVDz549sWvXrhTXyfBd586dcerUKfTq1UsFbXLs66+/hq+vL4oVK5Yi+Els9/jx41VAde7cOXXtuHHjsHTp0hTXjRkzRrVBrmnTpk2mXwsRvQAdEVEu06NHD12nTp3Udnx8vG7btm06Kysr3ccff6yOVatWTdexY8fn3mfChAk6MzMznZ2dXYpHv379MvyaRo0a6fr06ZPi2FtvvaVr165d0r786hw+fHiKa7y8vHQDBw5McczT01NXp06dpP0KFSrofv311xTXfPnll+prxbVr19S9Z86c+dzXRkTZizlIRJQrbdiwQSVfSw5OfHw8unXrpnpoREKMoh/paUocmktUqFChDK+XXpu+ffumONa4cWN8//33KY5JQnjqr+vfv3+KY15eXkk9T0+ePMGVK1fU0FufPn2SrpHE89Q9XqnvTUQ5jwESEeVKkkckeT6SB1S8ePEUidWVK1fG+fPn9bpP4iy4rCa5R4YICwtTzwsWLFAz75LTarUvdG8iynrMQSKiXEmCBAlsSpcunWbWmfQmXbx4EX/99Vear5PepUePHmX6+0oC9YEDB1Ick/3q1as/9+sOHz6c4tihQ4eStiV5WwK9q1evqteV/FGuXLlMt5eIsgd7kIgoz+nSpYtKpn7nnXfUNP/WrVuraf6SMP3dd99hyJAhSdP8ZQjL398/TSK3BCzpGTVqlLq/m5ubmjn3999/q3ICqUsFpCZJ1VK/SYbHZEhOErLPnDmD8uXLJ10zceJEDB06VA2pSRkDKWEgCd0PHjzAyJEjs+TfhoiyBgMkIspzJMD59ddfVaHIRYsWqVlh0stUqVIlvP/++ylmfkmQIjPKUpcQSG8KvpDASvKNpk+froIe6d2RekzNmjV7Zpu6du2qcow++eQTde833nhDlSfYsmVL0jUffvghbG1tMW3aNBWISS9ZrVq1MHz48Bf+NyGirKWRTO0svicRERFRnsYcJCIiIqJUGCARERERpcIAiYiIiCgVBkhEREREqTBAIiIiIkqFARIRERFRKgyQiIiIiFJhgERERESUCgMkIiIiolQYIBERERGlwgCJiIiICCn9H6pPUQNGvg2HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the total sobol to that of the highest order\n", "\n", "sobol_total_exact = {'x1': exact['ST1'], 'x2': exact['ST2'], 'x3': exact['ST3']}\n", "\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "for v in list(R[O[0]]['results'].sobols_total('Ishigami').keys()):\n", " plt.semilogy([o for o in O],\n", " [np.abs(R[o]['results'].sobols_total('Ishigami')[v] - sobol_total_exact[v]) for o in O],\n", " 'o-',\n", " label=v)\n", "plt.xlabel('PCE order')\n", "plt.ylabel('ABSerror for total sobol compared to analytic')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_sobol_total.png')\n", "plt.savefig('Convergence_sobol_total.pdf')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:55.183083Z", "start_time": "2021-06-07T15:00:54.982223Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:53.727039Z", "iopub.status.busy": "2025-07-18T11:53:53.726964Z", "iopub.status.idle": "2025-07-18T11:53:53.906592Z", "shell.execute_reply": "2025-07-18T11:53:53.906225Z", "shell.execute_reply.started": "2025-07-18T11:53:53.727031Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYXlJREFUeJzt3Qd4FNXaB/B/eu+VhEDovUgHERARFK4KKhdBEdGL14YoiIoXAdtFrw0LV9T72UUQFTtNBCyEDgLSIZAQSCO9l93veU/YdRMSSNlkdnb/P555dmd2dvbMLtl595z3nONkNBqNICIiItIpZ60LQERERNQQDGaIiIhI1xjMEBERka4xmCEiIiJdYzBDREREusZghoiIiHSNwQwRERHpmivsgMFgwJkzZ+Dn5wcnJyeti0NERES1IEPd5ebmIioqCs7Ozo4dzEggExMTo3UxiIiIqB4SExPRvHlzOHQwIzUypjfD399f6+IQERFRLeTk5KjKCNN13KGDGVPTkgQyDGaIiIj0paEpIkwAJiIiIl1jMENERES6xmCGiIiIdM0ucmaIiKoqLy9HaWmp1sUgcnhubm5wcXFp1NdgMENEdjduRXJyMrKysrQuChGdFxgYiMjIyEYbC47BDBHZFVMgEx4eDm9vbw6kSaTxj4uCggKkpqaq9WbNmjXK6zCYISK7aloyBTIhISFaF4eIAHh5ealbCWjkb7MxmpyYAExEdsOUIyM1MkRkO0x/k42Vx8ZghojsDpuWiBzrb5LBDBEREekagxkiIiLSNSYAE5FDiDt+rslea2CbuiUfDxs2DD179sSiRYsuWk2/cuVKjB071goltG9ff/01HnnkEcTHx2P69OkXfV+p9v8HbRlrZoiIdODs2bO49tpra7WvBD5yQXdU//znP3HzzTcjMTERzzzzjNbFoSbAmhkiIh2QAcdskfROkRFebUVeXp7qAjxq1ChERUXp9jyoblgzQ0RkAwwGAx599FEEBwerwGXBggU11raUlJTggQceUAOQeXp6omXLlli4cKF6LDY2Vt2OGzdOPce0Lt566y20adMG7u7u6NChAz7++ONKr3Ho0CEMHjxYHbNz58746aefKr3uyZMn1fry5csxdOhQtd+nn36Kc+fOYeLEiYiOjlZdcLt164bPPvvsgmYMafJ56KGHEBQUhIiICLz77rvIz8/H1KlT4efnh7Zt22LVqlUXfZ8yMzNx++23q2PIa0lt1dGjR9VjGzduVMcRw4cPV2WVbdWRx+T9uP766+Hj44PnnntOjVN01113oVWrVmpsFHmPXnvtNfNz9u/fD2dnZ6Slpan1jIwMtX7LLbeY93n22WfVe1iT//73v2jXrp167+Q9kBokk9WrV6vnymi5Mk7S3/72Nxw/ftz8uOn9//zzz3HFFVeoMvbt2xdHjhzB9u3b0adPH/j6+qr3xFRGcccdd6jmyaeeegphYWHw9/fHPffco/4f1aS4uFg11clnKu9P//79K72Xp06dwnXXXac+B3m8S5cu+PHHH6EVBjNEDk5ySapbqGl9+OGH6qKwdetW/Oc//8HTTz+NdevWVbvv66+/jm+//VZd1A4fPqwCClPQIhc18f7776umKdO65NvMmDEDs2bNUhdlaYqRIGLDhg3qcbmQywVPAgQpwzvvvIN//etf1b7+448/ro518OBBVQNSVFSE3r1744cfflDHvvvuuzF58mRs27btgnMMDQ1V2yWwuffeezF+/HgMGjQIu3btwsiRI9XzZMTYmsiFeceOHer84+Li1Aizo0ePVjUrchx5P8SXX36pzl+21UQCRgn69u3bhzvvvFMFlM2bN8eKFStw4MABzJs3D0888YR6n4VcsCXI2LRpk1r/9ddfK60LuS+BW3Wk3A8++KD6bKWcErwMGTLE/LgEdjNnzlT7rV+/XgVKUj4pl6X58+dj7ty56j1zdXXFpEmTVCAsgZeU6dixY6rsluR48nlJQCKB5ldffaWCm5pIsCzv77Jly7B37171OV1zzTXmwPH+++9XAc8vv/yi3r8XXnhBBVKaMdqB7Oxso5yK3BJR3Ww+ll7tokeFhYXGAwcOqNvanmdjLHU1dOhQ4+DBgytt69u3r/Gxxx4zr8t33MqVK9X96dOnG4cPH240GAzVHs9yX5NBgwYZp02bVmnb+PHjjaNHj1b3V61aZXR1dTWePXvW/Pi6desqHSs+Pl6tL1q06JLnNGbMGOOsWbNqPMeysjKjj4+PcfLkyeZt8tpy/Li4uGqPeeTIEfX477//bt6Wnp5u9PLyMn7++edqPTMzU+2zYcOGi5ZP9nnooYcueR7333+/8aabbjKv33jjjWqbkOfPnj3bGBQUZDx48KCxpKTE6O3tbVy7dm21x/ryyy+N/v7+xpycHGNtpKWlqXLu27ev0vv/v//9z7zPZ599pratX7/evG3hwoXGDh06mNenTJliDA4ONubn55u3vfXWW0ZfX19jeXm5+fOZMWOGun/q1Cmji4uLMSkpqVJ5rrrqKuOcOXPU/W7duhkXLFhgbOjfprWu36yZISKyAd27d6+0Lk1Ipvlsqqud2LNnj2oGkV/6a9euveTx5Vf55ZdfXmmbrMt2ITUFMTExlXJz+vXrV+2xpDnDktTqSKKtNC9JM5n8Ql+zZg0SEhJqPEcZ0l5qNeQ5JtLsImo6bymr1ERIk4eJHEPeB9N51EXV8xCLFy9WtUzSHCPnITVUluchzWum5haphZHmLKldkW1SCyY1RFXfZ5Orr75aNQm2bt1a1UBJjZplLZTUekhznTwuTUGm2raLvY+m96xblfex6nvYo0ePSiNjDxw4UOUXSZJ0VVLTIp9p+/bt1XtgWuR8Tc1e8v9OmtTkXKWmSGpvtMRghojIBlRNPpXciKrNCya9evVS3Y4lgCgsLMTf//73SrkXjU2awyy9+OKLqonjscceU81WEmhJ81PVnIzqztFym2mU2JrOu7HPQ5pUJE9E8mYkQJTzkKY4y/OQJiRpgpLAQ24lx0W2STAjF3sJkGqaTkPyeaRpSJp5JFiVpiAJMkwzvEsOiuThSC6RNPXJIi72PpreM7cq2xryHkqQI8Hmzp071XtgWiRgNOUQ/eMf/8CJEydUUCbBj5z3G2+8Aa0wmCEi0iH55T5hwgR14ZOEXMkRkQuh6cImv6wtderUCb///nulbbIuib5CajfkV3pKSor5cVO+zaXIcW644Qbcdttt6uIsNQuSlGptcg5lZWXmi7yQ5GOpVTKdR0PIeUiOzX333YfLLrtMJSRbJuCaakAk6VVqJWRcFqmxkGBGAhkJaGrKlzGRmqURI0aovCipzZCk3p9//tl8HpILc9VVV6lzlWRna/njjz9U4GuyZcsWVXapjatKzl3+/0jtjrwHlotlzZ08VxKJJf9GcrHk/6JW2DWbiEhnXnnlFfXLXi46kiQqCatykZFeMEKaJyThU5oAPDw81MV39uzZqgZHniMX0++++05dhKTHkqkJRHo6TZkyRV1oc3Nz1YW1NvPqSO+cL774Aps3b1avJeWToMgaAUbV15Ggadq0aXj77bdVTYckI0uPG9lujeN/9NFHqolMejRJby8J6OS+ibwX0qwkTURSi2Nq9pFkWHnPJYG3Jt9//72qzZDny/skvX+kBkUCSVmXJjNp1pLPVpqW5NyspaSkRNU4yWcqAZQ0DUmSr/z/qUqal2699VbVa+zll19W/2ekd5Scn5zrmDFjVK806TUl+0rQJTVyEoBphcEMETmEuo7Ka8vkIi4BhzR1SHOAdM+VC6PpwiQXILmoyi9ludDLxUt6KkkTwUsvvaR6IskFWno8mWoS5DjSBVuaD+R4UrsizUfS9CHdiC9GLpBykZamJWlikd5M8nrZ2dlWP3cps5Rfui3LBVoCAzl3a4wRIz28du/erWq8JGiR/BWppanaXVzyZuS9Mr138r5LOaQ3V035MkKCTQkgpReV9ACT4EmanKSXlKmZS3JRunbtqgIc6bV2qZqe2rrqqqvU60k5JfCSc6va/b/q+yy1T1LjkpSUpHqhDRgwQL3vQmpupEfT6dOnVS2h9HR69dVXoRUnyQKGzuXk5CAgIED94cibSkS1V1M3bD1e/OUCIbkkcqG+1AWYatfsIjkh0tVXam1In+644w6Vl6PlqNA1/W1a6/rNmhkiIjKPRSN5FPILXgIYqQGRmgYGMmTrGMwQEZEieTLSI0nyNaRZQXJrpMmKyNYxmCEiIkUSPmUh+/LBBx/A3rFrNhEREekagxkiIiLSNQYzREREpGsMZoiIiMjxghmZiEtGmJS+4jLhV9Vp3i39+eefuOmmm9T+MgjRokWLLthn4cKFapAmGQgqPDxcDbZkmsadiIiIyKrBjMwBIiNLylDIMmGWzMMhoz7WNMupzAgqI0k+//zzleZ0sCRzWshIgjJXxLp169SsoyNHjkR+fn5di0dEpDsyyqsMD38x8mNQy0HP9ETeJ5lHSEY1rul9rc/7KT/Kq/tBbg+cdP7/q85ds2XODZkXQ2YSFUuWLFFDOL/33nvVziMhNS6yiJrmmVi9evUF3cikhkZm7JShl4mIGiz+16Z7rVZXWP2QZ8+eVfP31PbCJAPgSS23I5JpCeQaJVMDSI0/2b861czIPBgSYMhASuYDODur9bi4OKsVyjSfR3BwcLWPy7wSMgSy5UJEZM+kZlsmjbQ1UpNuS/Ly8lRLgbQYREVFMZhxEHUKZtLT09XkUhEREZW2y3pycrJVCiQziEq1oAyhLZNtVUdybGQuB9NS3RTmRER6It99jz76qPoRJ4FL1UkALZsB5IelzHgssytL7mLLli3V96KpKUSMGzdOPce0Lt566y01NYG7u7uayFBmhbZ06NAhNReTHFNmvJYZtS1fVyaslHVJN5DJFmU/mT363LlzauJCmdRSJprs1q2bmkCxalPa9OnT1fe71DDJdUMmwpR0AqlFkaBDmoaqTupYlczQLAP7yTHktWTmZplwU2zcuNEcvAwfPlyVVbbVhqROyPu5d+9etS4BkUyy6eXlpeYTkvOsSuY7kok5w8LC1LxC8pp//PFHja9xsc/N1PIh752Pj4+6rskklxKcWbZayGSVMvu2fH5y/jfffLNK5/jwww/VZy3vi9RIybXaRLY/88wz6jOSY8vnJLmvF5OYmKhmWZfXk/+TMiu5fP4m8r7269dPHU/2kWv2qVOnoBWb680kuTP79+9Xs4fWZM6cOar2xrTIm05EpGdyMZILw9atW9WM2E8//bTKIayOzKb87bff4vPPP1edJeRCawpatm/fbp71WJqmTOvS7CRzLcksyPIda2qK2bBhg3pcLn7SLCUXSCnDO++8g3/961/Vvr6kDMixDh48qGpAZBLB3r17q5QDObbMmj158uQLOofIOco0CbJdApt7770X48ePx6BBg1QOpuRKyvPk4nyxSRN37Nihzl9aBGSu5NGjR6saIjmOqfPIl19+qc5ftl2MPF/K8tFHH+HXX39F9+7dza8j1xZ5f7744gv897//vSA3VMou2yQAk1aLXr16qdmpMzIy6vy5mVo6ZB/pOCPv1c8//6wCXEvy3sg+co2UFA0JKsaNG6dmDpdFAtS3335bldmSzIAuOa4yK7jp86vp/5e8l/K5SmAo74lMOCpzdsnM2BKQlZWVqf8rEtBK8Cefg3zmEjxqxlgHxcXFRhcXF+PKlSsrbb/99tuN119//SWf37JlS+Orr75a4+P333+/sXnz5sYTJ07UpVjG7Oxsmflb3RJR3Ww+ll7tokeFhYXGAwcOqNsLnPil6ZY6Gjp0qHHw4MGVtvXt29f42GOPmdflO8703Tt9+nTj8OHDjQaDodrjWe5rMmjQIOO0adMqbRs/frxx9OjR6v6qVauMrq6uxrNnz5ofX7duXaVjxcfHq/VFixZd8pzGjBljnDVrVo3nWFZWZvTx8TFOnjzZvE1eW44fFxdX7TGPHDmiHv/999/N29LT041eXl7Gzz//XK1nZmaqfTZs2HDR8sk+K1asME6aNMnYqVMn4+nTp82PHT58WD2+bds287aDBw+qbaZr2K+//mr09/c3FhUVVTpumzZtjG+//Xa1r3mpz60qKV9ISIh5/f3331dlOHbsmHnbP//5T6O3t7cxNzfXvG3UqFFqu+W195prrql07AkTJhivvfbaSu+H6XP++OOPjR06dKhUTrn+y/u8Zs0a47lz59T+GzduNDb0b9Na1+861cxI1aRE3+vXr69UNSrrAwcObEhApare5JeDRKJSpUdE5EhMNQIm0hRRUy9RqTXYs2ePamqQJoW1a9de8vhSiyJNAZZkXbYLqSmQpg3LXqfSjFCdPn36VFqXWh1pxpAmEmmSkF/xa9asURNW1nSO0tMoJCREPcfElMJQ03lLWV1dXdWQICZyDHkfTOdRFw8//LCqhfrll19U00vV15HrnUnHjh1Vc4qJNCdJE5C8vpyvaYmPj8fx48fr9blJs57U7EhZpFZEaqmkCc+ypkpqzixnMZf3LDY2Vr225baq72HVa7Ss1/SeybnJrOlSBtN5yecqNXBybnJfzkVqb6Qp7rXXXlO1YFqqczOTdMuWdk6pApM3QqoJTW2eQtoypRnIRKqk5MOTRe4nJSWp+/JGWTYtffLJJ1i6dKl68yT/RpbCwkJrnScRkU1zc3OrtC5V9vJjsTrSnCEXTQkg5HtSchskd6KpSHNY1SYMuaDJjNvSLCPf8XKhk+/8S52j5TZTM0VN521tV199tbomSeBVVxLISMBpur6ZFgkKZ8+eXefPTfJR/va3v6mAT5rIpNnKlNdi+T5e6j281P+d2p6bBHJVz+3IkSOYNGmSuRlTmpekGU9yqNq3b6+GV9FN1+wJEyYgLS0N8+bNUwFHz549VbudKaKWSFza/UzOnDmDyy67zLz+0ksvqUXa2kyJWZKUZkoQsyRvlkR/RERUmSScyvexLHJBlHwGydWQX81ycbNMABWdOnVSuQ9Tpkwxb5N1SfQVUlsgOSIpKSnm73NTvs2lyHEkQfS2225T63IhlQuf6djWIucg+RpSm2LKhZGaCwkg6vNa119/vapZkAu01BTdcsst5loYeR0JKExDi8hrSMKvZWAi10CpwbHMe6nv5yavJe/byy+/bL6GSm6NtWypEmjIuryf1ZFzkwBFhkiR8tZEru2ySAWG1PRIhcSAAQOgi2BGSJOQLNWpmjkuH3JFc1zNLvU4ERGhUq8XqRWQC4lc+FasWKGah0zNIPK9K83/0owk3bmlh4vUFkhNgDxHhtP47rvv8NVXX6mmDVMthTRfSLAjCci5ubmYO3eueuxSiZ3t2rVTCaebN29WryXlk6DI2sGMvI4ETTLWmSS5Sk2+JLNKs4xsrw9JnpWkWWnSkcBEAgwJ7CTIkCRp+bEt26UXlvRsMpH3UC7gkggr75fUTMiPd0mClmNWbYq71OcmPbkk8faNN95QAZYEiDKOm7X8/vvvqpxSXkn8ldeWslbn1ltvVbVt8p5KInrz5s1VTyX5/yIJyVJOSRCXYFC6v0ugJz3KpGVGKzbXm4mIiC5OLuJyYZILptQcSBOF9GQx/aKXX/dywZIcGFPNuFzEpClIasa7dOmiggGp/TbViEvNhHTBliYGOaZ0OTb1ZpJuxBcjQY/8mpemJTmeXKAba8A+KbM0gUiTjAQT8mNYzr1qU0tdSAAjqRMS0MgF2/Q6cqGWVoQbb7xR9daRmgoTCfDkdWVgV0mzkGBGanbkol91+JLafG7S00iCnRdeeEENSyI9nSy7bTfUrFmzVC8w+f/w7LPPqteSz6s6kpcjeUQtWrRQ5y41OHfddZfKmZGaGnlcuvHLVEVy3vLeSLqIBH9acTqfxaxrMmiejDcj3bQvViVG5Mjijp+r0/4D24RAb+TLVnISpBPBpS7AVLtf8zLujOQ4Wiadkr7ExsaqmqVLTZmhxd+mta7f9WpmIiIi+yM9SqXnijTnSAAjY5FIUxUDGbJ1DGaIqGFzGzXCPESkDcmTkR5J0pFDBreTvBBpsiKydQxmiIhIkQROLZM4qXGctJiGwF4xAZiIiIh0jTUzRFRnf575a6b6HMM5XScNE5H+sWaGiIiIdI3BDBEREekagxkiIiLSNQYzREREpGsMZoiIiEjXGMwQEdmAO+64Q833I4u7u7uaeFAm+ZPZm2UCX9NjMo+PDP8uc+zIpH9nz56tdJwFCxaY97VcTBNKEtkjds0mIrIRMlOzTHBYXFysJiCUyftkAkWZUFHI7MQyf43MZ7Nr1y41aeH//d//qWCnW7du5uPIRJJVg5fg4OAmPx+ipsJghojIRnh4eKgZp8W9996r5kr69ttvzcGMzNocGBio9pHZim+44QZVQyP7/vbbb+bjuLq6mo9D5AgYzBCRXTMajSgsK2zy1/Vy9VLNOw06hpcXzp07d9HH77nnHjz88MNITU1VwQ6RI2IwQ0R2TQKZ/kv7N/nrbp20Fd5u3vUOwNavX481a9Zg+vTpF923Y8eO5vl3TMHMvn371OzXJp07d8a2bdvqVRYiPWAwQ0RkI77//nsVhJSWlsJgMGDSpEkqoXf79u0XDXyEZS1Qhw4dVPOUZfMVkT1jMENEdk2ae6SWRIvXrasrr7wSb731lurNFBUVpXJfLuXgwYPqNjY21rzN1BuKyFEwmCEiuyY1FvVt7mlqPj4+dQpCCgsL8c4772DIkCEICwtr1LIR2TIGM0REOiFJvkVFRcjNzcXOnTtV1+z09HR89dVXWheNSFMMZoiITIpzq9/u4QdbILkwUtMkeTWtW7fGyJEjMXPmTHbDJofHYIaIyAZ88MEHNT42bNgwc6LvpUjCsCxEjoTTGRAREZGuMZghIiIiXWMwQ0RERLrGYIaIiIh0jcEMEdmd2ibLEpF9/E0ymCEiu+Hm5qZuCwoKtC4KEVkw/U2a/katjV2zichuuLi4IDAwUA0uJ7y9vS+cubokv+4HNhZZqYREjlcjU1BQoP4m5W9T/kYbA4MZIrIrpgHkTAHNBcrqEZi4ejawVESOLTAwsFEHd2QwQ0R2RWpimjVrhvDwcDX79AVO76j7QZt3skrZiByRm5tbo9XImDCYISK7JF+e1X6ButQjEdGTNTNEtowJwERERKRrDGaIyGF9l7IVQ+IexW8Zf2pdFCJqAAYzROSQEgvT8MzRz5BZmocPT6/XujhE1ADMmSGiasUdP1dp3T85B/bCYDTgySMfo9BQota3Zx1BRkkugt39tC4aEdUDa2aIyOF8dmYTdmYfg5ezB1p4hqEcBqw/94fWxSKiemIwQ0QXZTCWI7M4VdVm2IOEwlQsiv9a3X+k9TiMixyk7q9N26VxyYiovtjMREQX9eHR/yAudQ3cndzQ3D0cMe6RiHGPQIyH3EbCxWi8cJRdW25eOvwxigyl6B/YAeObXYHTRel47eQ32JZ1mE1NRDrFYIaILnrx33PuN3W/xFiKE8VJarHkc/pNRHm3QgvftmgX9QBCvUJhqz49+Cl25RyHt4sHnm5/mwrCYrzC0Mk3BgfzElVT0/hmg7UuJhHVEYMZIqpRcmECCsvz4e7siYXN70NSSSoSS5KRUJyibs+WpiO/LAdHc/5Qi/8uA56+/GnYopPZJ/HartfU/Uda34QozxDzY6PCeqtgZk3aTgYzRDrEYIaIanQi54C6jfXtgGj3cLX0Q1fz4yWGUhz1j8Sh7D1YEb8YP8b/iId7P4wgzyDYknJDOZ78/UkUlxdjYGBH3Bx5eaXHR4b2Unk07NVEpE9MACaiGp3IrRhMrrV/52ofd3d2Q4xvO4yIuhktfNqrYOHLo1/C1nxy8BPsSdsDHzcfPHW+eclSjFcoOvu2gAFG/JS+R7NyElH9MJghohqdyK2omWnlV30wYyLBwfCoG9X95YeXo8xQBltxIvsEXt/1urr/aN9H0cwzuNr9Rob1Urdr09mricghgpnFixcjNjYWnp6e6N+/P7Zt21bjvn/++Sduuukmtb984S1atKjBxySixldYlo+zBSfV/dYXCWb8k7eoZXi5D4LcfJGcn4wNO/4LxP8Km2he+u1JlBhKcHn05RjXdlyN+0pTk5CmpnMluU1YSiJq8mBm+fLlmDlzJubPn49du3ahR48eGDVqFFJTU6vdv6CgAK1bt8bzzz+PyMhIqxyTiBrfybxDMMKIEI9IBLj/lSxbE2lyujmyInn20zMbYAs+PPAh9qbvhZ+bHxYMXHDRLuSWTU3r2dREZN/BzCuvvIJp06Zh6tSp6Ny5M5YsWQJvb2+899571e7ft29fvPjii7jlllvg4eFhlWMWFxcjJyen0kJE1nUi53y+zCWamCxNiBoCFzir0XUP5SVCS8ezjmPx7sXq/uy+sxHpU/2PKUuj2NREZP/BTElJCXbu3IkRI0b8dQBnZ7UeFxdXrwLU55gLFy5EQECAeYmJianXaxPRpfNlWvt3qfVzIjwCcXXYZer+0qSN0NLCrQtV89IV0VdgbNuxtXoOm5qIHCCYSU9PR3l5OSIiIiptl/Xk5OR6FaA+x5wzZw6ys7PNS2Kitr8AieyN0Wj8K5ipQ82MmBQ1TN3+mLYDmUWZ0MKhjEPYmrxV1RLNjR4Jp5O/VeTwXCKPp3mlpqbdTVZeInLA3kzSXOXv719pISLrSS1KUoPhuTq5IcanbZ2e29O/tRpRt9hQqlk37U8OfGLuoWQ5OF5t/NXUxGCGyC6DmdDQULi4uCAlJaXSdlmvKblXi2MSUcOYamVa+naAq7NbnZ4rSba3Rl2pWTft9MJ0NXifuC26ohx1waYmIjsPZtzd3dG7d2+sX7/evM1gMKj1gQMH1qsAjXFMImqY+Ho2MZlcE94bwaZu2olN27NpxeEVKDWUortfK3T3b1Xn50tTUxc2NRHZdzOTdKF+99138eGHH+LgwYO49957kZ+fr3oiidtvv13ltFgm+O7Zs0ctcj8pKUndP3bsWK2PSURN6/j5nkytahj591I8nN1wk6mb9sFP0VRKykuw7PAydX9yPWplqg6gtyaNvZqI7HJupgkTJiAtLQ3z5s1TCbo9e/bE6tWrzQm8CQkJqjeSyZkzZ3DZZRW9G8RLL72klqFDh2Ljxo21OiYRNZ3i8kIk5R9X99vUs2bG1E37vdPrsDNlp0rI7RjcEY1tVfwqZBRlIMI7AleF/vW9U5+mplfjv8aO7KNIL8mB7c4DTkT1TgB+4IEHcOrUKTXey9atW9WIvSYSoHzwwQfmdRnVV3pGVF1MgUxtjklETedU3hEYYECgeyiCPMLrfRzVTbvl1er+0oNL0djke+XjAx+r+xM7ToSbs0u9j1W5qYkD6BHZOl32ZiKiJphcsgG1MiaTOk1St5KQ29jdtHek7MDhzMPwdPHEze1vbvDxRoX1Vrdr2dREZPMYzBBRJYlpv6nbTvA1z7skS330DOuJTsGdmmQ2bVOtzPVtrkeAR0CDj3f1+WYq1dRUmN7g4xFR42EwQ0SVmmqOFlUMQtnes0WDj6e6aXe6tdG7aSfmJGJjYkXTten1Gkqamrr6taxoajr1V29LIrI9DGaIyOxccTKyynPVyLmtPKIbfsD4X3GNk99f3bQbaTbtpYeWqkkxZWbs1oGtrXZc05gza06tsdoxicj6GMwQ0YWD5XlEqVmwraFSN+1GmE077+harDzyhbo/OeiyWk1bUNcu2tIji01NRLaLwQwRXTBYnjWamJpqNu2VyXHILy9Ca+9IDArqZNVjR3uGVDQ1GQ346dRPVj02EVkPgxkiuqBmpq2VgxnL2bT/L3Gt1Y5bbig31/bIFAqSo2NtpqamTac3Wf3YRGQdDGaISCk1FCMh76i6384zxurHv6P51XCGE1an7bRaLcfG0xuRVHQOAa4+uC6iccamkokzxbGsv0YtJyLbwmCGiJSEvGMoN5YhwMUX4a7BVj9+F78WuDNmpLr/VNxTVslBMc2OPb7ZYHi5uKMxSPOVkATm/NL8RnkNImoYBjNEVKWJKaZRmmvEfS3HoINPc2QVZ2HB5gWqK3itmJJ6LZaD+5aqgfJcnZxVTk5jCXDzQahXxYQG8dnxjfY6RFR/DGaIqNLIv+08rJsvY8nN2RULO94BN2c3lYPy1dGv6n2sT5IqcmWuDu2FSI8gNKY2AW3U7fGsijmriMi2MJghoko1M+2snPxbVTufKDx42YPq/n+2/weJuXXv3ZReko1VqTvU/cnRw9HYTGPXHM9mMENkixjMEBEyi9OQWZwKJzijjWfzRn+9yZ0no3dEbxSUFWDub3NVr6S6+PzMryg1lqGHfyt0849FYzPVzJzIOtHor0VEdcdghojMtTLRPq3g6ezR6K/n4uyC5wY/B29Xb+xK3YUPD3xYq+dJjs3XyXF4L7GiN9Qwr4H480yOeWn0mhk2MxHZJAYzRGQeLM8aM2XXVrRvNB7v97i6/+buN3E44/BF988qzcOsg//Dk0c+RrGxBN282qKvb5cmKWvrgIpgJikvCYVlhU3ymkRUewxmiMhcM9Par2mCA5OxbcdiWMwwlBpKMee3OSgpL6l2v82ZB3HjzuewLn236r00MeQazIm6E65OLk1SzmDPYAR6BKr5n05mn2yS1ySi2mMwQ+TgygylOJV3uMlrZoR0AV8wcIEKFo5mHsXiPYsrPV5cXowXtr2Af+57A2kl2Yj1isCnPR/FDUHD4Ozk3KTlNNXOMAmYyPYwmCFycKfzj6PUUAJvVz+EezV+8m9VIV4hmD9wvrr//v73sStll7ovzU63fH8LPjlYMTDehGZD8HmvOejs17i9rWrSJpBJwES2ylXrAhBR0/NP3mK+fyZrs7pt7x6FwJRtmpRneIvhuKHNDfjm+Dd44rcnML79eFVLI81PUmvzTNtbMCS4K7RkCmaYBExkexjMEDm4Y0UJjTYfU41kFN8qHo8Ygu3J21WS7aJdi9S2Yc2HYcGgBQhJrsjp0ZKpmelENmtmiGwNm5mIHNyR88GMtWfKritfVy88O/hZuDi5wMvVC/MGzsPrw19XzVC2wFQzk5CbUGOiMhFpgzUzRA4suywPqWUZcIJTo05jUFt9I/ti5Q0r4evmizDvMNiSMK8w+Ln5Ibc0F6dyTqFdUDuti0RE57FmhsiBHSuuqJWJdg+Dt4snbEGrgFY2F8iYezRxWgMim8RghsiBmZuYbKBWRg/Yo4nINjGYIXJgfyX/MpipDfNYM+zRRGRTGMwQOSiZ5+h40Wl1n8FMLXpfxf+KNkUVUxmcSNtXbY8sItIGgxkiB5VVnosiY4lK/o1yD9W6OLrQxruZuj1ZmIrSOs70TUSNh8EMkYNKLc1QtyGuAXB1YsfG2oj0CIKXswfKjOVILErTujhEdB6DGSIHlVqWqW4j3IK1LopuqB5N3hHq/omCs1oXh4jOYzBD5KBSS8+p23AGM/Vqajqen6x1UYjoPAYzRA4q5XwzU7irbYywqxetfc4HM6yZIbIZDGaIHDxnhs1MddPGO1LdnihgzQyRrWAwQ+TgwQybmerXzBRfkIxy9mgisgkMZogcUImhFBnlOeo+g5m6ifIMgYezG0qMZWqGbyLSHoMZIgeUdr4nk5eTB/ycvbUujq64ODmjldf5Hk3ZnNaAyBYwmCFy4CamMLcg1d2Y6qa1qUcTpzUgsgkcKYvIgXsy2Vzyr06mCGjjEwmksWaGyFawZobIATH510pjzbBmhsgmMJghckCpZRxjxhrNTFIzYzAatC4OkcNjMxORA7Klmpk/z1T0qqqqS5Q/bFWMVyhcnVxQWFaI5PxkRPlGaV0kIofGmhkiB2M0GjlgXgNJIBPrFa7us6mJSHsMZogcTF5ZNoqMJXCCE0JdA7Uujl00NRGRthjMEDmYtKIz6jbI1R/uzm5aF0f30xqwZoZIewxmiBxMelHFBIkRrmxissqEk9kMZoh0GcwsXrwYsbGx8PT0RP/+/bFt27aL7r9ixQp07NhR7d+tWzf8+OOPlR7Py8vDAw88gObNm8PLywudO3fGkiVL6lM0IqplzYwtJP/aQ/fsE1knVB4SEekomFm+fDlmzpyJ+fPnY9euXejRowdGjRqF1NTUavffvHkzJk6ciLvuugu7d+/G2LFj1bJ//37zPnK81atX45NPPsHBgwfx0EMPqeDm22+/bdjZEVGNNTPhbkFaF0XXWnqFwcXJBXmleUgtqP77j4hsNJh55ZVXMG3aNEydOtVcg+Lt7Y333nuv2v1fe+01XHPNNZg9ezY6deqEZ555Br169cKbb75ZKeCZMmUKhg0bpmp87r77bhUkXarGh4gaUjPDMWYaQvKNYvxi1H02NRHpKJgpKSnBzp07MWLEiL8O4Oys1uPi4qp9jmy33F9ITY7l/oMGDVK1MElJSaq6dsOGDThy5AhGjhxZ7TGLi4uRk5NTaSGiOtbMMGemwdq4Bajb+BM/VUzFYLkQkW0Ompeeno7y8nJERFTMGGsi64cOHar2OcnJydXuL9tN3njjDVUbIzkzrq6uKkB69913MWTIkGqPuXDhQjz11FN1KToRASgzlCKzONXhxpipaWC+hg7OJ92z15/7A8cLKgJEInLgEYAlmNmyZYuqnWnZsiV++eUX3H///YiKirqgVkfMmTNH5dmYSM1MTExFdS8RWbCoIfBPzkFySTqMMMLdyQ0BLr6aFs0etDH1aMr/68cZEdl4MBMaGgoXFxekpKRU2i7rkZEVYy5UJdsvtn9hYSGeeOIJrFy5EmPGjFHbunfvjj179uCll16qNpjx8PBQCxHVTYppTia3YDg5OWldHJtWm2kWzGPNFJxVTeR8T4l0kDPj7u6O3r17Y/369eZtBoNBrQ8cOLDa58h2y/3FunXrzPuXlpaqRZqWLEnQJMcmIusxT2PAfBmriPWKUCMpZ5flI6M0T+viEDmsOjczSfOO9Dzq06cP+vXrh0WLFiE/P1/1bhK33347oqOjVV6LmDFjBoYOHYqXX35Z1bwsW7YMO3bswDvvvKMe9/f3V49LbycZY0aamTZt2oSPPvpI9ZwiIv1MMNlYuSm2ytPFHc09Q5FYlIYTBWcR4u6ndZGIHFKdg5kJEyYgLS0N8+bNU0m8PXv2VGPEmJJ8ExISKtWySE+lpUuXYu7cuao5qV27dvj666/RtWtX8z4S4EgezK233oqMjAwV0Dz33HO45557rHWeRCTNTDY0W7a9aO0doYIZaWrqG9he6+IQOaR6JQDLgHayVGfjxo0XbBs/frxaaiL5M++//359ikJEdZBqkTND1iE9mjZl7MfxAiYBE2mFczMROQhJUE0pPafuc4yZRpjWIJ/ds4m0wmCGyEHkGwpRaChW9zmVgfW08TH1aGLNDJFDjzNDRNYRd7yi5sVybJmq+TKBLn7wcHZv8rLZq1ZeFcHMudIcZJXmIdCN4/cQNTXWzBA5iMbuyeSofFw90cyj4j09wdoZIk0wmCFyEEz+bTytzYPnMZgh0gKbmYgchNYD5l1sDBotWaNckgT8e+YB1swQaYQ1M0QOgs1Mjcc0rYEMnEdETY/BDJGD4IB5jae1ecJJBjNEWmAwQ+QAyo3lSC/LUvcjGMxYXQvPMHWbUpKFEkOp1sUhcjgMZogcwLmybBhggJuTq+qaTdYV5OYLr/Pd3ZOLM7UuDpHDYTBD5ABMTUxhrkFwduKfvbU5OTmhmWdFjVdSUcV7TURNh99qRA6Ayb+NL8ojRN2eKao8cCERNT4GM0QOgMFM44s+XzNzppg1M0RNjcEMkQNIKdN2jBlH0MyTNTNEWmEwQ+QAWDPT+KLPT2nAYIao6TGYIXIAaQxmGl3U+ZqZJAYzRE2OwQyRnSsoL0KuoUDdZzDT+MFMWkk2Sg1lWheHyKEwmCFykAkm/V184OXsoXVx7FaImx88nN1ggBHJxRUDFBJR02AwQ+Qo+TJM/m38sWaYN0OkCQYzRHaOczI1nWhTjyZ2zyZqUgxmiOwcezI1HdbMEGnDVaPXJaImzplhMGMdf57JufTAeQxmiJoUa2aIHKSZiQPmNWH37GIGM0RNicEMkR0zGA1IK62YxZk1M40v6nwz01lONknUpBjMENmxjLIclKMcLnBGiGuA1sVxmJqZlOIslHGsGaImw2CGyI6llFY0d4S5BcHZiX/ujS3U3R9uTq4ohwEpBSlaF4fIYfDbjciOpZWdb2JivkyTkICxmUeQun8m74zWxSFyGAxmiOwYx5jRrqmJwQxR02EwQ+QAY8xEMJhp+oHzGMwQNRkGM0R2jAPmNb2o82PNJOUlaV0UIofBYIbIEQbMY85Mk48CfDb/rNZFIXIYDGaI7FRReQGyy/PUfdbMNH0zE2tmiJoOgxkiO5VelKxufZy94OPipXVxHG+smfwUlBvKtS4OkUNgMENkp9KLKhJQmfzbtMLcA+Dq5IwyYxnSCtO0Lg6RQ2AwQ2Sn0ooqcjbYxNS0XJycEXk+b4ZNTURNg7NmE9l5zYwjJf9ebEbrps6bOV2Urrpn947orXVxiOwea2aI7FQ6a2Y079HEsWaImgaDGSI7D2aYM6PhKMD5DGaImgKDGSI7ZDAakF7MmhmtRHPgPKImxWCGyA7llGSg1FACZzgjxDVQ6+I4nCgPTmlA1JQYzBDZoXPFFWPMBLv6w9XJReviOOyUBjIKsNSSEVHjYm8mIjuUUZyqblkro41wj0C4wBllhjKkHf4BER4Wn0OrK7QsGpFdYs0MkR3KNAczAVoXxSFJbVikR5C6f6bonNbFIbJ7DGaI7FBGccXIs6yZ0U6z801NZ4orJvskosbDYIbIDmWWsGbGZrpns2aGyDaDmcWLFyM2Nhaenp7o378/tm3bdtH9V6xYgY4dO6r9u3Xrhh9//PGCfQ4ePIjrr78eAQEB8PHxQd++fZGQkFCf4hE5PFPOTCiDGc1Em6Y0YDBDZHvBzPLlyzFz5kzMnz8fu3btQo8ePTBq1CikplZ8eVa1efNmTJw4EXfddRd2796NsWPHqmX//v3mfY4fP47BgwergGfjxo3Yu3cvnnzySRX8EFH9c2aCGcxophlrZoiajJPRaDTW5QlSEyO1Jm+++aZaNxgMiImJwfTp0/H4449fsP+ECROQn5+P77//3rxtwIAB6NmzJ5YsWaLWb7nlFri5ueHjjz+uVRmKi4vVYpKTk6PKkJ2dDX9//7qcDpFdiTt+DmWGUty3+Wq1/nbsXAS4+kKPukT52/wcTBcr87asw7hr72uI9QrHd30X/LUTezMRVbp+S4tMQ6/fdaqZKSkpwc6dOzFixIi/DuDsrNbj4uKqfY5st9xfSE2OaX8Jhn744Qe0b99ebQ8PD1cB09dff11jORYuXKhO3rRIIENEFbJK0tWtq5Mb/F18tC6OwzIPnFeUwbFmiBpZnYKZ9PR0lJeXIyIiotJ2WU9OrhikqyrZfrH9pXkqLy8Pzz//PK655hqsXbsW48aNw4033ohNmzZVe8w5c+aoKM60JCYm1uU0iBwiXybIIwxOTk5aF8dhRXgEwRlOKDGW4VxJrtbFIbJrmg+aJzUz4oYbbsDDDz+s7ksTlOTaSDPU0KFDL3iOh4eHWoio5nyZII9wrYvi0NycXdTgecnFmap7dpgH85eIbKJmJjQ0FC4uLkhJSam0XdYjIyOrfY5sv9j+ckxXV1d07ty50j6dOnVibyaiBtTMBLszmLGdpiYmARPZTDDj7u6O3r17Y/369ZVqVmR94MCB1T5HtlvuL9atW2feX44pCcWHDx+utM+RI0fQsmXLuhSPiNQYMxUD5rFmxoZmz2YwQ2RbzUzSLXvKlCno06cP+vXrh0WLFqneSlOnTlWP33777YiOjlZJumLGjBmqqejll1/GmDFjsGzZMuzYsQPvvPOO+ZizZ89WvZ6GDBmCK6+8EqtXr8Z3332numkTUT1rZjzCtC6KwzN1zz7LUYCJbCuYkaAjLS0N8+bNU0m8kt8iwYcpyVeahqSHk8mgQYOwdOlSzJ07F0888QTatWuneip17drVvI8k/Ep+jARADz74IDp06IAvv/xSjT1DRHWTeX4qA0kARonWpXFsHDiPyEbHmbHnfupE9jDOzMwtNyCvLBtP9vwfuuRVdNPWI72PMyO2ZB7CtH2vo5VXBL7tO79iI8eZIdJ2nBkism0l5cUqkBHBzJnRXNT5nBlpZrKD341ENkvzrtlEZP3kX3dnT3i7+kHPbLX2pS4iPYLgBCcUGUqRUZqHEHd9fyZEtoo1M0R2OcYMB8yzBe7Obghzrxhfht2ziRoPgxkiu+zJxCYmW2tqSipmMEPUWBjMENljzQwHzLO5gfPOFrF7NlFjYTBDZEcyzufMsGbGdnDgPKLGxwRgInsdY4ZsI2m5qGLm8jNsZiJqNKyZIbLTBGCyDaFuger2DJuZiBoNgxkiOwxmOMmk7QhzDTIHMxxrhqhxsJmJyB7E/4qC8iIUlOep1RbZp+CdW3m2etJGqGtFzUyhoRhZZfmoCG2IyJpYM0NkJ5KLM9Wtl7MHvJ09tS4OWYw1E+peMUw7x5ohahwMZojsRHJRRTATcr4mgGyvezbzZogaB4MZIjurmQlxrRhxlmxHtOf5YIY9mogaBYMZIjuRUpKlblkzY3uacawZokbFYIbI7mpmKvIzyHZEe5yfPZvNTESNgsEMkd0FM6yZsTVR55uZOD8TUeNg12wiHYo7Xvmi6J+cg1N5FduYM2O7wYxprBnOaE5kXayZIbIDcoE8V8acGVvV7HwzU355EXJKqpnygIgahMEMkR0oMBShyFii7rNmxvZ4ubgj2M1P3T+Td0br4hDZHQYzRHbgXFm2uvV19oaHs7vWxaGLdc9mMENkdQxmiOwomGGtjO03NSXlJWldFCK7w2CGyA78lS/DYMZWRZ8fa+Zs/lmti0JkdxjMENlRzUwwgxnb757Nmhkiq2MwQ2QH2JPJ9kWdb2ZizgyR9TGYIbIDzJnR0VgzDGaIrI7BDJEdYDBj+6LO58zkluZyrBkiK2MwQ2RPA+a5sZnJVnm7eJrHmknMTdS6OER2hcEMkc7llWWj1Fim7rNmxrbFekWo2/jseK2LQmRXGMwQ6VxWcZq6DXDxhZsTp1uzZa28K4KZk9kntS4KkV1hMEOkcxnngxnWyti+WK9wdXsyh8EMkTUxmCHSucySVHXLMWZsXyvvSHXLZiYi62IwQ6RzGcUVwQxrZmxf7PlmpoScBBiMBq2LQ2Q3GMwQ6VymOZhhTyY9TDbp6uyKovIiJOcna10cIrvBYIZI55gzox+uTi5o4ddC3WdTE5H1MJgh0jnWzOhLrH+sumUSMJH1MJgh0jHJu8gqSVf3WTOjD7EBFcEMa2aIrIfBDJGO5ZVmocxYCic4IcjVX+viUC20CmilbjnWDJH1MJghsoOeTIEufiofg/TTzBSfw5oZImthMEOkY5nnk385xoz+amZSC1KRX5qvdXGI7AKDGSIdyzg/YB7zZfQjwCMAwedn0GYSMJF1MJghsoueTAxmdNmjiXkzRFbBYIbIDnJmQtktW59JwKyZIbIKBjNEdpAzE+LGmhldJgGzezaRVTCYIdKxzBLT6L+smdHjWDNsZiLSMJhZvHgxYmNj4enpif79+2Pbtm0X3X/FihXo2LGj2r9bt2748ccfa9z3nnvugZOTExYtWlSfohE5DIOxHFmcykDXzUynck5xwkkiLYKZ5cuXY+bMmZg/fz527dqFHj16YNSoUUhNrWi7r2rz5s2YOHEi7rrrLuzevRtjx45Vy/79+y/Yd+XKldiyZQuioqLqdzZEDiS7JAMGGOAMZzXODOlHtG80J5wk0jKYeeWVVzBt2jRMnToVnTt3xpIlS+Dt7Y333nuv2v1fe+01XHPNNZg9ezY6deqEZ555Br169cKbb75Zab+kpCRMnz4dn376Kdzc3Op/RkQO1pMpwCMUzk5sMdYTCWRi/GLUfTY1ETVcnb4BS0pKsHPnTowYMeKvAzg7q/W4uLhqnyPbLfcXUpNjub/BYMDkyZNVwNOlS5dLlqO4uBg5OTmVFiJHk3E+XybYPVzrolA9tPKvaGriSMBETRzMpKeno7y8HBEREZW2y3pycvVVpbL9Uvu/8MILcHV1xYMPPlircixcuBABAQHmJSam4hcOkSPWzAR5hGldFKoHTjhJZD2a101LTY80RX3wwQcq8bc25syZg+zsbPOSmJjY6OUkstUxZoI9WDOj64HzONYMUdMGM6GhoXBxcUFKSkql7bIeGRlZ7XNk+8X2//XXX1XycIsWLVTtjCynTp3CrFmzVI+p6nh4eMDf37/SQuSoY8wEMZjRJc6eTaRRMOPu7o7evXtj/fr1lfJdZH3gwIHVPke2W+4v1q1bZ95fcmX27t2LPXv2mBfpzST5M2vWrKnfWRE5gMzz8zIxZ0bfwUxKQQoKSgu0Lg6RrrnW9QnSLXvKlCno06cP+vXrp8aDyc/PV72bxO23347o6GiV1yJmzJiBoUOH4uWXX8aYMWOwbNky7NixA++88456PCQkRC2WpDeT1Nx06NDBOmdJZNc1M2FAWZbWxaF6TDgZ5BGEzOJM1dTUOaSz1kUicpxgZsKECUhLS8O8efNUEm/Pnj2xevVqc5JvQkKC6uFkMmjQICxduhRz587FE088gXbt2uHrr79G165drXsmRA6kzFCG7JJzf+XM5DOY0WvtTGZqpmpqYjBD1ITBjHjggQfUUp2NGzdesG38+PFqqa2TJ9mGTHQx2SXpMMIIFydX+LpxKgM992jalbqL3bOJ9N6biYjq35MpyD2MA+bZwVgzTAImahh+CxLpeIJJ9mSykwkn2T2bqEEYzBDpeowZDphnF2PNZJ/khJNETZ0zQ0TaMs2WzZoZffjzzF9TruQYKhK3RZnByzzhZEp+Cpr5NtOohET6xpoZIh3i6L/2N+Ekk4CJ6o/BDJGOB8wL4oB5dtPUxDmaiOqPwQyRDmWcb2Zizoz+cVoDooZjMEOkMyXlJcgtzVT3AxnM6B4nnCRqOAYzRDojiaLCzdkdvq4BWheHrFQzw2YmovpjMEOkM8kFyeZ8GScnJ62LQ1aqmeGEk0T1x2CGSGfO5J1Rt+zJZB8CPQPVhJPiVM4prYtDpEsMZoh0Zl/6PnUb7VPRPEH2MxIwm5qI6ofBDJHO7E7drW7b+nfXuihk7R5NTAImqhcGM0Q6klOSg6OZR9X9tv5dtS4ONcK0BkRUdwxmiHTkj9Q/YIQR4Z7RCHAP0bo4ZO2B8zgKMFG9MJgh0mUTUzeti0KN0MwkCcCccJKo7hjMEOnIrtRd6pbBjH2J9ouGq5MrCssKkVpQMVUFEdUegxkiHY38uy+toidTuwAm/9oTN2c3xPhXTDh5IvuE1sUh0h0GM0Q6ceDcAZQYShDsGYxwz+ZaF4esjEnARPXn2oDnEpEGTUyXhV/GkX91zD95S+UNzv5/jTWTyO7ZRPXBmhkindidstsczJD9aeXPOZqI6ovBDJEOSA+X3WkVwUzviN5aF4caAQfOI6o/BjNEOnAi6wSyi7Ph5eqFDsEdtC4ONWLOTHJ+MiecJKojBjNEOsqX6R7aXfV8IfvDCSeJ6o/BDJGOBsu7LIL5Mo4w4SSbmojqhsEMkZ6CGSb/2jV2zyaqHwYzRDZOciiS8pLg4uSCHmE9tC4ONUESMHs0EdUNgxkindTKSOKvj5uP1sWhpqiZYTMTUZ1w0DwijcUdP1fjYwPbhGBXSkXyb6/wXk1YKtI6Z0a64zs78fcmUW3wL4XIxjFfxnE092vOCSeJ6oHBDJENyy3JxZHMI+p+rwjWzNg76XYvAY1pbCEiqh0GM0Q2bNneX2GEEeGe0Th6xkk1SV2sWYr0r1toN3X7S9IvWheFSDcYzBDZsKPZ+9RtW/+KCxzZv2taXaNu15xcg3JDudbFIdIFJgATNZH61Kgcy2Ew42gGNhsIf3d/pBemY2fKTvRr1k/rIhHZPNbMENmoUkMJTuYdVPcZzDgONxc3XN3yanV/1clVWheHSBcYzBDZqIS8oyqg8XMLRIRXjNbFIQ2amtadWodSQ6nWxSGyeQxmiGyUZROTk5OT1sWhJtQ3oi9CPEPUTOlbzmzRujhENo85M0Q26mjO3guamPyTeWFzBC7OLugeNAQbzq7Ex/u+gWtx50oDKRJRZQxmiGyQjP56PGe/us98GQcR/2ul1WHOEdgggyae+xW3GWbCzdlDs6IR2To2MxHZoOTCBOSX5cDd2RMxPu20Lg5poJ1nC4S4BqCovAD7M7ZpXRwim8aaGaJGmE/JWvkyrf06w9WZf6aOSOZlGuTbA99l/YJt6etxWegVWheJyGaxZobIBh3jYHkEqGBG7M2IQ1FZgdbFIbJZDGaIdJL8S44n1iMK4Z7NUWooxh8Zm7UuDpHNYv01kY3JLE7FueJkOMFZNTORffvzTE6Nj0mX/L5hw/FD4kfYnv4z+oePaNKyEekFa2aIbMyx872YWvi2haert9bFIY1JMCP+zNyG/LJcrYtDZD/BzOLFixEbGwtPT0/0798f27ZdPNN+xYoV6Nixo9q/W7du+PHHH82PlZaW4rHHHlPbfXx8EBUVhdtvvx1nzpypT9GIdI/zMZGlKO9YRHu3RrmxDLvTK3ffJqJ6BjPLly/HzJkzMX/+fOzatQs9evTAqFGjkJqaWu3+mzdvxsSJE3HXXXdh9+7dGDt2rFr276/49VlQUKCO8+STT6rbr776CocPH8b1119f16IR2QUGM1RT7Yw0NRHRhZyMRqMRdSA1MX379sWbb76p1g0GA2JiYjB9+nQ8/vjjF+w/YcIE5Ofn4/vvvzdvGzBgAHr27IklS5ZU+xrbt29Hv379cOrUKbRo0eKCx4uLi9VikpOTo8qQnZ0Nf3//upwOUZN1za7NrNkFZXl4eMt1MMKI//T7EoHulY/FEYAdT07kAKQWJmHuzltVHtWGv/+MEC+OAkz2IScnBwEBAQ2+ftepZqakpAQ7d+7EiBF/JaE5Ozur9bi4uGqfI9st9xdSk1PT/kJOShLfAgMDq3184cKF6uRNiwQyRPbgRO6fKpAJ84y6IJAhxxXuFY1Y344wwqAmnySiBgQz6enpKC8vR0RERKXtsp6cnFztc2R7XfYvKipSOTTSNFVTlDZnzhwV8JiWxMTEupwGkc3641xF99t2/t21LgrZaFPTqvhVWheFyObYVNdsSQb++9//Dmn5euutt2rcz8PDQy1E9kR6q2xK/kbdH+LSjE1KVEmf0CvxRfxb2JW6C8n5yYj0idS6SET6rJkJDQ2Fi4sLUlJSKm2X9cjI6v+wZHtt9jcFMpIns27dOua+kEPJKjmH9478W92/2n8Aevp00LpIZGOCPMLQ9nyN3ZqTa7QuDpF+gxl3d3f07t0b69evN2+TBGBZHzhwYLXPke2W+wsJViz3NwUyR48exU8//YSQEOYKkOMwGMvx3uHnkFuahebebTA5dIzWRSIbxaYmIis1M0m37ClTpqBPnz6qx9GiRYtUb6WpU6eqx2WMmOjoaJWkK2bMmIGhQ4fi5ZdfxpgxY7Bs2TLs2LED77zzjjmQufnmm1W3bOnxJDk5pnya4OBgFUAR6Ultei1ZWpX4KQ5l71IzZE/rOA/uOWcbrWykb71ChmD5idfx57k/kZCTgBb+F/b2JHJEdQ5mpKt1Wloa5s2bp4IO6WK9evVqc5JvQkKC6uFkMmjQICxduhRz587FE088gXbt2uHrr79G165d1eNJSUn49ttv1X05lqUNGzZg2LBhDT1HIpt1NHsvvk34QN2f1OYhNPNuCTCYoRr4uwehQ0AvHMjajnd2fYUxMZOtPmM7kUOMM2PP/dSJGqv2pTp5pdl4Zvc/kFmShoHhozC1/Ry1nYm/VHWcGUu/p6zCh0dfQJR3Kyzo9X6lxxjMkKNev22qNxORo5DfEB8ceV4FMhFeMZjYZobWRSIbVTW4HVLuiU/ggjMF8UjKP4Fon9b1Dr4Z/JC94ESTRBr46cwX2JsZB1cnN9zdYT48XTihJNWOj4sXevq0V/fXJi3XujhENoHBDFETO5l7CF+dfFvd/3vr+xHj21brIpHOXBc4FE5wQlzqGmxLq9xblMgRsZmJqAmbCQrKi/C/xNfVDMjSM2Vo5A2alo30qaNXLMYGXYmVmT/jk2OvoLVfZ4R6NtO6WESaYTBD1IR5Mu+mfYXUsgyEugbifv8r4ZOyVetikU7dHHwV/ihLUfN5/e/wM3ik2+taF4lIM2xmImoiP+VsRVzeXrjAGTMiJ6ncB6L6cnFywT86zIWXiw9O5B7A94kVXfyJHBFrZsju2GLPjV9zd+O9tIp5lyaEjEI7Tw52Rg3XOusUpoVej9dTPlODL/Ze54Uu3m0u6M5NZO9YM0PUBIHMf1M+hxFGDPfvh78FXqF1kciODPLrgWF+fdT/r8Upy5Fbnq91kYiaHIMZoka0JXWtOZC5yr8f/hE2Fs5O/LMj67oj7HpEuYUhozwHb6d+qfKziBwJm5mIGmmkXwlk3j/yvDmQuYuBDDUST2d3TI+8BU8m/hc78g+gffK3GNaMPeXIcfCblagR/BXIGBjIUJNo5RGNiaHXqPsr4her0YGJHAVrZsjhWWOepQsDmYWqRmZI5HW4y2cgAxlqEtcGXI59Bcewp+Aw3j38NJ7o8TbcXTzq9X+fUx2QnvAblqgRA5lJbR5mIENNRv6v3Rs+Hv5uQThTcBIr4v+rdZGImgS/ZYmshIEM2YIAV19Mbf+Eur8p+RvsSNugdZGIGh2/aYmsII6BDNmQLkF9MTJ6grr/7uFnsC7pc/ZwIrvGnBmiBpALxA+JH+PbhPfU+gj//rhTcmRStmldNHJwY1tOQ15pDjanrlLNTafzj+O2tjPh5lxzDg2RXvGnI1E9lRqK8X9HnjMHMqMDBuPOsBtYI0M2wdXZFVPaPYoJrR6AE5zVDNsv73sYWSXWTXgnsgWsmSGqxwzYWWW5ePXsRzhWnKjmWpoadgNGBPTXunhEF8zUPs6lOdpETcVryZ+qOZz+veefuK/Ts4j166hpGYmsiT8hieroVPFZzD29WAUyPs5emBN1JwMZsmndvdvh2eYPoJlXS2SVpOPFfQ9ia+pPWheLyGpYM0M2wRYnh6zOzvwDeCN5GYqMJWjmForZzaYgyj1M62IRXVIz91A83uO/+N/hZ7Avcwv+78izSCo4gbEt74Kzk4vWxSNqENbMENUy0Xft6eV46ezHKpDp4tUGzzS/j4EM6YqXqw/u7/wcrmk+Sa2vPr0Uiw/8C4VlnJyS9I3BDNEllBlK8fGxF/HFybfM8yxJ05Kvi7fWRSOqM6mFuTH2btzVfi7cnN1VLc38XVOw+vRnKCjL1bp4RPXCZiaii0gvOqvmWDqa84fqETI5dLQaMt7JyUnrohE1KDH4aviiddTdeDX5E6SXpOOrk2/jh8SPMDhiNK6KuhmAbTXxEl0MgxmiapQby/Dzma/wzan3UGIogqeLN6Z1mIfLS7QuGZH1tPFsjldbPoLfc/fg27ydOFMQj/VnvsTPZ1ZiY9oITOkyBd3DumtdTKJLYjBDukzmtfbkkJYS8o5i6cEFOFGcpNY7ebbCtPAbEcVAhuyQm5Mrhvn3wWXt7seBrO1Yl7RC3a49tVYtbfy7YmTUBPQIGaSaqGwtKZ9IMJghOq+4vBDfJXyAn5JWwAADfJw9cWvIaPVFz4HwyN5J02mXoH5qkdGCZQqEbWnrcTxnP97K2Y9wz+YY1fwW9I6dCHcXd62LS1QJgxlyGBerzfkzcxs+PfYq0ovPqvWBvt0xJfQ6BLr6NWEJiWwjn6azLP5XIsO7N9Zkb8ZP2VuRWnQaHx97CasT3sXk6OEYP+BR+Lr72tXQC6RfDGbIoeWWZuHzE29ia1rFAGLBHhGY1OYhDC5hgi9RsKs/JoZcg3FBV+LnnO34PutXpJVk45X4lXg36Sfc0uEW3NrpVoR4MSghbTGYIYdUXF6ETWe/xqrTS5FflqN6Kg2PuhE3tLxTJfvC4lcqkaPzdPbA6MDBGBkwAPEuh/Fe4lrEF6bg3X3v4qMDH2Fc23Ho7ncDQj2bWe01WZtDdcFghhxKSXkxNiV/izWnlyKnNFNta+neDHeH34g2njFA2l6ti0hks1ydXDE2ciCuj+iPDS5l+L/9/4d96fuw7PAyfI7P0SdsOK6IGIN2AT2YZ0ZNisEMOUQuQImhFD/nbMM3mRuRWV4xMFi4azBuDB6OK/wugwuHcyeqlT/P5KjbSABPBEzCAfcT6u9qb+FRbEv7SS0hHpEYED4SA8NHItyrudZFJgfAYIZsWkO7YJcaSrA2Ow5fZ2xARnnFl3CoayBuDBqOIf694coghqhhPaC826glvigJ63K2Ii7vD5wrTlYD8MnSxq8rBkaMQp/QYfBmQj01EgYzZJdKDcWIS12LHxI/RmZxqtoW4hqAcUHDMUwFMfyvT2RNrTyjcbfnjbgj9DrsyD+ATbk7sbfgKI7n7lfL8uOvoUfIFRgYPgpdgvpyckuyKn6jk11NBnkq7zA2p67GttSfUFCep7YHufhjXPCVuNK/rxogjIgaj7uzGwb59VBLRlkOfs/djU25u3C6JAU70jeoRWpHRwYMRKfyKxHo5gu0ukLrYpPO8ZudbH7Mi6pyIgdUXi/JxNa0dfg9ZZUajt0kyCMcI6MnYAzC1RcsETV91+7rgobib4FDcLL4jKqt+S13D9LLsrD03Cp8ufUnjAnvi0kB4egQ3EHr4pKOMZiheues1LWLpDWnICgzlGF/5hYVwMisvwZjudouswBfFnIFBoVfi46Bl6mqbHd2sybSPLdGmqFkmRRyLX7P24M1WZtxsuQsvkrejK++24xe4b0wsdNEXNXiKrjV48eHNb+rSH8YzJBumpDOlKbhcNEp7M/ZpAKY3PNdq0Wsbydc5dUBg3x7wMfFCyguA1K2a1pmIrqQ1JJKk+8wvz4o9U3H0jMb8VP6H9iVukst4d7h+Hv7v6OVxwj4uQVqXVzSCQYzZJOkK/Xx4tM4UnQKhwtP4khRAvIMBZX28XcLUt0/B0Vciyjv2Is2TRGR7dXWXBbQRi0p4e2x4sgKtaQWpOLNPW/CzfldDI4Yjauj/27VwfjIPjGYIZupeUkqOKGSAw9m7URC7hGUo6LpyESSd9t6xCA2dBDaB/RAh4BecHXmf2EivYtIPYIHAnvg7j6dsTZtNz5J+hl/5iVgw9mV2HT2G/QNG45RzSeiuU8brYtKNopXAtJUckGCCmC2p/2Ms4WnKj0W6OKH9p4t0cGrpbpt5RGlulRXTQAmIn0PwGepFTpibkQH/Ol/HF8W7MHBrB1q7jRZugb1h5vPPegd0VvV7DQUp0ywHwxmqN7qm9CbXnTWHMAk5h8zb3d1clNfVj1DBuOyknI1Qq81vrCISF/k776rd1u1xPsOxDdZm7A1bx/2Z27F1DVb0d2vFe7sMwNXxlzJaRNIYTBDTdKElJPwLf4oOIwteftwrDjR/Jj0Nuoc2Ad9Q4ejR8jl8Hb1Vdsvlv/C3BgixyE9oB6KnITkknQ1a7cajC83Hg9teAhB7mHoFjxA/QjqGNirYpJYckhORrnS6FxOTg4CAgKQnZ0Nf39/rYtjV+pb+5JbmqVyXw5kbseBrB3IKkk3P+YEJ3T2aq16HvXz7QI/Fx8rlpiI7FlWWS5WZf2ONbnbUVSeX6lmt11Ad3QNGoBuQf0R4RVjrtmtqdmIzUz2c/1mMENWCWZkDqTjOftV4HIgcwcS8o9ckLzbybMVevl0xADf7gjkHC1E1ADpYZfhcPYeNd7UvowtSC8+W+nxUM8oFdS0D+iJq9t1QYxfDLzdKtfcMJhx8GBm8eLFePHFF5GcnIwePXrgjTfeQL9+/Wrcf8WKFXjyySdx8uRJtGvXDi+88AJGjx5tflyKMH/+fLz77rvIysrC5ZdfjrfeekvtWxsMZhpPdX/sxeVFqudRYt5RlfOSkHcMSQXHVUBjSXoedA7si85BfdCroJCj8BJRo5BryNnSdOwuOIQ9+YdxsDAeZVV6Q4oQzxA092uuAhtZigoCEeYVhVCPZvB3DzLPF8VgxgGCmeXLl+P222/HkiVL0L9/fyxatEgFK4cPH0Z4ePgF+2/evBlDhgzBwoUL8be//Q1Lly5VwcyuXbvQtWtXtY+sy+MffvghWrVqpQKfffv24cCBA/D09LxkmRjMNFKeS0kO1h85jsziNBW0qCXvKJILE2DEhf9tAlx80d27Hbp7t0c3r7asfSEiTRQZirG/8LgKbOKLk5Benonssr+apKrjAmcEufoj2DUAsb4hiPAIRESzXojwiUCkd6QazC/QIxBerl7smGAPwYwEMH379sWbb76p1g0GA2JiYjB9+nQ8/vjjF+w/YcIE5Ofn4/vvvzdvGzBgAHr27KkCInn5qKgozJo1C4888oh6XE4qIiICH3zwAW655RbNghmD0YCfE36GXkn5ZSk3lptv5f22XC8uK0ZGUQbOFZ3DucJzFffltjhDTRlQEwlcYj2iEOsehZYezdT9Zm6h/CMnIpuUX16IlNJzSC3LQEqpLOfMt+fKsqv9gVYdDxcPBHgEqMBGFrkf5BFk3ubu4q56WLk4uahb01J1XY+cnJzUdBPWZK3rd516M5WUlGDnzp2YM2eOeZuzszNGjBiBuLi4ap8j22fOnFlp26hRo/D111+r+/Hx8aq5So5hIicmQZM8t7pgpri4WC0m8iaY3hRrKi0vxYOrHoQj83Lxhp9bEJp5t0Jzn9Zo7t0GHQtzEODiVzlwKQXySwu1LCoR0UWFIxjhTsHo6i7zKvy1XX7YZZfnIbMsR8307eFTjNTibKS6uiG1MBVpBWlIK0xDqaEUBfIvrwBnUTlHxxG4O7vjl1t+seoxTdfthqbv1imYSU9PR3l5uao1sSTrhw4dqvY5EqhUt79sNz1u2lbTPlVJk9RTTz11wXapISIiIqLGEfDPgEY5bm5urqrIcKhxZqRmyLK2R5q6MjIyEBISolkzh0SXEkwlJibabd6OI5yj4HnaF0c4T0c4R8HztM/zPHDggEo3aYg6BTOhoaFwcXFBSkpKpe2yHhkZWe1zZPvF9jfdyrZmzf6aTEzWJa+mOh4eHmqxFBhoG7Oryn88e/7P5yjnKHie9sURztMRzlHwPO1LdHS0SllpiDo9293dHb1798b69esr1YrI+sCBA6t9jmy33F+sW7fOvL/0XpKAxnIfida2bt1a4zGJiIiI6t3MJM07U6ZMQZ8+fdTYMtI1W3orTZ06VT0u3bYlypK8FjFjxgwMHToUL7/8MsaMGYNly5Zhx44deOedd9Tj0iz00EMP4dlnn1Xjypi6ZkuV09ixY+taPCIiInIwdQ5mpKt1Wloa5s2bpxJ0pSlo9erV5gTehISEStVFgwYNUmPLzJ07F0888YQKWKQnk2mMGfHoo4+qgOjuu+9Wg+YNHjxYHbM2Y8zYCmn2koH/qjZ/2RNHOEfB87QvjnCejnCOgudpXzyseJ52MZ0BEREROS59jtxDREREdB6DGSIiItI1BjNERESkawxmiIiISNcYzDTQc889p3pseXt71zhwn3Q/r7pIF3V7O0/pySbd72UfmUF99uzZKCurebJKPYiNjb3gs3v++eehd4sXL1bnJj0GZR60bdu2wZ4sWLDggs+tY8eO0LtffvkF1113nRq6Qs7JNMedifTnkJ6mMgCpl5eXmvPu6NGjsLfzvOOOOy74fK+55hroiQxfIpM2+/n5qe9LGYrk8OHDlfYpKirC/fffr0a39/X1xU033XTBILT2cJ7Dhg274PO855576vQ6DGYaSCbfHD9+PO69996L7vf+++/j7Nmz5kVvY+hc6jxlzi4JZGS/zZs348MPP1SznssXq949/fTTlT47mSFez5YvX67Gi5Iukbt27UKPHj3U5K+pqamwJ126dKn0uf3222/QOxnCQj4vCUar85///Aevv/46lixZogYe9fHxUZ+tXBTt6TyFBC+Wn+9nn30GPdm0aZMKVLZs2aIGki0tLcXIkSPVuZs8/PDD+O6777BixQq1/5kzZ3DjjTfC3s5TTJs2rdLnKf+X60S6ZlPDvf/++8aAgIBqH5O3eeXKlUZ7Ps8ff/zR6OzsbExOTjZve+utt4z+/v7G4uJio161bNnS+OqrrxrtSb9+/Yz333+/eb28vNwYFRVlXLhwodFezJ8/39ijRw+ti9Goqn6vGAwGY2RkpPHFF180b8vKyjJ6eHgYP/vsM6NeVff9OWXKFOMNN9xgtCepqanqXDdt2mT+7Nzc3IwrVqww73Pw4EG1T1xcnNFezlMMHTrUOGPGDGNDsGamiUhkKnNbyajJ7733XoOnO7c1cXFx6NatW6XZz+UXoUxN8eeff0LPpFlJqnkvu+wyvPjii7puOpOas507d6rmBxMZ5FLW5TO0J9K8Is0UrVu3xq233qqaQe1ZfHy8GsjU8rOVWYilGdHePluxceNG1WzRoUMHVWN87tw56Fl2dra6DQ4OVrfydyq1GJafpzSVtmjRQtefZ3aV8zT59NNP1TVSBtSVyaQLCgrsf9ZsPTZTDB8+XOWSrF27Fvfddx/y8vLw4IMPwl7Il6hlICNM6/KYXsln1KtXL/WHJ81n8kcmVaCvvPIK9Cg9PV01CVb3WR06dAj2Qi7g0swpFzr5vJ566ilcccUV2L9/v2q7t0emv7PqPls9/w3W1MQkzS0y/c3x48fV6PLXXnutusjLZMh6I3McyrQ+l19+uXl0fPnMZD7EqjmKev48DdWcp5g0aRJatmypfnzs3bsXjz32mMqr+eqrr2p9bAYz1Xj88cfxwgsvXHSfgwcP1jqhUOaaMpFf99JWKL/wtQ5mrH2eelGX85bcEpPu3burL5d//vOfKqnN3oca1zO5sFl+bhLcyJfl559/jrvuukvTslHD3XLLLeb7UiMsn3GbNm1Ubc1VV10FPdbcS6BtD3ld9TlPmcrI8vOUBHb5HCVQlc+1NhjMVGPWrFkqW/5ipOq6vuSL9ZlnnkFxcbGmF0RrnqfMfF61R4wp614esyUNOW/57KSZ6eTJk+pXv95INa78cq3aI0LWbe1zsib5ddu+fXscO3YM9sr0+clnKRcDE1mXOfTsmfy9yv9t+Xz1Fsw88MAD+P7771UPrubNm1f6PKVZWOYrtKyd0evf6gM1nGdN37NCPk8GMw0QFhamlsayZ88eBAUFaf7L3prnOXDgQNV9W3rESDu2kMx1f39/dO7cGbakIectn53kmJjOUW+kZql3795Yv369uUedVP3KunzZ2Ctp1pVfeZMnT4a9kiYXucjJZ2kKXiRnTXo1Xaq3pd6dPn1a5cxYBnG2TvImpWfkypUrVY2SfH6W5O/Uzc1NfZ7SJVtI04vkfsn3rb2cZ03fs6IunyeDmQaS/1gZGRnqVnIRTB9C27Zt1bgA0q1OIukBAwaoMT3kAv/vf/8bjzzyCOzpPKWrnQQtcrGQLnXSpiszpUu1otZBW31J+7tcCK688kqVZyHr0lXytttuU8GoXknT2ZQpU9CnTx+VkL5o0SLV9Dl16lTYC/n7knFKpGlJurNKN3SpkZo4cSL0HpRZ1i5J0q/8LUpOlySGSj7Cs88+i3bt2qmLhjRxSx6C3oaCuNh5yiI5UHKBl+BNgtRHH31UfRdJpwO9kO/GpUuX4ptvvlHfL6Y8GEnaljGC5FaaROXvVc5ZfhhKUCCBjFxP7OU8jx8/rh4fPXq06mghOTPyPTtkyBDVfFhrDeoLRaqLoLyNVZcNGzaox1etWmXs2bOn0dfX1+jj46O6iy5ZskR1h7Wn8xQnT540XnvttUYvLy9jaGiocdasWcbS0lKjXu3cudPYv39/1RXd09PT2KlTJ+O///1vY1FRkVHv3njjDWOLFi2M7u7uqqv2li1bjPZkwoQJxmbNmqnzi46OVuvHjh0z6p38vVX3dyh/n6bu2U8++aQxIiJCdcm+6qqrjIcPHzba03kWFBQYR44caQwLC1Ndl2X4hGnTplUaFkIPqjs/WWT4C5PCwkLjfffdZwwKCjJ6e3sbx40bZzx79qzRns4zISHBOGTIEGNwcLD6P9u2bVvj7NmzjdnZ2XV6HafzL0ZERESkSxxnhoiIiHSNwQwRERHpGoMZIiIi0jUGM0RERKRrDGaIiIhI1xjMEBERka4xmCEiIiJdYzBDREREusZghogalUzqeanh9GNjY9W0CrbAyckJX3/9tdbFIKI64NxMRFTvIEVm9LXGhX/79u3w8fGBLTh79qyu594ickQMZohIc405S31dyeSFRKQvbGYiogb74osv0K1bNzULrsx8O2LECDUTt6WXXnoJzZo1U4/LTLqlpaU1NjMdOnQIgwcPVjPNy2zsP/300wXNP4899hjat28Pb29vtG7dWs0QbXnMBQsWoGfPnnjvvffUjNIyu/t9992nZn2Xmd0laAkPD8dzzz1XqZxsZiLSH9bMEFGDm2UmTpyoAoRx48YhNzcXv/76KyznsN2wYYMKZOT22LFjmDBhggo0pk2bdsHxJNiQHBsJQLZu3aqON2vWrAv28/PzwwcffICoqCjs27dPHUu2Pfroo+Z9jh8/jlWrVmH16tXq/s0334wTJ06oIGjTpk3YvHkz7rzzThV89e/fvxHfJSJqTAxmiKjBwUxZWRluvPFGtGzZUm2TWhpLkoPy5ptvwsXFBR07dsSYMWOwfv36aoOZdevWqcBj48aN5iYfqT25+uqrK+03d+7cSjU7jzzyCJYtW1YpmDEYDKpmRoIcqeG58sorcfjwYfz4449wdnZGhw4d8MILL6ggi8EMkX4xmCGiBunRoweuuuoqFcCMGjUKI0eOVDUglkm0Xbp0UYGMidTSSG1KdSTYiImJqZS70q9fvwv2W758OV5//XUV+OTl5amAyt/fv9I+EuRIIGMSERGhyiGBjOW21NTUBrwDRKQ15swQUYNIcCC1KdKcI7Ufb7zxhqrxiI+PN+/j5uZ2QV6K1JrUV1xcHG699VaMHj0a33//PXbv3o1//etfKCkpqbRfda9r7bIQkfYYzBBRg0lAcPnll+Opp55SgYW7uztWrlxZr2NJIJSYmIiUlJRKXbctSa6LNGlJANOnTx+0a9cOp06davB5EJE+sZmJiBpEknQl/0Wal6R3kKynpaWhU6dO9Tqe5Ma0adMGU6ZMUUnFkgBsyo+RoElI8JKQkKByZPr27Ysffvih3sETEekfa2aIqEEkT+WXX35RTT7SS0gCj5dffhnXXnttvZutpGu05MFIoPKPf/xD1cAI6aotrr/+ejz88MN44IEHVK8oqamRrtlE5JicjJb9J4mIbNDvv/+uxp2Rbt1Sa0NEZInBDBHZHGkykkHupDlJApgZM2ao3lG//fab1kUjIhvEnBkisjmSJyMj/EpeTGhoqBrUTpquiIiqw5oZIiIi0jUmABMREZGuMZghIiIiXWMwQ0RERLrGYIaIiIh0jcEMERER6RqDGSIiItI1BjNERESkawxmiIiICHr2/wQGTGSbcAbpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the distribution function\n", "\n", "results_df = R[O[-1]]['results_df']\n", "results = R[O[-1]]['results']\n", "Ishigami_dist = results.raw_data['output_distributions']['Ishigami']\n", "\n", "plt.figure()\n", "plt.hist(results_df.Ishigami[0], density=True, bins=50, label='histogram of raw samples', alpha=0.25)\n", "if hasattr(Ishigami_dist, 'samples'):\n", " plt.hist(Ishigami_dist.samples[0], density=True, bins=50, label='histogram of kde samples', alpha=0.25)\n", "t1 = Ishigami_dist[0]\n", "plt.plot(np.linspace(t1.lower, t1.upper), t1.pdf(np.linspace(t1.lower,t1.upper)), label='PDF')\n", "plt.legend(loc=0)\n", "plt.xlabel('Ishigami')\n", "plt.savefig('Ishigami_distribution_function.png')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:56.691840Z", "start_time": "2021-06-07T15:00:55.183929Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:53.907253Z", "iopub.status.busy": "2025-07-18T11:53:53.907146Z", "iopub.status.idle": "2025-07-18T11:53:55.165735Z", "shell.execute_reply": "2025-07-18T11:53:55.165431Z", "shell.execute_reply.started": "2025-07-18T11:53:53.907245Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/6f/rn14629n60j16dc99dtk7bs4000ctx/T/ipykernel_71217/3184545625.py:16: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", " plt.legend(loc=0)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXStJREFUeJzt3Qd0VNXWB/B/Jj2BBEJIo/dO6BhEKdKVZkNsFEVFeYLYQB8g+hQFQRT5BOEhzYL4KAoISO8ivfdQBEIoaQRSZ761D5kxvU65M/P/rTUrc+9Mbs4whNmcvc8+LgaDwQAiIiIiMtH9c5eIiIiIBAMkIiIiomwYIBERERFlwwCJiIiIKBsGSERERETZMEAiIiIiyoYBEhEREVE2btlPUOHo9XpcuXIFpUuXhouLi62HQ0RERIUg7R8TEhIQFhYGnS7veSIGSMUkwVGlSpVsPQwiIiIqhkuXLqFixYp5Ps4AqZhk5sj4B+zn52fr4RAREVEhxMfHqwkO4+d4XhggFZMxrSbBEQMkIiIi+1JQeQyLtImIiIiyYYBERERElA0DJCIiIqJsWINEREREdiU9PR2pqam5Pubu7g5XV9cS/wwGSERERGQ3PYyioqIQGxub7/PKlCmDkJCQEvUpZIBEREREdiEqIzgKCgqCj49PjgBIAqg7d+4gOjpaHYeGhhb7ZzFAIiIiIrtIq8VmBEflypXL83ne3t7qqwRJ8tzipttYpE1ERESal5pRcyQzRwUxPievOqXCYIBEREREdsOlEHVF5tgjlSk2shvpegN2R95CdEISgkp7oVW1ALjquFEwERGZHwMksosAZvWRqxj/2zFcjUsynQv198K4nvXRrWHxi/CIiIhywwCJNB/AyLWHLtwHQ7bzUXFJ6vw3zzZjkERERGbl1DVIK1asQJ06dVCrVi3Mnj3b1sOxW8YAJnNwlDmAkcdLMislgVf24EgYz8nj8jwiInJ8BoPBLM8piNPOIKWlpWHkyJHYuHEj/P390bx5c/Tt2zffpYNUvADm/WVH4O3uirupetxJSUNiSjruJGf7KueTM75mnL+Tko7YuynqfF7kZ0hgJqm9iBp874iIHJW7u7v6Kn2OjEv58yLPyfw9xeG0AdLu3bvRoEEDVKhQQR13794da9euRf/+/eGozFkjlJSajvM3E7H6SFSOmaPsbt5OwYDv/oIlyWsiIiLH5erqqjpkG5tAFtQoUp5bki1H7DZA2rJlCyZNmoS9e/fi6tWrWLp0Kfr06ZPlOdOnT1fPkc6b4eHhmDZtGlq1aqUeu3Lliik4EnL/8uXLcFTFqRGSv2g3E1NwNvo2zt1IVF/PXpdbIi7F3EFRZjDD/L0QWsYbPh6u8PVwg49ntq9y3jPja6bzp6MT8NbiQwVeP/JGIvR6A3Rc1UZE5LBk+xBhDJIK2mqkJOw2QEpMTFRBz+DBg/Hoo4/meHzRokUqhTZjxgy0bt0aU6dORdeuXXHy5EnVWdOZFFTkPO3ppqgX6pdrIBR3N+8mW6W93BBU2lM9ryCTn2xSrBRYwwr+mLz2lBprfvHY1HWn1WzW8IdqoWuDEAZKREQOyMXFRW0fIp/j3Kw2D5ISk1tepkyZgiFDhmDQoEHqWAKllStXYs6cORg1ahTCwsKyzBjJfePsUm6Sk5PVzSg+Ph6OUiM07If9eX6/zF5WKOONGuVL3bsF+ZruB5bygNRGt/1sQ54BjIQpIf730nnFISlAmeWSQE6ulflnGEOg7o1CsfXUdZyISsDQ7/ehbkhpjOhUG13qBzNQIiJyQK6urmYJghwyQMpPSkqKSr2NHj3adE6n06FTp07YuXOnOpZg6MiRIyowkiLt33//HWPGjMnzmhMmTMD48eNhb6TmqKAaIeHhqkOt4FI5AqFqgb7wcs/7L6GrCwoMYOTxkvRDkhSgLOXPniIMyZQijL2TgjnbIjFn+3kVKL2ycC/qh/pheKdaKlAyR1dVIiJyHg4ZIN24cUNtahccHJzlvByfOHFC3Xdzc8PkyZPRoUMH6PV6vPPOO/muYJNgS1J2mWeQKlWqBK0rbPHyxMcbo0/Tf2qyzB3AlJRco3P9kDyLzMv4eGBklzoY3LYaZm+NxHfbI3HsajxeXnAvUBrRqRY6M1AiIiJnDpAKq1evXupWGJ6enupmbySQKIxgv8I9r7gBjDnItQqqY5JA6a2udfCCBErbzmHu9vMqUHppwV40rOCHEQ/VxkP1gqweKHGbFCIi++KQAVJgYKDKTV67di3LeTkuaVW7vZEPYlmtZqkaoaIGMNZS1tcDb3etixfaVsesrecwb8d5HLkcjxfn70GjCv5qRqlj3X8CJW6TQkREDt9J28PDQzV+XL9+vemcpNHkOCIiAs7EWOScG3PVCGlZgK8H3u1WF9ve7YhX2tVQbQQOX47DC/P2oPf07dhw4hp+P3xVFZr3n7ULw386oL7KcUk6gFujyzgREVmOi8Ec/bht4Pbt2zhz5oy637RpU7VqTeqJAgICULlyZbXMf8CAAZg5c6YqyJZl/j///LOqQcpem1QcUoMkxd1xcXHw8/OD1skH8b+XHcGN2ylOPYtx83Yyvt16DvN3XMDd1Lw7dBvDxZLs8yazUhJo5VUkb5y9k+DNUQNUIiKtKeznt90GSJs2bVIBUXYSFM2dO1fd//rrr02NIps0aYKvvvpK9UQyB3sLkMSf526i37e71PL8af2bOXUdzI3byZix+awq6M5PWR93jO/VAGl6A1LT9UhJ0yM5TY+UjPumW6bj5Iz70fFJOPh3XIFj+XHIfZpJTRIRObr4Qn5+220NUvv27QvcjG7YsGHqRvckJKWpr9LXyNk/kANLeeKhusEFBkgxd1Lx+k8HLDoWbpNCRKQ9dhsgUdHF3LmXXvP38bD1UDShsIFJjfK+CCvjrXpFebhl3DLfNx5nO3fp5h3M2HLObCsNiYjIehggORHjtiGSNqLCByb/6dOoWDNuUoO0/OCVfLdJ8XLToX6YfaRoiYiciUOuYqPcxd65FyCV8WaAlLkFQl5VWHI+1AzbpBivlZukND0e/b/tau87IiLSDgZIToQptsIHMObeJkVWq2Umgdc7XesgxM9Lbfbb++vtWHs0qtg/h4iIzIspNicSyxSb5rZJeaJFJbz2wz71mHT7/lfHmmqjXWddXUhEpBUMkJxInDHFxgBJM9uklC/tie9fbI1PVh3Hd9vPY9qGM6qR5Zf9msKf7xMRkc0wxeaEKbYy3kyx5RXA9G5SQX215gyOu6sO43o2wBf9wuHlrsOmk9fRa/o2nIiKt9oYiIgoKwZIzlikzZkJTerbtCL+N7QNKpb1xoWbd9B3+g78evCKrYdFROSUGCA54TJ/2fGetKlBmD9+G9YWD9QKVFuhvP7jfny88hjS0vW2HhoRkVNhgOQkZOuL28n3Omlzmb+2lfX1wNxBrTC0fQ11PGtrJJ777261jxwREVkHAyQnmz1ycQH8GCBpntRAvdutLr55phl8PFyx89xN9Jy2DYf+jrX10IiInAIDJCcRd/degbaflzuXkNuR7o1Csfy1+1Et0BdX4pLw+Iyd+HnPJVsPi4jI4TFAchKy6apggbb9qRVcGsuH3Y9O9YJUqvSdXw7h38sOq/tERGQZDJCcbgUbC7Ttkcz8fftcC7zRqbZKky7cdRH9Z+1CdHySad+3nWdvYvmBy+qrHJuTpa9PRKQ1bBTpJGJNPZA4g2SvdDoXDO9UC40q+mH4Twew90IMHpm2DQPaVFEBU+ZO4KFm7AS++sjVHJ3GzXl9IiIt4gySk80gcZsR+9exbjB+HdYWtYNLITohGZPWnMoSvIiouCQMXbhPBTclId8v17HU9YmItIozSE4iNqNImyk2xyBF27+80gatPlmHpNSctUjGBNjY5UdRO7g09AYDUtMNSEs3IFWvv/c1Xa9ucj9Nr0eKejzjMTlO02PKH6dM18p+fSn1l5kl2aaFhf9E5GgYIDnZDJI/U2wO4+iV+FyDo8xkhqnj5M0W+fkSJMnMkuxhl9s+c0RE9owBkpNgis3xyMa6heHp6gIvDze155u7qwvcXF3grtPd++oqX3Vw12WcV8/RwU3nooKrA5dizTYOIiJ7wgDJSTDF5niCSnsV6nlzB7cu1gyPrFaTlXLmGgcRkT1hkbazpdg4g+QwWlULUKvJ8qr+kfPyuDzPEtdHCa9PRKRlDJCcLsXGGSRHIYXRstReZA9ijMfyeHELqPO7vlHDCv4s0CYih8QAyUmwD5Jjkj5E3zzbDCH+WdNcciznS9qnKK/rG/8e/XHsGuZsiyzRzyAi0iLWIDkBWa6dmJKu7nOrEccjQYwstZfVZFIwLTVBkvYy18xOXtefueUsJq4+iY9WHkOwnxcebsymkUTkOBggOVGBtmxRIVtWkOORYMiSS+1zu/7QdjVwNTYJC3ZdwBuLDqBcKQ/cV53L/YnIMTDF5gTiMvVAku0qiMzBxcUFH/RqgC71g5GSrsdL8/fg1LUEWw+LiMgsGCA5gRjjRrWsPyILzCx91b8pmlcpi/ikNAyYsxtX4+7aelhERCXGAMmZCrS5go0swMvdFbOfb4Ea5X1VZ+2Bc/5C3N17QTkRkb1igOQEYjM+rFigTZZS1tcDcwe1QvnSnjh5LQEvL9iD5LR7CwOIiOwRAyQnwCX+ZA2VAnwwd1BLlPJ0w65zt/DW4kPQ63Pb6paISPsYIDlRk0im2MjSGoT5Y8azzdVebr8dvIIJvx+39ZCIiIrFaQOkS5cuoX379qhfvz4aN26MxYsXw1ExxUbW1LZWICY90Vjdn7U1ErO3nrP1kIiIisxpAyQ3NzdMnToVx44dw9q1azFixAgkJibCETHFRtbWt2lFvNutrrr/n5XHseLQFVsPiYioSJw2QAoNDUWTJk3U/ZCQEAQGBuLWrVtw6H3YfJliI+t5pV11DIioou6PXHQQu87dtPWQiIjsP0DasmULevbsibCwMNWQbtmyZTmeM336dFStWhVeXl5o3bo1du/eXayftXfvXqSnp6NSpUpw5ABJGkUSWYv83o7t2QDdGoSoRpJD5u/BySg2kiQi+6DZAEnSXeHh4SoIys2iRYswcuRIjBs3Dvv27VPP7dq1K6Kjo03PkRmihg0b5rhdufLPdL/MGj3//PP49ttv8x1PcnIy4uPjs9zsBfsgkS0bSU59qglaVCmLBDaSJCI74mIwGAz28D/RpUuXok+fPqZzMmPUsmVLfP311+pYr9erGaB//etfGDVqVKGuK0FP586dMWTIEDz33HP5PveDDz7A+PHjc5yPi4uDn58ftKz+2NW4k5KOzW+3R5VyvrYeDjkhCdIf+2YHzl5PRJ3g0vj5lQjOaBKRTcgEh7+/f4Gf35qdQcpPSkqKSot16tTJdE6n06njnTt3FuoaEhcOHDgQHTt2LDA4EqNHj1Z/mMabrIKzB9KsT4IjUcabM0hkGzJ7OW9wKwRlNJKUfdvYSJKItMwuA6QbN26omqHg4OAs5+U4KiqqUNfYvn27StNJbZOk4uR2+PDhPJ/v6empIs3MN3vaqFb2qC3t5Wbr4ZATq1hWGkm2Uo0k/4y8hZE/H2QjSSLSLKf9xGzbtq1Kyzk6Yw8kSWfoJEoisqH6YX6Y+VxzDPxuN1YeuopQPy+M7lEPuyNvITohCUGlvdCqWoCqXTKXdL3BotcnIsdklwGSLMl3dXXFtWvXspyXY1myT/9gF23SmvtrBmLS4+EYsegAZm+LxKI9l1QBt1GovxfG9ayPbg1DS/yzVh+5ivG/HVOb6Fri+kTkuOwyxebh4YHmzZtj/fr1pnMyGyTHERERNh2b1sRkrGBjQSxpSZ+mFfBo0wrqfubgSETFJWHown0quCkJ+X65TubgyJzXJyLHptkZpNu3b+PMmTOm48jISBw4cAABAQGoXLmyWuI/YMAAtGjRAq1atVJdsaU1wKBBg2w6bq3WIJXlNiOkIZL22pFH40ipSpIEmMz8dK4fkiUdJosr0vQGpKUbkKrXq69p6XqkqnN6pMqxXo/kVD3eX3pEXaso1yci0nyAtGfPHnTo0MF0LAGRkKBo7ty56NevH65fv46xY8eqwmwpsl69enWOwm1nF3uXPZBIe6QmSGZy8iJBjMz8NB6/Bi5wQWq6XgVGEliZg/H6Mo6IGuXMck0iciyaDZBkI9mCWjQNGzZM3ShvMeyiTRokBdOFkZhccCsAmQByc9XBXeeivrrpXNTsUvzdNLONg4icj2YDJDLzPmycQSINkdVkhfH5E43RokoA3Fxd4J4R/LjpdOpYndPpcl2dufPsTfSftcts4yAi58MAycHFmVJsnEEi7ZCl9rKaTNJsuc0TS8gT4u+Fvk0rFqtGqKDrC3lcnkdEZPZVbElJnJ7WuphE4zJ/BkikHRL0yFJ7kT38MR7L48UtoM7v+kYvPVidBdpEZL4ASZbTf/TRR6hQoQJKlSqFc+fOqfNjxozBf//736JejqzUKJJF2qQ10ofom2ebqZmizORYzpe0T1Fe1/dwu/fP3qK/LiEpldudEJGZUmz/+c9/MG/ePEycOFFt8mrUsGFDtdT+hRdeKOolyYLiMvoglWGRNmmQBDGy1N5Sna5zu37VQB/0nLYNJ6IS8Mmq4/iwd0Oz/CwicvIZpPnz5+Pbb7/FM888o7pZG4WHh+PEiRPmHh+ZaRUbi7RJqyQYkqX2vZtUUF/NnfbKfv1Qf29MfrKJemz+zgtYc7Rw+zcSkXMpcoB0+fJl1KxZM9fUW2rqvQ9j0gZJH9zNSCH4swaJyKRd7fJ4+cHq6v47vxzC5di7th4SEdl7gFS/fn1s3bo1x/lffvkFTZs2Nde4yAziM+qP5D/kpT25YJEosze71EF4RX/E3U3FiJ/2q07cRERGRf7UlM7V0s1aZpJk1mjJkiU4efKkSr2tWLGiqJcjK6TXpEA7t14xRM5MirWn9W+Gh7/air/Ox+Cr9acxsksdWw+LiOx1Bql379747bffsG7dOvj6+qqA6fjx4+pc586dLTNKKpZYFmgT5atyOR98/GgjdX/axjPYcfaGrYdERBpRrLzLAw88gD/++MP8oyGLLPFn/RFR3nqFh2H76RtYtOcS3lh0AL8PfxABvlzUQOTsijyDVL16ddy8mXMX7tjYWPUYaW8GiSvYiPI3rld91Cjvi2vxyXhr8cEC94EkIsdX5ADp/PnzSE/P2VwtOTlZ1SWR9vZhY4qNKH8+Hm74+ulmqi5pw4lozNl+3tZDIiJ7SbH9+uuvpvtr1qyBv7+/6VgCpvXr16Nq1armHyEVG1NsRIVXL9QPYx6uhzHLj+LT34+jVdUANKr4z79zRORcCh0g9enTR311cXFRq9gyc3d3V8HR5MmTzT9CKjam2IiK5tn7qmDbmRtYc/Qa/vXjPqx4/QGUYosMIqdU6BSbLOmXW+XKlREdHW06lpuk12Sp/yOPPGLZ0VLxUmycQSIqFPkP4GePNUaYvxfO37yDscuO2HpIRGQvNUiRkZEIDAy0zGjIrGIyZpD8WYNEVGjSN+yr/k3VFiVL9l/G//b+beshEZENFGvuODExEZs3b8bFixeRknLvQ9jo9ddfN9fYyEwzSEyxERVNi6oBGPFQLUz+4xTGLD+CppXLoHr5UrYeFhFpOUDav38/evTogTt37qhAKSAgADdu3ICPjw+CgoIYIGmIbKEgmGIjKrpXO9TEjrM3sfPcTQz7YT+WvtYGnm7/bNBNRI6tyCm2N954Az179kRMTAy8vb2xa9cuXLhwAc2bN8fnn39umVFSiVJsZbw5g0RUVJJim/pUE9U08tjVeExYdcLWQyIiLQdIBw4cwJtvvgmdTgdXV1dVoF2pUiVMnDgR7733nmVGSUWWlJqOpNR7m2+W8eUMElFxBPt54fMnGqv7c3ecxx/Hrtl6SESk1QBJlvRLcCQkpSZ1SEL6Il26dMn8I6QSpdfkf8GluUyZqNg61g3GC22rqftv/3IQV+Pu2npIRKTFAKlp06b466+/1P127dqpzWq///57jBgxAg0bNrTEGKmEK9hk6TIRFd873eqgUQV/tfBh+E8HkK7nViREjq7IAdInn3yC0NBQdf/jjz9G2bJlMXToUFy/fh3ffvutJcZIxcAeSETmI8XZ0/o3ha+HK3ZH3sK0DadtPSQisrAi515atGhhui8pttWrV5t7TGQG3IeNyLyqBvri476NMGLRAXy1/jQiqpdD6+rlbD0sItLKDBLZ1zYj0vSOiMyjT9MKeKxZRUiGTVJtMYlZ+8ARkRPPIEkNUm41LXLOy8sLNWvWxMCBA9GhQwdzjZFKsFEtU2xE5vVh7wbYfzEG524k4u1fDmHGs83w1/kYRCckIai0F1pVC1CLI8xF6p0krWep6xORmQKkbt264ZtvvkGjRo3QqlUrdU6Ktg8dOqQCo2PHjqFTp05YsmQJevfuXdTLk9lTbJxBIjInX083THu6KfpO34F1x6+h2Ud/ID4pzfR4qL8XxvWsj24N79VqlsTqI1cx/rdjuBqXZJHrE5EZU2zSNVv6IG3duhWTJ09Wty1btuCtt95SnbXXrl2Lf//73/joo4+KemmySIqNM0hE5tYgzB99moap+5mDIxEVl4ShC/ep4KYk5PvlOpmDI3Nen4jMPIP0888/Y+/evTnOP/XUU6qb9qxZs9C/f39MmTKlqJcmi+zDxgCJyNwk7bXl9I1cH5MGAJIAk5mfzvVDINmw1HQD0vR6pOkNSJP76Xqk6g1ITzcgVc7L13S9uq48LzlVj/eWHlHXKuj6TLcRaSRAkjqjHTt2qFqjzOScPCb0er3pPtlG7N2MPkgs0iYyO6kJkpmcvEgQIzM/td5fpQq6zc14fRlHRA2upCPSRID0r3/9C6+88oqaRWrZsqWpBmn27NmmrUbWrFmDJk2awB7Iprv16tXDE0884VB7yXGZP5HlSMF0YeQVHMmkj5tOBzdXF7jpXODuqlMzQfJVzt1NSUd0QrLZxkFEVgiQpL6oWrVq+Prrr7FgwQJ1rk6dOiq19vTTT6tjCaCkeaQ9kGaX9913Hxw3xcYZJCJzk9VkhfF/zzRD62oBcJPAR+eigh93nQ66AtJiO8/eRP9Zu8w2DiIqumJt0vXMM8+oW168vb1hD06fPo0TJ06gZ8+eOHLkCBwxxcYibSLzk6X2sppM0my5TRJJ+BPi74WuDYpXI1TY68vziEhjjSIlxbZw4UJ1279/v3lHBaiVcRK4hIWFqR5Ly5Yty/Gc6dOno2rVqqreqXXr1ti9e3eRfoasvJswYQIcTVJqOpJS9eq+PwMkIrOToEeW2ovs4Y/xWB4vbgF1ftcXhhJen4gsECBFR0ejY8eOqv7o9ddfVzdZvfbQQw+p/djMRVoGhIeHqyAoN4sWLcLIkSMxbtw47Nu3Tz23a9euanxGUgclG+hmv125cgXLly9H7dq11a0wkpOTER8fn+Wm9fSa/ONZ2rNYk4REVADpQ/TNs83UTE5mciznS9qnKK/ri2A/T7SvE1Si6xNR/lwMBkOR1lj069cP586dw/z581Vxs5DmkAMGDFAr23788UeYm8wgLV26FH369DGdkxkjCdKkFsq4cq5SpUqqiHzUqFEFXnP06NFq9svV1RW3b99Gamqq6u80duzYXJ//wQcfYPz48TnOx8XFwc/PD1pyIioe3aZuRTlfD+wd09nWwyFyaJbudJ35+r4ebhi15BBu3E7BsA418VbXOmb7OUTOIj4+Hv7+/gV+fhc5QJKLrlu3zrSCzUjSW126dEFsbCwsHSClpKTAx8cHv/zyS5agSYI0+fkyO1QUc+fOVTVI+a1ikxkkuWX+A5aATIsBkrHAs3p5X2x4s72th0NEZiQNIl9ZuE8Vff86rC3qh2nr3x8iRwmQipxik5kad/ecdS1yTh6zBunmnZ6ejuDg4Czn5TgqKsoiP9PT01P9QWa+aVVcRoE2V7AROR5JvXVrEKKaTr77v0Oq6SQRmV+RAySpPxo+fLiq4zG6fPky3njjDVWHZI9kDzn2QCIie9ow18/LDYcvx2HO9khbD4fIIRU5QJKaH5mektVjNWrUUDfpiyTnpk2bBmsIDAxUtUPXrl3Lcl6OQ0JC4OxijAESZ5CIHFKQnxf+/fC9VW5T/jiFCzcTbT0kIodT5ABJ6m5k1djKlSsxYsQIdVu1apU6V7FiRViDh4eHWjm3fv160zlJ78lxREQEnB17IBE5vidaVMT9Ncuplh6jlxxGEctJiagARVoDLiu9pAnkgQMH0LlzZ3WzFFlZdubMGdNxZGSk+rkBAQGoXLmyWuIvRdktWrRAq1atMHXqVNUaYNCgQXB2cUyxETk8WbwyoW9jdJm6GTvO3sTPey6hX8vKth4WkXMGSFKILcGJFEhb2p49e9ChQwfTsQREQoIiWXUm7Qak75Isy5fCbOl5tHr16hyF284o5k7GDJIvU2xEjqxyOR+82bkOPl51HP9ZeVz1Rgr24/YjRDZJsb3//vtqU9pbt27Bktq3b6+mjLPfJDgyGjZsGC5cuKCW3//555+qNxKxSJvImQy6vyoaV/RHQlIaxi53rC2TiGzJrThF2pL6ki1AqlSpAl9f3yyPSy0S2VbcXWORNgMkIkcnG+F+9lhj9Jy2DWuOXsPvh6+ie6OSdfEmomIESJkbM5K2U2zsg0TkHOqF+mFo+xqYtuEMxv56FG1qBHIfRiJrBkhpaWmqMHDw4MFWW7FGxU+x+TPFRuQ0hnWsiVWHr+Ls9UR8vOoYJj4ebushETlPDZKbmxsmTZqkAiXSpqTUdCSn3eusyxQbkfPwdHNVqTYXF+DnPX9j+5kbth4SkfN10t68ebNlRkNmS6/JPk2lPIucQSUiO9aiagCeu6+Kui+b2t5J4X9miYqryJ+g3bt3x6hRo3D48GHVrDF7kXavXr2KPRgy4wo2H3eVDiUi5/JOt7pYd+waLt26iylrT+Hfj9zruE1EFg6QXn31VfV1ypQpOR6TD2Rr9EiivLH+iMi5yczxx30bYdDcv9Q+bT3DwxBeqYyth0Xk+Ck22dIjrxuDI9uL5Qo2IqfXoW4Q+jQJg94AvPu/Q0jJqEskIgsGSKRtseyBREQAxvZsgABfD5yISsDMzWdtPRwix0+xffjhh/k+Llt/kO2LtP29OYNE5MwkOBrXsz6G/3RA9Ufq3igENYNK23pYRI4bIC1dujTHBraykay0AKhRowYDJI1sVFuWM0hETq9XeBiW7b+MjSev493/HcbilyOg03HxBpFFAqT9+/fnOBcfH4+BAweib9++Rb0cWXAVGxE5N1k485++jdBlymbsvRCDBbsuYECbqrYeFpHz1CD5+flh/PjxGDNmjDkuR+ZIsbFIm4gAVCjjjXe711X3J64+gcuxd209JCLnKtKOi4tTN9JGkTZTbERk9GzrKmhRpSwSU9Lx/tLDMBgMth4SkeOl2L766qssx/KLdvXqVSxYsEA1kSRt1CCVYZE2EWWQuqNPH2uMHl9uxaaT17H8wBX0aVrB1sMicqwA6YsvvshyrNPpUL58eQwYMACjR48259ioBCk21iARUWY1g0rh9Ydq4vO1pzD+t6N4oFYgypXytPWwiBwnQJIVa6RNMpvHPkhElJeX29XAikNXVW+k8b8dw1f9m9p6SESOW4MkK9iWLVuG48ePm2dEVGxJqXpTx9wyLNImomzcXXWY+HhjyEr/Xw9ewYYT1yz689L1Buw8exPLD1xWX+WYyGFnkJ588kk8+OCDGDZsGO7evYsWLVrg/Pnzavbip59+wmOPPWaZkVKh02tuOhf4erjaejhEpEGNK5bBC22rYdbWSLy35DA+6QskJKchqLQXWlULgKuZ+iStPnJVzVJdjUsynQv191LNK7s1DDXLzyDS1AzSli1b8MADD5iaRqq0TmysKt7+z3/+Y4kxUpF7IHmo/idERLkZ2bkOAkt5ICo+GYPn7VHdtvvP2oW2n21QgU1JyTWGLtyXJTgSUXFJ6rw5fgaR5gIkWcofEBCg7q9evVrNGPn4+ODhhx/G6dOnLTFGKqTYuyzQJqKCbT4VjRu37/17Ye4ARtJoMnOUWzLNeE4eZ7qNHC7FVqlSJezcuVMFSRIgSVpNxMTEwMvLyxJjpKLOIHkzQCKi/AOY3BhDljcWHcTqI1FINwBp6XqkphuQpter701N1yNNHd87J/fl3L3HDLiTkoaYjH+L8voZMrO0O/IWImqUs9CrJLJBgDRixAg888wzKFWqFKpUqYL27dubUm+NGjUyw5DIHCk2IqLcSGCSPfWV3d3UdCw7cMWi44hOyH8MRHYXIL366qto3bo1Ll68iM6dO6s+SKJ69eqsQbIxptiIyFyBSZ8mYaqg293VBW6uOrX4w03u63TqnKtOp47ddTpV2G183rErcXhv6ZECry9F4UQOFSCJ5s2bq1tmUoNEtsUUGxGZKzDp17JysVJgjSr4Y9qGM6qeKbcqI1k+EuJ/b8UckVPsxUa2F5uxzL+sL1NsRJQ7CUxkuX1e61zlfGgJAhiZTZKl/MZrZSdBkzxurnYCRJbCAMmBGGeQ/DmDRETFCGCMxyUNYKTP0TfPNlMzRdlVKOOFTvWCi31tIk2n2EjbAVJZFmkTUSECmOyNHEPM2MhRrtG5fogqCpe6Jx93V7y5+CAuxybh+z8vYkCbqiX+GUSWxADJgbBIm4iKG8CYu5O2kGtlrmN6Oz4JY5YfxeS1J9EzPAwBLAcgR0ixTZw4UW0tYrR9+3YkJyebjhMSEtQKN7IdptiIqDgBTO8mFdRXS9cFPd26CuqF+iE+KQ2T1py06M8islqANHr0aBUEGXXv3h2XL182Hd+5cwczZ84s8YCoeNSWL8YUG/9XRkQaJAHY+F4N1P2f/rqIw3/H2XpIRCUPkOQDOL9jexQZGYkOHTqgfv36qsllYmIi7JU0dktJ16v7XOZPRFolabxe4WGQj5Bxvx5xiM8SckxOvYpt4MCB+PDDD3Hs2DFs3rwZnp6esFfG2SNp1ubj4Wrr4RAR5em9HvXUv1P7LsZi6f5/MhFEWuK0AdLRo0fh7u6OBx54QB3L3nJubvZbsx6T0QNJthlxcWF/ESLSLlktN6xjTXV/wu8ncDs5zdZDIipZgDR79mx89dVX6paWloa5c+eajuUxc5K93Xr27ImwsDD1gb9s2bIcz5k+fTqqVq2qNsmV7U92795d6OufPn1a7ScnP6NZs2b45JNPYM/i2EWbiOzIC22roWo5H1xPSMa09adtPRyiHAo9ZVK5cmXMmjXLdBwSEoIFCxbkeI65SD1QeHg4Bg8ejEcffTTH44sWLcLIkSMxY8YMFRxNnToVXbt2xcmTJxEUFKSe06RJExXIZbd27Vp1fuvWrThw4IB6frdu3dCyZUu1v1xuZMVe5lV78fHx0JLYu8aNahkgEZH2ebq5YmzP+hg8dw/mbI/Eky0roUb5UrYeFlHRA6Tz58/DmmSVnNzyMmXKFAwZMgSDBg1SxxIorVy5EnPmzMGoUaPUOQl+8lKhQgW0aNEClSpVUsc9evRQz88rQJowYQLGjx8Pe0ixERHZg451g9GxbhA2nIhWTSvnDWrJEgHSDLusQUpJScHevXvRqVMn0zmdTqeOd+7cWahryGxRdHQ0YmJioNfrVUqvXr16+bY5iIuLM90uXboELeFGtURkj8Y8Uh8erjpsOXUd645H23o4REUPkDZs2KCWw+eWWpKAoUGDBirIsIYbN24gPT0dwcFZ9/OR46ioqEJdQwqype7owQcfROPGjVGrVi088sgjeT5fVrj5+flluWlJHFNsRGSHqgX64oUHqqn7H604hqTUdFsPiahoAZLU+EhKK7fAwN/fHy+//DK++OIL2BNJ4R0+fBhHjhxRKTt7FpPIFBsR2adhHWoi2M8TF2/dweyt52w9HKKiBUgHDx5Uhcx56dKli0p7WUNgYCBcXV1x7dq1LOflWIrHnRGLtInIXvl6uqneSGL6xrO4EvvPtlZEmg+QJPiQvkH5payuX78Oa/Dw8EDz5s2xfv160zmpI5LjiIgIOKN/lvlzBomI7I90125ZtazaFeCTVcdtPRyiwgdIsupLUlF5OXToEEJDQ801Lty+fVutKjOuRJNtQeT+xYsX1bEs8Ze2A/PmzcPx48cxdOhQ1RrAuKrN2RhXsZXlDBIR2SFZvfZBrwaQ/XJXHLqKnWdv2npI5OQKHSDJMvgxY8YgKSkpx2N3797FuHHj8i1yLqo9e/agadOm6mYMiOT+2LFj1XG/fv3w+eefq2PpdyTB0+rVq3MUbjtbis2fARIR2akGYf54uvW9fnrjfzuKtIz9JYlswcVQyJ0CJcUmHael9mfYsGGoU6eOOn/ixAnV0VpWle3bt89pAhRZzSfF6bKCz9Yr2uQtrP3v35GabsD2UR1RoYy3TcdDRFSSBScdJm9SrUvG92qAAW2q2npI5KSf34VuFCmBz44dO1QqS3oCGeMqmRaVDtYSJDlLcKQ1d1LSVXAkmGIjIntW1tcDb3apgzHLjmDy2pN4pHEoypWy343EyX4VaXfWKlWqYNWqVaq54pkzZ1SQJP2DypYta7kRUqHTa9Jszdvd1dbDISIqkadbVcaPf17Esavx+HztKUx4tJGth0ROqEidtGW7ESmM/vHHH+Ht7Y1WrVoxONJQDySpP2KbfiKyd646F4zv3UDd/+mvizj8d5yth0ROqNAB0saNG1W3bGkIKTVIUo+0cOFCy46OitRFm+k1InIULasGoHeTMEg1x7hfj0CvL1S5LJH1AyRZwSYbuV6+fBk3b95UXbXfeecd842EzLAPG3sgEZHjGN29Hnw8XLHvYiyWHbhs6+GQkyl0gCQ9kGTvMul1JGm1SZMmqc1eJVgibfRA4hJ/InIkIf5eGNaxpro/4fcTSEi6959BIk0FSLIsTrb4MPLx8VF1SLJMjmyLKTYiclQvtK2mNrS9npCMaRvO2Ho45ESKtIptzZo1qndA9u09MnfY7tWrl3lHSAWKzZhB4ka1RORoPN1cMfaR+hg09y/M2RaJJ1tUQs2gUrYeFjmBIgVIAwYMyHFOiraNZAWVNIwk64rJqEHy9+YMEhE5ng51g9CxbhA2nIjGhyuOYd6gllyxS9pJsclsUUE3Bke2YSzSLssZJCJyUDKLJL3etpy6jnXHo209HHICReqDRNoUd9eYYuMMEhE5pqqBvnjxgWrq/kcrjiEplf8hJ8tigORAKbYyTLERkQN7rUNNhPh54eKtO5i15Zyth0MOjgGSI/VBYoqNiByYr6cbRveoq+5P33QGl27dwc6zN7H8wGX1Nd2MzSTlWpa6NjlgkTZpj+yHxxQbETmLXuFh+H7XRew+fwudv9iMpFS96bFQfy+M61kf3RqGluhnrD5yFeN/O4arcUlmvzbZD84g2bnElHSkpt/7nw0DJCJydLJ6rXP9YHU/c3AkouKSMHThPhXgFJd8r1wjc3BkrmuTEwRIsbGxmD17NkaPHo1bt26pc/v27VPbkJBteiB5uOng7e5q6+EQEVmUpLrmbI/M9TFjEkxmf4qTEpPv+eDXY6brmPPa5AQptkOHDqFTp06qYeT58+fVnmwBAQFYsmQJLl68iPnz51tmpFTAPmzu7AtCRA5vd+StHLM7mUnoIo8/8tVW+Hi6IS1dr2bZJahJ1euRlm64d06fcS4945z+3vPyY7y2jCGiRjkLvDqy6wBp5MiRGDhwICZOnIjSpUubzvfo0QNPP/20ucdHBWAPJCJyJtEJeQdHmR2PSrD5GMjJAqS//voLM2fOzHG+QoUKiIqKMte4qJBiMwq0uVEtETmDoNJehXre6w/VRP1Qf7i7usBV5wJ3Vx3cdC5wM329d049ptOp44N/x6o6I3ONgZwsQPL09FQb12Z36tQplC9f3lzjomKk2IiIHF2ragFqRZkUTeeWEJNCgxB/Lwx/qLYKfooi2M8r32sLeVzGQI6vyEXashnthx9+iNTUex/MUvcitUfvvvsuHnvsMUuMkQpRpM0UGxE5Awl6ZLm9yB7+GI/l8aIGRwVdGyW8NjlBgDR58mTcvn0bQUFBuHv3Ltq1a4eaNWuqeqSPP/7YMqOkQjSJ5AwSETkH6UX0zbPN1ExRZnIs50vSqyivawsJi6qXL1Xsa5ODp9hk9doff/yBbdu2qRVtEiw1a9ZMrWwj64u9ey9AYg0SETkTCWQ61w9RK8qkaFrqgiT1ZY7Zndyu/d32c1h7LBqf/X4C/x3Y0iyvgRy0k3bbtm3VjWyLKTYiclYSDFlquX32awf7eWL9ietYfyJabT3CZf6Or1gB0vr169UtOjoaen3WTqZz5swx19ioEFikTURkeZJae7pVZSzYdQETfj+OZa/eDx1rkRxakWuQxo8fjy5duqgA6caNG4iJiclyI+tiio2IyDpef6gWfD1ccejvOKw4zC1HHF2RZ5BmzJiBuXPn4rnnnrPMiKhImGIjIrKO8qU98XK7GpjyxylMWnMCXRsEw9ONWzw5qiLPIKWkpKBNmzaWGQ0VicFg4Co2IiIrevGBaggq7YlLt+5iwc4Lth4OaSlAevHFF/HDDz9YZjRUJIkp6UjL2DSxjDdnkIiILM3Hww0jO9dW96dtOIO4jP+kkpOm2GT/NSMpyv7222+xbt06NG7cGO7uWWcupkyZYv5RUq5iEu+l1zzddPD24DQvEZE1PN68Iv67LRKno2/j/zafweju9Ww9JLJVgLR///4sx02aNFFfjxw5Anv2xRdfYPbs2SpVJX2cvvzyS9UZ3F7EZRRoM71GRGQ9sp/bqO518cK8Pfhu+3k8H1EVFcp423pYZIsAaePGjXA0169fx9dff42jR4+qWbAHH3wQu3btQkREBOxviT/Ta0RE1tSxbhDuqx6AXeduYfKak5jS797EATlxDdLgwYORkJCQ43xiYqJ6zJ6kpaUhKSlJ7SsnN9k+xZ7EZKxg4wwSEZF1SbbBmFpbeuAyjlyOs/WQyNYB0rx589QebNnJufnz55trXNiyZQt69uyJsLAw9Rdx2bJlOZ4zffp0VK1aFV5eXmjdujV2795d6OuXL18eb731FipXrqx+hqTYatSoAXvsgcQAiYjI+sIrlUHP8DAYDMBnq0/YejhkqwApPj4ecXFxql5HZpDk2HiTBpGrVq0y6wyMzEiFh4erICg3ixYtUsXj48aNw759+9Rzu3btqrp7Z66VatiwYY7blStX1JhXrFiB8+fP4/Lly9ixY4cKyuxJnHEGiSk2IiKbeLtLHbi7umDr6RvYcuq6rYdDtmgUWaZMGTWTI7fate8tccxMzkuXbXPp3r27uuVFVssNGTIEgwYNMjWwXLlypdrqZNSoUercgQMH8vz+xYsXo2bNmggICFDHDz/8sKpBklqk3CQnJ6ubkQSGthZjrEHy5QwSEZEtVC7no4q0ZVXbhN9P4P6agWbZMJfsKECSQm2ZPerYsSP+97//mQIL4eHhgSpVqqhUlTVIs8q9e/di9OjRpnM6nU6lyXbu3Fmoa1SqVEnNGkkNkhRpb9q0CS+99FKez58wYYJZA0BzYJE2EZHtDetQEz/vuYTjV+OxdP9l1QaAnChAateunfoaGRmp6nZsuRxe9oBLT09HcHBwlvNyfOJE4fLA9913H3r06IGmTZuq4Oqhhx5Cr1698ny+BGOZ+0HJDJIEWVrYZoQ1SEREtlPW1wOvdaiJT38/gclrT+KRxqHwcmdvOqfbi01mihzFxx9/rG6F4enpqW5aLNIuywCJiMimBrapivk7zuNKXJLqjTS0vX0t+iEzrGLTgsDAQLi6uuLatWtZzstxSEgInIVxBsmfKTYiIpuSGaO3utZR9/9v4xncytjpgOyXXQZIUvPUvHlzrF+/PssWKHJsT40eS4ob1RIRaUefJhVQL9QPCclpmLbhtK2HQ9YMkKRI++LFi6qw2dJu376tVqEZV6JJ7ZPcl58vpB5o1qxZqi/T8ePHMXToUNUawLiqzdHJe/FPio0zSEREtqbTueC9HnXV/YW7LuDCzURbD4msGSDJ0vhLly7B0vbs2aMKqOVmDIjk/tixY9Vxv3798Pnnn6tj6XckwdPq1atzFG47qtvJaUjXG9R9ziAREWnDA7XK44FagUhNN2DSmpO2Hg5ZK0CS1V61atXCzZs3YWnt27dXAVn229y5c03PGTZsGC5cuKD6E/3555+qm7azpdc83XRcLUFEpCGyBYks9F5x6CoOXIq19XDIWjVIn376Kd5++20cOXKkuD+TzBggMb1GRKQt9cP88GjTe72QPll1XP3nnpxgmf/zzz+PO3fuqK09pFja29s7y+O3bt0y5/goD7F32QOJiEir3uxSG78duoLdkbew/ng0OtV3jvIPpw6Qpk6dapmRULG2GfH3ZoBERKQ1YWW8Mfj+apix+Sw+XX0C7euUh5urXS4cd1pFDpAGDBhgmZFQsTaqZYqNiEibXu1QA4v+uogz0bexeO/f6N+qsq2HRJYMkIRs87Fs2TK1vF40aNBAbdMhzRvJOtgDiYhI2/y83PGvjrXw4YpjmPLHKfRuEgYfj2J97JINFHm+78yZM6hXr56qRVqyZIm6PfvssypIOnv2rGVGSXmn2BggERFp1rP3VUHlAB9cT0jGrC2Rth4OWTJAev3111GjRg3VC2nfvn3qJs0bq1Wrph4j6xZpM8VGRKRdHm46vJ2xBcnMLWdVoEQOGiBt3rwZEydOREBAgOlcuXLl1PJ/eYysI86YYmORNhGRpj3SOBThFf1xJyUdX64/ZevhkKUCJNnRPiEhIdetQWTZP1lHTEaRdhnOIBERaZqLiwtG96in7v+4+xLOXr9t6yGRJQKkRx55BC+99JLqXG3sbr1r1y688sorqlCbrMO4DxuLtImItO++6uXQqV6Q2iLqs99P2Ho4ZIkA6auvvlI1SBEREfDy8lK3+++/X+3R9uWXXxb1clTSFBsDJCIiu/But7rQuQBrj13DX+fZVFnrCrXeMD4+Hn5+fup+mTJlsHz5crWazbjMX1a1SYBE1iGzdsYZJBZpExHZh1rBpdGvZWX8uPsiPl55TAVM0QnJCCrthVbVAuAq0ZOZyEyVdPGOTkiyyPWdQaECpLJly+Lq1asICgpCx44d1dJ+CYgYFNlGQnKa+ssv2EmbiMh+vNGpFv63928cuBSH/rP+NJ0P9ffCuJ710a1haIl/xuojVzH+t2O4Gpdkkes7i0Kl2EqVKoWbN2+q+5s2bUJq6r3ZC7Jtes3LXQcvdzbnJCKyF/suxiAlXZ/jfFRcEoYu3KeCm5KQ75frZA6OzHl9Z1KoGaROnTqhQ4cOKpUm+vbtm+eKtQ0bNph3hJTnCjam14iI7IfM/MvMTm4kJyAJMHm8c/2QPNNher0BqXo90tIN6ma8n5quR1JqOv697Ii6VnGvT0UMkBYuXIh58+apTtnS60i6Zvv4+BTmW8mC24wwvUZEZD+kJij7zE72IEYeb/3JOrjpdEjT65GqAiE9UvX3vmZUVxSL8foyjoga5Yp/ISdRqADJ29tbLeMXe/bswWeffaaKtck2uMSfiMj+SMF0Ydy4fS9LUFhuOhe4ubqoCCgpTW+2cTi7Iu+at3HjRsuMhAotlik2IiK7I6vJCuPD3g3QtFJZFfS4u7qo2SS57+EqX+/dd884J8GRNKIUO8/eRP9Zu8w2DmfHbYXtOMXGGSQiIvshS+1lNZkUTOeWKZMwJ8TfC8+0rlKsGqGCri98PFzRrDIzQBZpFElaqkHiDBIRkb2QoEeW2ovs4Y/xWB4vbgF1ftc3kv3ghn6/D4nJacX6Gc6EAZJdp9g4g0REZE+kD9E3zzZTM0WZybGcL2mforyuLzNLLz9YHZ5uOmw4EY1+3+5kLZI5U2xpaWn45JNPMHjwYFSsWLEo30pmxCJtIiL7JUGMLLW3VKfr/K7ftWEIXpy3B0cux6Pv9B2YO6il6vCtJeka6QLuYpB9K4qgdOnSOHz4MKpWrQpnJtuv+Pv7Iy4uzrQNi7U8+n/bse9iLGY82xzdGoZY9WcTEZF9u3AzEQO/+wuRNxLh5+WGb59voTbT1YLVVugCXtjP7yKn2GSrEemFRLavQWKKjYiIiqpKOV/8b2gbNK9SFvFJaXjuv39i+YHLth4WtNYFvMir2Lp3745Ro0apWaTmzZvD19c3y+O9evUy5/go3xQbi7SJiKjoAnw98P2LrTHy5wNYdTgKw386gL9j7uLV9jVMbQNs0WVcS13Aixwgvfrqq+rrlClTcjwmf6jp6enmGRnl2WbeWKTNGiQiIiou2cvz6/7N8GnZE/h2yzlMWnMSf8fcwUe9G6p+S1rsMm7NLuBF/hPQ6/V53hgcWV5Ccpqp1Ty3GiEiopLQ6VzwXo96GN+rAWRi5sfdl/Di/D24beU2ANfiC7eizpor77jM387EZdQfebu7quifiIiopAa0qYqZz7WAl7sOm05eR7+ZOwsdtJSE9GOat+M8Jvx+vFDPt2YX8GIFSFKk3bNnT9SsWVPdpO5o69at5h8d5RDD9BoREVlA5/rB+OmlCASW8sDRK9IGYDtOXUuwyM+SVN4nq47jvgnrMe7Xo7gWn5xnc0vhkrGaTZb8azZAWrhwITp16gQfHx+8/vrr6iab2T700EP44YcfLDNKMmGBNhERWUqTSmWwZOj9qF7eF1fikvDYNzuw48wNs1xbugrtvXALr32/D+0mbVJ1TwlJaahazkel+L7o10QFQpboMm6VPkj16tXDSy+9hDfeeCPLeSnanjVrFo4fL9w0mb2zVR8kWYopqw0iqpfDjy/dZ7WfS0REziP2TgqGzN+Dv87HqA1zJz7eGH2bFq9BdGq6HqsOX8Wc7edx8FKs6XybGuUw+P5q6Fg3SNVCaa0PUpFXsZ07d06l17KTNNt7770HLerbty82bdqkZrl++eWXLI+tWLECb775pioyf/fdd/Hiiy9Cy7hRLRERWVoZHw8seKE13lp8ECsOXcUbiw7i71t3MaxjzUK3AZAg64fdFzF/xwVEZdQzebjp0KdJGAbdXw31Qv2s3mW8KIocIFWqVAnr169XtUeZrVu3Tj2mRcOHD1fbo8ybNy/H1ikjR47Exo0bVTQpfZ0kmCpXThsdRfMPkJhiIyIiy/Fyd8VXTzVFhbLemLn5HCb/cUr1SvpP34bQubjkGcScib6N77ZH4n/7/kZSql6dCyzliefuq4Jn7qus7udHrmOtpfxmDZBktkXqjg4cOIA2bdqoc9u3b8fcuXPx5ZdfQovat2+vZpCy2717Nxo0aIAKFSqYmmCuXbsW/fv3h1bF3mWRNhERWYdO54LR3euhYhlvVUy9aM8lHL4ch5uJyaqw2kg2x32ieUX1mKyCM5JZohfaVkPP8FB4utnXyusiF2kPHToUP/30k+qkPWLECHU7cuQIFi1ahJdffrnIA9iyZYtK2YWFhalpu2XLluV4zvTp09Xeb15eXmjdurUKbMzhypUrpuBIyP3Ll23fbr1QM0jsgURERFbyXERVfPtcC3i46nDsanyW4Mi4Hci0DWdUcCQZOFkR9+OQ+7Dq9bZ4vHlFuwuOijyDJCmpTz75RKWrtm3bZpYBJCYmIjw8XF3z0UcfzfG4BF6SBpsxY4YKjqZOnYquXbvi5MmTCAoKUs9p0qSJGlt2MhskgZc5JCcnq1vmIi9bMHbRLssUGxERWVGHukEo7e2Gm7fvfQ7lxsfDFb8Na4saQaVg74oUILm5uWHixIl4/vnnzTYASWvJLS+yOm7IkCEYNGiQOpZAaeXKlZgzZ47aE05Iuq84JHjKPGMk91u1apXrcydMmIDx48dDK8v8/ZliIyIiK9odeSvf4EjcSUlHdEKyQwRIRU6xyUowaRRpDSkpKdi7d6/qu2Sk0+nU8c6dO0t8fQmGJD0ogdHt27fx+++/q9mp3IwePVotCTTeLl26BFtgio2IiGwhOkF724FoqkhbZntk5kZqkGTVl6+vb47l/uZy48YNtb9bcHBwlvNyfOLEiUJfRwKqgwcPqnRexYoVsXjxYkRERKgZscmTJ6NDhw5qmf8777yT5wo2T09PdbM1U4rNlyk2IiKynqBCbvNhze1ANBUgvfrqq6bUV3ZSZK3FDWulBUFeJKAzZ1BnSXq9AXHGTtqcQSIiIitqVS1ANW2UguzcOky7ZKxms+Z2IJpKsclMS143cwdHgYGBcHV1xbVr17Kcl+OQkBA4G2nJrs/4W8kaJCIisiZXnYvqaA0NbQeimQApNTVVpaWkbscaPDw8VBpPGlMaSSAmx5IiczbGHkiySsAel0wSEZF969YwFN8820zNFGUmx3LeXNuB2F2Kzd3dHZUrVzbrTJEUR585c8Z0HBkZqValBQQEqJ8lS/wHDBiAFi1aqKJqWeYvtUTGVW3OhAXaRERka900tB2IpmqQ3n//fbXn2oIFC1QQU1J79uxRRdJGEhAJCYqkO3e/fv1w/fp1jB07FlFRUarn0erVq3MUbjuDmIwCbW4zQkREtuSqke1ALMnFYDDkVmuVp6ZNm6oZH0m3ValSJccqtn379sEZFHY3YHNafuAyhv90QO2A/MOQ+6zyM4mIiJzx87vIM0h9+vQp6dioxBvVMsVGRERkSUUOkMaNG2eZkVCBmGIjIiLS6DJ/ERsbi9mzZ6vu0rdu3TKl1rS+0au9Y5E2ERGRRmeQDh06pDpTS/7u/Pnzap80KdZesmQJLl68iPnz51tmpPRPk0im2IiIiLQ1gySrzAYOHIjTp0/Dy+ufPgg9evTAli1bzD0+yoQpNiIiIo0GSH/99RdefvnlHOcrVKigluGT5TDFRkREpNEASTZslSVy2Z06dQrly5c317go3xQbZ5CIiIg0FSDJxq4ffvih6oNk3KBWao/effddPPbYY5YYI2VLsZVlDRIREZG2AqTJkyer7UGCgoJw9+5dtGvXDjVr1kTp0qXx8ccfW2aUBL3eYJpB4ka1REREGlvFJqvX/vjjD2zfvh0HDx5UwVKzZs3UyjaynISkNBh7npfxZoqNiIhIUwGS0f33369uZN30mq+HKzzcitW+ioiIiAqJn7R2IpYF2kRERFbDAMlOxGbMIPlziT8REZHFMUCysx5IZX0ZIBEREVkaAyQ7m0FigTYREZGGirTT0tKQnp6uGkUaXbt2DTNmzEBiYqLqj9S2bVtLjdPpGWuQuMSfiIhIQwGSbErr4eGBmTNnquOEhAS0bNkSSUlJCA0NxRdffIHly5erPdnIgik2BkhERETaSbFJ36PMnbLnz5+vZpRk01rphySb2E6aNMlS43R6TLERERFpMEC6fPkyatWqZTpev369CpikcaQYMGAAjh49aplRElNsREREWgyQvLy81NYiRrt27ULr1q2zPC5dtckyYkwpNs4gERERaSZAatKkCRYsWKDub926VRVod+zY0fT42bNnERYWZplREuKMKTbOIBEREWmnSHvs2LHo3r07fv75Z1y9ehUDBw5UxdlGS5cu5dYjVphBKsNGkURERNoJkNq1a4e9e/di7dq1CAkJwRNPPJFjhqlVq1aWGKPTS9cbEJ/ErUaIiIg0uVltvXr11C03L730krnGRNkkJKXCYLh3n1uNEBERaShA2rJlS6Ge9+CDD5ZkPJRPes3XwxUebmx+TkREpJkAqX379nBxcVH3DcbpjGzkcemNRBbqgcT0GhERkbYCpLJly6J06dKqOPu5555DYGCgZUdGOXogcQUbERGRdRQ6XyMr1z777DPs3LkTjRo1wgsvvIAdO3bAz89PNYs03siSM0gMkIiIiDQVIMk+bP369cOaNWtw4sQJNG7cGMOGDUOlSpXw/vvvq81sybL7sDHFRkREZB3FqvitXLmy6ou0bt061K5dG59++ini4+PNPzrKGiBxBRsREZE2A6Tk5GT88MMP6NSpExo2bKhqkVauXImAgADLjJCYYiMiItJqgLR7924MHTpUNYmcNGkSevXqhUuXLqnO2t26dYOW9e3bVxWZP/7441nOy/hldV79+vVVynDx4sXQcpE292EjIiLS2Cq2++67T6XWXn/9dTRv3lyd27ZtW47nSeCkNcOHD8fgwYMxb968LOfd3NwwdepU1QU8KipKva4ePXrA19cXWkyxsUkkERGRBjtpX7x4ER999FGej2u1D5LMEm3atCnHedlLzrifnMyMSbrw1q1bGgyQ7qXYOINERESksRSbXq8v8Fac4Eg6dPfs2RNhYWEqwFq2bFmO50yfPh1Vq1aFl5cXWrdurdJ95ib7zMn4ZVWe1rAPEhERkYZnkApy9+5deHt7F+l7EhMTER4erlJgjz76aI7HFy1ahJEjR2LGjBkqOJKUWNeuXXHy5EkEBQWp50iKLLc2A7KxrgReBZFZo+effx6zZs3KtzhdbkbWXLX3zzJ/BkhERER2EyBJ4PD111+r4m2p5SmK7t27q1tepkyZgiFDhmDQoEHqWAIlWTU3Z84cjBo1Sp07cOBAicbep08fda02bdrk+bwJEyZg/PjxsLZ0vQHxSeyDREREpMkUmwQSo0ePRosWLVQgYUyFfffdd6hWrZqa2XnjjTfMOriUlBSV+pKWAqYB63TqWDp6l5TsKSdbp3Ts2FFtn5Ifee1xcXGmm6yAs4b4u6kwbn3HIm0iIiKNzSBJY8iZM2eq4ES2GHniiSfUrM6uXbvULI8cu7q6mnVwN27cUHVBwcHBWc7LsXTzLiwZ88GDB1U6r2LFimo5f0REBLZv365SeLLE3xjwLViwQG2lkp2np6e62ar+qJSnG9xdi9XXk4iIiCwVIElQMX/+fLWM/8iRIyqokLofCTykuFrLpON3btq2bauKy7Ushk0iiYiIrK7QUxJ///23qf+RdNCW2RRJqVkyOJJl9zIrde3atSzn5ViW5TuDOBZoExERaTdAklSXbFibucliqVKlYEny8yQoW79+vemczPjIsaTInEHs3YwZJG8WaBMREWkuxWYsaDbW4SQlJeGVV17J0VRxyZIlRRrA7du3cebMGdNxZGSkWpUme7tJ525Z4j9gwABVHN6qVStVDC61RMZVbY4uJpEzSERERJoNkCRIyezZZ581ywD27NmDDh06mI4lIDL+vLlz56Jfv364fv26KhKXFgLS82j16tU5CrcdFZtEEhERaThAkuX8ltoGRGan8jNs2DB1c0ZxxiJtptiIiIishuvGNS6GRdpERERWxwDJblJsnEEiIiKyFgZIdpNi4wwSERGRtTBAspMUW1lfBkhERETWwgBJ42IzZpD8WaRNRERkNQyQNCxdb0B8Upq6zyJtIiIi62GApGFxGQXagjVIRERE1sMAyQ7Sa6U93eDmyreKiIjIWvipawdL/P2ZXiMiIrIqBkh2MINUlj2QiIiIrIoBkobFsos2ERGRTTBAsoMeSP4s0CYiIrIqBkh20EWbKTYiIiLrYoBkF/uwcQaJiIjImhggaRhTbERERLbBAEnDuIqNiIjINhgg2UEnbabYiIiIrIsBkobFZMwgMUAiIiKyLgZIdtEHiSk2IiIia2KApFFp6XokJKWp+9yoloiIyLoYIGm8/khwFRsREZF1MUDSeA+k0l5ucHPl20RERGRN/OTVKO7DRkREZDsMkDSKPZCIiIhshwGSxmeQWH9ERERkfQyQNL8PG2eQiIiIrI0BkuZTbJxBIiIisjYGSFov0maKjYiIyOoYIGk8xebPFBsREZHVMUDSKKbYiIiIbIcBkkaxDxIREZHtOEWA1LdvX5QtWxaPP/54ro/fuXMHVapUwVtvvQWtiL17bwbJ35spNiIiImtzigBp+PDhmD9/fp6Pf/zxx7jvvvugJbGJ92aQmGIjIiKyPqcIkNq3b4/SpUvn+tjp06dx4sQJdO/eHVqRmq5HQnKaus8+SERERE4YIG3ZsgU9e/ZEWFgYXFxcsGzZshzPmT59OqpWrQovLy+0bt0au3fvNtvPl7TahAkToCXxGSvYhJ+Xm03HQkRE5IxsHiAlJiYiPDxcBUG5WbRoEUaOHIlx48Zh37596rldu3ZFdHS06TlNmjRBw4YNc9yuXLmS789evnw5ateurW4FSU5ORnx8fJabpcRkFGhLcOTmavO3iIiIyOnYfHpCUlv5pbemTJmCIUOGYNCgQep4xowZWLlyJebMmYNRo0apcwcOHCjWz961axd++uknLF68GLdv30Zqair8/PwwduzYHM+VWabx48fDGuIyCrSZXiMiIrINTU9PpKSkYO/evejUqZPpnE6nU8c7d+4s8fUl6Ll06RLOnz+Pzz//XAViuQVHYvTo0YiLizPd5PsshUv8iYiInHwGKT83btxAeno6goODs5yXYymsLiwJqA4ePKjSeRUrVlQzRhEREUUai6enp7pZgzHFxhkkIiIi29B0gGQu69atK/A5AwcOhNa6aHMfNiIiItvQdIotMDAQrq6uuHbtWpbzchwSEgJHFZexio0pNiIiItvQdIDk4eGB5s2bY/369aZzer1eHRc1RWZPYowzSEyxEREROWeKTVaPnTlzxnQcGRmpVqUFBASgcuXKaon/gAED0KJFC7Rq1QpTp05VtUTGVW2OyFSkzRQbERGRcwZIe/bsQYcOHUzHEhAJCYrmzp2Lfv364fr162p1WVRUlOp5tHr16hyF246EKTYiIiInD5BkGxCDwZDvc4YNG6ZuzsKYYivLFBsREZFNaLoGyVkZU2z+nEEiIiKyCQZIGhTHGiQiIiKbYoCkManpeiQkp6n7TLERERHZBgMkjRZoCz/OIBEREdkEAySNMXbR9vNyg6vOxdbDISIickoMkDQkXW/AttM31H1vD1d1TERERNbHAEkjVh+5irafbcAHvx1Tx9fik9WxnCciIiLrYoCkARIEDV24D1fjkrKcj4pLUucZJBEREVkXAyQbkzTa+N+OIbdkmvGcPM50GxERkfUwQLKx3ZG3cswcZSZhkTwuzyMiIiLrYIBkY9EJSWZ9HhEREZUcAyQbCyrtZdbnERERUckxQLKxVtUCEOrvhbw6Hsl5eVyeR0RERNbBAMnGpBnkuJ711f3sQZLxWB5n00giIiLrYYCkAd0ahuKbZ5shxD9rGk2O5bw8TkRERNbjZsWfRfmQIKhz/RC1Wk0KsqXmSNJqnDkiIiKyPgZIGiLBUESNcrYeBhERkdNjio2IiIgoGwZIRERERNkwQCIiIiLKhgESERERUTYMkIiIiIiyYYBERERElA0DJCIiIqJsGCARERERZcMAiYiIiCgbdtIuJoPBoL7Gx8fbeihERERUSMbPbePneF4YIBVTQkKC+lqpUiVbD4WIiIiK8Tnu7++f5+MuhoJCKMqVXq/HlStXULp0abi4uDh0pC1B4KVLl+Dn5wdH5kyv1dleL1+r43Km18vXah4S9khwFBYWBp0u70ojziAVk/yhVqxYEc5C/oI6+i+kM75WZ3u9fK2Oy5leL19ryeU3c2TEIm0iIiKibBggEREREWXDAIny5enpiXHjxqmvjs6ZXquzvV6+VsflTK+Xr9W6WKRNRERElA1nkIiIiIiyYYBERERElA0DJCIiIqJsGCARERERZcMAyYlNmDABLVu2VN3Ag4KC0KdPH5w8eTLf75k7d67qHJ755uXlBXvwwQcf5Bh73bp18/2exYsXq+fIa2zUqBFWrVoFe1C1atUcr1Vur732mt2/r1u2bEHPnj1VF1wZ57Jly7I8LutOxo4di9DQUHh7e6NTp044ffp0gdedPn26+nOT1926dWvs3r0bWn+9qampePfdd9XfTV9fX/Wc559/XnX5N/fvghbe24EDB+YYd7du3ezyvS3oteb2+yu3SZMm2d37OqEQnzVJSUnq36dy5cqhVKlSeOyxx3Dt2rV8r1vc3/XCYoDkxDZv3qz+Qu7atQt//PGH+se2S5cuSExMzPf7pKvp1atXTbcLFy7AXjRo0CDL2Ldt25bnc3fs2IH+/fvjhRdewP79+9UvtdyOHDkCrfvrr7+yvE55f8UTTzxh9++r/P0MDw9XH3q5mThxIr766ivMmDEDf/75pwocunbtqv4BzsuiRYswcuRItax437596vryPdHR0dDy671z544a75gxY9TXJUuWqA+eXr16mfV3QSvvrZCAKPO4f/zxx3yvqdX3tqDXmvk1ym3OnDkq4JHAwd7e182F+Kx544038Ntvv6n/lMrzJch/9NFH871ucX7Xi0SW+ROJ6Ohoaflg2Lx5c57P+e677wz+/v4GezRu3DhDeHh4oZ//5JNPGh5++OEs51q3bm14+eWXDfZm+PDhhho1ahj0er1Dva/y93Xp0qWmY3l9ISEhhkmTJpnOxcbGGjw9PQ0//vhjntdp1aqV4bXXXjMdp6enG8LCwgwTJkwwaPn15mb37t3qeRcuXDDb74JWXuuAAQMMvXv3LtJ17OG9Lcz7Kq+7Y8eO+T7HHt7X3D5r5HfU3d3dsHjxYoPR8ePH1XN27txpyE1xf9eLgjNIZBIXF6e+BgQE5Pu827dvo0qVKmojwd69e+Po0aOwFzL9KlPa1atXxzPPPIOLFy/m+dydO3eqKdvM5H8nct6epKSkYOHChRg8eHC+Gyvb8/tqFBkZiaioqCzvm+y5JGmVvN43+fPZu3dvlu+RvRbl2N7ea+PvsbzPZcqUMdvvgpZs2rRJpWnq1KmDoUOH4ubNm3k+11HeW0k1rVy5Us1mF8Qe3te4bJ818h7JrFLm90lSg5UrV87zfSrO73pRMUAiRa/XY8SIEbj//vvRsGHDPJ8n/yjJVO/y5cvVh658X5s2bfD3339D6+QXR2ptVq9ejW+++Ub9gj3wwANqV+fcyC9fcHBwlnNyLOftidQ2xMbGqvoNR3xfMzO+N0V5327cuIH09HSHeK8ltSA1SZIazm+Dz6L+LmiFpNfmz5+P9evX47PPPlOpmO7du6v3z5Hf23nz5qn6nYJSTvbwvupz+ayR98LDwyNHUJ/f+1Sc3/WicjPLVcjuSX5YamsKyldHRESom5F8iNarVw8zZ87ERx99BC2Tf0iNGjdurP4xkRmTn3/+uVD/M7NX//3vf9Vrl/9VOuL7SvfI/8CffPJJVbgqH46O+Lvw1FNPme5LYbqMvUaNGmpW6aGHHoKjkv+8yGxQQQsn7OF9fa2QnzVawBkkwrBhw7BixQps3LgRFStWLNL3uru7o2nTpjhz5gzsjfxvpXbt2nmOPSQkJMcqCjmW8/ZCCq3XrVuHF1980SneV+N7U5T3LTAwEK6urnb9XhuDI3m/pQg2v9mj4vwuaJWkkeT9y2vcjvDebt26VRXeF/V3WIvv67A8PmvkvZB0qMx0F/Z9Ks7velExQHJi8j9N+Qu7dOlSbNiwAdWqVSvyNWT6+vDhw2qZpb2RmpuzZ8/mOXaZUZGp/MzkwyfzTIvWfffdd6pe4+GHH3aK91X+Dss/jpnft/j4eLXCJa/3Tab2mzdvnuV7JA0gx/bwXhuDI6k9kWBYlkmb+3dBqyQFLDVIeY3b3t9b4wywvAZZ8Wav76uhgM8aeX3yn7LM75MEhVI/ldf7VJzf9eIMnJzU0KFD1cqlTZs2Ga5evWq63blzx/Sc5557zjBq1CjT8fjx4w1r1qwxnD171rB3717DU089ZfDy8jIcPXrUoHVvvvmmeq2RkZGG7du3Gzp16mQIDAxUKypye63yHDc3N8Pnn3+uVlTIChFZaXH48GGDPZDVOpUrVza8++67OR6z5/c1ISHBsH//fnWTf8KmTJmi7htXbX366aeGMmXKGJYvX244dOiQWv1TrVo1w927d03XkNVA06ZNMx3/9NNPavXL3LlzDceOHTO89NJL6hpRUVEGLb/elJQUQ69evQwVK1Y0HDhwIMvvcXJycp6vt6DfBS2+VnnsrbfeUquaZNzr1q0zNGvWzFCrVi1DUlKS3b23Bf09FnFxcQYfHx/DN998k+s17OV9HVqIz5pXXnlF/Xu1YcMGw549ewwRERHqllmdOnUMS5YsMR0X5ne9JBggOTH5pcztJku+jdq1a6eW1hqNGDFC/SX28PAwBAcHG3r06GHYt2+fwR7069fPEBoaqsZeoUIFdXzmzJk8X6v4+eefDbVr11bf06BBA8PKlSsN9kICHnk/T548meMxe35fN27cmOvfW+PrkeW/Y8aMUa9DPhgfeuihHH8GVapUUQFvZvJBY/wzkKXhu3btMmj99coHYV6/x/J9eb3egn4XtPha5cO0S5cuhvLly6v/qMhrGjJkSI5Ax17e24L+HouZM2cavL291fL13NjL+4pCfNZIUPPqq68aypYtq4LCvn37qiAq+3Uyf09hftdLwiXjhxIRERFRBtYgEREREWXDAImIiIgoGwZIRERERNkwQCIiIiLKhgESERERUTYMkIiIiIiyYYBERERElA0DJCIiIqJsGCAREVnIBx98gCZNmth6GERUDAyQiEhzBg4cCBcXF3WTDUdr1qyJDz/8EGlpaabnyCYA3377LVq3bo1SpUqpnctbtGiBqVOn4s6dO6YAxXidzLe6deva8NURkT1ws/UAiIhy061bN3z33XdITk7GqlWr8Nprr6kdv0ePHq0ef+6557BkyRL8+9//xtdff43y5cvj4MGDKkCqWrUq+vTpo57XoEEDtct9Zm5u5v2nLzU1VY3NEix5bSLKG2eQiEiTPD09ERISgipVqmDo0KHo1KkTfv31V/XYzz//jO+//x4//vgj3nvvPbRs2VIFRb1798aGDRvQoUOHLMGQXCfzLTAwMN+f/c0336BGjRpq9qpOnTpYsGBBlsdlFkqe06tXL/j6+uLjjz9W5z/99FMEBwejdOnSeOGFF5CUlJTj2rNnz0a9evXg5eWlZrL+7//+z/TY+fPn1bUXLVqEdu3aqefI6yQi62OARER2wdvbGykpKeq+BA0SuEhAlJ0EGP7+/sX+OUuXLsXw4cPx5ptv4siRI3j55ZcxaNAgbNy4McvzJH3Xt29fHD58GIMHD1ZBm5z75JNPsGfPHoSGhmYJfozjHjt2rAqojh8/rp47ZswYzJs3L8vzRo0apcYgz+natWuxXwsRlYCBiEhjBgwYYOjdu7e6r9frDX/88YfB09PT8NZbb6lz9erVM/Tq1avA64wbN86g0+kMvr6+WW4vv/xynt/Tpk0bw5AhQ7Kce+KJJww9evQwHcs/nSNGjMjynIiICMOrr76a5Vzr1q0N4eHhpuMaNWoYfvjhhyzP+eijj9T3isjISHXtqVOnFvjaiMiyWINERJq0YsUKVXwtNTh6vR5PP/20mqER92KUwpGZJmNqzsjPzy/P58uszUsvvZTl3P33348vv/wyyzkpCM/+fa+88kqWcxEREaaZp8TERJw9e1al3oYMGWJ6jhSeZ5/xyn5tIrI+BkhEpElSRyR1PlIHFBYWlqWwunbt2jhx4kShrmNcBWduUntUFLdv31ZfZ82apVbeZebq6lqiaxOR+bEGiYg0SYIECWwqV66cY9WZzCadOnUKy5cvz/F9MrsUFxdX7J8rBdTbt2/Pck6O69evX+D3/fnnn1nO7dq1y3Rfircl0Dt37px6XZlv1apVK/Z4icgyOINERHbnySefVMXU/fv3V8v8u3Tpopb5S8H0F198gX/961+mZf6SwoqKispRyC0BS27efvttdf2mTZuqlXO//fabaieQvVVAdlJULf2bJD0mKTkpyD569CiqV69ues748ePx+uuvq5SatDGQFgZS0B0TE4ORI0ea5c+GiMyDARIR2R0JcH744QfVKHLOnDlqVZjMMtWqVQvPP/98lpVfEqTIirLsLQRyW4IvJLCSeqPPP/9cBT0yuyP9mNq3b5/vmPr166dqjN555x117ccee0y1J1izZo3pOS+++CJ8fHwwadIkFYjJLFmjRo0wYsSIEv+ZEJF5uUiltpmvSURERGTXWINERERElA0DJCIiIqJsGCARERERZcMAiYiIiCgbBkhERERE2TBAIiIiIsqGARIRERFRNgyQiIiIiLJhgERERESUDQMkIiIiomwYIBEREREhq/8HNA42Gxf8qe8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the RMS surrogate error at the PCE vary points\n", "_o = []\n", "_RMS = []\n", "for r in R.values():\n", " results_df = r['results_df']\n", " results = r['results']\n", " Ishigami_surrogate = np.squeeze(np.array(results.surrogate()(results_df[results.inputs])['Ishigami']))\n", " Ishigami_samples = np.squeeze(np.array(results_df['Ishigami']))\n", " _RMS.append((np.sqrt((((Ishigami_surrogate - Ishigami_samples))**2).mean())))\n", " _o.append(r['order'])\n", "\n", "plt.figure()\n", "plt.semilogy(_o, _RMS, 'o-')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMS error for the PCE surrogate')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_surrogate.png')\n", "plt.savefig('Convergence_surrogate.pdf')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:57.570463Z", "start_time": "2021-06-07T15:00:56.693196Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:55.166252Z", "iopub.status.busy": "2025-07-18T11:53:55.166173Z", "iopub.status.idle": "2025-07-18T11:53:55.845411Z", "shell.execute_reply": "2025-07-18T11:53:55.844962Z", "shell.execute_reply.started": "2025-07-18T11:53:55.166244Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1000/1000 [00:00<00:00, 6585.05it/s]\n" ] } ], "source": [ "# prepare the test data\n", "test_campaign = uq.Campaign(name='Ishigami.') \n", "test_campaign.add_app(name=\"Ishigami\", params=define_params(), \n", " actions=uq.actions.Actions(uq.actions.ExecutePython(run_ishigami_model)))\n", "test_campaign.set_sampler(uq.sampling.quasirandom.LHCSampler(vary=define_vary(), count=100))\n", "test_campaign.execute(nsamples=1000, sequential=True).collate(progress_bar=True)\n", "test_df = test_campaign.get_collation_result()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:57.870125Z", "start_time": "2021-06-07T15:00:57.571271Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:55.846123Z", "iopub.status.busy": "2025-07-18T11:53:55.846026Z", "iopub.status.idle": "2025-07-18T11:53:56.139621Z", "shell.execute_reply": "2025-07-18T11:53:56.139173Z", "shell.execute_reply.started": "2025-07-18T11:53:55.846114Z" } }, "outputs": [], "source": [ "# calculate the PCE surrogates\n", "test_points = test_df[test_campaign.get_active_sampler().vary.get_keys()]\n", "test_results = np.squeeze(test_df['Ishigami'].values)\n", "test_predictions = {}\n", "for i in list(R.keys()):\n", " test_predictions[i] = np.squeeze(np.array(R[i]['results'].surrogate()(test_points)['Ishigami']))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2021-06-07T15:00:58.048248Z", "start_time": "2021-06-07T15:00:57.870961Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T11:53:56.140284Z", "iopub.status.busy": "2025-07-18T11:53:56.140199Z", "iopub.status.idle": "2025-07-18T11:53:56.258749Z", "shell.execute_reply": "2025-07-18T11:53:56.258502Z", "shell.execute_reply.started": "2025-07-18T11:53:56.140275Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/6f/rn14629n60j16dc99dtk7bs4000ctx/T/ipykernel_71217/3799094119.py:12: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", " plt.legend(loc=0)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVCpJREFUeJzt3Qd0VNX6NvAnvRdCEpJAQkLovQYCIsVQlSafvYAoKlbEAtz7B0TFAorIFUFFBPGKoFIUvPTepAYInRAghEAIIZX0zLfejYmpZBJmMu35rXUWM2dOJnsYknnYe797W2k0Gg2IiIiILJC1oRtAREREZCgMQkRERGSxGISIiIjIYjEIERERkcViECIiIiKLxSBEREREFotBiIiIiCyWraEbYOwKCgpw5coVuLm5wcrKytDNISIiIi3IMolpaWkICAiAtXXF/T4MQpWQEBQYGGjoZhAREVE1xMbGol69ehU+ziBUCekJKvyLdHd3N3RziIiISAupqamqI6Pwc7wiDEKVKBwOkxDEIERERGRaKpvWwsnSREREZLEYhIiIiMhiMQgRERGRxeIcISIiIjLK5WtycnIqfNzOzg42NjZ3/X0YhIiIiMioSACKiYlRYehOPD094efnd1fr/DEIERERkVEthBgfH696e6T8vbzFEOWaW7duISEhQd339/ev9vdjECIiIiKjkZeXp0KOrAjt7Oxc4XVOTk7qTwlDvr6+1R4m42RpIiIiMhr5+fnqT3t7+0qvLQxKubm51f5+DEJERERkdLSZ96OLPUA5NGYA+QUa7ItJQkJaFnzdHBEW4gUba27oSkREVNMYhGrY2qh4TP3jBOJTsorO+Xs4Ysqg5ujfsvqTvYpj0CIiItIOg1ANh6AxPx6CptT5qylZ6vzcJ9vfdRiqiaBFRERkLjhHqIZIL40ElNIhSBSek8flursNWsVDUPGgJY8TERGZAo1Go5NrKsMeoRoiQ1WlA0px8lbK443+/Scc7WzgYGsN+8LDRv60UbcdbKzhYFd47p/HbW2ssCrySoVBy+rvoNWnuR+HyYiIyGjZ/F0GL4sqFpbIV0TK7AtXma4uBqEaIvN1tCEdQrdy8tWhS4VB65vt0Xg8rD48nKv/j4aIiEhfbG1tVVn89evXVcCpbEFFWV36brbaYBCqITJpWRtzHm+HlnU9kJNXgOy8AuTkF6jbhcftc/ml7hfg6OUUrI26Wunzf7L2tDpCfVzQLqgW2gfVQrsgTzSu46Z1TxEnYxMRkb5ISbysFC1bbFy8eFGrLTbuBoNQDZGwIJOWZb5OecNXEiP8PBzVhObqhIo90Te0CkJ+7o64mpqF6OsZ6vj14GV13sXeBm0CPYuCkYQkL5eyi1lxMjYREembLKbYqFGjGtl01Uqji5lGZiw1NRUeHh5ISUmBu7v7XT1X4WRmUfwvvTD23E3VmPTS3PPJ5kqD1s7xvZGSmYvI2Js4fCkZhy7dxJHYFKRn55X5muDaziWC0cUbGXjlp8Nlnl8X7SciIjLE5zeDUA0GIX33qFQ3aEmIOpuQdjsYXbyJw7HJOJeQXqXvXTxo3e0wGYfeiIjobjEIGWkQ0vcHva6CVsqtXERe/icY7Y+5gczcgkq/7qWeoejbwg8NfFzg7lj1CdkceiMiIl1gEDLiIKRv+ghaKw/HYezSyCp9jbergwpEDbxd/v7TVf0Z5OUMWxtrrRec5NAbERHp6/Obk6XNkISe8NDaOn3OOu7aVb0183fDjfQcJKRlIzH99iGhrDhbaysE1XZWwUiq1yQc1a/tgsmrjnMdJCIiqlEMQqTTqrfVr3ZXQSUtKxcxiRk4f12OdET/fTsmMR1ZuQV/n8/AxpNVWwdJQpWuQx4REVkuBiHSioQbmacjQ1dWFUzGlscLe2vcHO3Qup6nOoorKNAgPjVLhaPCkHQ+MQNRcSm4eSu30nZI6T8REZGucI6QGc4R0id9TWaWdZAe+3Zvpde5Odoiolkd9Gzig3sb+aBWOWsdERERpXKytG4wCNXMZOzK1kESpXui5FvK+ka9mvigZxNftAhwVyuS1nTbiYjI+DAI6QiDUM2pbB2k/zzeTlWibTmdgK2nruP0tbQSX+/j5oCejX3Qq6kv7mnkXaZ8n6X5RESWI5VBSDcYhGpWVcJKXHImtkooOn0du84lltioVirTOtSvpUJRrya+ai7SS/9laT4RkaVIZRDSDQahmled4avsvHzsj7mpeovkkInYxcmXF2j0vyo2EREZBwYhHWEQMk2XbtzC1jMJ2HIqATvPJiK3ohRUzJLRXViaT0RkYZ/fZZf3JTIDsmDj0+HB+P6ZMHw0vJVWXyM9UEREZFksIgitXr0aTZo0QaNGjTB//nxDN4dqWF1PZ62H5IiIyLKYfRDKy8vDuHHjsHnzZhw+fBgzZszAjRs3DN0sMsCq2JXN/nnrlyMY/+tRXEnOrKGWERGRoZl9ENq3bx9atGiBunXrwtXVFQMGDMD69esN3SwywKrYonQYKrzfqq67mky99EAsen66Fe+vPoEb6dk13lYiIqpZRh+Etm/fjkGDBiEgIEAtlrdy5coy18yZMwfBwcFwdHRE586dVfgpdOXKFRWCCsntuLi4Gms/GQcpjZcSeakOK07uz3uyPf54tTt+fTFc9R7l5BXgu50xuHf6FszccEbtm0ZERObJ6Pcay8jIQJs2bTBq1Cg8+OCDZR5funSpGvqaN2+eCkGzZs1Cv379cPr0afj6+lb5+2VnZ6uj+KxzMp8wJLvXV1Sa3zHYC0uf74LtZxMxY90pRMWlYvams1i85wJe6tkQT4XXh6OdjaFfBhERWVKPkAxlffDBBxg2bFi5j8+cOROjR4/GM888g+bNm6tA5OzsjAULFqjHpSepeA+Q3JZzFfnoo49UuV3hERgYqIdXRYYioUdK5Ie0rav+LL1ukPQ69mjsg99fvgdfPdEeDXxc1Gaw0/48iZ4ztuKnvy4hN7/AYO0nIiILC0J3kpOTg4MHDyIiIqLonLW1tbq/Z88edT8sLAxRUVEqAKWnp+N///uf6jGqyMSJE9WaA4VHbGxsjbwWMi7W1lYY2Mof68fei+nDWyPAw1HtfP+vFcfQ9/Pt+P3IFRSwyoyIyOQZ/dDYnSQmJiI/Px916tQpcV7unzp1St22tbXFZ599hl69eqGgoADvvPMOateueNE8BwcHdRAJWxtrPNwpEIPbBqjeoDlbziEmMQOvLTmMuVuj8Xa/xmoLj8LNXrmpKxGRaTHpIKStwYMHq4OoumRu0Kh7QlQoWrAzBt9uP4+T8akYtfAAOgXXwtv9miIpI5ubuhIRmRiTHhrz9vaGjY0Nrl27VuK83Pfz8zNYu8h8uTrY4rX7GmH7O73wwr0N4GBrjf0XbuLhr/fgxR8PlQhB4mpKFsb8eEhtJktERMbHpIOQvb09OnTogE2bNhWdk+EvuR8eHm7QtpF5q+Vij4kDm2Hb273waFjFE+oLZxFJTxFXriYiMj5GH4RkgnNkZKQ6RExMjLp96dIldV9K57/99lssWrQIJ0+exJgxY1TJvVSREembrEM0pM0/61SVR+KP9BTJ3CEiIjIuRj9H6MCBA2qicyEJPmLEiBFYuHAhHnnkEVy/fh2TJ0/G1atX0bZtW6xdu7bMBGoifdF2s9Y1x66gdT0PuDgY/Y8dEZHFsNJoNOyvvwNZUFHWE5JSend3d0M3h4zQnugbeOzbvVpd62Rngz7N62BYu7q4p5E37GyMvlOWiMisP7/5X1MiHW3qKhOjNXeYZO3tao8LN26pNYjk8HKxx6DW/hjSri7aBXoWleATEVHNYY9QJdgjRNqQqjCpDhPFf6AKo43sc9avhR+OXE7BysNxWH30ChLTc4quq1/bWa12PbRtABr4uFb4fbhOERGRbj+/GYQqwSBEVQlD2q4jlJdfgJ3nErEq8grWRl1FZm5+0WNt6nlgaLu6eKB1AHzcHKr1/EREli6VQUg3GISoKqrTY5ORnYcNJ65hZWQcdpxNLCqzl6+7p6E3hrYLgBWs8MbSyDJDb8V7nBiGiIj+wSCkIwxCVJMS07Ox+sgVrIy8gsjYZK2+xurvMv6d43tzmIyI6G+cLE1kgrxdHTCyW4g6ZE+zVZFxWLLvEq6lZmu1TlF4aMX76BERUVms3SUyUiHeLhgb0Rj/GtBMp+sZERHRPxiEiIycr7ujdte5aXcdERH9g0GIyETWKbrT7J867g7qOiIiqhoGISIjJxOgpURe3CkMXUnOrLE2ERGZCwYhIhMgpfFSIi/VYcX5uDrA09lOTaZ+cO5uRMWlGKyNRESmiOXzlWD5PBn7OkXX07Ix8vt9OHU1Dc72Nvjqifbo2cTX0E0lIjIoriOkIwxCZApSs3Ix5seD2HXuhhpK+2hYKzzcKdDQzSIiMvrPbw6NEZkBd0c7fD8yTO1qL71G7/x2FLM2ngH/n0NEdGcMQkRmwt7WGjMfboOXe4Wq+7M2nsX4344iN7/A0E0jIjJaDEJEZsTKygpv92uKD4a2hOy2sezAZTy36IDaz4yIiMpiECIyQ092qY9vnuoIRztrbDtzHY98s4crTxMRlYNBiMhMRTSvg5+fD0dtF3tExaXiwa9241xCuqGbRURkVBiEiMxY20BP/DamK4JrO+PyzUwMn7sb+y8kGbpZRERGg0GIyMwFe7uoMCShKCUzF0/M/wv/OxZv6GYRERkFBiEiC1Db1QFLRndBRLM6yMkrwEs/HcKCnTGGbhYRkcExCBFZCCd7G3z9VAc82SUIsrzQe6tP4IPVJ1BQwLWGiMhyMQgRWRBZdfr9IS0xvn9TdX/+zhi8uuQwsnLz1UKMe6JvYFVknPpT7hMRmTtbQzeAiGp+raExPUPh7+GIt389gjXH4nHqairSs/PU5q2F5HHZ9V42fCUiMlfsESKyUEPb1cWiZ8LgaGuN6OsZJUKQuJqShTE/HsLaKE6sJiLzxSBEZME6N6gNV8fyO4YLB8am/nGCw2REZLYYhIgs2L6YJCSm51T4uMSf+JQsdR0RkTliECKyYNpuuxEVl6L3thARmVwQysri3kVEpszXzVGr66b9eRIP/GcHvtkejSvJmXpvFxGR0QahgoICvP/++6hbty5cXV1x/vx5dX7SpEn47rvv9NFGItKTsBAvVR1mdYdrHGyt1U72sl/Zh3+eQtePN+PheXuweO9FJGVUPKxGRGSWQeiDDz7AwoULMX36dNjb2xedb9myJebPn6/r9hGRntcVkhJ5UToMWf19fPFoW+z/dwTeH9ICYcFe6rF9F5IwaWUUOk3biBEL9mH5ocuq/P5OuE4RERkjK41G1pjVXsOGDfH111/jvvvug5ubG44cOYIGDRrg1KlTCA8Px82bN2FOUlNT4eHhgZSUFLi7uxu6OUR6ISXyUh0mE6MrW0coLjkTq49cwe9HruD4ldQSPUe9m/picJsA9GrqC0c7m2o9PxFRTX5+VzkIOTk5qdBTv379EkHoxIkTCAsLQ3p6OswJgxBZCumhkeowmUAtc4dk2Ex6jO4k+no6fo+8gj+OXMH5xIyi864Otujboo4KRRnZeXjlp8NF5fiFCp957pPtGYaIyGCf31VeWbp58+bYsWOHCkLF/frrr2jXrl31WktEBiehJzy0dpW+JtTHFW/0aYyxEY1U75D0Ekkokp6f5Yfi1GFl9c+aRMVp/g5D0lPUp7lfpaGLiEgfqhyEJk+ejBEjRiAuLk5NnF6+fDlOnz6NH374AatXr9ZLI4nI+LftaFnXQx0T+jfFgYs38fuROKyKvIK0rDyt1imqaggjIjLIZOkhQ4bgjz/+wMaNG+Hi4qKC0cmTJ9W5Pn366KRRRGS6rK2t1LDaB0NbYergFjpdz4iIyCg2Xe3evTs2bNig88YQkXnx93DS6XpGREQG7xGSidE3btwocz45OVk9RkRUlXWK5HG5jojIJILQhQsXkJ+fX+Z8dna2mjdERKTNOkWFXujRgBOlicj4h8Z+//33otvr1q1TJWmFJBht2rQJwcHBum8hEZk0KY2XEvnS6wjZ2VghN1+DRbsvYmjbuvB0/meBViKimqL1OkLW1tZF1SGlv8TOzk6FoM8++wwPPPAAzAnXESLSzzpFDXxc8OBXu9UCjV1Da2PRqDDY2XAfaCIy8gUVQ0JCsH//fnh7e8MSMAgR6c+pq6kY/tVuZOTk47GwIHw4rKX6zxYRUU19flf5v18xMTEWE4KISL+a+rlj9mPt1KKLS/ZdwsLdFwzdJCKyMNUqn8/IyMC2bdtw6dIl5OSU3H36tdde01XbiMgC3NesDv41oBmm/XkS768+gWBvF/Rq4mvoZhGRhajy0Njhw4cxcOBA3Lp1SwUiLy8vJCYmwtnZGb6+vjh//jzMCYfGiPRPfg1N+O0Ylh6IVfuULX+pKxrXcTN0s4jIhOltaOyNN97AoEGD1C7zsgHr3r17cfHiRXTo0AGffvrp3babiCyQzAt6f2hLtZ5QenYenl20H0kZJXubiYj0ocpBKDIyEm+++aaqIrOxsVHrBwUGBmL69On417/+pZdGEpH5s7e1xrwnOyDIyxmxSZl4cfFBZOeVXbOMiMigQUhK5QtL6WUoTOYJCel+io2N1WnjiMiyeLnYY8HIjnBzsMW+C0n4vxVRZZbrICIyaBBq166dKp8XPXr0UJuu/ve//8XYsWPRsmVLnTaOiCxPQ183fPlEe8hi078cvIxvd5jXvEMiMvEg9OGHH8Lf31/dnjZtGmrVqoUxY8bg+vXr+Oabb/TRRiKyMD0a+2DyA7e35vjof6ew4cQ1QzeJiMxUlavGLA2rxogMQ341TVoVhR/3XoKzvQ1+G9MVzfz5M0hEBq4aIyKqqUqyKYNaoFvD2riVk4/nFh3A9bRsQzeLiCy9R0jmCJW3BL6cc3R0RMOGDTFy5Ej06tUL5oA9QkSGlXIrF8O+2oXziRloH+SJn0Z3gaOdjaGbRUSW2iPUv39/tWiii4uLCjtyuLq6Ijo6Gp06dUJ8fDwiIiKwatUqGAOpZOvZsyeaN2+O1q1b45dffjF0k4ioCjyc7fDdyE7wcLLDoUvJmPDbUVaSEZHheoRGjx6NoKAgTJo0qcT5Dz74QC2s+O2332LKlClYs2YNDhw4AEOTYHbt2jW0bdsWV69eVQs/njlzRgU5bbBHiMg47D6XiKcX7ENegQZv92uCl3s1NHSTiMgSd5+XJz148KAaAivu3LlzKmTINzx16pTqHUpLS4OxadOmDVavXq0WgdQGgxCR8fjvXxfx7xVR6vbcJ9pjQKvbFaxERDU2NCbzgHbv3l3mvJyTx0RBQUHR7cps375dbdkREBCg5hmtXLmyzDVz5sxBcHCwes7OnTtj3759qA4JcPn5+VqHICIyLk90ro9nugWr228si0RUXIqhm0RElrb7/KuvvooXX3xRhQrp9RGywOL8+fOLtthYt26dGorShmzcKr00o0aNwoMPPljm8aVLl2LcuHGYN2+eCkGzZs1Cv379cPr0abWytZDvlZeXV+Zr169frwKWSEpKwtNPP62G7u5EtgyRo3iiJCLj8e+BzXD+ega2nbmu9iT7/ZV7UMddu/94ERHpZB0hWUn6yy+/VGFENGnSRAWkxx9/XN3PzMwsqiKrCvmaFStWYOjQoUXnJPxI4JLvV9jbJD068v0mTJig1fNKsOnTp4+a3/TUU0/d8dp3330XU6dOLXOeQ2NExiM1KxfDv9qNswnpaF3PA0ufD4eTPSvJiKgG5gjpU+kglJOTA2dnZ/z6668lwtGIESOQnJysVWWavDwJaBLWJORUprweIQleDEJExuXSjVsYMmcnbt7Kxf2t/DHrkbY4cPEmEtKy4OvmqHayt5F9OojIIqVqGYSqPDRWSIbGTp48qW63aNFCrS+ka4mJiWpOT506dUqcl/syIVsbu3btUsNrUjpfOP9o8eLFaNWqVbnXOzg4qIOIjFtQbWd8/VRHPDF/L9Yci1dDZenZ/wyR+3s4Ysqg5ujfkhOqiQi6C0IJCQl49NFHsXXrVnh6eqpz0jsj6wn9/PPP8PHxgTG555571HAaEZkf6fV5LCwIP+y5WCIEiaspWRjz4yHMfbI9wxAR6a5qTObmSFn88ePH1QRkOaKiolQX1GuvvQZd8vb2ho2NjVoHqDi57+fnp9PvRUSmJ79AU+GGrIVj/lP/OKGuIyLSSRBau3YtvvrqKzRr1qzonKzaLCXu//vf/6BL9vb2am2iTZs2FZ2T3h25Hx4ertPvRUSmZ19MEuJTsip8XOKPPC7XERHpZGhMgoidnV2Z83KuOkNQ6enpajHGQjExMYiMjISXl5dawVpK52VydMeOHREWFqbK56Xk/plnnqny9yIi8yITo7WxcFcM3J1s0dzfvdy9EonIclU5CPXu3Ruvv/46lixZUrRGT1xcHN544w3cd999VW6AbMNRfINWCT5Cws/ChQvxyCOP4Pr165g8ebLaIkPWDJJeqdITqInI8kh1mDbWnbimjkAvJ/Rv4Yf+Lf3QLrAWrFlVRmTxqlw+L5uYDh48WM0RKlyhWc61bNkSv//+O+rVqwdzwi02iIyXzP2555PNamJ0eb/IJObIZq1hIbWw/WwisnL/6bX2dXNA3xZ10L+FPzo38IKdjXWl30uG2FieT2Qa9LqOkHzJxo0bi0rYZb6Q7DhvjhiEiIzb2qh4VR0miv8yK4wohVVjt3LysP3MdayNuopNJxOQVqzKTMJSRLM6qqeoeyNvONrZlPkeMum6+HwklucTWWAQys3NhZOTk5rDIz1AloBBiMj4VTWo5OQVYHd0ItYdv4r1x6/hRkZO0WPO9jbo1cRX9Rb1buqLXecSVdAq/YuydNAiIgvpEWrQoIFa/Vn2B7MEDEJEpqG6Q1fydQcuJGHt8atYF3UVV4qFKTtrKzWPKDuv/EIQeXY/D0fsHN+bw2RElhKEvvvuOyxfvlytziyVXeaOQYjIcsivw2NxKWr4TIKRbO6qjSWjuyA8tLbe20dERrDFhmx+KuXuUjFWv359uLi4lHj80KHbY/VERKZGSutb1/NUxzv9m+Kb7dH48M9TOivjJyLjU+UgVHzzUyIic9aq7u1thHRVxk9EJh6E8vLy1P+YRo0aZXZl8kREpck8I5l0fafyfJkjJNcRkQVssWFra4sZM2aoQEREZO5kArRUnonypkJLOJLHOVGayIL2GpOVpbdt26af1hARGRkpjZcSeen5Ka1FgDv6teAG0EQWNUdowIABmDBhAo4dO6Y2RC09WVpWnSYiMrcw1Ke5X1F5vqxD9K8Vx3D8Sip+3h+Lx8KCDN1EIqqmKpfPW1tX3Ikk84fy8/NhTlg+T0TlKawoc7G3wdqx9yLQy9nQTSKianx+V3loTHaYr+gwtxBERFSRZ+9pgLBgL2Tk5OPNX46goKDKuxURkRGochAiIqLbE6k/faiN2pJDhswW7IoxdJOIqCbmCL333nt3fHzy5MnVaQcRkckJqu2Mf9/fDP9eEYXp606jR2MfNKrjZuhmEZE+5wi1a9euzEasMTExqrQ+NDTU7FaW5hwhIroT+RU68vv92HbmOlrV9cDyl7rCzoad7URmu8XG4cOHy/1mI0eOxLBhw6reUiIiEyZFIp8Mb42+n29T+5TN2XIOYyMaG7pZRKQlnfy3RZLW1KlTMWnSJF08HRGRSZE1ht4f2lLd/nLzORy7nGLoJhGRlnTWfytdT3IQEVmiwW0CMLCVH/IKNBi3LBJZuayiJTIFVR4amz17dpnx8fj4eCxevFgttkhEZKlDZB8MbYV9MTdxNiEdn60/jX/ff3t7DiIyo8nSISEhZRZY9PHxUVtvTJw4EW5u5lUxwcnSRFQVG09cw3M/HICVFfDz6C7o3KC2oZtEZJFS9TVZWirEiIiofBHN6+ChDvXwy8HLeOvXI/jf6/fC1aHKv2qJyFTmCEniWrlyJU6ePKmbFhERmbjJg5qjrqcTYpMyMW0NfzcSmVUQevjhh/Hll1+q25mZmejYsaM617p1a/z222/6aCMRkUlxc7TDjIdaq9tL9l3CltMJhm4SEekqCG3fvh3du3dXt1esWKEmSycnJ6tJ1B988EFVn46IyCx1DfXGyK7B6vb4X48i+VaOoZtERLoIQjLpyMvLS91eu3Ythg8fDmdnZ9x///04e/ZsVZ+OiMhsje/fFA28XZCQlo3Jq44bujlEpIsgFBgYiD179iAjI0MFob59+6rzN2/ehKOjY1WfjojIbDnZ2+Czh9vA2gr4/cgVrDkab+gmEdHdBqGxY8fiiSeeQL169RAQEICePXsWDZm1atWqqk9HRGTW2gXVwsu9Gqrb/7fyGBLSsgzdJCK6m3WExMGDB3Hp0iX06dMHrq6u6tyaNWvg6emJbt26wZxwHSEiuls5eQUY9tUuHL+Sivua+mL+iI5qAUYiMvznd7WCkCVhECIiXTh9NQ2D/rMTOfkFmD68NR7uFGjoJhGZNW0/v3W21xgREVWsiZ8bxvW9vSv9e6tPIDbplqGbREQMQkRENWd09wboWL8W0rPz8PavR1BQwA55IkNjECIiqiE21lb49KE2cLKzwd7zSVi4+4Khm0Rk8RiEiIhqULC3C/51fzN1+5O1p3AuId3QTSKyaFoHoenTp6stNQrt2rUL2dnZRffT0tLw0ksv6b6FRERm5snOQejeyBvZeQV485cjyMsvMHSTiCyW1lVjNjY2iI+Ph6+vr7ovM7AjIyPRoEEDdf/atWtqXaH8/HyYE1aNEZE+xKdkou/n25GWlYc3IhohLKS2WmPI180RYSFeahiNiPT/+W2r7ROWzkusuiciqj5/Dye8N6QF3lh6BJ9vlO2J/tmiyN/DEVMGNUf/lv4GbSORJeAcISIiA3G0tSn3/NWULIz58RDWRnFLDiJ9YxAiIjKA/AKNWk+oPIX97VP/OKGuIyL90XpoTMyfP79oS428vDwsXLgQ3t7eRZOliYhIO/tikhCfUvG+YxJ/5HG5Ljy0do22jciSaD1ZOjg4WKu9cWJiYmBOOFmaiPRhVWQcXv85stLrOgXXwqOdgtCtoTf8PBxrpG1E5kDnk6UvXODCX0REuiLVYdrYf+GmOkQDHxd0C/VGt4a10aVBbXg622v1HDK8Jj1LrEojusuhMSIi0g0JI1IdJhOjy+uWl5hSy8UeD3Wsh73RN3AsLgXnr2eoY/Hei5AO+pYBHujasLYKR52CveBkX3bytUy4lrlGxYfhWJVGVI2hsc2bN+OVV17B3r17y3QxSbdT165dMXfuXNx7770wJxwaIyJ9kZAi1WGi+C/iwr6auU+2LworKZm52Hv+BnafS8Su6BtlVqS2t7FGuyBPNYQmPUat63li08lr6vlL/5Iv7/mJzI22n99aB6HBgwejV69eeOONN8p9fPbs2diyZQtWrFgBc8IgRET6VN0em2upWdgdnYhd526HoyulJl4721kjXwO1enV5JAzJnKOd43tzmIzMks6DUP369bF27Vo0a3Z7j5zSTp06hb59++LSpUswJwxCRKRvdzuHR36NX7hxC7vOJapwtDv6BpJv5Wr1tUtGd2FVGpklnU+Wli007OzsKn4iW1tcv3696i0lIrJwEnruJoxIRW+It4s6nuxSHwUFGszdFo0Z605X+rUSvogsmdYLKtatWxdRUVEVPn706FH4+3OsmYjI0KytrdA+qJZOq9eIYOlBaODAgZg0aRKyssr+70F2pZ8yZQoeeOABXbePiIjuoiqtogE2OS+Py3VElkzrOUIyNNa+fXu1C71UjzVp0qRobtCcOXPUrvOHDh1CnTp1YE44R4iIzK0qrdA8Vo2RGdP5ZGlx8eJFjBkzBuvWrSvafV7Gpvv166fCUEhICMwNgxARmVtVmqjj7oAd7/SGvS23nCTzpJcgVOjmzZs4d+6cCkONGjVCrVrajUWbIgYhIjKnqjQXe1u88+sRJN3Kxfj+TTGmZ6ihm0dkGlVjhdtsbNiwAbm5uWrhxJYtW+qirUREVINVaf++vzne/OUIZm86i8FtA1DX08mg7SMyJK37RGWxxBYtWuCFF15Qc4RkvtCPP/6o39YREZHOPdi+LsKCvZCZm4/3/jhu6OYQmUYQkoqxPn36IC4uDjdu3MDo0aPxzjvvwFTcunVLLQr51ltvGbopREQGJXM73xvaQvUUrTt+DVtOJxi6SUTGH4RkDaEPP/xQrRUkc4JmzJiBhIQEFYpMwbRp09ClSxdDN4OIyCg09XPHqG7B6va7vx9HVm6+oZtEZNxBSCYdeXt7F913dnaGk5OTmoRk7M6ePavK/AcMGGDophARGY3XIxqr6rGLN25h3rZoQzeHyCCqVDcpZfO///570VFQUIBNmzaVOFdV27dvx6BBgxAQEKC6a1euXFnmGinNDw4OhqOjIzp37ox9+/ZV6XvIcNhHH31U5bYREZkzVwdbTHqgubr91dZoXLyRYegmEdW4KlWNjRgxosw5mTxdSIKMLKxYFRkZGWjTpg1GjRqFBx98sMzjS5cuxbhx4zBv3jwVgmbNmqXWLTp9+jR8fX3VNW3btkVeXl6Zr12/fj3279+Pxo0bq2P37t2Vtic7O1sdxXvCiIjM1f2t/PFzw1jsPJeIKb8fx/cjO6nf5USWolrrCOmL/PCtWLECQ4cOLTon4adTp0748ssv1X3phQoMDMSrr76KCRMmVPqcEydOVNVtsiJ2enq6Kv1/8803MXny5HKvf/fddzF16tQy57mOEBGZq/PX09F/1g7k5Bdg3pMd0L+ln6GbRFRj6wgZ9ZKiOTk5OHjwICIiIorOWVtbq/t79uzR6jlkSCw2NlatgfTpp5+qareKQlBhcJK/tMJDvpaIyJw18HHF8/c2ULelnP5WTtkediJzZdRBKDExUQ21ld6/TO5fvXpVL9/TwcFBJcfiBxGRuXu5V0O1sOKVlCzM3nTO0M0hqjFGHYR0beTIkapXiIiISnKyt8HUwS3U7fk7zuNcQpqhm0RUI4w6CEm5vsztkZ3vi5P7fn4cwyYi0qWI5nUQ0cwXeQUaTFp5vGhzbSJzZtRByN7eHh06dFAl+oUKS/bDw8MN2jYiInM0ZVALONhaY8/5G/j9yBVDN4fIOINQcnIy5s+fryYWJyUlqXOHDh1S229UlVRyRUZGqkPExMSo25cuXVL3pXT+22+/xaJFi3Dy5EmMGTNGldw/88wz1Wk6ERHdQaCXM17t3VDd/mDNSaRm5Rq6SUTGs46QOHr0qKrakpI0qcSSKiwvLy8sX75chZcffvihSs934MAB9OrVq+i+BJ/CNYsWLlyIRx55BNevX1eVXjJBWtYMWrt2bZkJ1EREpBuj722A5YficD4xA59vOKN6iYjMVZXXEZIQJDvPT58+HW5ubjhy5AgaNGigFit8/PHHVTiyxHUIiIjMyY6z1/HUd/tgbQX88eo9aBHgYegmERnHOkKyUnPx1aQL1a1bV28l7UREVLO6N/JRq04XaIBJK6NQIDeIzJB1ddbZKW/biTNnzsDHx0dX7SIiIgOTfchc7G1w6FIyfj142dDNITKOIDR48GC89957aquKwm0xZG7Q+PHjMXz4cH20kYiIDMDPwxFjIxqr2x/97yRuZuQYuklEhg9Cn332mar0kg1PMzMz0aNHDzRs2FDNF5o2bZruW0hERAYzslswGtdxxc1buZi+7rShm0NkPJuu7ty5U1WQSSiSydPF9wMzJ5wsTUSWbl9MEh7+eg9kU/oVL3VD20BPQzeJSGef30a1+7wxYhAiIgLGLYtUJfUt67pj1cv3wEbKyYjM4PO7yusICVnZWY6EhAS10nNxCxYsqM5TEhGREZs4oBk2nLiGqLhU/Pevi3g6PNjQTSIyzByhqVOnom/fvioIye7wN2/eLHEQEZH58XFzwDv9mqjbM9adxvW0bEM3iUgnqtwjNG/ePLXi81NPPaWbFhARkUl4vHN9LDtwGcfiUlQV2cyH2xq6SUQ13yOUk5ODrl273v13JiIikyLzgt4f2lJNmpb5Qn+dv2HoJhHVfBB67rnn8NNPP939dyYiIpMjFWOPdgpStyetikJufsl5okRmOTRWuBGqkMnR33zzDTZu3IjWrVvDzs6uxLUzZ87UfSuJiMhoyFyhdcev4sy1dCzcdUFt0kpk1kHo8OHDJe7LDvAiKipKP60iIiKjVcvFHhP6N8U7vx3FrI1nMKCVH2KTMpGQlgVfN0eEhXixvJ5MBtcRqgTXESIiKks2Yf1/83arfcgc7ayRlfvPEJm/hyOmDGqO/i39DdpGsmyp+tp9ftSoUUhLSytzPiMjQz1GRETmz9raCgP+DjrFQ5C4mpKFMT8ewtqoeAO1jkh7VQ5CixYtUnuMlSbnfvjhh6o+HRERmaD8Ag0W7Iop97HCYYapf5xQ1xGZxTpC0sUko2hySI+Qo6Nj0WP5+fn4888/1UasRERkGfuPxadkVfi4xB95XK4LD61do20j0ksQ8vT0hJWVlToaN25c5nE5L6tOExGR+ZOJ0drYfuY6WtXzgKtDtXZ0ItI7rf9lbtmyRfUG9e7dG7/99hu8vLyKHrO3t0f9+vUREBCgr3YSEZERkeowbczdFo1vdpxHiwB3hAV7oVOIFzoFe8HLxV7r7yXDa9KzxKo0MoqqsYsXLyIoKEj1AFkCVo0REZUfTu75ZLOaGF3Rh4iTnQ28XOwQl1y296iRr6sKNGF/B6MAT6dyn0MmXMtco+LDcKxKI11+frN8vhIMQkREqDCkSHWYKP5BUvjf5LlPtldh5UpyJvZfSMJfMUnYH5OEswnpZZ6rXi2n28Eo+HY4CvF2UYs2yvOX/pAq/fxE5WEQ0hEGISKiilWnxyYpI0cFIxnukj+j4lJQuristosdMnLyy5TmFw9Dfh6O2Dm+N4fJqFwMQjrCIEREpN85POnZeTh08aZ6jn0XkhAZm4ycPO32MFsyugur0uiuPr+rNI1fMlNsbKwqky9ePk9ERJZLQs/dhBGpKLu3sY86RFZuPr7aGo3Zm87qrHqNSCcLKkoQatiwoQpDRERE+uBoZ4PwBrV1Wr1GpJMgZG1tjUaNGuHGjRtV+TIiIqIqkeE1mWtU0QCbnJfH5TqiGt1i4+OPP8bbb7/NneeJiEivw20y4VpUFIbkcU6UprtV5cnStWrVwq1bt5CXl6cWUnRyKrn2Q1JSEswJJ0sTERlXVZp4f0hLPBVe32DtIgudLC1mzZp1t20jIiLSipTg92nuV1SVNn/HeRyLS8WBi0kMQqQTLJ+vBHuEiIiMh6w59MB/dqrbq1+9By3rehi6SWRpPUKFu82vXLkSJ0+eVPdbtGiBwYMHw8bGpvotJiIiqoQEnyFtA7Aq8go+WXsKi5/tbOgmkaVNlj537hyaNWuGp59+GsuXL1fHk08+qcJQdHS0flpJRET0tzf7NIGdjRV2nE3EzrOJhm4OWVoQeu211xAaGqrWEjp06JA6Ll26hJCQEPUYERGRPgXVdsYTnW/PD/p47UkUlN6fg0ifQWjbtm2YPn06vLz+Wbuhdu3aqqxeHiMiItK3V3s3VCtSR8WlYvWxeEM3hywpCDk4OCAtLa3M+fT0dFVOT0REpG+1XR3wwr0N1O1P153Wem8yorsOQg888ACef/55/PXXX2rLDTn27t2LF198UU2YJiIiqgnPdg+Bj5sDLiXdwk9/XTR0c8hSgtDs2bPVHKHw8HC18aoc3bp1U3uQffHFF/ppJRERUSnO9rYYG9FI3Z69+RzSsnIN3SQy13WEpBa/dA2+VI8Vls9LFZkEIXPEdYSIiIxXbn4B+n2+HecTM/Ba74YY17eJoZtEJvb5ba3tthoJCQnqdu/evZGcnKyCz6BBg9RhriGIiIiMm52NNd7udzv8fLsjRq0+TVQVWgUhV1fXoh3nt27ditxcdj8SEZFx6N/SD20DPZGZm4/Zm84aujlkYrRaWToiIgK9evVSQ2Bi2LBhFVaIbd68WbctJCIiugMrKytMGNAUj36zF0v2xWJUtxA08HE1dLPInILQjz/+iEWLFqmVo2WtIFlF2tnZWf+tIyIi0kKXBrXRu6kvNp9KwKfrT+OrJzoYuklkrpuuSs/QihUr4OnpCUvAydJERKbh9NU09P9iO+RTbcVLXdEuqJahm0TmMlm6uC1btlhMCCIiItPRxM8Nw9vXU7c//t8ptc4dUWWqHISIiIiM1Rt9GsPe1hp/xSRh6+nrhm4OmQAGISIiMht1PZ0wsmuwuv3J2lPI54asVAkGISIiMisv9QyFu6MtTl1Nw8rDcYZuDplTEMrLy8N7772Hy5cv669FREREd8HT2R4v9bq90O/MDWeQlZtv6CaRuQQhW1tbzJgxQwUiIiIiYyXDY/4ejohLzsTiPdyQlXQ4NCZbbMhaQkRERMbK0c5GTZwWX245h5RM7ohAd7GgYnEDBgzAhAkTcOzYMXTo0AEuLi4lHh88eHBVn5KIiEjnpJR+/o7zOHMtHfO2RWN8/6aGbhKZw4KK1tbWd1zmPD/fvMZiuaAiEZHp2njiGp774QAcbK2x9e2e8PdwMnSTyNQXVCwoKKjwMLcQREREpu2+Zr4IC/ZCdl4BZm3ghqxkoeXzMTExamuQ5s2bo1WrVsjIyDB0k4iIqAbISMX4AbeHxH45GIuz19IM3SQyhyAkk6UHDRqEhg0bqkPmBe3YsQPGauTIkars/8SJE6rtDg4Ohm4SERHVkA71a6FfizqQtRU/WXva0M0hUw9CshN9RESE2n3+tddeU4eTkxPuu+8+/PTTTzA2x48fh52dHbp3767ue3l5qWUAiIjIcrzdrylsrK2w8eQ17L+QZOjmkCkHoWnTpmH69OlYunRpURCS2x9//DHef//9Kjdg+/btqncpICBAdWGuXLmyzDVz5sxBcHAwHB0d0blzZ+zbt0/r5z979ixcXV3V92jfvj0+/PDDKreRiIhMW0NfVzzcMVDd5oasdFdB6Pz58ypUlCbDYzIXp6pkvk6bNm1U2CmPhKxx48ZhypQpOHTokLq2X79+SEhIKLqmbdu2aNmyZZnjypUravFHGbb76quvsGfPHmzYsEEdFcnOzlYzzYsfRERk+sZGNIKjnTUOXryJDSeuGbo5ZKpBKDAwEJs2bSpzfuPGjeqx6qxL9MEHH2DYsGHlPj5z5kyMHj0azzzzjJrsPG/ePDUst2DBgqJrIiMjERUVVeaQXqa6deuiY8eOqm0yN2jgwIHq+op89NFHqtyu8KjOayIiIuNTx90Rz94TUrQha15+gaGbRKYYhN588001HDZmzBgsXrxYHS+++CLGjh2Lt956S6eNy8nJwcGDB9WcpKIGW1ur+9K7o41OnTqp3qObN2+qEn8ZimvWrFmF10+cOFGtOVB4xMbG6uS1EBGR4b3QIxS1nO0QfT0Dvx7kvplUjZWlJQD5+fnhs88+w7Jly9Q5CRYyhDVkyBCdNi4xMVGtTVSnTp0S5+X+qVOntHoOmRgt84LuvfdeNSbct29fPPDAAxVeL71GrCojIjJP7o52eKV3I7y/+gQ+33gGQ9rWhZO9jaGbRaYShGS+jYSKUaNGYefOnTAVMvwmBxER0ZNdgvD9rhhcvpmJBbti8PLfO9WTZary7vNSMVZTu897e3vDxsYG166VnNQm96VXioiIqKocbG3wVt8m6vbcLeew4fhVrIqMw57oG8iXxYbIolR5jpCsF1RTu8/b29urjV2LT86WeT5yPzw8vEbaQERE5mdwmwDU9XRCek4+Ri8+iNd/jsRj3+7FPZ9sxtqoeEM3jyxp9/n09HScO3eu6L6U4EtVlyx8GBQUpErnR4wYoSq/wsLCMGvWLFVyL1VkRERE1bH+xFXEJWeWOX81JQtjfjyEuU+2R/+W/gZpG1nY7vNbt25V+4CVJuFn4cKF6vaXX36JGTNm4OrVq2rNoNmzZ6uFFWsCd58nIjIvMvwlPT/xKVnlPm4FwM/DETvH91arUZNp0vbzu8pByNIwCBERmReZCyTDYJVZMroLwkNr10ibyHCf31WaI5Sbm6smTMtihURERKYoIa38nqDS3vntCKb+cRx/HotHQqp2X0NmPkdINi+VeTtVHf4iIiIyFr5ujlpdF5uUie93XVCHCPRyQqf6XugQXAudgr3Q0McV1pUMnckw3L6YJBW+5PuGhXhxuM3IVHlo7LvvvsPy5cvVitIyodnccWiMiMg85wjJxOjyPgAlpvi4OWDigKY4HJuM/Rdu4tTVVJT+tPRwskP7IE90DPZCx/q10CbQE452/yzOKNVnU/84UWIukr+HI6YMas6J2KY8R6hdu3aqykuGyerXr1+makw2RjUnDEJEROZHQopUh4niH4KFfTWlq8bSsnJx+FIyDlxIwoGLN9XtzNySoyN2NlZoWddDhSLpKfp62/ky37ei5yfDfX5XuXx+6NChd9s2IiIig5IQImGkdI+NXwU9Nm6Odri3sY86RG5+AU7Gp6reooMXk9Sf19OyVUCSoyKav8OQfN8+zf04TGYEWDVWCfYIERGZL13N4ZGPUplTdOBiElYfjcfmUwmVfg2r0ky0R0gkJyfj119/RXR0NN5++201V0iGxGQz1Lp1695Nu4mIiGqMhB5dhBFZRy+otrM65Dm1CULaVq+RflU5CB09ehQREREqZV24cAGjR49WQUgmUF+6dAk//PCDflpKRERkRlVp2l5HRrbXmGx5MXLkSJw9exaOjv+8iQMHDsT27dt13T4iIiKTIsNrUh1W0QCbnJfH5ToywSC0f/9+vPDCC2XOy5CYbIFBRERkyWRoTCZci/LCkEzMlcc5UdpEg5CDg4OagFTamTNn4ONzezY9ERGRJSusSpMqtNJa1nVn6bwpzxGS3eXfe+89LFu2rGiCmMwNGj9+PIYPH66PNhIREZkcCTtSIl9YlVZQoMGbvxxBVFwqDl+6iXZBtQzdRKpOj9Bnn32G9PR0+Pr6IjMzEz169EDDhg3h5uaGadOm6aeVREREJlyVNqRtXQxrXw/D29dT52duOGPoplF1e4SkWmzDhg3YtWsXjhw5okJR+/btVSUZERERVezV3o2w4nAcdpxNxP4LSWrPMjIsLqhYCS6oSEREujRx+VEs2ReLrqG18dPoLoZuDiz987vKQ2NERERUfS/3aqj2JdsdfQN7om8YujkWj0GIiIioBtWr5YxHOwWp259vOKO25yDDYRAiIiKqYS/1CoW9rTX2XUjCrnPsFTIkBiEiIqIa5u/hhMfDbvcKzdxwmr1CphCE8vLykJ2dXeLctWvXMHXqVLzzzjvYuXOnPtpHRERkll7qGQoHW2scupSMbWeuG7o5FkvrICSbq7722mtF99PS0tCpUyfMmTMH69atQ69evfDnn3/qq51ERERmxdfdEU+H1y9aV4i9QkYehGTdoOIrR8su8/n5+WrzVVlPSDZjnTFjhr7aSUREZHZe6BEKJzsbHL2cgk0nEwzdHIukdRCKi4tDo0aNiu5v2rRJBSOp0RcjRozA8ePH9dNKIiIiM+Tt6oARXYPVbfYKGXkQcnR0VFtqFNq7dy86d+5c4nFZZZqIiIi09/y9DeBib4MT8alYd/yaoZtjcbQOQm3btsXixYvV7R07dqiJ0r179y56PDo6GgEBAfppJRERkZnycrHHqHtCitYVks1ZyQiD0OTJk/HFF18gNDQU/fr1w8iRI+Hv71/0+IoVK9CtWzd9tZOIiMhsPXdPA7g52OL0tTT8GRVv6OZYFK03XZVd5g8ePIj169fDz88PDz30UJkeo7CwMH20kYiIyKx5ONvh2e4hmLXxrDoGtPRXO9eT/nHT1Upw01UiIqoJqVm5uOfjzUjNysMXj7bFkLZ1Dd0ki/j81rpHaPv27Vpdd++992r7lERERPQ3d0c7NXH60/VnVK/Q/a38YWvDDSD0Tesg1LNnT1hZ3e6mq6gTSR6XtYWIiIio6kZ2C8F3O2MQk5iBlZFX8P861DN0k8ye1lGzVq1aCAwMxKRJk9Qiijdv3ixzJCUl6be1REREZszVwVYtsihmbzqL3PwCQzfJ7GkdhOLj4/HJJ59gz549aNWqFZ599lns3r1bjbvJGFzhQURERNUn227UdrHHpaRbWH7osqGbY/a0DkL29vZ45JFH1L5ip06dQuvWrfHKK6+oXqJ///vfalNWIiIiujvO9rYY07OwV+gccvLYK6RP1ZqFFRQUpNYV2rhxIxo3boyPP/5Yzc4mIiKiu/dkl/rwcXNAXHImlh2INXRzzFqVg1B2djZ++uknREREoGXLlvD29saaNWvg5eWlnxYSERFZGEc7G7z8d6/QnC3nkJXLQiSDB6F9+/ZhzJgxajFF2WV+8ODBiI2NxbJly9C/f3+9NZCIiMgSPRoWBD93R8SnZGHpfvYKGXxBRWtrazUkJrvMd+jQocLrJCCZEy6oSEREhrJ470VMWhkFXzcHbH+nl+opIt1+flcpCFXGHNcRYhAiIiJDkYnSvT7dquYK/d/9zfBc9waGbpLZfX5rPTRWUFBQ6WFuIYiIiMiQ7G2t8Wrvhur2vG3RuJXDCm1d0+na3ZmZmbp8OiIiIos3vEM9BHo5ITE9B4v3XDR0c8yOToKQVJJ99tlnCAkJ0cXTERER0d/sbKzxWu9GRb1C6dnsFTJIEJKwM3HiRHTs2BFdu3bFypUr1fnvv/9eBaBZs2bhjTfe0GnjiIiICBjWri5CvF1w81YuFu2+YOjmWGYQkgUU586di+DgYFy4cAEPPfQQnn/+eXz++eeYOXOmOjd+/Hj9tpaIiMgCyS70r993u1fom+3nkZqVa+gmWV4Q+uWXX/DDDz/g119/xfr169XEaNlW48iRI3j00UdhY8OSPiIiIn0Z1CYAoT4uSMnMxfc72StU40Ho8uXLResHyYrSDg4OaihMSuaJiIhIv2ysrTA2orG6PX/neaTcYq9QjQYh6QGSjVcL2drawtXVVSeNICIiosrd38ofTeq4IS0rT4Uhunu22l4o6y6OHDlS9QSJrKwsvPjii3BxcSlx3fLly3XQLCIiIirN2toKb/RphBd/PIQFO2MwqlsIarn800lBegxCsrVGcU8++WQ1vh0RERHdjb7N/dDc3x0n4lMxb3s0ejb2RUJaFnzdHBEW4qWG0Eh7Wm+xYam4xQYRERmbDSeuYfQPByCRp/iHuL+HI6YMao7+Lf1h6VJ1vcUGERERGYe8/AL1Z+mejKspWRjz4yGsjYo3SLtMEYMQERGRCckv0OC91SfKfawwGE3944S6jirHIERERGRC9sUkIT4lq8LHJf7I43Id6XCyNBERERmeTIzWxjfbo5GSmYP2QbXg6+6o93aZKosIQrINyPz589USABEREfjiiy+4ECQREZkkqQ7TxpbT19UhZPf6DkG10L5+LRWMmvq5qW077kSG1qRXydwr0sw+CF2/fh1ffvkljh8/Djs7O9x7773Yu3cvwsPDDd00IiKiKpNAItVhMjG6ollAnk526N/KD5GXknH6WhpikzLVsTLyinrc2d4GbQM90UGCkRyBteDhbFf09TLZWuYZFR+CM9eKNLMPQkL2RJMFIEVubi58fX0N3SQiIqJqkV4ZCSRSHVa6fL6wv+bj4a2KAots0HokNhkHL95Uh4SjtOw87I6+oY5CDX1dVa+Rva01Fu+9WOb7FlakzX2yvVmFIYNPlt6+fTsGDRqEgIAANVy1cuXKMtfMmTNH7Xrv6OiIzp07Y9++fVo/v4+PD9566y0EBQWp7yFDY6GhoTp+FURERDVHgogEEj+PksNkcr90UHF3tEP3Rj5qn7LFz3ZG5JS+WDu2Oz4c1grD29dDiPftHSLOJaRj6YHYckOQOVekGbxHKCMjA23atMGoUaPw4IMPlnl86dKlGDduHObNm6dC0KxZs9CvXz+cPn26qGenbdu2qtentPXr18PJyQmrV6/GhQsX1O0BAwao8CVDZOXJzs5WR/EFmYiIiIyNhJ0+zf2qPI9HHm/q566OxzsHqXM30rNx6FIy/jhyBb8fuT18VllFWnhobZgDgwchCSZyVGTmzJkYPXo0nnnmGXVfAtGaNWuwYMECTJgwQZ2LjIys8Ot/+eUXNGzYEF5eXur+/fffr+YIVRSEPvroI0ydOvUuXxUREZH+SajRRSCp7eqAPs3r4FZO3h2DUFUr10yBwYfG7iQnJwcHDx5Uw1mFrK2t1f09e/Zo9RyBgYHYvXu3miOUn5+PrVu3okmTJhVeP3HiRLUcd+ERGxurk9dCRERkLhVpvlpeZwoM3iN0J4mJiSq81KlTp8R5uX/q1CmtnqNLly4YOHAg2rVrp0LUfffdh8GDB1d4vYODgzqIiIgsTZgWFWnyuFxnLoy6R0hXpk2bhpMnT6oS+tmzZ3MNISIiojtUpImKPinlcXNaT8iog5C3tzdsbGxw7dq1Euflvp+fn8HaRUREZGkVaYUCvZxhTow6CNnb26NDhw7YtGlT0bmCggJ1nwsiEhER6S8M7RzfG0tGd8EXj7ZVfw5qfbsk//MNZ2FODD5HKD09HefOnSu6HxMTo6rApMpL1v6R0vkRI0agY8eOCAsLU+XzUnJfWEVGRERE+q9I83V3wJpj8dh48ppaoLFNoCfMgcF7hA4cOKAmMsshJPjI7cmTJ6v7jzzyCD799FN1X9YLkpC0du3aMhOoiYiISH9CfVwxrF09dXvmhjMwF1Ya2YmUKiQLKnp4eKhSend3d0M3h4iIyGAu3biF3p9tRV6BBr+NCUeH+l4m//lt8B4hIiIiMg1BtZ3xUMfbvUKfrTePXiEGISIiItLaK70bwd7G+u9NWxNh6hiEiIiISGt1PZ3waFiguj1z/RmY+gwbBiEiIiKqkpd7NYSDrTUOXLyJ7WdNu1eIQYiIiIiqpI67I57qUl/dnrn+tEn3CjEIERERUZW92DMUzvY2OHI5BZtOJsBUMQgRERFRlXm7OmBE1+CidYUKCkyzV4hBiIiIiKrl+e4N4OpgixPxqVh3/CpMEYMQERERVUstF3uMuiekqFco3wR7hRiEiIiIqNqevScE7o62OJuQjtVHr8DUMAgRERFRtXk42eGFHqHq9qyNZ5GXXwBTwiBEREREd2Vk12B4udgjJjEDKw7HwZQwCBEREdFdcXGwxYs9GqjbszefRa4J9QoxCBEREdFde6pLMHzcHBCblIlfDlyGqWAQIiIiorvmZG+Dl3reniv05eazyM7LhylgECIiIiKdeCwsCP4ejriSkoWf98XCFDAIERERkU442tmoDVnFl1vOITPH+HuFGISIiIhIZx7uGIh6tZxwPS0bP+69CGPHIEREREQ6Y29rjdfua6Ruz90WjYzsPBgzBiEiIiLSqQfb1UWItwuSMnKwcPcFGDMGISIiItIpWxtrvP53r9A3288jNSsXxopBiIiIiHRuUJsANPJ1RUpmLhbsjIGxYhAiIiIinbOxtsLYiMbq9nc7YpB8KwfGiEGIiIiI9GJASz809XNDWnYevt1xHsaIQYiIiIj0wtraCuP63O4V+n7XBdxIz4axYRAiIiIivenTvA5a1/PArZx8zNsWDWPDIERERER6Y2X1T6/QD3suIiE1C8aEQYiIiIj0qkdjH3SoXwvZeQX4aqtx9QoxCBEREZHee4Xe/LtX6Ke/LuFKciaMBYMQERER6V3Xht7o0sALOfkFakNWY8EgRERERDXizb5N1J/L9sciNukWjAGDEBEREdWITsFe6N7IG3kFGnyx6SyMga2hG0BERESW1Su042wifjt4GV1Da6sVqH3dHBEW4qVu1zQGISIiIqoxbQM90aquO47FpWLcsiNF5/09HDFlUHP0b+lfc43h0BgRERHVpLVR8SoElXY1JQtjfjykHq9JDEJERERUI/ILNJj6x4lyH9P8/ac8LtfVFAYhIiIiqhH7YpIQn1LxytISf+Rxua6mMAgRERFRjUhIy9LpdbrAIEREREQ1QqrDdHmdLjAIERERUY2QEnmpDquoSF7Oy+NyXU1hECIiIqIaIesESYm8KB2GCu/L4zW5nhCDEBEREdUYWSdo7pPt4edRcvhL7sv5ml5HiAsqEhERUY2SsNOnuZ+qDpOJ0VxZmoiIiCyKjbUVwkNrG7oZHBojIiIiy8UgRERERBaLQYiIiIgsFoMQERERWSwGISIiIrJYDEJERERksRiEiIiIyGIxCBEREZHFYhAiIiIii8WVpSuh0WjUn6mpqYZuChEREWmp8HO78HO8IgxClUhLS1N/BgYGGropREREVI3PcQ8Pjwoft9JUFpUsXEFBAa5cuQI3NzdYWdX8ZnA1mZwl7MXGxsLd3R3mzJJeq6W9Xr5W82VJr5evVTck3kgICggIgLV1xTOB2CNUCfnLq1evHiyF/EM09x88S3ytlvZ6+VrNlyW9Xr7Wu3ennqBCnCxNREREFotBiIiIiCwWgxApDg4OmDJlivrT3FnSa7W018vXar4s6fXytdYsTpYmIiIii8UeISIiIrJYDEJERERksRiEiIiIyGIxCBEREZHFYhCyAB999BE6deqkVsf29fXF0KFDcfr06Tt+zcKFC9VK2sUPR0dHGLt33323TLubNm16x6/55Zdf1DXy+lq1aoU///wTpiI4OLjM65Xj5ZdfNvn3dfv27Rg0aJBaFVbauXLlyhKPS53H5MmT4e/vDycnJ0RERODs2bOVPu+cOXPU35u87s6dO2Pfvn0w5team5uL8ePHq3+bLi4u6pqnn35arXiv658FY3lvR44cWabt/fv3N7v3VpT38yvHjBkzTO69/UiLz5qsrCz1+6l27dpwdXXF8OHDce3atTs+b3V/1rXFIGQBtm3bpv7h7d27Fxs2bFC/WPv27YuMjIw7fp2s8hkfH190XLx4EaagRYsWJdq9c+fOCq/dvXs3HnvsMTz77LM4fPiw+sGVIyoqCqZg//79JV6rvL/ioYceMvn3Vf59tmnTRn24lWf69OmYPXs25s2bh7/++kuFhH79+qlftBVZunQpxo0bp8p1Dx06pJ5fviYhIQHG+lpv3bql2jpp0iT15/Lly9WHy+DBg3X6s2BM762Q4FO87UuWLLnjc5rieyuKv0Y5FixYoIKNBARTe2+3afFZ88Ybb+CPP/5Q/wGV6yXQP/jgg3d83ur8rFeJlM+TZUlISJAlEzTbtm2r8Jrvv/9e4+HhoTE1U6ZM0bRp00br6x9++GHN/fffX+Jc586dNS+88ILGFL3++uua0NBQTUFBgVm9r/LvdcWKFUX35fX5+flpZsyYUXQuOTlZ4+DgoFmyZEmFzxMWFqZ5+eWXi+7n5+drAgICNB999JHGWF9refbt26euu3jxos5+Fozp9Y4YMUIzZMiQKj2Puby38rp79+59x2tM5b1NKPVZIz+jdnZ2ml9++aXompMnT6pr9uzZU+5zVPdnvSrYI2SBUlJS1J9eXl53vC49PR3169dXG+INGTIEx48fhymQLlPphm7QoAGeeOIJXLp0qcJr9+zZo7pZi5P/ach5U5OTk4Mff/wRo0aNuuMGwab6vhYXExODq1evlnjvZE8hGQ6p6L2Tv5+DBw+W+BrZS1Dum9r7LT/D8h57enrq7GfB2GzdulUNrzRp0gRjxozBjRs3KrzWXN5bGSJas2aN6qGujCm8tymlPmvkPZJeouLvkwzpBQUFVfg+VednvaoYhCxMQUEBxo4di27duqFly5YVXie/fKSLdtWqVerDVb6ua9euuHz5MoyZ/HDIPJi1a9di7ty56oeoe/fuagfi8sgPWJ06dUqck/ty3tTI3IPk5GQ1v8Lc3tfSCt+fqrx3iYmJyM/PN/n3W4YDZM6QDOneaZPKqv4sGBMZFvvhhx+wadMmfPLJJ2oIZcCAAer9M+f3dtGiRWp+TWVDRabw3haU81kj74W9vX2ZAH+n96k6P+tVxd3nLYyM38r8l8rGk8PDw9VRSD4smzVrhq+//hrvv/8+jJX8sizUunVr9QtDej+WLVum1f+yTNl3332nXr/8L9Hc3le6Tf43/fDDD6vJo/IBaK4/C48++mjRbZkkLu0PDQ1VvUT33XcfzJX8J0V6dyorYDCF9/ZlLT9rjAF7hCzIK6+8gtWrV2PLli2oV69elb7Wzs4O7dq1w7lz52BK5H8ejRs3rrDdfn5+ZSoW5L6cNyUy4Xnjxo147rnnLOJ9LXx/qvLeeXt7w8bGxmTf78IQJO+1TES9U29QdX4WjJkM/8j7V1HbTf29FTt27FCT4Kv6M2yM7+0rFXzWyHshw5jSc63t+1Sdn/WqYhCyAPK/R/mHuWLFCmzevBkhISFVfg7pdj527JgqXzQlMh8mOjq6wnZL74h0vxcnHzLFe01Mwffff6/mU9x///0W8b7Kv2H5JVj8vUtNTVUVJRW9d9Il36FDhxJfI933ct/Y3+/CECTzQiTwSumxrn8WjJkM3cocoYrabsrvbfEeXXkNUmFmqu+tppLPGnl98p+v4u+ThD+Z31TR+1Sdn/XqNJzM3JgxY1Sl0NatWzXx8fFFx61bt4queeqppzQTJkwouj916lTNunXrNNHR0ZqDBw9qHn30UY2jo6Pm+PHjGmP25ptvqtcZExOj2bVrlyYiIkLj7e2tqhfKe51yja2trebTTz9V1QtSjSFVDceOHdOYCqmOCQoK0owfP77MY6b8vqalpWkOHz6sDvlVNXPmTHW7sFLq448/1nh6empWrVqlOXr0qKq2CQkJ0WRmZhY9h1Tf/Oc//ym6//PPP6tqk4ULF2pOnDihef7559VzXL16VWOsrzUnJ0czePBgTb169TSRkZElfoazs7MrfK2V/SwY6+uVx9566y1VRSRt37hxo6Z9+/aaRo0aabKysszqvS2UkpKicXZ21sydO7fc5zCV93aMFp81L774ovp9tXnzZs2BAwc04eHh6iiuSZMmmuXLlxfd1+Zn/W4wCFkA+eEr75BS6kI9evRQJauFxo4dq/6x2tvba+rUqaMZOHCg5tChQxpj98gjj2j8/f1Vu+vWravunzt3rsLXKZYtW6Zp3Lix+poWLVpo1qxZozElEmzk/Tx9+nSZx0z5fd2yZUu5/24LX4+U1U6aNEm9DvkAvO+++8r8HdSvX1+F2+LkA6Xw70BKrvfu3asx5tcqH3YV/QzL11X0Wiv7WTDW1ysfmn379tX4+Pio/5TI6xo9enSZQGMO722hr7/+WuPk5KTKwstjKu8ttPiskfDy0ksvaWrVqqXC37Bhw1RYKv08xb9Gm5/1u2H19zclIiIisjicI0REREQWi0GIiIiILBaDEBEREVksBiEiIiKyWAxCREREZLEYhIiIiMhiMQgRERGRxWIQIiIiIovFIEREdJfeffddtG3b1tDNIKJqYBAiIoMZOXIkrKys1CEbZzZs2BDvvfce8vLyiq6Rxe+/+eYbdO7cGa6urmqn7Y4dO2LWrFm4detWURApfJ7iR9OmTQ346ojIFNgaugFEZNn69++P77//HtnZ2fjzzz/x8ssvqx2qJ06cqB5/6qmnsHz5cvzf//0fvvzyS/j4+ODIkSMqCAUHB2Po0KHquhYtWqid2YuztbXV+S7w0jZ90OdzE1HF2CNERAbl4OAAPz8/1K9fH2PGjEFERAR+//139diyZcvw3//+F0uWLMG//vUvdOrUSYWfIUOGYPPmzejVq1eJ0CPPU/zw9va+4/eeO3cuQkNDVW9UkyZNsHjx4hKPS6+SXDN48GC4uLhg2rRp6vzHH3+MOnXqwM3NDc8++yyysrLKPPf8+fPRrFkzODo6qp6pr776quixCxcuqOdeunQpevTooa6R10lENY9BiIiMipOTE3JyctRtCQcSUCT4lCZBwsPDo9rfZ8WKFXj99dfx5ptvIioqCi+88AKeeeYZbNmypcR1Muw2bNgwHDt2DKNGjVLhTM59+OGHOHDgAPz9/UuEnMJ2T548WQWnkydPqmsnTZqERYsWlbhuwoQJqg1yTb9+/ar9WojoLuhsH3sioioaMWKEZsiQIep2QUGBZsOGDRoHBwfNW2+9pc41a9ZMM3jw4EqfZ8qUKRpra2uNi4tLieOFF16o8Gu6du2qGT16dIlzDz30kGbgwIFF9+VX5NixY0tcEx4ernnppZdKnOvcubOmTZs2RfdDQ0M1P/30U4lr3n//ffW1IiYmRj33rFmzKn1tRKRfnCNERAa1evVqNQla5sgUFBTg8ccfVz0u4nYW0Y70HBUOqRVyd3ev8HrphXn++edLnOvWrRu++OKLEudkYnbpr3vxxRdLnAsPDy/qScrIyEB0dLQaMhs9enTRNTIBvHQPVunnJqKaxyBERAYl83xkHo7M0wkICCgxwblx48Y4deqUVs9TWHWmazI3qCrS09PVn99++62qdCvOxsbmrp6biHSPc4SIyKAkDEiACQoKKlPlJb1DZ86cwapVq8p8nfQWpaSkVPv7ykTmXbt2lTgn95s3b17p1/31118lzu3du7fotkyilkB3/vx59bqKHyEhIdVuLxHpB3uEiMhoPfzww2pS82OPPabK5/v27avK52Xi8ueff45XX321qHxehp6uXr1aZkK1BJPyvP322+r527VrpyrV/vjjD1WmX7oEvzSZ3CzrH8mwlgylycTo48ePo0GDBkXXTJ06Fa+99poaCpPlAWRpAJlYffPmTYwbN04nfzdEpBsMQkRktCTI/PTTT2pBxQULFqgqLOk1atSoEZ5++ukSlVYSRqSCq3Rpfnml7UIClMwH+vTTT1W4kd4aWc+oZ8+ed2zTI488ouYAvfPOO+q5hw8frsr+161bV3TNc889B2dnZ8yYMUMFLun1atWqFcaOHXvXfydEpFtWMmNax89JREREZBI4R4iIiIgsFoMQERERWSwGISIiIrJYDEJERERksRiEiIiIyGIxCBEREZHFYhAiIiIii8UgRERERBaLQYiIiIgsFoMQERERWSwGISIiIoKl+v/mjd+8h/ZfHAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the surrogate\n", "_o = []\n", "_RMS = []\n", "for r in R.values():\n", " _RMS.append((np.sqrt((((test_predictions[r['order']] - test_results))**2).mean())))\n", " _o.append(r['order'])\n", "\n", "plt.figure()\n", "plt.semilogy(_o, _RMS, 'o-')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMS error for the PCE surrogate')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_PCE_surrogate.png')\n", "plt.savefig('Convergence_PCE_surrogate.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "executable": " /usr/bin/env python", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 4 }