
LiDARTag: A Real-Time Fiducial Tag

for Point Clouds

Jiunn-Kai Huang, Shoutian Wang, Maani Ghaffari, and Jessy W. Grizzle

Abstract—Image-based fiducial markers are useful in problems
such as object tracking in cluttered or textureless environments,
camera (and multi-sensor) calibration tasks, and vision-based
simultaneous localization and mapping (SLAM). The state-of-the-
art fiducial marker detection algorithms rely on the consistency
of the ambient lighting. This paper introduces LiDARTag, a novel
fiducial tag design and detection algorithm suitable for light de-
tection and ranging (LiDAR) point clouds. The proposed method
runs in real-time and can process data at 100 Hz, which is faster
than the currently available LiDAR sensor frequencies. Because
of the LiDAR sensors’ nature, rapidly changing ambient lighting
will not affect the detection of a LiDARTag; hence, the proposed
fiducial marker can operate in a completely dark environment.
In addition, the LiDARTag nicely complements and is compatible
with existing visual fiducial markers, such as AprilTags, allowing
for efficient multi-sensor fusion and calibration tasks. We further
propose a concept of minimizing a fitting error between a point
cloud and the marker’s template to estimate the marker’s pose.
The proposed method achieves millimeter error in translation and
a few degrees in rotation. Due to LiDAR returns’ sparsity, the
point cloud is lifted to a continuous function in a reproducing
kernel Hilbert space where the inner product can be used to
determine a marker’s ID. The experimental results, verified by
a motion capture system, confirm that the proposed method can
reliably provide a tag’s pose and unique ID code. The rejection
of false positives is validated on the Google Cartographer indoor
dataset and the Honda H3D outdoor dataset. All implementations
are coded in C++ and are available at: https://github.com/UMich-
BipedLab/LiDARTag.

I. INTRODUCTION

Artificial landmarks referred to as fiducial markers are

often designed for automatic detection via a specific type of

sensor such as cameras [1]–[6]. The marker usually consists

of a payload, that is, a pattern that makes individual markers

uniquely distinguishable, and a boundary surrounding the

payload that is designed to assist with isolating the payload

from its background. Such artificial landmarks have been

successfully used in computer vision, augmented reality [1]

and simultaneous localization and mapping (SLAM) [7].

Images are sensitive to lighting variations, and therefore,

visual fiducial markers rely heavily on the assumption of illu-

mination consistency. As such, when lighting changes rapidly

throughout a scene, the detection of visual markers can fail.

Alternatively, light detection and ranging devices (LiDARs)

are robust to illumination changes due to the active nature of

the sensor. In particular, rapid changes in the ambient lighting

do not affect the detection of features in point clouds returned

J. Huang, S. Wang M. Ghaffari, and J. Grizzle, are with the Robotics
Institute, University of Michigan, Ann Arbor, MI 48109, USA. {bjhuang,
shoutian, maanigj, grizzle}@umich.edu.

Fig. 1: LiDAR-based markers can be used in tandem with camera-based
markers to address the issue of images being sensitive to ambient lighting.
This figure shows a visualization of LiDARTags of two different sizes in a
full point cloud scan.

by a LiDAR. Unfortunately, however LiDARs cannot detect

the fiducial markers designed for cameras. Hence, to utilize the

advantages of both sensor modalities, a new type of fiducial

marker that can be perceived by both LiDARs and cameras

is required. Such a new marker can enable applications such

as multi-sensor fusion and calibration tasks involving visual

and LiDAR data [8]. Designing such fiducial markers is

challenging due to inherent LiDAR properties such as sparsity,

lack of structure and the varying number of points in a scan.

In particular, the fact that an individual LiDAR return has no

fixed spatial relation to neighboring returns makes it difficult

to isolate a fiducial marker within a point cloud.

In this paper, we propose a novel and flexible design of

a fiducial marker, called LiDARTag, as shown in Figure 1.

A system is further developed to detect LiDARTags with

various sizes and to estimate their poses. Point clouds are

https://github.com/UMich-BipedLab/LiDARTag
https://github.com/UMich-BipedLab/LiDARTag

represented as functions in a Reproducing Kernel Hilbert

Space (RKHS) [9] to decode their IDs. The whole system

can run in real-time (over 100 Hz), which is even faster

than currently available data rates of LiDAR sensors. The

proposed LiDARTag can be perceived by both RGB-cameras

and point clouds. LiDARTags have been successfully used for

LiDAR-camera calibration [8], [10]. It can be further applied

to SLAM systems for robot state estimation and loop closures.

Additionally, it can help improve human-robot interaction,

allowing humans to give commands to a robot by showing

an appropriate LiDARTag. In particular, the present work has

the following contributions:

1) We propose a novel and flexible fiducial marker for

point clouds, LiDARTag, that is compatible with existing

image-based fiducial marker systems, such as AprilTag.

2) We develop a robust real-time method to estimate the

pose of a LiDARTag. The optimal pose estimate mini-

mizes an L1-inspired fitting error between the point cloud

and the marker’s template of known geometry.

3) To address the sparsity of LiDAR returns, we lift a point

cloud to a continuous function in an RKHS and use the

inner product structure to determine a marker’s ID among

a pre-computed function dictionary.

4) We present performance evaluations of the

LiDARTag where ground truth data are provided

by a motion capture system. We also extensively analyze

each step in the system with spacious outdoor and

cluttered indoor environments. Additionally, we report

the rate of false positives validated on the indoor Google

Cartographer [11] dataset and the outdoor Honda H3D

dataset [12].

5) We provide open-source implementations for the physical

design of the proposed LiDARTag and all of the associ-

ated software for using them, in C++ and Robot Oper-

ating System (ROS) [13]; see https://github.com/UMich-

BipedLab/LiDARTag [14].

The remainder of this paper is organized as follows. Sec-

tion II presents a summary of the related work. Section III

explains the tag design. Tag detection and pose estimation

are discussed in Section IV and Section V. The construction

of continuous functions and ID decoding are introduced in

Section VI. Experimental evaluations of the proposed Li-

DARTags are presented in Section VII. Finally, Section VIII

concludes the paper and provides suggestions for future work.

II. RELATED WORK

Fiducial marker systems were originally developed and

used for augmented reality applications [1], [2] and have

been widely used for object detection and tracking and pose

estimation [15]. Due to their uniqueness and fast detection

rate, they are also often used to improve Simultaneous Lo-

calization And Mapping (SLAM) systems [7]. To the best

of our knowledge, there are no existing fiducial markers for

point clouds. Among the many popular camera-based fiducial

markers are ARToolKit [1], ARTag [2], AprilTag 1-3 [3]–[5],

and CALTag [16].

In the following, we review some recent and well-known

fiducial markers for cameras. ARTag [2] [17] uses a 2D bar-

code to make decoding easier. AprilTag 1-3 [3]–[5] introduced

a lexicode-based [18] tag generation method in order to reduce

false positive detection. ChromaTag [6] proposes color gradi-

ents to speed up the detection process. RuneTag [19] uses rings

of dots to improve occlusion robustness and more accurate

camera pose estimation. CCTag [20] adopts a set of rings

to enhance blur robustness. More recently, LFTag [21] has

taken advantage of topological markers, a kind of uncommon

topological pattern, to improve longer detection range. This

also enables the decoding of markers with high distortion, and

these markers can be flexibly laid down. While there are some

fiducial markers using deep learning technique [22], [23], to

date, all of those detectors, still only work on cameras.

There are several deep-learning-based object detection ar-

chitectures for LiDAR point cloud. Most of the methods

for 3D object detection deploy a voxel grid representation

[24]–[26]. Recently, [25], [27], [28] have sought to improve

feature representation with 3D convolution networks, which

require expensive computation. Similar to proposed methods

for 2D objects [29]–[33], the proposed methods for 3D objects

generate a set of 3D boxes in order to cover most of the objects

in 3D space. However, most detectors are limited to specific

categories and none of these detectors or proposed methods

has adequately addressed rotation, perspective transformations,

or domain adoption.

Remark 1. As mentioned above, there exist several deep-

learning-based object detectors trained on large-scale Li-

DAR datasets [34]–[36]. These detectors are trained on

limited categories in a specific dataset, and if the training

and testing data are not consistent, the inference process

could fail. They would have to be retrained on new data

in order to be viable for our LiDARTag. Another option

could be to design our own detector and train on our own

datasets rather than using existing detectors. However, there

is no guarantee that the resulting detector would work for

varied scenes spanning a cluttered laboratory to spacious

outdoor environments. Additionally, the existing detectors rely

on powerful graphics processing units (GPUs) and they are

thus not suitable for lightweight mobile robots. On the other

hand, the detector proposed in this paper is robust to general

scenarios and achieves satisfactory results in practice. Deep-

learning-based methods, however, are interesting future work

and are discussed in Sec. VIII.

III. TAG DESIGN AND LIDAR CHARACTERISTICS

This section describes some essential points to consider

when designing and using a LiDAR-based tag system. In

particular, this section addresses how the unstructured point

cloud from a LiDAR results in different considerations in the

selection of a marker versus those used with a camera.

A. LiDAR Point Clouds vs Camera Images

Pixel arrays (i.e., an image) from standard RGB-cameras

of different resolutions are very structured, with the pixels

2

https://github.com/UMich-BipedLab/LiDARTag
https://github.com/UMich-BipedLab/LiDARTag

Fig. 2: This figure illustrates the unstructured nature of a LiDAR-point-cloud
return (left) for a planar surface with black and white squares (right). On the
left, the black and white dots are lower reflectivity and higher reflectivity,
respectively. The sparse region of the LiDAR is indicated in light yellow and
the dense region is marked in light blue. The returns are more irregular at the
black-white transitions. Red circles indicate missing returns and green bars
highlight larger gaps between returned points.

arranged in a uniform (planar) grid, and each image having

a fixed number of data points. A LiDAR returns (x, y, z)
coordinates of an object relative to a fixed frame in the device

as well as the intensity, which relies on the reflectivity/material

of the object. Some LiDARs also provide beam numbers.

The resulting 3D point clouds are typically referred to as

“unstructured” because:

• The number of returned points varies for each scan and

for each beam. In particular, LiDAR returns are not

uniformly distributed in angle or distance1.

• As shown in Fig. 2, high contrast between adjacent

regions of a target’s surface can result in missing returns

and in varying spaces between returns.

• When used outdoors, the number of returned points is

also influenced by environmental factors such as weather,

especially temperature.

Consequently, as opposed to an image, there is no fixed

geometric relationship between the index numbers of returns

from two different beams in a multi-beam LiDAR. A further

difference is the density of the collected data; currently,

basic cameras provide many more data points for a given

surface size at a given distance than even high-end LiDARs.

These summarized differences have an impact on how one

approaches the design of a LiDAR-based tag system vs. a

camera-based tag system.

B. Tag Placement and Design

As mentioned in Sec. III-A, a return from a typical LiDAR

consists of an (x, y, z) measurement, an intensity value i, and

a beam number (often called ring number, r). In this paper, we

propose exploiting the relative accuracy of a LiDAR’s distance

measurement to determine “features” when seeking to isolate

a LiDARTag in a 3D point cloud (see Sec. IV) and associating

1Some LiDARs have different ring density at different elevation angles.
For example, 32-Beam Velodyne ULTRA Puck LiDAR has dense ring density
between −5◦ and 3◦, and has sparse ring density from −25◦ to −5◦ and
from 3◦ to 15◦ [37]. Therefore, in a sparse region, a target may be only
partially illuminated/observed.

(a) (b)

(c) (d)

Fig. 3: (a) illustrates a LiDARTag consisting of two parts: a 3D object with
a rigidly attached, planar fiducial marker where t and h are the marker size
and height of the object respectively. (b) shows the marker should be placed
inside the yellow region and (c) illustrates an example of AprilTag being used
as a LiDARTag. (d) is the sensor setup consisting of a LiDAR, a camera and
several motion capture markers.

the isolated LiDARTag points with a continuous function to

decode the marker’s payload (see Sec. VI).

1) Tag design: A LiDARTag is assumed to consist of a

planar fiducial marker rigidly attached to a 3D object, as

shown in Fig. 3a. In particular, the marker shows different

intensity values when illuminated by a LiDAR. As indicated

in Sec. III-A, intensity relies on an object’s reflectivity and

material. Most types of fiducial markers for camera-based

systems could be adapted for use in LiDAR-based systems as

long as the payload is composed of differing reflectivities and

is placed inside the region highlighted in yellow in Fig. 3b.

Figure 3c shows an example of an AprilTag used as a Li-

DARTag. Because fiducial markers are usually printed from a

printer, however, markers with two colors such as AprilTag 1-

3 [3]–[5], ARTag [2], [17], InterSense [38], CyberCode [39],

or CALTag [16] can be most easily adapted for use in our

LiDARTag system, while Cho et.al [40] with multi-color

cannot.

For this initial study, we employ AprilTag3 as our fiducial

markers. Furthermore, within the AprilTag3 family of markers,

we select tag16h6c5, that is, a tag encoding 16 bits (i.e., 16

black or white squares), with a minimum Hamming distance

of 6, and a complexity of 5. The Hamming distance measures

the minimum number of bit changes (e.g., bit errors) required

to transform one string of bits into the other. For example, the

length-7 strings “1011111” and “1001011” have a Hamming

distance of 2, whereas “1011111” and “1001010” have a

3

Fig. 4: The system contains three parts: tag detection, pose estimation, and tag decoding. The detection step takes an entire LiDAR scan (up to 120,000 points
from a 32-Beam Velodyne ULTRA Puck LiDAR) and outputs collections of likely payload points of the LiDARTags. Next, a tag’s optimal pose minimizes the
L1-inspired cost in (8), though the rotation of the tag about a normal vector to the tag may be off by ±90◦ or 180◦ and will be resolved in the decoding
process. The tag’s ID is decoded with a function library inspired by [41], [42]. The decoded tag removes the rotation ambiguity about the normal.

Hamming distance of 3. The significance is that a lexicode

with a minimum Hamming distance h can detect h/2 bit errors

and correct up to ⌊(h− 1)/2⌋ bit errors [18]. The complexity

of an AprilTag is defined as the number of rectangles required

to generate the tag’s 2D pattern. For example, a solid pattern

requires just one rectangle, whereas, a white-black-white stripe

would need two rectangles (first draw a large white rectangle;

then draw a smaller black rectangle). For further details, we

refer the reader to the coding discussion in Olson [3].

Remark 2. One may argue that other members of the AprilT-

ags3 family, such as tag49h15c15, tag36h11c10, tag36h10c10,

and tag25h10c8, would be more appropriate. For example,

including more bits tends to increase the number of distinct

tags in a family, while a larger Hamming distance reduces

false positives. However, for tags of the same physical size

and the same distance from the sensor, more bits means fewer

returns per square and a higher error rate for individual

squares.

2) Tag placement: In Fig. 3a, let t be the tag size and h
be the thickness of the 3D object. The 3D object is assumed

to have t
√
2/4 clearance around it, and the first LiDAR ring

hitting at a LiDARTag is above 3/4 of the LiDARTag, see

Sec. IV-B. In particular, the fiducial marker can be attached

to a wall as long as the condition, h > t
√
2/4, in Fig. 3a is

met. Finally, it is not recommended to orient the marker like a

square due to the quantization error inherited in LiDAR sen-

sors, see [8, Sec. II].

IV. TAG DETECTION

This section provides the individual steps for detecting

potential markers and examining their validity. The over-

all pipeline is shown in Fig. 4. To localize potential Li-

DARTags within the point cloud, the first step is to find

features. The features are then grouped into distinct clusters2.

Most of these clusters will not contain tags. Therefore, it is

essential to validate whether a cluster contains a LiDARTag or

not.

A. Feature Detection

As mentioned in Sec. III-A, images are very structured in

that the vertical and horizontal pixel-pixel correspondences are

2Clustering features instead of clustering directly on a LiDAR scan is
critical to achieve real-time applications.

(a) (b)

(c) (d)

Fig. 5: Intermediate steps of the LiDARTag system. The system takes a full
scan point cloud and applies feature detection as defined in (1) and associates
the features into clusters (magenta spheres), as shown in (a). Using the
features, the clusters are filled from the original scan (different color dots
stand for different intensity values) as shown in (b). Later, boundary points
(indicated by boxes) are detected. After validating all the clusters, (d) shows
the result of the point cloud of a LiDARTag pulled back to the LiDAR origin
by HL

T
, which is a rigid-body transformation from the tag to the LiDAR that

minimizes an L1-inspired fitting error (8). The green box is the template of
the fiducial marker.

known. Consequently, various kinds of 2D kernels [43] can

be applied for edge detection. However, unlike images, raw

LiDAR point clouds are unstructured in that even if we have

the indices of all points in each beam, we do not know the

vertical point-point correspondences.

Therefore, to find a feature in a point cloud, an edge point

is defined as discontinuities in distance. Inspired by the point

selection method in LeGO-LOAM [44], a point is defined as

a feature if it is an edge point, and its consecutive n points are

not edge points (similar to plane features in LeGO-LOAM).

4

Given consecutive n+1 points, we choose to use a 1D kernel

to compute spatial gradients at each point to find edge points.

Let pi,m be the ith point in the mth beam so that the gradient

of distance ∇D(pi,m) can be defined as

∇D(pi,m) = ‖pi+l,m − pi,m‖2 − ‖pi−l,m − pi,m‖2, (1)

where ℓ is a design choice (here, ℓ = 1). If ∇D(pi,m) at

a point exceeds a threshold ζ, we then consider pi,m as

a possible edge point. Using distance gradients requires a

LiDARTag being ζ away from the background. For speed in

real time application, we do not apply further noise smoothing,

edge enhancement, nor edge localization. Finally, if there is

only one edge point in the consecutive n+1 points (n = 2 in

this paper), then the edge point is considered as a feature.

B. Feature Clustering

After determining the features in the current point cloud, we

group them into clusters using the single-linkage agglomera-

tive hierarchical clustering algorithm3 [45], [46]. As indicated

in Sec. III-A, LiDAR returns are not uniformly distributed in

angles or distance. The linkage criteria, therefore, considers

the x-y axes and the z-axis differently: signed Manhattan

distance is chosen for the x-y axes, and ring numbers are

selected for the z-axis. Similarly, boundaries of a cluster are

defined by the four center points of a cuboid’s faces and

maximum/minimum ring numbers, as shown in Fig. 6. The

algorithm loops over each feature, either linking it to an

existing cluster and updating its boundaries, or creating a new

cluster.

Remark 3. LiDAR rings are determined by the elevation angle

of an emitter. Most existing LiDARs provide not only (x, y, z, i)
values, but also a ring number of a data point. If ring numbers

are not available and there exists only one rotation axis in

the LiDAR, a ring number can be simply regressed against

elevation angle by taking the LiDAR’s ring numbers as a

discrete set of corresponding elevation angles, in which the

number of elevation angles is the same as the number of beams

of the LiDAR. The elevation angle of a data point can be

computed as

arctan

(
z√

x2 + y2

)
.

We use this method to regress ring numbers for the Google

Cartographer dataset. For more detail, see our implementation

on GitHub [14].

The boundaries (b1, · · · , b4, rmax, rmin) of a cluster are

the maximum/minimum x, maximum/minimum y and max-

imum/minimum ring numbers among all features in the clus-

ter. When a new cluster is created from a feature pk =
(x, y, z, i, r), the four center points of the faces are defined

as (x ± τ, y ± τ), with τ = t
√
2/4 for the (b1, · · · , b4). The

rmax and rmin are defined in terms of the ring numbers r,

3We chose this clustering algorithm because the number of LiDARTags is
unknown. Therefore, algorithms like K-Means Clustering cannot be used.

Fig. 6: This figure shows the initial state of a cluster, in which has only single
one feature. A cluster is defined as a cuboid in R

3. When a feature fails at
linkage, a cluster will be created and centered at itself (x, y, z) with four

boundaries (x± τ, y± τ, z) for the x-y axes, where τ is t
√
2/4, as well as

the maximum ring number and the minimum ring number for the z-axis.

(a) (b)

Fig. 7: (a) describes the coordinate system of the fiducial marker. (b) indicates
that the first beam hitting the LiDARTag should be at least 3/4 above target,
outlined as the red region.

as shown in Fig. 6. The linkage criteria L(pk, cj) between a

feature pk and a cluster cj is
{

min(bki − τ) ≤ pk ≤ max(bki + τ), ∀i = 1, · · · , 4
rmin − 1 ≤ r ≤ rmax + 1,

(2)

where the first line is the signed Manhattan distance for the

x-y axes and the second is the ring number for the z-axis. If

both conditions are met, the feature is linked to the cluster.

The corresponding boundaries are updated, if necessary. Due

to this linkage criteria, a LiDARTag requires τ = t
√
2/4

clearance around it to avoid false linkage, and based on

preliminary testing, we also impose that the topmost beam on

the LiDARTag should be above 3/4 of the target, as indicated

by the red region in Fig. 7b.

Remark 4. We chose not to use a k-d tree structure [47]

because the number of features and the resulting clusters

are not large enough to benefit from the data structure. The

construction time of the tree could overtake the querying time.

C. Cluster Validation

At this point, we have grouped the features into clusters

as shown in Fig 5a. In practice, few (possibly none) of the

5

clusters will contain a valid tag and thus it is important to be

able to eliminate clusters that are clearly invalid. To do so, we

first used the point cloud data to fill in LiDAR returns between

the features of a cluster, as shown in Fig. 5b.

Inspired by AprilTag [3], [4], tag-family-based heuristics are

used to validate a cluster: number of points η and number of

features ψ in the cluster. Another geometry-based heuristic is

also deployed: the outlier percentage (κ) of a plane fitting

process. To save computation time, if any of the above

processes fails, the cluster is marked as invalid and does not

proceed to the next stage of validation. The first two values

are determined by what type of tag family is chosen. Shown

in Fig. 3c is a tag family which contains 16 bits.

A lower bound on the number of points in a cluster is

determined by how many bits are contained in the fiducial

marker. If the payload is d × d, the LiDARTag including

boundaries is (d+ 4)× (d+ 4). If we assume a minimum of

five returns for each bit in the tag, then the minimum number

points in a valid cluster is

η ≥ 5(d+ 4)2. (3)

On the other hand, an upper bound is determined by the

distance from the LiDAR to the marker and its size t. Given

a tag at distance D, the maximum number of returns on the

marker happens when it directly faces to the LiDAR and can

be computed as:

M
t
√
2

D sin θ
, (4)

where θ is the horizontal resolution of the LiDAR, M is the

number of rings hitting on the tag, and t
√
2 is the diagonal

length of the tag, as shown in Fig. 7b.

The boundaries of the payload can be detected by an

intensity gradient,

∇I(pi,m) = |pIi+ℓ,m − pIi,m| − |pIi−ℓ,m − pIi,m|, (5)

where ℓ is also a design choice (here, taken as one), and pIi,m
is the intensity value of the ith point on the mth ring. An

example of detected boundary points is shown in Fig. 5c. If

∇I(pi,m) exceeds a threshold, then pi,m is a payload edge

point. To successfully decode a tag, we will need at least one

ring on each row of the payload. Hence, the minimum number

of payload edge points is

ψ ≥ 2(d+ 2). (6)

Finally, we apply a plane fitting process to the remaining

clusters. If the percentage of outliers of the plane fitting is

more than κ (chosen as 0.05), the cluster is considered invalid.

The above heuristics allow us to extract a potential fiducial

marker from the LiDARTag through features in both cluttered

indoor and spacious outdoor environments. The next step is to

estimate the pose of the marker.

V. POSE ESTIMATION AND INITIALIZATION

The pose of a LiDARTag is defined as HT
L , a rigid-body

transformation from the LiDAR frame to the LiDARTag frame,

Fig. 8: This conceptual figure illustrates the proposed method to estimate
a LiDARTag’s pose. The target’s coordinate frame is defined as the mean
of the four vertices (X1, · · · , X4) and the template of known geometry is
defined by (X̄1, · · · , X̄4) with depth ǫ at the LiDAR origin. The rigid-body
transformation HL

T
(black arrow) pulls back the target’s point cloud to the

template. The actual pose of the LiDARTag is estimated by (9) using the
inverse transformation HL

T
(green arrow).

as shown in Fig. 8. To estimate the pose, we employ the

L1-inspired method proposed in [8]. The pose estimation is

formulated into an optimization problem (9) in Sec. V-A.

Due to SE(3) being non-convex and the requirement for

a fast estimate, initial guesses to initialize the optimization

problem and the gradient of the cost function are necessary,

see Sec. V-B.

A. LiDARTag Pose Estimation

Define the target point cloud T P := {Xi}Mi=1 as the

collection of LiDAR returns from a LiDARTag, where M is

the number of points. Given the target geometry, we define

a template with vertices {X̄i}4i=1 located at the origin of the

LiDAR as defined in Fig. 8. We therefore seek a rigid-body

transformation from LiDAR to the tag, HT
L ∈ SE(3), that

“best fits” the template onto the LiDAR returns of the target.

In practice, it is actually easier to pull the target point cloud

T P back to the origin of the LiDAR through the inverse of

the current estimate of transformation HL
T := (HT

L)
−1 and

measure the error there. The action of H ∈ SE(3) on R
3 is

H · Xi = RXi + p, where R ∈ SO(3) and p ∈ R
3. For a ≥ 0

and λ ∈ R, an L1-inspired cost is defined as

c(λ, a) :=

{
min{|λ− a|, |λ+ a|} if |λ| > a

0 otherwise
. (7)

Let {X̄i}Ni=1 := HL
T (T P) := {HL

T · Xi}Ni=1 denote the

pullback of the point cloud by HL
T , and denote a point’s

(x, y, z)-entries by (x̄i, ȳi, z̄i). The total fitting error of the

point cloud is defined as

C(HL
T (T P)) :=

M∑

i=1

c(x̄i, ǫ) + c(ȳi, d/2) + c(z̄i, d/2), (8)

where ǫ ≥ 0 is a parameter to account for uncertainty in

the depth measurement of the planar target and the principal

6

axis with the smallest variance is used, see Sec. V-B. The

optimization problem becomes

HL∗

T := argmin
RL

T
,pL

T

C(HL
T (T P)). (9)

Finally, the pose of a LiDARTag is HT
L = HL∗

T ; see [8] for

more details. To solve this optimization problem, we leverage a

gradient-based solver in the NLopt library [48] and the closed

form of the gradient, which is provided on our GitHub [14].

Figure 5d shows the pullback returns of a LiDARTag being

inside the green box (aligned with the y-z plane) at the

LiDAR origin. In addition, we further compute the 2D convex

hull within the y-z plane of the pullback of point cloud and

utilize the surveyor’s formula [49] to calculate the area of the

convex hull. Our assumption on where first ring hits the marker

results in at least 75% of the marker’s area being illuminated.

Therefore, if the estimated area is less than 75% of the marker

size, the cluster is considered invalid.

Remark 5. Equation (9) provides an estimated rigid-body

transformation from the LiDAR to the tag, and importantly,

due to the symmetric of the target, the rotation of the tag

about a normal vector to the tag may be off by ±90◦ or 180◦.

In particular, the four rotations in Fig. 9 are not determined.

This ambiguity will be removed after decoding the tag, see

Sec. VI.

B. Optimization Initialization

The initial guess of a rigid-body transformation is chosen

to minimize the distance from the points (X1, · · · , X4) and

(X̃1, · · · , X̃4). This will be reduced to a (constrained orthog-

onal) procrustes problem [50], namely a problem of the form:

Θ = argmin
Ω: ΩTΩ=I

||ΩA−B||F , (10)

where for us, Ω will be a to-be-determined rotation matrix and

‖·‖F is the Frobenius norm.

Without loss of generality, X0 is assumed to be the origin,

(0, 0, 0) and X̃0 is the mean of T P4. The translation p is thus

given by

X0 = RX̃0 + p, X0 = [0, 0, 0]T

p = −RX̃0. (11)

The rest of the problem can be formulated as:

∥∥∥HL
T X̃i −Xi

∥∥∥
2

2
=

∥∥∥∥
[
R p
0 1

] [
X̃i

1

]
−
[
Xi

1

]∥∥∥∥
2

2

(12)

=
∥∥∥RX̃i + p−Xi

∥∥∥
2

2
=
∥∥∥RX̃i

′ −Xi

∥∥∥
2

2
,

4In practice, this produces an good initial guess of translation for (9)

(a) (b) (c) (d)

Fig. 9: Before decoding, the estimated rotation about the normal axis is only
known modulo 90◦, which means (a) to (d) yield the same normal vector.
Accounting for the three possible rotations of (±90◦, 180◦), results in 4
possible continuous functions in the function dictionary. When computing the
inner product to the correct id of a LiDARTag, only one of the four functions
is correct. From the correct function, the modulo 90◦ ambiguity is removed.

4∑

i=1

∥∥∥HL
T X̃i −Xi

∥∥∥
2

2
=

4∑

i=1

∥∥∥RX̃i
′ −Xi

∥∥∥
2

2

=

∥∥∥∥(RX̃1
′ −X1)

... · · ·
...(RX̃4

′ −X4)

∥∥∥∥
2

F

=
∥∥∥RX̃ − X

∥∥∥
2

F
, (13)

where X̃i
′ = X̃i − X̃0, X̃ =

[
X̃1

′ X̃2
′ X̃3

′ X̃4
′
]

and

X =
[
X1 X2 X3 X4

]
. The problem is then

R∗ = argmin
R: RTR=I

∥∥∥RX̃ − X

∥∥∥
2

F
. (14)

By the procrustes optimization problem [50], we have a closed

form solution:

M = XX̃T = UΣV T (15)

R∗ = UV T. (16)

Remark 6. To estimate X̃, we project the target point cloud

T P along a principal axis of a Principal Components Analysis

(PCA) [51]. Using the 2D projected point cloud, we use

RANSAC to regress lines to determine target edges and solve

for the intersections of the lines, to obtain an initialization of

the vertices. The smallest variance of the principal axis is then

used for the ǫ in (8). If the number of edge points is less than

three, or any of edges fails when regressing a line, the cluster

is marked as invalid.

VI. FUNCTION CONSTRUCTION AND TAG DECODING

In Sec. V-A, we defined a template at the LiDAR origin,

estimated HL
T , and we thus have the pullback point cloud.

Specifically, the pullback point cloud is located at the Li-

DAR origin inside the template on the y-z plane with the

thickness being the sensor noise on the x-axis. Due to the

sparsity of the point cloud, we construct a continuous function

in an inner product space (RKHS) for the pullback point

cloud [9]. For each LiDARTag in the tag family, we pre-

compute four continuous functions to account for four possible

rotations, as shown in Fig. 9, consequently, resulting in a

function dictionary. Finally, we compute the inner product of

the estimated function and each function in the dictionary.

The largest inner product is the ID of the LiDARTag, and the

ambiguity of rotation in Sec. V-A is removed.

7

Let X̃ := {(p̃i, ℓ(p̃i))|p̃i ∈ R
3 and ℓ(p̃i) ∈ I}Mi=1 be

a collection of pullback points, where M is the number of

points. In this work, we use the intensity as our information

inner product space, i.e., I = R and the inner product, 〈·, ·〉I ,

is just the scalar product. The continuous function of X̃ is

defined as

f(·) =
M∑

i=1

ℓ(p̃i)k(·, p̃i), (17)

where k : R
3 × R

3 → R is the kernel of an RKHS [9].

Given another continuous function g of point cloud Z̃ :=
{(p̃j , ℓ(p̃j))|p̃j ∈ R

3 and ℓ(p̃j) ∈ I}Nj=1, where N is the

number of points. The inner product of f and g is

〈f, g〉 =
M∑

i=1

N∑

j=1

〈ℓ(p̃i), ℓ(p̃j)〉Ik(p̃i, p̃j). (18)

The kernel k is modeled as the squared exponential kernel

[52, Chapter 4]:

k(p̃i, p̃j) = σ2exp

(
−1

2
(p̃i − p̃j)

TΛ(p̃i − p̃j)

)
, (19)

where σ2 is the signal variance (set to 1e5) and Λ is an

isotropic diagonal length-scale matrix with its diagonal entry

set to the inverse of squared half of the bit size of a LiDARTag:

1/(t/(2(d+ 4)))2. Let t be the LiDARTag size, and the d-bit

tag family is used (d+4 bits, including its boundaries). Then

the bit size is t/(d+ 4).
After applying the kernel trick to (18), we get [41]

〈f, g〉 =
M∑

i=1

N∑

j=1

kI(ℓ(p̃i), ℓ(p̃j)) · k(p̃i, p̃j), (20)

where

kI(p̃i, p̃j) = exp

(
− (ℓ(p̃i)− ℓ(p̃j))

2

2l2
I

)
, (21)

and the length-scale lI is set to 10 (0 ≤ ℓ(p̃i) ≤ 255).

Remark 7. To fully utilize the pullback point cloud of Li-

DARTag returns, we extend the planar LiDARTag to a 3D

LiDARTag based on the intensity value of each point in the

point cloud. The linear transformation is defined as:

p̃i =



x̃i
ỹi
z̃i


 =



1 0 0 t

2(d+4)Imax

0 1 0 0
0 0 1 0







x̄i
ȳi
z̄i
īi


 , (22)

where Imax is the maximum intensity of the point cloud and

t/(d+ 4) is the bit size.

Remark 8. If the fitting error (8) in Sec. V-A is greater than

10% of the number of points in the cluster or it is not able to

decode the potential cluster in Sec. VI, this cluster is marked

as invalid.

Remark 9. Reproducing Kernel Hilbert Spaces have been

widely used in the Representer Theorem [53]–[55] for various

regularization problems, such as function estimation, clas-

sification and Support Vector Machines (SVM). These are

typically high- or infinite-dimensional problems that while

mathematically feasible, often appear to be not practically

computable. With the help of RKHS and the Representer

Theorem, the solutions to these problems can be formulated in

lower-dimensional subspaces spanned by the “representers”

of the data.

VII. EXPERIMENTAL RESULTS

We now present experimental evaluations of the proposed

LiDARTag. In this work, we choose an easel as our 3D object

to support the tag. Additionally, fiducial markers from the

tag16h6 family of AprilTag3 are used, with sizes of 1.2, 0.8,

0.61 meters, as shown in Fig. 3. We do not compare the

proposed LiDARTag system with camera-based tag systems

because it is unfair to compare depth estimation from a

LiDAR with depth estimation from a monocular camera. All

experiments are conducted with a 32-Beam Velodyne ULTRA

Puck LiDAR and an Intel RealSense camera rigidly attached to

the torso of a Cassie-series bipedal robot as shown in Fig. 3d.

We use the Robot Operating System (ROS) [13] to communi-

cate and synchronize between sensors. The LiDARTag system

runs faster than 100 Hz on a laptop equipped with Intel®

CoreTM i7-9750H CPU @ 2.60 GHz, which is similar to the

processor on a robot coming to the market.

Datasets are collected in a cluttered laboratory to evaluate

detection performance and a spacious outdoor facility, M-

Air [56], equipped with a motion capture system to validate

pose estimation and ID decoding. Additionally, false positives

are evaluated on the Google Cartographer indoor dataset [11]

and the outdoor Honda H3D datasets [12].

A. Pose Evaluation and Decoding Accuracy

A motion capture system developed by Qualisys is used as a

proxy for ground truth poses. The setup consists of 30 motion

capture cameras with markers attached to tags, a LiDAR and a

camera, as shown in Fig. 3d. Datasets are collected at various

distances and angles. Each of the datasets contains images (20

Hz) and scans of point clouds (10 Hz). The 1.2-meter target is

placed at distances from 2 to 14 meters in 2 meter increments.

At each distance, data is collected with a target face-on to

the LiDAR and another dataset with the target rotated by 45

degrees.

The optimization problem in (9) is solved with the method

of moving asymptotes (MMA) algorithm [57], [58] provided

in NLopt library [48]. We use the optimized LiDARTag pose to

project the template at the LiDAR origin onto the LiDARTag’s

returns to show the qualitative results of pose estimation.

Figure 10b and Figure 10d show the pose of a tag at 2 meter

and 16 meter, respectively. Even though the farther marker has

much sparser LiDAR returns, by lifting the returns to an RKHS

space, we are capable of correctly identifying its ID. Table I

compares quantitatively the pose estimation between the pro-

posed LiDARTag and ground truth. The translation error is

8

(a) (b) (c) (d)

Fig. 10: (a) and (c) are images of the tag placed at 2 and 14 meters away from a Cassie-series robot. (b) and (d) describe the results of projecting the
template (green box) from the LiDAR origin to the tag’s returns by the poses of LiDARTag at 2 and 16 meters, respectively. While (d) shows much sparser
LiDAR returns than (b) due to the farther distance, we are still able to accurately estimate the pose and its ID. Compared to ground truth provided by 30
motion capture cameras, the resulting poses are a few millimeters off in translation and a few degrees off in rotation.

reported in millimeters, and rotation error ξ is represented as

geodesic distance 5 in degrees [59]:

ξ = ‖Log(R̄R̃T)‖, (23)

where ‖·‖ is the Euclidean norm, R̄ and R̃ are the ground

truth and estimated rotation matrices, respectively, and Log(·)
is the logarithm map in the Lie group SO(3).

B. LiDARTag System and Speed Analysis

The computation time and cluster analysis of each step of

the pipeline is shown in Table II. Indoors, we have fewer

clusters because detected features are closer to each other

resulting in many of them being clustered together. The com-

putation time in an outdoor environment is slower than indoors

because we have more clusters to create and validate. In both

environments, the system achieves real-time performance (at

least 100 Hz).

The original double sum in (18) takes over 140 milliseconds

for each decoding process. To speed up the process, the inner

sum of the double sum is transformed to a matrix and then to

a vector form. For more details, see our implementation [14].

These two modifications boost the speed to 8.5 ms. However,

this is still not fast enough because for each remaining cluster,

(18) needs to be computed with all the tags in the function

dictionary. Threading Building Blocks library (TBB) [60] is

therefore used to further speed up this process to 2.4 ms. All

5The shortest path between two points on the SO(3) group.

TABLE II: This table averages all the datasets we collected and describes
computation time of each step for indoors and outdoors.

Outdoor

No. Points No. Features No. Clusters Total Computation

51717 2179 271 114.86 Hz

PoI Clustering Fill In Clusters Point Check Plane Fitting

2.63 ms 0.3 ms 0.00 ms 0.27 ms

Line Fitting PCA Pose Optimization Tag Decoding

0.01 ms 0.03 ms 0.48 ms 3.34 ms

Indoor

No. Point Cloud No. Features No. Clusters Total Computation

54277 1820 225 102.41 Hz

PoI Clustering Fill In Clusters Point Check Plane Fitting

3.28 ms 0.22 ms 0.00 ms 0.15 ms

Line Fitting PCA Pose Optimization Tag Decoding

0.01 ms 0.01 ms 0.42 ms 2.47 ms

together, the whole process was sped up by a factor of 60,

from 144 ms to 2.4 ms. Furthermore, we also investigated the

speed performance of employing a k-d tree data structure [61].

A summary Table IV is presented, showing that use of a k-d

tree did not improve performance.

C. False Positives and Detection Performance

Public datasets consist of LiDAR point clouds containing no

LiDARTags so any detection in the datasets is a false positive.

To better verify the proposed LiDARTag algorithm, cluttered

indoor scenes and crowded outdoor scenes are both necessary.

The Google Cartographer indoor dataset [11] and Honda H3D

outdoor dataset [12] were therefore used to validate the false

positive rate of the proposed system. The Cartographer was

collected with two Velodyne VLP-16 LiDARs in the Deutsches

TABLE I: Decoding accuracy of the RKHS method and pose accuracy of the fitting method. The ground truth is provided by a motion capture system with
30 motion capture cameras. The distance is in meters. The translation error is in millimeters and rotation error is the misalignment angle, (23), in degrees.

Face-on to LiDAR Rotated at 45 degrees

Distance No. Scans No. Wrong ID Translation Error Rotation Error Distance No. Scans No. Wrong ID Translation Error Rotation Error

2.15 73 0 14.03 0.44 2.13 74 0 0.27 0.05

4.29 72 0 10.13 0.67 3.95 134 0 0.52 0.34

5.90 81 0 16.23 0.44 5.93 137 0 0.36 0.05

7.97 78 0 1.32 0.21 7.92 126 0 0.26 0.32

10.12 87 0 1.64 0.40 10.38 130 0 4.91 1.03

12.14 69 0 2.07 0.36 12.12 71 0 5.78 0.39

13.87 35 1 2.81 10.48 14.08 49 2 1.98 15.92

Summary No. Scans Wrong ID Ratio Translation Error Rotation Error Summary No. Scans Wrong ID Ratio Translation Error Rotation Error

mean 70 0.202 % 6.891 2.149 mean 103 0.276 % 1.744 2.586

std 16.88 – 6.418 4.577 std 37.25 – 2.076 5.888

median 73 – 2.81 0.44 median 126 – 0.52 0.34

9

(a) (b) (c) (d)

Fig. 11: (a) and (c) image a 0.8 and a 0.6 meter tag placed in a cluttered indoor laboratory and a spacious outdoor environment. (b) and (d) show the algorithm
successfully detects the two markers of different sizes indicated by cyan boxes.

TABLE III: This table takes into account all the data we collected and shows
numbers of rejected clusters in each step in different scenes. Additionally, we
also report false positive rejection for Cartographer and H3D dataset.

Outdoor

No. Min. Return No. Max. Return No. Plane Fitting

247.72 3.41 14.71

No. Boundary Points No. Pose Estimation No. Decoding Failure

4.10 0.48 0.00

Indoor

No. Min. Return No. Max. Return No. Plane Fitting

76.44 1.12 0.00

No. Boundary Points No. Pose Estimation No. Decoding Failure

8.14 1.80 1.16

Indoor Cartographer Dataset

No. Min. Return No. Max. Return No. Plane Fitting

65.76 0 1.90

No. Boundary Points No. Pose Estimation No. Decoding Failure

0.35 0 0

Outdoor H3D Dataset

No. Min. Return No. Max. Return No. Plane Fitting

713.35 8.72 44.41

No. Boundary Points No. Pose Estimation No. Decoding Failure

2.74 0.38 0

TABLE IV: The original double sum in (18) is too slow to achieve a real-
time application. This table compares different methods to compute the double
sum, in which the TBB stands for Threading Building Blocks library from
Intel. Additionally, we also apply a k-d tree data structure to speed up the
querying process; the k-d tree, however, does not produce fast enough results.
The unit in the table is milliseconds.

Original Double Sum Matrix Form Vector From

144.18 67.11 8.51

TBB Original Form TBB Vector Form TBB k-d tree

35.68 2.40 5.73

Museum. We took the longest three sequences consisting of

more than 350 thousand LiDAR scans. Each scan contains

about 30,000 points. No false positives were detected in the

three sequences.

The Honda H3D dataset was collected by a 64-beam

Velodyne LiDAR and consists of 160 crowded and highly

interactive traffic scenes in the San Francisco Bay Area.

We evaluated on all sequences, resulting in 29 thousand

LiDAR scans. Each scan consists of more than 130 thousand

points. Zero targets were extracted by the detector. The results

are shown in Table V. Additionally, false positives removed

by each step are provided in Table III. Last but not the least,

Fig. 11 shows that the detector is able to detect markers of

different sizes both in a cluttered indoor scene and a spacious

TABLE V: This table shows the numbers of false positive rejection of the
proposed algorithm. We validated the rejection rate on the indoor Google
Cartographer dataset and the outdoor Honda H3D datasets. The former has two
VLP-16 Velodyne LiDAR and the latter has one 64-beam Velodyne LiDAR.

Google Cartographer Honda H3D

Scene Indoor Museum Crowed Driving Scenes

Duration 150 minutes 48 minutes

No. Scans 350 thousand 29 thousand

No. False Positives 0 0

outdoor scene.

VIII. CONCLUSION AND FUTURE WORK

We presented a novel and flexible fiducial marker system

specifically for point clouds. The developed fiducial tag system

runs in real-time (faster than 100 Hz) while it can handle a full

scan of raw point cloud from the employed 32-Beam Velodyne

ULTRA Puck LiDAR (up to 120,000 points per scan). Each

step of the proposed system was extensively analyzed and

evaluated in both cluttered indoor as well as spacious outdoor

environments. Furthermore, the system can be operated in a

completely dark environment.

The LiDARTag pose estimation block deploys an L1-

inspired cost function. It achieved millimeter accuracy in

translation and a few degrees of error in rotation compared

to ground truth data collected by a motion capture system

with 30 motion capture cameras. The sparse LiDAR returns

on a LiDARTag are lifted to a continuous function in a

reproducing kernel Hilbert space where the inner product is

used to determine the marker’s ID, and this method achieved

99.7% accuracy. The rejection of false positives was evaluated

on the Google Cartographer indoor dataset and the Honda H3D

outdoor dataset. No false positives were detected in over 379

thousand LiDAR scans.

The presented fiducial marker system can also be used

with cameras and has been successfully used for LiDAR-

camera calibration in [8] and [10]. Additionally, the system

is able to detect various marker sizes, whereas camera-based

fiducial markers support one marker size at a time. In the

future, we shall use the developed LiDARTag within SLAM

systems to provide robot state estimation and loop closures.

Because of different inherent properties of LiDARs and cam-

eras, it would also be interesting to fuse a camera-based tag

system and the proposed LiDARTag system. Furthermore,

if a dataset has been collected and labeled, a deep-learning

10

architecture can replace the process of LiDARTag detection,

thus offering another interesting area for future research.

ACKNOWLEDGMENT

Toyota Research Institute provided funds to support this

work. Funding for J. Grizzle was in part provided by NSF

Award No. 1808051. The first author thanks Wonhui Kim for

useful conversations.

REFERENCES

[1] D. Wagner and D. Schmalstieg, “Artoolkit on the pocketpc platform,” in
2003 IEEE International Augmented Reality Toolkit Workshop. IEEE,
2003, pp. 14–15.

[2] M. Fiala, “Artag, a fiducial marker system using digital techniques,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., vol. 2. IEEE, 2005, pp.
590–596.

[3] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
Proc. IEEE Int. Conf. Robot. and Automation. IEEE, 2011, pp. 3400–
3407.

[4] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detec-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. IEEE, 2016,
pp. 4193–4198.

[5] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for
fiducial tags,” 2018.

[6] J. DeGol, T. Bretl, and D. Hoiem, “Chromatag: a colored marker and fast
detection algorithm,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2017, pp. 1472–1481.

[7] ——, “Improved structure from motion using fiducial marker matching,”
in Proc. European Conf. Comput. Vis., 2018, pp. 273–288.

[8] J.-K. Huang and J. W. Grizzle, “Improvements to target-based 3d lidar
to camera calibration,” arXiv preprint arXiv:1910.03126, 2019.

[9] M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J. W. Grizzle,
“Continuous direct sparse visual odometry from RGB-D images,” in
Proc. Robot.: Sci. Syst. Conf., Freiburg, Germany, June 2019.

[10] J.K. Huang and Jessy W. Grizzle, “Extrinsic LiDAR
Camera Calibration,” 2019. [Online]. Available: https://github.com/
UMich-BipedLab/extrinsic_lidar_camera_calibration

[11] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2016, pp. 1271–1278.
[12] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for

full-surround 3d multi-object detection and tracking in crowded urban
scenes,” in International Conference on Robotics and Automation, 2019.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, 2009.

[14] J.K. Huang and Jessy W. Grizzle, “LiDARTag: A Real-Time and
Flexible Fiducial Tag for Point Clouds,” 2020. [Online]. Available:
https://github.com/UMich-BipedLab/LiDARTag

[15] M. Klopschitz and D. Schmalstieg, “Automatic reconstruction of wide-
area fiducial marker models,” in 2007 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality. IEEE, 2007, pp. 71–74.
[16] B. Atcheson, F. Heide, and W. Heidrich, “Caltag: High precision fiducial

markers for camera calibration.” in VMV, vol. 10. Citeseer, 2010, pp.
41–48.

[17] M. Fiala, “Comparing artag and artoolkit plus fiducial marker systems,”
in IEEE International Workshop on Haptic Audio Visual Environments

and their Applications. IEEE, 2005, pp. 6–pp.
[18] A. Trachtenbert, “Computational methods in coding theory,” Master’s

thesis, University of Illinois at Urbana-Champaign, 1996.
[19] F. Bergamasco, A. Albarelli, E. Rodola, and A. Torsello, “Rune-tag: A

high accuracy fiducial marker with strong occlusion resilience,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recog. IEEE, 2011, pp. 113–120.
[20] L. Calvet, P. Gurdjos, C. Griwodz, and S. Gasparini, “Detection and

accurate localization of circular fiducials under highly challenging
conditions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp. 562–570.

[21] B. Wang, “Lftag: A scalable visual fiducial system with low spatial
frequency,” arXiv preprint arXiv:2006.00842, 2020.

[22] O. Grinchuk, V. Lebedev, and V. Lempitsky, “Learnable visual markers,”
in Advances In Neural Information Processing Systems, 2016, pp. 4143–
4151.

[23] D. Hu, D. DeTone, and T. Malisiewicz, “Deep charuco: Dark charuco
marker pose estimation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 8436–8444.

[24] S. Song and J. Xiao, “Sliding shapes for 3d object detection in depth
images,” in Proc. European Conf. Comput. Vis. Springer, 2014, pp.
634–651.

[25] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner,
“Vote3deep: Fast object detection in 3d point clouds using efficient
convolutional neural networks,” in Proc. IEEE Int. Conf. Robot. and

Automation. IEEE, 2017, pp. 1355–1361.

[26] S. Song and J. Xiao, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recog., 2018, pp. 4490–4499.

[27] ——, “Deep sliding shapes for amodal 3d object detection in rgb-d
images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp.
808–816.

[28] B. Li, “3d fully convolutional network for vehicle detection in point
cloud,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. IEEE,
2017, pp. 1513–1518.

[29] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in Proc. European Conf. Comput. Vis. Springer, 2014,
pp. 391–405.

[30] K. E. Van de Sande, J. R. Uijlings, T. Gevers, A. W. Smeulders, et al.,
“Segmentation as selective search for object recognition.” in Proc. IEEE

Int. Conf. Comput. Vis., vol. 1, no. 2, 2011, p. 7.

[31] J. Carreira and C. Sminchisescu, “Cpmc: Automatic object segmentation
using constrained parametric min-cuts,” IEEE Transactions on pattern

analysis and machine intelligence, vol. 34, no. 7, pp. 1312–1328, 2011.

[32] J. Li, S. Luo, Z. Zhu, H. Dai, A. S. Krylov, Y. Ding, and L. Shao, “3d
iou-net: Iou guided 3d object detector for point clouds,” arXiv preprint

arXiv:2004.04962, 2020.

[33] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 770–779.

[34] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[35] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys, “Semantic3d net: A new large scale point cloud classi-
fication benchmark,” in ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, 2017, pp. 91–98.

[36] W. Kim, M. S. Ramanagopal, C. Barto, M.-Y. Yu, K. Rosaen,
N. Goumas, R. Vasudevan, and M. Johnson-Roberson, “Pedx: Bench-
mark dataset for metric 3-d pose estimation of pedestrians in complex
urban intersections,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1940–1947, 2019.

[37] Velodyne Lidar, “Velodyne Ultra Puck: VLP-32C User Manual,”
2019. [Online]. Available: https://icave2.cse.buffalo.edu/resources/
sensor-modeling/VLP32CManual.pdf

[38] L. Naimark and E. Foxlin, “Circular data matrix fiducial system and
robust image processing for a wearable vision-inertial self-tracker,”
in Proceedings of the 1st International Symposium on Mixed and

Augmented Reality. IEEE Computer Society, 2002, p. 27.

[39] J. Rekimoto and Y. Ayatsuka, “Cybercode: designing augmented reality
environments with visual tags,” in Proceedings of DARE 2000 on

Designing augmented reality environments. ACM, 2000, pp. 1–10.

[40] Y. Cho, J. Lee, and U. Neumann, “A multi-ring color fiducial system
and an intensity-invariant detection method for scalable fiducial-tracking
augmented reality,” in In IWAR. Citeseer, 1998.

[41] W. Clark, M. Ghaffari, and A. Bloch, “Nonparametric continuous sensor
registration,” arXiv preprint arXiv:2001.04286, 2020.

[42] M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J. W. Grizzle,
“Continuous direct sparse visual odometry from rgb-d images,” arXiv

preprint arXiv:1904.02266, 2019.

[43] J. Canny, “A computational approach to edge detection,” in Readings in

computer vision. Elsevier, 1987, pp. 184–203.

[44] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 4758–4765.

[45] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[46] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on

information theory, vol. 28, no. 2, pp. 129–137, 1982.

11

https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/LiDARTag
https://icave2.cse.buffalo.edu/resources/sensor-modeling/VLP32CManual.pdf
https://icave2.cse.buffalo.edu/resources/sensor-modeling/VLP32CManual.pdf

[47] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[48] S. G. Johnson, “The nlopt nonlinear-optimization package,” 2014.
[Online]. Available: https://github.com/stevengj/nlopt

[49] B. Braden, “The surveyor’s area formula,” The College Mathematics

Journal, vol. 17, no. 4, pp. 326–337, 1986.
[50] J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40,

no. 1, pp. 33–51, 1975.
[51] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.

Shadick, and D. Reich, “Principal components analysis corrects for strat-
ification in genome-wide association studies,” Nature genetics, vol. 38,
no. 8, p. 904, 2006.

[52] C. Rasmussen and C. Williams, Gaussian processes for machine learn-

ing. MIT press, 2006, vol. 1.
[53] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer

theorem,” in International conference on computational learning theory.
Springer, 2001, pp. 416–426.

[54] G. Wahba, Spline models for observational data. SIAM, 1990.
[55] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline

functions,” Journal of mathematical analysis and applications, vol. 33,
no. 1, pp. 82–95, 1971.

[56] “M-air at the university of michigan, ann arbor,” 2018. [Online].
Available: https://robotics.umich.edu/about/mair/

[57] K. Svanberg, “A class of globally convergent optimization methods
based on conservative convex separable approximations,” SIAM journal

on optimization, vol. 12, no. 2, pp. 555–573, 2002.
[58] ——, “The method of moving asymptotes—a new method for structural

optimization,” International journal for numerical methods in engineer-

ing, vol. 24, no. 2, pp. 359–373, 1987.
[59] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,”

Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–
164, 2009.

[60] D. Padua, Ed., TBB (Intel Threading Building Blocks). Boston,
MA: Springer US, 2011, pp. 2029–2029. [Online]. Available:
https://doi.org/10.1007/978-0-387-09766-4_2080

[61] J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-only fork of
FLANN, a library for nearest neighbor (NN) with kd-trees,” https://
github.com/jlblancoc/nanoflann, 2014.

12

https://github.com/stevengj/nlopt
https://robotics.umich.edu/about/mair/
https://doi.org/10.1007/978-0-387-09766-4_2080
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann

	Introduction
	Related Work
	Tag Design and LiDAR Characteristics
	LiDAR Point Clouds vs Camera Images
	Tag Placement and Design
	Tag design
	Tag placement

	Tag Detection
	Feature Detection
	Feature Clustering
	Cluster Validation

	Pose Estimation and Initialization
	LiDARTag Pose Estimation
	Optimization Initialization

	Function Construction and Tag Decoding
	Experimental Results
	Pose Evaluation and Decoding Accuracy
	LiDARTag System and Speed Analysis
	False Positives and Detection Performance

	Conclusion and Future Work
	References

