{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sensityivity analysis for the Ishigama function with noise using PCE\n", "\n", "Run an EasyVVUQ campaign to analyze the sensitivity for the Ishigami function with noise\n", "\n", "This is done with PCE providing a normal distributed noise value" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.729525Z", "start_time": "2021-12-10T08:41:14.617602Z" }, "code_folding": [], "execution": { "iopub.execute_input": "2025-07-18T12:08:01.062513Z", "iopub.status.busy": "2025-07-18T12:08:01.062304Z", "iopub.status.idle": "2025-07-18T12:08:19.139957Z", "shell.execute_reply": "2025-07-18T12:08:19.139397Z", "shell.execute_reply.started": "2025-07-18T12:08:01.062502Z" } }, "outputs": [], "source": [ "# Run an EasyVVUQ campaign to analyze the sensitivity for the Ishigami function with noise\n", "# This is done with PCE providing a normal distributed noise value.\n", "%matplotlib inline\n", "import os\n", "import easyvvuq as uq\n", "import chaospy as cp\n", "import pickle\n", "import numpy as np\n", "import matplotlib.pylab as plt\n", "import time\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.734097Z", "start_time": "2021-12-10T08:41:19.730725Z" }, "code_folding": [ 0, 1 ], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.141306Z", "iopub.status.busy": "2025-07-18T12:08:19.140478Z", "iopub.status.idle": "2025-07-18T12:08:19.148294Z", "shell.execute_reply": "2025-07-18T12:08:19.147965Z", "shell.execute_reply.started": "2025-07-18T12:08:19.141242Z" } }, "outputs": [], "source": [ "# Define the Ishigami function\n", "def ishigamiSA(a,b):\n", " '''Exact sensitivity indices of the Ishigami function for given a and b.\n", " From https://openturns.github.io/openturns/master/examples/meta_modeling/chaos_ishigami.html\n", " '''\n", " var = 1.0/2 + a**2/8 + b*np.pi**4/5 + b**2*np.pi**8/18\n", " S1 = (1.0/2 + b*np.pi**4/5+b**2*np.pi**8/50)/var\n", " S2 = (a**2/8)/var\n", " S3 = 0\n", " S13 = b**2*np.pi**8/2*(1.0/9-1.0/25)/var\n", " exact = {\n", " 'expectation' : a/2,\n", " 'variance' : var,\n", " 'S1' : (1.0/2 + b*np.pi**4/5+b**2*np.pi**8.0/50)/var,\n", " 'S2' : (a**2/8)/var,\n", " 'S3' : 0,\n", " 'S12' : 0,\n", " 'S23' : 0,\n", " 'S13' : S13,\n", " 'S123' : 0,\n", " 'ST1' : S1 + S13,\n", " 'ST2' : S2,\n", " 'ST3' : S3 + S13\n", " }\n", " return exact\n", "\n", "Ishigami_a = 7.0\n", "Ishigami_b = 0.1\n", "exact = ishigamiSA(Ishigami_a, Ishigami_b)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.736546Z", "start_time": "2021-12-10T08:41:19.734786Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.148956Z", "iopub.status.busy": "2025-07-18T12:08:19.148692Z", "iopub.status.idle": "2025-07-18T12:08:19.151590Z", "shell.execute_reply": "2025-07-18T12:08:19.151321Z", "shell.execute_reply.started": "2025-07-18T12:08:19.148927Z" } }, "outputs": [], "source": [ "# define a model to run the Ishigami code directly from python, expecting a dictionary and returning a dictionary\n", "def run_ishigami_model(input):\n", " import Ishigami\n", " qois = [\"Ishigami\"]\n", " del input['out_file']\n", " N = input['N']\n", " del input['N']\n", " return {qois[0]: Ishigami.evaluate(**input)+N}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.740153Z", "start_time": "2021-12-10T08:41:19.737318Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.152118Z", "iopub.status.busy": "2025-07-18T12:08:19.151997Z", "iopub.status.idle": "2025-07-18T12:08:19.154201Z", "shell.execute_reply": "2025-07-18T12:08:19.153972Z", "shell.execute_reply.started": "2025-07-18T12:08:19.152110Z" } }, "outputs": [], "source": [ "# Define parameter space\n", "def define_params():\n", " return {\n", " \"x1\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"x2\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"x3\": {\"type\": \"float\", \"min\": -np.pi, \"max\": np.pi, \"default\": 0.0},\n", " \"a\": {\"type\": \"float\", \"min\": Ishigami_a, \"max\": Ishigami_a, \"default\": Ishigami_a},\n", " \"b\": {\"type\": \"float\", \"min\": Ishigami_b, \"max\": Ishigami_b, \"default\": Ishigami_b},\n", " \"N\": {\"type\": \"float\", \"min\": -100.0, \"max\": 100.0, \"default\": 0.0},\n", " \"out_file\": {\"type\": \"string\", \"default\": \"output.csv\"}\n", " }" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.744486Z", "start_time": "2021-12-10T08:41:19.741899Z" }, "code_folding": [], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.154580Z", "iopub.status.busy": "2025-07-18T12:08:19.154506Z", "iopub.status.idle": "2025-07-18T12:08:19.156381Z", "shell.execute_reply": "2025-07-18T12:08:19.156164Z", "shell.execute_reply.started": "2025-07-18T12:08:19.154572Z" } }, "outputs": [], "source": [ "# Define varying space\n", "def define_vary():\n", " return {\n", " \"x1\": cp.Uniform(-np.pi, np.pi),\n", " \"x2\": cp.Uniform(-np.pi, np.pi),\n", " \"x3\": cp.Uniform(-np.pi, np.pi),\n", " \"N\": cp.Normal(0, 10.0)\n", " }" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:41:19.752409Z", "start_time": "2021-12-10T08:41:19.745560Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.156718Z", "iopub.status.busy": "2025-07-18T12:08:19.156649Z", "iopub.status.idle": "2025-07-18T12:08:19.160808Z", "shell.execute_reply": "2025-07-18T12:08:19.160591Z", "shell.execute_reply.started": "2025-07-18T12:08:19.156711Z" } }, "outputs": [], "source": [ "# Set up and run a campaign\n", "def run_campaign(pce_order=2, use_files=False):\n", "\n", " times = np.zeros(7)\n", "\n", " time_start = time.time()\n", " time_start_whole = time_start\n", "\n", " # Set up a fresh campaign called \"Ishigami_pce.\"\n", " my_campaign = uq.Campaign(name='Ishigami_pce.')\n", "\n", " # Create an encoder and decoder for PCE test app\n", " if use_files:\n", " encoder = uq.encoders.GenericEncoder(template_fname='Ishigami.template',\n", " delimiter='$',\n", " target_filename='Ishigami_in.json')\n", "\n", " decoder = uq.decoders.SimpleCSV(target_filename=\"output.csv\",\n", " output_columns=[\"Ishigami\"])\n", "\n", " execute = uq.actions.ExecuteLocal('python3 %s/Ishigami.py Ishigami_in.json' % (os.getcwd()))\n", "\n", " actions = uq.actions.Actions(uq.actions.CreateRunDirectory('/tmp'), \n", " uq.actions.Encode(encoder), execute, uq.actions.Decode(decoder))\n", " else:\n", " actions = uq.actions.Actions(uq.actions.ExecutePython(run_ishigami_model))\n", "\n", " # Add the app (automatically set as current app)\n", " my_campaign.add_app(name=\"Ishigami\", params=define_params(), actions=actions)\n", "\n", " # Create the sampler\n", " time_end = time.time()\n", " times[1] = time_end-time_start\n", " print('Time for phase 1 = %.3f' % (times[1]))\n", "\n", " time_start = time.time()\n", " # Associate a sampler with the campaign\n", " Sampler_PCE = uq.sampling.PCESampler(vary=define_vary(), polynomial_order=pce_order)\n", " my_campaign.set_sampler(Sampler_PCE)\n", "\n", " # Will draw all (of the finite set of samples)\n", " my_campaign.draw_samples()\n", " print('PCE order = %s' % pce_order)\n", " print('Number of samples = %s' % my_campaign.get_active_sampler().count)\n", "\n", " time_end = time.time()\n", " times[2] = time_end-time_start\n", " print('Time for phase 2 = %.3f' % (times[2]))\n", "\n", " time_start = time.time()\n", " # Run the cases\n", " my_campaign.execute(sequential=True).collate(progress_bar=True)\n", "\n", " time_end = time.time()\n", " times[3] = time_end-time_start\n", " print('Time for phase 3 = %.3f' % (times[3]))\n", "\n", " time_start = time.time()\n", " # Get the results\n", " results_df = my_campaign.get_collation_result()\n", "\n", " time_end = time.time()\n", " times[4] = time_end-time_start\n", " print('Time for phase 4 = %.3f' % (times[4]))\n", "\n", " time_start = time.time()\n", " # Post-processing analysis\n", " results = my_campaign.analyse(qoi_cols=[\"Ishigami\"])\n", " \n", " time_end = time.time()\n", " times[5] = time_end-time_start\n", " print('Time for phase 5 = %.3f' % (times[5]))\n", "\n", " time_start = time.time()\n", " # Save the results\n", " pickle.dump(results, open('Ishigami_results.pickle','bw'))\n", " time_end = time.time()\n", " times[6] = time_end-time_start\n", " print('Time for phase 6 = %.3f' % (times[6]))\n", "\n", " times[0] = time_end - time_start_whole\n", "\n", " return results_df, results, times, pce_order, my_campaign.get_active_sampler().count" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:01.246304Z", "start_time": "2021-12-10T08:41:19.753371Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:08:19.161301Z", "iopub.status.busy": "2025-07-18T12:08:19.161217Z", "iopub.status.idle": "2025-07-18T12:14:05.152296Z", "shell.execute_reply": "2025-07-18T12:14:05.151146Z", "shell.execute_reply.started": "2025-07-18T12:08:19.161293Z" }, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 1 = 0.034\n", "PCE order = 1\n", "Number of samples = 16\n", "Time for phase 2 = 0.056\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████████| 16/16 [00:00<00:00, 3128.04it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.030\n", "Time for phase 4 = 0.004\n", "Time for phase 5 = 0.041\n", "Time for phase 6 = 0.002\n", "Time for phase 1 = 0.007\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "Traceback (most recent call last):\n", " File \"/Volumes/UserData/dpc/GIT/EasyVVUQ/env_3.12/lib/python3.12/site-packages/easyvvuq/analysis/pce_analysis.py\", line 495, in analyse\n", " dY_hat = build_surrogate_der(fit, verbose=False)\n", " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", " File \"/Volumes/UserData/dpc/GIT/EasyVVUQ/env_3.12/lib/python3.12/site-packages/easyvvuq/analysis/pce_analysis.py\", line 335, in build_surrogate_der\n", " assert(n1 == n2)\n", " ^^^^^^^^\n", "AssertionError\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "PCE order = 2\n", "Number of samples = 81\n", "Time for phase 2 = 0.088\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████████| 81/81 [00:00<00:00, 6073.81it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.019\n", "Time for phase 4 = 0.002\n", "Time for phase 5 = 0.133\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.007\n", "PCE order = 3\n", "Number of samples = 256\n", "Time for phase 2 = 0.167\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 256/256 [00:00<00:00, 6319.55it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.049\n", "Time for phase 4 = 0.004\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 0.265\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "PCE order = 4\n", "Number of samples = 625\n", "Time for phase 2 = 0.370\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████| 625/625 [00:00<00:00, 6280.84it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.115\n", "Time for phase 4 = 0.008\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 5 = 0.642\n", "Time for phase 6 = 0.011\n", "Time for phase 1 = 0.007\n", "PCE order = 5\n", "Number of samples = 1296\n", "Time for phase 2 = 0.520\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1296/1296 [00:00<00:00, 6776.62it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.220\n", "Time for phase 4 = 0.016\n", "Time for phase 5 = 1.636\n", "Time for phase 6 = 0.001\n", "Time for phase 1 = 0.006\n", "PCE order = 6\n", "Number of samples = 2401\n", "Time for phase 2 = 0.989\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 2401/2401 [00:00<00:00, 6610.41it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.419\n", "Time for phase 4 = 0.026\n", "Time for phase 5 = 5.114\n", "Time for phase 6 = 0.002\n", "Time for phase 1 = 0.018\n", "PCE order = 7\n", "Number of samples = 4096\n", "Time for phase 2 = 1.599\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 4096/4096 [00:00<00:00, 6753.46it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 0.753\n", "Time for phase 4 = 0.040\n", "Time for phase 5 = 15.794\n", "Time for phase 6 = 0.004\n", "Time for phase 1 = 0.014\n", "PCE order = 8\n", "Number of samples = 6561\n", "Time for phase 2 = 3.132\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 6561/6561 [00:01<00:00, 5595.64it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.328\n", "Time for phase 4 = 0.134\n", "Time for phase 5 = 34.943\n", "Time for phase 6 = 0.006\n", "Time for phase 1 = 0.022\n", "PCE order = 9\n", "Number of samples = 10000\n", "Time for phase 2 = 3.888\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████| 10000/10000 [00:01<00:00, 5809.02it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 1.941\n", "Time for phase 4 = 0.200\n", "Time for phase 5 = 79.951\n", "Time for phase 6 = 0.009\n", "Time for phase 1 = 0.015\n", "PCE order = 10\n", "Number of samples = 14641\n", "Time for phase 2 = 5.835\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████| 14641/14641 [00:02<00:00, 5799.49it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Time for phase 3 = 2.988\n", "Time for phase 4 = 0.259\n", "Time for phase 5 = 182.045\n", "Time for phase 6 = 0.016\n" ] } ], "source": [ "# Calculate the polynomial chaos expansion for a range of orders\n", "\n", "R = {}\n", "for pce_order in range(1, 11):\n", " R[pce_order] = {}\n", " (R[pce_order]['results_df'], \n", " R[pce_order]['results'], \n", " R[pce_order]['times'], \n", " R[pce_order]['order'], \n", " R[pce_order]['number_of_samples']) = run_campaign(pce_order=pce_order, use_files=False)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:01.296719Z", "start_time": "2021-12-10T08:47:01.247807Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:05.157076Z", "iopub.status.busy": "2025-07-18T12:14:05.156832Z", "iopub.status.idle": "2025-07-18T12:14:05.217663Z", "shell.execute_reply": "2025-07-18T12:14:05.216015Z", "shell.execute_reply.started": "2025-07-18T12:14:05.157054Z" } }, "outputs": [], "source": [ "# save the results\n", "\n", "pickle.dump(R, open('collected_results.pickle','bw'))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:01.372146Z", "start_time": "2021-12-10T08:47:01.297577Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:05.219493Z", "iopub.status.busy": "2025-07-18T12:14:05.219364Z", "iopub.status.idle": "2025-07-18T12:14:05.292215Z", "shell.execute_reply": "2025-07-18T12:14:05.291906Z", "shell.execute_reply.started": "2025-07-18T12:14:05.219485Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TotalPhase 1Phase 2Phase 3Phase 4Phase 5Phase 6
10.1664340.0341190.0563250.0297760.0037140.0406760.001628
20.2509820.0070450.0881020.0194970.0023890.1330380.000772
30.4942650.0071880.1674730.0491700.0044170.2648310.001052
41.1520050.0061460.3696530.1151960.0080330.6423170.010516
52.3998740.0065950.5203250.2201330.0157881.6358060.001044
66.5559500.0062800.9885020.4191080.0255055.1141280.002055
718.2090500.0176121.5989590.7531750.04024215.7937510.004482
839.5575510.0143523.1315941.3278390.13438134.9428690.005903
986.0119950.0220073.8883451.9413500.19987279.9508010.009002
10191.1628570.0149805.8352312.9876100.258682182.0447220.016074
\n", "
" ], "text/plain": [ " Total Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6\n", "1 0.166434 0.034119 0.056325 0.029776 0.003714 0.040676 0.001628\n", "2 0.250982 0.007045 0.088102 0.019497 0.002389 0.133038 0.000772\n", "3 0.494265 0.007188 0.167473 0.049170 0.004417 0.264831 0.001052\n", "4 1.152005 0.006146 0.369653 0.115196 0.008033 0.642317 0.010516\n", "5 2.399874 0.006595 0.520325 0.220133 0.015788 1.635806 0.001044\n", "6 6.555950 0.006280 0.988502 0.419108 0.025505 5.114128 0.002055\n", "7 18.209050 0.017612 1.598959 0.753175 0.040242 15.793751 0.004482\n", "8 39.557551 0.014352 3.131594 1.327839 0.134381 34.942869 0.005903\n", "9 86.011995 0.022007 3.888345 1.941350 0.199872 79.950801 0.009002\n", "10 191.162857 0.014980 5.835231 2.987610 0.258682 182.044722 0.016074" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# produce a table of the time taken for various phases\n", "# the phases are:\n", "# 1: creation of campaign\n", "# 2: creation of samples\n", "# 3: running the cases\n", "# 4: calculation of statistics including Sobols\n", "# 5: returning of analysed results\n", "# 6: saving campaign and pickled results\n", "\n", "Timings = pd.DataFrame(np.array([R[r]['times'] for r in list(R.keys())]), \n", " columns=['Total', 'Phase 1', 'Phase 2', 'Phase 3', 'Phase 4', 'Phase 5', 'Phase 6'], \n", " index=[R[r]['order'] for r in list(R.keys())])\n", "Timings.to_csv(open('Timings.csv', 'w'))\n", "display(Timings)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:01.538700Z", "start_time": "2021-12-10T08:47:01.372805Z" }, "execution": { "iopub.execute_input": "2025-07-18T12:14:05.292892Z", "iopub.status.busy": "2025-07-18T12:14:05.292785Z", "iopub.status.idle": "2025-07-18T12:14:05.645753Z", "shell.execute_reply": "2025-07-18T12:14:05.645427Z", "shell.execute_reply.started": "2025-07-18T12:14:05.292883Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Volumes/UserData/dpc/GIT/EasyVVUQ/env_3.12/lib/python3.12/site-packages/easyvvuq/analysis/results.py:467: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", " fig.show()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAM7CAYAAADNsObBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASI1JREFUeJzt3QmcVWX9P/DvDIuoCCgq4goq4oZorrjkvpapZSmuufcvS1NLzfVn5a65m1mZlbnve64FrriDC4q7JiIKKso+9//6HppxBgZFewrQ9/v1mtfMPfe55z733Hvh+ZxnOXW1Wq0WAAAABdWX3BkAAEASNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQA/kN/+tOfoq6uLl555ZXPLHvvvfdWZfP3rOwvf/lLLLvsstGuXbvo0qVL8f3nMdh///2LHtuZqUePHvH9738/ZhV5vPK45fEDmFkEDfgKaGysNf506NAhFl544dh8883jrLPOig8//HBmV/FL57zzzpttG3nPPfdc1Wheaqml4sILL4zf/e530y177LHHVp+pkSNH/k/rCMCsr+3MrgDwv3PcccdFz549Y+LEiTF8+PDqrPqBBx4Yp59+etxwww2x0korzewqzpZ23XXX2HHHHWOOOeZoETTmn3/+ac5yf/3rX4+xY8dG+/btY1aVn4uGhoY488wzY+mll57lju2saOjQoVFfP+ucu1tiiSWqz1n2SAHMLIIGfIVsueWWsdpqqzXdPvzww+Puu++Ob37zm/Gtb30rnn322Zhzzjlnah1nR23atKl+ZkQ2RrNHaVY2YsSI6vd/Y8jUf/PYzkyzShCaNGlSFRIzyM7qnzPgy2/WOf0CzBQbbbRRHHXUUfHqq6/GX//612mG0Gy//fYx33zzVY2WDCnZ8zG10aNHx09/+tNqnHo2uBZddNHYbbfdWgynycbrXnvtFd26dav21bdv37j44otbHVd+6qmnxrnnnhtLLrlkzDXXXLHZZpvF66+/HrVaLX75y19W+89AtM0228R7773XYh9ZhwxOf//732PllVeunmv55ZePa665Zpp6v/TSS/Hd7363en35PGuttVbcfPPN05Q7++yzY4UVVqjKzDvvvNVx+Nvf/jbdeQRZh6effjr+8Y9/NA1X22CDDT51jsaVV14Zq666avW6sidkl112iTfffLNFmewd6dixY7V92223rf5eYIEF4pBDDonJkyfHjMielnwt+T7l8Lkf/ehH1fvX/Pgdc8wx1d+576xrDo/6PF544YX4zne+EwsttFB1/PP9yl6J999/f5qy1113Xay44opVfbJet91222fO0ciGdNYp65/vyYYbbhjPPPPMNPMk8rORx6ZPnz7VserUqVMVtp988skWz9H4nlxxxRXxf//3f7HIIovEPPPMU332s87jx4+vev4WXHDBaj977LFHte3zzNHIXsT8nOVjp/bBBx9UxynrmiZMmBBHH3109Xno3LlzzD333LHeeuvFPffcM93vyxlnnFENdcvjmMeitTkaTz31VFXH/F7l8+X7s+eee8a7777b6nC4YcOGVeUzcGY9su4ff/zxNPXPfzfWWGONpu9H9trl96+5W2+9tXoN+Vry2H7jG9+oviPAl5seDaAanvKLX/yiahzss88+1bZsBKyzzjpVo+uwww6rGgjZEMsG7tVXXx3bbbddVW7MmDFVAyJ7Q7LR8rWvfa0KGBlI3njjjarRnEM4sqGdDZecAJzDt7JhnY2YbOQecMABLepzySWXVI2tH//4x1Vj8eSTT47vfe97VSjKRuGhhx5a7SsDQDbO/vjHP07T0N1hhx3iBz/4Qey+++5x0UUXVYEiG7GbbrppVebtt9+Otddeu2o4/eQnP4muXbtWwSd7dq666qqm15dzFPL+bHRmPceNG1c12B566KHYaaedWj2e2ejLumej9Igjjqi2ZcCanmwMZiNu9dVXjxNOOKGqWw5buu++++Lxxx9v0bOQgSLn1qy55ppVA/POO++M0047rWpk/r//9/8+9X3OBmQ2pDfZZJOqbA73Of/882PQoEHVc+Uwm6z7n//857j22mur+/I1fJ4hdfm+Zf2yIZ7HIBuzGYxuuumm6r3OBmujgQMHVgHwhz/8YdX4zPlCGVBee+216v2YnuyJy8/E1ltvXT1XBof8ne/N1EEyg0y+9/mZy+N6wQUXxPrrr181xjOoNJfHPoNeft4bP195TLIXatSoUdXxe/DBB6v3K/eXYWBG5X7yM5WvN+vQfOhc1jGPV4axxuDx+9//Pvr37199H3MO1R/+8IfqNT788MNVgG4uP9/52vfdd98qaGSgyTA2tTvuuKM6JvlZy/clv+M5/yZ/5+vKcNFcfufydeZxeeyxx6o6Zdg66aSTmsrk5ymPS36Xcmhmvq78bmRPaZ4gaFxYIL+HWf98bH7n8rO17rrrVp/vDGnAl1QN+NK76KKLavl1HzRo0HTLdO7cubbKKqs03d54441rffr0qY0bN65pW0NDQ23ttdeu9erVq2nb0UcfXe37mmuumWafWT6dccYZVZm//vWvTfdNmDCh1q9fv1rHjh1rH3zwQbXt5ZdfrsotsMACtdGjRzeVPfzww6vtffv2rU2cOLFpe//+/Wvt27dvUccllliiKnv11Vc3bXv//fdr3bt3b/H6DjzwwKrcgAEDmrZ9+OGHtZ49e9Z69OhRmzx5crVtm222qa2wwgozdHyz/o3yMeuvv/40Ze+5556qbP5uPA4LLrhgbcUVV6yNHTu2qdxNN91Ulcvj22j33Xevth133HEt9pmva9VVV/3UOo4YMaI6VptttlnTa0vnnHNOtc8//vGPTduOOeaYats777zzqftsrezjjz9e3b7yyis/9XFZJuszbNiwpm1PPvlktf3ss8+e7rEdPnx4rW3btrVtt922xf6OPfbYqlweo0b5uWj+WlPuZ4455mhxDBvfk3wP8v1o/vmqq6urbbnlli32kZ/b/Jw1l7ebP3drbr/99up5brzxxhbbt9pqq9qSSy7ZdHvSpEm18ePHtygzatSoWrdu3Wp77rlni9eS++vUqVP1/k79OvO+PH6NPv7442nqdOmll1bl/vnPf07znjZ/rrTddtvVunbt2nT7hRdeqNXX11fbpz7Ojd/9/E516dKlts8++7S4P9/H/Ddn6u3Al4uhU0Alz1w3rj6VvQh5RjLPaOa27KHInxxikWcls8egcVhP9m7kMKjGHoDmGs+Q3nLLLdUZ1DxD2/wMb/YUZI9IDjFqLs9ANz/znWfvUw4natu2bYvteQZ96iFGeaa6eX1yyEwO5cqzpzkJvrFOOdwjz6o2PwZ5VjiHneQZ75S9Cdkzk2f9/xseeeSRalhZntVvPqY+h5bk8rKtDeXKnprmskcpz1R/muz5yGOVQ4CaT1rOM+Z5fFp7ni+i8X27/fbbWx1m01z2rGRPTKPsOcm6fNprueuuu6p5CHm8msvek6nl2f3G15o9Qfn5zfe4d+/e1Rn6qeVnpPnk6fx8ZSbKnrrmcnsO5ct6fB7ZI5c9fJdffnnTtuwpyZ6G7IFrlHNSGns8smciv4/5XDlkr7V6Zy9QDnP7LM3nX2UPSH6nc7hgam2/rX3O8hhmj0tjT0zWL3t2pp4I3/jdz9eWPVn53W/8dyR/8jXmcZx6OBjw5SJoAJVs8OfwlZTDRrKBlXM3sgHT/Kdx/H7jhOEXX3yxGmP/aXL+R69evaZpjCy33HJN9ze3+OKLt9p4XWyxxVrdno215nKlpKmHgSyzzDLV78ax/vmc2eCc2tR1ymFa2TjNUJKvIec05DCjUhqfp7W6ZNCY+thkGJm6UZnj4qc+BjP6PNmgzTH7Uz/PF5VDbQ466KBqmE02qjOY5nyb1uZnTP0+z8hraazn1Kth5XChfGxz2Qj+zW9+U71vGTqyPnnscujbjNTn0z53ue/W9vFpMiRnKLj++uub5njkUKqcv9E8aKQcxpfBK9/vHEaW9c4w2Npz5jGfERlYcvhfDuPL0JH7bHzsjByPxuPb+P7kdz+/0zkHanrypERjyJr635Icqtn47wjw5WSOBlCdsc+GRmPjrXF8d85/yIZia/6by55Ob5Wh6W2fMhLnvyODR85lyDkGOccje3ByQnWexc3x6f9rs8MKTDlnJOffZIM6G5PZc5Xj/HMeQE4M/1+9n8cff3wVlrNHIhcRyDCSDePs1WltDsP/4nOX8zByjkZOjs75TjnvKQNl9go2n1ydxy/v/9nPflbNi8g65DHMxv3UZnSluOyhvP/++6t95jyPDNB5HLbYYovPdTw+z+tu3G/O08hezak176EEvnx8w4GqEZAaQ0We4U45jCSHt3yaHPoyZMiQz1zTP88iZ6Ojea9GrmrVeH9JjT0yzXs1nn/++ep348TTfM4MEFNrrU45ET7POOdPDj/69re/Hb/+9a+rScnTW0J06h6V6Wl8nqxLnvVtLreVOjbNn6fx/U35el5++eXPfJ8/r1zpKX+OPPLIqnGbCwv89re/jV/96ldFXke+x83P5OeQnql7QnJSf65IlROpm8uhPNm7MTPkikzdu3evhk/lsL0coti4YEDzeud7lL0dzT9Hjb2JX0Qemxx2luG4+ST2xh6HLyK/+/mdzmGGU09Qb14mZVgq/RkDZn2GTsFXXDZ08mxvNtp23nnnpkZBrhKVZ17feuutaR7zzjvvNP2dQ0Fy1Z9cpWh6Zz632mqram5E87HpOeY8V/XJs6q5ClBJ//rXv1rUJ8eU50pK2RhqPKuadcoVfB544IGmch999FG1Ck+GkcbhIFMv/ZlDjfK+fG055GV6Mpw0XzZ2enLcfR7vbIQ3XzI1z3jnSl45V6OEbORl3XNlp+ZnpLMRnr1ZpZ4nj/XUcxcycGTAnHpJ2C9i4403rs6C56pFzZ1zzjmtnpGf+ux7rnY29Zye/6U8DrmC2Y033lgF/DxWUw+bauxJaF73XMmp+Wf182ptnylXGfuissclX0+uNjV1j0jj8+TJi5x3k71LrX1fmv9bAnz56NGAr5BsvOYZ+2zc5FKfGTJysmaeJc7laJufnc9x9XnGNRuJOWE4z7DmY7Kxk0OtGq9FkMMw8gxsTuDOISq59n+OBc/9ZeM5h4TkBOsMLTkc5NFHH60a8vmYnOuQDZ3GuSGl5HyMvGZHTuDO8ei5/G3WPZcBbZRLmF566aXVdRVyaE8Oq8lx8Xl2P4dHNfa85BKdGU7yjHzuKxv/2ajNhvmn1TuPQzaG8wx+DjPLMDF1j0Vjr1Eu+ZlLjmbgykmzjcvb5nHK65OUkGPiswcmz2jnUJlcxjd7N3IYWC6rmxPtS8jPVC5hnJ+HfB/ys5YN6mzoZij9T+V7kPMMcnhWvoZ8LflZzM929lI07wHI66lkIziPbS6/Onjw4Grp5OY9OjNDBosM2dlDkd+vxnlBzeudvRm5oEF+zvIzmd+lDLg5l+qLyMZ+9qbkssDZ4M9lq3NYW+77i8rPdfbG5ImKnCiePX05Fya/d7kgQw71yufN70EuoZ1LX+fQsfws5hLGOeckv1ethUTgy0HQgK+QxiETeWY7G9bZyMmGfjbEpm40Z6MmV0TKhmleNyDP7GdjeZVVVmkx9CJ7JAYMGFA1mrIXIRvrWS7PPDeOx88x5Hn9i2zc5/151jsnJWfD/9MucvZF5eTfbMhlCMrGdPbWZG9K8/km2WDNIT052TvL5io8Ofk2zzQ3P7u/3377VY3T008/vWrk5WvKYJJDgj5NHqOcuJwNu1y5K0NEa0Ej5THIi52deOKJVX2yNyQbmRlASl6dO693kI28bNhlgMnPQIbAPNvcfLWl/0QGyzzOeRyz5yBfV27LINC4wtF/Ko9L7jevcZKrafXr169qNGcwbh6W89ow2UuVF1fM9z8butm4zc/hzJShJyeY58pVU/dmNH4esgcww3mu3pXfxZy3kb0xU1/o8fPI45Crc+VJhOxxyBCd78vU1xP5PDLI5fcrv0MZOvJ9ye9RBotGeb2ZfI78fJ9yyilVz1YGnQwnrV3AEPjyqMs1bmd2JQBKyV6AXAUrJ2/z1ZHD1HJVpOxBmnrOAwAzhzkaAMxW8krzU2uca5BziwCYNRg6BcBsJYdB5XC+nNCfQ/cGDhxYzbfJoUA55h+AWYOgAcBsJecA5MpTOf8l5/s0ThD/T5fOBaAsczQAAIDizNEAAACKEzQAaJpIfeCBB35qmbxOxXXXXTfD+8zlWPMxM3LxwllxBbP/5IJ2AF915mgAMMPySvG5jCwAfBY9GgDMsLxKel79eWbLq1uXMHny5GhoaIj/hgkTJvxX9gswuxA0AGiSje6f//zn1VXDM1Tk1cQ/behUXl195ZVXrq7Ivdpqq1X3ZZknnniixeMeffTR6v68cnReGTuv2N7c9ddfX125O/ez5JJLVleknzRpUovnPf/88+Nb3/pWdeX0X//6163Wf9SoUbHbbrtVvS75XFtuuWW88MILTffnsrh5tfUbbrihuuJ2hqbXXnstRowYEVtvvXV1Ffu80nVeDX5qOfxr7733rq6u3qlTp+pK708++WTT/Xms8lj8/ve/r/bReJXyq666Kvr06VPtu2vXrrHJJptUVywH+LITNABocvHFF1cN+YceeqhaPva4446LO+64o9WyubRsNs6zEf3YY4/FL3/5yzj00ENbLZtX6z7ttNPikUceqZam3XPPPZvuGzBgQBUOconaZ555Ji644IIqEEwdJrIhv91228XgwYNbPL6573//+9VzZJB44IEHIhdWzOttNO8B+fjjj+Okk06qAsHTTz8dCy64YPW4119/Pe65554qGJx33nlV+Gjuu9/9brXt1ltvrYJTBqONN9443nvvvaYyw4YNi6uvvjquueaaKmzlULP+/ftX9X322WerOSvf/va3q3oBfOnl8rYAsP7669fWXXfdFttWX3312qGHHtp0O//buPbaa6u/zz///FrXrl1rY8eObbr/wgsvrMo8/vjj1e177rmnun3nnXc2lbn55purbY2P23jjjWvHH398i+f9y1/+UuvevXuL5z3wwAM/tf7PP/98Ve6+++5r2jZy5MjanHPOWbviiiuq2xdddFFV5oknnmgqM3To0Grbww8/3LTt2Wefrbb95je/qW4PGDCg1qlTp9q4ceNaPOdSSy1Vu+CCC6q/jznmmFq7du1qI0aMaLr/0UcfrfbzyiuvfGrdAb6MTAYHoMXF8Jrr3r37NGf2G+XwpyzfOEQorbHGGp+539xnyv0uvvji1fCj++67r0UPRs6dGDduXNX7kEOgUg69+jTZY5C9JWuuuWbTthyq1Lt37+q+Ru3bt29Rn8bHrbrqqk3bll122WqIVaOs45gxY6r9NTd27Nh48cUXm24vscQS1dCqRn379q16PbLXZ/PNN6+uXr799tubUA98JQgaADRp165di9s5N6LEZOnm+819psb9ZgM+52TkkKKpNQ8xOaSrhJwr0ViHGZV1zICUQ5+m1jyQTF3HNm3aVEPPci7L3//+9zj77LOrYWQ5NC3ncQB8mZmjAcAXkj0FOV9i/PjxTdsGDRr0ufeTcx2yd2TppZee5qe+fsb/m1puueWqCeTZiG/07rvvVvvOid/Tk70X+bicd9EoH9P82h9Zx+HDh1c9H1PXcf755//UemWoWWeddaow9fjjj1c9Ktdee+0Mvy6A2ZWgAcAXstNOO1W9Evvuu281/Oj222+PU089tbrv8/QYHH300fHnP/+5aojn5Ozc12WXXRZHHnnk56pPr169Yptttol99tknBg4cWA132mWXXWKRRRaptn9aYNpiiy1iv/32q0JKBo5cXSp7PhrlSlH9+vWLbbfdtuqZeOWVV6peiuydyMnn05P7O/7446syubpVThJ/5513qlAE8GVXlxM1Suxoh2t3jC+zy7e77As/9odDty1aF4D/hut3HRhdl+sc6/6iT9O2W3/0UMwxT7vY6MSvVbfPX/b62OKcNaLnJlPmWQx/7L345/89GaNeGhNdl5kn+u6xdNx5yKOx4y0bxbxLzhNvPjQybtj9vtjz4a1ijk5Thk+NfPb9uHK7e2PnOzeNTotOmX/x2oAR8eh5Q6v76tvWRZclO8Zy2y8Ry3+vR6vPOz3j358QA48fHK/cPTwaJtai+2pdY90j+0SXHh2r+5+75rW474TBsdegb7R43MfvjIt7j3wi3njgnZhz/jlijQOWi0FnPht9dl8q+u6+VFVmwpiJ8fAZz8ZLf38rxo4aH3PN36Ha/1oHLR8du88Zg85+Ll6+66343nUbNu131Isfxn0nDIl3nhkdE8dMio4Lzxl9dlmy+gGYlZ3X+5OlzL8oQWMGCRoAn+35G1+Pe37xeNWQb9uhzcyuDgAzMWiYDA7AFzb0utei02Jzx9zdOsS7z30QD576TCy1xSJCBgCCBgBf3Mcjx8egs56rfs+1QIdYaouFY40DzT8AQNAA4D+wyt69qh8AmJpVpwAAgOIEDQAAoDhDpwAobsglL8UTfxhWzd3oumynWPfIlaLbSvNOt/yLt70ZD5/5XHz45sfReYm5Y61DVogl1u9W3Td5YkM8fOaz8do/3o4P3vg42ndsG4uuvUC1rOzc3T651sU7T4+OB097JkYMHhV19XWx5GYLxzqHrRjt5m75X10ucfvkn16M918ZE+06tq3mlXz96L7VfaNe+jD+eexT1bK0Ez6cGHMt2CF6fXPRWO1HvaNNO+fmAD4PQQOAoobd8mbcd+LTsf6xK8WCfeeNpy5+KW7a+4Hof+vGMVfXOaYpn9fiuOPgR2PNg5aLHhssFC/c9Ebctv9Dsf3VG0TXZTrFpHGTY+Qz78eqP+wdXXt3ivEfTIz7jh8ct/5wSpn00dtj48Y974+ltlykum7GxI8mxX3HD4m7D38sNj9rjabnevKiYfHkRS/GWj9bIbr1nTcmjZ0UH7z5cdP9GSZ6b7NozL9Cl+r6ISOHvh//OOrJqDXUqmADwIxzHY3/wXU0AL5K1lxzzVh99dXjnHPOqW7n1cMXW2yx+PGPfxyHHXbYNOV32GGH+Oijj+Kmm25q2rbWWmvFyiuvHL/97W9bfY5BgwbFGmusEa+++mosvvji8bvf/S6OOuqoeOutt6K+fkrPw+DBg2OllVaKF154IZZeeukYNWpUdZXwG2+8MTbeeOMZfj0HHXRQ9XwDBgz4AkcD4KtLPzAAxUyYMCEeffTR2GSTTZq2ZcM/bz/wwAOtPia3Ny+fNt988+mWT++//37U1dVFly5dqtvjx4+P9u3bN4WMNOecU4ZVDRw4sPp9xx13VKHnzTffjOWWWy4WXXTR+N73vhevv/76dJ9n2LBhcdttt8X6668/w8cAgCkEDQCKGTlyZEyePDm6dZsyv6JR3h4+fHirj8ntn6f8uHHj4tBDD43+/ftHp06dqm0bbbRRVf6UU06pwk72XjT2nmQvR3rppZeqoHH88cfHGWecEVdddVW89957semmm1aPaW7ttdeODh06RK9evWK99daL44477j84KgBfTYIGALONiRMnVr0QOer3/PPPb9q+wgorxMUXXxynnXZazDXXXLHQQgtFz549q8DS2MuRISMff9ZZZ1U9Jjk869JLL62GVt1zzz0tnufyyy+Pxx57LP72t7/FzTffHKeeeur//LUCzO5MBgegmPnnnz/atGkTb7/9dovteTsb/63J7TNSvjFk5LyMu+++u6k3o9FOO+1U/eRj55577mpo1emnnx5LLrlkdX/37t2r38sv/8mk7gUWWKCq82uvvdZiXzmnpLFs9tDsu+++cfDBB1evDYAZo0cDgGJynsSqq64ad911V9O27EnI2/369Wv1Mbm9efnG+RTNyzeGjOx9uPPOO6Nr167TrUP2YnTs2LHqlcjhTzk0Kq2zzjrV76FDhzaVzaFTOdxriSWWmO7+GntC8jcAM06PBgBF5SpNu+++e6y22mrVylA5HyJXldpjjz2q+3fbbbdq9acTTjihun3AAQdUk61z2NM3vvGNuOyyy+KRRx6pVpJK2cjffvvtq6FMuTJV9jA0zt+Yb775qnCTcpWrnFuRISODys9+9rM48cQTmyaML7PMMrHNNttUz5f7zh6Rww8/PJZddtnYcMMNqzKXXHJJtGvXLvr06RNzzDFHVY8skytj5XYAZpygAUBR2Sh/55134uijj64CQS5Tmys3NU74zmFKzVeHynCQcyGOPPLI+MUvflFNwL7uuutixRVXrO7PVaJuuOGG6u/cV3M5t2KDDaZcS+Phhx+OY445JsaMGVOFhwsuuCB23XXXFuX//Oc/x09/+tMq0GQdMuBk3RpDRNu2beOkk06K559/vpoHkj0d+++/f/UYAD4f19GYQa6jAQAAM84cDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKc8G+/4HLw9VkAQCYfewQE//jfejRAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIprG7OpNx58I168bViMfmV0TJ44OTov1jlW2GGFWGiV7jO7agAA8JU32/ZovPP0iOjWt1usd8R6sekpm8UCKy4YA08YGKNeGjWzqwYAAF95s2zQGPf+uLhhz+vjmaueado28rmRcdX3roy3n3o7Vtnra7HsdsvFfL26xjwLzxMr7bJSdOzeMf71yL9mar0BAIBZOGh06NwhVv/R6vHMFU/He8Pei4ljJ8ZDZz4YS2+5dHRbqds05WsNtZg0dlK079h+ptQXAACYTeZodF914ei5yZLx0BkPxrxLzRttO7SNPrus1GrZodc/F5PGTYrF1l7sf15PAABgNunRaNR3977RMLkh3njgjVjzwLWiTbs205R59Z+vxtNXPB39Du4XHbp0mCn1BAAAZqOg8dHwMTFu1LhqaNTHIz6a5v7XBr4Wj5w3KPodvHZ067vQTKkjAAAwGwWNXLb2oTMfisXWWSxW7L9iDDpvUIwbPa7p/tcGvBqDznk41jqoXyy82sIzta4AAMBsEjSG/G1wTPx4YtMKU7m61KBzH24aLvXQWQ9VQ6vm6zVfjB01tvqZ8NGEmV1tAAD4yptlJ4OPGDIinr/p+djguA2j3Vztqm1rHrBW/P2g22PYbcPi9ftei9rkWjx24WPVT6MeG/aINX685kysOQAAUFer1WoldrTDtTvGl9nl2132xR8bU4ISAADMDnaIiV/uoVMAAMDsSdAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAGb962i8cOsLMfS656oreHfp0SVW2ftr0bVX1+mWf/3+12PIpYPjoxEfxTzd54mVdl0puq/6yVW+Hz77oXjlnldaPGahlReKrx+9ftPtgccPiNGvjI5x74+L9nO3j259u8VKu/aNOeebs6nM8MffiiGXDYkPXv8g2rRvE/Mvv0Cs/P2VY+4F567uH/ve2Hjy4ifivWHvxZjhY6LXVr2qCwUCAAAzOWi8NvC1ePKiJ2LV/VaN+ZbpGi/c9Hz887h/xJZnbxUdunSYpvzI50bGg6c/EH12WSkWXm3h6mrf9510X2x6yqbReYkuTeUWWmWhWH3/NZput2nXpsV+FuizYCz3neWiw7xzNgWG+0+5LzY+YZPq/jFvj4mBJw6MZbbuHWv9tF9M/GhCPHHRE3HfSQNjs9M2r8o0TGqIOTrNEctvv3x1oUAAAGAWGTr1/I1DY8lNl4yeGy8ZnRfrHKvut1q0naNtvHz3y62WzyCSIWLZbZeNTot2ij479YkuPbvEC7cOa1nJdm1iznnnbPpp37F9i/t7b907uvaev+qdmH/Z+WPZ7ZaLd59/twoPadSLo6LWUKv233GhjjHvUvNF7216V70gjWXysdmD0WPDnk1XIgcAAGZy0Jg8cXLVoO+2UrembXX1dbHgSt3i3aEjW31MhoHm5dNCq3Sfpvw7Q0bE9d+/Lm7d/5Z49IJHYvyH46dbj7zvtX++GvP3nj/q2055efMuNW/U1dVVgadhckNM+GhCvPKPV6vnbiwDAADMgkOnJnw4oeo1mGOqIVI5ZOrDNz9o9TE5j2PqIVUdOs9RbW8ePBZZc9GYu9vc8dHwMTH4ksEx4Jf/jI1O2Djq23wSEp7885Mx7NYXYvL4ydF1ma6x7hHrNd3XsVvH+Pox68cDp94fj/72kaqeXXt3jfWO/Hqplw8AADQzy5/OX3zdxWORNRaJLkt0qQLHur9Yr5qw/c7T77Qol8Ovcr5FThLPnpSHz3woarVadd/YUWPjkfMGVcOiNjl509jwlxtWPRn3n3J/UxkAAGAWDBrt52lfNfDHN+uNmF6vRaPcPm7q8u+Pn275lHMsctL2mLc+bLE9t82z8DzVilRrHdQv3nrsrWpoVhp267Bq3kXf3frGvEvOGwussGCsecBaMeKpt+O9f5cBAABmwaCRK0HlXIi3n3q7aVsOUcrGfE7Ubk0OcXp78IgW295+cvh0y6ePR35czcPIFaamp7GXomHilInek8dPqkJQc423dWgAAMAsvrxtLh+b172Yb+n5Yr5eXatVqCaNnxQ9N+pZ3f/QmQ/GnF3nipV2Wam63euby8Q9R90dQ69/rrp2Ri6PmxPKV/vBatX9E8dOjGeueDoWXWvRKljk9S2e+vOTVa9GrlaVstcih1LNv9z81TU0cinbIX8bXJXJeRip+2oLV0vWPn3F09VQrEljJ1ZzPeZaYK5qlatGo14eVf2eNG5SjP9gfHU7h1jlCloAAMBMChrZiM8G+pBLh0y5YF/PLvH1o9ZvGgqVvRHNexZyKdq8rkUGg2z4d+zeMdY5dJ2ma2hk2dGvvl9dsG/ixxOjw7wdqqFRK/bv03QtjTZztIk3H3wjnr5sSBVqcvnbDCHLbb98U5lufbpVz/Pctc9WFxPMC/ZlCMm65fK7je44+O9Nf2fgeW3Aa1UY+eYFW5c8TAAA8KVXVys0G3qHa3eML7PLt7vsiz82XJcDAIDZxw4x8cu/6hQAADD7ETQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKEzQAmG2c9/3JsWPdpLj+xIYW2wdd11BtB2DWIWgAMFtp1yHihpMaYsyo2syuCgCfQtAAYLbSZ5O66LxQxPUntOzVAGDWImgAMFupbxOx4/H1cdvZtXj3Db0aALMqQQOA2c4a29VHj5UjrjxGrwbArErQAGC2tNNJbeKfF9fizWf1agDMigQNAGZLy329LvpuXheXHq5XA2BWJGgAMNvqf2J9PHpjLZ5/QK8GwKxG0ABgtrV4n7pYd+e6uO0sQQNgViNoADBb++5x9VEzegpgltN2ZlcAAGbUD//UZpptC/aoi7+O998ZwKxGjwYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJxlOgAo7vZzG+LGUxri/eERi/eN2OPsNrH0GnXTLX/LGQ1xx/kNMfK1iHnmj1hz+7rof0J9tO8w5TH795gUI1+d9nGb/bAu9jx3ykpUo4fX4q8/a4jBd9Ri3IcR3XtHbHdEfaz5nU/OqZ3yrcnxyhO1+GBExNzzRqy4SV3sdFJ9zLfwJ3V74IqGuO74hnjr+YhOC0Rsvn99bP0z5+UAPi9BA4Ci7r+8If5yUEPs/dv6WHrNuipEnLD55Dh9aJvovOC0YWPg3xri0sMaYr8/1scya9fFW8/X4rffb4i6uobY7fQpIeL4QW2iYfInj3l9SC1+vWlDrPndT/Z37m4N8fHoWvzshjZVWLnvb7U443sNcfwjddFzlSnllt+wLrb9RX106R7x3psRfz1kcvxm+8nxy/un/Hf4+K0Ncc7ODfH9s+tjpc3q4s1na3HhPg3Rbs6ILfYXNgA+D/9qAlDUzac3xEb71MUGe9THosvXVYGj/VwR9/6x9at3P39/LZZZpy7W3am+uiZG383qY+3+dfHiw5+U77RAXXRZ6JOfx26qRbelIpZfv67Ffjb/cX3Vc9Jtybr49pH1MXeXiJcf/WQ/3/hpffRaqy4WWKIueq9dF9scVh/DHoyYNHFKmQF/qcVq29bFpj+or/bxtW/UxzaH18cNJzVErebq4wCfh6ABQDGTJtTi5Ucj+mzySQCor6+rbj//QOsN9ezFyDAw7N/B4u2XavH4LbVYeav66T7HwL/WYoM966Ourq7Ffh64vBZj3qtFQ0Mt7r+sISaOi1h+g9aHbGW5gZfUYpm1I9q2m1Jm0viIdh1alms/Z8R7b0S808rQLQCmz9ApAIr5YGRUQ5w6d2vZuO/cLeLN51oPGtmT8eHIiGPWnRxRi5g8KWKTH9TFdr9oPWgMuq4WH42OWP/7LZ/jwCvq48wdGmLvrpOjTduoelEOurY+Flq6ZblLDp0cfz+nFuM/jui1VsTPb/rkauMrbV4Xf/lpQwz+fkOssGFdDB8WcdNpDdV9o9/Kq5B/4UMD8JWjRwOAmerpe6dMvt7rvPo44bE2cdA19fH4zbW4+pdTGvhTu+cPtVh5y7oWE7jTFUc1xEeja3HEnfVx/CNt4hsH1ceZ32uI1wa3DDg5sfuEx9vEL/5eH/VtIs7b7ZNhURvvUxeb7V8XJ3+zIXZpPzmOWmtyrL3jlP8q6/yPCfC56NEAoJhO80fVeH//7Wy4fxIE3n87qrkVrcmAsN6udbHR3lNa8ov3qYvxH0VcuG9DbHdEXTX0qtE7r9Zi8J21OPialq3+4S/W4vZzanHKkDax2ApTyi/Rty6eG1CLv5+bE9M/6bXoNH9dVc+Fl6mLRZarix8tNjleeDBimX5RDcXa+aQ20f/4WowePmXVqcF3TQkh3ZYsfLAAvuScnwGgmLbt66LnqhFD/t04TzlfIm8v06/1oDHh42l7CzKsVKYabXXvRQ3RecGIVb5RN80+qse1sp+G1jtGpuz+3/dNHN/yierb1MV8i9RVr+f+S2vRq9+UCekAzDg9GgAUlUOWzt+9IZZcraFaASqXt80eivX3mNJQP3e3yTHfIhH9T5iSJr62dV3ccnoteq7SUC2HO3xYrerlyO3Z4G8eWP5xUS2+vntdtGnbstG/8LIRCy0dceF+k2OXU9tEx64Rj1xXq66p8fObpqSPFx6qxYuDarHsunXVNTTefnHK8+TqVY0h6IORtXjoqlo1gTwnkmewefDKWhzzj096RACYMYIGAEWtvUN9fPBOxJVHN1TDj5ZYOeKw29pEl39PEB/5Wi3qmg2HymVo6+pqcfmRDdW1LXK40qpb18UOv27ZPZFDpvKCfrna1NRy1ahDb2lTXY/jlK0nx7gxEd2Wjvh/F9fHKv9evWqOuSIGXVOLq46ZEnzyWhp9t5iyDG67OT6pzz8vboi/HjKlN6VXv7o4+t5Pv9ggAK2rqxVaGHyHa3eML7PLt7vsiz822hWtCwAA/DftEBP/432YowEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQXF2tVquV3y3NXR7tZnYVAABghu0QE+M/pUcDAAAoTtAAAACKEzQAAIDiBA0AAKA4QQMAAChO0AAAAIoTNAAAgOIEDQAAoDhBAwAAKE7QAAAAihM0AACA4gQNAACgOEEDAAAoTtAAAACKa1tqR1cPeD6+zL6z3jIzuwoAADDb0KMBAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABTXNmZDo0aOiIvPOylefG5IDH/z1djqO7vGHj85YmZXCwAAmJ17NCZOnBCdOs8b39nt/8USSy87s6sDAADMDkHj/dHvxd7brhNX/+W3TdueG/xY7LjRivHUow/Egt0XjT0PODI22GLbmGvueWZqXQEAgNkkaHTuMl/88NDj48qLzolhzw2OsR+PibN//fPY4ts7x0qr9pvZ1QMAAGbXORpf67d+bPzN78ZZvzwkluy9YszRYc7Yed+DZ3a1AACA2bVHo9FuPzo0Jk+eHA/ee3sccNSp0a59+5ldJQAAYHYPGm+/+Vq1wlRDrSHeGf7mzK4OAAAwuweNXFnqrF/9LNbeaKvYca8D4vyTj4z3R707s6sFAADMzkHj0gt/Ex+P+bBaXWrbnfaJ7ov1iHNP/EXT/S+/8Gz1M27sR9UqVfn3668Mm6l1BgAAZuHJ4EMefyhuvvLPceyZF8dcc3estv3kiJPjkD23iduv+1tsvu1O8bO9tm0q/9LQp2PgnTfFAgstEudfcfdMrDkAAJDqarVarcShuHrA81/qI/qd9Zb5wo+9PNoVrQsAAPw37RATv7xDpwAAgNmXoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAzPrX0bj1mkvihsv+EKPfeyeWWGrZ2OuAo6LX8itNt/z999wal/3hzHhn+JvRfZEescsPDomv9Vu/6f7L/3h23Hf3zfHuiOHRtm27WLL3CtF/n5/GMsv3bSrzr9dfjj+fd3IMHfJYTJo4MZZYqnd1NfEVv7ZWU5k/nPmrGDr4sXjt5edj0SWWilP/eH2LeuTzXPmnc6ap3xwd5oxL/v5EgSMDAABfHUV7NO6765a4+NwT4rvf/1Gc/Ptro8fSy8avDtkr3h/1bqvlnxv8WJxx3MGx8Te2j1N+f12svt7GcfIRP4rXXvrkmhwLL9Yj9j7w6Dj9TzfGr879Wyy40CLxq4P3rK4G3uiEQ38QDZMnxzFnXBwnX3hNFXBOOOwHMerdd1o834ZbfSfW3mirVuvyrR33jAuvHdjiZ9EeS0e/DbYodnwAAOCromjQuPGKi2KTb34vNtrqO7FYj6Vj34P/L+bo0CHuvvnqVsvfctWfY+U11ott+u8di/ZYKvrvfWD0XGb5uPWavzaVWW/TrWOl1daObgsvFov17BW77394fPzRmHj1xaHV/R+Mfi/eeuOV2HbnfaPHUstG98WyV+TgGD9ubLz+8gtN+9nrgCNjy2/vHN26L9ZqXeaca+6Yt+sCTT8Zjt54ZVhs9I3tSx4iAAD4SigWNCZOnBAvPf90FQqadl5fH31WXTuGPv14q495/uknYqVV+7XYtvIa61bbp/ccd9xweczVcZ7osVTvats8neeNhRfvGf+4/boYN/bjmDxpUvz9+suj87xdq2FWX9RdN11Z9aYs33e1L7wPAAD4qio2R+PD90dVw5eygd9cl/m6xpuvvdTqY0a/NzK6zDd/i235+Nze3CP33xNn/N9BVS9F9jYcfdofo1OX+ar76urq4pjT/xQnHfHD2HWLr0VdfX107jJfHHHK76PjPJ2/0GuZMH58DLjjxth2532+0OMBAOCrbrZYdWrFVdaMU/5wXfz6vMuqoVanH3Ng07yPWq0WF/7m/6Jzl67xy3MuiRN/e2Wssd4mceLhP4hRI0d8oed7eMAdMfbjj2KDLbYr/EoAAOCroVjQyCFM9W3aTDPxe/R7707Ta9Eot0/de5GPn7p8hznniu6LLhHLrLBy/PCw46O+Tdu46+arqvsGP/ZgPPbAvfHTY38Ty/ZZtRoutc9Bx0b79h3i3tuu+0Kv5c6broxV195guvUGAAD+R0GjXbv2seQyK8TgRx9o2tbQ0BCDH3sgeq+wSquPyeCQQaG5JwfdX23/NLVaQ0ycMKH6e8K4sU1DqJqrr6+LhlrD534db//r9Xj68YdMAgcAgFll6NTW39sj7rzpirj31mvjjVdejAtPOzbGjx0bG2717er+s37987jkgtOaym+1/W7xxEMD4obL/hhvvvpidS2Ll4YOiS2/vUt1f07uvuR3p1eTw/M6Gy8OHRLnnnh4vDfy7Vh7wynLzmYomXueTnHO8YfFK8Oe+/c1NU6KEW+9Gav226Dpud5649V4+YVnq+t7TBg/rvo7f3KCeXN333J1NQ9klTW/XvLQAADAV0rRC/ats/FW1XKzl/3xrKpB32Pp5eKIU3/fNARp5NtvRX3dJ9lm2T5fiwOOPjUu+/0Z8bcLT4/ui/aIn//63Fh8yWWq++vr28Sbr74U/7jt2vjg/VExT6cusdSyfeKXZ19SLXWbOv174velF54Rxx64e0yeNLG67+fHn1tdx6PR+ScfGc888XDT7Z/ttW31+7zL74oFuy/a1AOTIWmDLb8dbdq0KXloAADgK6WulrOpC7h6wCcX2fsy+s56U8LPF3F5tCtaFwAA+G/aISZ+NVadAgAAZi+CBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAEAABQnaAAAAMW1Lb9LAPjfeG5gLf526OT413MR4z+OWGCJiI33q49v/NR5NICZTdAAYLY1x9wRm+9fH4uvVFf9PXRgLX6/X0P19yb7ChsAM5N/hQGYZX3wTi32W2hSXHt8Q9O2offXYuf2k2LwXQ3Rc5W6WKd/fSy2Ql0s2KMu1tulPlbavC6eG1CbqfUGQNAAYBbWaYG6+MEf6+OqYxvixUdqMfbDWpy76+TYfP+66LPxtP+Fvfx4LZ6/vxbLr183U+oLwCcMnQJglrbKVvWx8T61OGfnybHkanXRYe6I/ie0DBk/XHRSfPBOxORJEdsfWx8b7e08GsDMJmgAMMvb5dT6OGTFyfHglbU44dE20W6Olj0Wxw5oE+PGRLzwYC0uPawhFlo6qiFVAMw8dbVazUBWAGZpQ4YMidVXXz0mTpwY1157bWy99dbTLfurX/0q/vKXv8TQoUP/p3UEoCU9GgDM0iZMmBC77LJL7LDDDtG7d+/Ye++9Y/DgwbHgggu2Wr6hoSHGjx//P68nAC0JGgDM0o444oh4//3346yzzoqOHTvGLbfcEnvuuWfcdNNNce6558biiy8eyy67bFX2n//8Z5x66qnxk5/8ZGZXG+Arz9ApAGZZ9957b2y66aZxzz33xLrrrltte+WVV6Jv375x4oknxqRJk+KCCy6Il19+Odq2bRtLLbVU7LPPPrHffvtFfb05GgAzk6ABAAAU53QPAABQnKABAAAUJ2gAAADFCRoAAEBxggYAAFCcoAHAf0Ve46JHjx7RoUOHWHPNNePhhx/+1PJXXnlldT2MLN+nT5/qehnN5SKJRx99dHTv3j3mnHPO2GSTTeKFF15oUea9996LnXfeOTp16hRdunSJvfbaK8aMGdOizFNPPRXrrbde9TyLLbZYnHzyyZ+7LgB8NkEDgOIuv/zyOOigg+KYY46Jxx57rLruxeabbx4jRoxotfz9998f/fv3r4LB448/Httuu231M2TIkKYyGQjyon2//e1v46GHHoq555672ue4ceOaymTIePrpp+OOO+6oLuiXF/Dbd999m+7/4IMPYrPNNoslllgiHn300TjllFPi2GOPjd/97nefqy4AfDbX0QCguOzBWH311eOcc86pbjc0NFS9Bz/+8Y/jsMMOm6b8DjvsEB999FEVDhqttdZasfLKK1fBIv+rWnjhhePggw+OQw45pLo/rxberVu3+NOf/hQ77rhjPPvss7H88svHoEGDYrXVVqvK3HbbbbHVVlvFG2+8UT3+/PPPr640Pnz48Gjfvn1VJutz3XXXxXPPPTdDdQFgxujRAKCoCRMmVL0FObSpUV6lO28/8MADrT4mtzcvn7K3orF8Xvk7w0HzMp07d64CTWOZ/J3DpRpDRsry+dzZA9JY5utf/3pTyGh8nqFDh8aoUaNmqC4AzBhBA4CiRo4cGZMnT656G5rL2xkWWpPbP6184+/PKrPgggu2uL9t27Yx33zztSjT2j6aP8dn1QWAGSNoAAAAxQkaABQ1//zzR5s2beLtt99usT1vL7TQQq0+Jrd/WvnG359VZurJ5pMmTapWompeprV9NH+Oz6oLADNG0ACgqJz/sOqqq8Zdd93VtC0ng+ftfv36tfqY3N68fMqVoxrL9+zZs2roNy+TK0jl3IvGMvl79OjR1fyQRnfffXf13DmXo7FMrkQ1ceLEFs/Tu3fvmHfeeWeoLgDMoFx1CgBKuuyyy2pzzDFH7U9/+lPtmWeeqe277761Ll261IYPH17dv+uuu9YOO+ywpvL33XdfrW3btrVTTz219uyzz9aOOeaYWrt27WqDBw9uKnPiiSdW+7j++utrTz31VG2bbbap9ezZszZ27NimMltssUVtlVVWqT300EO1gQMH1nr16lXr379/0/2jR4+udevWrXr+IUOGVPWca665ahdccMHnqgsAn03QAOC/4uyzz64tvvjitfbt29fWWGON2oMPPth03/rrr1/bfffdW5S/4oorassss0xVfoUVVqjdfPPNLe5vaGioHXXUUVVQyBCz8cYb14YOHdqizLvvvlsFi44dO9Y6depU22OPPWoffvhhizJPPvlkbd111632scgii1QBZmqfVRcAPpvraAAAAMWZowEAABQnaAAAAMUJGgAAQHGCBgAAUJygAQAAFCdoAAAAxQkaAABAcYIGAABQnKABAAAUJ2gAAADFCRoAAEBxggYAABCl/X/insbiwL4IVQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "R[10]['results'].plot_sobols_treemap('Ishigami')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:01.542229Z", "start_time": "2021-12-10T08:47:01.539399Z" }, "execution": { "iopub.execute_input": "2025-07-18T12:14:05.646346Z", "iopub.status.busy": "2025-07-18T12:14:05.646258Z", "iopub.status.idle": "2025-07-18T12:14:05.650045Z", "shell.execute_reply": "2025-07-18T12:14:05.649788Z", "shell.execute_reply.started": "2025-07-18T12:14:05.646337Z" } }, "outputs": [ { "data": { "text/plain": [ "({'Ishigami': {'x1': array([0.03817368]),\n", " 'x2': array([0.05380603]),\n", " 'x3': array([1.28773622e-29]),\n", " 'N': array([0.87838626])}},\n", " {'Ishigami': {'x1': array([0.06780771]),\n", " 'x2': array([0.05380603]),\n", " 'x3': array([0.02963403]),\n", " 'N': array([0.87838626])}})" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R[10]['results'].sobols_first(), R[10]['results'].sobols_total()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:02.215700Z", "start_time": "2021-12-10T08:47:01.542892Z" }, "code_folding": [], "execution": { "iopub.execute_input": "2025-07-18T12:14:05.650671Z", "iopub.status.busy": "2025-07-18T12:14:05.650589Z", "iopub.status.idle": "2025-07-18T12:14:06.797415Z", "shell.execute_reply": "2025-07-18T12:14:06.797073Z", "shell.execute_reply.started": "2025-07-18T12:14:05.650662Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW85JREFUeJzt3QdYleX7B/Ave4kKKsNUUJyIoqLgzJGl5s6V5TZLy1GWpf9+amZlOzNN08qZqeXOMnPlFhXFvbeCuFmy+V/3g4cAQTlw4D2c8/1c13tx3sF7nuNBzs3z3M/9WKSmpqaCiIiIyAxZat0AIiIiIq0wECIiIiKzxUCIiIiIzBYDISIiIjJbDISIiIjIbDEQIiIiIrPFQIiIiIjMlrXWDTB2KSkpuH79OpydnWFhYaF1c4iIiCgXpExiVFQUypYtC0vLnPt9GAg9gQRB5cuX17oZRERElAdXrlxBuXLlcjzPQOgJpCdI9w9ZvHhxrZtDREREuRAZGak6MnSf4zlhIPQEuuEwCYIYCBERERUtT0prYbI0ERERmS0GQkRERGS2GAgRERGR2WIgRERERGbLLAKhrl27wsXFBd27d9e6KURERGREzCIQGjVqFBYsWKB1M4iIiMjImEUg1KJFiyfWESAiIiLzY/SB0LZt29CxY0dVIltqAaxateqRa2bMmAFvb2/Y29sjKCgIwcHBmrSViIiIihajD4RiYmLg7++vgp3sLF26FKNHj8bEiRMREhKirm3Tpg0iIiLy9Hzx8fGqGmXGjYiIiEyT0VeWbteundpy8vXXX2PIkCEYOHCg2p81axbWrVuHn3/+GWPHjtX7+aZMmYJJkyblq81EmklJBi7tAqJvAMXcAa/GgKWV1q0yX6byfvB1GBe+DvMKhB4nISEBBw4cwLhx49KPyQqzrVu3xu7du/N0T7mX9DBlXavEFN/8fOPrMC7H1wDr3wMir/93rHhZoO1ngG8nFCmm8J6YyvvB12Fc+DoMrkgHQrdu3UJycjLc3d0zHZf9kydPpu9LYBQaGqqG2WQF2t9++w2NGjXK9p52dnZqM4c3P1/4OozvdSzrByA18/HIsLTjPRcUnddjCu+JqbwffB3Gha/DPHOEDGHjxo24efMmYmNjcfXq1RyDoEJ78zP+gs/45sv5ooCvQxupqWk9JUnxQEIsEB8FPLgHRN8E/hzz6C+VtG9K+/LXu2nXyvfJ9ycnpd3P2BS19yQ78h5JIPe492P92LTrjBlfh3Hh6ygwRbpHqHTp0rCyssKNGzcyHZd9Dw8PFK033yLtza/e3riHAPL7OuTDNzUl7T6pyUBK0sPHKRke53BcvqpzKRke644/vGem47p7ZXM8JRH49/PH/2dcNQy4sC1tP/1eWZ47/WvW9uuOZfd6srYry7Gcnkeuy5NUICoM+Mzr0VMWloCFVdp7pb5ay/hylmNZHqd/tXx4fdZjD++T9Vj6/XWPLTMfk5+dgwuf/J5cfjjsLf8eOW6pTz6vez/y+v3pj7PcR4LNmMdN1kgFIq8BX1QBrO1kaWzdm5H5cfoX3ePHXWeRz+vSfyD+Oxcf/WhAmt3rmBEE2BXL4ZKcgu0cjj82OM/pe55wfUIuX8d39QDbHF5Hnj1+1XO95Pp1BBTA60Dhvw4ZGq/YDIWhSAdCtra2CAgIwKZNm9ClSxd1LCUlRe0PHz4cRkXe1Ny8+VNrA7aOubunQf6i1/MeibG5ex2fead9AD4SCBj5XytZ/8PumwOTpvvwlsCwqLwne76HSXhwGybh9hmYhLsXYRLuXoBJiM7cwWHWgVB0dDTOnj2bvn/hwgUcOnQIrq6uqFChgkps7t+/P+rXr4/AwEBMnTpV5QLpZpEVuTc18ipMQnweyw480muQtbcia0+FrufhYe9EpuPZ9E7ovleCuSt7ntyeau0BD7/sezCy7fHI8ty56lnJ6d7Z9dZk83yXdgMLOz/5tby8HKgQlLln6pHerex6vB72euTU45Xp+ux6wTLeI0vPXsZjEceB0+uf/DqqtAHcfR/2ZmXdLHI4ntM1Vga4h+79ePg47DDw59tPfh0dpgJl62T5o0Z6mnQXpGZzLjWbc9lcl9dzGZ/7xlFg4wdPfh3PTATcaz65ByS9Byrbk3k6lavnCz8K/DMeT/Ts5LT/68Yqt6+j9YfG/zo2TnjydTJJopAYfSC0f/9+tGzZMn1fN6NLgp958+ahV69eKv9nwoQJCA8PR506dbB+/fpHEqg1l9s3tc0UwLO24bpaH/vLJw/PERb6cGjsCTrPAMoHZROMZPwwt350SKawXNgOzO/w5OsaDiu07tk8k/ZJMrHk0WTbw2eRdt6npXEPu8p7kptAqPEI435PngoAdnz15PejXj/jfj98WgHBs5/8OpqMMu7XUbE5sHfmk19HozdM43U0Hm7cr6NSCyB41pNfh8wULSQWqanGmDFpPGT6fIkSJXD//n0UL1487zeSv3qn+j35zX/ziHH/EPN1GPksDGR5PQ+D2qIwm8SU3hNTeD8EX4dx4esokM9vs5g1ZhTkF7dM/822x+XhfttPjf8XPF+HcZJfGvLLo7hn5uMSOBSVX46m9J6Ywvsh+DqMC19HgWCPUGH1CD22RspTab/gi8oPseDrME4mW4iwiL4npvB+CL4O48LXYdDPbwZChR0ICf4QGxdTeR2mhO8JERXS57fRJ0ubomRYIjjFFxHJleCWYo9AWKJI/oqXDyZjTlo1t9dhSvieEFEhYSBUyNYfDcOktccRdj8u/ZhnCXtM7OiLtn5ZxkuJiIioQDFZupCDoGGLQjIFQSL8fpw6LueJiIio8DAQKiTJKamqJ+gxiweo83IdERERFQ4OjRWS4At3HukJykjCHznfafoO1C5XEhVLO8K7lBO8Szuhgqsj7G2KZBYRERGRUWMgVEgionIOgjI6dj1SbVmLQ5ct4QCvUo4qMKpYykk9rljaCeUZJBEREeUZA6FC4uZsn6vrhjX3gbWVBS7ejsXFWzFqi4pPwrV7D9S269ztbIMkb10P0sNeJOlRKufCIImIiOhxGAgVksCKrmp2mCRG57B4ADxK2OOdNtVgZflfVV0p83QnJgEXb8fgwq1YXFJfY9T+xVuxiM4QJO08+/ggSXqQvNRXR9WTZGedvyBJ8plkyE96uyTQk9eYse1ERETGjgUVC7Ggom7WWA6rq2Bmn3p6TaGXt+62BEkqMHrYg3Q7c5CUE12QJMFR1t6k8q4OTwySWAaAiIiMGStLG2ll6cIKIDIGSdKDdOl2LC6oAClti0lIzvF7pVOnbMm0IEnlJWXoTZLE7c0nb6iALusPTl4DOiIiIkNjIGTES2xoPaQkb/mt6LThtv96kWJzFSRJK6WpyTn81OiG+Ha814rDZEREpBkusWHEJEBo5FNKs+e3sLBAGWc7tTXwds0xSErrSUobZtM9liAppyAoYxkACfS0fI1ERES5wUCI9AqSFu29hPGrjj3xPhuPh6O+twtsrFizk4iIjBc/pUivIKlyGedcXfvTzoto/OlmfPn3KVy9G1vgbSMiIsoLBkKUpzIAj8v+KWZnhVJONrgZFY/pW86i2edbMGBuMDYcC0dSckohtpaIiOjxmCytQbJ0UZebMgCtqrvjn+M3sDj4Uqb6Rh7F7dGzQXm82KC8mplGRERUEDhrzEAYCOW/DIAkWi8JvozfDlxVxSGFTChrWc0NLwVVQItqbpxhRkREBsVAyEAYCBmuDEB8UjL+PnYDi/dewp7zd9KPly1hj14NKqBXg/Jq6j0REVF+MRAyEAZCBePczWj8uvcyfg+5inuxieqYBFGtqqf1Ej1dpQx7iYiIKM8YCBkIA6GCFZeYjPVHw7F472UEX/yvl+ipkg7oHVgePeuXh1tx9hIREZF+GAgZCAOhwnPmRhQWB1/G8gNXERmXtk6ataUFWtdwV71ETSuXhiV7iYiIKBcYCBkIAyFteonWHQ5TQdGBS3fTj8s6Zy8GlkePgPKq4CMREVFOGAgZCAMhbZ0Kj1LJ1SsOXkPUw14iGysLPOfroXqJGlUqxV4iIiJ6BAMhA2EgZBweJCRj7eHrKpfo0JV76ce9Szmid2AFdA8oh1LF2EtERERpGAgZCAMh43P8eqQq1Ljq4HVEx6f1EtlaWaKNnwdeCqyAhpVc1XIgRERkviIZCBkGAyHjFROfhLWh11Uu0eGr99OPVyrjpAKibvXKwcXJVtM2EhGRNhgIGQgDoaLh6LX7+GXvZaw5dA0xCcnqmK21JZ6XXqIgLzTwdmEvERGRGYlkIGQYDISKFhkqW33omsolOnY9Mv14FbdiKpdIeolKONrkq0I2EREZPwZCBsJAqGiSH2sZLpOAaE3odTxITOslsrO2RPvanng5qALqVXDB38fCc71mGhERFR0MhAyEgVDRFxmXiNUHr6mhs5PhUenHnyppj2v3/guAdHR9QTP71GMwRERURDEQMhAGQqZDftQPXrmneonWhl5DfFLOP/oSDMkCsDvea8VhMiIiE/78tizUVhFpSJKlZTjsyx7+mPFywGOvlRBJhsskd4iIiEwXAyEy26n3uSEJ1EREZLoYCJFZktlhubH3/G3EJ6UlWhMRkelhIERmSabIy+ywJ2X/LA6+gme/3oa/joSpHCMiIjItDITILEkCtEyRF1mDIYuHW79GXnBztsPlO7EY9ksIes3egyMZKlgTEVHRx1ljT8BZY6Zt/dGwx9YRklyiH7adx+xt5xCXmKLOv1DvKbzbprqaVUZERMaJ0+cNhIGQ6ctNZenr9x7gi79PYeXBa2rfwcYKrzWvhFefrgRHW2uNWk5ERDlhIGQgDIQoo9Ar9zD5j+PYf+mu2vcobo8xbaqha92nYMl6Q0RERoOBkIEwEKKs5L/Mn0fCMeWvE7h694E6VuupEhjfwVf1JhERkfYYCBkIAyHKSVxiMubtuojpm8+qxV5FOz8PjGtXAxVKOWrdPCIisxbJQMgwGAjRk9yKjsc3/5zGr8GXkZIK2FpZYkATbwxvVRnF7TOvdE9ERIWDgZCBMBCi3DoVHoWP1h3H9jO31L6rky3eerYqejcoD2srVqogIipMDIQMhIEQ6UP+O209fRMfrzuBsxHR6lgVt2J4v30NtKjmpnXziIjMRiQDIcNgIER5kZicoobKZMjsbmyiOta8ahkVEFV1d9a6eUREJi+SgZBhMBCi/Lgfm4jvNp/B/N0XkZicquoT9Q4sj7daV0WpYnZaN4+IyGQxEDIQBkJkCBdvxajp9n8fu6H2ne2sVTK1JFXbWVtp3TwiIrP9/DaLDM6uXbvCxcUF3bt317opZKa8Szvhh7718euQhqhZtjii4pMw5a+TXNCViEhjZhEIjRo1CgsWLNC6GURo5FMKa4c3xRfda3NBVyIiI2AWgVCLFi3g7MwEVTIOshRHj/rlseWdFhj5TBXY21iqtc46Tt+B0csOITzDArBERGTigdC2bdvQsWNHlC1bFhYWFli1atUj18yYMQPe3t6wt7dHUFAQgoODNWkrkSE52Vlj9LNVsfntFmqtMrEi5BpafrkVUzeeRmxCWrVqIiIy4UAoJiYG/v7+KtjJztKlSzF69GhMnDgRISEh6to2bdogIiIi/Zo6derAz8/vke369euF+EqI8qZsSQd806sOVr/RBPW9XPAgMRlTN55Bqy//xfIDV5Ei5aqJiKhAGNWsMekRWrlyJbp06ZJ+THqAGjRogOnTp6v9lJQUlC9fHiNGjMDYsWNzfe+tW7eqe/z++++PvS4+Pl5tGbPO5fk4a4wKAxd0JSIyDJOYNZaQkIADBw6gdevW6ccsLS3V/u7duwvkOadMmaL+4XSbBEFEhfnHQPvantg4ujnGtquOYnbWOHLtPnr+sBvDFh3A5duxWjeRiMikGHUgdOvWLSQnJ8Pd3T3TcdkPDw/P9X0kcOrRowf+/PNPlCtX7rFB1Lhx41T0qNuuXLmSr9dAlBf2NlYY2twHW8e0wMtBFWBpAfx1NBytv/4Xn/x5ApFxadWqiYgof6z1/QYJJqysrFSeTkZ///23GrZq164djM3GjRtzfa2dnZ3aiIxB6WJ2+LhrLfRr5J2+oOvsbefx+4Gr2S7ompySqmagRUTFwc3ZXg2nSTVrIiIyUI+Q5OVIL012uQ365OzkRunSpVXQdeNGWjVeHdn38PAw6HMRGbNqHs5YMCgQcwc2QGW3YrgTk4Dxq46i3bfbsfVU2sSB9UfD0PSzzeg9Zw9GLTmkvsq+HCciIgMFQmfOnIGvr+8jx6tXr46zZ8/CkGxtbREQEIBNmzalH5NeJ9lv1KiRQZ+LqCjkD7Ws5oa/RjXDh51rwsXRBmciojFg7j48/+12DF0UgrAsNYikJtGwRSEMhoiIDBUISQLx+fPnHzkuQZCTk5O+t0N0dDQOHTqkNnHhwgX1+PLly2pfps7PmTMH8+fPx4kTJzBs2DA15X7gwIF6PxeRKbCxslRDZVvHtMSQZhVhbQkcD4vM9lrdlNBJa4+rYTMiIspnINS5c2e8+eabOHfuXKYg6O2330anTp30vR3279+PunXrqk0X+MjjCRMmqP1evXrhyy+/VPtSL0iCpPXr1z+SQE1kbko42OD99r74orv/Y6+T8Ed6iiR3iIiI8llHSGZStW3bVgUwMgNLXL16Fc2aNcOKFStQsmRJmBKuPk/GbvWhayon6Em+fbEOOtdJq2BNRGTqInP5+a33rDG56a5du/DPP/8gNDQUDg4OqF27Np5++un8tpmI8kBmhxnyOiIic6J3IKRL2nzuuefURkTakinyniXsVWJ0Tt27srBrVfdihdwyIiITCYSmTZuGV199VS16Ko8fZ+TIkYZqGxHlgtQJmtjRV80Ok4pB2QVDcYkpaqr9591ro0U1Nw1aSURUhHOEKlasqHKCSpUqpR7neDMLi2xnlBVlzBGiokKmyMvssIxT6KWnqH8jbyw7cAXnb8aoY1Kp+v32NeBom6cOYSIik/r8NqpFV40RAyEqSnKqLB2XmIzP1p/E3J0X1XVepRzxdU9/BHhxIVciMk0Ftujqhx9+iNjYRxd+fPDggTpHRNqRoKeRTyk1O0y+6pbXkLXLJnasicWvBKFsCXtcuh2LHrN24/P1J5GQlKJ1s4mINKN3j5AseREWFgY3t8x5Brdv31bHslt+oyhjjxCZGlmw9YM1x7Ai5Jrar+FZHN/08kd1D/58E5HpKLAeIYmbJBcoK5lK7+rKbnYiY1fc3gZf96yDWX3qwdXJFifCItHpu52Y9e85Vp8mIrOT62xJFxcXFQDJVrVq1UzBkPQCyVIZQ4cOLah2EpGBtfXzVDlC41YcxsYTEfj0r5PYdOIGvupRBxVKOWrdPCIi4xoak7W+5NJBgwZh6tSpqrsp4+Ko3t7eJrkQKofGyNTJ/+vfDlzFh2uPIzo+CY62VhjfwRcvNiifbe8vEZFZzxr7999/0aRJE1hbm8fUWwZCZC6u3InFO7+FYu/DNclaVXfDp91qsSI1ERVJBZYjJIufLl68WM0SIyLTUd7VEb8OaYj/ta8BW2tLbD4ZgTbfbMOfR8K0bhoRUYHROxCSleHfeecdeHh4YMiQIdizZ0/BtIyICp2lpQVeaVYJf4xoippli+NubCJe/yUEby45iPuxiVo3j4hI+0BI8oOuX7+OuXPnIiIiQi226uvriy+//BI3btwwfAuJqNBVdXfGytebYESrypBSRKsOXUebqduw/cxNrZtGRGRQ+a4sLcHQ7Nmz8fHHH6vZY88//7xab6xVq1YwBcwRInMXcvku3l4Wigu30pbo6N/IC2Pb1YCDrZXWTSMiKvwcoYyCg4MxceJEfPXVV6qY4rhx41C6dGl06NBBDZ8RUdFXr4IL1o1sin6NvNT+/N2X0H7adhy8fFfrphERFX6PkPQALVy4UA2NnTlzBh07dsQrr7yCNm3apE+13bFjB9q2batqCxV17BEi+s+20zfx7u+HER4Zp4bM3mhZGSNaVVHJ1UREZjF9XmoG+fj4qHpCAwYMQJkyZbJ98s6dO2PLli0o6hgIEWUmSdMT1xxVeUPC76ni+KZnHVRxd9a6aUREBR8Ibd++Hc2aNYO5YCBElL11h8Pw/qojuBebqHqE3m1TDYOaVFQzz4iITDYQMjcMhIhyFhEZh/eWH8aWU2mzyYIquuLLHv6qJhERkckEQlI7KLel9kNCQmBKGAgRPZ78Clmy7wom/3EcsQnJKGZnjQkdfdEjoByX6CAio//8ztU6GV26dDFk24jIhEiw0zuwApr4lMbbvx3Cvot3VUL1hmM3MOWFWijjbKd1E4mIcsShsSdgjxBR7iWnpGLO9vP4esNpJCSnoJSTLT7uWgtt/Ty0bhoRmZnIwqgjRESUkZWlBYY298Hq4U1Q3cMZt2MSMHTRAVWQMTKOS3QQkfHROxCS6tGynEZgYKBab8zV1TXTRkRUw7O4CoZeb+Gj6g0tD7mKtt9sw66zt7RuGhFR/gKhSZMm4euvv0avXr1Ud9Po0aPxwgsvwNLSEh988IG+tyMiE2VnbYV321bHstcawauUI67fj8NLP+7FpLXHEJeYrHXziIjyliMkxRSnTZuG9u3bw9nZGYcOHUo/JivRL168GKaEOUJE+RcTn4RP/jyBX/ZeVvs+ZZzwTa86qF2upNZNIyITVWA5QuHh4ahVq5Z6XKxYMfUEQtYXW7duXX7aTEQmysnOWiVNzx3YAG7Odjh3MwZdv9+FqRtPIzE5RevmEZEZ0zsQKleuHMLCwtRj6QnasGGDerxv3z7Y2XGaLBHlrGU1N2x462l0qO2pZphN3XgG3WfuwtmIor8uIRGZSSDUtWtXbNq0ST0eMWIExo8fjypVqqBfv35q/TEioscp6WiL6S/Vw7TedVHCwQahV++r1ezn7ryAlJS0kXoJknafu43Vh66pr7JPRGSUdYR2796tNgmGZCV6U8McIaKCE34/Du8uP6xWtReNfUqhfW1PTN98FmH349Kv8yxhj4kdfdHWz1PD1hJRUcK1xgyEgRBRwZJfQZJE/fG6E3iQw2wy3UIdM/vUYzBERIW/xEZWZ86cwZYtWxAREYGUlMyJjhMmTMjLLYnIjJfo6NPQC40qlULbb7chMfnRv81SHwZDk9Yex7O+HqpwIxGRIegdCM2ZMwfDhg1D6dKlVUHFjIsqymMGQkSUFxFR8dkGQTpyRobLgi/cQSOfUoXaNiIyXXoHQh999BE+/vhjvPfeewXTIiIySxFRcQa9joioQGaN3b17Fz169ND324iIHsvN2d6g1xERFUggJEGQrnYQEZGhBFZ0VbPDHpf9Y2NlgXIuDoXYKiIydXoPjVWuXFnVDpLlNKTCtI2NTabzI0eONGT7iMhMSAK0TJEftihEBUPZZQtJDlGXGTvx3Ut10dintAatJCJTo/f0+YoVK+Z8MwsLnD9/HqaE0+eJCtf6o2FqdljWOkJvtKyMX4Mv49j1SLWi/dh21TGkWaVMEzaIiHRYR8hAGAgRFT6pJC2zwyQxWnKCZNhMeoxk1fr3Vx7F8pCr6rr2tTzxeffaai0zIqKMGAgZCAMhIuMiv7IW7b2MD9ceU0NlVdyK4Ye+AahUppjWTSMicwmErl69ijVr1uDy5ctISEjIdO7rr7+GKWEgRGScDly6o/KJpP6Qs501vurpj+dqemjdLCIy9crSsuBqp06dUKlSJZw8eRJ+fn64ePGi+iutXr16+W03EVGuBHi54o+RTTH8l4MIvngHry48gBGtKuPN1lVZeZqICm76/Lhx4/DOO+/gyJEjsLe3x/Lly3HlyhU0b96c9YWIqFBJ/tAvQ4IwsIm32v9u81kMnLcP92Iz91QTERksEDpx4gT69eunHltbW+PBgwcoVqwYPvzwQ3z22Wf63o6IKF9srCwxsWNNfPtiHdjbWKqV7DtO34Fj1+9r3TQiMsVAyMnJKT0vyNPTE+fOnUs/d+vWLcO2jogolzrXeQorX2+CCq6OuHLnAV74fhdWPJxdRkRksECoYcOG2LFjh3r8/PPP4+2331Zrjw0aNEidIyLSSg3P4lg7vClaViuD+KQUjF4WiomrjyIhKUXrphGRkdJ71pgUTIyOjkbt2rURExOjAqFdu3ahSpUqasaYl5cXTAlnjREVPSkpqfh20xm1ifpeLvj+5XpwK851yojMRSTrCBkGAyGiomvj8Rt4a9khRMUloYyzHWa+XA/1vV21bhYRGdHnt95DY0RERUVrX3esGd4U1dydcTMqHi/O3oP5u9LKfRARCQZCRGTSKpZ2wso3GqOjf1kkpaRi4ppjeHtZKB4kJGvdNCIyAiYfCN27dw/169dHnTp1VPHHOXPmaN0kIipkjrbWmPZiHfyvfQ1VbHHFwWt4YeYuXL4dq3XTiEhjJp8jlJycjPj4eDg6OqrkbgmG9u/fj1KlSuXq+5kjRGRadp+7jRG/huBWdAJKONio+kMtqrlp3SwiKoo5QhJDGXscZWVlpYIgIQFRUWgzERWcRj6lsHZEU9QpXxL3HySqStTfbTqjZpoRkfnJUyC0YMEC1KpVCw4ODmqTqfQLFy7MUwO2bduGjh07omzZsrCwsMCqVaseuWbGjBnw9vZWS3oEBQUhODhY7+Exf39/lCtXDmPGjEHp0qXz1FYiMg2eJRyw9LWGeCmoAuTvoq/+Oa3WKouMS9S6aURk7IGQ1AoaNmyYKqa4bNkytbVt2xZDhw7FN998o3cDZLhKghQJdrKzdOlSjB49GhMnTkRISIi6tk2bNoiIiEi/Rpf/k3W7fv26Ol+yZEmEhobiwoULWLx4MW7cuJFje6TXSLrTMm5EZHrsrK3wSdda+LxbbdhaW2LjiRvoPH0nTt+I0rppRGTMOUIVK1bEpEmT0tcb05k/fz4++OADFWzkuTEWFli5ciW6dOmSfkx6gBo0aIDp06er/ZSUFJQvXx4jRozA2LFj9X6O119/Ha1atUL37t2zPS+vQV5fVswRIjJdh6/ew7BFIbh27wEcba3weffa6FC7rNbNIiJjzBEKCwtD48aNHzkux+ScIcmaZgcOHEDr1q3Tj1laWqr93bt35+oe0vsTFZX2F578Y8hQXLVq1XK8fty4ceo63XblyhUDvBIiMma1y5VUeUNNKpdCbEIyhi8+iE/+PIGkZC7NQWTq9A6EKleurIbDshvCkmU2DEkWcZVZX+7u7pmOy354eHiu7nHp0iU0a9ZMDanJV+lJkvymnNjZ2anIMeNGRKbP1ckW8wcGYmhzH7U/e9t59P0pGLei47VuGhEVIGt9v0GGjXr16qV6Vpo0aaKO7dy5E5s2bco2QNJaYGAgDh06pHUziKgIsLayxNh21eFfrgTe+S0Uu8/fRsfvdmBmnwA1y4yITI/ePULdunXD3r171cwrmeElmzyWmVxdu3Y1aOPkvjL9PWtys+x7eHgY9LmIiHTa1fLE6uFNUKmME8Lux6HnrN34Nfiy1s0iImPoERIBAQFYtGgRCpqtra16Lult0iVQS7K07A8fPrzAn5+IzFdlN2esfqOJWo5jw/EbGLfiCEKv3MMHnWrC3sZK6+YRkVY9QtJDk3Hqus7t27fVOX1FR0eroSvd8JXMOpPHly+n/fUlU+dlWQyZlXbixAk1dV+m3A8cOFDv5yIi0oezvQ1m9QnAmDbVYGEBLNl3Bb1+2I3r9x5o3TQi0qpHKKfZ9lJ/R3pw9CXLXbRs2TJ9XwIf0b9/f8ybN0/lI928eRMTJkxQCdJSM2j9+vWPJFATERUES0sLvNGyMmo9VQIjlxxE6NX76PDdDkzvXReNK7M4K5HZ1BGaNm2a+vrWW29h8uTJKFasWPo5mdklydMXL17EwYMHYUq41hgR6Vy5E4uhiw7g2PVIWFpAJVYPaVZJ1UAjoqL5+Z3rQEgKKeqmo8tSFRmHwaQnSJbA+PDDD1UBRFPCQIiIMopLTMb7K49iechVtd++lqcqwOhkl6eUSyIqKoGQjgxjrVixAi4uLjAHDISIKCv5tblo72V8uPYYEpNTUcWtGH7oG4BKZf7rKSciEw2EzA0DISLKyYFLd9TSHBFR8XC2s8ZXPf3xXE2W9iAy6SU2iIgoTYCXK/4Y2RSB3q6Iik9SK9h/teEUklPS/r6Ur7vP3cbqQ9fUV91xIjIe7BF6AvYIEdGTJCanqLXJ5u68qPafrloGnf098eWG06ogo45nCXtM7OiLtn6eGraWyDxEcmjMMBgIEVFuSc/Pe8sPIy4x+8VadXPLZvapx2CIqIBxaIyIqJB1rvMUfh/aGFY5TKfX/dU5ae1xDpMRGYlczfc8fPhwrm9Yu3bt/LSHiKhIi4pLQvJjOtrljAyXBV+4g0Y+pQq1bUSUx0BIqjlLwTAZRXtS4TAprkhEZK4iouIMeh0RFaxcDY3J+l/nz59XX5cvX66KK37//feqirRs8tjHx0edIyIyZ27O9ga9joiMoEfIy8sr/XGPHj3UchvPP/98puGw8uXLY/z48emrxBMRmaPAiq5qdlj4/bj0nKCsyjjbqeuISHt6J0sfOXIkfbmNjOTY8ePHDdUuIqIiycrSQk2RFzklEsTEJ2H/xTuF2i4iMlAgVKNGDUyZMgUJCQnpx+SxHJNzRETmTqbGyxR5jxKZh7/ci9uhYmlHxCYko+9PwVgTel2zNhJRHusIBQcHo2PHjipxWjdDTGaVSRL12rVrERgYCFPCOkJElFcyRV5mh0litOQEyXCYFF98c8khrD8Wrq55t201DGvuwxXsiYpSQcWYmBj88ssvOHnypNqXnqCXXnoJTk5OMDUMhIioIAIkqUT9044Lar93YAVM7lwT1lYs7UZkKKwsbSAMhIiooMzbeQGT/jgO+S3coloZTH+pHorZ5WoOCxFpWVl64cKFaNq0KcqWLYtLly6pY9988w1Wr16dl9sREZmlAU0q4oc+AbC3scTWUzfR64fduBHJ+kJEhUnvQGjmzJkYPXo02rVrh7t376YXUHRxccHUqVMLoo1ERCbruZoeWPJqI5QuZotj1yPRdcZOnAqP0rpZRGZD70Dou+++w5w5c/D+++/D2vq/Ltz69eurqfVERKSfOuVLYsWwJqhUxgnX78eh+8xd2Hn2ltbNIjILegdCUl26bt26jxy3s7NTSdRERKS/CqUcsWJYYzWzLCo+Cf1/DsbvB65q3Swik6d3ICSFEw8dOvTI8fXr17OOEBFRPpR0tMXCwYHo6F8WSSmpeOe3UEzdeFqVKyGigqH39ATJD3rjjTcQFxen/nNKXaFff/1VFVT88ccfC6aVRERmws7aCt/2qoNyLg6YufUcpm48g6t3H+CTrrVga83p9USGlqfp81JD6IMPPsC5c+fUvswemzRpEgYPHgxTw+nzRKSVxXsvY/zqo6ruUJPKpTCzTwCK29to3Swi860jlJSUhMWLF6NNmzZwd3dHbGwsoqOj4ebmBlPFQIiItLTlVATe+CVELctRzd0Zcwc2QNmSDlo3i8g86wjJLLGhQ4eqYTHh6Oho0kEQEZHWWlZzw7LXGsHN2Q6nbkShy4ydOHrtvtbNIjIZeg84y1piBw8eLJjWEBHRI/yeKoGVbzRBVfdiiIiKV4UXpaeIiDRIln799dfx9ttv4+rVqwgICHhkfTHdQqxERGQ4T5V0wO/DGmPYogPYefY2Xpm/H5M7++GloApaN43IvJKlLS0f7USSVZPlNvJVV2naVDBHiIiMSUJSCsatOILlIWk1hl5v4YN3nqsGS0uuXk+Ul89v67wUVCQiIm3IFPove9RGeVcHNbX++63n1PT6L3rUVlPviUg/egdCXl5e+n4LEREZkPS+v9m6qhouk96hNaHXER4Zh9l9A1RRRiIq4DpC4vjx47h8+TISEhIyHe/UqRNMCYfGiMiY7ThzS+UNybIcslbZ/IGBKO/qqHWziEyzjpA4f/48unbtqhZY1eUGqRtZpI1PM0eIiKhwnQyPxKC5+9SCrbKK/U/9G8C/fEmtm0VkenWExKhRo9R6YxEREaqO0LFjx7Bt2za1+vzWrVvz224iItJTdY/ianq9r2dx3IpOQK/Zu7HhWLjWzSIqEvQOhHbv3o0PP/wQpUuXVjPIZGvatKlaa2zkyJEF00oiInos9+L2WDa0EZpXLYO4xBS8tugA5u3k5BYigwdCMvTl7OysHkswdP369fQk6lOnTul7OyIiMpBidtb4qX999A6sAMla+GDtcXz0x3GkpHD1eiKDzRrz8/NDaGioGh4LCgrC559/DltbW8yePRuVKlXS93ZERGRA1laW+KSrn5pe//n6U/hxxwVcu/cA3/SqA3sbTq8nyneP0P/+9z+kpKSoxzJEJnWFmjVrhj///BPTpk3T93ZERGRgMnnl9RaV8e2LdWBrZYm/jobjpTl7cDs6XuumEZnO9PmM7ty5AxcXl/SZY6aEs8aIqCjbe/42Xl14APcfJMKrlCPmDQxExdKZl0YiMkUFNmssoytXrqjN1dXVJIMgIqKiLqhSKSwf1hjlXBxw6XYsXvh+Jw5cuqN1s4iMht6BUFJSEsaPH6+iLG9vb7XJYxkyS0xMLJhWEhFRnlV2K4aVrzeBf7kSuBubiN5z9mLd4TCtm0VUNAOhESNGqMRoSZI+ePCg2uTxTz/9xOnzRERGqoyzHX59tSFa13BXC7e+sTgEs7edSy+KS2Su9M4Rkt6fJUuWoF27dpmOS7J079691VicKWGOEBGZkuSUVEz+4zjm7bqo9vs18sLEjjVhxdXrycQUWI6QnZ2dGg7LSqbTyzR6IiIyXhLwTOzoi/+1rwFJ7Vyw+xJeW7gfsQlJWjeNSBN6B0LDhw/H5MmTER//3zRMefzxxx+rc0REZNxkcssrzSrh+5fqwc7aEhtPRODF2XsQERWnddOIjH9oTBZc3bRpk+oZ8vf3V8ekwKKsQv/MM89kunbFihUo6jg0RkSm7MCluxiyYD/uxCTgqZIOmD+oASq7pa0eQGQOn996V5YuWbIkunXrlulY+fLl89ZKIiLSVICXC1YMa4wBc4NxUU2v34XZ/eqjYaVSWjeNqOgUVDRl7BEiInMgPULSMyQ9RDZWFviiuz+61H1K62YRGXdBRSIiMg2uTrb45ZUgtK/licTkVLy59BCmbz6jptfLTLPd525j9aFr6qvsE5kKvYfGbt++jQkTJmDLli2IiIhIX3cs43IbRERU9MiirN/1rounXBwwe9t5fLnhtAp8zt2MQXjkf4nUniXs1cyztn6emraXSJNAqG/fvjh79iwGDx4Md3d3Lq1BRGRCLC0t8H/P10B5FwdMWH0MO8/dfuSa8PtxGLYoBDP71GMwROaXI+Ts7IwdO3akzxgrCqTukYwPWlpaqsVhpTcrt5gjRETmSIa/6n/0j1qSIzvyJ7BHCXvseK8VizGSec0aq169Oh48eICiZteuXShWrJjWzSAiKhKCL9zJMQgS8hd02P04dV0jH84wo6JL72Tp77//Hu+//z7+/fdflS8kEVfGjYiIir7cFldkEUYyu0BI6ghJwNOqVSu4ubmpoSbZ5Lh81de2bdvQsWNHlC1bVuUbrVq16pFrZsyYoYa37O3tERQUhODgYL2eQ+7bvHlzNGjQAL/88ovebSQiMjduzvYGvY7IWOk9NPbyyy/DxsYGixcvNkiydExMjMo3GjRoEF544YVHzi9duhSjR4/GrFmzVBA0depUtGnTBqdOnVKBmKhTpw6Skh5dJ2fDhg0qwJKcpqeeegphYWFo3bo1atWqhdq1a+er3UREpiywoquaHSaJ0TklkpZyslXXEZlVsrSjoyMOHjyIatWqGb4xFhZYuXIlunTpkn5Mgh/pyZk+fbral+n6Usl6xIgRGDt2rN7PMWbMGNSsWRMDBgzI9rysm5ZxHTXp/ZLnY7I0EZmb9UfD1Owwkd0HhbWlBWb1CUBrX/dCbxuRZgUV69evjytXrqAwyPplBw4cUL04OjLzS/Z3796d6x6nqKgo9Tg6OhqbN29WgVBOpkyZov7hdBuXDyEicyVT42WKvMwOy0j2/cuVQFJKKoYuOoA1odc1ayNRoQ+NSU/MqFGjVM+KDDHJMFlGhhxyunXrFpKTk9UQXEayf/LkyVzd48aNG2qhWCH3GjJkiOphysm4cePUUFzWHiEiInMNhp719VCzwyQxWnKCZDhMBhPG/H4YKw9ew6glBxETn4TegRW0bi5RwQdCvXr1Ul8lpyfjkJb8p5CvEmwYk0qVKiE0NDTX19vZ2amNiIjSSJ2gR6fIW+CrHv5wsrPCoj2XMW7FEUTHJWHI05U0aiVRIQVCFy5cQGEpXbo0rKysVK9ORrLv4eFRaO0gIqLsq1BP7uyHYnY2mPXvOXz85wlExSfhrdZVuOoAmW4g5OXlhcJia2uLgIAAbNq0KT2BWpKlZX/48OGF1g4iIsqeBDxj21WHs701vvj7FKZtOqN6hsZ3qMFgiEwzEBLnzp1T09hPnDih9n19fVXekI+Pj973kgRmWbssY4/ToUOH4OrqigoVKqh8nf79+6sk7cDAQPW8kgA9cODAvDSdiIgKwBstK6tgSNYn+3nnBZUz9MkLtbj8BpleIPT333+jU6dOqnZPkyZN1LGdO3eqmVhr167Fs88+q9f99u/fj5YtW6bv6xKVJfiZN2+eykm6efOmWvE+PDxcPe/69esfSaAmIiJt9WvkDUdba7z7eyiW7r+C6IQkfNOzDmyt9Z6gTGS8dYTq1q2rChp++umnmY5LTR8pYBgSklZzwlRw0VUiIv38dSQMI5ccRGJyKlpUK6NqDdnbWGndLDIzkQVVR0iGwwYPHvzIcZlFdvz4cf1bSkREJqVdLU/82L8B7G0ssfXUTfT/ORhRcTkv4EqkJb0DoTJlyqgcnqzkmG7JCyIiMm/Nq5bBwsFBcLazxt4Ld9Dnx724G5OgdbOI8p8jJAUJX331VZw/fx6NGzdOzxH67LPPMhUiJCIi89bA2xW/vtoQfX/ai9Cr9/Hi7D1YODgQbsW5UCsV4RwhuVxmbn311Ve4fj2trLosbCqVpkeOHGly0yWZI0RElD9nbkShz097cSMyHl6lHLFocBDKuzpq3SwycZG5/PzWOxDKSLeGl7OzM0wVAyEiovy7fDsWL/+0B1fuPFCr2i96JQg+ZYpp3SwyYQWWLC11fs6cOZMeAOmCIDl28eLF/LSZiIhMVIVSjvjttcao7FYMYffj0HPWbhy7fl/rZhHpHwgNGDAAu3bteuT43r171TkiIqLsyKr1y15rBL+niuN2TILKGTpw6Y7WzSIzp3cgdPDgwfRCihk1bNgw29lkREREOq5Otlg8pCEaeLsgKi4JfX4Mxo4zt7RuFpkxvQMhSYbW5QZlJGNwxrbyPBERGZ/i9jZYMCgIT1ctgweJyRg0bx82HAvXullkpvQOhJ5++mlMmTIlU9Ajj+VY06ZNDd0+IiIyQQ62VpjTLwDt/DyQkJyCYb+EYNXBa1o3i8yQ3rPGpHq0BEMlS5ZEs2bN1LHt27er7OzNmzfDz88PpoSzxoiICk5ScgreW34Ey0OuQqqvTO7shz4NvbRuFpmAAps1JivNHz58GD179kRERIQaJuvXrx9OnjxpckEQEREVLGsrS3zRvTb6N/KC/Fn+v1VHMevfc1o3i8xIvuoImQP2CBERFTz5KPpywynM2JIWBA1vWRlvP1fV5Ir0kgn0CBERERmaBDxj2lTH2HbV1f70LWcxae1xpKTwb3UqWAyEiIjIaAxt7oPJXfxUvtC8XRcx5vfDKo+IqKAwECIiIqPSt6EXvu7pDytLC5VEPeLXg4hPYnkWMoJASMZwL1++jLi4uAJqDhEREdC1bjl8/3I92FpZ4q+j4Riy4AAeJDAYIiMIhCpXrowrV64UQFOIiIj+06amB34e0AAONlbYdvom+v8cjMi4RK2bReYcCFlaWqJKlSq4fft2wbWIiIjooaZVSmPRK4FwtrdG8MU7eGnOHtyJSdC6WWTOOUKffvopxowZg6NHjxZMi4iIiDII8HLFr0MaqnXKjl6LRK8fduNGJFM0SKM6Qi4uLoiNjUVSUhJsbW3h4OCQ6fydO6a1kjDrCBERGYezEdHo8+NehEfGoYKrI355JQjlXR21bhYV8c9va31vPHXq1Py2jYiISG+V3Yrht6GN0Oenvbh0OxbdZ+3CosFBqOLurHXTqAhjZeknYI8QEZFxiYiMU8HQ6RvRarhswaBA+D1VQutmURH9/M5TICSrza9atQonTpxQ+zVr1kSnTp1gZWUFU8NAiIjI+NyNSUD/ucE4fPU+nO2s8fPABmjg7ap1s8gcAqGzZ8/i+eefx7Vr11CtWjV17NSpUyhfvjzWrVsHHx8fmBIGQkRExikqLhGD5+9H8IU7sLexxOy+9fF01TJaN4tMfa2xkSNHqmBHagmFhISoTYosVqxYUZ0jIiIqDM72Npg/MBAtqpVBXGIKXpm/H+uPhmndLCpi9O4RcnJywp49e1CrVq1Mx0NDQ9GkSRNER0fDlLBHiIjIuCUkpeCtpYew7kgYLC2AL7r7o1tAOa2bRabaI2RnZ4eoqKhHjksAJNPpiYiICpOttSWm9a6LnvXLQRarf/u3UCzYfVHrZlERoXcg1KFDB7z66qvYu3evWnJDNukhGjp0qEqYJiIiKmyyQOunL9TGwCbean/C6mOYseWs1s0iUwyEpk2bpnKEGjVqBHt7e7XJkJisQfbtt98WTCuJiIiewNLSAhM6+GLkM1XU/hd/n8Knf51Uf7ATGaSgovwwyZjbkiVL1Kwx3fT5GjVqqECIiIhISxYWFhj9bFUUs7PCJ3+exKx/zyE6PhEfdvKDhEMywywiKg5uzvYIrOiqepLIvOmVLJ2SkqJ6gI4dO6YWXzUHTJYmIiqaFu+9jPdXHYF8ygVVdFXVqGV5Dh3PEvaY2NEXbf08NW0nFaFkaa4+T0RERcVLQRUwtVcdNZNs74U7mYIgEX4/DsMWhXDKvZnj6vNERGSyOtQuixIONtme0w2HTFp7HMky3YzMkt6Lrvbr10+tPu/v728Wq88TEVHRJTlBd2MTczwv4U/Y/Th1XSOfUoXaNjIOXH2eiIhMliRGG/I6MvNAKDExEf/++y/Gjx+vltQgIiIyZjI7zJDXkZnnCNnY2GD58uUF1xoiIiIDkinyMjvscZPkPYqnTaUn86R3snSXLl2watWqgmkNERGRAUmdIJkiL3IKhpztrRGflFyo7aIinCMk0+c//PBD7Ny5EwEBAWoR1oy4Aj0RERkTqRM0s089NTtMEqN1ShezRXRcEs5ERGPQvH2YOyAQDrZWmraVisDq84/LDZKKnufPn4cpYUFFIiLTIFPks1aWDr16D/1+CkZ0fBIa+5TCT/0bMBgys89vvQMhc8NAiIjItB24dBf9ftqLmIRkNKmcFgzZ2zAYKuoKpLJ0RgkJCTh16hSSkpLyegsiIiLNBXi5YP6gQDjZWmHn2dsYsmA/4hKZM2Qu9A6EpJji4MGD4ejoiJo1a+Ly5cvq+IgRI1TVaSIioqKmvrcr5g0KhKOtFbafucVgyIzoHQiNGzcOoaGh2Lp1q1qAVad169ZYunSpodtHRERUKBpIMDTwv2DotYUHGAyZAb0DIZk6P336dDRt2lQlR+tI79C5c+cM3T4iIqJCIwnUPw9oAAcbK/x7+iaGLjrAqfUmTu9A6ObNm3Bzc3vkeExMTKbAiIiIqChqWKmUCobsbSyx9dRNtUI9gyHTpXcgVL9+faxbty59Xxf8/Pjjj2jUqJFhW0dERKQBWYD1ZzV7zBKbT0bgdQZDJkvvgoqffPIJ2rVrh+PHj6sZY99++616vGvXLrUOGRERkSloXLm0mkovxRY3nYzAG78cxPcv14OtdZ4nXJMR0vvdlNygQ4cOqSCoVq1a2LBhgxoq2717t6o0TUREZCqaPAyG7KwtsfHEDbyxOAQJSSlaN4sMiAUVn4AFFYmIaPuZmxg8f78KgtrUdMf0l+rBxoo9Q2ZVUFF6gOLj4zMdu3HjBiZNmoR3330XO3bsgDGSoo916tRJ3xwcHLhoLBER6aVZlTKY06++Ghb7+9gNjFh8EInJ7Bkyqx6hgQMHwtbWFj/88IPaj4qKUlPm4+Li4OnpqfKEVq9ejeeffx7GKjo6Gt7e3rh06dIji8XmhD1CRESks/VUBF5dcAAJySlo5+eBab3rsmfIXHqEZLX5bt26pe8vWLAAycnJOHPmjCqwOHr0aHzxxRcwZmvWrMEzzzyT6yCIiIgooxbV3PBD3wDYWlnir6PheHPJISSxZ6hIy3UgdO3aNVSpUiV9f9OmTSowkmhL9O/fH8eOHdO7Adu2bUPHjh1RtmxZNRU/u2GrGTNmqJ4cqWQdFBSE4OBg5MWyZcvQq1evPH0vERGRaFndDbP6So6QBdYdCcObSxkMmUUgJEHIgwcP0vf37NmjgpKM52XoSV9SiNHf318FO9mRZTukt2nixIkICQlR17Zp0wYRERHp10juj5+f3yPb9evXM3WRyRT/Jw3dSR6UXJtxIyIiyqhVdXfMfDlABUN/HA7DW8tCGQyZeiAkwcbChQvV4+3bt6tE6VatWqWfl+U1pFdHX1KT6KOPPkLXrl2zPf/1119jyJAhKkfJ19cXs2bNUgu+/vzzz+nXyHT+o0ePPrJlbI/kLz333HOZ1kfLzpQpU1Qvl24rX7683q+JiIhMX2tfd3z/MBhaG3odb/8WiuQUTsQ22UBowoQJqniij4+P6pEZMGCASpLWWblyJZo0aWLQxiUkJODAgQNqQdf0Bltaqn2pW1QQw2KyqKwkVum2K1eu5KntRERk+p71TZtKb21pgdWHruMdBkOmW1m6efPmKiiRAooeHh7o0aPHIz1GgYGBBm3crVu3VEK2u7t7puOyf/LkyVzfRwIayStavnz5E6+1s7NTGxERUW60qemhgqHhi0Ow8uA1yMJTX/Twh5Ul1980uSU2atSoobbsvPrqqzBWMsQlQ3lEREQFoa2fB77rXRfDfz2IFRIMWVjg8+61GQyZUiAks7ty4+mnn4ahlC5dGlZWVo8EMbIvvVJERETGol0tT3wHYMSvB7E85CokBvqsW21YMhgyjUCoRYsW6SvN51SDUc7LUJahSAFHWb9Mpup36dJFHUtJSVH7w4cPN9jzEBERGcLztTwhH5EjlxzEbwckGLLAlBdqMRgyhUDIxcUFzs7OKkm6b9++qrfGEGTK/dmzZ9P3L1y4oGaBubq6okKFCmrqvNQoql+/vspBmjp1qppyL7PIiIiIjE372p5ISU3FqCUHsXT/FUgfwiddGQwV+UAoLCxMzQyTaeuff/65qsczePBgtG3bNr2nKC/279+Pli1bpu9L4CMk+Jk3b56a6XXz5k01ay08PFwlZa9fv/6RBGoiIiJj0dG/rAqG3lp6CEv2pQVDH3dhMGQyq89fvnxZBSnz589XBQglaJHFV62t9cq9LhK41hgREeXV6kPXVDAkM+pfCqqAjzr7MRgyss/vPAVCGYexpFfo33//Vb02MpxlahgIERFRfqw8eBWjl4Wq3KE+DStgcme/fI2kkEaLrupID9DixYtVUUNZxkJyhdatW2eSQRAREVF+da1bDl9291fDY4v2XMbENcdynHREhS/XY1lSkHDu3LlYsmSJWgBVkpWlWjMDICIiosfrFlAOEvqM+T0UC3ZfUrPJJnb0Zc+QEcj10JgsbSGzuCQfSKa056RTp04wJRwaIyIiQ1m2/wreW35YDZMNbOKNCR0YDBWZHCEJhJ7E0HWEjAEDISIiMqRl+67g3eWH1eNBTSpifIcaDIY0/PzO9dCYFDIkIiKi/OnZoLyaWj92xRH8vPOCqkD9fnsGQ1rRO1n6cR48eGDI2xEREZmkFwMrqCKL4scdFzDlr5NMoC7KgZDMJPvqq69QsWJFQ9yOiIjI5EldoY+7+qnHs7edx6frGQwZdSAkwc64cePUUheNGzfGqlWr1HGZSSYBkCx98dZbbxVkW4mIiEzKy0FemNwlLRj64d/z+PzvUwyGClmuc4RkiYsffvhB1Q/atWsXevTooabQ79mzB19//bXal5XiiYiIKPf6NvRSwc+E1ccwc+s5lTP0znPVmDNkbIHQb7/9hgULFqjp8UePHkXt2rWRlJSE0NBQvllERET50K+RN1JSUvHB2uOYsUWCIQuMfrYqP1+NaWjs6tWr6fWDpKK0nZ2dGgrjm0RERJR/A5pUVHWFxHebz+KbjWe0bpJZyHUgJPWBbG1t0/dlgdVixYoVVLuIiIjMzqCmFfG/9jXU42mbzmDqxtNaN8nk5XpoTMYvBwwYoHqCRFxcHIYOHQonJ6dM161YscLwrSQiIjITrzSrpL5+tO4Epm48AwtYYFTrKlo3y2TlOhCSpTUy6tOnT0G0h4iIyOxJMCRFFz/58yS+2XhaJVCPeIbBkKaBkEyTJyIiosLx6tM+ak0yKbb41T+nYWlpgTdaVta6WeYbCBEREVHheq25D1JSgc/Wn8QXf5+CzE967WkfBF+4g4ioOLg52yOwoiuspMuI8iTXi66aKy66SkREWpux5awKhISzvTWi4pLSz3mWsMfEjr5o6+epYQuL7ue3QdcaIyIiIsOTIbFO/mmBTsYgSITfj8OwRSFYfzRMo9YVbQyEiIiIjFxySir2Xbyb7TndsM6ktcfVdaQfBkJERERGTnKCwu7H5Xhewh85L9eRfhgIERERGTlJjDbkdfQfBkJERERGTmaHGfI6+g8DISIiIiMnU+RldtjjJsmXcrJV15F+GAgREREZOakTJFPkRU7BUFR8Eg5fvVeo7TIFDISIiIiKAKkTNLNPPXiUyDz8JfvVPZyRkJSCAXP34WR4pGZtLIpYUPEJWFCRiIiMiUyRz1pZOj4pGX1+3IuQy/dQxtkOv73WCN6lMy+Kbm4ic/n5zUDoCRgIERFRUXA/NhEvztmDE2GReKqkA34f1gieJRxgriJZWZqIiMh8lHC0wYJBgahY2gnX7j1QPUS3o+O1bpbRYyBERERkImRYbNErQShbwh7nbsag38/BiIxL1LpZRo2BEBERkQmRYTEJhmQ6/bHrkRg8bx8eJCRr3SyjxUCIiIjIxFQqUwwLBgeqlepljbKhiw6oWWX0KAZCREREJqhm2RKYN7ABHGys8O/pm3hz6UEuypoNBkJEREQmKsDLFbP7BcDWyhJ/HgnHuBWHkcJgKBMGQkRERCasWZUymNa7LiwtgGX7r+KjdSfAyjn/YSBERERk4tr6eeDz7v7q8c87L+DbTWe0bpLRYCBERERkBroHlMMHD9crm7rxDH7acUHrJhkFa60bYApSUlKQkJCgdTNMjo2NDaysrLRuBhGRyRjQpCKi4pLw1T+nMfmP43C2s0bPBuVhzhgI5ZMEQBcuXFDBEBleyZIl4eHhAQuLnNZbJiIifQxvVVmtVD9723mMXXEYxeyt8XwtT5grBkL5IMlmYWFhqteifPnysLTkSKMh/21jY2MRERGh9j09zfc/KRGRIckfluPaVUdUXCJ+Db6CUUsOwtHWCi2qucEcMRDKh6SkJPVhXbZsWTg6OmrdHJPj4JC2WKAEQ25ubhwmIyIyYDD0UZdaapjsj8NhquDiwsFBaODtCnPDLox8SE5OK1lua2urdVNMli7ATEzkWjlERIZkZWmBr3vWQctqZRCXmIJBc/fh6LX7MDcMhAyA+SsFh/+2REQFx9baEjP7BCCwoqvKG5JFWs9GRMOcMBAiIiIyY/Y2Vvipf33ULlcCd2IS0OfHvbhyJxbmgoGQEZC1X3afu43Vh66pr1wLhoiICpOzvQ3mDQxEFbdiCI+MQ5+f9iIiMg7mgMnSGlt/NAyT1h5H2P3/fuA8S9hjYkdftPXjTCkiIiocrk62WPRKELrP2oVLt2PR96dgLH2tIUo6mnYeLHuENA6Chi0KyRQEifD7ceq4nCciIios7sXt8cvghnAvbodTN6LQf+4+RMcnwZQxEDJ07ZuEpFxtUr9h4ppjyG4QTHfsgzXH1XW5uZ8+C+i1aNECI0aMwJtvvgkXFxe4u7tjzpw5iImJwcCBA+Hs7IzKlSvjr7/+Sv+eo0ePol27dihWrJi6vm/fvrh161b6+fXr16Np06aqAGKpUqXQoUMHnDt3Lv38xYsXVeLzihUr0LJlSzUbzN/fH7t3787jvzYRERWECqUcsWhwEFwcbRB65R5eXbAfcYlps6RNkUUql6B9rMjISJQoUQL3799H8eLFM52Li4tTVaUrVqwIe3t7FZD4Tvhbk3Ye/7ANHG2tcx0IhYSE4N1330WvXr2wdOlSfPDBB3juuefQtWtXdf6bb77BsmXLcPnyZVU9u2rVqnjllVfQr18/PHjwAO+9956qo7R582Z1z+XLl6tAp3bt2oiOjsaECRNU8HPo0CFVaFIey79T9erV8eWXX6JKlSp4//33sW/fPpw9exbW1tm3Peu/MRERFY7DV+/hpTl7VY9Q6xrumNmnHmysLE3i8zsjBkJmGghJDaTt27erfXksr/GFF17AggUL1LHw8HBVzVl6bDZu3Kiu/fvv/17b1atXVTXtU6dOqSApK+ktKlOmDI4cOQI/P7/0QOjHH3/E4MGD09p8/Dhq1qyJEydOqAApOwyEiIi0s+f8bfT/ORjxSSnoUqesqjtkaWlhUoGQWSRLSw/E3LlzVY/F2LFj0adPnwJ5HgcbKxWQ5EbwhTsYMHffE6+bN7CBqu+Qm+fWh/Tc6EjFZhnOqlWrVvoxGf7SVXUODQ3Fli1b1LBYVjL8JYHQmTNnVC/Q3r17VRCkW3tNepQkEMrueXXLZshz5BQIERGRdhpWKoVZfQIwZMF+rDp0Xa1LNrmzn0nVeDP5QEh6JBYvXowDBw6oPBrJT5H8FcllMTT5wchtr0yzKmXU7DBJjM6uS05+xDxK2KvrpPpnQazsnun5LCwyHdP9kEtAI0NdHTt2xGefffbIfXTBjJz38vJSuUay5Ih8nwRAMqyW0/NmfA4iIjJOLau74ZtedTByyUEs2nNZTbV/r63p/PFadAb78kiGXRo1aqSGVWTtKknQlcRerUlwI1PkRdYwR7cv5wsiCNJXvXr1cOzYMXh7e6sk6oybk5MTbt++rYbI/ve//+GZZ55BjRo1cPfuXa2bTUREBtLRvyw+6Zo2ajBz6zl8v/UsTIXmgdC2bdtUb4L0IkgPwapVqx65ZsaMGepDWIKZoKAgBAcH5/r+0iuxdetW3Lt3T304y+Nr167BGEidIEk+k56fjGRfjhtLHaE33ngDd+7cQe/evVVyswyHSb6QzDCT/CKZeSZDa7Nnz1aJz5JAPXr0aK2bTUREBtQ7sALef76Gevz5+lNYuOcSTIHmQ2MyZVt6aQYNGqSSdbOSGU3yoTpr1iwVBE2dOhVt2rRRPRCyIrmoU6eOmsGU1YYNG+Dr64uRI0eiVatWKmmqYcOGRrWKuQQ7z/p6qJyhiKg4uDnbq5wgY+gJ0pEgdefOnWqmmMwsi4+PV8Ngbdu2VTPCJIBdsmSJ+neWwLNatWqYNm2aSsomIiLTMeTpSoiMS8R3m89iwuqjcLazRpe6T6EoM6pZY/KBunLlSnTp0iX9mAQ/DRo0wPTp09PzSWS2ktTBkcRnfckUcJki3r59+2zPy4e8bBmzzuX5cjNrjAyP/8ZERMYlNTVVrYgwb9dF9Ue7JFM/65s2waYozhrTfGjscSTRVpKcW7dunX5MeiBkX59CfDIrSUgvkgyrSY9STqZMmaL+4XSbBEFERET0X6fFhA6+6FavnFob843FIdh19r8Cu0WNUQdCMg1bclB0U7l1ZF/q3ORW586d1RCZTJuXafQ5Fe8T48aNU9Gjbrty5Uq+XgMREZGpsbS0wGfdaqFNTXckJKXglQX7cfBy0Zwko3mOUGHQp/fIzs5ObURERJQzaytLTOtdF6/M34/tZ26p2niySGt1j5yHoYyRUfcIlS5dWiU237hxI9Nx2ffw8NCsXURERATYWVvhh74BCPBywf0HiejzYzAu3opBUWLUgZCtrS0CAgKwadOm9GOSLC37UhuIiIiItOVoa42fBzRADc/iuBUdj5d/3Iuw+w9QVGgeCEnVYlmYUzYhM4TksSzNIGTqvFQrnj9/viqOOGzYsPRV0omIiEh7JRxssHBwICqVdsK1ew/Q58e9uB393wxsY6Z5ILR//37UrVtXbbrARx7LulVCVkeXtcJkX+oFSZAklaGzJlATERGRdkoXs8PCV4JQtoQ9zt2MQb+fg1XNIWNnVHWEivrq82R4/DcmIipazt+MRs8fduNWdAIaeLtgwaAgONgWfiFjk6gjREREREVLpTLFVPBT3N4a+y7exWuLDqgp9saKgZAxSEkGLmwHjvye9lX2jdzFixdVUS1dbhcREZGOb9nimDswEA42Vth2+ibeXHoQScnGGQyZRR0ho3Z8DbD+PSDy+n/HipcF2n4G+HYq9OYMGDBALVCb3eK3REREuSVT6uf0q49B8/bhzyPhcLI9gs+61VbFGI0Je4S0DoKW9cscBInIsLTjcp6IiKiIalqltCq6KGuS/XbgKj5ad0KtVWZMGAgZkry5CTG52+Iigb/elW/K7kZpX6SnSK7Lzf30/MH6/fffUatWLTg4OKBUqVJq/bYxY8aoMgWrV69Ww16ybd26VV0va7TJbD5JWK5fvz4OHjxoiH8xIiIycW39PPB5t9rq8c87L+DbTWdgTDg0ZkiJscAnZQ10s9S0nqJPc7no6/9dB2ydcnVpWFgYevfujc8//xxdu3ZFVFQUtm/fjn79+qn6TZJpL2uyCVdXV1XrqUOHDnj22WexaNEiNYtr1KhR+XlxRERkRroFlEN0fBImrjmGqRvPwNneBgMaeyP4wh1ERMXBzdkegRVdVc9RYWMgZIYkEEpKSsILL7wALy8vdUx6h4T0EMXHx2dawmTevHmqovdPP/2keoRq1qyJq1evquKWREREudG/sTei4hLx5YbTmPzHcUzbdEYty6HjWcIeEzv6oq2fJwoTAyFDsnFM65nJjUu7gF+6P/m6l38HvBrn7rlzyd/fH88884wKftq0aYPnnnsO3bt3h4uLS7bXS0Xv2rVrZ6rjwyVOiIhIX2+0rIzQq/fxz/EbmYIgEX4/DsMWhWBmn3qFGgwxR8iQLCzShqdys/m0Spsdhpy6AS2A4k+lXZeb+8lz55IsZPvPP//gr7/+gq+vL7777jtUq1ZNDXkREREVlJRU4Mi1+9me02W6Tlp7HMlyYSFhIKQVS6u0KfJK1iDm4X7bT9OuKwCSCN2kSRNMmjRJJT7LArcrV65UX5OTM9cxqlGjBg4fPqyqPOvs2bOnQNpFRESmK/jCHdXzkxMJf8Lux6nrCgsDIS1JnaCeC4DiWboApadIjhdQHaG9e/fik08+Ueu8SXL0ihUrcPPmTRXweHt7q6Dn1KlTuHXrFhITE/HSSy+pwGnIkCE4fvw4/vzzT7X+GxERkT4kMdqQ1xkCc4S0JsFO9fZpOUPRN4Bi7mk5QQXUEyRkzZVt27Zh6tSpaoaYJEx/9dVXaNeunZoaL1Pm5avMFtuyZQtatGiBtWvXYujQoWoKvQynffbZZ+jWrVuBtZGIiEyPm7O9Qa8zBAZCxkCCnorNCu3ppOdn/fr12Z4rU6YMNmzY8Mjxhg0bPrKchrEVxSIiIuMWWNFVzQ6T4bHsPkEkMcSjRNpU+sLCoTEiIiIqFFInSKbIPyY7Vp0vzHpCDISIiIio0MjUeJkiLz0/Gcl+YU+dFxwaIyIiokIlwc6zvh6sLE1ERETmycrSAo18SmndDA6NGQKThgsO/22JiKggMRDKB6nQLBISErRuismKjY1VX21sbLRuChERmSAOjeWDtbU1HB0dVTFC+aC2tGRcacieIAmCIiIiULJkyfSgk4iIyJAYCOWDVFv29PRUa3RdunRJ6+aYJAmCPDw8tG4GERGZKAZC+SRrc1WpUoXDYwVAetnYE0RERAWJgZAByJCYvX3hlQMnIiIiw2BSCxEREZktBkJERERkthgIERERkdlijlAuC/pFRkZq3RQiIiLKJd3n9pMK8zIQeoKoqCj1tXz58lo3hYiIiPLwOV6iRIkcz1ukcg2Dx0pJScH169fh7Oys6gbRoxG3BIlXrlxB8eLFtW4O8T0xOnw/jAvfD/N5P1JTU1UQVLZs2ccWPGaP0BPIP165cuW0bobRkx9g/lIxLnxPjAvfD+PC98M83o8Sj+kJ0mGyNBEREZktBkJERERkthgIUb7Y2dlh4sSJ6isZB74nxoXvh3Hh+2Fc7Izg/WCyNBEREZkt9ggRERGR2WIgRERERGaLgRARERGZLQZCREREZLYYCFGeTJkyBQ0aNFAVt93c3NClSxecOnVK62bRQ59++qmqhP7mm29q3RSzde3aNfTp0welSpWCg4MDatWqhf3792vdLLOVnJyM8ePHo2LFiur98PHxweTJk5+4DhUZxrZt29CxY0dV5Vl+N61atSrTeXkfJkyYAE9PT/X+tG7dGmfOnEFhYCBEefLvv//ijTfewJ49e/DPP/8gMTERzz33HGJiYrRumtnbt28ffvjhB9SuXVvrppitu3fvokmTJrCxscFff/2F48eP46uvvoKLi4vWTTNbn332GWbOnInp06fjxIkTav/zzz/Hd999p3XTzEJMTAz8/f0xY8aMbM/LezFt2jTMmjULe/fuhZOTE9q0aYO4uLgCbxunz5NB3Lx5U/UMSYD09NNPa90csxUdHY169erh+++/x0cffYQ6depg6tSpWjfL7IwdOxY7d+7E9u3btW4KPdShQwe4u7vjp59+Sj/WrVs31fuwaNEiTdtmbiwsLLBy5Uo1kiAkDJGeorfffhvvvPOOOnb//n31fs2bNw8vvvhigbaHPUJkEPJDK1xdXbVuilmTXrr27durbmXSzpo1a1C/fn306NFD/YFQt25dzJkzR+tmmbXGjRtj06ZNOH36tNoPDQ3Fjh070K5dO62bZvYuXLiA8PDwTL+3ZI2woKAg7N69u8Cfn4uuUr6lpKSoXBQZCvDz89O6OWZryZIlCAkJUUNjpK3z58+rYZjRo0fj//7v/9R7MnLkSNja2qJ///5aN89se+lkpfPq1avDyspK5Qx9/PHHePnll7VumtkLDw9XX6UHKCPZ150rSAyEyCC9EEePHlV/XZE2rly5glGjRql8LXt7e62bY/bkjwPpEfrkk0/UvvQIyf8RyX9gIKSNZcuW4ZdffsHixYtRs2ZNHDp0SP0BJ0MyfE/MG4fGKF+GDx+OP/74A1u2bEG5cuW0bo7ZOnDgACIiIlR+kLW1tdokX0uSD+Wx/PVLhUdmvvj6+mY6VqNGDVy+fFmzNpm7MWPGqF4hyTeRGXx9+/bFW2+9pWbAkrY8PDzU1xs3bmQ6Lvu6cwWJgRDliSS3SRAkCW+bN29WU1JJO8888wyOHDmi/srVbdIjId3+8liGAqjwyDBx1nISkpvi5eWlWZvMXWxsLCwtM3/kyf8L6b0jbcnnhwQ8ksOlI8OYMnusUaNGBf78HBqjPA+HSRfz6tWrVS0h3TiuJLjJLAwqXPIeZM3PkumnUsOGeVuFT3oaJDlXhsZ69uyJ4OBgzJ49W22kDalhIzlBFSpUUENjBw8exNdff41BgwZp3TSzmdF69uzZTAnS8keaTLCR90SGKWWma5UqVVRgJDWfZNhSN7OsQMn0eSJ9yY9OdtvcuXO1bho91Lx589RRo0Zp3QyztXbt2lQ/P79UOzu71OrVq6fOnj1b6yaZtcjISPX/oUKFCqn29vaplSpVSn3//fdT4+PjtW6aWdiyZUu2nxn9+/dX51NSUlLHjx+f6u7urv7PPPPMM6mnTp0qlLaxjhARERGZLeYIERERkdliIERERERmi4EQERERmS0GQkRERGS2GAgRERGR2WIgRERERGaLgRARERGZLQZCREREZLYYCBER5dMHH3yAOnXqaN0MIsoDBkJEpJkBAwbAwsJCbba2tqhcuTI+/PBDJCUlpV8jxe9lja6goCAUK1YMJUuWVAvKTp06VS2kqQtEdPfJuFWvXl3DV0dERQEXXSUiTbVt2xZz585FfHw8/vzzT7Wgr42NDcaNG6fO9+3bFytWrMD//vc/TJ8+HWXKlEFoaKgKhLy9vdMXZZSFNDdu3Jjp3tbWhv0Vl5iYqNpWEAry3kSUM/YIEZGm7Ozs4OHhAS8vLwwbNgytW7fGmjVr1Llly5bhl19+wa+//or/+7//Q4MGDVTw07lzZ2zevBktW7bMFPTIfTJupUuXfuxzz5w5Ez4+Pqo3qlq1ali4cGGm89KrJNd06tQJTk5OavVy8emnn8Ld3R3Ozs4YPHgw4uLiHrn3jz/+iBo1asDe3l71TH3//ffp5y5evKjuvXTpUjRv3lxdI6+TiAofAyEiMioODg5ISEhQjyU4kABFAp+sJJAoUaJEnp9n5cqVGDVqFN5++20cPXoUr732GgYOHIgtW7Zkuk6G3bp27YojR45g0KBBKjiTY5988gn2798PT0/PTEGOrt0TJkxQgdOJEyfUtePHj8f8+fMzXTd27FjVBrmmTZs2eX4tRJQPhbLGPRFRNvr375/auXNn9TglJSX1n3/+SbWzs0t955131LEaNWqkdurU6Yn3mThxYqqlpWWqk5NTpu21117L8XsaN26cOmTIkEzHevTokfr888+n78uvyDfffDPTNY0aNUp9/fXXMx0LCgpK9ff3T9/38fFJXbx4caZrJk+erL5XXLhwQd176tSpT3xtRFSwmCNERJr6448/VBK05MikpKTgpZdeUj0uIi0WyR3pOdINqekUL148x+ulF+bVV1/NdKxJkyb49ttvMx2TxOys3zd06NBMxxo1apTekxQTE4Nz586pIbMhQ4akXyMJ4Fl7sLLem4gKHwMhItKU5PlIHo7k6ZQtWzZTgnPVqlVx8uTJXN1HN+vM0CQ3SB/R0dHq65w5c9RMt4ysrKzydW8iMjzmCBGRpiQYkACmQoUKj8zykt6h06dPY/Xq1Y98n/QW3b9/P8/PK4nMO3fuzHRM9n19fZ/4fXv37s10bM+ePemPJYlaArrz58+r15Vxq1ixYp7bS0QFgz1CRGS0evbsqZKae/furabPP/fcc2r6vCQuf/PNNxgxYkT69HkZegoPD38koVoCk+yMGTNG3b9u3bpqptratWvVNP2sU/CzkuRmqX8kw1oylCaJ0ceOHUOlSpXSr5k0aRJGjhyphsKkPICUBpDE6rt372L06NEG+bchIsNgIERERksCmcWLF6uCij///LOahSW9RlWqVEG/fv0yzbSSYERmcGWdmp/d1HYhAZTkA3355ZcquJHeGqln1KJFi8e2qVevXioH6N1331X37tatm5r2//fff6df88orr8DR0RFffPGFCrik16tWrVp488038/1vQkSGZSEZ0wa+JxEREVGRwBwhIiIiMlsMhIiIiMhsMRAiIiIis8VAiIiIiMwWAyEiIiIyWwyEiIiIyGwxECIiIiKzxUCIiIiIzBYDISIiIjJbDISIiIjIbDEQIiIiIpir/wdhbgAyXtWorgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the mean and standard deviation to the analytic result\n", "\n", "mean_analytic = exact['expectation']\n", "std_analytic = np.sqrt(exact['variance'])\n", "\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "plt.semilogy([o for o in O], \n", " [np.abs(R[o]['results'].describe('Ishigami', 'mean') - mean_analytic) for o in O],\n", " 'o-', label='mean')\n", "plt.semilogy([o for o in O], \n", " [np.abs(R[o]['results'].describe('Ishigami', 'std') - std_analytic) for o in O],\n", " 'o-', label='std')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMSerror compared to analytic')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_mean_std.png')\n", "plt.savefig('Convergence_mean_std.pdf')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:02.475338Z", "start_time": "2021-12-10T08:47:02.216434Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:06.798001Z", "iopub.status.busy": "2025-07-18T12:14:06.797917Z", "iopub.status.idle": "2025-07-18T12:14:06.985209Z", "shell.execute_reply": "2025-07-18T12:14:06.984935Z", "shell.execute_reply.started": "2025-07-18T12:14:06.797992Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG4CAYAAACpRojiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT/xJREFUeJzt3Qd8E3X/B/BPugdtoYwWZG/KnhVwoExREEThQZYgiAoC4gJ9FAcC/kVFBMHBVmSILPVRFEFAkI2CyAbZBQRa2tKd/+v7u6Z0pG3aJs0l93m/PJO7XC+XhOY+/U2T2Ww2g4iIiMiAPJx9AkRERETOwiBEREREhsUgRERERIbFIERERESGxSBEREREhsUgRERERIbFIERERESGxSBEREREhsUgRERERIbFIERERESGxSBEREREhmWIINSzZ0+UKlUKDz/8sLNPhYiIiHTEEEFo9OjRWLhwobNPg4iIiHTGEEGoXbt2CAoKcvZpEBERkc7oPght2rQJ3bp1Q4UKFWAymbBq1aoc+8ycORNVq1aFn58fIiMjsWPHDqecKxEREbkWL+hcXFwcGjdujCFDhuChhx7K8fjSpUsxduxYzJ49W4WgadOmoXPnzjh8+DDKlStXoOdKTExUi0VaWhquXr2K0qVLqxBGRERE+mc2m3Hjxg1ViOLhkU+Zj9mFyOmuXLkyy7ZWrVqZR4wYkbGemppqrlChgnny5MlZ9tuwYYO5V69eeR5/woQJ6jm4cOHChQsXLnD55cyZM/lmC92XCOUlKSkJu3fvxvjx4zO2SfLr0KEDtm3bVuDjyXGkdMkiOjoalStXxpkzZxAcHGy38yYiIiLHiYmJQaVKlWxqH+zSQejKlStITU1FWFhYlu2yfujQoYx1CUZ//PGHqmarWLEili9fjtatW+c4nq+vr1qykxDEIERERORabGnW4tJByFY///yzs0+BiIiIdEj3vcbyUqZMGXh6eiIqKirLdlkPDw932nkRERGRa3DpIOTj44PmzZtj/fr1WXp6ybq1qi8iIiIil6oai42NxbFjxzLWT548iX379iE0NFQ1ZJbGzYMGDUKLFi3QqlUr1X1e2gINHjy40M8p4xLJIu2PiIiI9EiuUcnJyTAqb29vVStUVKb0bum6tXHjRtxzzz05tkv4mT9/vro/Y8YMvPvuu7h48SKaNGmC6dOnqzGF7NHqPCQkRPUeY2NpIiLSA7lsy/Xu+vXrMLqSJUuqpjDZG0UX5Pqt+yDkTAxCRESkNxcuXFAhSAYNDggIMOSAv2azGfHx8bh06ZIKQ+XLly/09Vv3VWNERER0qzrMEoJk1gMj8/f3V7cShuT9KGw1mUs3liYiIjISS5sgKQkiZLwPRWkrxSBERETkYoxYHeao94FByArpMRYREYGWLVs6+1SIiIjIgRiErBgxYgQOHjyInTt3OvtUiIiIyIEYhIiIiAwoNc2Mbcf/xep959StrDuzJ9yjjz6K2rVrq8nTx4wZU2zPzV5jREREBvPDgQt4Y+1BXIhOyNhWPsQPE7pFoEuDrF3Ri0NiYiLKli2L//73v/jggw+K9blZIkRERGSwEPTUF3uyhCBxMTpBbZfH7e3y5ctq4MNJkyZlbNu6dauaKkumxapatSo+/PBDDBw4UI3/U5xYIkREROTigwveTLZtSiip/pqw5i9YqwQzSy8sAK+vOYi2NcvA0yP/Hln+3p429dyS0p65c+eiR48e6NSpE+rUqYMBAwZg5MiRaN++PZyJQYiIiMiFSQiKeO1HuxzLLCVDMQlo+Po6m/Y/+GZnBPjYFiW6du2KYcOGoV+/fmp+0MDAQEyePBnOxqoxK9h9noiIyP6mTp2KlJQULF++HF9++SV8fX3hbCwRyqX7vCyWuUqIiIj0SqqnpGTGFjtOXsVj8/IfGmb+4JZoVS3UpucuiOPHj+P8+fNIS0vDqVOn0LBhQzgbgxAREZELkzY6tlZP3VmrrOodJg2jrbUTMgEID/FT+9nSRqggkpKS0L9/f/Tp00e1ERo6dCj279+v5glzJlaNERERGYSEG+kiL7LHHFP6rTxu7xAkXnnlFTUb/PTp0/HSSy+pMYOGDBmS8fi+ffvUEhsbq3qZyX0Z3NjRGISIiIgMRMYJmtW/mSr5yUzWZbsjxhHauHEjpk2bhkWLFiE4OFgNmij3N2/ejFmzZql9mjZtqpbdu3dj8eLF6r40sHY0Vo0REREZjISdjhHhqs3QpRsJKBfkp9oEOaIkSLRr1y7HDPEydpCUEGUeBsAZGISIiIgMSEJP6xqlYXSsGiMiIiLDYhCyguMIERERGQODkBUyhpC0VN+5M/+xFoiIiMh1MQgRERGRYTEIERERkWExCBEREZFhMQgRERGRYTEIERERkWExCBEREZFhMQgREREZUVoqcHIzsP9r7VbWneSbb75Bx44dUbZsWTUXWevWrfHjjz8Wy3Nzig0iIiKjObgG+OElIOb8rW3BFYAu7wAR3Yv9dDZt2qSC0KRJk1CyZEnMmzcP3bp1w/bt29Xkq47EEiErOLI0ERG5dQhaNjBrCBIxF7Tt8ridXb58GeHh4SroWGzduhU+Pj5Yv369mpn+xRdfVNfdWrVqqf3kdu3atXA0lgjlMrK0LDExMQgJCXH26RAREeVOZm1PjrdtX6n++t+L8kPWDgTApJUUVW8HeHjmfzzvAMCU/4z1UuU1d+5c9OjRA506dUKdOnUwYMAAjBw5Eu3bt895mmlpuHHjBkJDQ+FoDEJERESuTELQpAp2OphZKymaUsm23V8+D/gE2rRr165dMWzYMPTr1w8tWrRAYGAgJk+ebHXfqVOnIjY2Fr1794ajMQgRERFRsZCA06BBAyxfvhy7d++Gr69vjn0WL16MN954A6tXr0a5cuUcfk4MQkRERK5MqqekZMYW/2wFvnw4//36fQ1UaWPbcxfA8ePHcf78eVX1derUKTRs2DDL40uWLMHQoUNVUOrQoQOKA4MQERGRK5M2OjZWT6HGvVrvMGkYbbWdkEl7XPazpY1QASQlJaF///7o06ePaiMkgWf//v0ZpT5fffUVhgwZosLQ/fffj+LCXmNERERGIeFGusgr2Rs5p693mWL3ECReeeUVREdHY/r06XjppZdQu3ZtFXws1WEDBw7Ee++9h8jISFy8eFEtsr+jMQgREREZiYwT1HshEFw+63YpCZLtDhhHaOPGjaqL/KJFi9SAiR4eHur+5s2bMWvWLHz66adISUlRPbbLly+fsYwePRqOZjKbpd8dWWPpPi+JVD44IiIiZ0pISMDJkydRrVo1+Pn5Fe1g0pX+n61AbBRQIkxrE+SAkiBnvB8FuX6zjRAREZERSeipdieMjlVjREREZFgMQkRERGRYDEJWcK4xIiIiY2AQskJarR88eBA7d+509qkQERGRAzEIERERkWExCBEREZFhMQgRERGRYTEIERERkWExCBEREZFhMQgREREZUGpaKnZe3InvT3yvbmXdWbZs2YK2bduidOnS8Pf3R926dfHBBx8Uy3Nzig0iIiKD+fmfnzFlxxRExUdlbAsLCMO4VuPQoUqHYj+fwMBAjBw5Eo0aNVL3JRgNHz5c3X/iiScc+twsESIiIjJYCBq7cWyWECQuxV9S2+Vxe7t8+TLCw8MxadKkjG1bt26Fj48P1q9fj6ZNm6Jv376oX78+qlativ79+6Nz585qdnpHY4kQERGRCzObzbiZctOmfaX6a/KOyTDDnPM40LZJSVFkeCQ8bZiJ3t/LHyaTKd/9ypYti7lz56JHjx7o1KkT6tSpgwEDBqhSoPbt2+fYf+/evSooTZw4EY7GIEREROTCJARFLo602/Gi4qPQZkkbm/bd/uh2BHgH2LRv165dMWzYMPTr1w8tWrRQ1V6TJ0/Osk/FihVV6VFKSgpef/11DB06FI7GIERERETFYurUqWjQoAGWL1+O3bt3w9fXN8vjUhUWGxuL33//HePGjUPNmjVVlZkjMQgRERG5MKmekpIZW+yO2o2n1z+d734ft/8YzcOa2/TcBXH8+HGcP38eaWlpOHXqFBo2bJjl8WrVqqlb2R4VFaVKhRiEiIiIKFfSRsfW6qk2Fdqo3mHSMNpaOyETTOpx2c+WNkIFkZSUpBpB9+nTR7URkmqv/fv3o1y5clb3l7CUmJgIR2OvMSIiIoOQcCNd5C2hJzPL+kutXrJ7CBKvvPIKoqOjMX36dLz00kuoXbs2hgwZoh6bOXMm1q5di6NHj6plzpw5qhpNgpOjsUTICvlAZElNdd7gUkRERI4g4wS93+59q+MIvdTqJYeMI7Rx40ZMmzYNGzZsQHBwsNq2aNEiNG7cGLNmzVKlP+PHj8fJkyfh5eWFGjVq4J133lFjCTmaySz97siqmJgYhISEqARr+eCIiIicJSEhQYUFaUvj5+dXpGNJV/o9l/bgcvxllA0oi2blmjmkJMgZ70dBrt8sESIiIjIgCT0tw1vC6NhGiIiIiAyLQYiIiIgMi0GIiIiIDItBiIiIiAyLQYiIiIgMi0GIiIiIDItBiIiIiAyLQYiIiIgMi0GIiIiIDItBiIiIyIDMqamI274D0d9+p25l3ZEee+wxmEwmTJkyJcv2VatWqe3Owik2iIiIDCZm3TpETZqMlIsXM7Z5hYcj7OXxCO7UyWHPK/OBWSZTLVWqFPSAJUJEREQGC0HnRo/JEoJESlSU2i6PO0qHDh0QHh6OyZMnQy9YIkREROTCzGYzzDdv2rZvaiqiJr4tP2TtQIAJiHp7EgJbt4bJM/+Z6E3+/gWq1vL09MSkSZPw6KOPYtSoUahYsSKcjUGIiIjIhUkIOtysuZ0OBlUydKRlK5t2r7NnN0wBAQV6ip49e6JJkyaYMGEC5syZA2dj1RgREREVK2kntGDBAvz9999wNpYIERERuTCpnpKSGVvE79qFM08Mz3e/Sp9+goAWLWx67sK466670LlzZ4wfP171JnMmBiEiIiIXJm10bK2eCmzbVvUOk+ovq+2ETCZ4hYWp/WxpI1QU0o1eqsjq1KkDZ2LVGBERkUFIuJEu8tpKtkbO6evyuKNDkGjYsCH69euH6dOnw5kYhKyYOXMmIiIi0LJlS2efChERkV3JOEG3fThNlfxkJuuy3ZHjCGX35ptvIi0tDc5kMku/O7IqJiYGISEhiI6ORnBwsLNPh4iIDC4hIQEnT55EtWrV1OCERSFd6eN37UbK5cvwKlsWAS2aF0tJUHG8HwW5frONEBERkQFJ6AmMtK2bvDtj1RgREREZFoMQERERGRaDEBERERkWgxAREZGLYT8n+70PDEJEREQuwtvbW93Gx8c7+1R0wfI+WN6XwmCvMSIiIhchs7eXLFkSly5dUusBAQEFmv3dnUqC4uPj1fsg74e8L4XFIERERORCwsPD1a0lDBlZyZIlM96PwmIQIiIiciFSAlS+fHmUK1cOycnJMCpvb+8ilQRZMAgRERG5IAkB9ggCRsfG0kRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWG4fhL799lvUqVMHtWrVwueff+7s0yEiIiId8YIbS0lJwdixY7FhwwaEhISgefPm6NmzJ0qXLu3sUyMiIiIdcOsSoR07dqB+/fq47bbbUKJECdx3331Yt26ds08L5tRUxG3fgehvv1O3sk5ERETFT9dBaNOmTejWrRsqVKgAk8mEVatW5dhn5syZqFq1Kvz8/BAZGanCj8X58+dVCLKQ++fOnYMzxaxbh2PtO+D0oEE4//zz6lbWZburYaAjIiJXp+sgFBcXh8aNG6uwY83SpUtV1deECROwZ88etW/nzp1x6dKlQj1fYmIiYmJisiz2JGHn3OgxSLl4Mcv2lKgotd2VwpA7BToiIjIuXQchqcqaOHGiatdjzfvvv49hw4Zh8ODBiIiIwOzZsxEQEIC5c+eqx6UkKXMJkNyXbbmZPHmyaktkWSpVqmS31yKlJVGTJgNms5UHtW3yuCuUqrhToCMiImMzmc3Wrsz6I1VjK1euRI8ePdR6UlKSCj1ff/11xjYxaNAgXL9+HatXr1aNpevVq4eNGzdmNJbeunVrro2lpURIFgspEZIwFB0djeDg4CKdv1QdSalJfkp06ADv8PDMLzzT/cybM63kfNCG+9l+Orf9sh3XnJaG6199hbS4uFxfg2doKCp9/jm8QkvBMygIpoAAK+erHxI+43ftRsrly/AqWxYBLZrD5Onp7NMyLH4eRFRUcv2W674t12+X7TV25coVpKamIiwsLMt2WT906JC67+Xlhffeew/33HMP0tLS8OKLL+bZY8zX11ctjiBf6raI/flnuLrUq1dx6qGHbm3w8lKByDM4GB7Bwem3sh4Cz+AgbVtQcPp9bVvGvhKkvL0ddq5SeiUlcZlLt7zCwxH28ngEd+rksOcl6/h56JO7hFO+Dn0x6+R1uGwQslX37t3V4mzyIdsiuHs3eEsD78wFdZnL7LIX4GVZz/wzt+6bbTlWbveR9ThJJ08ibvOWfF+HKTAQ5oQEQKr6UlKQeu2aWgpDSpQ800ORR0i20CQBKyQYHrJN3cq6tl0e9wjMvTTKUsWX/T21VPHhw2m8+BYjd/w89PJFXxTuEk75OvQlRkevw2WDUJkyZeDp6YmoqKgs22U9PHPVkk7IF6B8yPKlbrWdkMkEr7AwVJg8WddflFLFZ0sQqvTxxwho1RLm+Hik3riB1OgYpN2IQWqMtqTF3NBuZVt0jNonLTpa2/dGDNJk//TqNzlGiizZ2iTZxMMjPUBlDU0SmGL+933ebbbenoQS994LDy/X+DVx5Ytu6s2biHprYp6fx8U334JvnTrwDAyEyc8fHv5+un59evqiN3o45evQlxidvQ6XbSMkpLt8q1at8NFHH6l1qf6qXLkyRo4ciXHjxhVrHWOBPnyR+W1PL7G4zQX+EcvFVnqH5Rfoaq7/ucgXKbOUJElAshak0rdZQpMKUDHRWsBKD1Xm5GQUmaenKmHyCCqhSqIybqX6rkRQ1lupzitRIv1W1oPUusnDw60vuvIVYr5589ZnFSO38jmlh9obsTnW1a3ls7pxA+ZMbfMKwuTjA5O/Pzz8/NQipYfqvoQkCUtqm9ymBye1nz88Avxvhaks2+Rn03/OcluIIJzbF71L/q7n9geIHX/XHYmvw5ivI6YA129dB6HY2FgcO3ZM3W/atKnqJSbtfUJDQ1Xgke7z0jj6k08+UYFo2rRpWLZsmWojlL3tUEFId31ZpA3SkSNH7BaE3O6vRB0HOnVxTky0UhKlXZDjd+3EjR9+dPyJmEzwCAzMGphyC1RSchWULVDJNh8fh150pQG8lL6pECPBRN6jTKHmVmixHmLkVqo/i4W0F7NHwC0AaaOWEYr8JSgF3LpvCVPqce0+fHxxbeFCpMXG5npMqeItq36HzEBqGpCWCnOet2kwp6WqfXO7zfIzaXJcuU1Lv83jZ3Psq92mSmmuDUOReJQqBQ9pWyn/3tJroU1yx1IlrbZnXk9/3OpjmY6htlk5Tqb9bDlOWmwcko4fz/d1+NSqpX4Hlfwui0V9XH3y+R0j62pqbCyST5zI97je1avDs0QJ6FWqja+j8oIFCIxsVejncZsgJL29JPhkJ+Fn/vz56v6MGTPw7rvv4uLFi2jSpAmmT5+uSorswd4lQu5QheEugc7WXnwVPvgAvjWq3woJGWEhWzDIHBBitccLW8qRncnX13oJVFAwTIEBiF7+dd4X3RIlENzjQZhj43IGnfRbW764bSo9U22zgm+FuqBcwl+2fRKOHsXZJ5+y6csxoGUL9d6mJSSokii5Tbt5U7t/MwFpCTdV+7Qc29RtAswJN5EWfzPrz8vj6dss2+3ynhBRoVSYOhUhD9xfuB92pyDkbI4KQu7ClQNdcVTxpSUlpZeqxKigklGlZwlSsXkHqrzCjaNKPixtqfIMMZZ1S5ix9O7z9y/0MAnFWeVqc4liUlJ6kNLClApQeQSstJvx6n7C4UOI3/Z7vs/h16ABvGVcM08PmDw887j11KpXPTxg8pTbvPbNfKvta/mZ7LdqH3kvPazvm3DoMKImTsz3dYS98Tr86zfI9LmZb92XW3kvM9Yz/pfxmGVftU/GIcw5jpPlGJbHrT5HpuPAjITDh3Hlw+n5vo4yo56Bb61aWbbZ/O/Z3vtlH98EQMKRI7gybVq+P1lmzBj41a4NvUqw8XWwREgnGITcm96r+CQcZK6yyhqotMB0c98fiNu0Kd9jSaPvgGZNtd51QSW0W2nDlHEbpFVvOJHePw97lzYW9Yve0fQWTguLr8OYryPGCOMIERWVuqh+OC1nFV9YmC6q+ORLQJW6BAfDO69efDYEodBBg3R90XWFz8PePURlPz2Tf3/yvqtwKmHUSjiVx/V80RV8Hfpi0uHrYIlQHlgiZAys4tMXV/483K10yx3aA1rwdRjrdcSwaqxoHNlrjMje3Omi607c5YLlLuFU8HUY53XEMAjZB0uEyFW400XXnbjLBYvI1TAI2QmDELkSXnSJiDRsLE1kQBJ69N4gmohIbxw/9j8RERGRTjEIERERkWExCBEREZFhMQhZIV3nIyIi0LJlS2efChERETkQe43lgb3GiIiI3Pv6zRIhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISs4oCIREZExcEDFPHBARSIiItfDARWJiIiIbMAgRERERIbFIERERESG5WXLTtOnT7f5gKNGjSrK+RARERHpq7F0tWrVbDuYyYQTJ07AXbCxNBERkXtfv20qETp58qS9zo2IiIjIPdoISWESe98TERGRoYLQwoUL0bBhQ/j7+6ulUaNGWLRoEdwFB1QkIiIyhgIPqPj+++/j1VdfxciRI9G2bVu1bcuWLSo8TJw4Ec8++yzcBdsIERERuff1u8BBSBpOv/HGGxg4cGCW7QsWLMDrr7/uVu2JGISIiIhcj0NHlr5w4QLatGmTY7tsk8eIiIiIXEWBg1DNmjWxbNmyHNuXLl2KWrVq2eu8iIiIiBzOpu7zmUm1WJ8+fbBp06aMNkK//fYb1q9fbzUgEREREblNiVCvXr2wfft2lClTBqtWrVKL3N+xYwd69uzpmLMkIiIicoACN5Y2EjaWJiIicj12H1k6u9TUVKxcuRJ///23Wpcxdx588EF4eRXqcEREREROUeDk8tdff6F79+64ePEi6tSpo7a98847KFu2LNauXYsGDRo44jyJiIiInN9GaOjQoahfvz7Onj2LPXv2qOXMmTNqdOknnnjC/mdIREREpJcSoX379mHXrl0oVapUxja5//bbb3NKCiIiInLvEqHatWsjKioqx/ZLly6pMYbcAecaIyIiMgabeo1J62sLmVfsxRdfVNNp3H777Wrb77//jjfffBNTpkxB165d4S7Ya4yIiMj12H2uMQ8PD5hMpox1y49YtmVelx5l7oJBiIiIyPXYvfv8hg0b7HVuRERERLphUxC6++67HX8mRERERMWsUCMgXr9+HXPmzMkYUFG60w8ZMkQVQxERERG5ba8x6Tpfo0YNfPDBB7h69apa3n//fbVNxhQiIiIictu5xu68807VTf6zzz7LmFIjJSVFDbR44sQJNSu9u2BjaSIiItdj915jmfn7+2Pv3r2oW7dulu0HDx5EixYtEB8fD3fBIEREROTe1+8CV43JAU+fPp1ju0yzERQUVNDDERERETlNgYNQnz598Pjjj2Pp0qUq/MiyZMkSVTXWt29fx5wlERERkR56jU2dOlUNnDhw4EDVNkh4e3vjqaeeUiNLExEREbmKArcRspC2QMePH1f3pcdYQEAA3A3bCBEREbkeh7YRspDg07BhQ1SpUgXr1q3LGFOIiIiIyFUUOAj17t0bM2bMUPdv3rypeorJtkaNGmHFihWOOEciIiIifQQhGSdIxhISK1euVBOuykjT06dPx8SJEx1xjkRERET6CEJS3xYaGqru//DDD+jVq5eqJrv//vtx9OhRuIOZM2ciIiICLVu2dPapEBERkZ6CUKVKlbBt2zbExcWpINSpUye1/dq1a/Dz84M7GDFihBogcufOnc4+FSIiItJT9/kxY8agX79+KFGihGoo3a5du4wqM2k8TUREROS2Qejpp59GZGSkGl26Y8eO8PDQCpWqV6/ONkJERERkjHGEjIDjCBEREbmeYhlHiIiIiMjVMQgRERGRYTEIERERkWEVOAhJI2lrzYpkmzxGRERE5LZBqFq1arh8+XKO7VevXlWPEREREbltEJKSH5PJlGN7bGys2wyoSERERMZg8zhCY8eOVbcSgl599VU1rYZFamoqtm/fjiZNmjjmLImIiIicGYT27t2bUSK0f/9++Pj4ZDwm9xs3boznn3/eEedIRERE5NwgtGHDBnU7ePBgfPjhhxxgkIiIiIzXRmjevHlZQpCM3rhq1SocOnTI3udGREREpK8g1Lt3b8yYMUPdv3nzJlq0aKG2yYSrK1ascMQ5EhEREekjCMks83feeae6v3LlStVm6Pr165g+fTonXSUiIiL3DkIygVloaKi6/8MPP6BXr16qB9n999+Po0ePOuIciYiIiPQRhCpVqoRt27YhLi5OBaFOnTqp7deuXeM4QkREROSevcYsxowZg379+qFEiRKoUqUK2rVrl1FlJu2EiIiIiNw2CD399NOIjIxU84p17NgRHh5aoVL16tXZRoiIiIhcislsbQZVg5s5c6ZaZMTsI0eOqHZRHDeJiIjINcjQPiEhITZdvwvcRig3Z86cwZAhQ+AORowYgYMHD2Lnzp3OPhUiIiJyILsFIZl9fsGCBfY6HBEREZF+2gitWbMmz8dPnDhhj/MhIiIi0l8Q6tGjh5p5Pq8mRfI4ERERkdtVjZUvXx7ffPMN0tLSrC579uxx7JkSEREROSsINW/eHLt378718fxKi4iIiIhctmrshRdeUKNJ56ZmzZrYsGGDvc6LiIiIyOE4jpCdxiEgIiIiA48jRERERORqGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsAwRhHr27IlSpUrh4YcfdvapEBERkY4YIgiNHj0aCxcudPZpEBERkc4YIgi1a9cOQUFBzj4NIiIi0hmnB6FNmzahW7duqFChAkwmE1atWpVjn5kzZ6Jq1arw8/NDZGQkduzY4ZRzJSIiIvfi5ewTiIuLQ+PGjTFkyBA89NBDOR5funQpxo4di9mzZ6sQNG3aNHTu3BmHDx9GuXLl1D5NmjRBSkpKjp9dt26dClhEhpCWCvyzFYiNAkqEAVXaAB6ezj4rIiJdc3oQuu+++9SSm/fffx/Dhg3D4MGD1boEou+++w5z587FuHHj1LZ9+/bZ5VwSExPVYhETE2OX4xI53ME1wA8vATHnb20LrgB0eQeI6O7MMyMi0jWnV43lJSkpCbt370aHDh0ytnl4eKj1bdu22f35Jk+ejJCQkIylUqVKdn8OIoeEoGUDs4YgEXNB2y6PExGR6wWhK1euIDU1FWFhYVm2y/rFixdtPo4Ep0ceeQTff/89KlasmGuIGj9+PKKjozOWM2fOFPk1EDm8OkxKgmC28mD6th/GafsREZH+qsaKw88//2zTfr6+vmohchnSJih7SVAWZiDmnLZftTuL8cSIiFyDrkuEypQpA09PT0RFRWXZLuvh4eFOOy8i3ZCG0fbcj4jIYHQdhHx8fNC8eXOsX78+Y1taWppab926tVPPjUgXpHeYPfcjIjIYp1eNxcbG4tixYxnrJ0+eVL3AQkNDUblyZdV1ftCgQWjRogVatWqlus9Ll3tLLzJHkHGLZJH2SUS6Vul2wNsfSL6Z+z7Bt2ld6YmIKAeT2Wy21sqy2GzcuBH33HNPju0SfubPn6/uz5gxA++++65qIC1jBk2fPl2NKeRo0n1eeo9Jw+ng4GCHPx9Rgciv7ndjgV1z896vxVDggfeK66yIiJyuINdvpwchPWMQIt2SX9ufXgO2TpdfY+D2p4CDq7I2nPYNBhJjAC8/YOh6ILyBM8+YiEiX12+nV40RUSFsnpoeggB0mwY0fwzoNDHryNJSbbakL3DsJ2D5IOCJjYAv59wjInKZxtJEZMXvs4FfJmr3O72thSAh02lIF/mGD2u3Xt5Az0+0NkL/HgPWjtZKkoiIKAODEJEr2ftF+gCKAO4eB7QZmff+gaWBh+cBHl7AgRX5tyciIjIYBiErpMdYREQEWrZs6exTIbrlr1XAmme0+7ePANppc+3lq3Ik0OH1W6NMn7fP3HxERO6AjaXzwMbSpBtHfwK+6gukJQNNBwDdPwJMJtt/Xn7NlzwKHP4eKFUVGL4J8Atx5BkTEbnE9ZslQkR6d2oLsLS/FoLq9wS6fViwECRk/x4fAyUrA9dOAatHsr0QERGDEJHOndsNLP4PkJIA1OoM9PxUaxRdGP6lgEfmAx7ewN9rgO2f2PtsiYhcDoMQkV5FHQS+6AUk3QCq3gn0XgB4+RTtmLc117rZi3X/Bc7utsupEhG5KgYhIj369ziwqAdw85oWXvp+pU2lYQ+Rw4F63bWqtuWPAfFX7XNcIiIXxCBEpDfR54CFPbSBEcvVB/p9bd+BEKW90IMzgFLVgOjTwOoRbC9ERIbFIESkJ7GXgYUPagEltDowYCUQEGr/55EeY9JeyNNX60m2bYb9n4OIyAUwCFnBcYTIKaQabFFP4N+jQHBFYOBqICjMcc9XoQnQZbJ2/6cJwOntjnsuo0pLBU5uBvZ/rd3KOhHpCscRygPHEaJikxirhaCzO4DAssDgH4AyNR3/vPLrv2IocOBrbSqO4Zu10aip6A6u0UYBzzwRbnAFoMs7QER3Z54ZkduL4ThCRC4kOUEb7FBCkFRZDVhVPCHI0l5IJm0tXROIOQesfAJISyue53b3ELRsYNYQJGIuaNvlcSLSBQYhImdKTQa+HgKc/BXwDgT6fwOENyjec5CG2I9I13w/4NjPwG8fFO/zuxup/lLzwVkrbDffmuqE1WREusAgROQsUvKy6ing8Hdao+VHlwAVWzjnXCR8dZ2q3ZeZ7WU0ayqcf7bmLAnKwqyVvsl+ROR0DEJEziBtc74bC+xfrs0M33shUO0u555T0/5A476AOQ34+nEg9pJzz8dVybAHttj5OXBsPcdxInIyL2efAJEhQ9BPrwK750kjHeChT4E6XZx9Vlp7ofvfA87vBS4fAr4ZplXVFXZKD6MqYWNPv4OrtEXIUAkycKYsFZoB5RvZbwBNIsoTgxBRcds0Fdj6kXZfJlBt0Au64ROotRf67B7gxEZg07tAu3HOPivXCrm2VCtKo/iaHYHze4CrJ24tUkIopJSwXER6OGqm3Zaty1BK5ADsPp/LOEKypKam4siRI+w+T/bz++z0hrQAOk8CWo+ALv2xBFg5XCuxGrgKqN7O2Wekf6kpwPfPAbvnZ9poytZoWtahVYVautBL1ZgEonN7tUl2ZYmzUi0pjell7KcKTW+VHpWsrJXkkW2kgbq0zZLqSym5q9KG4dJNFaT7PINQHjiOENnV3i+06SxEu/H6L2lZ8wywZ6E2rtGTW4CgcGefkX4lxQMrHtdG6Zaw0/Vd7UKbYxyh24AuU/IeR0i+kqPPpocjCUZ7tOrKpNic+waUuVViZKlW4zhQ7j+uk7sEujTHvQ4GITthECK7+Wul1k1eGiK3HqnNAK/3v+STbwKfdwCiDgBV7tBGuvZkbXoOUqKzuI82DpT0/uv1+a0Lq72+6OU4V47eKjGSJeovbeLc7EpWuRWMZJH2RlLlaWSWcZ1yDGlgpYRO79wl0B107OtgELITBiGyiyPrtAET5aLVbCDQbbr+Q5DFlWPAp3drpRF3Pge0f83ZZ6Qv108DX/QCrhzR2v30XaKFneIaiFNCakY42qNNz5KdySO9vVGzW6VGsl6QUOvKJRBy7tMa5DGkgUm7AI/Zr//X5C6B7qDjXweDkJ0wCFGRScNZuVCmJAD1H9JKC/T+ZZvdgRVaaZbotwKo1cHZZ6QPF/cDXzwMxF7Uqrz6rwDK1XPuOd28rlWjSTCS27O7tPPLzssfKN84U2PsZkCpatYDul5LIGQcruQ4bXqapDgg6Ub6/dj02xvadik5++Or/I9Xpa0W8iQ4Zl48sq1bXUxFfDz7Pp45H5fQ8L8XtTkJc+MfCjwwTTvnHJf2bOt2fxy2/byUisuAorm+DvsEUwYhO2EQoiKRi9GCB7Uv5NpdgD5fAJ7ecEnfPaeNeyNftE9uBkIqwtBO/Aos7Q8kxmilK/2+BkJugy5JgJHSIkvJkQQkOe/s/EvdKjGyBKTTv9vvL3cVXOKzBpWMECPbbmR6LHOgyWV/a22myH0M+haodmehf5xByE4YhKjQog4C87tqf/VUvRPot9y1x4VJSQTmdAQu/AFUigQe+851Q11RyUzyK5/UqjqlFOE/iwH/knAZEkj+PZapMfZurXQrNSnnvlIyYc5jKhDfEOD2JzOFGUuIibMSbOJymXakiKS0xCcI8C0B+MgSmH4/fVvCDeCINGLPR+ST2nhOUpUmpRY5FnMu23PbJ7UQx7DyuOV8blwErhzO/3WE1gACy1jenEzvU/bSvmzrJpONj2U/TB7HtfaYVK9eOoh89ZoDNHwYhcUgZCcMQlQo/x4H5t2n/cLf1kLrfi7zebk6Gefmk7u10oQ2o4BOb8Fwts0EfnxZux/xINDzU8DbDy5Pgq5UIWX0UtujDarpECbt90FCS5bwkm2bWg/MtC3I+v7yB0ZeF+qMNkIXcgliLtJG6ORmYMEDDi9JcZfXUZDrN7uAENmTdHte2EMLQWENtJIgdwhBQv5afnAmsGwAsHW61mC2zn0wBClFkdHAt83Q1lsNB7pM1veFsyC8fG+1FbKQoRNkCIX8VLs7vWeaJahYwkv2sJN+3zugeDsLyGck7ZlUFV8u4zrJkAZ6/yzl900CW36Brrga67vR62AQIrKX2MvAwgeB6NNa8fSAlUBAKNyKtAeJfArYPkurHhq+CShVBW4tJQlY/fStUZ87vA60HeM6Pf8KSxpP2+KuF/RdAmH5dyvtmaw2+s5nXCe9cJdA56G/18GqMSs4sjQVmLQFmt8NiNoPhFQCBv8PKFkJbhsM5nXRqlGkUe3gHwAvH7ilhBitUfTJX7VpL6RErPF/YAjuUqXkLsMA5NmLz4aBOg32OmLYRsg+2EbIGFLTzNhx8iou3UhAuSA/tKoWCk+PAvy1L41BF/XUBtQLLAcM+QEoXQNuP37O7DuBhOtaCdF9U+B2pHHqlw9rDYlleos+C4GaBhs6IGO8F+Q/VQgVH3cIdIIjS+sfg5D7++HABbyx9iAuRCdkbCsf4ocJ3SLQpUF52wa1W9xbKzHwK6n1pgpvAEM4/D/gq/TSkd6L3OuCKKM4f/GQFvhkihFp6yVzfBmRu5RAkKHEMAjZB4OQ+4egp77Yk9sIKZjVv1neYSg1WftrWeaXkoagMgVFxRYwlHWvag2nfYOB4b9qDapd3ZmdWri9eVV7PTJQoju8rqJwlxIIMoyYAly/ZbhKIkNWh0lJkLW/Aizb5HHZL9cLw6qntBDk5adNrWC0ECRkyg0ZV0i61C9/TCshc2WHfwAWdNNCkAwsOGQdQ5CQ0CMNomVcF7llCCI3wiBEhiRtgjJXh2Un8Ucel/1yPmgGvhur9SKSBrTSTkLvvWYcRQZVfHieNuK0DLZoGWPHFe1eACzpC6TcBGp2BAatBUqUdfZZEZGDMQiRIUnDaFu8tOJPvLb6AL7efRZHom4gNTV9PJnd87URbR/6DKjdGYYmU0vI+yB2zdFGXnYlEmw3TgHWjtJG8G3SD+j7lTbmDRG5PY4jRIYkvcNscfpqPBZu+weALMCzPqsw2mOZur+vyRsoGd4ZVcxmmNx9TJn8yESsdz4PbJ4KrB2tTehZppZzevEV6MlStNK9PQu0dXkN9/7X/ccIIqIMDEJOUKxf9GRVqQBvyFueWxMg+TTKBvli/H118df5GPx5NhpNzn+VEYLeTB6AudtqANs2ItjPC40qlkSjiiEZt9LzzHDhqN14bZLOf7YAywYBw9YXeH61IvfiK4ikeGDF41o7L/nEu74LtBpm3+cgIt1jr7Fi7jVWrF/0ZNXW41cwfNFu3EhIsfq41V5jexYBa0aquwdqj8CywEfxx9lo/H0+BklSXZZNmRK+6cHIspRU29yejL0z+w4g7jLQdADwYPqUFMXRi68g4q8Ci/toYz95+gIPzwHqdbPPsd2Qu/zxxtdhnNcRw+7z+gxCxfpFT1Z9s+esaveTnGpGiyql0KdlJbz/05G8g+lfK4Gvh2jtR1qPBDpNzKg6SUpJU22HpMToz7PXVThSbYmsFDXdVtIfDW8LQaNKIWh0W0k0rBiCEH83nMH9xEZtvjX5l97zE5tGYpb36453fsm1Abu82+Ehftjy0r1F/6K89g/wRS/g36OAXwjQdylQpTUcwR0uWO7yxxtfh7FeRwyDkP6CULF+0VMO8s98+vpj+ODnI2r9/kbl8d4jjeHn7Zn3xerIOmDJo0BaMtBsENDtw3zbjyQkp6rqtP1nr6uA9MfZ6zhxJU61yc2uWplALRyllxo1uC0YAT5ern/RlcbHGydrE2wO2wCUq2v1M4lJSMHVuCRsOnIJE9YczPewQ9pWRf0KIQjw8YS/LN6e6v3y9/GAv48XAry17b5eHtarJi/8qY0WLePhBFfUxgiycm724A4XLHf5442vw3ivI4ZBSH9zjW07/i/6fvZ7vvt9Nex2tK5RukjPRVlJqc3LK/ernl/iybtr4MXOdeCRX0g4tUUrOUhJABo8DDz0aaHHT7mRkIwD52Kw/5xWarT/bLRqiJ2dnFKtckGqtKhxxRA0rFgS9coHwdfLU/cX3ZTUNFyLT1bB5t8b8aj102Moe2kr/g2oho9rfoaoBE/1mHo8LgnX4pKQklsjrSKSDKSFpFuBqRUO4OWYiQgwx+OcTzXMrfoukgPLq8dkH7Wvuu+V42flvl/6rQQvP+9cgpYLXrDkEiAfgwTpNLNZ3aaazUhOScN9H27GpRuJuf5sWLAvVj7dFl7yD1f9p71CeWssr1XeJ7lvebvUmuV++l3Le5l9v8xvscnK8bP/nLXPxF3+COXrKBgGIR2WCK3edw6jl+zLd78P/9MEDza5rUjPRbdE30zG01/uxm/H/lUh460eDdAv0obZ0s/uBhZ2B5Jigdr3AX0WaWPm2JEEgT/PSSi6FY4uxuT8cvD2NKFOeJAqMVLh6LaSqB1WAl6eHg696ErJlgSWq7FJuBovASYR/8r9uJyL7CfvdWalEY3vfccjzHQdK1LvwHPJT2U6q1sCJVz4euLyjaR8z6ll1VIqqNxMSkF8UipuJqfiZvqtrEvotaabx1a85z0LPqZU/J5WD08kjUUMAlEUlgCVPTRJSNp+8ioSkq2fi5D9729YXn1maenBI0sQSZOG/Nm3ZQ4qWoDJvt0SaLJuy7zfrcCT+WfcUUYmkvfKhv3l18kj/YfyuyrmdzxbLqv5HwOG9lURCwUKcv1mrzGdddcuF2SABrXF5Nz1mxg8bweORMWqC8/MR5vhnrrl8p8+QNqNyDxTEoKq3QU8Mt/uIUiUCvTB3bXLqsXiUkxClvZGciulLFKaJMvi7dp+crGNKB+MBreFYPW+87mOkC1f61JS1KFeGOKSUtODSyKuxknJTWK2oJMeamKTcC0+SQWLgpLrSEl/b4QG+iA0sBQWeUzA2PPPoZfnFpRr0B7/1u6T/titxVI9KX8lXoxOyG2ec/VX4pInWuf5V6KUSiWkpCE+KSUjIJXY8wkq7tAabZ+7rQvONnwbY1M9EZ+cioSk1CyBKsv95PRjZApaiZmCltovueDvkZBjLU8voXR1ltIZs84u4AU9DwmfqTZFJtLTWG/2wBKhYm4jlNsXvcX9DcMxpVcjBPm5YSPaYnTgXDQGz9+JyzcSVfH9nEEtVWiwaUJJGShRGkZXbAkMWOXUgfXk1/PstZvYf05ra/TnmWj12m4kWu/xlpu8hgrIi5RGSVgpFeCD0iUkuPiidPp6aAkfdV8eV9sCfVQIspRUZdj8HrD+TW0qkqHrc52U1lKypV63PUq20tIHv9yW3nMt8kmg82TAw6NIv8dSUhafJSClZAlS0ivxqx1n8j3WA43Kq/ZOlpIICXiySPWOp1rPut1y/9a2TI+bTKqqN8vjahsytlnbnvFzmX7e8vjOk1fRf86OIv3lLv9+5QpzKySZswQmWct8BbLct2zP7ee0Uh5ti2U/y6XMnO04u09dw1Nfav+u8iJ/KDWvUipjPb/RL/KttLGhVsdS1Zfr45ke3nXqKp5M//3Iy+z+zdCiaij0apeNr4MlQm5IvmCkvYZ80Wf+60lY1uVi9d3+i9h/LgYzHm2qqkKo4Nb/HYVnvtqrLkp1w4Mw97GWqFDS33oIkklTs0dTCUGixeNOH11YLoqVQgPU0rWhFgKkKuXkv3GqKm3l3rP49ciVfI9jCUFSDSWBxRJgVLApkR50LNsk8KQHnSBfr6KPh9T2WeCfbcCxn4Dlg4AnNgK+QTl2k5AjYSd7W6fwwrR1SkkEVj0NHEgf5brDG0Db0UUeKFF+jwN9vdSSGxkmwZYgJFW0em4P2LpGGdXOLL9SOmmUnxvVPijLW178bVc61Q+36XV0aRCu67Y1HSNsex2ynzu8jlZ5/LuyN5YI6WgcobBgP4xcvFdV6chf4uPvq4fBbasab2C+Ili07RQmrPlLXfjvrFUGH/drZr10TarDpjXIWhKUhQkIrgCM2a/rCSZtbYQ/o29TdIgIU9VQThH3L/DJnUDMOaBBL6DXnFxDSZF7vyXEAEv7ASc3aXPBPTjTpi789mJrNZ/eG7U6pJTOSfg6jPc6YthYWr9BKL8v+uj4ZDXOzQ9/XVTr0rZj6iONUDLAx27P746klGTKD4fw6aYTar13i4p4u2dDeGevprE4uRlY8ED+Bx70ra4nVHWpi+7p7cD8rkBaCnD/+0DLxx0zoOMXDwNR+wHvQK2Re832KG7ucsHSS49Ee+Dr0JcfOI6QsYNQfuQj+eL3f/DWt3+rUYsrhPjho0ebonkV/db7OpO02Ri7bB++36+Fx+c71caIe2rmXZImE4PK9Ar5kZKLhg9Dz1zqorv1I2DdfwFPH+Dxn4AKTex37CtHgUUPAdGngcCyQL/lQIWmcBZ3uWDpboyqIuDr0JdUjiytf84KQhbSKFbaupy8Eqf+cTzXqTaevKtG/uPfGMi/sYkYtnAX9py+Dh9PD/zfw43Qo2k+ww9E/QWsHgmc3+PyJUIud9GVrxsZoFLm9ypVFRi+SeulV1RndgCLewM3rwGh1YH+3wCh1eBs7nLBInI1DEJuEoREbGIK/rtyP1bt09qySLuXD/o0Mca8Vfk4cTlW9Qz75994NVXFJwOa4/bqeTQ+jbkAbHgb2PflrQbRuXKNNkIuedGVsDL7Lq3kRub36r2oaI2YD32vTYGSchOo0EwrCQosY88zJiIXwyDkRkFIyEckY468tvqAGqRNZkWXgRfb1DDul/3OU1dVSdD1+GRULOWP+YNboWa5XHp4JcYCW6dr1TLJ6aM5R/QAqt4BfP9C+k5WKpV6LwQiujv2hRiVDFg5t7M2dUmXd4DbnyzccXbPB759Vgu2tTppYz75FG2gRCJyfQxCbhaELGQyz5GL96gBAuUP6GfurYXR7Wvp869+B1r7x3k8t/wPNYpw40ol8fnAFioc5pCaAuz7AvjlbSDukratYitt0tTKkbmPIxR8G9BlCkOQo/0+W3vvPbyBIT8CFZvb/rPytSXzmf06RVtv0h/oNs0hA18SkethEHLTICRk0LY31v6FJTu1cUoiq4Xiw/80VT2D3J38U5396wm888Mhtd4pIky9dpnaINuOwNGftMH0Lmv7olQ1oOMbQL3uOathso8sXaWNy1SHuTT5nGQcp7/XACGVgeG/AgE2dAiQgPvdWGDPAm39rheAe14p8hhBROQ+GITcOAhlnrvs5W/2q2kTZBC893o3xj11rEwf4SZk6oTX1vyFxdtPq/Uhbavhlfvr5SwNu/CH1itJxpAR/qWAu8cBLYYAXhyCQHcSooFP7gaundTmdOv7Vd6BJileaw905H/aCOBdpzqmGz4RuTQGIQMEISG9yaSq7K/zMWp9+F3V8XznOrmPneOipMH4iC/34Ncjl9U18rUHIjC4bbYeQdFngV8mAn8s0dr7SPdsmVLhzucAf47QrWvn9wFzOgGpiUDHt4C2o3IflPGrPsDZndp0HTK0QT0bxoIiIsOJYRAqmpkzZ6olNTUVR44c0W0QEokpqZj8/SHM33pKrTetXBLT/9NUTcngDmSgwCHzd+LghRg10ai8NhkyP8sowls+AH7/GEhJ7zre8BHg3leBUjbMMk/6sHOOVt1l8gQGrdUaP2euqpSgKxPh/nsM8CsJPLoUqHy7s8+aiHSKQcggJULZx5F58es/EZOQgmA/L/zfw43V3Dmu7O8LMSoEydg4ZUr4qIlTpXG0kpqs9RiSBrPx6XNtVWmrNYS+rZlTz5sKQb6GZIDLAytuTXprIYMjpiZp1WjBFYH+K4BydZ15tkSkcwxCBgxC4szVeDUA474z19X6oNZVML5rPefNL1UEm45cxtNf7lHVYtItft5jLbVSLvnnKoPx/fSaVjogStcCOr4J1LmPDWZd2Z9LgW+eyP3x4ErA0HXa+E5ERHa6frtXYxKDk6Cw/MnWqq2QWLDtH/SatVW1JXIlS3eeVgMlSgi6vXooVjzZRgtBMvbMvK7ayMQSggLKAPe/Bzy9DajblSHIlUnPvZ9fz3sfc4pWVUZEZEcMQm5GGkpLKdC8wS1VbzJpSP3A9M2ql5neSeHk1B8P46UV+9UoyT2b3oYFQ1ohJPGc1lPo83uB01u1hrLSCHrUXqDlUI4d4w5k+ILMYzlZc+OCth8RkR152fNgpB/Slf77UXdi1JK9atqF0Uv2YdvxfzGhW/2c4+7opNG3tHFanT6VyKh7a+LZO8rB9MsEYPsnWhsRGfG5cV/g3leAkIrOPmWyJ2kYbc/9iIhsxBIhNyaDLC4eGolR7WupWiMZhPHBmVtwNOoG9OR6fBIGzNmhQpCXhwlTH6qHsUHrYfqoqTYthoSgandrE3T2nMUQ5I5srfJi1RgR2RkbS7tRY+m8bD12BaOX7sPlG4mqG/qb3RvgkRYVYXJyu5rT/8bjsfk7cOJyHIJ8PbHszkuo99f72gB7omw9oNNbQM0ObAPk7m2EpjXQJsbNMu+b606CS0TOw8bSlEObmmVUVZnMXi8Tt7644k88u3SfapDsLHtPX0PPj39TIahT0ClsD/8/1NvyjBaC5C//btOBJ7cAtToyBLk7CTcy+aqS/bNOX5f53xiCiMjOWCJkkBIhi7Q0M2ZvOo731h1RDZKrlQnEjEebon6FkGI9jx8OXMSYpXsRlnIeb5f4GnckpzeC9Q4A2owC2jwD+OYymzy5L06CS0R2wHGE7MQdg5DFrlNXMeqrvTgfnQAfTw/894F6GHB7lWKpKpuz5SRmfLcdz3iuxECvn+GFFG0Qvab9gXYvA8HlHX4OpGOcBJeIiohByE7cOQhZGik/v/xP/Py31hOnS/1wvPNwI4T4O6Y7upRATV6zFx47P8VIr9UINsVrD9TsqA2IGBbhkOclIiJjYRCyE3cPQkI+/nm/ncLk//2N5FQzKpbyx0d9m6Jp5VJ2fZ74xCR88fkH6HrpU1Q0aVNimMMawCQNoWvca9fnIiIiY4thELIPIwQhiz/PXsfIxXtx+mq86sL+Ypc6GHpHdXh4FL2q7NrBX3DlmxdRK+WoWr/pFwb/Lq8DjfqwyoOIiOyOQchOjBSERExCMsZ/sx/f/XkhfVDGsnivdxM1QnWhXD6C2O9eQYlT69RqHPxwvdkI3NblecAnwJ6nTkRElIFByE6MFoSE/HNYvOM03lx7EIkpaQgP9sOH/2mCyOqlbW/UGnsZ+HUKzLvmwWRORYrZA996d0Kzge+gcuWqznhZRERkIDEMQvZhxCBk8feFGIxcvAfHL8dBasee7VAbT99TE56WqjJr3ZyDygNV2gJHfgSStNGrf0ptjrXlhuP1IT0LX7JERERUAAxCdmLkICTiElPw2uq/sGLPWbXetmZpfNCnCcqdWQcsG5jLCMCaP9OqYVJKP5Su3x7v9W4MP2+2BSIiouLBIGQnRg9CFit2n8Wrqw8gPikV5QI9sdl3NHzjL1rdV/4xXTeXQIvEjzH07tp4qXNduzS4JiIicsT1m7PPU756Na+IxpVKqqqykpe2wzfVeggSEnlKmWIx+85kdLyvXrGeJxERUUFxrjGySc1yJbBqRFv0rGlbFVfHyg4/JSIioiJjECKbSTufh9u1sGnf1MByDj8fIiKiomIQsmLmzJmIiIhAy5YtnX0qurMjtS7Om0ORlkvLMtl+3lxa7UdERKR3DEJWjBgxAgcPHsTOnTudfSq6cykuGW8kD8wIPZlZ1t9IHqD2IyIi0jsGISqQckF++DGtFZ5KHoOLCM3y2EWUVtvlcdmPiIhI79hrjAqkVbVQlA/xw7roVvgpsQX2+z6OQFMixiQ9hTVpbWGGh3pc9iMiItI7lghRgcjI0hO6Raj7EnpSofUi22euqdaFPJ4xAjUREZGOMQhRgXVpUB6z+jdDeEjW6i9Zl+3yOBERkStg1RgVioSdjhHhME/2BJKBD3o3QaPGzVkSRERELoVBiApNhZ704NO0cqmM+0RERK6CVWNERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJERERkWAxCREREZFgMQkRERGRYDEJUNGazs8+AiIio0BiEyD5MnF6DiIhcD4MQERERGRaDEBERERkWgxAREREZFoMQERERGRaDEBERERkWgxAREREZFoMQERERGRaDEBERERkWgxAVEUeWJiIi18UgRHbCkaWJiMj1MAgRERGRYTEIERERkWG5fRA6c+YM2rVrh4iICDRq1AjLly939ikRERGRTnjBzXl5eWHatGlo0qQJLl68iObNm6Nr164IDAx09qkRERGRk7l9ECpfvrxaRHh4OMqUKYOrV68yCBEREZHzq8Y2bdqEbt26oUKFCjCZTFi1alWOfWbOnImqVavCz88PkZGR2LFjR6Gea/fu3UhNTUWlSpXscOZERETk6pwehOLi4tC4cWMVdqxZunQpxo4diwkTJmDPnj1q386dO+PSpUsZ+0i1V4MGDXIs58+fz9hHSoEGDhyITz/9tFheFxEREemfyWw262ZEPCkRWrlyJXr06JGxTUqAWrZsiRkzZqj1tLQ0VaLzzDPPYNy4cTYdNzExER07dsSwYcMwYMCAPPeTxSI6OhqVK1dWDa6Dg4OL9Nrc1tQ6QHIcMHwLEFrV2WdDRESEmJgYlRWuX7+OkJAQ120jlJSUpKqzxo8fn7HNw8MDHTp0wLZt22w6huS8xx57DPfee2+eIUhMnjwZb7zxRo7trEqzwZTGzj4DIiKiLG7cuOHaQejKlSuqTU9YWFiW7bJ+6NAhm47x22+/qeo16TpvaX+0aNEiNGzYMMe+ErikGs5CSp+kSq106dKqtIpyT90sNdMHfh76w89EX/h5GOPzMJvNKgRJ++P86DoI2cMdd9yhAo0tfH191ZJZyZIlHXRm7kX+AfNLRT/4eegPPxN94efh/p9HSD4lQbppLJ0X6eru6emJqKioLNtlXbrCExERERWFroOQj4+PGgBx/fr1GdukdEfWW7du7dRzIyIiItfn9Kqx2NhYHDt2LGP95MmT2LdvH0JDQ1WPLWmzM2jQILRo0QKtWrVSo0RLl/vBgwc79bxJI1WJMrRB9ipFcg5+HvrDz0Rf+Hnoi68OPg+nd5/fuHEj7rnnnhzbJfzMnz9f3Zeu8++++66aIkPGDJo+fbrqVk9ERETk0kGIiIiIyFl03UaIiIiIyJEYhIiIiMiwGISIiIjIsBiEqFBkOhKZAy4oKAjlypVT88MdPnzY2adF6aZMmaJGQx8zZoyzT8Wwzp07h/79+6uR6f39/dVo9rt27XL2aRmSzFDw6quvolq1auqzqFGjBt566y01+jAVj02bNqFbt25qpGf5brLM9GAhn8Vrr72G8uXLq89IptI6evRosZwbgxAVyq+//ooRI0bg999/x08//YTk5GR06tRJDW1AzrVz50588sknaloZco5r166hbdu28Pb2xv/+9z8cPHgQ7733HkqVKuXsUzOkd955B7NmzVI9kP/++2+1/n//93/46KOPnH1qhhEXF4fGjRtj5syZVh+Xz0N6hM+ePRvbt29HYGAgOnfujISEBIefG3uNkV1cvnxZlQxJQLrrrrucfTqGJeNyNWvWDB9//DEmTpyohpuQsbeoeI0bN07Nc7h582ZnnwoBeOCBB9QclXPmzMnY1qtXL1Xy8MUXXzj13IzIZDJh5cqVqiZBSAyRkqLnnnsOzz//vNoWHR2tPjMZRuc///mPQ8+HJUJkF/KPVshAmOQ8Ukp3//33q2Jlcp41a9aoQWAfeeQR9QdC06ZN8dlnnzn7tAyrTZs2akaCI0eOqPU//vgDW7ZswX333efsUyNoAynLOIGZv7dknjAZL3Dbtm3uP7I0uT6Z9kTaokhVQIMGDZx9Ooa1ZMkS7NmzR1WNkXOdOHFCVcXIyPgvv/yy+kxGjRqlpg2SwWKp+EvoZJbzunXrqvkrpc3Q22+/jX79+jn71AhQIUhICVBmsm55zJEYhMgupRAHDhxQf2GRc5w5cwajR49W7bX8/PycfTqGJ38cSInQpEmT1LqUCMnviLR/YBAqfsuWLcOXX36JxYsXo379+moaJ/njTapj+HkQq8aoSEaOHIlvv/0WGzZsQMWKFZ19Ooa1e/duXLp0SbUP8vLyUou015LGh3Jf/gKm4iM9XyIiIrJsq1evHk6fPu20czKyF154QZUKSVsT6b03YMAAPPvss6r3KzlfeHi4uo2KisqyXdYtjzkSgxAVijRukxAkDd5++eUX1S2VnKd9+/bYv3+/+kvXskiJhBT9y32pDqDiI9XE2YeTkPYpVapUcdo5GVl8fDw8PLJe7uR3QkruyPnk+iGBR9pxWUhVpvQea926tcOfn1VjVOjqMClmXr16tRpLyFKPKw3cpCcGFS/5DLK3z5LupzKGDdttFT8pbZAGulI11rt3b+zYsQOffvqpWqj4yfg10iaocuXKqmps7969eP/99zFkyBBnn5qherQeO3YsSwNp+SNNOtjI5yJVldLTtVatWioYybhPUnVp6VnmUNJ9nqig5J+OtWXevHnOPjVKd/fdd5tHjx7t7NMwrLVr15obNGhg9vX1NdetW9f86aefOvuUDCsmJkb9LlSuXNns5+dnrl69uvmVV14xJyYmOvvUDGPDhg1WrxmDBg1Sj6elpZlfffVVc1hYmPqdad++vfnw4cPFcm4cR4iIiIgMi22EiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIjIsBiEiIiIyLAYhIiIiMiwGISIiIrg9ddfR5MmTZx9GkRUSAxCROQUjz32GEwmk1p8fHxQs2ZNvPnmm0hJScnYRwa+l/m5IiMjUaJECZQsWVJNJjtt2jQ1kaYliFiOk3mpW7euE18dEbkKTrpKRE7TpUsXzJs3D4mJifj+++/VZL7e3t4YP368enzAgAH45ptv8N///hczZsxA2bJl8ccff6ggVLVq1YwJGWUizZ9//jnLsb287Pv1lpycrM7NERx5bCLKG0uEiMhpfH19ER4ejipVquCpp55Chw4dsGbNGvXYsmXL8OWXX+Krr77Cyy+/jJYtW6rw8+CDD+KXX37BPffckyX0yHEyL2XKlMnzuWfNmoUaNWqo0qg6depg0aJFWR6XUiXZp3v37ggMDFSzl4spU6YgLCwMQUFBePzxx5GQkJDj2J9//jnq1asHPz8/VTL18ccfZzx26tQpdeylS5fi7rvvVvvI6yQi52AQIiLd8Pf3R1JSkrov4UACigSf7CRIhISEFPp5Vq5cidGjR+O5557DgQMHMHz4cAwePBgbNmzIsp9Uu/Xs2RP79+/HkCFDVDiTbZMmTcKuXbtQvnz5LCHHct6vvfaaCk5///232vfVV1/FggULsuw3btw4dQ6yT+fOnQv9WoioiIpljnsiomwGDRpkfvDBB9X9tLQ0808//WT29fU1P//882pbvXr1zN27d8/3OBMmTDB7eHiYAwMDsyzDhw/P9WfatGljHjZsWJZtjzzyiLlr164Z6/L1OGbMmCz7tG7d2vz0009n2RYZGWlu3LhxxnqNGjXMixcvzrLPW2+9pX5WnDx5Uh172rRp+b42InI8thEiIqf59ttvVSNoaSOTlpaGRx99VJW4CC2L2EZKjixVahbBwcG57i+lME888USWbW3btsWHH36YZZs0zM7+c08++WSWba1bt84oSYqLi8Px48dVldmwYcMy9pEG4NlLsLIfm4icg0GIiJxG2vlIOxxpp1OhQoUsDZxr166NQ4cO2XQcS68ze5O2QQURGxurbj/77DPV0y0zT0/PIh2biByDbYSIyGkkDEiAqVy5co5eXlI6dOTIEaxevTrHz0lpUXR0dKGfVxoy//bbb1m2yXpERES+P7d9+/Ys237//feM+9KIWgLdiRMn1OvKvFSrVq3Q50tEjsMSISLSpd69e6tGzX379lXd5zt16qS6z0vD5Q8++ADPPPNMRvd5qXq6ePFijgbVEkyseeGFF9TxmzZtqnqqrV27VnXTz94FPztp3CzjH0m1llSlScPov/76C9WrV8/Y54033sCoUaNUVZgMDyBDA0jD6mvXrmHs2LF2eW+IyH4YhIhIlyTILF68WA2oOHfuXNULS0qNatWqhYEDB2bpaSVhRHpwZe+ab61ru5AAJe2Bpk6dqsKNlNbIeEbt2rXL85z69Omj2gC9+OKL6ti9evVS3f5//PHHjH2GDh2KgIAAvPvuuypwSalXw4YNMWbMmCK/J0RkfyZpMe2A4xIRERHpHtsIERERkWExCBEREZFhMQgRERGRYTEIERERkWExCBEREZFhMQgRERGRYTEIERERkWExCBEREZFhMQgRERGRYTEIERERkWExCBERERGM6v8B7PgTI7JVmhEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the first Sobols as a function of PCE order\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "for v in list(R[O[0]]['results'].sobols_first('Ishigami').keys()):\n", " plt.semilogy([o for o in O],\n", " [R[o]['results'].sobols_first('Ishigami')[v] for o in O],\n", " 'o-',\n", " label=v)\n", "plt.xlabel('PCE order')\n", "plt.ylabel('1st sobol')\n", "plt.ylim(1e-2,10)\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_sobol_first.png')\n", "plt.savefig('Convergence_sobol_first.pdf')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:02.735073Z", "start_time": "2021-12-10T08:47:02.477460Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:06.985793Z", "iopub.status.busy": "2025-07-18T12:14:06.985706Z", "iopub.status.idle": "2025-07-18T12:14:07.183483Z", "shell.execute_reply": "2025-07-18T12:14:07.183209Z", "shell.execute_reply.started": "2025-07-18T12:14:06.985783Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG4CAYAAACpRojiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW71JREFUeJzt3QmcjPUfB/DP7H2vc3et+2Yj5xIqlChFlNLhKKWLIv8OutCBLklEikgpdJCSikjlJkVuETl2CXvaa2b+r+/v2Vk7u7O7s7szO8fzefd6mnmeeWbmeWbszGd+p8FsNptBREREpEM+rj4AIiIiIldhECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLd0kUQ6t+/PypXrowBAwa4+lCIiIjIjegiCI0aNQofffSRqw+DiIiI3IwuglC3bt0QHh7u6sMgIiIiN+P2QWj9+vXo06cPYmNjYTAYsGzZskL7zJw5E/Xq1UNQUBA6duyILVu2uORYiYiIyLP4wc2lpaWhVatWGDZsGG655ZZCty9evBhjxozB7NmzVQiaNm0aevXqhf379yMqKqpUz5WZmakWC5PJhHPnzqFq1aoqhBEREZH7M5vNSElJUYUoPj4llPmYPYgc7ldffWW1rUOHDuYRI0bkrRuNRnNsbKx58uTJVvutXbvWfOuttxb7+OPHj1fPwYULFy5cuHCBxy/Hjx8vMVu4fYlQcbKysrB9+3aMGzcub5skvx49emDjxo2lfjx5HCldskhKSkKdOnVw/PhxREREOOy4iYiIyHmSk5NRu3Ztu9oHe3QQOnv2LIxGI6Kjo622y/q+ffvy1iUY/fHHH6qarVatWli6dCk6depU6PECAwPVUpCEIAYhIiIiz2JPsxaPDkL2Wr16tasPgYiIiNyQ2/caK061atXg6+uLhIQEq+2yHhMT47LjIiIiIs/g0UEoICAA7dq1w5o1a6x6esm6raovIiIiIo+qGktNTcWhQ4fy1o8cOYKdO3eiSpUqqiGzNG4eOnQo2rdvjw4dOqju89IW6N577y3zc8q4RLJI+yMiIiJ3JN9R2dnZ0Ct/f39VK1Rehtxu6W5r3bp16N69e6HtEn7mz5+vrs+YMQOvv/46Tp8+jdatW2P69OlqTCFHtDqPjIxUvcfYWJqIiNyBfG3L992FCxegd5UqVVJNYQo2ii7N97fbByFXYhAiIiJ3c+rUKRWCZNDgkJAQXQ74azabkZ6ejsTERBWGatSoUebvb7evGiMiIqJL1WGWECSzHuhZcHCwupQwJK9HWavJPLqxNBERkZ5Y2gRJSRAh73UoT1spBiEiIiIPo8fqMGe9DgxCNkiPsbi4OMTHx7v6UIiIiMiJGIRsGDFiBPbs2YOtW7e6+lCIiIjIiRiEiIiIdMhoMmPj4f+wfOcJdSnrruwJd9ddd6FJkyZq8vTRo0dX2HOz1xgREZHOrNp9ChNX7MGppIy8bTUigzC+Txyub2HdFb0iZGZmonr16njuuefw1ltvVehzs0SIiIhIZyHo4Y93WIUgcTopQ22X2x3tzJkzauDDSZMm5W3bsGGDmipLpsWqV68e3n77bQwZMkSN/1ORWCJERETk4YMLXsy2b0ooqf4a//VfsFUJZpZeWAAmfL0HXRpVg69PyT2ygv197eq5JaU98+bNQ79+/dCzZ080bdoUgwcPxsiRI3HttdfClRiEiIiIPJiEoLgXvnfIY5mlZCg5Ay0n/GDX/nte7IWQAPuiRO/evTF8+HDcfffdan7Q0NBQTJ48Ga7GqjEb2H2eiIjI8d544w3k5ORg6dKl+OSTTxAYGAhXY4lQEd3nZbHMVUJEROSupHpKSmbsseXIOdzzYclDw8y/Nx4d6lex67lL4/Dhwzh58iRMJhOOHj2Kli1bwtUYhIiIiDyYtNGxt3rqqsbVVe8waRhtq52QAUBMZJDaz542QqWRlZWFQYMGYeDAgaqN0P33349du3apecJciVVjREREOiHhRrrIi4Ixx5B7Kbc7OgSJZ599Vs0GP336dDz99NNqzKBhw4bl3b5z5061pKamql5mcl0GN3Y2BiEiIiIdkXGCZg1qq0p+8pN12e6McYTWrVuHadOmYeHChYiIiFCDJsr1X375BbNmzVL7tGnTRi3bt2/HokWL1HVpYO1srBojIiLSGQk718XFqDZDiSkZiAoPUm2CnFESJLp161ZohngZO0hKiPIPA+AKDEJEREQ6JKGnU8Oq0DtWjREREZFuMQjZwHGEiIiI9IFByAYZQ0haqm/dWvJYC0REROS5GISIiIhItxiEiIiISLcYhIiIiEi3GISIiIhItxiEiIiISLcYhIiIiEi3GISIiIj0yGQEjvwC7Ppcu5R1F/nyyy9x3XXXoXr16mousk6dOuH777+vkOfmFBtERER6s+drYNXTQPLJS9siYoHrXwXi+lb44axfv14FoUmTJqFSpUr48MMP0adPH2zevFlNvupMLBGygSNLExGRV4egJUOsQ5BIPqVtl9sd7MyZM4iJiVFBx2LDhg0ICAjAmjVr1Mz0Tz31lPrebdy4sdpPLlesWAFnY4lQESNLy5KcnIzIyEhXHw4REVHRZNb27HT79pXqr++ekjvZeiAABq2kqEE3wMe35MfzDwEMJc9YL1Ve8+bNQ79+/dCzZ080bdoUgwcPxsiRI3HttdcWPkyTCSkpKahSpQqcjUGIiIjIk0kImhTroAczayVFU2rbt/szJ4GAULt27d27N4YPH467774b7du3R2hoKCZPnmxz3zfeeAOpqam4/fbb4WwMQkRERFQhJOC0aNECS5cuxfbt2xEYGFhon0WLFmHixIlYvnw5oqKinH5MDEJERESeTKqnpGTGHv9sAD4ZUPJ+d38O1O1s33OXwuHDh3Hy5ElV9XX06FG0bNnS6vbPPvsM999/vwpKPXr0QEVgECIiIvJk0kbHzuopNLxG6x0mDaNtthMyaLfLfva0ESqFrKwsDBo0CAMHDlRthCTw7Nq1K6/U59NPP8WwYcNUGLrxxhtRUdhrjIiISC8k3EgXeaVgI+fc9eunODwEiWeffRZJSUmYPn06nn76aTRp0kQFH0t12JAhQ/Dmm2+iY8eOOH36tFpkf2djECIiItITGSfo9o+AiBrW26UkSLY7YRyhdevWqS7yCxcuVAMm+vj4qOu//PILZs2ahTlz5iAnJ0f12K5Ro0beMmrUKDibwWyWfndki6X7vCRSeeOIiIhcKSMjA0eOHEH9+vURFBRUvgeTrvT/bABSE4CwaK1NkBNKglzxepTm+5tthIiIiPRIQk/9q6B3rBojIiIi3WIQIiIiIt1iELKBc40RERHpA4OQDdJqfc+ePdi6daurD4WIiIiciEGIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiEiHjCYjtp7eipV/r1SXsu4qv/76K7p06YKqVasiODgYzZo1w1tvvVUhz80pNoiIiHRm9T+rMWXLFCSkJ+Rtiw6JxtgOY9Gjbo8KP57Q0FCMHDkSl19+ubouwejBBx9U1x944AGnPjdLhIiIiHQWgsasG2MVgkRieqLaLrc72pkzZxATE4NJkyblbduwYQMCAgKwZs0atGnTBnfeeScuu+wy1KtXD4MGDUKvXr3U7PTOxhIhIiIiD2Y2m3Ex56Jd+0r11+Qtk2GGufDjQNsmJUUdYzrC146Z6IP9gmEwGErcr3r16pg3bx769euHnj17omnTphg8eLAqBbr22msL7f/777+roPTyyy/D2RiEiIiIPJiEoI6LOjrs8RLSE9D5s8527bv5rs0I8Q+xa9/evXtj+PDhuPvuu9G+fXtV7TV58mSrfWrVqqVKj3JycjBhwgTcf//9cDYGISIiIqoQb7zxBlq0aIGlS5di+/btCAwMtLpdqsJSU1OxadMmjB07Fo0aNVJVZs7EIEREROTBpHpKSmbssT1hOx5Z80iJ+7177btoF93OrucujcOHD+PkyZMwmUw4evQoWrZsaXV7/fr11aVsT0hIUKVCDEJERERUJGmjY2/1VOfYzqp3mDSMttVOyACDul32s6eNUGlkZWWpRtADBw5UbYSk2mvXrl2Iioqyub+EpczMTDgbe40RERHphIQb6SJvCT35Wdaf7vC0w0OQePbZZ5GUlITp06fj6aefRpMmTTBs2DB128yZM7FixQocPHhQLXPnzlXVaBKcnI0lQjbIGyKL0ei6waWIiIicQcYJmtptqs1xhJ7u8LRTxhFat24dpk2bhrVr1yIiIkJtW7hwIVq1aoVZs2ap0p9x48bhyJEj8PPzQ8OGDfHqq6+qsYSczWCWfndkU3JyMiIjI1WCtbxxRERErpKRkaHCgrSlCQoKKtdjSVf6HYk7cCb9DKqHVEfbqLZOKQlyxetRmu9vlggRERHpkISe+Jh46B3bCBEREZFuMQgRERGRbjEIERERkW4xCBEREZFuMQgRERGRbjEIERERkW4xCBEREZFuMQgRERGRbjEIERERkW4xCBEREemQ2WhE2uYtSPrmW3Up6850zz33wGAwYMqUKVbbly1bpra7CqfYICIi0pnkH35AwqTJyDl9Om+bX0wMop8Zh4iePZ32vDIfmGUy1cqVK8MdsESIiIhIZyHoxKjRViFI5CQkqO1yu7P06NEDMTExmDx5MtwFS4SIiIg8mNlshvniRfv2NRqR8PIrcidbDwQYgIRXJiG0UycYfEueid4QHFyqai1fX19MmjQJd911Fx577DHUqlULrsYgRERE5MEkBO1v285BDwZVMnQgvoNduzfdsR2GkJBSPUX//v3RunVrjB8/HnPnzoWrsWqMiIiIKpS0E1qwYAH27t0LV2OJEBERkQeT6ikpmbFH+rZtOP7AgyXuV3vOewhp396u5y6Lq6++Gr169cK4ceNUbzJXYhAiIiLyYNJGx97qqdAuXVTvMKn+stlOyGCAX3S02s+eNkLlId3opYqsadOmcCVWjREREemEhBvpIq+tFGjknLsutzs7BImWLVvi7rvvxvTp0+FKDEI2zJw5E3FxcYiPj3f1oRARETmUjBNU8+1pquQnP1mX7c4cR6igF198ESaTCa5kMEu/O7IpOTkZkZGRSEpKQkREhKsPh4iIdC4jIwNHjhxB/fr11eCE5SFd6dO3bUfOmTPwq14dIe3bVUhJUEW8HqX5/mYbISIiIh2S0BPa0b5u8t6MVWNERESkWwxCREREpFsMQkRERKRbDEJEREQehv2cHPc6MAgRERF5CH9/f3WZnp7u6kNxC5bXwfK6lAV7jREREXkImb29UqVKSExMVOshISGlmv3dm0qC0tPT1esgr4e8LmXFIERERORBYmJi1KUlDOlZpUqV8l6PsmIQIiIi8iBSAlSjRg1ERUUhOzsbeuXv71+ukiALBiEiIiIPJCHAEUFA79hYmoiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0y+uD0DfffIOmTZuicePG+OCDD1x9OERERORG/ODFcnJyMGbMGKxduxaRkZFo164d+vfvj6pVq7r60IiIiMgNeHWJ0JYtW3DZZZehZs2aCAsLww033IAffvjB1YcFs9GItM1bkPTNt+pS1omIiKjiuXUQWr9+Pfr06YPY2FgYDAYsW7as0D4zZ85EvXr1EBQUhI4dO6rwY3Hy5EkVgizk+okTJ+BKyT/8gEPX9sCxoUNx8okn1KWsy3ZPw0BHRESezq2DUFpaGlq1aqXCji2LFy9WVV/jx4/Hjh071L69evVCYmJimZ4vMzMTycnJVosjSdg5MWo0ck6fttqek5CgtntSGPKmQEdERPrl1kFIqrJefvll1a7HlqlTp2L48OG49957ERcXh9mzZyMkJATz5s1Tt0tJUv4SILku24oyefJk1ZbIstSuXdth5yKlJQmTJgNms40btW1yuyeUqnhToCMiIn0zmM22vpndj1SNffXVV+jXr59az8rKUqHn888/z9smhg4digsXLmD58uWqsXTz5s2xbt26vMbSGzZsKLKxtJQIyWIhJUIShpKSkhAREVGu45eqIyk1KUlYjx7wj4nJf+L5ruffnG+l8I12XC9w76L2K/C4ZpMJFz79FKa0tCLPwbdKFdT+4AP4VakM3/BwGEJCbByv+5Dwmb5tO3LOnIFf9eoIad8OBl9fVx+WbvH9IKLyku9v+d635/vbY3uNnT17FkajEdHR0VbbZX3fvn3qup+fH9588010794dJpMJTz31VLE9xgIDA9XiDPKhbo/U1avh6YznzuHoLbdc2uDnpwKRb0QEfCIici9lPRK+EeHatvCI3Ovatrx9JUj5+zvtWKX0Skri8pdu+cXEIPqZcYjo2dNpz0u28f1wT94STnke7sXsJufhsUHIXn379lWLq8mbbI+Ivn3gLw288xfU5S+zK1iAZ7We/z6XrpvteayirsP6cbKOHEHaL7+WeB6G0FCYMzIAqerLyYHx/Hm1lIWUKPnmhiKfyAKhSQJWZAR8ZJu6lHVtu9zuE1p0aZSliq/ga2qp4sPb0/jlW4G88f1wlw/68vCWcMrzcC/JbnQeHhuEqlWrBl9fXyQkJFhtl/WY/FVLbkI+AOVNlg91m+2EDAb4RUcjdvJkt/6glCo+e4JQ7XffRUiHeJjT02FMSYExKRmmlGQYk7XFlJyiXcq2pGS1jykpSds3JRkm2T+3+k0eI0eWAm2S7OLjkxugrEOTBKbk71YW32brlUkIu+Ya+Ph5xp+JJ3/pGi9eRMJLLxf7fpx+8SUENm0K39BQGIKC4RMc5Nbn504f9HoPpzwP95LsZufhsW2EhHSX79ChA9555x21LtVfderUwciRIzF27NgKrWMs1Zsv8r/suSUWNT3gH7F82UrvsJICXaM1q8v9JWWWkiQJSLaCVO42S2hSASo5SQtYuaHKnJ2NcvP1VSVMPuFhqiQq71Kq78LCrS+lOi8sLPdS1sPVusHHx6u/dOUjxHzx4qX3Klku5X3KDbUpqYXW1aXlvUpJgTlf27zSMAQEwBAcDJ+gILVI6aG6LiFJwpLaJpe5wUntFwyfkOBLYcpqm9w3936WyzIE4aI+6D3yb72oHyAO/Ft3Jp6HPs8juRTf324dhFJTU3Ho0CF1vU2bNqqXmLT3qVKligo80n1eGke/9957KhBNmzYNS5YsUW2ECrYdKg3pri+LtEE6cOCAw4KQ1/1KdONAp76cMzNtlERpX8jp27YiZdX3zj8QgwE+oaHWgamoQCUlV+EFApVsCwhw6peuNICX0jcVYiSYyGuUL9RcCi22Q4xcSvVnhZD2Yo4IuKUgbdTyQlGwBKWQS9ctYUrdrl1HQCDOf/QRTKmpRT6mVPFWV39DZsBoAkxGmIu9NMFsMqp9i7q0uo9JHlcuTbmXxdy30L7apVFKc+0YisSncmX4SNtK+feWWwttkCuWKmm1Pf967u02b8v3GGqbjcfJt589j2NKTUPW4cMlnkdA48bqb1Ap6WuxvLerd76kx7BeNaamIvvvv0t8XP8GDeAbFgZ3ZbTzPOosWIDQjh3K/DxeE4Skt5cEn4Ik/MyfP19dnzFjBl5//XWcPn0arVu3xvTp01VJkSM4ukTIG6owvCXQ2duLL/attxDYsMGlkJAXFgoEg/wBIVW7vaylHAUZAgNtl0CFR8AQGoKkpZ8X/6UbFoaIfjfDnJpWOOjkXtrzwW1X6ZlqmxVxKdSFFxH+CuyTcfAg/n3oYbs+HEPi26vX1pSRoUqi5NJ08aJ2/WIGTBkXVfu0QtvUZQbMGRdhSr9ofX+5PXebZbtDXhMiKpPYN95A5E03lu3O3hSEXM1ZQchbeHKgq4gqPlNWVm6pSrIKKnlVepYglVp8oCou3Dir5MPSlqrYEGNZt4QZS+++4OAyD5NQkVWudpcoZmXlBiktTKkAVUzAMl1MV9cz9u9D+sZNJT5HUIsW8JdxzXx9YPDxLebSV6te9fGBwVcui9s3/6W2r+U+BS/VPvJa+tjeN2PffiS8/HKJ5xE9cQKCL2uR730zX7oul/Ja5q3n/S/vNsu+ap+8hzAXehyrx7DcbvM58j0OzMjYvx9n355e4nlUe+xRBDZubLXN7n/Pjt6v4PgmADIOHMDZadNKvGe10aMR1KQJ3FWGnefBEiE3wSDk3dy9ik/CQf4qK+tApQWmizv/QNr69SU+ljT6DmnbRutdFx6mXUobprzLcK16w4Xc/f1wdGljeT/onc3dwmlZ8Tz0eR7JehhHiKi81Jfq29MKV/FFR7tFFZ98CKhSl4gI+BfXi8+OIFRl6FC3/tL1hPfD0T1EZT93Jv/+5HVX4VTCqI1wKre785eu4Hm4F4MbngdLhIrBEiF9YBWfe/Hk98PbSre8oT2gBc9DX+eRzKqx8nFmrzEiR/OmL11v4i1fWN4STgXPQz/nkcwg5BgsESJP4U1fut7EW76wiDwNg5CDMAiRJ+GXLhGRho2liXRIQo+7N4gmInI3zh/7n4iIiMhNMQgRERGRbjEIERERkW4xCNkgXefj4uIQHx/v6kMhIiIiJ2KvsWKw1xgREZF3f3+zRIiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0i0GIiIiIdItBiIiIiHSLQYiIiIh0y65JVytXrgyDwWDXA547dw7eMKCiLEaj0dWHQkRERK4eUHHBggV2P+DQoUPhLTigIhERkXd/f/vpLdwQERERlSoIFSRVRsuWLcPevXvV+mWXXYa+ffvC19e3LA9HRERE5BlB6NChQ+jduzdOnDiBpk2bqm2TJ09G7dq18e2336Jhw4bOOE4iIiIi1/cae+yxx1TYOX78OHbs2KGWY8eOoX79+uo2IiIiIq8tEfr555+xadMmVKlSJW9b1apVMWXKFHTp0sXRx0dERETkPiVCgYGBSElJKbQ9NTUVAQEBjjouIiIiIvcLQjfddBMeeOABbN68GdLzXhYpIXrooYdUg2kiIiIirw1C06dPV22EOnXqhKCgILVIlVijRo3w9ttvwxvIYIpxcXGIj4939aEQERGRqwdUtOXgwYOq+7yMON28eXMVhLwNB1QkIiLyPA4fUNGWxo0b54Ufe6ffICIiIvL4SVfnzp2LFi1a5FWNyfUPPvjA8UdHRERE5ESlLhF64YUXMHXqVDz66KOqnZDYuHEjHn/8cTWe0IsvvuiM4yQiIiJyfRuh6tWrqwbTd955p9X2Tz/9VIWjs2fPwluwjRAREZF3f3+XumosOzsb7du3L7S9Xbt2yMnJKe3DEREREblMqYPQ4MGDMWvWrELb58yZg7vvvttRx0VERETkHm2ExowZk3ddeohJw+gffvgBV1xxhdomgytK+6AhQ4Y470iJiIiIXBGEfv/990LVYOLw4cPqslq1amr566+/HH18RERERK4NQmvXrnXeERARERF50jhCFv/++69aiIiIiHQRhEwmkxorSLql1a1bVy2VKlXCSy+9pG7zBpxrjIiISB9KPY7QuHHj1MjSEydOVJOtil9//RUTJkzA8OHD8corr8BbcBwhIiIi7/7+LnUQio2NxezZs9G3b1+r7cuXL8cjjzyCEydOwFswCBEREXkepw6oeO7cOTRr1qzQdtkmtxERERF5ilIHoVatWmHGjBmFtss2uY2IiIjIayddfe2113DjjTdi9erVVpOuHj9+HCtXrnTGMRIRERG5R4lQ165dceDAAfTv3x8XLlxQyy233IL9+/fjqquucs5REhERETlBqRtL6wkbSxMREXkepzaWXrVqleoun3/MndatW+Ouu+7C+fPny3bERERERC5Q6iD05JNPqqQldu3apSZk7d27N44cOWI1OSsRERGR1zWWlsAjoy6LL774An369MGkSZOwY8cOFYiIiIiIvLZEKCAgAOnp6eq69Bzr2bOnul6lSpW8kiIiIiIirywRuvLKK1UVmEyvsWXLFixevFhtl55ktWrVcsYxEhEREblHiZAMnOjn54fPP/8cs2bNQs2aNdX27777Dtdff70zjpGIiIjIKdh9vhjsPk9EROR5nNp9noiIiMhbMAjZIGMjSc+4+Ph4Vx8KERERORGrxorBqjEiIiLPw6oxIiIiIjswCBEREZFu2TWOkMwub68vv/yyPMdDRERE5F5BSOrZiIiIiHQZhD788EPnHwkRERFRBWMbISIiItKtUs81JmR6jSVLluDYsWPIysqyuk1moSciIiLyyhKh6dOn495770V0dDR+//13dOjQAVWrVsXff/+NG264wTlHSUREROQOQejdd9/FnDlz8M477yAgIABPPfUUfvzxRzz22GNq4CIiIiIirw1CUh3WuXNndT04OBgpKSnq+uDBg/Hpp586/giJiIiI3CUIxcTE4Ny5c+p6nTp1sGnTJnX9yJEj4GwdRERE5NVB6JprrsHXX3+trktboccffxzXXXcdBg4ciP79+zvjGImIiIjcY9JVk8mkFj8/rcPZZ599hg0bNqBx48Z48MEHVbshb8FJV4mIiLz7+7vUQUjaCNWuXRsGg8FquzzM8ePHVXWZt2AQIiIi8jxOnX2+fv36OHPmTKHt0m5IbiMiIiLyFKUOQlLyU7A0SKSmpiIoKMhRx0VERETkPiNLjxkzRl1KCHr++ecREhKSd5vRaMTmzZvRunVr5xwlERERkSuDkIwibSkR2rVrl1WjaLneqlUrPPHEE844RiIiIiLXBqG1a9fmdZl/++232XiYiIiI9NdG6MMPP8wLQf/++69avM3MmTMRFxeH+Ph4Vx8KERERuVMQkjGEXnzxRdUtrW7dumqpVKkSXnrpJXWbNxgxYgT27NmDrVu3uvpQiIiIyB2qxiyeffZZzJ07F1OmTEGXLl3Utl9//RUTJkxARkYGXnnlFWccJxEREZHDlXpAxdjYWMyePRt9+/a12r58+XI88sgjOHHiBLwFB1QkIiLyPE4dUFEGTmzWrFmh7bLNMhkrERERkScodRCSbvIzZswotF22yW1EREREXttG6LXXXsONN96I1atXo1OnTmrbxo0b1TxjK1eudMYxEhEREblHiVDXrl1x4MAB9O/fHxcuXFDLLbfcgv379+Oqq65yzlESEREROYHDZp+33MbZ54mIiEh3s8//999/nH2eiIiIPApnnyciIiLd4uzzREREpFucfZ6IiIh0i7PPExERkW75lWX2eSIiIiJdNpYmIiIi8hYMQkRERKRbDEJERESkWwxCREREpFsMQkRERKRbDEJERESkWwxCREREpFsMQkRERKRbDEJERESkWwxCREREpFsMQkRERKRbDEJERESkWwxCREREpFsMQkRERKRbDEJERESkWwxCREREpFsMQkRERKRbughC/fv3R+XKlTFgwABXHwoRERG5EV0EoVGjRuGjjz5y9WEQERGRm9FFEOrWrRvCw8NdfRhERETkZlwehNavX48+ffogNjYWBoMBy5YtK7TPzJkzUa9ePQQFBaFjx47YsmWLS46ViIiIvIufqw8gLS0NrVq1wrBhw3DLLbcUun3x4sUYM2YMZs+erULQtGnT0KtXL+zfvx9RUVFqn9atWyMnJ6fQfX/44QcVsIh0wWQE/tkApCYAYdFA3c6Aj6+rj4qIyK25PAjdcMMNainK1KlTMXz4cNx7771qXQLRt99+i3nz5mHs2LFq286dOx1yLJmZmWqxSE5OdsjjEjndnq+BVU8DyScvbYuIBa5/FYjr68ojIyJyay6vGitOVlYWtm/fjh49euRt8/HxUesbN250+PNNnjwZkZGReUvt2rUd/hxETglBS4ZYhyCRfErbLrcTEZHnBaGzZ8/CaDQiOjraarusnz592u7HkeB02223YeXKlahVq1aRIWrcuHFISkrKW44fP17ucyByenWYlATBbOPG3G2rxmr7ERGR+1WNVYTVq1fbtV9gYKBaiDyGtAkqWBJkxQwkn9D2q39VBR4YEZFncOsSoWrVqsHX1xcJCQlW22U9JibGZcdF5DakYbQj9yMi0hm3DkIBAQFo164d1qxZk7fNZDKp9U6dOrn02IjcgvQOc+R+REQ64/KqsdTUVBw6dChv/ciRI6oXWJUqVVCnTh3VdX7o0KFo3749OnTooLrPS5d7Sy8yZ5Bxi2SR9klEbq32FYB/MJB9seh9ImpqXemJiKgQg9lsttXKssKsW7cO3bt3L7Rdws/8+fPV9RkzZuD1119XDaRlzKDp06erMYWcTbrPS+8xaTgdERHh9OcjKhX50/12DLBtXvH7tb8fuOnNijoqIiKXK833t8uDkDtjECK3JX+2P74AbJguf8bAFQ8De5ZZN5wOjAAykwG/IOD+NUBMC1ceMRGRW35/u7xqjIjK4Jc3ckMQgD7TgHb3AD1fth5ZWqrNPrsTOPQjsHQo8MA6IJBz7hEReUxjaSKyYdNs4KeXtes9X9FCkJDpNKSLfMsB2qWfP9D/Pa2N0H+HgBWjtJIkIiLKwyBE5El+/zh3AEUAXccCnUcWv39oVWDAh4CPH7D7i5LbExER6QyDkA3SYywuLg7x8fGuPhSiS/5aBnz9qHb9ihFAN22uvRLV6Qj0mHBplOmTjpmbj4jIG7CxdDHYWJrcxsEfgU/vBEzZQJvBQN93AIPB/vvLn/lndwH7VwKV6wEPrgeCIp15xEREHvH9zRIhInd39Fdg8SAtBF3WH+jzdulCkJD9+70LVKoDnD8KLB/J9kJERAxCRG7uxHZg0R1ATgbQuBfQf47WKLosgisDt80HfPyBvV8Dm99z9NESEXkcdp8nclcJe4CPbwWyUoB6VwG3LwD8Asr3mDXbad3spcH1D88BteKBWu3gTowmM7YcOYfElAxEhQehQ/0q8PUpZQkYOZS3vCc8D/didJPzYBAickf/HQYW9gMuntfCy52falNpOELHB4F/ftNKhZbeAzz4MxBSBe5g1e5TmLhiD04lZeRtqxEZhPF94nB9ixouPTa98pb3hOfhXla50XmwsXQx2FiaXCLpBDDveiDpGBB1GXDPN44PKhlJwHtdgfNHgKa9gTsWlb7dkRM+GB/+eAcKfiBZjmrWoLYe9UHvTr949f6e8Dz0dx7JbCxN5KFSzwAf3ayFoCoNgMFfOae0RnqMSXsh30CtJ9nGGXB1YJBfh7Z+lZlzl2eX7cbuE0n45780JCZnICUjGzlGE9z5w/7KV3/Cne9vwqjPdqpLWZftnqCk90TI7bKfO+N5uBejG54HS4RKmH3+wIEDLBGiiiHVYPP7AAm7gIhawLDvtF5ezrR1rjZxq8EXuPc7bcwhF/hpXyKGzd9apvv6+xoQ7O+L4ABfhAT4IchfLn3ztgXnrhfaXug2P6vbQnKvB/r5wFDK0jLLL14DTOjgsw9RuIBEVMJWUzOY4OOQX7zy0Z1lNCEzx4SsHO0yM9uobcvOv91YxHVt/8wi9pew+ce/SSUeR+3KwQgN1FpZWF4n+b/lJZNLg/xnWbdszLef5dWV+1+6rt3PssHqMXMfr+A6bDzOhYtZ+ON4yefRpnYlVA691AbP1lejzS9vGxtt72ffV63txzMjKT0bu08ml3j/FrERiAzxh7tKsvM8Ph1+BTo1rFrm5+Gkqw7CqjGqMJmpwML+wL9bgNDqwL2rgGqNnP+88uf/xf3A7s+1qTge/EUbjdrpT2vGgYRUrNufiHX7z2DLkf9gtOOTKDzQF/JDMT3bWGG9/+UL1laYyruu1v0QHOCjwlSAnw8WbDiKzlkbMN7/I8QazuU91klzFUzMHoIN/p0xqFMd5BjNuYHElBtqjJeuZ9sILgXCDJG3evuO1ri5dc0y35+TrhJ5UjuO7AxtsEMJQVJlNXhZxYQgy7e8TNp6aqc2H9lXDwB3LQV8HF9rnpqZg18PnsXPBxLx8/4zOJmvkaS95gyJV78SJUhJGLiYZcTFbCPSs4zIyL50Xdueg4tZJqRn5ajb1HbZp+B9si5dz7+PhBEhgUu2y2KvXj5bMMt/WqHtMTintj+cDcxalwNHkgAWmLdoJVmXtvleuu6fu+5ruW7ZL/99fHH8XDpm/Xy4xOd9tndzNK8RoUotLK+XJaPK+6Su526QNUuAtexn+S2uXbc8qrnA42j3tXU/m7fnPR9wKCEFs9f/XeJ5PHh1AzSMCrPaZutTwFbpoO397Nxm49629juYkIIZa0t+P0Z2b4jG0e47ufJBO89DPosrCoMQ6ZrLey4Ys4HPhwFHfgb8Q4FBXwIxLVChZEb62xYAH1wLHFoN/PYWcNX/HF7qs/XoOeTkq/eXL90rGlRFt6bVcVXj6hg8dzNOJ2XYrFaQ74WYSC2kqnWDQZXIyFIZziHtj1QoKhieckORzduyjdhz4hzG//uReoyCeVrW5SUY778QGbV7oVlsZesg4u+TL6BYBxOrYONfIMj4lr76zp4fCMt2nijxPRl2ZX23bgAu57H8j5MlnsdT1zdz+/P4YkfJ78fj1zX1ivPokPu3XhEYhEi3iuq5IH+gst3pPTBMJmDZw8D+b7VGy3d9BtRqD5eQ8NX7DeDrkdrM9rU7AvWuLPXDSAPm3w79p0p9JPzkD5iiXtUQdGsaha5Nq6NTg6oqyFhI+NTa1Vi3sTDku70iP+D9fH0QLktQ6dpb/PXbt4g9cak6rCA5hVj8h6ean8dlXTrDXclr7W7vSVnwPNyLrxueB9sIFYNthLyX/CqRHjwFv6gL/ir59elrnPMHKX923zwObM+dGX7gJ0DT6x3/PKU9Jglmf3wKhMUAD/0ChEWVcBcz9iekqNAjJT/bjp4vVOojVVndmlRXAahetVD3LqFzANOfS+Hz5f0l79e8H3zaDQFi27jNOE7e+p4Inoe+ziOZjaUdg0HIe208/J/qzlySKxtVQ+dGVdEkKhxNosNRq3IwfMobjORP7sfngQ3vaJFrwFygxa1wC1lpwPvXAGf2AQ26aVV1Bab0sJT6SPD5+UDRpT5S5XVFgVIfj2izVV5HfgEW3FS6+8hQCTJwpiyxbYEalztuAE0H8Pj3JBfPQz/nkcwg5BgMQt5r+c4TamyX0pLeQo2iwtA4OkwFoybRYWgcFY6alUoRkH5+HVj7sna9z3Sg3VC4lcR9wPvdgex0oNs4mLs+7dBSH68mH6frpgA/Tyl6F/nglUbxja4DTu4AztloyCulhFFxueGorXZZvVnZ55kj0plk9hpz3DhC5J3s7ZFwe/tayMg24UBCCv4+k6Yaxe46kaSW/KQbdWMVkLRwpIWkcFXUa9WIddPsSyGo1yT3C0Eiqhku9noDwd88AtO6KRj1WyBWpDSx2qV+tVB0VcGnbKU+XsmYA6z8H7B9ft4ms+oTlK93k6WPUN8ZQFxfbWP6OS0Qnfhdm2RXlrRE4PSf2iLVp0Ia08e21qrSLKVHMs6Ui0cE9ygmI/DPBiA1AQiLBup2ZrgklggVhyVC3kuKZFtO+L7ILtG22ghJL6J/zqWr7p/SG0rC0cGEVPx9NhXZRQyCEx7oh0YSjKLC0du4Bl33TlDbzV3HwtB9HNyFpa3P2n1aqc/2f87jJZ85uNNvLc6YI3CL6VU0atAor8qrblUdl/rYkpUOfHGfNkq3/Ovp/br2RSuT2yafvLSfjNV0/ZRLIcgW+UhO+jc3HEkw2gGc/B3ISi28b0i1SyVGlmq1ChgHyiPt+drG+xELXP9q8e+HO/KWQGdy3nmwasxBGIS816dbjmHcl7ts3lba+W6yJSD9l5YXjrQlFUfPpuVVIfX22YR3/N+Br8GM93N64x2/oWgcHZFXtWapZqseHljmbtClrW/X2vqcza3yOoPTydZtfZpV9cN80zOIuXgIpjpd4DP0a8CXhciFSInOooHaOFDS++/WDy59sTrqg14e5+zBSyVGsiT8BZiyC+9bqe6lYCSLtDcK0HlwlRC0ZIiNMZ9z/z5u/8hzwpC3BLo9zj0PBiEHYRDyTjKezV3vb1KlOH0ur4Ft/5x3Ss8FGfn3yNk0XPjjG7TfNBK+5hx8638dHku7F0VNkVUpxF+VHlnaIFkuq4UFlrsHhvyp7zt9qa2PlPrkb+sT5O+jurRblfqcPQTM6aqVRsjYQte+UK7XxOtcOAZ8fCtw9oA2GOadn2lhp6IG4kzYnS8c7QD+O1h4P4NPbnujtpdKjWS9NKHWk0sg5NintbD+wrVi0L6AR+9y/3PylkC3x/nnwSDkIAxC3ufEhYvo+86v+C8tCze2rIEZd7VRA9w5rQfG0V+1L8qcDOCyW1RpQaYJqr2RpWpNXSam4uh/aUVOG1ElNEC1QcproJ3bBkm2lzST8/Cr6iPpYo7q4VWw1KeBtPVpqjVy7li/iu22Pru/0AZ9FHd/ATTu4YhXxvOd3gV8PABIPa1VeQ36Aohq7tpjunhBq0aTYCSX/27Tjq8gv2CgRqt8jbHbApXr225v5K4lEDIOV3aaNj2N9HbMSsm9npp7maJtl5IzGRKiJHW7aCFPgmP+RUZZN5S0GMp5e8F9fAvfLn/h3z2lzUlYlOAqwE3TtGMu9GFSYN3ht8O++5tNwKqxxZyHY4Ipg5CDMAh5F5lqYcCsjdhzKhlxNSLw+cOd1NxQTiNfRgtu1j6Qm1wPDPwY8C16cD4ZlfhQYioOJmpVa5a2SMfPpxf5mVM11B8pGZemgyiJlPp0blhNlfh0axKFOlVD7DuXb/8HbP1A+6CV8YUia0HX/v4ZWDwIyEzWSlfu/hyILPu8SE4lAUZKiywlRxKQ5LgLCq58qcTIEpCObXLcL3cVXNKtg0peiJFtKfluyx9oitjfVpsp8h5DvwHqX1XmuzMIOQiDkPeQf+YjF/2Ob3edQtXQAHz96JWqy7vTJOwB5vfWfvXUuwq4e2mZx4WRKRwkIKm2R4mXSpH+PX/R7se4oUUM7uxQR5V2lamHV04mMPc64NQf2qjT98ho2O47w7VT7foc+OohrX2OlCLcsQgIrgSPIYFE5pXLa4y9XSvdMmYV3ldKJszF9J4NjASueChfmLGEmDQbwSatiHnZy0lKSwLCgcAwIECW0NzrudsyUoAD0oi9BB0f0sZzkqo0KbUotJiL2F7UPsYyPIaN2y3Hk3IaOLu/5POo0hAIrWZ5cfK9TgVL+wqsGwx23lbwYYp5XFu3SfVq4h6U6Na5QMsBKCsGIQdhEPIe76w5iDd/PAB/XwMWDb8C8fWcOJLvf4eBD2/Q/uBrtgeGLNPm83KwtMwczPv1iDovZ8/krMh4N+911UoTOj8G9HwJurNxJvD9M9r1uJuB/nMA/4qbHNJpJOhKFVJeL7Ud2qCaTmHQ/h4ktFiFlwLb1Hpovm3htveXHxjFfVHntRE6VUQQ85A2QvYO1FnOkhRvOQ+OI0SUz6rdp/PCwks3t3BuCJJuzx/100JQdAutJMgJIUiEBvqhvZ3n4pCZnOXX8s0zgSWDgQ3TtQazTW+ALkgpiowGvnGGtt7hQeD6ye79xVkafoGX2gpZ7PgI+PrRku9bv2tuzzRLULGEl4JhJ/e6f0jFjn0k75G0Z1JVfEXMbiVDGrj7eyl/bxLYSgp0FdVY34vOg0GIvNq+08kYs0QbQXpop7q4o0Md5z1Z6hngo5uBpGNa8fTgr5w+h5RUdUnvsAqbyVnag3R8GNg8S6seenA9ULkuvFpOFrD8EWDXUm29xwSgy2jvH8hQGk/b4+on3bsEwvLvVtoz2Wz0XcK4Tu7CWwKdj/udhzRFpwJkVOm4uDjEx8e7+lCoHM6lZWH4R9vUoImdG1bFczfFOe/JpC3Qwv5a24vI2sCQ5SVOWOrImZxFUTX1Dp/J+boXtca0GReAz+/VgoK3ykgGPhmghSCZ9qL/e8CVj3t/CMr/y73Qv6z8v9xrun8JhIWEndG7tSoXaX8il1Id5gkhqGCgiygwtIe8T57Sdd4Nz4NthIrBNkKeSwY5HDx3Mzb9fQ51qoRg+YguqBwa4Jwnk8agEoJkQL3QKGDYKqBqQ3j1jNQyfs7sq7QwJCVENxQ9t5bHksapEoKkIbFMbzHwI6CRzoYOyBvvBbZ/uXvSl6838eRxnfLjyNLuj0HIcz2/bDcWbvoHoQG++GpEFzXmjtMGtVt0O3DkZyCoktabKqYFdDEj9f7vgE/v0K7fvtC7vhBlFOePb9ECX2h1ra2XzPGlRzbHEbJjqhAiF2JjadK1Tzb/o0KQ1F5Mu6ON80KQMVurGpIQJA1BZUA9F4UgIaFHZoGvMNJQWnqPScPp5SO0c5cG1Z7u+FYt3F48p52PvK/ecF5lJWGn2Y3eUQJBZAODEHmVzX//h/HL/1LX/3ddE1wXF+28It1lD2uTbPoFaVMr1GoP3ZEpN45v1pal9wDDfvDs7uT7V2nnkXNRG1jwriVAWHVXH5XrSehx9wbRRGXExtLkNY6fS8fDn+xQ82fddHkNjOjeyDlPJLXJ34651IBW2kno9UtCBlUc8KE24rQMtmgZY8cTbV8AfHanFoIaXQcMXcEQRKQDDELkFWRwQekhJj3FLouNwOsDWpV5FvcSQ5CMJ7N9vjai7S3vA016Qddkagl5HcS2udrIy55E3tN1U4AVj2kj+La+G7jzU23MGyLyegxC5PFMJjOeWPqHmlm9WlgA3h/SHsEBTmq/sP4NYMM72vU+bwMtbnHO83gamYj1qie06ytGaY2NPYExRzvedZO1dTkHGTRSr9OHEOkQg5CLevdsPPwflu88oS5lncpu+k8H8d3u02r6jNmD2iHWWXOIbZoFrH1Zu95rMtDW0q2YlG7jgLpXavNKLRkKZNs/F5pLZKVro2TvWKB1B+/9BnDt8/oYI4iI8rCxdAWr8PFedPB6TlutlT680q+l3VNOlNqOhcCqsdr1bs8AnR5xzvN4Ml8/YMBcYPaVQOJfwMongZtzp6RwN+nngEUDtbGffAO1427ex9VHRUQuwBKhCv7SfvjjHVYhSMj0CLJdbif77T2VjMcX/6Gu39O5Hm6Pr+2cJ/rrK639iOg0Euj6lHOexxuExwC3fqCVsPy+EPjjM7id8/8Ac3tqISgoUhsFnCGISLcYhCqIVH9JSZCtSjDLNrmd1WT2+S81E/cv2IaL2UZc2aganruxuXOe6MAPwBfDtUa0bYcCPV9m1UlJGnQDuuWWnn3zOJDorFnMy+DUn8Dc64D/DgIRtbTu/nU7ufqoiMiFGIQqaK4xGfG3YElQfhJ/5HbZj4qXlWNS3eRPXLiIulVDMOOuNvDzdcI/5aO/am1ITNlAiwHATW8xBNlLJuKUQJSdDiwdCmSlufqIgL9/Bj7srQ0KGBUH3PcDENXM1UdFRC7GIGTDiBEjsGfPHmzdutVhjynTHjhyPz2buOIvFRjDAv3wwZD2qBTihDnE/t2utSHJyQCa3AD0n82RdEtDXqtbPgDCYoAz+4Bvxmjd1F1FuvR/fCuQlaI16L73O63bPxHpHoNQBZG5n+zbL9Dpx+LJZOqMTzYf06bPGNgajR0xfYaMEn3kF+3LUi6l+kTmmZLeT/WvBm6bz+7UZSGDEQ6Yp4239OdnWpshV9gwA/jiPq1kL66fNmVGcCXXHAsRuR32GqsgMgGm9A6ThtHF/S7+eNM/aFEzEuFB/OItSIYamPi1Nn3Gk72aoocjps+wNaGkfHFLm6Ba8cAdn3r2lBGuVq8LcM1zwJoXtV5kMm1FRc3HZjJpg19uzO251vEhbdgDH/7+I6JL+IlQgRNiShd5UbCViWVdJgr/dtdp3Dj9V/z574UKP0Z3nz7jkU+2q+kz+raKxcNdGzomBC0ZYh2ChIQg0f4+ji7sCF0e16askGpGaS+UmeL858zJBL4cfikE9ZiozZbOEEREBfBToQLJOEGzBrVFTKR1CYOszx7UFl883Bk1KwXj2Ll03DprA+b9egRmV7arcLPpM86nZ6NlzUi8euvl5Z8+Q6rDpCSoyPI5A/DTS9p+VD4SPvq/B0TUBP47pI3k7Mx/1xnJwCcDgN2fa3PByXNfOZoN3YnIJoOZ37RFSk5ORmRkJJKSkhAREeGwx5Uu8tLYVxpGS9shqTaTEiORlJ6Np7/4E6v+Oq3WezSPxhu3Xe6cBsEeMn3Gw59sx/d/JaBaWCBWPNoFNSIdMHK0tAVacFPJ+w39Rr8Tqjrasc3A/N6AKQe4cSoQf5/jnyPlNPDxACBhF+AfCgxcCDS61vHPQ0Re8/3NEiEXkNDTqWFV3Ny6prq0hCARGeKvSo1euvkyBPj6YPXeBPR++xds/0ef3eqnrTmoQpC8Fu8NbueYECSkC7Uj96OS1ekI9JigXZdRuk/udOzjy/xmH1ynhaDQ6sC93zIEEVGJGITckFT7DO5UD18+0hn1q4XiZFIGbn9vE95dd0iVkOjFyl2nMH2NNn3Gy/1boF3dyo554IS/gI0z7ds3zAENsukSGZm7aW/AmKW1F8pIcszjHt+iDZSYdAyo0gC470cgto1jHpuIvBqDkBuT3mMrHr0S/VrHquq011btx9APt+Bsaia83V8nk/C/Jdr0GfddWR+3t3fA9BnJp4DlI7W5sE7uKGFng9ampW7n8j8vXSLtdPq9C0TWAc4fBZaPKH97oX0rgQV9gYvntV5pEoKq1HfUERORl2MQcnMyaOBbA1vjtQGXI8jfB78cPIsb3v4FGw6dhbeSoPfAR9vV9BlXNa6GcTeUc/TfzFRg7STgnbbaWDbSK0zGk5HZxlWfvSL68aleRhxE0eGCK2tjM/n4A3tXAJvfK/tjbZ8PLL4byLkINO4J3PMNEFrNkUdLRF6OjaVd0Fi6rA4kpGDkoh04kJCqflg/ek1jjLq2sVUbI2+YPmPQB5ux5eg51KsaguUjrlTtpsrEmAPs/Bj46RUgLVHbVquDNl+YtFcpahwhKQmSEBTX1wFnREXaNFt77SUQDfseqNVObTaajNiRuANn0s+gekh1tI1qC9+CgVQ+ttZNAX6eoq23HgT0mcaBL53ErvfEA/A89HMeyaX4/mYQ8qAgJC5mGdUUE59tPa7WO9avgrfvaFOoS74nkn+Kz3y1C59uOa5KwpaN6IxGUWUYOVr+SR/8URtMT6Z3EJXrA9dNBJr3LdyNWrrI/7NBaxgtbYKkOswDP1Q8jrxPMo7T3q+1qrIHf8bqMzswZcsUJKRfaqQeHRKNsR3GokfdHpcC7rdjgB0LLs1r1v1Zdo93ktX/rC75PfEAPA99nUcyg5D3BiGL5TtP4JkvdyEty4gqoQF48/ZW6N40Cp7so41H8cLyv9T32dyh7XFNszI0VD71B/DDc8CR9ZeqYbqOBdoPA/z0OQSBW5PG0u91Bc4fwepGXTDG+C/MBcZ2MuRWVU7tNhU9anQGPh8GHPhOGwFcqjed0Q3fQTz9l7t8WY1ZN6b498QDvnx5Hvo7j2QGIe8PQuLI2TRVVfbXyWS1/uDVDfBEr6bwd8ZM7E4mbZ4Gz9uiGoWPvaEZHirtyNFJ/wI/vQz88Zk2SKJvgDalwlX/47xS7u7kThjn9kSv2KpI8LM96498QEYHV8eqZMD3322AXxBw61yguR1jQbmIp/xyl6+ATGMmUrNTkZadpl1mpSE5KxnjN4xXl0UJ9Q/FHU3vUOFO3iPLQKfquqWtncF6XfbJf92yf6Hb8j1ewfWibrN1X5PZhHd+f6fY84gIiMCotqOsHrO4r8b8txX8Ms+/Xtx+dj9e7m1yHu/9+Z56f4oS7h+O4ZcPh4/8SHBTJrMJc/6cU+R5qL/1kGisunVVuX40MAiV08yZM9ViNBpx4MABtw1CIjPHiMkr92H+hqNqvU2dSph+RxvUrhICT3Hsv3T0nfkrLqRnqx5y0jjc7pGjZRThX98CNr2rTeEgWt4GXPM8ULmuU4+bHGfrugkY9s8XJe7XJf0iapt9Edy8D4IrN0SQXxCC/YLVpbruG1x43T8YQb7aup+MNO0lv3iltCk9J10LL1mp1kEmO80q1BS8zbI9LSdNXeaYc8p1LESONq/XPMTHxJf5/gxCOikRym/V7lN46vM/kZyRg4ggP7w2oBWubxEDd5eamYNb3v1NNQC/vFYkljzYCUH+dvwKMGZrPYakwWx6bg+6ul20htA12zr9uMmxVv79LZ7+ZazTn8ffxz8vIJUYonKvF9xXXfoWuK9f7n19tbZ6vb7oZVUSVFBUcBTm9pqLizkXrYKLJaRIsLEVXOQyPTtdu8xJd/jrIyU8soT5hyHblI3jKVpbxOJ0iu2EuuF1bZaEmC3/2SjxkG35byt4f8t/+ddzdyz6tgLrcv102mnsObenxPNoXqU5YkKtPzPzSrXylV4Vt92e+xa6LX+vVUPR9z+RegI7E0sehLRNVBvUDKsJd3Ui9QR+T/y9xP1evepV9G7Qu0K+vzn7vBfNY3ZZbCQe/fR37Dx+AQ99vB1DO9XFuN7N7QsWLiCDQz6+eKcKQdXDAzFncPuSj1U+NPevBH58QZu3SlRtDFz3ItD0BjaY9VCVAu0bLPPWujegWmQdFSAycjKQYcxQ1/PWc7T1gtstX4zy5Z6dlY0UOG/iV1+DL4zm4ueoS7yYiD7L+jjk+fwMfggLCMsLMOoyd91qW4HbZN2yTZYQ/xCrKpWtp7di2PfDSnz+4S2Hl+uXu7PZex5Pxj/pFefxaJtHveI8qodUR0VhEPIiUh229KFOeOP7/Xhv/d9YsPEfbPvnPGbc1VaNUO1u3lp9AD/uuTR9Rok93/7drjWEPrZBWw+pBnQfB7Qdym7THmxHwg5M3jy52H0MZjOiTcDzV74M31I2epdSgSxTVl5IsoSjvEuj9bqEKCl1kcv84arQfgWCmEVJISh/6VSlwEqXQkpAKEL9rINK/tsKBhpLqAnwCSj/JMQ2SMNuaauRmJ5os32LpS2H7OfOeB7upa0bngeDkJeRhtJSCnRFw6pqZGZpSH3T9F8w6ZaWam4zd/HNnyfxzk9aiY4cW9s6xZQIyAjEa14Edue2IZGGsp1GAF1GA0HuXWVJRZPqn2k7pmHx/sVqPdxoRIqPj6oQMOevhsitOnn67Fn4Ht9c6klwJSQE+gaqJTIwEs5scCyBaPOpzXhy/ZMl3ue9695z61/u0lBVGnZLWyf5csr/pWWptnm6w9Nu3wuO5+FefN3wPNy3aTmVi3SlX/nYVWpme+liP+qznRj7xZ9qHCJX230iCU8s1abPGH5VfQxoV8v2jjJlgpQAzYjPDUEGoNVdwKPbgWtfYAjyYGuPrcXNy2/OC0G3Vm2D7/49ibcSzyLKaP1vNNpoxNTEs+iRftFtJ8GVsCVthSoHVcZ1da9Tv2it2n7k3xcGxITEuP0vdyENuqVhd1SI9dAccn6e0lVb8DzcSw83Ow82lvaSxtJFyTGaMP2nQ3jnp4OqeU2T6DBVVdYkugwDFTrAmZRM3DzjVzWR7NVNquPDe+ILj4ydkwVs/QBY/5oWhkT9rlpD6BqXu+S4yTHOXjyrupR/f/R7tV4nvA7GdxqPDhmZwAKtK7zEoB1BgTjj64vqRiPaZmQi77fh0G9KXSLkCpZeY8LWL15P+tLyhvGQLHge7sXIkaXdnzcEofzj9IxavFMFEZmz7MW+LXBb+1pOaVtQ3PQZd72/SbVbalAtFF+N6ILI4Hxte+Sf4p5lwOqJaoA9pXpzoOdLQKMebAjtweRjZtmhZXhj2xtqPBdpUDz0sqF4uNXDqiRFje49rYU2Ma7N8VZkEtxYYPQujxn129Y4QlISJMX+nhSCiDwRg5CDeFMQEhKCxizZqSZuFTJmz8v9W6rpLJxN/pmN/WIXFm87jvAgmT6jCxpWD7u0w7HNWjXYv1u0dZnqQqZNaH034MumbJ7sePJxTNw0UbWdsXRTnth5IppXbW69o8z7JlNuKPk/lnID8O0fedz8b97yy53I0zAIOYi3BSFLl/XZ6w/jzR8OqFGcpTfZO3e2QYuazmlEajH/tyOYsGKPKtSZd0/8pelA/jsMrJ6gzTcl/EOAzo8BnR8FAvMFJfI4OaYcfLznY8zcOVP1rpIxdka0HoFBcYOKHtiQk+ASkQMwCDmINwYhi21Hz+GxT39XbXWk+/pzNzXH4CvqOqWq7LdDZzEkd/qMZ3o3wwNXNwTSzwE/v6a1BTJla/NGtRkEdHsGiKjh8GOgirX3v71qeoa95/aq9Y4xHVVboNoRtUu+MyfBJaJyYhByEG8OQuJCehaeWPonVu/V2jBcf1kMXh1wuXW7nXL657809J3xG5IuZuOWNjXx5i1NYdgyB1j/JpCZpO3U6DptQMToOIc9L7mGjK0z649ZWPDXAjWejszh9ET7J9CvUb8KbY9GRPrGIOQg3h6EhLz9H/52FJO/24tsoxm1KgerqrI2xY3rY6eUjGzc8u4GHExMRetaEVjS5SQC1r0MJB3TdohuCfR8EWh4TflPhFxuy6ktmLhxIo6laO9vr3q91Hgh1YKrufrQiEhnkhmEHEMPQcjiz38vYOSi33HsXDr8fAx46vqmuP/KBvAp2LW9FG2RHli4Dav3JqJX6CHMqPYl/BNy58kJjwWufR64fCCrPLxAUmYS3tr+Fr44qA14KWODPNfxOXSv093Vh0ZEOpXMIOQYegpCIjkjG+O+3IVv/zyVOyhjdbx5e2tUCS3dlAbi9e/3YdW69Rjn/xl6+GzXNgaEAVeOBq4YAQSEOPrwyQV+/OdHTNo8SY0PJAY2HYhRbUchPMA141QREQkGIQfRWxAS8s9h0ZZjeHHFHmTmmBATEYS372iNjg2q2t2oddWWXUj8eiLu8l0DP4MJMPgC7e4Buo0FwqxHEiXPJPMESQBac2yNWq8XUU91iW8b7f6jJROR90tmEHIMPQYhi72nkjFy0Q4cPpMGqR17vEcTPNK90aVRoG11cw6vgfNRHeF/6HuEGXInoWzaG+gxEajexDUnQg5lMptUFdjUbVORmp2qZj4f1nIYHrj8ATWXFxGRO2AQchA9ByGRlpmDF5b/hS92/KvWuzSqircGtkbU8R9yB76z/qcja5YWRUcCGqPOHVPh2+BqFxw5OcORpCOqMfT2BK2q8/Jql2N85/FoUpkhl4jcC4OQg+g9CFl8sf1fPL98N9KzjIgK9cUvgaMQmH7a5r7yrynZEA48cQCRYWwH5A2yTdmYv3s+Zv8xG1mmLAT7BeOxNo/hzmZ3cpRkIvL472/OXUAlurVdLbSqXUlVlVVK3IxAo+0QJGSomEikAGe2A2HuPzkmFW/32d1qYMQD5w+o9S6xXfB8p+dRM6ymqw+NiMghGITILo2iwtT8YMsXbgNyhwEqljSgJo+Vnp2upsb4eO/Hql1QpcBKarLQG+vfyIERicirMAiR3YL8fTGgW3vgo5L3NYZGgZUmnmnDiQ14cdOLOJF6Qq3f2OBGPBX/FKoEVXH1oRERORyDkA0zZ85Ui9FodPWhuJ0txmaoa66CGJxTvckKMpmB06iKf4zN0MkVB0hldiHjAl7f9jq+PqxNgFsjtAaev+J5XFWLVZxE5L18XH0A7mjEiBHYs2cPtm7d6upDcTuJadmYmD0kL/TkZ1mfmD1Y7UeeQfpLrPx7JW5efrMKQQYYMKj5ICy7eRlDEBF5PZYIUalEhQfhe1MHPJw9GuP9P0IszuXdJiVBEoLk9nvCg+ApjCYjdiTuwJn0M6geUh1to9rqpjfUqdRTeHnzy1j/73q13qhSIzUw4uXVL3f1oRERVQgGISqVDvWroEZkEH5I6oAfM9tjV+B9CDVkYnTWw/ja1AVm+KjbZT9PsPqf1ZiyZQoS0i817o4OiVaThfao2wPeShpAf7bvM7y9422k56TD38dfDYp4X4v74O/r7+rDIyKqMKwao1KRkaXH94lT1yX0GHObRO80N1LrQm7PG4HazUPQmHVjrEKQZfoI2S63e6PDFw5jyHdDMHnLZBWC2kS1wed9PsdDrR5iCCIi3WEQolK7vkUNzBrUFjGR1tVfsi7b5XZPqA6TkiBzgdGxhWXbq1teVft5iyxjFmbtnIUBKwbgjzN/INQ/VM0SP//6+WhQqYGrD4+IyCVYNUZlImHnurgYmCf7AtnAW7e3xuWt2nlESZCQNkEFS4IKhqHT6aex5MASXBl7JSoFVUKYf5hbj6FTXFunnYk7MWHDBBxOOqzWu9XqhmeveBYxoTEuPmoiItdiEKIyU6EnN/i0qVM577onkLBgD5lh3UImGJVAJIMLVg6qrC5lbJ3865UDK6t9LJcyHYUr2zqNbjcaf575U7UHknAnxzuu4zj0qtvLrUMdEVFFYRAiXZISE3tUDaqq2tFczLmIHHMOzl48qxZ7SRCSgGQVlooKUUGVERkYqRoul6WtU8FqPglF434Zl7fer1E/PNH+CfUcRESkYRAiXZJqIykxkYbRttoJyVg6cvuqW1ep6qWMnAxcyLyglvMZ59XluYxzVusyIOH5zPPq8lzmOeSYclSAkuVU2im7jy3cP1wLR5aSpQJhSbZZ1iMCIops62Tha/DFzGtnokvNLmV+vYiIvBWDEOmShBvpIi8lKRJ68gcJWRcyt5aljU2QXxBi/GLsblMjgxSmZaflBSN1mRuaLMEp7zJ3H7kux5GSnaKWYyn2TOpWMqPZiADfAIc8FhGRt2EQIt2ScYKmdptqs22NhKDyjCMk7W/CAsLUUju8tt2NnZOzkq3DU+5lofCUe5manerQNlFERHrDIES6JmGne+3uuPqzq5GcnYwJnSaotjSuGFlanlNVfQVVBuxsxrPxxEY8sPoBh7WJIiLSG44jRLonAcQSfFpVb+VR02t0qNFBlWBZqvMKku0xITGqTRQRERXGIEQEqB5hwpNCUP62TqJgGLLV1omIiKwxCBHlzr1l6WHlqW2dokKirLZLSZFs9+Y504iIyotthIhyGyoLTy05sbR1KmpkaSIiso1BiMrHXPT4NZ5Euph7aomQhYSe+Jh4Vx8GEZFHYdUYOYaHT9fgDUGIiIhKj0GIdE8GP7S0EfIx8E+CiEhP+KlPumcpDRJ+PqwtJiLSEwYh0j1LaZBgiRARkb7wU590TyZHtWAbISIifWEQIt3LXyLE7uZERPrCIES6l7+NEEuEiIj0hUGIdI9BiIhIvxiESPcso0pLQ2mDh4+HREREpcMgROVk9poSIfYYIyLSH37yk4MYPD4I+Rk4hhARkd4wCJHumUwcVZqISK/4yU+6l2PWxhFi13kiIv3x+iB0/PhxdOvWDXFxcbj88suxdOlSVx8Suek4QuwxRkSkP17fKMLPzw/Tpk1D69atcfr0abRr1w69e/dGaGioqw+N3GxkaQYhIiL98fogVKNGDbWImJgYVKtWDefOnWMQojwsESIi0i+XV42tX78effr0QWxsrBrDZdmyZYX2mTlzJurVq4egoCB07NgRW7ZsKdNzbd++HUajEbVr13bAkZO3sPQaYxshIiL9cXkQSktLQ6tWrVTYsWXx4sUYM2YMxo8fjx07dqh9e/XqhcTExLx9pNqrRYsWhZaTJ0/m7SOlQEOGDMGcOXMq5LzIc3AcISIi/XJ51dgNN9yglqJMnToVw4cPx7333qvWZ8+ejW+//Rbz5s3D2LFj1badO3cW+xyZmZno16+f2r9z587F7ieLRVJSkrpMTk4u9XnpRoYJyDYDySmAn2e+TvI+Gy8aYfI18b0mIvICls9ys9ns/kGoOFlZWao6a9y4cXnbfHx80KNHD2zcuNGux5AX4Z577sE111yDwYMHF7vv5MmTMXHixELbWZVmhymt4On2Yi8iEenqwyAiIgdJSUlBZGSk5wahs2fPqjY90dHRVttlfd++fXY9xm+//aaq16TrvKX90cKFC9GyZctC+0rgkmq4/APtSZVa1apVOQdVMalbgqIMUxAREeHqw9E9vh/uh++Je+H7oY/3w2w2qxAk7Y9L4tZByBGuvPLKvJGDSxIYGKiW/CpVquSkI/Mu8g+YHyrug++H++F74l74fnj/+xFZQkmQhVu3DpWu7r6+vkhISLDaLuvSFZ6IiIioPNw6CAUEBKgBENesWZO3TUp3ZL1Tp04uPTYiIiLyfC6vGktNTcWhQ4fy1o8cOaJ6gVWpUgV16tRRbXaGDh2K9u3bo0OHDmqUaOlyb+lFRq4lVYkytEHBKkVyDb4f7ofviXvh++FeAt3g/TCY7elb5kTr1q1D9+7dC22X8DN//nx1fcaMGXj99dfVFBkyZtD06dPVwIpEREREHh2EiIiIiFzFrdsIERERETkTgxARERHpFoMQERER6RaDEJWJTEcSHx+P8PBwREVFqbnc9u/f7+rDolxTpkxRo6GPHj3a1YeiWydOnMCgQYPUyPTBwcFqNPtt27a5+rB0SWYoeP7551G/fn31XjRs2BAvvfSSXfNQkWOsX78effr0USM9y2eTZaYHC3kvXnjhBdSoUUO9RzKV1sGDB1ERGISoTH7++WeMGDECmzZtwo8//ojs7Gz07NlTDW1ArrV161a89957aloZco3z58+jS5cu8Pf3x3fffYc9e/bgzTffROXKlV19aLr06quvYtasWaoH8t69e9X6a6+9hnfeecfVh6YbaWlpaNWqFWbOnGnzdnk/pEe4TKy+efNmhIaGolevXsjIyHD6sbHXGDnEmTNnVMmQBKSrr77a1YejWzIuV9u2bfHuu+/i5ZdfVsNNyNhbVLHGjh2r5jn85ZdfXH0oBOCmm25Sc1TOnTs3b9utt96qSh4+/vhjlx6bHhkMBnz11VeqJkFIDJGSov/973944okn1LakpCT1nskwOnfccYdTj4clQuQQ8o9WyECY5DpSSnfjjTeqYmVyna+//loNAnvbbbepHwht2rTB+++/7+rD0q3OnTurGQkOHDig1v/44w/8+uuvuOGGG1x9aARtIGUZJzD/55bMEybjBW7cuNH7R5YmzyfTnkhbFKkKaNGihasPR7c+++wz7NixQ1WNkWv9/fffqipGRsZ/5pln1Hvy2GOPqWmDZLBYqvgSOpnlvFmzZmr+Smkz9Morr+Duu+929aERoEKQkBKg/GTdcpszMQiRQ0ohdu/erX5hkWscP34co0aNUu21goKCXH04uic/DqREaNKkSWpdSoTkb0TaPzAIVbwlS5bgk08+waJFi3DZZZepaZzkx5tUx/D9IFaNUbmMHDkS33zzDdauXYtatWq5+nB0a/v27UhMTFTtg/z8/NQi7bWk8aFcl1/AVHGk50tcXJzVtubNm+PYsWMuOyY9e/LJJ1WpkLQ1kd57gwcPxuOPP656v5LrxcTEqMuEhASr7bJuuc2ZGISoTKRxm4QgafD2008/qW6p5DrXXnstdu3apX7pWhYpkZCif7ku1QFUcaSauOBwEtI+pW7dui47Jj1LT0+Hj4/11538TUjJHbmefH9I4JF2XBZSlSm9xzp16uT052fVGJW5OkyKmZcvX67GErLU40oDN+mJQRVL3oOC7bOk+6mMYcN2WxVPShukga5Ujd1+++3YsmUL5syZoxaqeDJ+jbQJqlOnjqoa+/333zF16lQMGzbM1Yemqx6thw4dsmogLT/SpIONvC9SVSk9XRs3bqyCkYz7JFWXlp5lTiXd54lKS/7p2Fo+/PBDVx8a5eratat51KhRrj4M3VqxYoW5RYsW5sDAQHOzZs3Mc+bMcfUh6VZycrL6W6hTp445KCjI3KBBA/Ozzz5rzszMdPWh6cbatWttfmcMHTpU3W4ymczPP/+8OTo6Wv3NXHvtteb9+/dXyLFxHCEiIiLSLbYRIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiqHCRMmoHXr1q4+DCIqIwYhInKJe+65BwaDQS0BAQFo1KgRXnzxReTk5OTtIwPfy/xcHTt2RFhYGCpVqqQmk502bZqaSNMSRCyPk39p1qyZC8+OiDwFJ10lIpe5/vrr8eGHHyIzMxMrV65Uk/n6+/tj3Lhx6vbBgwfjyy+/xHPPPYcZM2agevXq+OOPP1QQqlevXt6EjDKR5urVq60e28/PsR9v2dnZ6ticwZmPTUTFY4kQEblMYGAgYmJiULduXTz88MPo0aMHvv76a3XbkiVL8Mknn+DTTz/FM888g/j4eBV+br75Zvz000/o3r27VeiRx8m/VKtWrdjnnjVrFho2bKhKo5o2bYqFCxda3S6lSrJP3759ERoaqmYvF1OmTEF0dDTCw8Nx3333ISMjo9Bjf/DBB2jevDmCgoJUydS7776bd9vRo0fVYy9evBhdu3ZV+8h5EpFrMAgRkdsIDg5GVlaWui7hQAKKBJ+CJEhERkaW+Xm++uorjBo1Cv/73/+we/duPPjgg7j33nuxdu1aq/2k2q1///7YtWsXhg0bpsKZbJs0aRK2bduGGjVqWIUcy3G/8MILKjjt3btX7fv8889jwYIFVvuNHTtWHYPs06tXrzKfCxGVU4XMcU9EVMDQoUPNN998s7puMpnMP/74ozkwMND8xBNPqG3Nmzc39+3bt8THGT9+vNnHx8ccGhpqtTz44INF3qdz587m4cOHW2277bbbzL17985bl4/H0aNHW+3TqVMn8yOPPGK1rWPHjuZWrVrlrTds2NC8aNEiq31eeukldV9x5MgR9djTpk0r8dyIyPnYRoiIXOabb75RjaCljYzJZMJdd92lSlyElkXsIyVHlio1i4iIiCL3l1KYBx54wGpbly5d8Pbbb1ttk4bZBe/30EMPWW3r1KlTXklSWloaDh8+rKrMhg8fnrePNAAvWIJV8LGJyDUYhIjIZaSdj7TDkXY6sbGxVg2cmzRpgn379tn1OJZeZ44mbYNKIzU1VV2+//77qqdbfr6+vuV6bCJyDrYRIiKXkTAgAaZOnTqFenlJ6dCBAwewfPnyQveT0qKkpKQyP680ZP7tt9+stsl6XFxciffbvHmz1bZNmzblXZdG1BLo/v77b3Ve+Zf69euX+XiJyHlYIkREbun2229XjZrvvPNO1X2+Z8+eqvu8NFx+66238Oijj+Z1n5eqp9OnTxdqUC3BxJYnn3xSPX6bNm1UT7UVK1aobvoFu+AXJI2bZfwjqdaSqjRpGP3XX3+hQYMGeftMnDgRjz32mKoKk+EBZGgAaVh9/vx5jBkzxiGvDRE5DoMQEbklCTKLFi1SAyrOmzdP9cKSUqPGjRtjyJAhVj2tJIxID66CXfNtdW0XEqCkPdAbb7yhwo2U1sh4Rt26dSv2mAYOHKjaAD311FPqsW+99VbV7f/777/P2+f+++9HSEgIXn/9dRW4pNSrZcuWGD16dLlfEyJyPIO0mHbC4xIRERG5PbYRIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLdYhAiIiIi3WIQIiIiIt1iECIiIiLo1f8BFkXWrXQqs20AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the total Sobols as a function of PCE order\n", "O = [R[r]['order'] for r in list(R.keys())]\n", "plt.figure()\n", "for v in list(R[O[0]]['results'].sobols_total('Ishigami').keys()):\n", " plt.semilogy([o for o in O],\n", " [R[o]['results'].sobols_total('Ishigami')[v] for o in O],\n", " 'o-',\n", " label=v)\n", "plt.xlabel('PCE order')\n", "plt.ylabel('total sobol')\n", "plt.ylim(1e-2,10)\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_sobol_total.png')\n", "plt.savefig('Convergence_sobol_total.pdf')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:02.943687Z", "start_time": "2021-12-10T08:47:02.735811Z" }, "code_folding": [], "execution": { "iopub.execute_input": "2025-07-18T12:14:07.184045Z", "iopub.status.busy": "2025-07-18T12:14:07.183954Z", "iopub.status.idle": "2025-07-18T12:14:07.504718Z", "shell.execute_reply": "2025-07-18T12:14:07.504406Z", "shell.execute_reply.started": "2025-07-18T12:14:07.184037Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaWNJREFUeJzt3Qd8U+X6B/CnSbr3oC1llVH23iCKCDK9ioOLOEDk4riCKIoIIuC44kJR4aJ4Xde/CKKI6EWUqQhlg6yW0RbK6N575fw/z9uemHTRtElOcvL7+jkmOTk5ec9JyXnyvs/7vi6SJEkEAAAA4OA0ShcAAAAAwBIQ1AAAAIAqIKgBAAAAVUBQAwAAAKqAoAYAAABUAUENAAAAqAKCGgAAAFAFHTkJvV5P165dI19fX3JxcVG6OAAAANAAPJxeXl4eRUREkEZTf12M0wQ1HNC0atVK6WIAAABAI1y+fJlatmxZ7zZOE9RwDY18Uvz8/JQuDgAAADRAbm6uqJSQr+P1cZqgRm5y4oAGQQ0AAIBjaUjqCBKFAQAAQBUQ1AAAAIAqIKgBAAAAVXCanBoAgOoqKiqorKxM6WIAODVXV1fSarUW2ReCGgBwynEvkpOTKTs7W+miAAARBQQEUHh4eJPHkUNQAwBORw5oQkNDycvLCwNyAij4A6OwsJBSU1PF4+bNmzdpfwhqAMDpmpzkgCY4OFjp4gA4PU9PT3HLgQ3/u2xKUxQShQHAqcg5NFxDAwD2Qf732NQcNwQ1AOCU0OQEoL5/jwhqAAAAQBUQ1AAAAIAqIFEYAICIouMybPp+Q9qbl6R88803U+/evWnFihX1VuF///33NHHiRAuUUN02bdpEzz77LCUkJNDs2bPrPa/Q8L9BpaGmBgBAJZKSkmjcuHEN2pYDIL6wO6tHH32U7rnnHrp8+TK98sorShcHLAQ1NQAAKsGDl9kj7tHCo8bai/z8fNF9eMyYMRQREeGwxwE1oaYGAMBB6PV6eu655ygoKEgEMEuXLq2z9qW0tJRmzZolBjPz8PCgNm3a0LJly8RzkZGR4vbOO+8Ur5Efs9WrV1P79u3Jzc2NOnXqRF9++aXJe8TGxtKwYcPEPrt27Urbt283ed+LFy+Kx+vXr6fhw4eL7b766ivKyMigKVOmUIsWLUT33R49etDXX39do3mDm4KeeuopCgwMpLCwMPr444+poKCApk+fTr6+vtShQwf6+eef6z1PWVlZNHXqVLEPfi+uvTp//rx4bvfu3WI/7JZbbhFl5XW14ef4fNx+++3k7e1N//rXv8Q4RzNmzKC2bduK8VX4HL333nuG15w6dYo0Gg2lpaWJx5mZmeLxvffea9jm1VdfFeewLv/+978pKipKnDs+B1yjJNu6dat4LY/Ay+Ms3XbbbRQXF2d4/mLV+f/mm2/oxhtvFGUcMGAAnTt3jg4dOkT9+/cnHx8fcU7kMrKHHnpINFu+9NJL1KxZM/Lz86PHHntM/B3VpaSkRDTh8WfK52fQoEEm5/LSpUv0t7/9TXwO/Hy3bt1oy5YtZE0IagBAOQl7al+gVl988YW4OBw4cIDefPNNevnll2nbtm21bvv+++/T5s2bxcXt7NmzIrCQgxe+uLHPPvtMNFnJjzkfZ86cOfTMM8+IizM30XAwsWvXLvE8X9D5wseBApdhzZo19MILL9T6/s8//7zYV0xMjKgRKS4upn79+tH//vc/se9HHnmEHnzwQTp48GCNYwwJCRHrOcB5/PHHadKkSTR06FA6evQojR49WryOR6GtC1+gDx8+LI4/OjpajFo7fvx4UdPC++Hzwb777jtx/LyuLhw4cvB38uRJevjhh0Vg2bJlS9qwYQOdOXOGFi9eTAsXLhTnmfGFm4ON3377TTzes2ePyWPG9zmAqw2X+8knnxSfLZeTg5ibbrrJ8DwHeHPnzhXb7dixQwRMXD4ul7ElS5bQokWLxDnT6XR03333iYCYAzAu04ULF0TZjfH++PPiwIQDzo0bN4ogpy4cNPP5XbduHZ04cUJ8TmPHjjUEkE888YQIfH7//Xdx/t544w0RUFmV5CRycnIkPly+BQA7Ef977YsVFRUVSWfOnBG3xvZdSLfpYq7hw4dLw4YNM1k3YMAAaf78+YbH/B33/fffi/uzZ8+WbrnlFkmv19e6P+NtZUOHDpVmzpxpsm7SpEnS+PHjxf2ff/5Z0ul0UlJSkuH5bdu2mewrISFBPF6xYsV1j2nChAnSM888U+cxlpeXS97e3tKDDz5oWMfvzfuPjo6udZ/nzp0Tz+/du9ewLj09XfL09JS++eYb8TgrK0tss2vXrnrLx9s89dRT1z2OJ554Qrr77rsNj++66y6xjvHr582bJwUGBkoxMTFSaWmp5OXlJf3666+17uu7776T/Pz8pNzc3Ou+L0tLSxPlPHnypMn5/89//mPY5uuvvxbrduzYYVi3bNkyqVOnTobH06ZNk4KCgqSCggLDutWrV0s+Pj5SRUWF4fOZM2eOuH/p0iVJq9VKV69eNSnPyJEjpQULFoj7PXr0kJYuXdqkf5fmXr9RUwMA4CB69uxp8pibluQ5c2qrrTh+/LhoHuFf/r/++ut198+/0m+44QaTdfyY1zOuOWjVqpVJ7s7AgQNr3Rc3cxjjWh5OyOVmJ24+41/sv/zyCyUmJtZ5jDxcPtdy8Gtk3BzD6jpuLivXTHBTiIz3wedBPg5zVD8OtmrVKlHrxM00fBxcY2V8HNzsJjfDcK0MN3NxbQuv41oxrjGqfp5lt956q2gqbNeunaiR4ho241oprgXhZjx+npuI5Nq3+s5jWNU5q34eq5/DXr16mYy0PWTIEJF/xMnU1XHNC3+mHTt2FOdAXvh45eYw/rvjpjY+Vq454toca0NQAwDgIKonqXLuRPVmB1nfvn1Fd2UOJIqKiujvf/+7SW6GtXEzmbG33npLNH3Mnz9fNGdxwMXNUtVzNmo7RuN18sizdR23tY+Dm1o4j4TzajhQ5OPgJjrj4+CmJW6a4gCEbzkHhtdxUMMXfQ6U6pqmg/N9uMmIm384aOUmIg425BnlOUeF83Q414ibAHlh9Z1Hl6pzVn1dU84hBzscdB45ckScA3nhwFHOMfrHP/5B8fHxIjjjIIiP+4MPPiBrQlADAOqEXB3xS37y5MniAsiJu5xDwhdE+QLHv7SNdenShfbu3Wuyjh9zQjDj2g7+1Z6SkmJ4Xs7HuR7ezx133EEPPPCAuEhzTQMnr1oaH0N5ebnhYs84SZlrmeTjaAo+Ds7B+ec//0l9+vQRicvGibpyjQgnx3ItBY/rwjUYHNRwQMOBTV35NDKuaRo1apTIm+LaDU7+3blzp+E4OFdm5MiR4lg5KdpS/vzzTxEAy/bv3y/KzrVz1fGx898P1/bwOTBejGvy+LWccMz5OZyrxX+L1oQu3QAAKvTOO++IX/p88eFkUk5s5YsN95ph3GzBiaHcNODu7i4uwvPmzRM1Ovwavqj++OOP4mLEPZzkphHuGTVt2jRxwc3LyxMX2IbM3cO9eb799lvat2+feC8uHwdHlgg0qr8PB08zZ86kjz76SNR8cNIy99Dh9ZbY/3//+1/RdMY9oLh3GAd2fF/G54Kbm7jpiGt15OYgTprlc86JvnX56aefRO0Gv57PE/cW4hoVDij5MTelcXMXf7bc5MTHZimlpaWiBoo/Uw6kuMmIk4H576c6bna6//77RS+z5cuXi78Z7k3Fx8fHOmHCBNGLjXtZ8bYcfHENHQdi1oSgBgCgESP82ju+mHPgwU0g3EzA3Xr5AilfoPhCxBdX/uXMF3y+iHHPJm46ePvtt0XPJb5Qcw8puWaB98Ndt7lZgffHtS3crMRNItz9uD58oeSLNTc5cdML937i98vJybH4sXOZufzc3Zkv1Bwg8LFbYowZ7hF27NgxUQPGwQvnt3CtTfVu5pxXw+dKPnd83rkc3PurrnwaxkEnB5Lc64p7jHEQxU1R3KtKbv7iXJXu3buLQId7uV2v5qehuPaH34/LyQEYH1v1YQOqn2eujeIamKtXr4pea4MHDxbnnXFNDveAunLliqg15J5R7777LlmTC2cLkxPIzc0lf39/8Q+ITy4A2IG6moTa3tjw7c3cli8UnGvCF+zrXYihYc0xnDPCXYS5Fgcc00MPPSTydpQaZbq+f5fmXL9RUwMAAA3GY9lwngX/oudAhmtEuOYBAQ3YAwQ1AADQYJxHwz2YOJ+Dmxs494absgDsAYIaAABoME4M5QXU5fPPPyc1QJduAAAAUAXU1ACAw+P+DhnFGRSXHSeW+Jx4upJ6kiaGDaaxoTVHhAUAdUJQAwAOJ6esgP6XeojOFVyluJg1FJcTR3mleTW2O5B9lsI9gqi3XztFygkAtoWgBgAcKpj579Wd9NXVXVRQUWzynMZFQy19WlK7gHbU3r89xV6Npr1ZZ+iZMx/T+r7PU4ibv2LlBgDbQFADAHYvuzib/nvmv7T2zJeGYKajdwsaEdyT2keOoHb+7SjSP5Lcte6G1xT4daP7jr9J8YXJ9GzMJ/RxjznU9KHXAMCeIVEYAOxWVnEWvXf0PRrz3Rj6+OTHIqDp5N2SVnR9hDb0XUCzIv9G49qOo05BnUwCGuat86B3uz5C3loPOpJzgd5N+J4cGY8ay8PO14dHuFVq8DRHw+eJ5yniUZLrOq+NOZ88/cSKFStIjVwc4O8LNTUAYHfK9GW06tgqWhu7lorKKyfY6xzUmR4Lv0nUznBTU0O08wqnVzs9SE+f+Zi+vLqTeiT8TCOaj6h9Y1tPeFnXSMhNkJSUJOYHaugFigfS46kKnBFPd8Cza/OUAzylBKgDamoAwO58cfoL+uTUJyKg6RLUhd4f8T59c9s3NDKkd4MDGtmokD70cKvR4v6SfUvoYs5FUiuesJInp7Q3ZWVlZE/y8/PF7NI8D1VERASCGhVBUAMAdmdn4k5xO7vPbFp/23oa0XrEdWeBrs/syL/RoIBOIkh6/eDrpJf05Ih4tubnnnuOgoKCRABTfbJB4+YBnsiRZ1jm2Zx5Lp02bdrQsmXLDE0k7M477xSvkR+z1atXiykP3NzcxISJPAu1sdjYWDHXE++TZ9jmGbyN35cnxuTH69evF5M68nY8W3VGRoaYIJEnz+QJLXv06CEmaqzexDZ79mzRHMQ1TmFhYWLCzYKCAlGrwsEHNxlVnzyyOp4RmgcI5H3we/FM0TyxJ9u9e7chiLnllltEWXldQ/Cs1Xw+T5w4IR5zYMSTeXp6eoo5i/g4q+P5lHgC0GbNmol5i/g9//zzzzrfo77PjfHs5nzuvL29qVWrVmIyTQ7SjAfRCwgIELN98+fHx3/PPfdQYWEhffHFF+Kz5vPCNVQ84aSM17/yyiviM+J98+e0atWqes/H5cuXxazu/H78N8mzoPPnL+PzOnDgQLE/3oan07h06RJZE4IaALArmaV5dCr9lLh/R/s7mhTMyHQuWnqz88MU7h1O1/KvUXZJthjbxtHwRYkvEAcOHBAzcL/88su0bdu2Wrfl2Zs3b95M33zzDZ09e1ZccOXg5dChQ4ZZlrnJSn7MzVE8lxPPunzq1ClDE82uXbvE83wR5OYqvlByGdasWUMvvPBCre///PPPi33FxMSIGhGesLBfv35ilmreN8/S/eCDD9LBgwdrHCNPv8DrOcB5/PHHadKkSTR06FA6evQojR49WryOL9L1Tc54+PBhcfzR0dHisx4/fryoMeL98Plg3333nTh+Xlcffj2X5b///S/t2bOHevbsaXgfvrDz+fn222/p3//+twh0jHHZeR0HYkeOHKG+ffuK2bAzMzPN/tzk2b55m9OnT4tztXPnThHoGissLBTb8IzeW7duFcEFB7A8UzkvHKh+9NFHoszGeMb1Xr16iVnI5c+vrr8vPpf8uXKAyOeEJzblOcF4Jm4OzMrLy8XfCge2HATy58CfuSX+PddLchI5OTn8DSZuAcBOxP9eY/kx+m2p++fdpbt+uKtB25uz75N//lca9/VYafvB7dLV9ARJKs6tXOratzUXMw0fPlwaNmyYyboBAwZI8+fPNzzm77jvv/9e3J89e7Z0yy23SHq9vtb9GW8rGzp0qDRz5kyTdZMmTZLGjx8v7v/888+STqeTkpKSDM9v27bNZF8JCQni8YoVK657TBMmTJCeeeaZOo+xvLxc8vb2lh588EHDOn5v3n90dHSt+zx37px4fu/evYZ16enpkqenp/TNN9+Ix1lZWWKbXbt21Vs+3mbDhg3SfffdJ3Xp0kW6cuWK4bmzZ8+K5w8ePGhYFxMTI9a9++674vGePXskPz8/qbi42GS/7du3lz766KNa3/N6n1t1XL7g4GDD488++0yU4cKFC4Z1jz76qOTl5SXl5eUZ1o0ZM0asl7Vp00YaO3asyb4nT54sjRs3zuR8yJ/zl19+KXXq1MmknCUlJeI8//LLL1JGRobYfvfu3Q06jqKiIunMmTPitinXb9TUAIBd4bFl2LAWwyy+7+6+kfRYm3HifkZpHuWXm451Y+/kGgIZN1FUrxmQcS3C8ePHRRMENzX8+uuv190/16pwE4ExfszrGdcccJMHN33JuHmhNv37m47kzLU83LzBTSfcVMG/6n/55RcxMWZdx8g9k4KDg8VrZNwkxeo6bi6rTqejQYMGGdbxPvg8yMdhjqefflrUSv3++++iSab6+3Dtk6xz586imUXGzUzcNMTvz8crLwkJCRQXF9eoz42b+7imh8vCtSRca8VNe8Y1V15eXiazpvM549oefm/jddXP4ZAhQ2o8ruuc8bHxLO1cBvm4+HPlGjk+Nr7Px8K1OdxE995774laMWtrVFDD7Wx8gri9j/9wqlcfVrdhwwbxYfP2/MfJ1V/GuF2Yn+dqVW7r41lf+Y/IGL8fV1sZL6+//npjig8AdopzXfZZMahho5v1Ja+q7t/JJVnkSFxdTUfa4e9BzrOpDTdz8MWTA4mioiKR+8C5FbbC3+fVmzb4wsYzfHNzDV+4+YLHTRXXO0bjdXLzRV3HbWm33norXb16VQRg5uKAhgNPPlbjhYPDefPmmf25cb7KbbfdJgI/bjrj5iw578X4PLpe5xzK65pyDvnYOKCrfmznzp2j++67z9C8yc1O3LzHOVYdO3ak/fv3k1116eaCzZ07lz788EMR0HB/fP7D5A8pNDS0xvb79u0TiUec6MQfxtq1a0U7G7eNdu/eXWzDB7py5Upq166d+BDfffdd0W7KUSAnV8m4/XjmzJmGx8hYB1CXM/mJlFmWTz6uPtQ7tHfDXtSIrth+Oi/ir/MSfRmVS3rVjm3BiamTJ08WC18YOd+Bczn4VzRf5IwTRVmXLl1EbsS0adMM6/gxJwQzrj3gHJKUlBRDjYmcj3M9vB9OJH3ggQfEY76g8gVQ3rel8DFwPgf/MJZzZbgmg69RjXmv22+/XdQ08IWaa47uvfdesZ5/iPP7cGAxYMAAsY7fgxODjQOU5ORkUaNjnBfT2M+N34vP2/Lly0VuDePcG0vZXy3g4Md8PmvDx8bxAF/3ubx16dOnj1gWLFggan44Bhg8eDDZTU0NZ15zYMHJY/wHwsENV3V9+umntW7PkTl/IByV8snh6JNPBgcxMv5j4doZDmq6desm3iM3N9eQYW4cxHC1p7xU/yUAAI5tT2ZlLc3g5oPJVWO98X81Li7k5lIZylSfbkEt+HuUexdxbyUOHrjGnL835eYRvsju2LFDXHS5txDj72nuPcM9oLi3EO9j48aN9OyzzxpqLbhZg4Me/n7mQGXRokXiueslgEZFRYmkU/6hy00anITMwZGl8ftw8MTXqT/++EM0k3Agxc01vL4xOMmWk2v5uicn13KAx9c2Pg4OoDjg4F5O3BNKxtc1vpDzD3luRuKaFj5+Tq7mRGZzPzfu+cUJuh988AHFx8eLMvE12FL27t0rEtD5fbkGiN+bk4Vrc//994uEbj6nnCjMtUuckMxNZleuXBGPOZDhmhru8cTHz39TdQVJigQ1XL3FHxx/UIYdaDTiMRe8NrzeeHvGNTt1bc/vwRn1/v7+IgvbGDc3cdskR31clclRcl1KSkpEYGS8AIB9+yPztLi9oYVpXoc1eOoqm6AKHCyvpqH4RyBfoDi3hWsS+ILKTf/yL3z+tc9BBufI8Hcq44sv/xB9++23xQ9M7iHDTQjc1ZpxTQV33eamB94nX8Tl3k+cXlAfDn74By1///P++EJtrYH/uMzcNMKtAxxUcI4rH3v1JhhzcI0J9zbiHBYO9OT34XFuuIfPXXfdJXr3GLdYcKDH73vTTTeJgIhbJbimhy/yck2XOZ8bXxM56HnjjTdESwf3jDLu7t1U3OuNgy3+e3j11VfFe/HnVRuuzOA8o9atW4tj52BlxowZIqeGa274eQ7M7r77bnHcfG6eeOIJEQRak0tVRnODXLt2TUS7HGkaJxRxd7LffvutRh4M47EO+A+Bm6Bk3O3tpZdeMonSuU89f9ic7MRtkPwPR67SY3xy+R8EV5vy+3MEyH8kvL42nKfD71FdTk5OvVVlAGBDRk1H2WX5dFP0fJJIom33bBPdr+vbvrGKK1woocibmrUIpRR9NrlpdBTlHVFzQ3c0bzf01z2PW8PpAsbJqeBYIiMjxfhA15uKw1o4GOLaHR7vp3qAzJUSXNHRkOu33TQljxgxQiQZpaeni8GWODmKgyQ56uU8HhknSXGwxBEfR6m1jaDJQY/xa/ik8C8SALBP+7JiREDTwSui9oDGwjy1bsSJNaX6cirTV5CrRmv191QDHsuGe7pwMw8HMtw8wT2kENCAPTCr+Ynbz7j6sXo7KD827uJnjNc3ZHvOj+H2Qk4g+uSTT0RiFd/WhZOUufnJePRCYxzocERnvACA/Tc93Rhk2cTRumhdNOTBgY2K82qsIS8vTzQjcKIsd9nlGvUffvhB6WIBmB/UcO0It1NycpmMM7H5cfX+7TJeb7w943bcurY33i/nxdSFa3W4jbG2HlcA4HhduQ3j0wR1s9n78gzerKCi7u8aMMXTD3AiKTcXcEIoJxZzriM4Nq4gUKrpyZLMbn7iJh3OfOckJh50ibt0y/NyyH/wnHcjJy9x1SQnUXFS2oQJE8SwzZyIxMnAjF/7r3/9S3Sb41wabn7irGseF4CHl2acVMxNUdxExUlU/JgHROKM9obOSAsA9ism/7Loys3jx/Txa2+zGbO9te6UgZoaANUwO6jhfvNpaWm0ePFi0RWwd+/eYm4JOZObR4eUs+sZjxPA/dI5833hwoWiHZaTgOUxarg5izOkOZmYAxqO+Lk6k7uIcfa93JTEwRAn/3LtDScScVBjnDMDAI5rT1XT0+CAzuSqsV2qn1dVTU2Zvlzk1nDSMAA4LrN6Pzkyc7KnAcBGqmpkHjz+Nh3PjafFUffRpObWGUm4eu+ntm1ak4e7G8UXJlNRRSlFeARToKvR2Ffo/QTgcL2fMPcTACgqp6yATuQmiPs3BtomSbi2vJpCNEEBODwENQCgqOisGNKLrtzNKdwjyObv/1eycDE5RbU1gIohqAEARe1RoNeTMU5O5gH+eawazq0BAMeFoAYAlO3KXTXf07BAZYIangfKs2rW7nw0QQE4NAQ1AKCY2PwrlFGWK2pL+vorNyKto+TV8GB3PJ8QLzxuGA9Y+vLLL4uBSHkyQfk57oHKiZU8hw9PY5OUlGSyH+5JKm9rvGzfvl2xYwOwBPRfBADF/JFV2ZV7UEAnm3blrs5b505ppTy5ZYnIq6l/vmll8czQPJEiD2/BEx3y6L48UaM8oOnZs2dFDxHuMXL06FExOSKPzs5BT48ePQz74SEzqgcxPLcegCNDTQ0AKOYPQ9OT7Xs9GfPUcF6NC5VLFVSqLyN7xuN28TQzbdq0occff5xGjRpFmzdvNjzPo6zz8/KM0DzhZLNmzcS2xngqGt7OeOHaHwBHhpoaAFBETkkO/Zkbr2iSMOOhuoorikkj6cV0Cekl2RTo6kNkgwkuPXWeotmnSfvw9KSMjIx6n3/sscfEgKWpqamYWgZUDUENACgiOiladOVu5xUuBr5TSlFFMQ36dqQi733gvgPk5erV6GCM59X75ZdfaPbs2fVuy5NPyvP7yEHNyZMnxWzbsq5du9LBgwcbVRYAe4GgBgAU8ceVPxTt9eSofvrpJxGMlJWViYl/77vvPpH4e+jQoTpfIw8cb1wr1KlTJ5NmK27WAnB0CGoAwOb4Irv32l7Fm56Yp9aDDtyzg/SSROcLrorbdt7h5O4RaJPmJ3PxxL6rV68W+S8REREiN+Z6YmJixG1kZKRhndx7CkBNENQAgM2dzTpL6UXpIkG3n4JdueXaC6+q4CLI3Z/yy4tJTy6NbhayNm9vb7OCkaKiIlqzZg3ddNNNImEYQM0Q1ACAze29WllLMyigI7lpXMle8KzdHNTwlAnKZfk0DScD8+SAeXl5dOTIEdGlOz09nTZu3Kh00QCsDkENANhcTGZlc0g/f/tq/vCuGlm4sKJENJE1tWeSEjhXhsvNeTft2rWj0aNH09y5c0WXbQC1Q1ADADYXlx0nbjt4R5A94ekSeNqECkkvunk3JufFmj7//PM6n7v55psNCcHXw4nFvACoDQbfAwCbKtOX0cXci+J+e6/mZE9cqpqgWEFZgdLFAQAzIagBAJu6nHeZyvXl5KXzonB36/cwamwTFIIaAMeDoAYAFGl6ah/Q3i5zVgyTW5YVNrg5BwDsA4IaAFAkqGnn347skYfWjTQuGtJLeioqL1K6OABgBgQ1AGBT8dnxhpoaJdVVC8N1R2iCArAtS9WKIqgBAJu6kHNB0aDGVSPxNygVFpVcvwmqvNCGJQNwXoWFlf/WXF2bNm4VunQDgM1wgvDFnIt/BTVplbU2tqR1IQrQlVBqerp47OXpXiO3R1fhQvoyPeWX5VORa5Fd5v4AqKWGprCwUAwaGRAQQFqttkn7Q1ADADZzJe+K6NLN4780926uSFDDwj3KiYr5izSF50mo8TxXhKcVZ5FEEukz9aTT4KsSwJo4oLHEAJH4lwoANk8SbuvfViTjKoXjmOae5RQqlVOZvvZamI+SfqCYjBh6ut/TNKL1CJuXEcBZuLq6NrmGRoagBgBsJi6naiThAPuYHoGborTa2hMUIwIiaGfSTjqedZzGdRxn87IBgPmQKAwANmPv3bmNdQvpJm5PZ5xWuigA0EAIagBAkYH37F334O7iNjYzVuQBAYD9Q1ADADZRoa+ghJwEhwlqWvu1Jl9XXyqpKDEEYwBg3xDUAIBNXM2/SqX6UvLQelCEnc3OXRtOZO4a3FXcP52OJigAR4CgBgBs4kL2BUPPJ63GMj0dbJVXcyrjlNJFAYAGQO8nALCJ+IQd4ra9zpcoYQ85gu4hlXk1qKkBcAyoqQEAm4grTBa37b2aPsCWrXQLrqypOZ91XuTWAIB9Q1ADADYRV5gkbtt5NSdHwaMeB3kEUblUTmczzypdHAC4DgQ1AGCTnk/xVTU1HXh6BAfBcz7JtTWn0pFXA2DvENQAgNVdK7hGJfoycnPRUQuPEHIkGIQPQOVBzapVqygyMpI8PDxo0KBBdPDgwXq337BhA3Xu3Fls36NHD9qyZYvJ80uXLhXPe3t7U2BgII0aNYoOHDhgsk1mZibdf//95OfnJya+mjFjBuXn5zem+ACg1JxPXuGkVXDOp6YMwodkYQD7Z/a3y/r162nu3Lm0ZMkSOnr0KPXq1YvGjBkjpg2vzb59+2jKlCkiCDl27BhNnDhRLKdO/VWV27FjR1q5ciWdPHmS/vjjDxEwjR49mtLS0gzbcEBz+vRp2rZtG/3000/0+++/0yOPPNLY4wYAJUYSdqB8muo1NfE58VRQVqB0cQCgHi6SJNU+m1sduGZmwIABIghher2eWrVqRbNnz6bnn3++xvaTJ0+mgoICEYjIBg8eTL1796YPP/yw1vfIzc0lf39/2r59O40cOZJiYmKoa9eudOjQIerfv7/YZuvWrTR+/Hi6cuUKRURcfyAveZ85OTmitgcAbOeFP16gzXGbaXbk3+iR1g4yOWTbGw13R20YRSmFKfTZmM+of3jldxAA2IY512+zampKS0vpyJEjonnIsAONRjyOjo6u9TW83nh7xjU7dW3P77FmzRpxAFwLJO+Dm5zkgIbxPvm9qzdTyUpKSsSJMF4AQNmB9xyqpobH0qlauntWdkM/ff5HpUsFAJYKatLT06miooLCwsJM1vPj5OTKng3V8fqGbM81OT4+PiLv5t133xXNTCEhlQmFvG1oaKjJ9jqdjoKCgup832XLlonASF64NgkAbE8v6f+a88mRghoj3XzbiNtTeZeULgoA1MNuMvZGjBhBx48fFzk4Y8eOpb///e915uk0xIIFC0RVlbxcvnzZouUFgIa5ln+NisqLyNVFRy09HavnU/Wg5nReotJFAQBLBTVcc6LVaiklJcVkPT8OD699lFBe35DtuedThw4dRL7NJ598Impi+FbeR/UAp7y8XPSIqut93d3dRdub8QIAtscJtizSK5R0Lo4x51N13Xwqg5rLxWmUU5KjdHEAwBJBjZubG/Xr14927Kicw0VOFObHQ4YMqfU1vN54e8ZNS3Vtb7xfzouR95GdnS3yeWQ7d+4U23DiMgDYf8+nDl72PzN3XfxdvaiVRzNxH+PVAKio+Ym7c3/88cf0xRdfiF5Jjz/+uOjdNH36dPH81KlTRdOPbM6cOaKn0vLlyyk2NlaMSXP48GGaNWuWeJ5fu3DhQtq/fz9dunRJBC4PP/wwXb16lSZNmiS26dKli2iSmjlzphgTZ+/eveL19957b4N6PgGA8knC7RxozqfadJeboDBeDYB6ZunmLto8fszixYtFki53zeagRU4GTkxMFL2SZEOHDqW1a9fSokWLRPASFRVFmzZtou7dKwe04uYsDnY4SOJE5ODgYNFlfM+ePdStW+X4EOyrr74SgQx38eb933333fT+++9b5iwAgNXEZ8c7dJKwcV7Nz2mHMV0CgJrGqXFUGKcGwPb462XQ2kEiUfiH/osdurbmcPZ5mn7iXQrzCqPtk7YrXRwAp5FrrXFqAADMkVSQJAIanUZnyElxVF19W5GGXMQgfOlF6UoXBwBqgaAGAKyeJBzpF0muGsfs+STz0noYaprQBAVgnxDUAIDVu3O3D2hPatBVThZGDygAu4SgBgCsPz2CvzqCGrkHFGpqAOwTghoAsHrPp3YB7UgNuvm0NnTrdpI+FgAOBUENAFgFX/TjcqoG3gvoQGrQyacl6Vx0lFWSJZKgAcDBx6kBAKgXz2zN06EUZ1JBWQHpXDTUOiORSOP4XzfuGleKCoyimMwY0QQV4YPBPwHsCWpqAMAq4gqTxW1rz1ByVUFAI+sWUjko6KkM5NUA2BsENQBgFXGFSaoYSbi67sGVo6GfST+jdFEAoBoENQBgFaoNakK6G7p16yW90sUBACMIagDAykGN406NUBvuyeWudaf8sny6lHtJ6eIAgBEENQBglZ5P8QWVOTXtvdWVTOuqcaXOQZ3FfQzCB2BfENQAgMWlluZQXkURaUlDbTwde86nGhL2UHfXQHH3dPyvlb29qnp8AYCyENQAgNWanlp5NiM3jSupTTd5uoS8RKWLAgBGENQAgMXFqzSfpnpQE5OfSBVIFgawGwhqAMDiLlSNtttOZT2fZG08Q8VAfMX6MrpanK50cQCgCoIaALBa81MHb3UGNVoXDbWrqoU6X3BN6eIAQBUENQBg+TmfqmpqOqis55OxKK/KY0NQA2A/ENQAgEWllGYbej5FeoaSWkVVBWwIagDsB4IaALAouZamtUp7PsmivFuI2/MFV5UuCgBUQVADABZ1oVD9TU/Gx5dYlEYl+jKliwMACGoAwNLiqppjOqi055Ms1M2f/HReVEF6SqiakRwAlIWgBgCsUlOjtukRqnNxcaEOSBYGsCsIagDAsj2f5OYnldfUMCQLA9gXBDUAYDFJBUlUWFFCOhcttVZxzydZRwQ1AHYFQQ0AWMyF7AviNtIzjFw1WlI7OVn4QiGCGgB7gKAGACwe1Kh1JOG6gprkkizKLc1VujgATg9BDQBYTFx2nLht7wT5NIx7P4W5BYj7F7IqAzoAUA6CGgCwGGerqTEehE8+dgBQDoIaALAIvaSn+Ox4cV/u6uwM5B5Q57LOKV0UAKeHoAYALOJq3lUqrigmNxcdtfJsRs4W1KCmBkB5CGoAwCLki3pbr3DSujjPV4thrJqs82KcHgBQjvN88wCAVcXlOFeSsEwEcaQRvZ9SC1OVLg6AU0NQAwAWramJcqIkYeaucRUzkjM0QQEoC0ENAFiE3KVZ7XM+1dcDipugAEA5CGoAoMkq9BWUkJPgNHM+1TUI3/lsBDUADhfUrFq1iiIjI8nDw4MGDRpEBw8erHf7DRs2UOfOncX2PXr0oC1bthieKysro/nz54v13t7eFBERQVOnTqVr10yHHef341lxjZfXX3+9McUHAAu7nHeZSvWl5KH1oBYeweRsDHNAoaYGwLGCmvXr19PcuXNpyZIldPToUerVqxeNGTOGUlNrT5Dbt28fTZkyhWbMmEHHjh2jiRMniuXUqVPi+cLCQrGfF198Udxu3LiRzp49S7fffnuNfb388suUlJRkWGbPnt2YYwYAK40k3C6gHWmcqOdT9Zqa+Jx4UWsFAMow+9vnnXfeoZkzZ9L06dOpa9eu9OGHH5KXlxd9+umntW7/3nvv0dixY2nevHnUpUsXeuWVV6hv3760cuVK8by/vz9t27aN/v73v1OnTp1o8ODB4rkjR45QYmKiyb58fX0pPDzcsHDNDgAoT2526RDQgZxRS48QUUtVUlEiaq0AwAGCmtLSUhFsjBo16q8daDTicXR0dK2v4fXG2zOu2alre5aTkyOalwICKudUkXFzU3BwMPXp04feeustKi8vr3MfJSUllJuba7IAgJXnfApoT86Ix+WRjx15NQAOEtSkp6dTRUUFhYWFmaznx8nJybW+htebs31xcbHIseEmKz8/P8P6J598ktatW0e7du2iRx99lF577TV67rnn6izrsmXLRC2QvLRq1cqcQwWAxsz55KQ1NcbHjrwaAOXoyI5w0jA3Q/GonKtXrzZ5jvN4ZD179iQ3NzcR3HDw4u7uXmNfCxYsMHkN19QgsAGwvDJ9GV3MvfjXhT2tstbG2UQFRolbjFUD4CA1NSEhIaTVaiklJcVkPT/mHJfa8PqGbC8HNJcuXRI5Nsa1NLXhXlfc/HTxYuWXaXUc6PA+jBcAsLzE3EQq15eTl86LmjvZwHvGogIqgxrU1AA4SFDDtSP9+vWjHTt2GNbp9XrxeMiQIbW+htcbb884aDHeXg5ozp8/T9u3bxd5M9dz/Phxkc8TGhpqziEAgIXJNROcU8K5cM5KrqlJzEuk4vJipYsD4JTMbn7iJp1p06ZR//79aeDAgbRixQoqKCgQvaEYjzHTokUL0SzE5syZQ8OHD6fly5fThAkTRF7M4cOHac2aNYaA5p577hHduX/66SeRsyPn2wQFBYlAipOKDxw4QCNGjBA9oPjx008/TQ888AAFBgZa9owAgFmcPUlYFuIZQgHuAZRdki26dncN7qp0kQCcjtlBzeTJkyktLY0WL14sgo/evXvT1q1bDcnA3A2ba1BkQ4cOpbVr19KiRYto4cKFFBUVRZs2baLu3buL569evUqbN28W93lfxjgp+OabbxZNSRwMLV26VPRqatu2rQhqjHNmAEAZSBKuxLVUfA4OpxwWTVAIagAcJFF41qxZYqnN7t27a6ybNGmSWGrDIwVzYnB9eFyb/fv3N6aoAGBlCGpMm6A4qEGyMIAynG/oTwCwmNKKUpEozJy9+ck4rwbJwgDKQFADAI3GXbkrpArycfWhMC/T8aicugcUBuADUASCGgCwSJKwM/d8kslNcKmFqZRTkqN0cQCcDoIaAGg0uZkF+TSVfNx8DGP1oAkKwPYQ1ABAk2tqENT8BSMLAygHQQ0ANFpcDsaoMUjYI5YoFw/x8Hzi70qXCMDpIKgBgEbhUXMv510W91FT85cOXhHi9nzBNaWLAuB07GpCSwBwHAk5CaSX9OSv86aQ5Bgil1ili2QXorwrg5oLBdfEGFxIoAawHdTUAEDT5nzyao4Lt5G2XmGkJQ3lVRRRSqHpZL4AYF0IagCgaUnCTjwzd23cNK4UWTVmD3pAAdgWghoAaNoYNV4IaupqgsIgfAC2haAGABpFvmDLF3CoJVkYNTUANoWgBgDMVlhWSFfzr4r7qKmpJ1kYY9UA2BSCGgBoVM8nFuTqQ0FuvkoXx26DGm6iK9eXK10cAKeBoAYAmtTzCWpq4RFMnho3KtOXUWJe5SzmAGB9CGoAoNFBTQfk09RK46Kh9lW9wi5koQkKwFYQ1ABAo5OEO6Cm5rrJwsirAbAdBDUAYBYeJTcmI0bc7+TTSuni2C25FgtBDYDtIKgBALOkFaVRZnGmaGLp6N1C6eLYraiqWix06wawHQQ1AGAWuZamnX878tS6KV0cu6+p4UThkooSpYsD4BQQ1ACAWWIyK4OazkGdlS6KXWvm5k9+bn5i0k+5CzwAWBeCGgBoVE1Nl6AuShfFrvEknx0COoj7aIICsA0ENQBgltjMWHHbJRhBzfVEBUaJWyQLA9gGghoAaLDs4my6VnBN3O8U1Enp4tg9uaYGQQ2Abehs9D4AoKJ8mla+rUS+CNSvQ1GhuL2QdoooYc9fT7S9UblCAagYghoAuL6qC3Ls5W3itrN7iOlFGmrVoWpU4WslmZRfXkQ+Ok+liwSgamh+AoAGi8m/LG67YtC9Bglw9RG9oFhcYbLSxQFQPQQ1ANBgMfmVkzN28WmtdFEchjyVxIWqXCQAsB4ENQDQIAXlxXSpKE3c74yaGvOnSyhEUANgbQhqAKBBzhZcIYkkCnULoGA3X6WL4zCiqoKa86ipAbA6BDUAYFY+TReflkoXxTFn6y5IUrooAKqHoAYAzAxqkE9jjvbe4eI2oyyXMkvzlC4OgKohqAEAM4Ma5NOYw0vrQS08gsX9uELU1gBYE4IaALiuEn0ZxVddkBHUmC+qqgkKeTUA1oWgBgCui7sjl0t6CtB5U7h7oNLFcTjoAQVgx0HNqlWrKDIykjw8PGjQoEF08ODBerffsGEDde7cWWzfo0cP2rJli+G5srIymj9/vljv7e1NERERNHXqVLp2zfQff2ZmJt1///3k5+dHAQEBNGPGDMrPz29M8QHATGeMmp549mloZFCDZGEA+wpq1q9fT3PnzqUlS5bQ0aNHqVevXjRmzBhKTU2tdft9+/bRlClTRBBy7NgxmjhxolhOnTolni8sLBT7efHFF8Xtxo0b6ezZs3T77beb7IcDmtOnT9O2bdvop59+ot9//50eeeSRxh43AJghtiqowfg0TR+AT5IkpYsDoFoukpn/wrhmZsCAAbRy5UrxWK/XU6tWrWj27Nn0/PPP19h+8uTJVFBQIAIR2eDBg6l379704Ycf1voehw4dooEDB9KlS5eodevWFBMTQ127dhXr+/fvL7bZunUrjR8/nq5cuSJqd64nNzeX/P39KScnR9T2AEDD3bfxb3Qy7yK91flhGhta+W8QGq5UX0YD/3iaKkhP2wb9i8I7m/5oAwDLXL/NqqkpLS2lI0eO0KhRo/7agUYjHkdHR9f6Gl5vvD3jmp26tmdccK7i5mYmeR98Xw5oGO+T3/vAgQO17qOkpEScCOMFAMxXri+ncwVXxX3U1DSOm8aV2niFivuYLgHAeswKatLT06miooLCwsJM1vPj5OTaJ2vj9eZsX1xcLHJsuMlKjsh429DQyi8EmU6no6CgoDr3s2zZMhHZyQvXJgGA+RJyEkTvJy+tO7X2bKZ0cVQwCB+CGgCn6P3EScN///vfRZvz6tWrm7SvBQsWiBofebl8uTInAADME5MZI247e7cijYtdfWU4ZLLweYxVA2A1OnM2DgkJIa1WSykpKSbr+XF4eOWomdXx+oZsLwc0nEezc+dOk3Yz3rZ6InJ5ebnoEVXX+7q7u4sFAJomJqMyqMH0CE0T5Y3ZugGszayfXW5ubtSvXz/asWOHYR0nCvPjIUOG1PoaXm+8PeMeTMbbywHN+fPnafv27RQcHFxjH9nZ2SKfR8aBD783Jy4DgPVrajA9gmWan3gQwwp9hdLFAVAls2pqGHfnnjZtmkja5R5KK1asEL2bpk+fLp7nMWZatGghclrYnDlzaPjw4bR8+XKaMGECrVu3jg4fPkxr1qwxBDT33HOP6M7NPaQ4Z0fOk+GcGQ6kunTpQmPHjqWZM2eKHlP8mlmzZtG9997boJ5PANA4eklPsZmx4n4XX+SlNUUrz2bk5qKjYn0ZXc2/Sq39ECQCKB7UcBfttLQ0Wrx4sQg+uGs2d6+Wk4ETExNFryTZ0KFDae3atbRo0SJauHAhRUVF0aZNm6h79+7i+atXr9LmzZvFfd6XsV27dtHNN98s7n/11VcikBk5cqTY/913303vv/9+044eAOp1Je8KFZQViItxW8/am3qhYbQuGmrv3VzMoXU++zyCGgB7GKfGUWGcGgDzbb24leb9No+6+7ahr/vMV7o4Dm9h7Of0Y+pBmtV7Fj3a61GliwPg3OPUAIBzic2INfR8AgtOl5B9QemiAKgSghoAaECSMIIaS0BQA2BdCGoAoFbcMi135+6KJGGLiKrqAXUx5yKVVZQpXRwA1UFQAwC1SilMoaySLNK6aCnKu4XSxVGFcPdA8tZ6ULlUThdzLypdHADVQVADALWSa2naBbQjd42r0sVRBZ7TroM8CB+aoAAsDkENANSfTxPURemiqHIQvvNZ55UuCoDqIKgBgFohqLGOKCQLA1gNghoAqH/Op2AENVaZrRtBDYDFIagBgBoyizNFojDrFNhJ6eKosls3j9ZcWFaodHEAVAVBDQDUOeheG7825OPmo3RxVCXYzZeCPIJIIokSchKULg6AqiCoAYAazmSeEbfIp7GODgEdxC3PAQUAloOgBgBqkGfm7hzUWemiqDqouZCFvBoAS0JQAwA1RhI+lnpM3O8W0k3p4qhSh8CqoAbJwgAWhaAGAEwk5iVSamEq6TQ66tWsl9LFUaWogChxi+YnAMtCUAMAJg4mHxS3PUN6kqfOU+niqFL7gPbiloPHnJIcpYsDoBoIagDAxKGkQ+J2YPOBShdFtXzdfCncO1zcRxMUgOUgqAEAk3wauaZmYDiCGps0QWG6BACLQVADAAY8bkpGcQa5adyoZ7OeShdH1aICEdQAWJrO4nsEAIcl19L09o0k98TK+2DloAbJwgAWg5oaADA4lFyZTzMgoKPSRXGa5iceq4ab/QCg6RDUAIDAF9bDKYfF/YEIaqyunX870rnoKK8sj5ILkpUuDoAqIKgBAEMvHJ7I0lPjRj18I5Uujuq5al0p0r/yPKMJCsAyENQAgGk+jV87ctUg3c6WeTXnss4pXRQAVUBQAwAm+TRoerKBhD1i6Si5iofnLu9VukQAqoCgBgBIL+kN+TQDAjopXRynEeXdQtyeL7imdFEAVAFBDQCI5g8erp+nRejq01rp4jiNKO8IcXuxKJnKKsqULg6Aw0NQAwB0MKkyn6ZvWF9y1WiVLo7TaO4eRD5aDyqX9JSQm6B0cQAcHoIaAPgrnwZTI9iUi4sLdaiqrcHIwgBNh6AGwMlV6CvoSMoRcR9BjXJNUAhqAJoOQQ2Ak4vNjBUDwPm4+lDnoM5KF8d5k4UxVg1AkyGoAXBy8vg0/cL6kQ7j09hclBdqagAsBUENgJOTg5oB4QOULopT19QkFSRRXmme0sUBcGgIagCcWJm+jI6mHBX3kU+jDH9XLwp1CzBMVQEAjYegBsCJxWTEUGF5Ifm5+VGnIAy6pxQkCwNYBoIaACcmNz31D+tPGhd8HSilY1VQgzmgAJoG32IATswwPk1zND3ZRQ8o1NQA2D6oWbVqFUVGRpKHhwcNGjSIDh6s/LVXlw0bNlDnzp3F9j169KAtW7aYPL9x40YaPXo0BQcHi8Gojh8/XmMfN998s3jOeHnssccaU3wA4HyaijI6lnpM3EeSsLI6GnXrliRJ6eIAOE9Qs379epo7dy4tWbKEjh49Sr169aIxY8ZQampqrdvv27ePpkyZQjNmzKBjx47RxIkTxXLq1CnDNgUFBTRs2DB644036n3vmTNnUlJSkmF58803zS0+AFQ5lXGKisqLKNA9kDoEdFC6OE6trVcYaV20ovdTSmGK0sUBcFhmD0rxzjvviOBi+vTp4vGHH35I//vf/+jTTz+l559/vsb27733Ho0dO5bmzZsnHr/yyiu0bds2WrlypXgte/DBB8XtxYsX631vLy8vCg8Pb1A5S0pKxCLLzc014ygB1O/gmQ3itr9vJGku7lW6OE7NTeNKkX6RFJcTJ5qgwr0b9j0HAE2oqSktLaUjR47QqFGj/tqBRiMeR0dH1/oaXm+8PeOanbq2r89XX31FISEh1L17d1qwYAEVFhbWue2yZcvI39/fsLRq1crs9wNQs0M5lUmpAwI6Kl0U4LyawChxi5GFAWwU1KSnp1NFRQWFhYWZrOfHycnJtb6G15uzfV3uu+8++r//+z/atWuXCGi+/PJLeuCBB+rcnrfJyckxLJcvXzbr/QDUrLSilI7nxov7A/0R1NhVUINkYYBGc5gx0R955BHDfU42bt68OY0cOZLi4uKoffv2NbZ3d3cXCwDU9Gfan1SiL6NgVz9q54WmDnsQFYCgBsCmNTXc9KPVaiklxTSRjR/XlevC683ZvqG41xW7cAEjcAI0tiv3gIAo0ZMQ7KemJj4nXoz0DABWDmrc3NyoX79+tGPHDsM6vV4vHg8ZMqTW1/B64+0ZJwrXtX1Dyd2+ucYGABo53xOanuxGhE8Eeem8REBzKeeS0sUBcI7mJ+7OPW3aNOrfvz8NHDiQVqxYIbpky72hpk6dSi1atBCJumzOnDk0fPhwWr58OU2YMIHWrVtHhw8fpjVr1hj2mZmZSYmJiXTt2jXx+OzZs+KWa3N44SamtWvX0vjx48VYNidOnKCnn36abrrpJurZs6elzgWAUygsK6QTaSfE/UGBmBrBXvCIzh0CO4jPhpOF+T4AWDmomTx5MqWlpdHixYtFsm/v3r1p69athmRgDk64R5Rs6NChIiBZtGgRLVy4kKKiomjTpk2iB5Ns8+bNhqCI3XvvveKWx8JZunSpqCHavn27IYDinkx333232CcAmIcH3OPagHD3QGrt0Uzp4oAsYQ9FaX2Jw83zCTtoHPlUrm97o9IlA3AYLpKTDF/J49Rw127uCeXn56d0cQAUs/zwcvr89Oc0MWwIvdKpcowosA9fXd1Fr8dtoJuDetAH3R+vXImgBpxcrhnXb8z9BOBkDiQdELeDAzsrXRSoa7qEgsqmeABQaZduAGikhD2Gu1ll+RSTGSPuD8Kge3Ynqmq27qslGVRQXkzeOg+liwTgUFBTA+BEDmZXjiLcwSuCQtz8lS4OVBPg6kPNqj6X84WorQEwF4IaACeyPytW3A5Grye7r61BExSA+RDUADiRA9mVwyUMDkA+jf0HNVeVLgqAw0FQA+AkrhZn0OXiNNKShvr5YwwUe4VkYYDGQ1AD4CQOVDU99fCLJB+dp9LFgTpEGQU1TjLiBoDFIKgBcBL7q5qeBgUgn8ae8QSjXJuWU15AaaU5ShcHwKEgqAFwAnpJTweyq5KEkU9j19w1rtTas3KkZzRBAZgHQQ2AE+CLY2ZZPnlq3KiXX1uliwMNboJCsjCAORDUADhRr6e+/h3IVYMxN+0dunUDNA6CGgAnsN/Q9IR8GocKajAAH4BZENQAqFyZvoIOZ18Q9zHfk2N1644rSKJyfbnSxQFwGAhqAFTuZF4CFelLKNDVx3CxBPvWwiOYPDXuVCqVU0JOgtLFAXAYCGoAnGRqhIEBHUnjgn/yjoA/p55+keL+0ZSjShcHwGHgGw5A5TA1gmPq5x8lbg+nHFa6KAAOA0ENgIoVlhXSibzK5otBCGocSv+qqSw4qMHIwgANg6AGQMX4glgu6UWORivPEKWLA2bo6deWXF10lF6UTol5iUoXB8AhIKgBULH9SfvFLZqeHHNk4R6+lXk1h5PRBAXQEAhqAFTsQNIBcYvxaRxT/wDk1QCYA0ENgEplFGXQuaxz4v5ABDUOqb9RsjDyagCuD0ENgEodTD4objt5t6QgN1+liwONwPN06Vx0lFyQTFfzMQ8UwPUgqAFQeT7NINTSOCwvrTt1C+km7qMJCuD6ENQAqBA3Vey/VpUkjKkRHFr/sP7iFsnCANeHoAZAha7kXaFrBddE00U///ZKFweaoF9YP3F7JOWI0kUBsHs6pQsAAJa3P7mylqZns57kpfUw+/Wnr+Ved5tuEX6NKpuS7+WI+oT2EdMmXMm/InJrwr3DlS4SgN1CTQ2AChmaniIGK10UaCIfNx/qEtRF3EdeDUD9UFMDYAei4zKuu82Q9sEN2pde0tOh5EPi/uDmg4kK8ptcPmdijzVHnFdzOuO0yKu5rd1tNn1vAEeCmhoAlYnLjqOskizy0HpQ9+DuShcHLKB/eGWyMPJqAOqHoAZAZeQLX6/QXuSqdVW6OGChvBoXcqGLuRcprTBN6eIA2C0ENQAqI+ddyF2BwfH5u/tTx8CO4j5qawDqhqAGQGXj08jjmSCoUWcTFJKFAeqGRGEAFeHmiYziDHLTuFGPZj2ULg5YEAepX8V8ZdWaGksmrAMoAUENgIrIv+I5oHHXuitdHNVSooeUPAjfhewLlFWcRYEegRbdP4AaIKgBUBH5V7wtmp7sseuzmnEQ0yGggwhq+HMe1WaU0kUCUEdOzapVqygyMpI8PDxo0KBBdPBg5WzAddmwYQN17txZbN+jRw/asmWLyfMbN26k0aNHU3BwMLm4uNDx48dr7KO4uJieeOIJsY2Pjw/dfffdlJKS0pjiA6g/n6Yq/wLURa6tQV4NgIWCmvXr19PcuXNpyZIldPToUerVqxeNGTOGUlNTa91+3759NGXKFJoxYwYdO3aMJk6cKJZTp04ZtikoKKBhw4bRG2+8Uef7Pv300/Tjjz+KAOm3336ja9eu0V133WVu8QFUi4fRTylMIZ2LlnoVFBAl7KlcQDUwuaVj4Nyk6y1gJ0HNO++8QzNnzqTp06dT165d6cMPPyQvLy/69NNPa93+vffeo7Fjx9K8efOoS5cu9Morr1Dfvn1p5cqVhm0efPBBWrx4MY0aVXt1ak5ODn3yySfivW+55Rbq168fffbZZyJg2r+/cjh4AGcnX+i6+7YhT62b0sUBK5Br4M5lnaOckhyliwPg2Dk1paWldOTIEVqwYIFhnUajEcFIdHR0ra/h9VyzY4xrdjZt2tTg9+X3LCsrMwl6uDmrdevWYv+DB9ec36akpEQsstzc67f/A6hifBr/KKWLAlYS4hlCkX6RopfbsdRjdHOrm8V69FoCaERQk56eThUVFRQWFmaynh/HxsbW+prk5ORat+f1DcXburm5UUBAQIP3s2zZMnrppZca/B7gXNR4EZCThPv5d1C6KGDJZOu2NfNqOKjhmjk5qAEAlQ++x7VJ3GwlL5cvX1a6SABWk5SfRFfzr5KWNNTHr73SxQErwiB8ABaqqQkJCSGtVluj1xE/Dg8Pr/U1vN6c7evaBzd9ZWdnm9TW1Lcfd3d3sQA4A/kC18W3FXnrPJQuDlhStWTv/qV6cRuTGUP5pfnk4+ajUMEAHLymhpuAOEl3x44dhnV6vV48HjJkSK2v4fXG27Nt27bVuX1t+D1dXV1N9nP27FlKTEw0az+gHPQGsNH4NMinUb1w90Bq6RFCekkv8moAoAmD73HS77Rp06h///40cOBAWrFiheiSzb2h2NSpU6lFixYip4XNmTOHhg8fTsuXL6cJEybQunXr6PDhw7RmzRrDPjMzM0WAwt205YCFcS0ML/7+/qJLOL93UFAQ+fn50ezZs0VAU1uSMICzQZKwc+G8qSvF6eJzv7HljUoXB8Bxg5rJkydTWlqa6ILNSbq9e/emrVu3GpKBOTjhHlGyoUOH0tq1a2nRokW0cOFCioqKEj2funfvbthm8+bNhqCI3XvvveKWx8JZunSpuP/uu++K/fKge9yriXtQ/fvf/27a0QM4kLpqs7JLM+hS7iVyIRfq4498GmfAwesPKfuRVwNgiWkSZs2aJZba7N69u8a6SZMmiaUuDz30kFjqw6MR80jGvADAX87n/CluW3q3Jz+dFzkrtU7bUNtx+Zc1F7en0k/T7nNXyF3rqUDJAOyPans/ATiLc1VBTUf/XkoXBWykmS6QgtzDSC9VUEz2UaWLA2A3MKGlE1PjWC3Owi/5r5G04zIrB77spcevdWfBc+T1Cb6Rdlz7lg6mbafewTeQGr9b8B0F5kJQA+DAcivy6Upp5bxrnT2rjdIGjWqichSDmo0SQc2fmXupqLyAPHXeShcJQHEIagCaQOlfkjFFCeK2lVsY+WlxUXMmbXw6UZhnK0opukzHMvbQ0LCxShcJQHEIagAcmBzUdFF5LY2aalgs2QQ1qNmttDnxUzqQth1BTT0aOg4WmrIcH4IaADUENR7tGvwaBAjqMbDZSBHUxGYfFV37A9xwUQbnhqAGHIrSzT32JL+ikBJLk52ipgZqF+rZgtr5dqX4vDN0KG0n3dqi7qEzAJwBunQDOKjY4oskkUQRrs0oQOerdHFAIdwExQ6mbVO6KACKQ00NQB0sNR+Vtea1iimKF7eopXFu/ZuNoPXxH9Cl/HOUVHiJmnu1UbpIAIpBTQ2Ag3KWJGGoe6wiXlpkxFIvr8o5v3jMGgBnhpoaAAdUWFFMCSWVE8B28Wx4kjCo0zDfPnSs8CwdSNtBt7d+WPSMchbWqgkFx4SgBuwGvpwa7mzxJZFPE6oLomCdv9LFAYV7mfXz7kruLm6UXnxNJA239+tms/cGsCcIagAckJxP07Va0xO6azsnD40bDfDpRn/kHaNjl76kPs0mmjyfGz5YsbIB2BKCGgCHzqex76YnBFm2M8yntwhqovNO0tSQv5HORWuV90GNKtgzBDUADqawPJ/iS66I+0gSBlkPrw7kr/WhnIp8OlF4nvp6dzZ5HsEIOAP0fgJwMGeyDlEF6cX4NKGuQUoXB+yE1kVLQ3x6ivtcYwPgjFBTA+Bg/szcJ277endRuihgh72gtubso8MFZ6hIX0KeGneyV6g5AmtAUKNS+MJQJ71UQaeyDoj7/ao1LwC0d29J4a4hlFyWTofyT9NNfn2VLhI0AaaFMR+anwAcCHfXLSjPJW+NB3X0wMixYIrHpxnm21vc35t/XOniANgcamocEGphnNeJqqanXl6dRA4FQG29oL7N3C6ShbPL8zAvmJ3C97h1oKYGwIGcyIwWt/2QTwN1CHcLofburcTgjPvy/1S6OAA2haAGwEGkFyfRtcKLpCEN9fLqqHRxwI7dKDdB5aEJCpwLghoAB6ul6eDXg3y0XkoXB+zYEJ9eIviNK7lC10rTlC4OgM0gpwZUR61t1XJQ0zNoiNJFATvnr/Ohnl5RdLzwLO3JO0bj6G9KFwnAJhDUQL3QpdA+FJcX0rmcyqaEHhzU5CYpXSSwczf59hVBDQ/EN0bSk8YFFfPXg+87x4e/cgAHcCb7MJVLZRTq0YLCPVsrXRxwAP29u4rB99LKs+hC7kmliwNgEwhqAByo6YlraXgsEoDrcdO40mCfHuL+/tRflC4OgE0gqAGwc3pJTyez9ov7yKcBc5ug2OH03VRaUaJ0cQCsDkENgJ27mB9LeWVZ5KH1pii/ygkLARqik0ckNdMFUnFFIR3P/EPp4gBYHYIaADt3sqrpqVvgANJpXJUuDjgQTg6+0bePuL8/9VeliwNgdQhqABxkVu6egWh6AvPdWNUEdTrrEOWUqnO4AwAZghoAO5ZZkkpXCuLIhVyoe9AgpYsDDqi5Wwi18+1GEunpYNoOpYsDYFUIagAcoOmJL0q+rgFKFwcc1JDQ0eI2Gr2gQOUQ1ADYsT8xijBYQP+QEaRzcRW1fpfzLyhdHACrQVADYKdKKoooNvuIuI+gBprC29XP8De0Pw0Jw6BeCGoA7FRs9jExinCwexhFeLVVujjg4AaHjhG3B1K3U4VUrnRxAOwnqFm1ahVFRkaSh4cHDRo0iA4ePFjv9hs2bKDOnTuL7Xv06EFbtmwxeV6SJFq8eDE1b96cPD09adSoUXT+/HmTbfj9eCRV4+X1119vTPEBHMKJql5P/TzakX/KAfJL3m9YAMzVPXAg+ej8Kbcsk2KqagAByNmDmvXr19PcuXNpyZIldPToUerVqxeNGTOGUlNTa91+3759NGXKFJoxYwYdO3aMJk6cKJZTp04ZtnnzzTfp/fffpw8//JAOHDhA3t7eYp/FxcUm+3r55ZcpKSnJsMyePbsxxwxg9zjQP5FVmU/Tz6uL0sUBFeAxjgY2GynuY8waUCuzg5p33nmHZs6cSdOnT6euXbuKQMTLy4s+/fTTWrd/7733aOzYsTRv3jzq0qULvfLKK9S3b19auXKl4ct7xYoVtGjRIrrjjjuoZ8+e9N///peuXbtGmzZtMtmXr68vhYeHGxYOfupSUlJCubm5JguAo0gsOCfGFHHXeFAXTzQ9gWUMruoFdSxjDxWVFyhdHABlg5rS0lI6cuSIaB4y7ECjEY+joyt/VVbH6423Z1wLI2+fkJBAycnJJtv4+/uLZq3q++TmpuDgYOrTpw+99dZbVF5ed7vwsmXLxH7kpVWrVuYcKoBdTGDZJaC/mJgQwBLa+HSi5p5tqExfSkfSf1O6OADKBjXp6elUUVFBYWFhJuv5MQcmteH19W0v315vn08++SStW7eOdu3aRY8++ii99tpr9Nxzz9VZ1gULFlBOTo5huXz5sjmHCmBzxjkzp1O2i3WDdKb/LgCagnMR5doazNwNaqQjB8F5PDJuonJzcxPBDdfIuLu719ie19W2HsDeXStNo/iSK2IU4T5enZUuDqjMoNBbadOl/9C53D8pvTiJQjyaK10kAGVqakJCQkir1VJKSorJen7MOS614fX1bS/fmrNPxs1T3Px08eJFcw4BwO79klPZ66m3VycK0PkqXRxQmSD3UOrkXznJ5YHUbUoXB0C5oIZrR/r160c7dvw1f4herxePhwypfXAwXm+8Pdu2bZth+7Zt24rgxXgbTurlXlB17ZMdP35c5POEhoaacwgAdq2woph+y63sbjsu4AaliwMqbNrk5Rb39mJ9dOqvorMGOK7ouIzrLs5E15hmoGnTplH//v1p4MCBoudSQUGB6A3Fpk6dSi1atBDNQmzOnDk0fPhwWr58OU2YMEHkxRw+fJjWrFljaON96qmn6NVXX6WoqCgR5Lz44osUEREhun4zThjmIGfEiBGiBxQ/fvrpp+mBBx6gwMBAy54RAAXtyjtExVIptXQLpR6eHZQuDqjUQJ/u9EnaJkotvkLJF7+hTp5tDM/lhg9WtGwANg1qJk+eTGlpaWKwPE7k7d27N23dutWQ6JuYmChqUGRDhw6ltWvXii7bCxcuFIELd9Xu3r27YRtO+OXA6JFHHqHs7GwaNmyY2CcP1sc4N4aDoaVLl4qu2hz4cFBjnGcD4Oj0kp5+ya7s9TTW/wYR8ANYg4fGnQb79KTf8o7QpqxdNN/zIaWLBGARLpKT1D1ykxZ37eaeUH5+fuTI7K06cUj7YIcrsz06d+ETejv5S/LWeNK/IxeQu8ZN6SKByhPSn0l8hySS6JWW/6Qoj9ZiPWpq1Pd9N6QBZVbL9RtzPwHYiZ9z9orbW/wGIqABq4twa0Y3+fYV9zdkIGEY1AFBDYAduFIQR6eL4klDGhrjjxm5wTbuCrqFtKShE0XnKbYIPUnB8SGoAbADO699J24HeHejENcApYsDTiLMNZiG+/UX9zdkYj4ocHwIagAUlleWTQfSKkcQRjdusLW7Am8hHWlFTeHpwjiliwPgHCMKg/2yt6Q4R7Mn+ScxF0879xbUyeOvrrUAtsA1g7f4D6Rfc6Lpm8xfaW7b+9Dzrh74vrNvqKkBUFC5vpx2J1XORo9u3KCUiYE3k6uLjs4WX6Iz2YeVLg5AoyGoAVDQ0YzfKLs0nfxcA2mIb0+liwNOKkjnT6P8Bon7P1z6FKMMg8NCUANgBwnCw5vfIX4pAyjljsCbyd3FlS7mx9DJrMpBIAEcDYIaAIUk5MVQfN4Z0rm40vDw25UuDjg5njx1tP9Qcf+HS5+htgYcEoIaAIXskLtxN7uF/NyClC4OAP0t8CZy13rS5YLzdDzjD6WLA2A2BDUACsguSafD6bvE/Vsi7la6OACCn9abRlb9PW5O/EzMRwbgSBDUACjgt+QfSC9VUAe/HtTGp6PSxQEwuLXFZPLQetPVwng6mv6b0sUBMAuCGgAbKyovoN+TfxT35V/FAPbCW+dLt7aYJO7/mPi5CL4BHAWCGgAb4uTLr+LeEaMIN/OIoN7Bw5QuEkANIyPuIS+dLyUVXaLdST8oXRyABkNQA2BD0am/0MG0HWLiyoc7vkBadOMGO+Sl86G/tX5I3P8mfiXFZh9VukgADYKgBsBGUoou09dxK8T9SUG3Up/CPPJL3m9YAOzJLc3vokHNRpGe9PRh7BJKKbqidJEArgtBDYAN8NxOa2JfphJ9MXXzbE93BA5XukgA9eIpO6ZGzaO2vl2osDyPVp5ZIG4B7BmCGgAb2HhxjRj7w1vnR0+ETSaNC/7pgX0yrj0MTj1G84PvokC3ZqKmkQPzCqlc6SIC1AnfrABWdiIzmnZc+1bcn97xeQrS+SldJACzRhp+outr5KbxoDPZh2hD/GqliwRQJwQ1AFYeZO/zc68bum/3DKochh7AkbT2iaKHOy4U93cmfWcYkgDA3iCoAbASHt/j03OvUX55DrXy7kB3RT6qdJEAGq1vyE10R+uHxf21cSsoNvuY0kUCqAH9Se1MdFyG0kUAC/nlyjqKzTkqZj5+OvgOCk5Ft1hwTHLvvHtdoyjNpxfty/+T1px5gZ7vs4ZCPVsqXTwAAwQ1AFYQn3uafrj0ibg/vdkdFOHWTOkiAVikR9RjofdQSlkGxZVcoVVnXqD5vVaKgfrAsX8sD2kfTGqA5icAC8soTqaPz74ixvcY6tOLhvv2U7pIABbjpnGlZ5pPpSCtnxhx+I0Tsym16KrSxQIQENQAWLiG5rU/H6eMkmQK8YigfzS7U/y6BVAT7sE3P+Ih8ncLpqTCi/Tan49RTPYRpYsFgKAGwFI5ByfOf0jLT86hvLIsauPWnJaGTSUvrYfSRQOwijbuEfRCr48o0qdycL73Ts2jHde+E/ObASgFQQ1AE+klPX2T8SutTFlHZVI59ffuSi+1fIxCXAOULhqAVbXOukAvh95HN/r2Ec2t6+M/oK9PzBMjaAMoAUENQBOUVBTTf86+QhuzdorHfwsYTnPDHyAPjbvSRQOwWY7NP0P/Tg8GTyAXcqHdeYfpnZNzKacUPTnB9hDUADRSdmkGLT/5FB1O30Va0opeIfeHjMMUCOB0OG9sQuCN9Hzz6eSl8aC4vFP02vHH6FL+WaWLBk7GRXKSBtDc3Fzy9/ennJwc8vNTZph6jEGjHon552nVmYWUVZom5nN6Nuxe6uLZTuliASjuWmkavZH2jZgrylXjRn9r/RDd3HwieWi9lC4aOGiXbnOu3/hJCWCGgvI8+v7ix/TGiVkioAn3bE0Leq1GQANQhcdk4n8T3QMHi9wansz1hcP30a9X1onmWgBrQk2NDaGmxnEVVxTSzmsb6ZcrX1NRRYFY1y1gAM3svFgMPCaPuAoAfyXQ/5F3jL7L2ikG62N+roE0tuV9dFP47eSmRd6ZPRmikpoaBDU2hKDG8fAvTZ68b8vl/xNdtVkrtzCaHDyG+nl1wRg0ANdRIVXQnrxjtDFzJ6WWZ4p1gVpfuiPwZrrFbyAVR9yodBGBENQ4HGsHNQhY1KVCKqf9qdvox8TPKbMkRaxr5hFBt7d+mEZWeCEZGMBM5VIF/Z53lDZm7qD08myxjkcl7hc+ljr596YOfj3JS+ejdDGd1hAENY4FQQ1cT35ZDp3POUFnc47TyaxoSiu+JtYHuIXQba2n0dDQcaTT6NDUBNAE5VI57c49Qt9n7aSM8hzDehfSUGufKBHgdBRBTg8EOXZmiEKBj9WDmlWrVtFbb71FycnJ1KtXL/rggw9o4MCBdW6/YcMGevHFF+nixYsUFRVFb7zxBo0fP97wPBdhyZIl9PHHH1N2djbdcMMNtHr1arGtLDMzk2bPnk0//vgjaTQauvvuu+m9994jH5+G/dEjqIHqckuz6HzunyKIOZfzJ10rTDB53lfjRRMDR9Ct/oPFWBwAYDk8UOWh/NN0jPLEv8HU4ismz8tBTqhHC/J1DSAfsfiTr6u/uO+r8zesQ82pbQxRY1Czfv16mjp1Kn344Yc0aNAgWrFihQhazp49S6GhoTW237dvH9100020bNkyuu2222jt2rUiqDl69Ch1795dbMOP+fkvvviC2rZtKwKgkydP0pkzZ8jDo3KY+XHjxlFSUhJ99NFHVFZWRtOnT6cBAwaI/Vn6pDQGghrL0ksVVKYvowqpjMr15VQubvlxueHWWGVuCw/9VZnjIpFEBeW5ovaFl7yybKPbbDHGTPUvUdbSLZS6erajLh7tqLd3J/LEIHoANsG1NjFF8XSmKJ5Oll411JRej5Y0FKjzo2BdAAXr/Ktu/ciz2UAKcg8lf9dgEfxwLSs4ZuBj1aCGAxkOJlauXCke6/V6atWqlahFef7552tsP3nyZCooKKCffvrJsG7w4MHUu3dvERjx20dERNAzzzxDzz77rHieCx4WFkaff/453XvvvRQTE0Ndu3alQ4cOUf/+/cU2W7duFbU9V65cEa+35ElRMqgpLM+n2OyjZO8k+T9JX+2W/68XyYGcZFuqL6HyqtsyfQmV6kuprIJveSkWXTxL9UVUXFFEpRXFVKIvFrccxNhCC6921NG/F/WWvKiLZ1vy06K6G0BpueGDKbMkleJyT4kfIPxDhH+QlOQnUG5FAeVVFIrbfH1hg/fJ40lxjY+vayD5uQWK+9wby13rRVoXLWlctIZb4/vyD6X6NGQba2rj04mCPcLIHigd1JgVupaWltKRI0dowYIFhnXcFDRq1CiKjo6u9TW8fu7cuSbrxowZQ5s2bRL3ExISRDMW70PGhefgiV/LQQ3fBgQEGAIaxtvzex84cIDuvPPOGu9bUlIiFhmfDPnkWENBXp5F9nO1MIFWnXjBIvtSEx1pSefCi450Lhoxgq+sMryqvCf/X9K4kZfOm7yrqqp9tH6imjq4OIt8Nd7ko/WmNu5h4lbg76Rionxq+JckAFiHJm4nhRCJhYgvksGVo6r59TPZjn88ZZfnUWZ5LmWW51BWRa7hfppLBWWVpFF+eY74oZVLWWIhMm1mVoMHOzxDA0JGkj3IzbV8U7183W5IHYxZQU16ejpVVFSIWhRj/Dg2NrbW13DAUtv2vF5+Xl5X3zbVm7Z0Oh0FBQUZtqmOm7NeeumlGuu5VgkAAEAtFtI/yBnk5eWJSo/6qLaRkWuTjGuIuJmMk42Dg4NtNrYIR5ccRF2+fFmxsXHsDc5JTTgnNeGc1IRzUhPOiXOcE0mSREDTkFQTs4KakJAQ0mq1lJJSOW6HjB+Hh4fX+hpeX9/28i2va968uck2nHcjb5Oammqyj/LychGk1PW+7u7uYjHGTVhK4D8stfxxWQrOSU04JzXhnNSEc1ITzon6z4n/dWpoZGb1g3Nzc6N+/frRjh07TGpA+PGQIUNqfQ2vN96ebdu2zbA993biwMR4G440OVdG3oZvuas35/PIdu7cKd6bc28AAAAAzG5+4iadadOmiaRdHpuGu3Rz7ybuYs24u3eLFi1ETgubM2cODR8+nJYvX04TJkygdevW0eHDh2nNmjXieW4Keuqpp+jVV18V49LIXbq5mmnixIlimy5dutDYsWNp5syZoscUd+meNWuWSCJuSHUUAAAAqJ/ZQQ130U5LS6PFixeLJF1uIuLu1XKib2JiouiVJBs6dKgYS2bRokW0cOFCEbhwzyd5jBr23HPPicDokUceETUyw4YNE/uUx6hhX331lQhkRo4caRh87/333yd7xs1fPKhg9WYwZ4ZzUhPOSU04JzXhnNSEc1KTu5OfE6eZJgEAAADUDWNLAwAAgCogqAEAAABVQFADAAAAqoCgBgAAAFQBQY0V/e9//xPj6Hh6elJgYKChi7qMe4pxN3cvLy8xDcS8efPEoIJqx3Nyca857s5//Phxk+dOnDhBN954o+j5xqNivvnmm6RWFy9epBkzZohhDPhvpH379qLXAs+x5qznRLZq1SqKjIwUx8z/hg4ePEjOgofD4EmDfX19xfcCf2+cPXvWZJvi4mJ64oknxAjpPj4+ojdo9UFO1er11183DAXi7Ofj6tWr9MADD4jj5u+QHj16iCFTZNwPiHsq88C2/DzPmXj+/HlSNe79BJb37bffSoGBgdLq1auls2fPSqdPn5bWr19veL68vFzq3r27NGrUKOnYsWPSli1bpJCQEGnBggWKltsWnnzySWncuHFi3kk+dllOTo4UFhYm3X///dKpU6ekr7/+WvL09JQ++ugjSY1+/vln6aGHHpJ++eUXKS4uTvrhhx+k0NBQ6ZlnnnHac8LWrVsnubm5SZ9++qn4dzNz5kwpICBASklJkZzBmDFjpM8++0x83sePH5fGjx8vtW7dWsrPzzds89hjj0mtWrWSduzYIR0+fFgaPHiwNHToUEntDh48KEVGRko9e/aU5syZ49TnIzMzU2rTpo34Djlw4IAUHx8vvksuXLhg2Ob111+X/P39pU2bNkl//vmndPvtt0tt27aVioqKJLVCUGMFZWVlUosWLaT//Oc/dW7DQYxGo5GSk5MN6zgA8vPzk0pKSiS14uPu3LmzuFhVD2r+/e9/i0DQ+Pjnz58vderUSXIWb775pvjSceZzMnDgQOmJJ54wPK6oqJAiIiKkZcuWSc4oNTVV/Fv57bffxOPs7GzJ1dVV2rBhg2GbmJgYsU10dLSkVnl5eVJUVJS0bds2afjw4YagxlnPB38PDBs2rM7n9Xq9FB4eLr311luGdXyu3N3dxY8jtULzkxUcPXpUVAvyIIF9+vQRVX/jxo2jU6dOGbaJjo4WVYXGs5OPGTNGTBFx+vRpUiOuDuZRob/88kvR5FYdn5ObbrpJTMdhfE646j0rK4ucQU5Ojph93lnPCTe98XQoXE0u439H/JjPhTPivwkm/13w+eFR1Y3PUefOnal169aqPkfcvMTN9cbH7cznY/PmzWJk/0mTJolmSr7WfPzxx4bnExISxAC5xueF50/i5lw1nxcENVYQHx8vbpcuXSpGUv7pp59ETs3NN98sJuFk/MdmHNAw+TE/pzZcK/jQQw/RY489Jv4h1sbZzkl1Fy5coA8++IAeffRRpz0n6enpVFFRUesxq/F4r4fnt+PckRtuuMEwCjufBw5yq0/Qq+ZzxNPr8I9FefodY854PuTrzOrVq8Uo/b/88gs9/vjj9OSTT9IXX3whnpeP3dn+LSGoMcPzzz8vEtTqW2JjY8UXEXvhhRdEwhpPAvrZZ5+J5zds2EDOeE74Ys1Txy9YsIDUrqHnxBjX7PH8Zvyri2uzAOTaCa7h5Yu6s7p8+bKYQ5CnyjGeOsfZ8XWmb9++9Nprr4laGp5maGbV/IjOzOy5n5zZM888I2ob6tOuXTtKSkoS97t27WpYz/Nw8HPc44nxzOTVe3TI2fr8nNrOCc+qzlWe1ecj4Vqb+++/X/y64OOu3mNBzedEdu3aNRoxYoSYJ02e6FWmlnPSUCEhIaTVams9ZjUeb314rjuu5f3999+pZcuWhvV8HriZjufJM66dUOs54ual1NRUcQGXcW0en5eVK1eKWgpnOh8yTmswvsbIkz9/99134r587HweeFsZP+bep6qldFKPGnGPFU7GMk4ULi0tFT1b5F4rcqKwcY8Ofo4ThYuLiyW1uXTpknTy5EnDwln6/OfHvcQuX75skhTL50rGvcHUnBR75coVkfx47733ih5x1TnjOeFE4VmzZpkkCnPivbMkCnOCJydKc3L0uXPnajwvJ8byvx1ZbGysahNjc3NzTb47eOnfv7/0wAMPiPvOdj5kU6ZMqZEo/NRTT0lDhgwxSRR+++23a1yb1JwojKDGSjgzn7+I+eLN/8BmzJghghruhmfcpXv06NGi2+bWrVulZs2aOUWXbpaQkFCj9xN/OXH35QcffFB0Z+WuvV5eXqrtvswBTYcOHaSRI0eK+0lJSYbFWc8J42PkL97PP/9cOnPmjPTII4+ILt3GPQXV7PHHHxfdcHfv3m3yN1FYWGjShZm7ee/cuVN0YeYLmXwxcwbGvZ+c9Xxw93adTif961//ks6fPy999dVX4rvh//7v/0y6dPO/HR4u4sSJE9Idd9yBLt3QOPzLmscb4UDG19dXjEfDFyVjFy9eFOO18LgjPEYNb8/dwZ01qGE8lgL/+uCLGgeF/I9SrXgsEj4HtS3Oek5kH3zwgbhI8Xg1XHOzf/9+yVnU9TfBfy8yvij985//FLV4fCG78847TYJhZwtqnPV8/Pjjj+LHMX838FAZa9asMXmea2tefPFF8cOIt+EfUDxumpq58P+UbgIDAAAAaCr0fgIAAABVQFADAAAAqoCgBgAAAFQBQQ0AAACoAoIaAAAAUAUENQAAAKAKCGoAAABAFRDUAAAAgCogqAEARfHknxMnTqx3m8jISFqxYgXZA55lfdOmTUoXAwBqgVm6AcBqwQrPnGyJAODQoUPk7e1N9iApKYkCAwOVLgYA1AJBDQDYvWbNmpG9CA8PV7oIAFAHND8BgNV9++231KNHD/L09KTg4GAaNWoUFRQUmGzz9ttvU/PmzcXzTzzxBJWVldXZ/BQbG0vDhg0jDw8P6tq1K23fvr1Gs9D8+fOpY8eO5OXlRe3ataMXX3zRZJ9Lly6l3r1706effkqtW7cmHx8f+uc//0kVFRX05ptviuAlNDSU/vWvf5mUE81PAPYLNTUAYPXmmilTpohA4c4776S8vDzas2cPT0Vu2GbXrl0ioOHbCxcu0OTJk0XAMXPmzBr746CDc3A4EDlw4IDY3zPPPFNjO19fX/r8888pIiKCTp48KfbF65577jnDNnFxcfTzzz/T1q1bxf177rmH4uPjRTD022+/0b59++jhhx8WQdigQYOseJYAwBIQ1ACA1YOa8vJyuuuuu6hNmzZiHdfaGOMclZUrV5JWq6XOnTvThAkTaMeOHbUGNdu2bRMByO7duw1NQVybcuutt5pst2jRIpOanmeffZbWrVtnEtTo9XpRU8PBDtf4jBgxgs6ePUtbtmwhjUZDnTp1ojfeeEMEWwhqAOwfghoAsKpevXrRyJEjRSAzZswYGj16tKgRMU627datmwhoZFxrw7UrteGgo1WrVia5LQMHDqyx3fr16+n9998XAVB+fr4IrPz8/Ey24WCHAxpZWFiYKAcHNMbrUlNTm3AGAMBWkFMDAFbFQQLXrnAzD9eGfPDBB6IGJCEhwbCNq6trjbwVrkVprOjoaLr//vtp/Pjx9NNPP9GxY8fohRdeoNLSUpPtantfS5cFAGwHQQ0AWB0HBjfccAO99NJLIsBwc3Oj77//vlH74oDo8uXLlJKSYtLl2xjnwnBTFwcy/fv3p6ioKLp06VKTjwMA7BuanwDAqjiZl/NjuNmJexPx47S0NOrSpUuj9se5M+3bt6dp06aJ5GNOFJbzZzh4YhzEJCYmihyaAQMG0P/+979GB1EA4DhQUwMAVsV5LL///rtoCuJeRRyALF++nMaNG9fo5izuUs15Mhyw/OMf/xA1Moy7eLPbb7+dnn76aZo1a5boRcU1N9ylGwDUzUUy7lcJAOCA9u7dK8at4e7gXIsDAM4JQQ0AOBxuSuLB8riZiQOZOXPmiN5Uf/zxh9JFAwAFIacGABwO59HwiMGcNxMSEiIGx+MmLQBwbqipAQAAAFVAojAAAACoAoIaAAAAUAUENQAAAKAKCGoAAABAFRDUAAAAgCogqAEAAABVQFADAAAAqoCgBgAAAEgN/h827tjYCFCJGgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the distribution function\n", "\n", "results_df = R[O[-1]]['results_df']\n", "results = R[O[-1]]['results']\n", "Ishigami_dist = results.raw_data['output_distributions']['Ishigami']\n", "\n", "plt.figure()\n", "plt.hist(results_df.Ishigami[0], density=True, bins=50, label='histogram of raw samples', alpha=0.25)\n", "if hasattr(Ishigami_dist, 'samples'):\n", " plt.hist(Ishigami_dist.samples[0], density=True, bins=50, label='histogram of kde samples', alpha=0.25)\n", "t1 = Ishigami_dist[0]\n", "plt.plot(np.linspace(t1.lower, t1.upper), t1.pdf(np.linspace(t1.lower, t1.upper)), label='PDF')\n", "plt.legend(loc=0)\n", "plt.xlabel('Ishigami')\n", "plt.savefig('Ishigami_distribution_function.png')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T18:01:30.914454Z", "start_time": "2021-12-10T18:01:30.761815Z" }, "execution": { "iopub.execute_input": "2025-07-18T12:14:07.505180Z", "iopub.status.busy": "2025-07-18T12:14:07.505101Z", "iopub.status.idle": "2025-07-18T12:14:07.509078Z", "shell.execute_reply": "2025-07-18T12:14:07.508811Z", "shell.execute_reply.started": "2025-07-18T12:14:07.505171Z" } }, "outputs": [ { "data": { "text/plain": [ "0 -52.525277\n", "1 -40.006931\n", "2 -29.296497\n", "3 -19.405615\n", "4 -9.933955\n", " ... \n", "14636 9.999347\n", "14637 19.471007\n", "14638 29.361888\n", "14639 40.072323\n", "14640 52.590669\n", "Name: 0, Length: 14641, dtype: float64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_df.Ishigami[0]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:03.625057Z", "start_time": "2021-12-10T08:47:02.949261Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:07.509854Z", "iopub.status.busy": "2025-07-18T12:14:07.509782Z", "iopub.status.idle": "2025-07-18T12:14:08.170409Z", "shell.execute_reply": "2025-07-18T12:14:08.170083Z", "shell.execute_reply.started": "2025-07-18T12:14:07.509846Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/6f/rn14629n60j16dc99dtk7bs4000ctx/T/ipykernel_79781/2720742683.py:16: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", " plt.legend(loc=0)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT6JJREFUeJzt3QlYlFX7BvCbGXYEFNkVxD0Rd0XRyiX3cikzW9yyzNQys8WsT/1sz7Ksv6apmVuWVmq5pH3uaSgqboQbioLI5sKqrMP/OgeH2CTQGd6Zd+7fdc3FzDvj8Cjl3J7znHOsCgoKCkBERERkgTRKF0BERESkFAYhIiIislgMQkRERGSxGISIiIjIYjEIERERkcViECIiIiKLxSBEREREFsta6QJMmU6nw5UrV+Ds7AwrKyulyyEiIqJKEFskpqenw9fXFxpNxWM+DEIVECHIz89P6TKIiIjoLsTGxqJu3boVvoZBqAJiJEj/B+ni4qJ0OURERFQJaWlpciBD/zleEQahCuinw0QIYhAiIiIyL5Vpa2GzNBEREVksBiEiIiKyWAxCREREZLHYI0REREQmJz8/H7m5uXd83sbGBlqt9p6/D4MQERERmdQeQAkJCUhJSfnX19asWRPe3t73tNcfgxARERGZDH0I8vT0hKOjY7khR4SlmzdvIikpST728fG56+/HIEREREQmMx2mD0G1a9eu8LUODg7yqwhD4vV3O03GZmkiIiIyCfqeIDESVBn611XUS/RvGISIiIjIpFS258cQ54BaRBB69NFHUatWLTz++OMwBfm6AoSev4Zfj8XJr+IxERERVT+L6BF65ZVXMGbMGCxfvlzpUrA1Ih6zNkYiPjWr6JqPqz1mDghE36C7b/YiIiKiqrOIEaFu3bpV6uC16ghB41eFlwhBQkJqlrwuniciIqLqY/JBaO/evRgwYAB8fX3lXOCGDRvKvGb+/PkICAiAvb09OnbsiLCwMJgaMf0lRoLKmwTTXxPPc5qMiIgsXUFBgUFfZ9ZBKDMzE61atZJhpzxr1qzBlClTMHPmTISHh8vX9unTp2hvAVMRFn29zEhQceJHKZ4XryMiIrJENjY28qvYI6gy9K/T/zpV9gj169dP3u7k888/x9ixY/Hss8/KxwsXLsTmzZuxdOlSvPXWW1X6XtnZ2fKml5aWBkNJSs8y6OuIiIjURqvVyt2i9YMZldlQUbz+Xo7aMPkgVJGcnBwcOXIE06ZNK7qm0WjQs2dPhIaGVvn9PvroI8yaNQvG4Olsb9DXERERqZG3t7f8WpmZHf0RG/fCrIPQ1atX5S6UXl5eJa6Lx6dPny56LILR8ePH5TRb3bp18dNPPyEkJKTM+4lAJabZio8I+fn5GaTW4PpucnWYaIwub0ZT5F1vV3v5OiIiIktlZWUlj8wQu0Xz0FUD2b59e6VeZ2dnJ2/GoNVYySXyYnWYCD3lhSHxvHgdERGRpdNqtQYJOmbfLF0Rd3d3+YeUmJhY4rp4fK9DZcYg9glaMLytHPkp7bkH6nMfISIiompm1kHI1tYW7dq1w44dO4qu6XQ6+bi8qa/KEivUAgMD0aFDBxiaCDv7pvbAD2M74csnW2NI2zry+l9R1wyyDJCIiIhUNDWWkZGBqKioosfR0dE4duwY3Nzc4O/vL3t6Ro0ahfbt2yM4OBhz586VvUD6VWR3Y+LEifImeoRcXV1haGL6K6Rh4am6Dzb2wO8RCYiMT8Pus8no3tTT4N+PiIiIzDQIHT58GN27dy96rG9mFuFn2bJlGDZsGJKTkzFjxgwkJCSgdevW2Lp1a5kGalNVy8kWz3T0x+I/o/H1rigGISIiompkVcD5mDvSjwilpqbCxcXFaN8nMS0LD3yyCzn5OqwdF8KVY0RERNX0+W3WPUJq4eVijyHt6sr7X+/+ZxqQiIiIjItBqJqbpe/kxa4NIFbO7z6TjIi41Gr7vkRERJaMQagcolE6MjIShw4dqrbvWa+2Ewa08pX3F+w+X23fl4iIyJIxCJmQ8d0ayq9bIuJxITlD6XKIiIhUj0HIhNzn7YKezTwh2tcX7uGoEBERkbExCJmYCd0bya/rwuMQl3JL6XKIiIhUjUHIxLT1r4WQBrWRpyvA4r0XlC6HiIhI1RiETGTVWHETuhf2Cv14KAbXMrIVqYGIiMgSMAiZyKqx4u5v5I6WdV2RlavDd/svKlIDERGRJWAQMkFWVlaY0K2wV2h56EWkZ+UqXRIREZEqMQiZqN6BXmjkWQPpWXlYdSBG6XKIiIhUiUHIRGk0VhjftbBX6Nt9F5CVm690SURERKrDIGTCBrb2RZ2aDriakYO1h2OVLoeIiEh1GIRMmI1WI88gE77ZcwG5+TqlSyIiIlIVBiETXD5f3ND2fnCvYSs3V/zt2BWlyyEiIlIVBiETXD5fnL2NFs/dXzgq9PXuKOh0BUqXREREpBoMQmZgeCd/ONtb43xyJv6ITFC6HCIiItVgEDIDzvY2GN05QN7/evd5FIhTWYmIiOieMQiZCRGE7G00OHE5FfuiripdDhERkSowCJmJ2jXs8FSwv7w/f1eU0uUQERGpAoOQGRn7QAPYaK1w4MJ1HLl0Q+lyiIiIzB6DkBnxremAR9vUkfcX7OaoEBER0b1iEDLxfYRKe7FrQ1hZAdtPJeFUfJrS5RAREZk1BiET30eotAYeNdC/hY+8v2D3eaXLISIiMmsMQmZoQrfCw1g3nbiCS9cylS6HiIjIbDEImaHmvq7o1tQDYpPphXsuKF0OERGR2WIQMlMTuzeSX385chkJqVlKl0NERGSWGITMVIcANwQHuCEnX4clf3JUiIiI6G4wCJmxCd0Le4VWh8XgRmaO0uUQERGZHQYhM9a1iQea+7rgZk4+lv11UelyiIiIzA6DkBmzsrLChG6FvUIiCGVk5yldEhERkVlhEDKzDRVL6xvkjQbuTki9lYsfDsYoXQ4REZFZYRAysw0VS9NqrORu08LiPy8gKzdf6ZKIiIjMBoOQCgxuUwc+rvZISs/GL+GXlS6HiIjIbDAIqYCttQYvPNhA3l+45zzy8nVKl0RERGQWGIRU4skO/nBzskXs9VvYfDJe6XKIiIjMAoOQSjjYajGmS4C8//Wu89CJ8zeIiIioQgxCKjIiJAA17KxxJjEdO04nKV0OERGRyWMQUhFXBxuMCKkn78/fFYWCAo4KERERVYRBSGXGdKkPO2sNjsWmIPTCNaXLISIiMmkMQirj4WyHYR38inqFiIiI6M4YhFRILKW31lhhX9RVHI9NUbocIiIik8UgpEJ1azliUOs68v7Xu6OULoeIiMhkMQip1PhuDWBlBWz7OxHnEtOVLoeIiMgkMQiZ+aGrd9LI0xl9Ar3l/QW72StERERUHqsCrrG+o7S0NLi6uiI1NRUuLi4wNycup2DgvP3yYNbdr3eDn5uj0iURERGZ1Oc3R4RUrGXdmnigsTvydQVYtPeC0uUQERGZHAYhlZvQrZH8uuZwLJLSs5Quh4iIyKQwCKlcpwZuaOtfEzl5Ony7L1rpcoiIiEwKg5DKWVlZYWL3wlGh7w/EIPVmrtIlERERqSMIZWVxqsUc9LjPE/d5OyMjOw8rQi8qXQ4REZH5BiGdTof33nsPderUQY0aNXDhQmET7vTp0/Htt98ao0YywKjQ+G4N5f2l+6NxMydP6ZKIiIjMMwi9//77WLZsGWbPng1bW9ui60FBQViyZImh6yMDebiFD+rVdsSNm7n4MSxW6XKIiIjMMwitWLECixYtwjPPPAOtVlt0vVWrVjh9+rSh6yMDsdZq8GLXwlEhsZReNE8TERFZuioHobi4ODRqVNh8W3rKLDeXjbim7LG2deDlYoeEtCysP3pZ6XKIiIjMLwiJoyf+/PPPMtd//vlntGnTxlB1kRHYWWsx9oEG8v7CPRfkRotERESWzLqqv2DGjBkYNWqUHBkSo0Dr1q3DmTNn5JTZpk2bjFMlGcxTwf6YtysK0Vcz8XtEPB5p6at0SUREROYzIjRo0CBs3LgR27dvh5OTkwxGp06dktd69eplnCrJYJzsrPFs5/ry/vxd58Gj5oiIyJLx0FUVH7p6Jyk3c9Dl453IzMnHd6M7oPt9nkqXREREZB6HrjZo0ADXrl0rcz0lJUU+R6avpqMtnulUT97/eneU0uUQEREppspB6OLFi8jPzy9zPTs7W/YNkXl4/v76sNVqcOjiDYRFX1e6HCIiItNulv7tt9+K7m/btk0OOemJYLRjxw4EBAQYvkIyCk8Xezzevi5WH4zB/F1RCK4frHRJREREphuEBg8eXHRcg1g1VpyNjY0MQXPmzIEazJ8/X97KG/lSkxcfbIgfw2Kw52wyIuJSEVTnn3BLRERkCarcLF2/fn0cOnQI7u7uUDu1NksXN/nHo9hw7Io8gmP+M22VLoeIiMi0m6Wjo6MtIgRZivHdCncJ3xIRj/PJGUqXQ0REZNobKgqZmZnYs2cPYmJikJOTU+K5SZMmGao2qgZNvZ3Rs5kXtp9KxMLd5/Hp0FZKl0RERGS6Qejo0aPo378/bt68KQORm5sbrl69CkdHR3h6ejIImaEJ3RvKILT+aBwm92qCOjUdlC6JiIioWlR5auzVV1/FgAEDcOPGDTg4OODAgQO4dOkS2rVrh88++8w4VZJRtfWvhc4NayNPV4DFey8oXQ4REZHpBqFjx47htddeg0ajgVarlfsH+fn5Yfbs2Xj77beNUyUZ3cTuhb1CPx6KwdWMbKXLISIiMs0gJJbKixAkiKkw0SckiO7s2NhYw1dI1UKMCLWq64qsXB2+2x+tdDlERESmGYTatGkjl88LXbt2lYeufv/995g8eTKCgoKMUSNVA7E/1ITbo0IrQi8hLStX6ZKoivJ1BQg9fw2/HouTX8VjIiIycLP0hx9+iPT0dHn/gw8+wMiRIzF+/Hg0btwYS5curerbkQnp1cwLjT1r4FxSBlYduIQJt5fWk+nbGhGPWRsjEZ+aVXTNx9UeMwcEom+Qj6K1ERGZMp4+b+EbKpa2Lvwypqw9Dvcattg3tQfsbbRKl0SVCEHjV4Wj9P/IVre/LhjelmGIiCxKmjE3VCR1G9DKF3VrOeBqRg7WHmbPl6kT019iJKi8f83or4nnOU1GRGSgqTHRIyT6SUoT1+zt7dGoUSOMHj0a3bt3r+pbkwmw0WowrmtDTN8QgW/2XMBTwf7yGilDBJhrGdlISs9GYlqW/JqUlo3E9Cz5NTo5o8R0WGki/ojnw6KvI6Rh7WqtnYhIlUGob9++WLBgAVq0aIHg4MITy0Xz9IkTJ2QAioyMRM+ePbFu3ToMGjTIGDWTkQ1tVxdfbj+HuJRb+PXYFTzeri7UHjZEUEhKz4Knsz2C67tBqykb9g0pL18nR92Kwk16FhLTspF8O+Dog47YysAQgzni/YmIyABBSOwiLfYRmj59eonr77//vtxY8Y8//sDMmTPx3nvvMQiZKdEX9PwD9fHx76exYHcUHmtTBxojBwO1NBnn5OmQLEZwikZvyo7iiMfXMrNR2e488Udfu4YdvFzsZFDzdLaDp0vh15SbOfjsj7P/+h7i1xERkQGapUXz0ZEjR+QUWHFRUVFyd2nRmHT69Gl06NChaHWZubLEZmm99KxcdPl4J9Ky8rBQpc22VWkyzs7LLwoxSaVGcYpfu55Z8uy9iohRJ48aItTYlQg3Xre/ivAiwo+bky2s7zA9KUaz7v9kJxJSs8rtExJqOdrg8H96GX2Ui4jIHD+/qzwiJPqA/vrrrzJBSFwTzwk6na7oPpknZ3sbjO4cgK92RmH+rvPo09y73N4wNTcZv/LjMfi7nUFyRg5SblZ+XyUbbWHA8XCxh5cMOHbwEiM5+hGd219FwLnXcCJ+vRi9EoFOvFN5v5/0rDwcvHANnRu539P3IiJSoyoHoZdffhkvvviiHBUSoz76HqElS5YUHbGxbds2tG7d2vDVUrUa3aU+Fv8ZjZNxqfjz3FU82MQDaiF6gipqMhay83Q4l5RZ9NhWq4GHHLH5Z7RGjOJ4lBjFsUMtR9tqnUoUo1Zi9Kq8KT5Rz/HLqXh+xWF8/3xHtPGvVW11ERGpdh8hsZP0vHnzcObMGfm4adOmMiA9/fTT8vGtW7eKVpGZM0ueGtN7d2Mklu6PRqcGbvjxhRCYu0vXMrHlZAJWh11C7PVb//r6Cd0aYlDrOjL0uDrYmPSoWHlN33k6HZ5bdhj7oq7K+teOC0FTb2elSyUiMpnPb26oWAEGIbH0+hYenL0LufkF+GV8CNrVc4O5ib4qwk+8vP19Ja1Kv/aHsZ3Mftl5ZnYehn97EEdjUuTo1c8vhqBebSelyyIiMs8eIT0xNXbq1Cl5v3nz5nJ/IVIfH1cHDGlbFz8eisXXu87j29HmEYTOJ2dgy4l4bIlIwKn4tBI9NSENaqNvkDe+2nEOyenZ5fbViHEfb9fCURVz52RnjWWjgzFsUShOJ6TjmSUH8fOLneXvj4jI0lU5CCUlJeHJJ5/E7t27UbNmTXktJSVFbqD4448/wsNDPX0kVEhssCh2md5xOkmGimY+pjk6FpWUjs0nEuTIz5nEf1YsWmusZKNw/yBv9G7uLZuUBXGMSHlNxvrJL9GErJaVVq6ONljxXDCeWBiKi9duyhEiMU2m/7MgIrJUVZ4aGzZsGC5cuIAVK1agWbNm8prYRHHUqFFyJdkPP/wAteDU2D9eWh2OTSfiMbCVL756yjRG/8R/umcTM4qmvcRhscXDz/2NRfjxQa9AL9S6wwe+pR1WevnGTQxdGCp/vy3quGL12I5yhSARkZoYtUdIvPH27duLVozphYWFoXfv3nJ0SC0YhP4ReSUN/b/6U27ut/O1bghwV6bHRPznKqZ39OHnfHJmiWXrDzT2QP8WPujVzEuOgpjqztJKikrKwBPfhMo9j8TvdcWYYB6uS0SqYtQeIbFHkI1N2Q8YcU08Z2o2bdokd8IWtU2dOhXPP/+80iWZpUBfF/S4zxM7Tyfhm73n8dFjLas1/Igm598jRPhJkM3PxZe0i2X9/Vt4o2egF1zuYnRD9g2ZeUN0VTTyrCHDz1OLDsgAOH7VEXwzoj1srXmmHBFZniqPCIljM8Soj5gC8/X1ldfi4uLwzDPPoFatWli/fj1MRV5eHgIDA7Fr1y6ZDMXO12Ljx9q1K/ehxxGhkg5fvI7HF4bK8LH3ze5GbbYV/1lGxKVh88l4GYAuXbtZ9Jz4wO7WxAMPt/SR4YxTO3dHhKCRSw8iK1eHR1r64Msn26h6JIyILEeaMUeExP5BAwcOREBAAPz8/OS12NhYBAUFYdWqVTAlYrpOrGirU6eOfNyvXz95FtpTTz2ldGlmqX2Am5xKER+gS/68gP88Emjw8HPicmrhtFdEfIl9fuysNeje1BP9b4efGnZ3veCRbhM/y4XD22HsisOy/0sEyg8fDTLpvZKIiAytyp8mIvyEh4fLPiFxppggmqbFifOGtnfvXnz66adyqX58fLwcbRo8eHCJ18yfP1++JiEhAa1atcL//d//ITg4WD535cqVohAkiPti9Iru3sTujRAWHYbvD8bI+3dqQq5K+Dkam4LfZc9PgjzxXs/BRitDT78W3jIEiWXgZFjdmnpi7rA2ePmHcPwQFgMXe2u81e8+hiEishhV+mTJzc2Fg4MDjh07hl69esmbMWVmZspwM2bMGDz22GNlnl+zZg2mTJmChQsXomPHjpg7dy769Okjd7z29PQ0am2W6sHG7giq4yKnrb776yKm9GpS5ffQ6UT4uSGXuotVW1eKrdhytC0MPw+38EHXph5wtGX4MTYxxZiR3QJTfzmJb/ZegIuDjQy5RESWoEqfMqIh2t/fH/n5+agOYipL3O7k888/x9ixY/Hss8/KxyIQbd68GUuXLsVbb70le5iKjwCJ+/rRovJkZ2fLW/E5RipJjBRM6NYIE74Px7L90WjtV1OeVP9vq61E+Dl86Yac9toakYCEtH/Cj5OtFg8185Krvbo19eAKJgUM6+AvD2d9f/MpfLrtjBwZGhESoHRZRERGV+V/br/zzjvycNWVK1fCzU25XXdzcnLklNm0adOKrmk0GjlFFxoaKh+L0BMRESEDkGia+v333zF9+vQ7vudHH32EWbNmVUv95kycRC/O3kpMy8aYZYfuuP+OWJZ+6OJ1Oe31e0QCktL/CZnOdtZylVe/IG+56ovhR3nPP9AAaVl5csft6b/+jRr21ni0TV2lyyIiMqq7apaOioqSoy316tWDk1PJ/WRE/1B1uHr1qhyZ8vLyKnFdPNb3LllbW2POnDly12uxfP7NN9+scMWYCFViqq34iJC+IZz+8b/IBBmCSktIzZI7Nb/SszGuZmRja0Si/KrnbG8tNzcU015is0M7a4YfU/Nqz8ZIu5WLZX9dxOs/nUANOxv5MyMiUqsqB6HSzcqmTqxwE7fKsLOzkze6MzHKI3ZiLo9+H4a5288VXRNTLOJYCxF+OjeqzfBjBlOfMx4JlNNkv4RfxsTV4Vg2uoM8ooSICJYehMS+POIvStG8XLeuskPm7u7u0Gq1SExMLHFdPPb29lasLrUTS+eLH0dxJ92beGBUlwB0bujOjfrMjEZjhU+GtEBGdi62/Z2I51ccxvfPd0Qb/1pKl0ZEZHBV+oQSU01iqboIREqztbWVGyTu2LGj6JqY/hKPQ0JC7um9xZJ8sRFj6WNECPIYisoY3LaOXJrNEGSerLUaeabcA43dcTMnH6O/O4TTCVw8QETqU+VPqR49emDPnj2oDhkZGXKpvrgJ0dHR8n5MTIx8LPp5Fi9ejOXLl+PUqVMYP368XHKvX0V2tyZOnCgPkj106J9GYCokVocZ8nVkusQ05jcj2qGtf02k3srFiG/DcLHY8SZERBbZIySWs4ul6SdPnpQjMqWbpSvbj1MZhw8flo3OevpGZnHS/bJlyzBs2DAkJydjxowZckPF1q1bY+vWrWUaqMlwxBJ5sTpMNEaXdzaLWDwvjt4QryPzJ/Zx+m50MIYtCpWH3T6z5CB+Hh8CH1cHpUsjIlLmrDGxRP2Ob2ZlVW17DFUHnjVWPrEJolgdJhT/j0e/g9CC4W2LltCTOiSnZ2Powr9w8dpNNPRwwtpxIahdgwsLiMj8P7+rPDUm+nDudFNTCKI7EyFHhJ3Sh66KxwxB6uThbIdVz3eUo4HnkzMx6rswpGXlKl0WEVH1jwhZEo4I/ftSerGKTDRQ/9vO0qQOUUkZGPZNKK5l5iA4wA3LxwTDwZZbIhCR+X5+VzkIvfvuuxU+L/p1zJ1YNSZuYoTr7NmzDEJExUTEpeKpRQeQnp0nj0RZNKI9VwcSkeUEoTZt2pQ5iFWs5hJL6xs2bFhtO0tXB44IEZVPHJ0y4tuDyMrV4ZGWPvjyyTYcDSQis/z8rvKqsaNHj5b7DUePHo1HH320qm9HRGaoQ4AbvhnRHs8vP4RNJ+Ll8SkfPtpCLpggIjInBhnPFmlLHFZa0YGmRKQuXZt4yJEgMRD0Q1gsPvr9NNhySETmxmAT+2L4SdyIyHL0b+GDjx9rKe8v2nsBX+8+r3RJRERVUuWpsa+++qrEY/EvwPj4eKxcuVJutqgGxZuliahiT3Twk43T722KxKfbzshpspEhAUqXRURUKVVulq5fv36ZDRY9PDzk0RvTpk2Ds7Mz1ILN0kSV98X/zuLLHecK7w9rhUfbKHswMxFZrjRjNkuLFWJERKVN7tlYbrL43f6LeP2nE3CytUbv5t5Kl0VEZNweIZG6NmzYIA89JSLLJVaMTX84EI+3qys323xp9VHsj7qqdFlERIYNQk888QTmzZsn79+6dQvt27eX11q2bIlffvmlqm9HRCqi0Vjh48daoG9zb+Tk6zB2xWEcjbmhdFlERIYLQnv37sUDDzwg769fv142S6ekpMgm6vfff7+qb0dEKmOt1eDLp1rjgcbuuJmTj9HfHcLphDSlyyIiMkwQEo1Hbm5u8v7WrVsxZMgQODo64uGHH8a5c4WNkkRk2eystfhmRDu0q1cLqbdyMeLbMFy8mql0WURE9x6E/Pz8EBoaiszMTBmEevfuLa/fuHED9vYlTyM3V2LpfGBgIDp06KB0KURmy9HWGktHd0AzHxckp2fjmSUHEZ96S+myiIjuLQhNnjwZzzzzDOrWrQtfX19069ataMqsRYsWUIOJEyciMjIShw4dUroUIrPm6mCDFWOCUd/dCXEptzB8yUFcy8hWuiwiorvfR0g4cuQIYmJi0KtXL9SoUUNe27x5M2rWrIkuXbpALbiPEJFhiBA0dMFfuJKahaA6Llg9thNc7G2ULouIVMqop89bEgYhIsM5n5yBJxaG4lpmDoID3LB8TDAcbLVKl0VEFv75bbCzxoiIKtLQowZWPBcsj+AIu3gd478/gpw8ndJlEZGFYxAiomrT3NcV343uAAcbLXafScara4/JzReJiJTCIERE1ap9gJtcWm+jtcLmE/F4Z/1JuR+ZGomQF3r+Gn49Fie/MvQRmZ4qnzVGRHSvHmziga+ebIOJq8Px46FYOV32dv9m8pgOtdgaEY9ZGyMRn5pVdM3H1R4zBwSib5CPorUR0V2MCM2ePVseqaG3f/9+ZGf/sww2PT0dEyZMgBpwHyEi4+vXwgcfD2kp7y/+Mxrzd0VBTSFo/KrwEiFISEjNktfF80RkGiq9akyr1SI+Ph6enp7ysejCPnbsGBo0aCAfJyYmyn2F8vPzoRZcNUZkfEv3RePdTZHy/qyBzTG8Uz2ERV9HUnoWPJ3tEVzfDVqN+YwUiemv+z/ZWSYE6YnfiberPfZN7WFWvy8itX5+V3pqrHReUuucPhFVrzH310daVi7mbj+Hmb/9jc//d1Yey2GK00ni773sPB3Ss/KQnpUrv2ZkF95Pk9fycOpK2h1DkHwPQD4vwl5Iw9rVWj8RlcUeISJS3CsPNcaJy6nYeTqpRAgqPp20YHjbewpDIsRk5uQXBZjiYUZ/vzDU5MlgJkOOuJ5d8jW5+Yb5R6AY8SIi5TEIEZHixGKqyCvln1AvYoeYQBKjRfd5uyAz53ZAKRNSigebf0KNPthkZufJ72MoznbWssm7hr34aiPvi6/i+4hA92/EtB8RmVkQWrJkSdGRGnl5eVi2bBnc3d2LmqWJiO6GmCZKSKt4OikxLRvdPtt9z9/LWmNVFFpkkJGBxgYu9uUHG33gKXq9uNlaQ3OH/h59j5AYySqooEdI9D4RkRkFIX9/fyxevLjosbe3N1auXFnmNURExpomEnsP1XS0LSekFD4uDDXW8hyzsqHGGs52NrC30Rh1mb5ogBY9TWI6T3yX8sKQeJ6N0kRmFoQuXrxo3EqIyGJVdppoxZiOZtFgLHqZRE9T6X2EhDf6NDWJxm8iKsQeISJSnJgmEqvD1DSdJMJOr0Dvoq0Afgm/jL1nr+L3iASM69qQI0JE5rah4s6dO+Umg2JtfmlinX7z5s2xd+9eQ9dHRBZAP50klI4HVmY8nSTqFSNYg1rXwZyhreVU3sm4VKw9HKt0aURU1SA0d+5cjB07ttyNicSmRePGjcMXX3wBNeDO0kTKTSeJkZ/ixON7XTpvCjyc7fBqryby/uytp5FyM0fpkoioKjtL16tXD1u3bkWzZs3Kff706dPo3bs3YmJioBbcWZqo+olVV+a8s3RF8vJ1ePirfTiTmI4RnerhvcFBSpdEpEpV+fyu9IiQOELDxsbmjs9bW1sjOTm5apUSEVUwnSS+qiUECdZaDWYNai7vf3/wEiLiUpUuicjiVToI1alTBxEREXd8/sSJE/DxMe+hayIiY+vUoDYGtvKVmzvO+DUCOkPu8khExgtC/fv3x/Tp05GVVXa/D3Eq/cyZM/HII49UvQIiIgvzdv9mcLTVIjwmBeuPxildDpFFq3SPkJgaa9u2rTyF/qWXXkLTpk2LeoNEc7E4dT48PBxeXl5QC/YIEZGxLNxzHh//fhruNeyw8/WuchNIIqr+z+9KByHh0qVLGD9+PLZt21Z0+rzYobVPnz4yDNWvXx9qwiBERMaSk6dD37l7ceFqJp67vz6mP1K4fQARmXAQ0rtx4waioqJkGGrcuDFq1aoFNWIQIiJj2ns2GSOXhsmG8C2THkBTb2elSyJSBaOsGtMfsyHOG/vhhx/g4OCA4OBg1YYgIiJje7CJB/o295ZbBsz8LaJopJ2ITPCIjV27dslmaNEYLX+htTWWLl2K4cOHG7M+IiJV+88jzbDrTBIOXLiOTSfiMaCVr9IlEVmUSo8IiRVjvXr1QlxcHK5duyZ3mX7zzTeNWx0RkcrVreWIid0byfsfbD6FzOw8pUsisiiVDkJiD6EPP/xQ7hUkpsM+/fRTJCUlyVBERER374UHG8DfzREJaVmYtytK6XKILIqmKo1H7u7uRY8dHR1ln5BoRFIbnjVGRNXJ3kaLGbdXjS358wLOJ2coXRKRxaj0qjGNRoPly5fLLmy9p556Sh7GWnzvoIEDB0ItuGqMiKqL+Kt4zLJD2HUmGQ80dseKMcFyexIiMpHl8yII/RvxP63YWFEtGISIqDpdvJqJ3l/sRU6+Dt+MaIc+zb2VLonILBll+bxOp/vXm5pCEBFRdQtwd5L9QsK7GyORlcu/U4mMrUr7CBERkXFN6N4Qvq72iEu5hQW7zytdDpHqMQgREZkQR1tr/Od24/SCPecRc+2m0iURqRqDEBGRiekX5I0ujWrL88je3RSpdDlEqsYgRERkYsTCk1kDm8NaY4XtpxKx63SS0iURqRaDEBGRCWrk6Ywx99eX92dt/BvZeWycJjKZIJSSkoIlS5Zg2rRpuH79urwWHh4uj98gIiLDeLlHI3g62+HitZtY8me00uUQqVKVg9CJEyfQpEkTfPLJJ/jss89kKBLWrVsngxERERmGs70N3u7fTN6ftzNKriQjIoWD0JQpUzB69GicO3cO9vb2Rdf79++PvXv3Grg8IiLLNqi1L4ID3HArNx8fbj6ldDlEqlPlIHTo0CGMGzeuzPU6deogISHBUHUREZG+cXpQc2isgM0n47E/6qrSJRFZdhCys7OTW1eXdvbsWXh4eBiqLiIiuq2ZjwtGhgTI+zN/+xu5+TqlSyKy3CAkDlV99913kZubW/SvlZiYGEydOhVDhgwxRo1ERBbv1V5NUNvJFlFJGVj+10WlyyGy3CA0Z84cZGRkwNPTE7du3ULXrl3RqFEjODs744MPPjBOlUREFs7VwQZT+94n78/dfg5JaVlKl0SkCpU+fb60ffv2yRVkIhS1bdsWPXv2hNrw9HkiMiU6XQEeW/AXjsWm4NE2dfDFsNZKl0Rk9p/fdx2ELAGDEBGZmhOXUzBo/n6Iv7nXjgtBcH03pUsiMuvPb+u7+QY7duyQt6SkJOh0JZv2li5dCnM3f/58ecvP506uRGRaWtatiSc7+OOHsBjM+DUCm16+H9ZaHhJAdLeq/H/PrFmz0Lt3bxmErl69ihs3bpS4qcHEiRMRGRkptwogIjI1b/RpKnuGTiekY3VYjNLlEJm1Kk+N+fj4YPbs2RgxYgTUjlNjRGSqVh64hOkbIuBib41dr3dD7Rp2SpdEZJaf31UeEcrJyUHnzp3vpT4iIrpHTwf7I9DHBWlZeZi99YzS5RCZrSoHoeeffx6rV682TjVERFQpWo0V3hvcXN5fczhWriQjoqqzruz5YnqiOXrRokXYvn07WrZsCRsbmxKv/fzzz++iDCIiqqp29dwwpG1d/BJ+WTZOb5jQBRpxFgcRGTYIHT16tMTj1q0L966IiIio/HciIiKDm9qvKf74OwEnLqdi7eFYPBnsr3RJRGaF+whVgM3SRGQOvt0Xjfc2RaKWo41snK7paKt0SUTqbZYeM2YM0tPTy1zPzMyUzxERUfUaGVIPTbxq4MbNXMz546zS5RCZlSoHoeXLl8szxkoT11asWGGouoiIqJJstBrMGhgk739/8BIi4lKVLolIfUFIDDOJISYxkyZGhMRj/U1spLhlyxZ5ECsREVW/kIa1MaCVL3QFwMzf/pZ/VxPRv6v0ERs1a9aElZWVvDVp0qTM8+K62HWaiIiU8Xb/+7DjVCKOXLqB9Ufj8FjbukqXRKSeILRr1y75L4wePXrgl19+gZvbPwf92draol69evD19TVWnURE9C98XB3wco/G+GTraXy45TR6BnrBxb7kFidEdJdBqGvXrvJrdHQ0/P395QgQERGZljH3B+Cnw7G4cDUTX24/h+mPBCpdEpG6mqXFyA9DEBGRabKz1mLmwMIdp5f9dRFnE8uu8iWiewhCRERk2ro28UCf5l7I1xVg5q9snCaqCIMQEZEK/efhQNhZaxB64Ro2n4xXuhwidQQh8a+KmJgYZGVlGa8iIiK6Z35ujpjQrZG8//6mU8jMzlO6JCJ1BKFGjRohNjbWeBUREZFBjOvaAH5uDkhIy8K8XVFKl0Nk/kFIo9GgcePGuHbtmvEqIiIig7C30WLGI4WN00v+vIALyRlKl0Rk/j1CH3/8Md544w2ePE9EZAZ6NvNE96YeyM0vwH83RrJxmuheT5+vVasWbt68iby8PLmRooODQ4nnr1+/DrXg6fNEpAbRVzPR54u9yMnXYdGIdujd3FvpkohM5vO70hsq6s2dO/deaiMiompW390JYx+sj/m7zuPdTZF4sImHnDYjorsYEbIkHBEiIrW4mZOHh+bsQXxqFl55qDFe7VX2zEgitTDqiJCQn5+PDRs24NSpU/Jx8+bNMXDgQGi1/BcGEZEpcrS1lnsLTVwdjgV7zmNI27rwr+2odFlE5tcsHRUVhWbNmmHkyJFYt26dvA0fPlyGofPnz8MUPfroo7K36fHHH1e6FCIixfRv4Y3ODWsjJ0+H9zZHKl0OkXkGoUmTJqFhw4ZyL6Hw8HB5E5ss1q9fXz5nil555RWsWLFC6TKIiBQlzomcNbA5rDVW+F9kInadSVK6JCLzC0J79uzB7Nmz4ebmVnStdu3aclm9eM4UdevWDc7OzkqXQUSkuMZezni2S4C8P+u3v5Gdl690SUTmFYTs7OyQnl72NOOMjAy5nL6q9u7diwEDBsDX11f+a0X0HpU2f/58BAQEwN7eHh07dkRYWFiVvw8RERWa9FBjeDjb4eK1m1jyZ7TS5RCZVxB65JFH8MILL+DgwYNyYy5xO3DgAF588UXZMF1VmZmZaNWqlQw75VmzZg2mTJmCmTNnymk48do+ffogKemfId3WrVsjKCiozO3KlStVqiU7O1t2mhe/ERGpjbO9Dd7uf5+8P29nFK6k3FK6JCLzWT6fkpKCUaNGYePGjbCxsZHXxOaKIgQtW7ZMLle762KsrLB+/XoMHjy46JoYAerQoQPmzZsnH+t0Ovj5+eHll1/GW2+9Ven33r17t3yPn3/++Y6v+e9//4tZs2aVuc7l80SkNuKv/ie+CcWhizfwcEsfzH+6rdIlESmyfL5SI0LFR0Zq1qyJX3/9FWfPnpWhQtzOnDkjA8y9hKDy5OTk4MiRI+jZs+c/BWs08nFoaCgMbdq0afIPTX/j4bJEpO7G6SBorIDNJ+LxV9RVpUsiUkSlgpBYeq6fiurRo4ccFRKn0IveHnET943h6tWrcs8iLy+vEtfF44SEhEq/jwhOQ4cOxZYtW1C3bt07hijR/ySSY/EbEZFaBfq6YESnevL+zN/+Rm6+TumSiEwzCNWoUaPoxHkxxZSbmwtzsn37diQnJ8sz0i5fvoyQkBClSyIiMglTejWFm5MtziVlYPlfF5Uuh6jaWVd2RKV79+5yI0X9BoV3WiG2c+dOgxXn7u4ud6tOTEwscV089vbmoYFERPfK1dEGU/s2xdRfTmLu9nMY2MoXni72SpdFZFojQqtWrZKNxO3bt5ePxS7SYvVWeTdDEmGrXbt22LFjR9E10SwtHhtzVEesYAsMDJRN2kREaje0nR9a+dVERnYePv79tNLlEJn2qjExMiQao0XTtCGI/YfEsR1CmzZt8Pnnn8vvITZs9Pf3l8vnxSq1b775BsHBwZg7dy7Wrl2L06dPl+kdMjQeukpEluJ4bAoGf70f4hPhpxdD0CHgn01zicxNVT6/FT99XvQcieBTmgg/Yjm+IJa9f/rpp7JBWuwZ9NVXX8ll9cbGIERElmTauhP4ISwWzXxcsPGlLrDWVnmrOSKTYFZByJQxCBGRJbmemYPun+1G6q1cvDuoOUaGFB7FQQRL30eIiIjUT6wee713E3n/s21ncC0jW+mSiIyOQagcbJYmIkv1dMd6CPRxQVpWHj7ddgZqkq8rQOj5a/j1WJz8Kh4TVWlqTByl8eGHH2LMmDFyY0K149QYEVmiwxev4/GFobCyAtZP6ILWfoZZHKOkrRHxmLUxEvGpWUXXfFztMXNAIPoG+ShaG5nR1Ji1tbVsWhaBiIiI1Kl9gBsea1tHriCb+WsEdGY+ciJC0PhV4SVCkJCQmiWvi+fJclV5akwcsbFnzx7jVENERCbhrX73oYadNY5fTsWPh2LMdkpJ1CpGgsqrWH9NPG9OvydSYGfp4vr16ydPfT958qTc7NDJyanE8+IUeiIiMm+ezvaY3LMx3t98Cu9siJCjQ6Y0pSRGqW7l5uNmTj5u5eTjZm6evH8zW1zLK3ou8kpamZGg4sRvSzwfFn0dIQ1rV+vvgcw0CE2YMEF+FRsflneasTgklYiIzJ+3a+FRG6U7SfVTSguGt60wDIlRlsJAknc7oOTjlj6w6AOMvOXdDjP6a/+8pug5/a+5/X5ZuYY9IDYp/c5hidStykFIHHFhCavGxI2hjogslQgxH2w+Ve5z+lw0ec0xdAqLwa1cXcnRmdtBJjuvej4vHGy0cLTVwtFOC0cbaziI+7dvmTn5cjqvMiNgZJm4oWIFuGqMiCyVCA9PLT5gkPcSq88cbbRwsLUuCij6sOJgU/aaY4nXWctf+8/z1iVea2+thUZjVWGgu/+TnXIUq7wPO6vbI1/7pvaAtoL3IfV+fld5REgQzdKfffYZTp0q/NeC2HPnjTfewAMPPHB3FRMRkUmp7FTRU8F+6NzQvWxQ0Y/S2FrD3kYjWyeUIMKN6GcSU3migvLCkHieIchyVXnVmDiJvmfPnnB0dMSkSZPkzcHBAQ899BBWr15tnCqJiKhaVXaqaGCrOhjQyhcPNfOSgUjsOdTEyxl+bo6oXcNOhiOlQpCe6GMS/Uz6nic9J1vtv/Y5kfpVeWqsWbNmeOGFF/Dqq6+WuC6apxcvXlw0SqQGnBojIkulxikl8XsSq8N2n0nCN3svwNlOi7B3esmwRupi1LPGLly4gAEDBpS5LpbNR0dHV/XtiIjIBOmnlITSMcfKTKeURK1iifzUvvfB380R6dn5cm8ksmxVDkJ+fn7YsWNHmevbt2+Xz6kBzxojIrrzlJJ4bM5TSqK5engnf3l/ReglcM2QZavy1NiCBQswefJked5Y586d5bX9+/dj2bJl+PLLLzFu3DioBafGiIj+mVISDdSidyi4vptZjQSVJ+VmDjp+uEMu8f9lfAja1XNTuiQyl1Vj48ePh7e3N+bMmYO1a9cW9Q2tWbMGgwYNuvuqiYjIpKeU1KSmoy0GtfbF2sOXsfyvSwxCFqxKQaj46fP79u0zXlVERERGNjIkQAah3yPikZweCA9nO6VLIgVU+fT52bNn8/R5IiIye0F1XNHWvyZy8wvwY1iM0uWQuTRLi/2CePo8ERGpZVRI+P5gDPLy1X+EFJXF0+eJiMhi9Wvhjfc22SIhLQv/i0xEvxbmuRKOqnHVmEZz50EktZ0+z1VjRETq99m2M5i3KwohDWrjhxc6KV0OmfqGiuL0+Tvd1BKCuI8QEZHleLqjP8RuAKEXruFsYrrS5VA1q1IQys3NlQ3TERERULOJEyciMjIShw4dUroUIiIyMt+aDugV6CXvrwy9pHQ5ZMpByMbGBv7+/qoZ+SEiIhJG3W6aXhd+GelZuUqXQ9WoylNj77zzDt5++21cv37dOBURERFVM7FhZCPPGsjMyce6cJ4/ZkmqvGps3rx5iIqKgq+vL+rVq1dm1Vh4eLgh6yMiIjI6sdhnRKd6mPnb31h54BJGhtST10j9qhyEBg8ebJxKiIiIFPRY2zqYvfU0opIyEHr+Gjo3cle6JDLFIDRz5kzjVEJERKQgZ3sbPNa2rhwRWh56kUHIQlS5R0hISUnBkiVLMG3atKJeITElFhfHeVUiIjJfI0Lqya9ic8UrKbeULodMMQidOHECTZo0wSeffILPPvtMhiJh3bp1MhgRERGZqyZeznJjRV0BsPogzx+zBFUOQlOmTMHo0aNx7tw52NvbF13v378/9u7da+j6iIiIqpVolBZ+CItBdh63i1G7KgchscnguHHjylyvU6cOEhISoAbcWZqIyHKJzRW9XexxLTMHv59Ux+caGTAI2dnZyTM8Sjt79iw8PDygBtxZmojIcllrNXimo7+8vyL0otLlkKkFIXG6/LvvviuP2xDEPgsxMTGYOnUqhgwZYowaiYiIqtWTwf6w0VohPCYFEXGpSpdDphSE5syZg4yMDHh6euLWrVvo2rUrGjVqBGdnZ3zwwQfGqZKIiKgaeTjboV+Qj7zPUSF1syooKCi4m1+4f/9+HD9+XIaitm3bomfPnlAbMQXo6uqK1NRUuLi4KF0OERFVoyOXrmPIglDYWWtw8O2HUNPRVumSyAif31XeUFGvS5cu8kZERKRGbf1rIdDHBZHxaVh7OBYvPNhQ6ZLIVDZUJCIiUjvRA6tfSr/qQAx0YnMhUh0GISIiojsY1LoOXOytEXP9JvacTVa6HDICBiEiIqI7cLDV4on2fvK+OH+M1IdBiIiIqALDOxVOj4kRoUvXMpUuh5QKQnl5ecjOzi5xLTExEbNmzcKbb76Jffv2Gbo2IiIixQW4O6FbUw+INdarDlxSuhxSKgiNHTsWkyZNKnqcnp4uj6AQx1Fs27YN3bt3x5YtWwxdHxERkeL0TdNrDsXiVg7PH7PIICT2DSq+c/SKFSuQn58vD18V+wmJw1g//fRTqAHPGiMiouK6NvGEn5sD0rLy8NvxOKXLISWCUFxcHBo3blz0eMeOHTIYiQ2LhFGjRuHvv/+GGvCsMSIiKk6rscKI271Cy/+6hLvci5jMOQjZ29vLIzX0Dhw4gI4dO5Z4XuwyTUREpEZi9ZjYZVpssBgec0Ppcqi6g1Dr1q2xcuVKef/PP/+UjdI9evQoev78+fPw9fU1VF1EREQmRRyxMbBV4efcilA2TVtcEJoxYwa+/PJLNGzYEH369MHo0aPh41N4IJ2wfv16HrlBRESqNqpzgPy65WQ8ktNLrqQm81Tps8bEKfNHjhzBH3/8AW9vbwwdOrTMiFFwcLAxaiQiIjIJQXVc0ca/Jo7GpODHsBi8/NA/vbNkYafPWwKePk9ERKWtP3oZr645Dh9Xe/z5ZndYa7k3sUWcPr93795Kve7BBx+s7FsSERGZnf4tfPD+plOIT83C9lOJ6Bv0T5sImZ9KB6Fu3brJk3iFOw0iiefF3kJERERqZWetxZPBfpi/67xcSs8gZN4qPZ5Xq1Yt+Pn5Yfr06XITxRs3bpS5Xb9+3bjVEhERmYCnO9aDxgoIvXAN5xLTlS6HqiMIxcfH45NPPkFoaChatGiB5557Dn/99ZecexPzcPobERGR2tWp6YBegV7y/kqeP2YZQcjW1hbDhg2T54qdPn0aLVu2xEsvvSRHid555x15KCsREZGlGBlSuJT+lyOXkZ6Vq3Q5dJfuqtXd399f7iu0fft2NGnSBB9//LHs0CYiIrIUnRvWRkMPJ2Tm5GP9UZ4/ZjFBKDs7G6tXr0bPnj0RFBQEd3d3bN68GW5ubsapkIiIyASJBUL6USGx0zR3o1F5EAoLC8P48ePlZorilPmBAwciNjYWa9euRd++fY1bJRERkQl6rG0dONlqEZWUgdDz15Quh4y5fL5Tp05ySmzSpElo166dvLZv374yrxMBiYiIyBI429vg0bZ1sOpAjBwV6tzIXemSyFg7S2s0/z54pLZ9hLizNBER/Zuzieno/cVeaDVWcqdp35oOSpdk8dKq8Pld6akxnU73rzc1hSAiIqLKaOLljE4N3JCvK8DqgzFKl0NVZNADUm7dugU1mD9/PgIDA9GhQwelSyEiIjOgb5r+8VAMsvM4KGBxQUisJJszZw7q168PNZg4cSIiIyNx6NAhpUshIiIzIDZX9Haxx9WMHGyNSFC6HDJGEBJhZ9q0aWjfvj06d+6MDRs2yOvfffedDEBz587Fq6++WpXvTUREpAo2Wg2e7ugv7y//66LS5ZAxgpDYQHHBggUICAjAxYsXMXToULzwwgv44osv8Pnnn8trU6dOrcr3JiIiUg1xEKuN1grhMSmIiEtVuhwydBD66aefsGLFCvz888/4448/ZGO0OFbj+PHjePLJJ6HVaiv7VkRERKrj6WyPfrdPol8ZyvPHVBeELl++XLR/kNhR2s7OTk6FiSXzREREJJqm68mvG47FIeVmjtLlkCGDkBgBEgev6llbW6NGjRqV/eVERESq165eLTTzcUF2ng4/Hb6sdDlkyJ2lxb6Lo0ePliNBQlZWFl588UU4OTmVeN26desq+5ZERESqImZJRoXUw1vrTmLlgUt47v760Gg4c6KKIDRq1KgSj4cPH26MeoiIiMzaoNZ18OGWU4i5fhN7ziaj+32eSpdEhghCYpk8ERERVczBVouh7f3w7b5orAi9yCBkSTtLExERETCiU2HT9O6zybh0LVPpcqgCDEJEREQGFuDuhK5NPCCONV91gEvpTRmDEBERkRGX0q89fBm3cnj+mKliECIiIjKCbk094efmgNRbudh4/IrS5dAdMAgREREZgVZjheEdC0eFlodelNvQkOlhECIiIjKSJ9r7wc5ag7+vpMkzyMj0MAgREREZSS0nWwxs5SvvrwzlqfSmiEGIiIjIiEaGBMivm0/GIzk9W+lyqBQGISIiIiNqUdcVrf1qIje/AGsOxShdDpXCIERERGRkozoXNk1/fzAGefk6pcuhYhiEiIiIjKx/Cx/UdrJFfGoWtp9KVLocKoZBiIiIyMjsrLUY1sFP3l8Ryp2mTQmDEBERUTV4plM9aKyAv85fQ1RSutLl0G0MQkRERNWgTk0H9GzmJe9zVMh0MAgRERFV81L6deFxyMjOU7ocsoQgFBsbi27duiEwMBAtW7bETz/9pHRJRERkobo0qo0GHk4yBK0Pv6x0OWQJQcja2hpz585FZGQk/vjjD0yePBmZmZlKl0VERBbIysoKIzvpzx+7xPPHTIDqg5CPjw9at24t73t7e8Pd3R3Xr19XuiwiIrJQj7WrC0dbLaKSMhB64ZrS5Vg8xYPQ3r17MWDAAPj6+sqkvGHDhjKvmT9/PgICAmBvb4+OHTsiLCzsrr7XkSNHkJ+fDz+/wiWMRERE1c3F3gaPta0j769k07TiFA9CYpqqVatWMuyUZ82aNZgyZQpmzpyJ8PBw+do+ffogKSmp6DVixCcoKKjM7cqVK0WvEaNAI0eOxKJFi+5YS3Z2NtLS0krciIiIjNU0/UdkIuJTbyldjkWzKjChCUoxIrR+/XoMHjy46JoYAerQoQPmzZsnH+t0Ojmi8/LLL+Ott96q1PuKgNOrVy+MHTsWI0aMuOPr/vvf/2LWrFllrqempsLFxeWufk9ERETlGfZNKA5GX8fLPRrhtd5NlS5HVcRAhqura6U+vxUfEapITk6OnM7q2bNn0TWNRiMfh4aGVuo9RM4bPXo0evToUWEIEqZNmyb/0PQ3seKMiIjIGEZ1LhwV+iEsBtl5+UqXY7FMOghdvXpV9vR4eRVuQKUnHickJFTqPfbv3y+n10TvkZhCE7eTJ0+W+1o7OzuZHIvfiIiIjKFXoBe8XOxwNSMHWyMq95lGhmcNlbv//vvldBoREZEpsdFq8HRwPXyx/azcaXpQ68IGaqpeJj0iJJa6a7VaJCaWPKlXPBZL4YmIiMzZUx39YKO1wpFLNxARl6p0ORbJpIOQra0t2rVrhx07dhRdE6M74nFISIjRvq9YwSZ2ohZN2kRERMbi6WyPvkE+8j6X0ltoEMrIyMCxY8fkTYiOjpb3Y2Ji5GOxdH7x4sVYvnw5Tp06hfHjx8sl988++6zRapo4caLcifrQoUNG+x5ERETCyJDCnaZ/PR6H1Ju5SpdjcRTvETp8+DC6d+9e9FgEH2HUqFFYtmwZhg0bhuTkZMyYMUM2SItm561bt5ZpoCYiIjJH7evVQjMfF5yKT8NPR2Lx/AMNlC7JopjUPkLmvA8BERHR3RJL6KetO4l6tR2x67Vu0GislC7JrKlmHyEiIiJLMKi1L5ztrXHp2k3sOZesdDkWhUGoHGyWJiKi6uRoa40n2heeg8mm6erFqbEKcGqMiIiqS/TVTHT/bDesrIA9r3eHf21HpUsyW5waIyIiMjP13Z3wYBMPiOGJVQc5KlRdGISIiIhMxKjbS+nXHIrFrRyeP1YdGISIiIhMRLemnqhbywGpt3Kx8fgVpcuxCAxCREREJkKrscLwToWjQisOXATbeI2PQagcXDVGRERKGdbeD3bWGkTEpeFobIrS5ageg1A5eMQGEREppZaTLQa08pX3V/x1UelyVI9BiIiIyETPH9tyMgFXM7KVLkfVGISIiIhMTMu6NdHaryZy8nVyBRkZD4MQERGRCY8KrTpwCXn5OqXLUS0GISIiIhPUv4UP3JxsEZ+ahe2nkpQuR7UYhMrBVWNERKQ0exstnuxw+/yxA2yaNhaeNVYBnjVGRERKiku5hQc+2QldAbB9yoNo5OmsdElmgWeNERERqUCdmg54qJmXvM9T6Y2DQYiIiMiEjQoJkF9/CY9DRnae0uWoDoMQERGRCevSqDYaeDjJELQ+/LLS5agOgxAREZEJs7Kywgj9+WOhl3j+mIExCBEREZm4Ie3qwtFWi3NJGThw4TrUIF9XgNDz1/DrsTj5VTxWgrUi35WIiIgqzcXeBo+2qYPvD8ZgRehFhDSsDXO2NSIeszZGyj2S9Hxc7TFzQCD6BvlUay0cESoH9xEiIiJTM/J20/S2vxOw+cQVxUdS7iUEjV8VXiIECQmpWfK6eL46cR+hCnAfISIiMiW9Pt8jp8eKU2ok5W6I0Nbl451ISCsZgvSsAHi72mPf1B7QasQj439+c2qMiIjIDIiRktIhqPhIyoLhbe85DBUUFCArV4dbufmFt5w83Mop9Vh+1eFmTh6ybl+/mZNfeD+n8L64Jh4X3RfXc/ORmZWH3ApGsMQzYqQoLPp6tU3/MQgRERGZwUiK6Kkpjz5WTFt3UgaRrDyd/FoYWG5/1YeRYo/LvCan8KspSEovf8TIGBiEiIiITJwYISndU1PajZu5eHXtcYN9T1trDRxstPImVqyJs88cbIvdL3399lf729fF8/bFrovHpxLSMOmHY//6vT2d7VFdGISIiIhMXGVHSJp41YC/m2M5YcQaDra3g42t9e2v4rG4Xvi6wmu3w4y1BtZaw6+nauBRAx9tOS2n8woq6BEKru+G6sIgREREZOIqO0Iya2CQSS+t12qsZGO36GkSoad4GNK3Rovn76VRuqq4fJ6IiMjEiRESsTrsTvFAXPep5pGUuyUaukVjtxj5KU48NkTDd1VxRIiIiMjEmeJIyr0QYadXoLfsfRLTfmLES4Q4JernPkIV4D5CRERkSkxpR2ZTxn2EDLCztLjl55vGMkIiIiJTG0lRC44IVYAjQkREROr+/GazNBEREVksBiEiIiKyWAxCREREZLEYhIiIiMhiMQgRERGRxWIQIiIiIovFIEREREQWi0GIiIiILBaDEBEREVksHrFRAf2m22KHSiIiIjIP+s/tyhyewSBUgfT0dPnVz89P6VKIiIjoLj7HxVEbFeFZYxXQ6XS4cuUKnJ2dYWXFA+3ulLpFUIyNjeV5bCaAPw/Tw5+JaeHPwzJ+HgUFBTIE+fr6QqOpuAuII0IVEH94devWVboMsyD+A+ZfKqaDPw/Tw5+JaeHPQ/0/D9d/GQnSY7M0ERERWSwGISIiIrJYDEJ0T+zs7DBz5kz5lZTHn4fp4c/EtPDnYVrsTODnwWZpIiIislgcESIiIiKLxSBEREREFotBiIiIiCwWgxARERFZLAYhuisfffQROnToIHfd9vT0xODBg3HmzBmly6LbPv74Y7kb+uTJk5UuxWLFxcVh+PDhqF27NhwcHNCiRQscPnxY6bIsUn5+PqZPn4769evLn0XDhg3x3nvvVeocKjKMvXv3YsCAAXKnZ/F304YNG0o8L34WM2bMgI+Pj/wZ9ezZE+fOnUN1YBCiu7Jnzx5MnDgRBw4cwP/+9z/k5uaid+/eyMzMVLo0i3fo0CF88803aNmypdKlWKwbN26gS5cusLGxwe+//47IyEjMmTMHtWrVUro0i/TJJ59gwYIFmDdvHk6dOiUfz549G//3f/+ndGkWIzMzE61atcL8+fPLfV78PL766issXLgQBw8ehJOTE/r06YOsrCyj18bl82QQycnJcmRIBKQHH3xQ6XIsVkZGBtq2bYuvv/4a77//Plq3bo25c+cqXZbFeeutt7B//378+eefSpdCAB555BF4eXnh22+/Lbo2ZMgQOfKwatUqRWuzRFZWVli/fr2cSRBEDBEjRa+99hpef/11eS01NVX+zJYtW4Ynn3zSqPVwRIgMQvxHK7i5uSldikUTo3QPP/ywHFYm5fz2229o3749hg4dKv+B0KZNGyxevFjpsixW586dsWPHDpw9e1Y+Pn78OPbt24d+/fopXRoBiI6ORkJCQom/t8Q5YR07dkRoaKjRvz8PXaV7ptPpZC+KmAoICgpSuhyL9eOPPyI8PFxOjZGyLly4IKdipkyZgrffflv+TCZNmgRbW1uMGjVK6fIscoROnHJ+3333QavVyp6hDz74AM8884zSpREgQ5AgRoCKE4/1zxkTgxAZZBQiIiJC/guLlBEbG4tXXnlF9mvZ29srXY7FE/84ECNCH374oXwsRoTE/yOi/4FBqPqtXbsW33//PVavXo3mzZvj2LFj8h9vYjqGPw/i1Bjdk5deegmbNm3Crl27ULduXaXLsVhHjhxBUlKS7A+ytraWN9GvJZoPxX3xL2CqPmLlS2BgYIlrzZo1Q0xMjGI1WbI33nhDjgqJXhOxem/EiBF49dVX5epXUp63t7f8mpiYWOK6eKx/zpgYhOiuiOY2EYJEw9vOnTvlslRSzkMPPYSTJ0/Kf+nqb2JEQgz9i/tiOoCqj5gmLr2dhOhPqVevnmI1WbKbN29Coyn5cSf+nxAjd6Q88fkhAo/o49ITU5li9VhISIjRvz+nxuiup8PEMPOvv/4q9xLSz+OKBjexEoOql/gZlO7PEstPxR427NuqfmK0QTToiqmxJ554AmFhYVi0aJG8UfUT+9eIniB/f385NXb06FF8/vnnGDNmjNKlWdSK1qioqBIN0uIfaWKBjfi5iKlKsdK1cePGMhiJfZ/E1KV+ZZlRieXzRFUl/tMp7/bdd98pXRrd1rVr14JXXnlF6TIs1saNGwuCgoIK7OzsCu67776CRYsWKV2SxUpLS5P/L/j7+xfY29sXNGjQoOCdd94pyM7OVro0i7Fr165yPzNGjRoln9fpdAXTp08v8PLykv/PPPTQQwVnzpypltq4jxARERFZLPYIERERkcViECIiIiKLxSBEREREFotBiIiIiCwWgxARERFZLAYhIiIislgMQkRERGSxGISIiIjIYjEIERHdg//+979o3bq10mUQ0V1iECIiRYwePRpWVlbyZmtri0aNGuHdd99FXl5e0WvExvfifK6OHTuiRo0aqFmzpjxMdu7cufIgTX0Q0b9P8dt9992n4O+OiMwFD10lIsX07dsX3333HbKzs7FlyxZ5mK+NjQ2mTZsmnx8xYgTWrVuH//znP5g3bx48PDxw/PhxGYQCAgKKDmQUB2lu3769xHtbWxv2r7fc3FxZmzEY872JqGIcESIixdjZ2cHb2xv16tXD+PHj0bNnT/z222/yubVr1+L777/HDz/8gLfffhsdOnSQ4WfQoEHYuXMnunfvXiL0iPcpfnN3d6/wey9YsAANGzaUo1FNmzbFypUrSzwvRpXEawYOHAgnJyd5ernw8ccfw8vLC87OznjuueeQlZVV5r2XLFmCZs2awd7eXo5Mff3110XPXbx4Ub73mjVr0LVrV/ka8fskImUwCBGRyXBwcEBOTo68L8KBCCgi+JQmgoSrq+tdf5/169fjlVdewWuvvYaIiAiMGzcOzz77LHbt2lXidWLa7dFHH8XJkycxZswYGc7EtQ8//BCHDx+Gj49PiZCjr3vGjBkyOJ06dUq+dvr06Vi+fHmJ17311luyBvGaPn363PXvhYjuUbWccU9EVMqoUaMKBg0aJO/rdLqC//3vfwV2dnYFr7/+urzWrFmzgoEDB/7r+8ycObNAo9EUODk5lbiNGzfujr+mc+fOBWPHji1xbejQoQX9+/cveiz+epw8eXKJ14SEhBRMmDChxLWOHTsWtGrVquhxw4YNC1avXl3iNe+99578tUJ0dLR877lz5/7r742IjI89QkSkmE2bNskmaNEjo9Pp8PTTT8sRF6Ewi1SOGDnST6npubi43PH1YhTmhRdeKHGtS5cu+PLLL0tcE43ZpX/diy++WOJaSEhI0UhSZmYmzp8/L6fMxo4dW/Qa0QBeegSr9HsTkTIYhIhIMaLPR/ThiD4dX1/fEg3OTZo0wenTpyv1PvpVZ4YmeoOqIiMjQ35dvHixXOlWnFarvaf3JiLjYI8QESlGhAERYPz9/cus8hKjQ2fPnsWvv/5a5teJ0aLU1NS7/r6ikXn//v0lronHgYGB//rrDh48WOLagQMHiu6LJmoR6C5cuCB/X8Vv9evXv+t6ich4OCJERCbpiSeekE3NTz31lFw+37t3b7l8XjQuf/HFF3j55ZeLls+LqaeEhIQyDdUimJTnjTfekO/fpk0buVJt48aNcpl+6SX4pYnmZrH/kZjWElNpojH677//RoMGDYpeM2vWLEyaNElOhYntAcTWAKKx+saNG5gyZYpB/myIyHAYhIjIJIkgs3r1armh4tKlS+UqLDFq1LhxY4wcObLESisRRsQKrtJL88tb2i6IACX6gT777DMZbsRojdjPqFu3bhXWNGzYMNkD9Oabb8r3HjJkiFz2v23btqLXPP/883B0dMSnn34qA5cY9WrRogUmT558z38mRGR4VqJj2gjvS0RERGTy2CNEREREFotBiIiIiCwWgxARERFZLAYhIiIislgMQkRERGSxGISIiIjIYjEIERERkcViECIiIiKLxSBEREREFotBiIiIiCwWgxARERHBUv0/stJELpledM8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the RMS surrogate error at the PCE sample points\n", "_o = []\n", "_RMS = []\n", "for r in R.values():\n", " results_df = r['results_df']\n", " results = r['results']\n", " Ishigami_surrogate = np.squeeze(np.array(results.surrogate()(results_df[results.inputs])['Ishigami']))\n", " Ishigami_samples = np.squeeze(np.array(results_df['Ishigami']))\n", " _RMS.append((np.sqrt((((Ishigami_surrogate - Ishigami_samples))**2).mean())))\n", " _o.append(r['order'])\n", "\n", "plt.figure()\n", "plt.semilogy(_o, _RMS, 'o-')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMS error for the PCE surrogate')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_surrogate.png')\n", "plt.savefig('Convergence_surrogate.pdf')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:04.695307Z", "start_time": "2021-12-10T08:47:03.625838Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:08.172077Z", "iopub.status.busy": "2025-07-18T12:14:08.171861Z", "iopub.status.idle": "2025-07-18T12:14:08.982633Z", "shell.execute_reply": "2025-07-18T12:14:08.982379Z", "shell.execute_reply.started": "2025-07-18T12:14:08.172065Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████| 1000/1000 [00:00<00:00, 6513.72it/s]\n" ] } ], "source": [ "# prepare the test data\n", "test_campaign = uq.Campaign(name='Ishigami.') \n", "test_campaign.add_app(name=\"Ishigami\", params=define_params(), \n", " actions=uq.actions.Actions(uq.actions.ExecutePython(run_ishigami_model)))\n", "test_campaign.set_sampler(uq.sampling.quasirandom.LHCSampler(vary=define_vary(), count=100))\n", "test_campaign.execute(nsamples=1000, sequential=True).collate(progress_bar=True)\n", "test_df = test_campaign.get_collation_result()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:04.774788Z", "start_time": "2021-12-10T08:47:04.696114Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:08.983160Z", "iopub.status.busy": "2025-07-18T12:14:08.983061Z", "iopub.status.idle": "2025-07-18T12:14:09.061607Z", "shell.execute_reply": "2025-07-18T12:14:09.061321Z", "shell.execute_reply.started": "2025-07-18T12:14:08.983151Z" } }, "outputs": [], "source": [ "# calculate the PCE surrogates\n", "test_points = test_df[test_campaign.get_active_sampler().vary.get_keys()]\n", "test_results = np.squeeze(test_df['Ishigami'].values)\n", "test_predictions = {}\n", "for i in list(R.keys()):\n", " test_predictions[i] = np.squeeze(np.array(R[i]['results'].surrogate()(test_points)['Ishigami']))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "ExecuteTime": { "end_time": "2021-12-10T08:47:05.019483Z", "start_time": "2021-12-10T08:47:04.775561Z" }, "code_folding": [ 0 ], "execution": { "iopub.execute_input": "2025-07-18T12:14:09.062162Z", "iopub.status.busy": "2025-07-18T12:14:09.062083Z", "iopub.status.idle": "2025-07-18T12:14:09.316120Z", "shell.execute_reply": "2025-07-18T12:14:09.315812Z", "shell.execute_reply.started": "2025-07-18T12:14:09.062153Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/6f/rn14629n60j16dc99dtk7bs4000ctx/T/ipykernel_79781/3799094119.py:12: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", " plt.legend(loc=0)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUEdJREFUeJzt3QlYVFUbB/A/wyrIIiKbyiKuiIooGpq7uZVa+pmlllpZueTWppWZlW0umWlamqmVpZVLLqm55b7iRiJuKMjixg6y8z3nGCQKxOAMd2bu//c893HuncvMUdR5Oed932NWUFBQACIiIiIV0ig9ACIiIiKlMBAiIiIi1WIgRERERKrFQIiIiIhUi4EQERERqRYDISIiIlItBkJERESkWhZKD8CQ5efnIzY2Fvb29jAzM1N6OERERFQOokViamoqPD09odGUPefDQKgMIgiqXbu20sMgIiKiCoiOjkatWrXKvIeBUBnETFDhH6SDg4PSwyEiIqJySElJkRMZhZ/jZWEgVIbC5TARBDEQIiIiMi7lSWthsjQRERGpFgMhIiIiUi0GQkRERKRazBEiIiIig5OXl4ecnJxSn7e0tIS5ufkDvw8DISIiIjKoHkDx8fFISkr6z3udnJzg7u7+QL3+GAgRERGRwSgMglxdXWFra1tikCOCpYyMDFy/fl2ee3h4VPj9GAgRERGRwSyHFQZB1atXL/PeKlWqyF9FMCTur+gyGZOliYiIyCAU5gSJmaDyKLyvrFyi/8JAiIiIiAxKeXN+dLEPKJfGFJCXX4DDkQm4npoJV3sbtPJ1hrmGm7oSERFVNgZClWxzWBymrT+DuOTMomsejjaY2tsfPQIqnuxFRERE2uPSWCUHQSN/CC0WBAnxyZnyunieiIiIKg8DoUpcDhMzQQUlPFd4TTwv7iMiIlKzgoICnd4HtQdCTzzxBKpVq4b//e9/io1B5ATdOxN0N/GtFM+L+4iIiNTI0tJS/ip6BJVH4X2FX1cRqgiExo0bh+XLlys6BpEYrcv7iIiITI25ubnsFi16A926dQu3b99GZmbmfYe4Lp4X94n7H2SrDVUkS3fs2BG7du1SdAyiOkyX9xEREZkid3d3+Wth1+jybLHxIAx+Rmj37t3o3bs3PD09Zb+AtWvX3nfP/Pnz4ePjAxsbG7Ru3RqHDx+GoREl8qI6rKwieRtLDQJqOlTiqIiIiAyL+KwXW2bUr18fvr6+pR7ieXHfg/YSMvhAKD09Hc2aNZPBTklWrlyJiRMnYurUqQgNDZX3du/evVyRZGUSfYJEibxQ2rcsMycfTy86KKvIiIiI1Mzc3FxOcJR26GLneaMIhHr27IkPP/xQJjyXZPbs2RgxYgSGDx8Of39/LFy4ULbcXrJkidbvlZWVhZSUlGKHLok+QQuGBMHdsfjyl5gpeq1bfTjbWSEsJgV95u3Fqav/vesuERERPRijzhHKzs7GsWPHMHny5KJrGo0GXbt2xYEDB7R+vY8//hjTpk2DPolg6BF/9xI7S/cNrInnlx3BuWtpGLDwAGY92QyPNfXU63iIiIjUzOBnhMpy8+ZNuVOtm5tbseviPD4+vuhcBEYDBgzApk2bUKtWrVKDJBFQJScnFx3R0dF6GbcIekL8qsvAR/xauL1GbWdb/DayDTo1qIGs3HyMWXEcX2w7r5M+CURERGRiM0LltW3btnLdZ21tLQ8l2dtYYvHQYHy8KRyL90bi823ncOFGGmb8rylsLHWzHkpEREQmMCPk4uIik6WuXbtW7Lo4f9ByOiWJGaJ3HvPHJ/2awEJjhvUnYzHwm4O4nsIkaiIiIl0y6kDIysoKLVq0wPbt24uu5efny/OQkBAYu6daeeH751vDydYSJ6OT0Hf+PoTFJCs9LCIiIpNh8IFQWloaTpw4IQ8hMjJSPo6KipLnonR+0aJFWLZsGcLDwzFy5EhZci+qyCpKlOqLCrTg4GAoTeQQrR3VFn417OQWHCKJesvf/+Y/ERERUcWZFRh4Jq7oCN2pU6f7rg8dOhRLly6Vj+fNm4cZM2bIBOnAwEDMnTtXNlZ8UKJ83tHRUSZOOzgo2+gw+XYOxqwIxZ7zN+X5Gz0aYGQHvwduJEVERGRqtPn8NvhASEmGFAgJuXn5+GDDGSw7cEWe92teEx/3bwJrCyZRExERVeTz2+CXxuhfFuYaTOsbgA/6NpYJ1auPx2DQokO4mZal9NCIiIiMEgMhI/RMiA+WDg+GvY0Fjl1JRN95+3A2XrddsImIiNSAgZCBJ0uXpl29Glgzqi18qtsiJuk2+n+1H9vDi7cRICIiorIxR8iIcoRKkpSRjZE/hOLApVsQedNv92qE5x/2ZRI1ERGpVgpzhNTDydYKy59vhadb1YYIaT/cGI5Jv51Gdm6+0kMjIiIyeAyETICluQYfPdEE7z7mD7Ft2cqj0Rjy7SEkpGcrPTQiIiKDxkDIRIilsOce9sW3w4JR1dpC7m7/+Px9OH8tVemhERERGSwGQiamUwNXrB7VBrWdqyAqIQP9vtqPXRHXlR4WERGRQWIgZKRVY2Wp72Yvt+UI9qmG1KxcPLf0CJbuiwTz4omIiIpj1ZiRV42VJSs3D2+vCcOvx67K88GtvfBen8Yyp4iIiMhUsWqMJLH1xoz/NcXkng1laf2Ph6Iw7LvDSM7IUXpoREREBoGBkAqSqF/q4IdvnmkJWytz7LtwC098tQ+XbqQpPTQiIiLFMRBSiUf83fDbyDao6VQFl26my4qyfRfu7GRPRESkVgyEVKSRhwPWjm6L5l5OSMnMxbNLDuPHQ3d2siciIlIjBkIqU8PeGj+NeAiPB3oiL79AJlO/9/vfyM1jJ2oiIlIfBkImWD7/X2wszfH5wEC81q2+PF+6/zKeW3YUKZlMoiYiInVh+bwJl8+Xxx+n4zBh1Qlk5uSjrmtVfDu0Jbyr2yk9LCIiogpj+TyVW88mHvj15TZwd7DBhetpMon60KVbSg+LiIioUjAQIgTUdMS6MW3RtJYjEjNy5Iatq45EKz0sIiIivWMgRJKbgw1WvhiCR5t6ICevAG/8dgofbQqXCdVERESmioEQFaliZY4vn2qOcV3qyfNvdl/Ci8uPIi0rV+mhERER6QUDISpGozHDhEfqY+7TzWFlocH2s9fR/6v9iE7IUHpoREREOsdAiErUp5knVr74kOw7FHEtVSZRH72coPSwiIiIdIqBkAr7CJVXc69qWDe6Lfw9HHArPRuDFh3C6tA7O9kTERGZAvYRUnkfofLIyM7F+J9PYOuZa/J8VEc/vNatAcRfnMORCbiemglXexu08nWGucZM6eESEZHKpWjx+c1AqAwMhP6Vn1+AmVsj8NWui/I8sLYj4pIzcS0lq+geD0cbTO3tjx4BHgqOlIiI1C6FDRVJH0nUb/RoiNlPNoOFxgwnopOLBUFCfHImRv4Qis1hcYqNk4iISBsMhEgrfQNrwrGKZYnPFU4tTlt/hv2HiIjIKDAQIq2InCCROF0aEf6IJTNxHxERkaFjIERaEYnR5bHySBRik27rfTxEREQPwuKBvppUR1SHlcfaE7HyaOFdDb2aeKBXE3d4OFbR+/iIiIi0wUCItCJK5EV1mEiMLi0LyMHGAg3c7HE0KhHHrtw5PthwBi2LgiIPuDuWL6AiIiLSJ5bPl4Hl8yUTVWGiOky4+y9PYQehBUOCZAn9tZRM/HE6DhtPx+HI5cRirxHs829QJDZ8JSIi0hX2EdJBZ2lx5OXl4dy5cwyESgmGRHWYSIwuTx8hMYP0R1gcNp6Kw9Er/wZFZmZAsLezXDrryaCIiIh0gIGQjnBGqGyiRL4inaXjkm/jj9PxcqZILJsVC4p8nPFoEw/0DHCHK4MiIiKqAAZCOsJASP9EZdkfYfHYeCoWoVFJxYKiViIoauqBHiIoKmeSNhERUQoDId1gIFT5QdGmf3KKjt8TFLX2vTNTJJbdathbKzpOIiIybAyEdISBkHJixEzR6ThsOBWHE9H/BkVi5a21b3X0EjNFjd0ZFBER0X0YCOkIAyHDcDUxQ+YUbTgdh5P3BEUP1akuK8/E8plLVQZFREQEBkK6wkDI8EQnZBRVn528mlwsKArx+ycoauyO6gyKiIhUK4WBkG4wEDL8oKgwp+jUXUGRqFwL+WemqHtjNwZFREQqk8JASDcYCBmPqFsZ2PTPTNHpmOJBUZt/Zoq6N3aHs52VztoAEBGRYWIgpCMMhIzTlVvp2CT7FMUiLCblvqDo0X+Comp2Vlo3hiQiIsPHQEhHGAgZv8s304tmiv6OLR4Uif3QzsT9e620rUKIiMi4MBDSEQZCphcUiXwiERSVFADdGwyJjWH3vtmZy2RERCb8+a2ptFERKczHxQ6jO9XFpnHt8PmTzcq8V/x0IJbLlh+4jMycvEobIxERVS6LB/nizMxM2NjYmPSmq2SaNOWc5RH5Qx9tCkdjT0e09K6GFuLwqcYtP4iITITWS2P5+fmYPn06Fi5ciGvXrsnd2evUqYMpU6bAx8cHzz//PEwFl8ZM14GLt/D0ooP/eZ9jFUsk386577qXs+2doMi7Glr6VEM9V3suoRERGeHnt9YzQh9++CGWLVuGzz77DCNGjCi6HhAQgDlz5phUIESmS5TIi+qw+ORMuQxWWo7Qnjc6ySWyo1cScPRyIo5dSUTEtVREJWTIY83xGHm/vbUFmoug6J/gKLC2E+ysH2jClYiIDHFGqG7duvj666/RpUsX2Nvb4+TJk3JG6OzZswgJCUFiYiJMBWeETJsonR/5Q6h8XKBF1VhKZo7cFFYERceuJMjHGdnFl1HF7FAjD3u08BJLac4yQPJ0qqLX3w8REVXCjFBMTIwMhkpaMsvJuX8JgchQiSBHBDv39hFy/48+Qg42luhQv4Y8hNy8fJyNT5WB0dEriQi9kig3jRU9jMSx7MAVeZ+YgSpaTvN2loGShTnrFYiIlKR1IOTv7489e/bA29u72PVff/0VzZs31+XYiPROBDuP+Ls/UGdpEcwE1HSUx9A2PvJaXPLtO4HRP8tpolxfBFsbTsXJQ6hiaS6X0ESOkQiOmntVkzlJRERkwIHQu+++i6FDh8qZITELtHr1akRERGD58uXYsGGDfkZJpEdybzK/6jp9TQ/HKnisqTg85XlGdi5ORCfhmAiMou4ER6mZuThw6ZY8BDMzoL6rvaxKE0tqIkASSdlm4oly4FYhRETaq1BDRTEj9P7778v8oLS0NAQFBckAqVu3bjAlzBEifcnPL8D562n/LKclyOW0y7cy7rvPpao1Wng7yaW0IO9qCKjpAGsL8/vu41YhRET/YmdpHWEgRJXpRmqWDIxCo8SSWoLML8rOyy92j5WFBs1qOcqgSARHYkntcOQtmfR97z9kbhVCRGqVos9ASFSIHTlyBNWrF19KSEpKkjNDly5dgqlgIERKEh2tw2KSZQK2yDUSAVJCevZ994nlL7EsVhJuFUJEapSiz6qxy5cvl9hxOSsrS+YNEZFu2Fiao6UovfdxBjoA4meWyJvp/5Tt36lQu3A9rdQg6O6tQkTukK7zoIiITEG5A6Hff/+96PGWLVtkpFVIBEbbt2+XnaWJSD9E0nSdGlXlMaBlbXntp8NXMHl12H9+bVzS7UoYIRGRCQdCjz/+eNF/xqJq7G6WlpYyCJo1a5buR0hEpfKpXrVc9723/m+cv5GGp4O94FXdVu/jIiIyuUBIlMoLvr6+MkfIxcVFn+MiIh1sFSKI1KCUzFws2HURC/+6iHb1amBQKy90beTKho5EpHqsGisDk6XJFLYK+XJQc1hoNFhxOAq7z90oet7NwRoDW9bGwFZeqMntP4jIhOi9fD49PR1//fUXoqKikJ1dvIpl7NixMBUMhMhYlLePUNStDPx0JAq/HI3GzbTsohmjTg1cMai1Fzo2cGV1GREZPb0GQsePH0evXr2QkZEhAyJnZ2fcvHkTtra2cHV1Zfk8kUK06SydnZuPrWfiseJQFPZfvNPZWvB0tMFTrbwwMLg23BxsKnH0RERGEgh17NgR9evXx8KFC+WbiO7SIll6yJAhGDduHPr16wdTwUCI1ODSjTT8dDgKvx67isSMOxsniwBK5BANau2NdnVdoOEsEREZEb0GQk5OTjh06BAaNGggHx84cACNGjWS10Q12dmzZ2Hs5s+fLw/RFuDcuXMMhEg1DRw3h92ZJTp8OaHoem3nKni6lRcGtKiNGvbWio6RiEjxQKhGjRrYv38/6tWrJ2eGvvzyS3Tv3l0GQC1atJDLZaaCM0KkVuevpeLHQ1FYHXpVVpwJluZm6ObvjsGtvWRzxvJuBktEZFKdpZs3by7L50Ug1KFDB7nZqsgR+v777xEQEPAg4yYiA1HPzR7v9WmMN3s0xIZTsbLi7HhUEjaejpOHr4udLMHv36IWnO2slB4uEVGFaT0jdPToUaSmpqJTp064fv06nn322aIZoiVLlqBZs2YwFZwRIvrXmdgUrDh8BWuPxyIt684skZW5Bj2biFkibwT7VOMsEREZBO4+ryMMhIjul56Vi/UnY+XS2emY5KLrdV2r3pklCqoFR1tLRcdIROqWwkBINxgIEZXt1NUkmVy97kQsbufc2YzZ2kKDx5p6yr5EQV5OnCUiItMKhESOUEn/sYlrNjY2qFu3LoYNGyaXzowdAyGi8knJzMG64zFyluhsfGrR9Ybu9jK5+vHmNWFvw1kiIjK8z2+tNxrq0aOHbJpoZ2cngx1xVK1aFRcvXkRwcDDi4uLQtWtXrFu37kF+D0RkRBxsLPFMiA/+GNcOq0e1kctjYmZIBEVT1v2N1h9tx6TfTskZJCIiQ6L1jNCIESPg5eWFKVOmFLv+4Ycf4sqVK1i0aBGmTp2KjRs3ysRqY8YZIaKKS87IwerjV+Us0YXraUXXm9R0lMtmfZp5ws7a4oE6ZBMRVfrSmHjhY8eOySWwu124cEH2ERJvKnoKidkhUV1mzBgIET048V/MkcuJ+PHQFfxxOh7ZefnyelVrCzze3BODWnnD39NBqz3TiIgU6yMk8oBEufy9gZC4Jp4T8vPzix4TkbqJ/EExqyOOqb2z8duxq7IvUeTNdPxwMEoezb2c5EzR9weu4N6fzOKTMzHyh1AsGBLEYIiIdE7rQOiVV17Byy+/LGeFxKyPIBosLl68GG+99ZY837JlCwIDA3U/WiIyaqL54oj2dfBCO18cuHgLPx6OwpaweNmsURwlEYGRWBgTM0WP+LtzmYyIdKpC5fM//vgj5s2bh4iICHku9h0TAdKgQYPk+e3bt4uqyIwZl8aI9O9GahZmbY3Az0ei//Pen0Y8JLf3ICJSbGlMGDx4sDxKU6VKlYq8LBGpkNjIVQQ35QmERAI1EZEuVSgQEsTSWHh4uHzcuHFj2V+IiKgiRHWYLu8jItJbICT2F3vqqaewa9cuODk5yWtJSUmyn9DPP/8sd6cnItKGSKQW1WEiMbq0tXoLjRmc7diUkYh0S+uGiiIXSJTF//3330hISJBHWFiYXI8bO3asjodHRGogEqBFibxQWip0bn4BnvhqP9adiKnUsRGRaatQH6Ft27YVVYwVOnz4MLp16yZnh0wFk6WJKldpfYTGd60vA6D9F2/Ja0Me8sI7j/rDxtJcwdESkSqTpUWPIEvL+6enxTXxHBFRRYk+QaJEvqTO0v9rUQtztp3DlzsuyN5DJ6KT8NWgFvCqbqv0sIlITTNCffv2lbM+P/30Ezw9PeW1mJgYWUVWrVo1rFmzBqaCM0JEhmdXxHVMWHkCiRk5sLexwKwBzdCtsbvSwyIitWy6KvoHiTfw8fGBn5+fPHx9feW1L7/88kHGTUT0nzo2cMXGse0Q5OWE1MxcvPj9MUzfeAY5/2zdQUSk94aK4ktEnpDYU0xo1KiR3HHe1HBGiMhwZefm49PNZ/Ht3kh53tK7Gr4c1BwejuxjRqR2KfradDUnJ0c2Szxx4gQCAgJg6hgIERlHgvXrv5xCalau3MLji6cC0a4e23gQqVmKvpbGREK0l5cX8vLyHnSMREQ6S7Be/8rD8PdwQEJ6Np5dchif/3kOeflaT3YTkQppnSP09ttvy81VRf8gIiJD4ONih9Wj2uDpVl4Qc9xfbD+PoUsO42ZaltJDIyJTyxESW2lcuHBBLpN5e3vDzs6u2POhoaEwFVwaIzI+a45fxVurw3A7Jw9uDtaYNygIwT7OSg+LiEylj9Djjz8OY7Jhwwa8+uqrssfRm2++iRdeeEHpIRGRHj3RvBYaezpi1I+huHA9DU99cxBvdG+AF9vXgZlZaX2riUittJoRys3NxUcffYTnnnsOtWrVgqET4/X398fOnTtlZNiiRQvs378f1atXL9fXc0aIyHilZ+XirTWnse5ErDzv2shN9hxytOV+ZUSmLkVfydIWFhaYMWOGDDCMgdj2o3HjxqhZsyaqVq2Knj17YuvWrUoPi4gqgZ21BeYMDMT0JwJgZa7BtvBrePTLPTh11XS2ASIiBZKlO3fujL/++guVYffu3ejdu7fsYC2mtNeuXXvfPfPnz5fNHW1sbNC6dWsZ/BSKjY2VQVAh8Vh0wSYidRD/bwxu7S0TqWs7V8HVxNv434ID+P7AZdkPjYhI6xwhMasyadIknD59Wi413Zss3adPH50NLj09Hc2aNZNLcf369bvv+ZUrV2LixIlYuHChDILmzJmD7t27IyIiAq6urjobBxEZt4CajtjwSju8/stJbD1zDVPW/Y3DlxPxcb8mqGqt9X+DRKTmqjGNRlPmT1/66jEkXlvsY3Z3srYIfoKDg+W2H4JIiK5duzZeeeUVGayJfCCxlFe4/9n48ePRqlUrDBo0qMT3yMrKksfda4zi9ZgjRGQaxH93ohP1J3+cRW5+AerUsMOCwS3QwN1e6aERkbHsNSaCjdKOymy0mJ2djWPHjhXb2kMEaeL8wIED8lwEPWFhYXI5LC0tDX/88YecMSrNxx9/LP/gCg8RBBGR6RA/UL3Qrg5+fvEhuDvY4NKNdPSdvxe/Hruq9NCISCFaB0KG4ubNmzLwcnNzK3ZdnMfHxxcld8+aNQudOnVCYGCgLKMvq2Js8uTJMnosPKKjo/X++yCiytfSxxkbxz6MdvVckJmTj9d+OYk3fz2FzBx2zSdSG60Xx99///0yn3/33XdhSETOUnnzlqytreVBRKavelVrLB3eCvN2XMCc7eew8mg0TsUk46vBQfB1KZ77SESmS+tAqDDfppDoMB0ZGSlnX/z8/CotEHJxcYG5uTmuXbtW7Lo4d3d3r5QxEJFxM9eYYVzXemjpUw3jfj6O8LgU9P5yLz77X1P0auKh9PCIyBCXxo4fP17sEDk4cXFx6NKlCyZMmIDKYmVlJavWtm/fXnRN5CmJ85CQkAd6bVGSLxoxikRsIjJ9beu6YOPYdmjl44y0rFzZlfq93/9Gdm6+0kMjIkOrGiuNKKcXPX8uX74MXREJzmJfs8I9zmbPni3zfZydneHl5SXL54cOHYqvv/5aJkaL8vlVq1bh7Nmz9+UOVQQ7SxOpS25ePmZuPYeFf12U54G1nTB/cBBqOlVRemhEZCh7jZWmMMFYl44ePSoDn0KiZ5Aggp+lS5di4MCBuHHjhlyOEwnSIiF68+bNOgmCiEh9LMw1mNSzIVp6V8PEVSdwIjoJj87dg8+fDESnhuxNRmSKtJ4Rmjt3brFz8eViaez7779Hhw4dsGLFCpgKzggRqVd0QgZGrwjFqat3fsAb1dEPEx+pL4MlIjKdz2+tAyFfX99i56J3T40aNeTWG6L83N7edBqTMRAiUres3DxM3xiO5QeuyPOH6jhj7lPN4epgo/TQiEipQEhNGAgRkbD+ZCwm/XYK6dl5cKlqjS+fbo4Qv9J7khGRCXeWLunNxGao4eHhMBWsGiOiu/Vu5onfX3kYDdzscTMtC4MXH8T8nReQn8+fI4mMndYzQk8++STat2+PMWPG4Pbt23JTVFEpJl7m559/Rv/+/WEqOCNERHe7nZ2HKevCirbk6NighkykrmZnpfTQiKiyZoR2796Ndu3aFTVXFAFQUlKSTKL+8MMPtX05IiKjUcXKHDMHNMNn/ZvC2kKDXRE3ZFVZaFSi0kMjogrSOhAS0ZXo4yOIUnUxA2Rra4tHH30U58+fr+g4iIiMxpPBtbFmVFu5FUdsciYGfn0AS/ZGyh8MicjEAyGxI7vY3T09PV0GQt26dZPXExMTYWPDSgoiUgd/Twf8PqYtHm3igZy8Ary/4YzsSJ2SmVN0T15+AQ5cvIV1J2Lkr+KciAyL1g0Vx48fj8GDB6Nq1arw9vZGx44di5bMmjRpoo8xEhEZJHsbS8wb1BzB+6th+qZw/BEWL/crE92oRR+iaevPIC45s+h+D0cbTO3tjx4B3MeMyFBUqHz+2LFjiIqKwiOPPCIDImHjxo1wcnJC27ZtYQpVY+LIy8vDuXPnmCxNRP/peFQixqw4jpik27DQmCG3hNkfs39+XTAkiMEQkR6xj5COsGqMiLSRlJGNCStPYGfEjVLvEcGQu6MN9r7ZGeaawtCIiIy2jxAREd3hZGuFEe3qlHmP+MlTLJcdjkyotHERUekYCBER6dCNtKxy3Xc99d/cISJSDgMhIiIdcrW30el9RKRfDISIiHSola+zrA77r+yfDadicT2Fs0JERhMIffbZZ3JLjUL79u1DVta/U8CpqakYNWqU7kdIRGRERAK0KJEXygqGfjwUhfYzduKTP87KJGsiUka5q8bMzc0RFxcHV1dXeS6ysE+cOIE6de4kBl67dg2enp6y5NzYsXyeiB7U5rC4UvsIOVaxwmdbzuJ4VJK8bm9jgZfa18Hwtr6ws9a6vRsRVUb5vEajQXx8fFEgZG9vj5MnT5pkIFSI5fNE9CBEJ2lRHSYSo0VOkFg2KyyZF//1bg+/jplbI3A2PlVec6lqhdGd6mJQay9YW5grPHoidXx+80cPIiI9EUFPiF/1Ep8zMzNDV383dG7oivWnYjH7z3O4cutON+rFeyIxrms99GteExbmTOUk0if+CyMiUpBGY4a+gTWxbWIHTH8iAG4O1rI79Ru/nkL3Obux6XQc8rlHGZHeaDUjtHjx4qItNXJzc7F06VK4uLgUJUsTEVHFWJprMLi1N/oH1cLyA5fx1a6LuHgjXW7kGlDTAa93b4j29VzkTBIR6U65c4R8fHzK9Q8wMjISpoI5QkSklNTMHCzaE4lv91xCevad3EuRY/RmjwZo4e2s9PCIDBr3GtMRBkJEpLRbaVlyduj7g1eQnZsvr4m8ote6NYC/J/9fIioJAyEdYSBERIYiNuk2vtxxHquOXpXVaELvZp6Y+Eh9+LrYKT08ItPfdHXHjh3w9/eXL34v8UaNGzfG7t27YQpEDyHxew0ODlZ6KEREkqdTFXzcryn+nNBeBkDC+pOx6Dr7L0xefQpxyf82vCWi8iv3jFCfPn3QqVMnTJgwocTn586di507d2LNmjUwFZwRIiJD9XdsMmZuicDOiBvy3MpCg2cf8saoTnXhbGel9PCITG9pzNvbG5s3b0ajRo1KfP7s2bPo1q0boqKiYCoYCBGRoTtyOQEzNkfg8OUEeW5nZY4X2tXBC+18YW9jqfTwiExnaUx0jra0LP0flYWFBW7cuPOTCRERVY5gH2esfOkhLB0ejMaeDrLC7Ivt59H+s51YtPsSMnNMp9s/kT6UOxCqWbMmwsLCSn3+1KlT8PDw0NW4iIionERrk44NXLF+zMOYPygIdWrYITEjB9M3haPjjF1YcSgKOXl3Ks6IqIJLY6+88gp27dqFI0eOwMbGpthzYlf6Vq1ayRwikStkKrg0RkTGKDcvH6tDYzBn2znE/rPpq091W0x4pD56N/WU3ayJTFmKPnKExNJYUFCQ3IV+zJgxaNCgQVFuUOFO7aGhoXBzc4OpYCBERMYsKzcPPx6MwvydF3ArPVtea+huj9e7N5C9iNilmkyV3voIXblyBSNHjsSWLVvkzsnyBczM0L17dxkM+fr6wpQwECIiU5CelYsleyPxze5LSM3KlddaeFeTAdFDdUreFJbImOm9oWJiYiIuXLggg6F69eqhWrVqMEUMhIjIlCRlZGPBXxexbP9lZObcyRlqV88Fb3RviCa1HJUeHpHhB0KXL1/Gn3/+iZycHLRv3x4BAQEwZQyEiMgUXUvJlF2qfz4cjdx/ulT3DHDHq93qo66rvdLDIzLMQEg0S3zsscdkYnRhufySJUswZMgQmBqxzFeY93Tu3DkGQkRkkqJuZciE6jUnYiA+CUQOdb+gWhjftR5qVbMtuk9s6XE4MgHXUzPham8jN381Z8I1qS0Qevjhh+Hi4oIFCxbIqrF33nlHdpGOjY2FqeKMEBGpQUR8KmZtjcDWM9fkuaW5GQa39sboTnVx7EoCpq0/g7h/qs8ED0cbTO3tjx4BbJlCKgqEnJycsH//frkHl5CRkSFfXFSTVa9umsl2DISISE2ORyVixpYI7L94S55bmWuQXUL/ocK5oAVDghgMkXo6S4sXFTNChWxtbVGlShX5JkREZPyae1XDihEP4ccXWqNpLccSgyCh8KdnMVMkls2IjJmFNjeLsnkRYRXKz8/H9u3bi3WcFpuzEhGR8Wpb1wWTezbE04sOlXqPCH/EcpnIHQrxM81VAVIHrQKhoUOH3nftpZdeKnosegqJBGMiIjJu11Ozynnfv7lDRCYdCInZHyIiUgdRHabL+4gMVblzhIiISD1EibyoDiurSF48L+4jMmYMhIiI6D6iT5AokRdKC4befrQR+wmR0WMgREREJRKl8aJE3t2x+PJXYehzMjpJkXERKZYsTURE6guGHvF3L9ZZOjE9C6NWHMeiPZFo4e2MHgHuSg+TqMIYCBERUZnE8te9JfIvRCVh8d5IvP7LSTTysId3dTvFxkdU6UtjSUlJWLx4MSZPnoyEhAR5LTQ0FDExMQ80GCIiMg5v9myIFt7VkJqVi5E/hCIzh61TSCWB0KlTp1C/fn18+umnmDlzpgyKhNWrV8vAyBSIDVfFViLBwcFKD4WIyCBZmmswf1AQqttZ4UxcCt77/W+lh0RUOYHQxIkTMWzYMJw/f15uvlqoV69e2L17N0zB6NGjcebMGRw5ckTpoRARGSyRRP3FU81hZgb8fCQavxyNVnpIRPoPhERwcHc36UI1a9ZEfHy89iMgIiKj9XA9F0zoWl8+nrIuDOFxKUoPiUi/gZC1tbXcgPVe586dQ40aNbR9OSIiMnJjOtVF+/o1kJmTj1E/hiI1M0fpIRHpLxASm6q+//77yMnJKdpfLCoqCm+++Sb69++v7csREZGR02jMMGdgIDwdbRB5Mx1v/nYKBQXclZ5MNBCaNWsW0tLS4Orqitu3b6NDhw6oW7cu7O3tMX36dP2MkoiIDJqznRXmDQ6CpbkZNp2Ox3f7Lis9JKJyMSuoYNi+d+9eWUEmgqKgoCB07doVpkYsATo6OiI5ORkODg5KD4eIyOAt3ReJ99afgYXGDCtfCpEl9kSG/Pld4UBIDRgIERFpR3ykjPnpODaeipObsm545WFUr2qt9LBIZVK0+PyuUGfp7du3y+P69evIz88v9tySJUsq8pJERGQCRN7op/2byuqxSzfSMX7lCSwd3oqbs5Lp5AhNmzYN3bp1k4HQzZs3kZiYWOwgIiJ1q2ptgQWDW8DGUoM952/iyx3nlR4Ske6Wxjw8PPDZZ5/hmWeeganj0hgRUcWtDr2KiatOyoaLy4a3kiX2RIb2+a31jFB2djbatGnzIOMjIiIV6BdUC0+38oL4cXvcz8cRm3Rb6SERPXgg9MILL2DFihXafhkREanQ1N7+aOzpgMSMHIxZEYrs3OJ5pURGsTQm9hcrJJKjly1bhqZNm8rD0tKy2L2zZ8+GqeDSGBHRg4u6lYFHv9yD1MxcPNfWF+/29ld6SGTiUnRdNXb8+PFi54GBgfLXsLCwBxknERGpgFd1W8x+MhAjlh/Fkn2RaOlTDb2aeCg9LKLyB0I7d+4sz21EREQlesTfDS91qIOv/7qEN349hYbu9qhTo6rSwyLSPkfoueeeQ2pq6n3X09PT5XNEREQleb1bA7TydUZaVq7cnPV2dp7SQyLSPhAS+UFij7F7iWvLly/X1biIiMjEWJhrMO/p5nCpao2z8al4Z20YN2cl4wmEROKRSDoSf2nFjJA4LzxEI8VNmzbJjVhNwfz58+Hv74/g4GClh0JEZFJcHWww9+lAiEbTv4Vexaqj0UoPiVSu3A0VNRqNbJ1e6guZmcmu02+//TZMBavGiIj0Y/7OC5ixJQJWFhqsGdUGjT0dlR4SmRC97DUmEqZFzNS5c2f89ttvcHZ2LnrOysoK3t7e8PT0fLCRExGRKozs4IdjVxKx4+x1mS/0+5iH4VileDsWIoPcYuPKlSvw8vIqc3bIVHBGiIhIf5IysvHo3L2ISbqNbv5u+PqZFqr4bCEj32JDzPzwLyoRET0oJ1srLBgSBCtzDbaeuYbFeyKVHhKpkNaBEBERka40reWEKf90mv5k81kcuZyg9JBIZRgIERGRooa09kLfQE/k5Rdg9I+huJGapfSQSEW0CoREOlFUVBQyMzP1NyIiIlIVkW7x0RNNUNe1Kq6nZsmd6kVQRGSQgVDdunURHc2+D0REpDt21hZYOCQItlbm2H/xFuZsO6f0kEgltAqERC+hevXq4datW/obERERqVJdV3t83K+JfPzljgvYGXFd6SGRCmidI/TJJ5/g9ddf587zRESkc30Da+KZh7zl4wkrT+BqYobSQyITp3UfoWrVqiEjIwO5ubmykWKVKlWKPZ+QYDoZ/+wjRERU+bJy8zBg4QGcupqMZrWd8MtLIbIDNZGinaULzZkzR9svISIiKjdrC3PMHxSEx77ci5PRSfhoUzje69NY6WGRidJ6RkhNOCNERKSc7eHX8Pyyo/Lxl083R+9m3MaJDGBGSMjLy8PatWsRHh4uzxs3bow+ffrA3Ny8Ii9HRER0ny6N3DCqox++2nURk347hUYeDrLEnkjRGaELFy6gV69eiImJQYMGDeS1iIgI1K5dGxs3boSfnx9MBWeEiIiUlZuXjyHfHsLBSwmo71YVa0e3ha1VhX6GJxVJ0edeY2PHjpXBjuglFBoaKg/RZNHX11c+R0REpCsW5hrMfbo5athb49y1NLy9Jkz2tCNSbEbIzs4OBw8eRJMmd3o9FDp58iTatm2LtLQ0mArOCBERGYZDl25h0OJDsuO06EI9qLWX0kMitc4IWVtbIzU19b7rIgAS5fRERES61rpOdbze/U46xnu//43TV5OVHhKZCK0DocceewwvvvgiDh06JKcnxSFmiF5++WWZME1ERKQPL7arg66N3JCdl49RK44hOSNH6SGRGgOhuXPnyhyhkJAQ2NjYyEMsiYk9yL744gv9jJKIiFRPozHDrAHNUNu5CqITbuPVX04gn5uzUmXkCIm1tnvX2ET1WGH5fKNGjWQgZGqYI0REZHjCYpLRb8F+ZOfmY1LPhni5g+lUK5OB5giJbTWuX7+z+V3nzp2RlJQkA5/evXvLwxSDICIiMkwBNR3xXu87naZnbInAwUvcCJwqrlyBUNWqVYt2nN+1axdycrguS0REynm6VW30a15TVpG98tNxXE/NVHpIZKTK1ZWqa9eu6NSpk1wCE5544olSK8R27Nih2xESERHdw8zMDB8+EYCw2GTZX2jsT8fxw/OtZd8hIp0HQj/88AOWLVuGixcv4q+//pJbatja2mr1RkRERLokOkwvGNICfb7cKztPz/7zHN7o0VDpYZGpN1QUM0Nr1qyBk5MTjIWYwRJLel26dMGvv/5a7q9jsjQRkeFbfzJWLo8J3w5tKfcoI3VL0WdDxZ07dxpVECSMGzcOy5cvV3oYRESkB2JX+mFtfOTjCStPIDohQ+khkRFRxWJqx44dYW9vr/QwiIhIT97q1QiBtZ2QkpmLUT+GIis3T+khkZFQPBDavXu3LMH39PSUyW9r166975758+fDx8dHNm9s3bo1Dh8+rMhYiYjIMFlZaDB/cBCcbC1xOiYZH2w4o/SQyEgoHgilp6ejWbNmMtgpycqVKzFx4kRMnTpV7nQv7u3evXtRXyMhMDAQAQEB9x2xsbGV+DshIiIl1XSqgjkDA2FmBvxwMAprj8coPSQylaqxQrm5ufjoo4/w3HPPoVatWjoZQM+ePeVRmtmzZ2PEiBEYPny4PF+4cCE2btyIJUuWYNKkSfLaiRMndDKWrKwsedydbEVERMajYwNXvNKpLubuuIDJq0+jsacD6rkxNYJ0NCNkYWGBGTNmyICoMmRnZ+PYsWOyj1EhjUYjzw8cOKDz9/v4449llnnhUbt2bZ2/BxER6de4rvXRtm513M7Jw8s/HEN6VuV8ZpFKlsbEFhuil1BluHnzJvLy8uDmVrwUUpzHx8eX+3VE4DRgwABs2rRJzmSVFkRNnjxZltoVHtHR0Q/8eyAiosplrjHDF081h5uDNS7eSMek1aehZacYUhGtlsYEsYwllqROnz6NFi1awM7Ortjzffr0gaHZtm1bue6ztraWBxERGTeXqtaYPygIA785KPsMtfKphkGtvXE4MkFux+Fqb4NWvs4yaCJ10zoQGjVqVFHuzr1E1ZeYwdEVFxcXmJub49q1a8Wui3N3d3edvQ8REZmelj7OmNyzIT7cGI731v+NOdvO41Z6dtHzHo42mNrbHz0CPBQdJxnZ0lh+fn6phy6DIEHsZyZmnbZv317s/cV5SEgI9EVUsPn7+yM4OFhv70FERPr3/MO+CKztiLx8FAuChPjkTIz8IRSbw+IUGx8pT/Hy+bS0NFn1VVj5FRkZKR9HRUXJc1E6v2jRIrnXWXh4OEaOHClL7guryPRh9OjROHPmDI4cOaK39yAiIv3LLwDikkvemb4wa2ja+jNyF3tSJ62XxgSRLD1z5kwZmAhi9uT1119Hu3bttH6to0ePyv3LConARxg6dCiWLl2KgQMH4saNG3j33XdlgrToGbR58+b7EqiJiIjuJXKCrqX82xblXiL8EYGSuC/Er3qljo2MNBASO9GL2Zh+/fph7Nix8tq+ffvkhqYicBk0aJDW21/8Vzb/mDFj5EFERKQNkRity/vI9GgdCE2fPh2fffYZJkyYUHRNBEQiefqDDz7QOhAiIiLSF1EdVh5iaw5SJ61zhC5duiT3BruXKJsX+T1ERESGQpTIi+qw/yqSf+OXU1hxKAo5IquaVEXrQEh0W767iuvuXj2m0omZVWNERKZB9AkSJfLCvcFQ4Xk1W0tcS83CW2tO45HZf2HdiRjkM3laNcwKtGy3uWDBAowfP17uN9amTZuiHCGRH/TFF1/gpZdegqkQe42JrTZEl2kHBwelh0NERBUkSuRFddjdFWSFfYQ6NXSVs0HzdlwoKrFv6G6P17o1QJdGrrJHHpnu57fWgZCwZs0azJo1q6hqrFGjRrJqrG/fvjAlDISIiEyHKJEvq7O02JPsu32R+Hr3JaRm3tmfLMjLCa93b8iKMiOjt0BIH7vPGzIGQkRE6pOUkY2Ff13C0v2RyMy5kzPUrp4LXu/eAE1rOSk9PFJ6Rqhq1aoICwuDj48PTB0DISIi9bqekol5Oy/gp8MiifrOR2WPxu54tVt91HOzV3p4pKPPb62TpUW/oMrafZ6IiEgprg42eL9vAHa82hH9gmpCpApt/jse3efsxqurTiI6IUPpIZIOaD0jtHDhQkybNg2DBw82mt3nK1I1Jg6xd9q5c+c4I0RERDh3LRWztkZgy993NgK3NDfD0628MKZz3XL3KyITWBrTaEqfRNL17vNK49IYERHd62R0EmZujcCe8zfluY2lBsPb+uLl9n5wZGNGdVSNqQUDISIiKs3+izcxY0sEjkclyXN7Gwu83MEPw9r4wM66Qlt5kqHnCOXk5MDCwkImSxMREalZGz8XrB7ZBoufbSn7DomSexEYdZixE0v3RSIr13RWSEyZVoGQpaUlvLy8TGr5i4iIqKJESkhXfzdsGtsOXzwVCO/qtriZlo331p9B55l/YdXRaORy2w6DpvXS2LfffovVq1fj+++/h7OzM0wZl8aIiEgbYq+yX45exRfbz+FaSpa85lfDDq92a4CeAe7sUm0KOULNmzfHhQsX5DKZt7f3fVVjoaGhMBUMhIiIqCIyc/Lw/YEr+GrXBSRm5MhrTWo64rXuDdC+ngsDIgP6/NY6m+vxxx+Hqbu7fJ6IiEhbNpbmGNG+Dp5qVRuL90Ri8Z5LOB2TjKFLDsutPd7o3gAtfUx7VcVYsGqsDJwRIiIiXbiVloUFuy5i+cEryM69kzPUuaGr7FLd2NNR6eGZHL2XzyclJeHXX3/FxYsX5WarIldILIm5ubmhZs2aMBUMhIiISJfikm9j7vYLMolabAIr9G7miYmP1IevS/FUEzLQQOjUqVPo2rWrfIPLly8jIiICderUwTvvvIOoqCgsX74cpoKBEBER6UPkzXR8/uc5/H4yVp6ba8zwZMtaeKVzPXg6VVF6eEZPr3uNTZw4EcOGDcP58+dhY/NvS/FevXph9+7dFRsxERGRiojZn7lPN5dl910ausrZoZ8OR6PjzF34YMMZuZRGlUPrQOjIkSN46aWX7rsulsTi4+N1NS4iIiKT5+/pgG+HBeO3kSFo7ess84e+3RuJ9p/txOw/zyEl807FGRlQIGRtbS2nnO4lNietUaOGrsZFRESkGi28nfHziw9h+XOtZJl9enYe5m4/LwOib3ZflOX4hcTs0YGLt7DuRIz8tTDXiCpG6xyhF154Abdu3cKqVatkkrTIGTI3N5dl9e3bt8ecOXMqOBTDwxwhIiKqbOJjeXNYvNzY9eKNdHnNzcEaY7vUg2MVS0zfGI645Myi+z0cbTC1tz96BHgoOGoVJUuLF/3f//6Ho0ePIjU1FZ6ennJJLCQkBJs2bbqvwaKx9xESM10MhIiIqLKJmZ41x2NkUnVM0u1S7ytszbhgSBCDocrcfX7fvn04efIk0tLSEBQUJCvJTA1nhIiISGli89YVh6JkEnVpq2AiGHJ3tMHeNzvLCjS1S9FnZ+lCbdu2lQcRERHpj7WFORq6O5QaBAniKbFcdjgyASF+1StzeOpLliYiIqLKdT01U6f30b8YCBERERk4V3sbnd5H/2IgREREZODERq2iOqy07B9xXTwv7iPtMBAiIiIycCIBWpTIC2al5AiJ55korcdAKDc3F1lZxVt+X7t2DdOmTcMbb7yBvXv3VuDtiYiIqDxEabwokRfVYffycrZFN393RcZl7MpdPj98+HBYWVnh66+/lueih1Djxo2RmZkJDw8PnDlzBuvWrZN7jpkKls8TEZEh9hcS1WEiMdraQoPXVp1EWnYeZj/ZDP2Caik9PNPddFX0Derfv3/RudhlXjQcFJuvin5CYjPWGTNmPNjIiYiIqExi+UuUyPcNrClniUZ3rievz9gSgdvZ/27FQeVT7kAoJiYG9erd+cMWtm/fLgMjEXEJQ4cOxd9//w1TILpK+/v7Izg4WOmhEBERlWl4Wx/UdKoi+wgt3nNJ6eGYbiBkY2OD27f/bfF98OBBtG7dutjzosu0KRg9erRc6jty5IjSQyEiIiqTjaU53uzZUD5e8NdF9hLSVyAUGBiI77//Xj7es2ePTJTu3Llz0fMXL16U+44RERFR5erd1AOBtZ2QkZ0n9yYjPQRC7777Lr744gv4+fmhe/fuGDZsmEySLrRmzRpuuUFERKQAMzMzTHmskXy88kg0zsanKD0ko1HuvcY6dOiAY8eOYevWrXB3d8eAAQPumzFq1aqVPsZIRERE/6GFtzMebeKBjafjMH1jOJY/10oGSAT97D6vBiyfJyIiYxJ1KwNdZ/+F7Lx8fDc8GJ0auEKNUvSx+/zu3bvLdV/79u3L+5JERESkQ17VbTGsrQ++2X0JH20MR7u6LrAw5yYSOgmEOnbsWDTFVtokknhe9BYiIiIiZYzuVBe/HI3G+etp+PlINIY85K30kAxaucPEatWqoXbt2pgyZYpsopiYmHjfkZCQoN/REhERUZkcq1hifNf68rGoIEvNzFF6SKYRCMXFxeHTTz/FgQMH0KRJEzz//PPYv3+/XHsT63CFBxERESlrUGsv1Klhh1vp2fhq10Wlh2MagZDYZ2zgwIHYsmULzp49i6ZNm2LMmDFylujtt9+Wm7ISERGR8izNNXir551y+m/3RuJqYobSQzJYFcqg8vLykn2Ftm3bhvr16+OTTz6RGdpERERkGLo0ckVInerIzs3HZ5sjlB6O6QRCWVlZWLFiBbp27YqAgAC4uLhg48aNcHZ21s8IiYiISGuigOntRxtB1Dn9fjIWJ6KTlB6ScQdChw8fxsiRI2UzRbHLfJ8+fRAdHY1Vq1ahR48eMCXcdJWIiExBQE1H9A+qJR9/uOFMqVXfalbuhooajUYuiYld5lu0aFHqfSJAMhVsqEhERMYuPjkTnWbuwu2cPHw1OAi9mvy7PZap0ubzW6tA6L+YWh8hBkJERGQKRBn9F9vPw8vZFn9ObA9rC3OYshQtPr/LvTSWn5//n4cpBUFERESm4qUOdeBqb42ohAws339F6eEYFJ323b59+7YuX46IiIh0wNbKAq91byAfz91xHgnp2UoPybQCIVFJNmvWLPj6+uri5YiIiEjHRNK0v4cDUjNzMXf7eaWHY3yBkAh2Jk+ejJYtW6JNmzZYu3atvP7dd9/JAGjOnDmYMGGCPsdKREREFWSuMcM7j95psvjDwSu4eCNN6SEZVyAkGiguWLAAPj4+uHz5MgYMGIAXX3wRn3/+OWbPni2vvfnmm/odLREREVVYm7ou6NLQFbn5Bfh401mlh2Ncu8//8ssvWL58uSyPDwsLk1tsiG01Tp48WbQrPRERERm2yb0aYde5G9gWfg0HLt5CiF91qFm5Z4SuXr1a1D9IdJS2traWS2EMgoiIiIxHXdeqGNzaSz7+cOMZ5Oeru8liuQMhURovNl4tZGFhgapVq+prXERERKQn47rUg72NBf6OTcHq4zFQs3IvjYm+i8OGDZMzQUJmZiZefvll2NnZFbtv9erVuh8lERER6Uz1qtYY06kuPv7jLGZuiUCvJu6yxF6Nyv27Fltr3G3IkCH6GA8RERFVgqFtfPDDoSuITriNRbsjMa5rPahRubfYUCNusUFERKZsw6lYjFlxHFUszbHr9Y5wc7CBKdDLFhtERERkWh5t4oEgLye5IeusrRFQIwZCREREKmVmZoZ3HvOXj385dhVnYlOgNgyEiIiIVCzIqxoea+oBkSgzfdMZWRylJgyEiIiIVO7NHg1hZaHBvgu3sDPiOtSEgVAJ5s+fD39/fwQHBys9FCIiIr2r7WyL4W195OPpG8ORk5cPtWAgVILRo0fjzJkzOHLkiNJDISIiqhSjO9WFs50VLt5Ix8+Ho6AWDISIiIgIDjaWmPBPL6HPt51HSmYO1ICBEBEREUlPt/KSe5ElpGdj/s4LUAMGQkRERCRZmGvwVq+G8vF3ey8jOiEDpo6BEBERERXp1MAVbetWR3ZePj7dfBamjoEQERERFWuy+HYvf5iZiS044nDsSiJMGQMhIiIiKsbf0wEDWtSSjz/caNpNFhkIERER0X1e7dYAtlbmOB6VhI2n42CqGAgRERHRfcRO9C+195OPP/njLDJz8mCKGAgRERFRiUa094W7gw2uJt7Gsv2XYYoYCBEREVGJbK0s8Fr3BvLxvB0XcCstC6aGgRARERGVql/zmgio6YDUrFx8sf08TA0DISIiIiqVRnOnnF748VAULlxPgylhIERERERlCvGrjq6N3JCXX4CPN4XDlDAQIiIiov80uVdDWGjMsP3sdey7cBOmgoEQERER/Se/GlUx5CFv+fjDjeFydsgUMBAiIiKichnXpR4cbCwQHpeC30KvwhQwECIiIqJyqWZnhVc615OPZ26JQHpWLowdAyEiIiIqt2fbeMPL2RbXU7Pwze5LMHYMhIiIiKjcrC3MMalnQ/n4690XEZ+cCWPGQIiIiIi00jPAHS29qyEzJx8zt0bAmDEQIiIiIq2YmZnhncfuNFkUSdNhMckwVgyEiIiISGuBtZ3Qp5knCgqA6RvDUSAeGCEGQkRERFQhb/RoACsLDQ5cuoXt4ddhjBgIERERUYXUqmaL5x/2lY8/2hSOnLx8GBuTD4Sio6PRsWNH+Pv7o2nTpvjll1+UHhIREZHJGNXRD9XtrHDpZjpWHIqCsTH5QMjCwgJz5szBmTNnsHXrVowfPx7p6elKD4uIiMgk2NtYYsIj9eXjOdvOIfl2DoyJyQdCHh4eCAwMlI/d3d3h4uKChIQEpYdFRERkMp4Kro16rlWRmJGD+TsvwJgoHgjt3r0bvXv3hqenpyzHW7t27X33zJ8/Hz4+PrCxsUHr1q1x+PDhCr3XsWPHkJeXh9q1a+tg5ERERCRYmGvw1qON5OOl+y4j6lYGjIXigZBYpmrWrJkMdkqycuVKTJw4EVOnTkVoaKi8t3v37rh+/d/sdDHjExAQcN8RGxtbdI+YBXr22WfxzTfflDqWrKwspKSkFDuIiIjov3WsXwPt6rkgOy8fn24+C2NhVmBAhf9iRmjNmjV4/PHHi66JGaDg4GDMmzdPnufn58sZnVdeeQWTJk0q1+uKAOeRRx7BiBEj8Mwzz5R633vvvYdp06bddz05ORkODg4V+j0RERGpxdn4FPT6Yg/yC4BfXw5BSx9nRcYhJjIcHR3L9fmt+IxQWbKzs+VyVteuXYuuaTQaeX7gwIFyvYaI84YNG4bOnTuXGQQJkydPln9ohYeoOCMiIqLyaejugCdb3kk/+dBImiwadCB08+ZNmdPj5uZW7Lo4j4+PL9dr7Nu3Ty6vidwjsYQmjtOnT5d4r7W1tYwc7z6IiIio/CZ2qw9bK3OciE7C+lNxMHQWMHEPP/ywXE4jIiIi/XO1t8HIDn6Y9ec5fPrHWXTzd4ONpTkMlUHPCIlSd3Nzc1y7dq3YdXEuSuGJiIjI8LzQrg48HG0Qk3Qb3+27DENm0IGQlZUVWrRoge3btxddE7M74jwkJERv7ysq2EQnapGkTURERNqpYmWO17s3kI9FX6GbaVkwVIoHQmlpaThx4oQ8hMjISPk4KupOm25ROr9o0SIsW7YM4eHhGDlypCy5Hz58uN7GNHr0aNmJ+siRI3p7DyIiIlP2eGBNNKnpiLSsXNlx2lApHggdPXoUzZs3l0dh4CMev/vuu/J84MCBmDlzpjwXic4iSNq8efN9CdRERERkODQaM7zzT5NFsQfZ+WupMEQG1UfI0GjTh4CIiIju9+Lyo9h65ho6NaiB74a3QmUwmT5CREREZNwm92oEC40ZdkbcwJ7zN2BoGAgRERGR3vi62OGZEG/5ePrGcOSJttMGhIFQCVg1RkREpDvjutSDYxVLnI1Pxa/HDGvXBuYIlYE5QkRERLqxeM8lue1GDXtr7HqtI+ys9dfTmTlCREREZFCeDfGBT3Vb3EjNwtd/XYShYCBEREREemdlocGkng3l42/2XEJc8m0YAgZCREREVCm6N3ZHKx9nZObk47PNZ3Hg4i2sOxEjf1UqiZo5QmVgjhAREZFunbqahD7z9t13XexNNrW3P3oEeDzwezBH6AGxaoyIiEg/YpNKXhKLT87EyB9CsTksDpWJM0Jl4IwQERGR7ojlr4c/3YG45MwSnzcD4O5og71vdoa5RpxVDGeEiIiIyOAcjkwoNQgSxMyMeF7cV1kYCBEREVGluJ6aqdP7dIGBEBEREVUKV3sbnd6nCwyEiIiIqFK08nWW1WGlZf+I6+J5cV9lYSBERERElUIkQIsSeeHeYKjwXDz/IInS2mIgVAKWzxMREemH6BO0YEiQrA67mzgX13XRR0gbLJ8vA8vniYiI9FdKL6rDRGK0yAkSy2G6mgnS5vNbf1u/EhEREZVCBD0hftWhNC6NERERkWoxECIiIiLVYiBEREREqsVAiIiIiFSLgRARERGpFgOhErCPEBERkTqwj1AZ2EeIiIjItD+/OSNEREREqsVAiIiIiFSLnaXLULhqKKbYiIiIyDgUfm6XJ/uHgVAZUlNT5a+1a9dWeihERERUgc9xkStUFiZLlyE/Px+xsbGwt7eHmZluNoIzxahbBIrR0dFMKDcA/H4YHn5PDAu/H+r4fhQUFMggyNPTExpN2VlAnBEqg/jDq1WrltLDMAriLzD/UzEc/H4YHn5PDAu/H6b//XD8j5mgQkyWJiIiItViIERERESqxUCIHoi1tTWmTp0qfyXl8fthePg9MSz8fhgWawP4fjBZmoiIiFSLM0JERESkWgyEiIiISLUYCBEREZFqMRAiIiIi1WIgRBXy8ccfIzg4WHbddnV1xeOPP46IiAilh0X/+OSTT2Q39PHjxys9FNWKiYnBkCFDUL16dVSpUgVNmjTB0aNHlR6WKuXl5WHKlCnw9fWV3ws/Pz988MEH5dqHinRj9+7d6N27t+z0LP5vWrt2bbHnxffi3XffhYeHh/wede3aFefPn0dlYCBEFfLXX39h9OjROHjwIP7880/k5OSgW7duSE9PV3poqnfkyBF8/fXXaNq0qdJDUa3ExES0bdsWlpaW+OOPP3DmzBnMmjUL1apVU3poqvTpp59iwYIFmDdvHsLDw+X5Z599hi+//FLpoalGeno6mjVrhvnz55f4vPh+zJ07FwsXLsShQ4dgZ2eH7t27IzMzU+9jY/k86cSNGzfkzJAIkNq3b6/0cFQrLS0NQUFB+Oqrr/Dhhx8iMDAQc+bMUXpYqjNp0iTs27cPe/bsUXooBOCxxx6Dm5sbvv3226Jr/fv3lzMPP/zwg6JjUyMzMzOsWbNGriQIIgwRM0WvvvoqXnvtNXktOTlZfs+WLl2Kp556Sq/j4YwQ6YT4Sys4OzsrPRRVE7N0jz76qJxWJuX8/vvvaNmyJQYMGCB/QGjevDkWLVqk9LBUq02bNti+fTvOnTsnz0+ePIm9e/eiZ8+eSg+NAERGRiI+Pr7Y/1tin7DWrVvjwIEDen9/brpKDyw/P1/mooilgICAAKWHo1o///wzQkND5dIYKevSpUtyKWbixIl466235Pdk7NixsLKywtChQ5Uenipn6MQu5w0bNoS5ubnMGZo+fToGDx6s9NAIkEGQIGaA7ibOC5/TJwZCpJNZiLCwMPkTFikjOjoa48aNk/laNjY2Sg9H9cQPB2JG6KOPPpLnYkZI/BsR+Q8MhCrfqlWr8OOPP2LFihVo3LgxTpw4IX94E8sx/H4Ql8bogYwZMwYbNmzAzp07UatWLaWHo1rHjh3D9evXZX6QhYWFPES+lkg+FI/FT8BUeUTli7+/f7FrjRo1QlRUlGJjUrPXX39dzgqJXBNRvffMM89gwoQJsvqVlOfu7i5/vXbtWrHr4rzwOX1iIEQVIpLbRBAkEt527Nghy1JJOV26dMHp06flT7qFh5iREFP/4rFYDqDKI5aJ720nIfJTvL29FRuTmmVkZECjKf5xJ/5NiJk7Up74/BABj8jjKiSWMkX1WEhIiN7fn0tjVOHlMDHNvG7dOtlLqHAdVyS4iUoMqlzie3BvfpYoPxU9bJi3VfnEbINI0BVLY08++SQOHz6Mb775Rh5U+UT/GpET5OXlJZfGjh8/jtmzZ+O5555Temiqqmi9cOFCsQRp8UOaKLAR3xexVCkqXevVqycDI9H3SSxdFlaW6ZUonyfSlvirU9Lx3XffKT00+keHDh0Kxo0bp/QwVGv9+vUFAQEBBdbW1gUNGzYs+Oabb5QekmqlpKTIfwteXl4FNjY2BXXq1Cl4++23C7KyspQemmrs3LmzxM+MoUOHyufz8/MLpkyZUuDm5ib/zXTp0qUgIiKiUsbGPkJERESkWswRIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiJ6AO+99x4CAwOVHgYRVRADISJSxLBhw2BmZiYPKysr1K1bF++//z5yc3OL7hGN78X+XK1bt0bVqlXh5OQkN5OdM2eO3EizMBApfJ27j4YNGyr4uyMiY8FNV4lIMT169MB3332HrKwsbNq0SW7ma2lpicmTJ8vnn3nmGaxevRrvvPMO5s2bhxo1auDkyZMyEPLx8SnakFFspLlt27Zir21hodv/3nJycuTY9EGfr01EZeOMEBEpxtraGu7u7vD29sbIkSPRtWtX/P777/K5VatW4ccff8RPP/2Et956C8HBwTL46du3L3bs2IFOnToVC3rE69x9uLi4lPneCxYsgJ+fn5yNatCgAb7//vtiz4tZJXFPnz59YGdnJ3cvFz755BO4ubnB3t4ezz//PDIzM+977cWLF6NRo0awsbGRM1NfffVV0XOXL1+Wr71y5Up06NBB3iN+n0SkDAZCRGQwqlSpguzsbPlYBAciQBGBz71EIOHo6Fjh91mzZg3GjRuHV199FWFhYXjppZcwfPhw7Ny5s9h9YtntiSeewOnTp/Hcc8/J4Exc++ijj3D06FF4eHgUC3IKx/3uu+/KwCk8PFzeO2XKFCxbtqzYfZMmTZJjEPd07969wr8XInpAlbLHPRHRPYYOHVrQt29f+Tg/P7/gzz//LLC2ti547bXX5LVGjRoV9OnT5z9fZ+rUqQUajabAzs6u2PHSSy+V+jVt2rQpGDFiRLFrAwYMKOjVq1fRufjvcfz48cXuCQkJKRg1alSxa61bty5o1qxZ0bmfn1/BihUrit3zwQcfyK8VIiMj5WvPmTPnP39vRKR/zBEiIsVs2LBBJkGLHJn8/HwMGjRIzrgId2KR8hEzR4VLaoUcHBxKvV/Mwrz44ovFrrVt2xZffPFFsWsiMfver3v55ZeLXQsJCSmaSUpPT8fFixflktmIESOK7hEJ4PfOYN372kSkDAZCRKQYkecj8nBEno6np2exBOf69evj7Nmz5XqdwqozXRO5QdpIS0uTvy5atEhWut3N3Nz8gV6biPSDOUJEpBgRDIgAxsvL674qLzE7dO7cOaxbt+6+rxOzRcnJyRV+X5HIvG/fvmLXxLm/v/9/ft2hQ4eKXTt48GDRY5FELQK6S5cuyd/X3Yevr2+Fx0tE+sMZISIySE8++aRMan766adl+Xy3bt1k+bxIXP7888/xyiuvFJXPi6Wn+Pj4+xKqRWBSktdff12+fvPmzWWl2vr162WZ/r0l+PcSyc2i/5FY1hJLaSIx+u+//0adOnWK7pk2bRrGjh0rl8JEewDRGkAkVicmJmLixIk6+bMhIt1hIEREBkkEMitWrJANFZcsWSKrsMSsUb169fDss88Wq7QSwYio4Lq3NL+k0nZBBFAiH2jmzJkyuBGzNaKfUceOHcsc08CBA2UO0BtvvCFfu3///rLsf8uWLUX3vPDCC7C1tcWMGTNkwCVmvZo0aYLx48c/8J8JEememciY1sPrEhERERk85ggRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiIiItViIERERERQq/8DlSfwiEQ5YjUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the convergence of the surrogate\n", "_o = []\n", "_RMS = []\n", "for r in R.values():\n", " _RMS.append((np.sqrt((((test_predictions[r['order']] - test_results))**2).mean())))\n", " _o.append(r['order'])\n", "\n", "plt.figure()\n", "plt.semilogy(_o, _RMS, 'o-')\n", "plt.xlabel('PCE order')\n", "plt.ylabel('RMS error for the PCE surrogate')\n", "plt.legend(loc=0)\n", "plt.savefig('Convergence_PCE_surrogate.png')\n", "plt.savefig('Convergence_PCE_surrogate.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "executable": " /usr/bin/env python", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 4 }