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- Similarity between the MEG activity and the last few 
layers at the end of the three architectures, especially for 
ResNet50 and CORnet-S.

Results 2 
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- We choose Representational Similarity Analysis8 to assess 
the similarity between the activity patterns of the 
artificial and biological systems

- We computed the Representational Dissimilarity 
Matrices (RDMs): used to quantify pairwise dissimilarities 
between the activations to the stimuli

- We generated one RDM per layer in each network, and 
network-level RDM.

- FOR MEG data: We computed the RDM at each sensor 
then averaged them across all subjects.

- We computed the similarity between the RDMs in each 
sensor and the RDM of each layer of the three networks 
and for the whole network RDM.

- Correlations  in the RDM cells but also across RDMs
- (similarity scores) were calculated using Pearson 

correlation.

Introduction

- The three networks provided similar global correlation 
levels with the MEG

- correlations levels are moderate, they are comparable to 
previous findings6

- MEG gradiometer channels yielded higher correlations 
than the magnetometers

- Resnet50 has the best decoding accuracy.
- Topographical maps of the MEG-Model similarity scores 

suggest a prominent role of channels over occipital and, 
to some extent, central areas.

Results 1 

- Success of the 3 networks in capturing neuromagnetic 
signatures of the brain dynamics

- Limited success: correlations are very moderate
- Levels of correlations are aligned with those reported in a 

similar study that used fMRI data.

Conclusions

Figure 3. Computing similarity between biological and artificial systems

- Artificial Neural Networks performance have gone on to 
surpass human performance on many tasks.

- There is an increasing recognition of the added value of 
combining AI and neuroscience research to mutually 
reinforce one another. 

- Several studies are focusing on comparing artificial and 
biological systems’ internal representations in an array of 
cognitive tasks such as visual categorisation and on 
building biologically plausible models9,12,14,16.

- Faces are a special type of objects. And the Face 
Recognition system in the brain is more complicated and 
recruits multiple regions.

Compare the similarity of the internal representations of the 
brain and Convolutional Neural networks using:

- Neuromagnetic data
-  Three different CNN architectures

- Representational Similarity Analysis

Stimulus: Input

Brain activity: MEG

Networks activity

Similarity

Aim of the study:

Figure 1. Study Outline

- Used a distribution from the: "multi-subject, multi-modal 
human neuroimaging dataset"15.

- MEG data acquired using an Elekta NeuromagVectorview 
306 system.

- 16 subjects.
- 300 Facial stimuli: unique identities (Famous/Unfamiliar),

each passed twice: 600 trials.
- Preprocessing: We replicate the steps in the BioMAG 

study5 (filtering, bad trials removal …). 
- Selected 1 trial per condition (Face): 300 trial per subject
- Epoched the data into segments of 800ms

Methods: MEG data

Methods: Representational Similarity 
Analysis (RSA)

Figure 2.Compute RDMs

Model RDM brain RDM

Figure 5. 
 (A) Networks layers’ maximum correlations with the
MEG (planar gradiometer) sensors. 
(B) Topographical maps of the correlation values obtained with the 
specific layer that yields the highest similarity score. White stars indicate 
MEG sensors with the highest correlation values.

Summary of results 1:

Summary of results 2:

- We selected 3 Convolutional Neural Networks:
● Backbone of FaceNet13: specifically built for face 

recognition
● ResNet504: Built for Object recognition
● CORnet-S10: Designed to model the visual cortex

- Trained them on the same classification tasks:
● Hyperparameteres selected after exhaustive search:

Batch size: 32, Learning Rate: 0.01.
● Loss: Cross-Entropy Loss.
● Trained on VGGFace1 for 30 epochs
● Fine-tuned of a Distribution of the the CelebA11 

dataset (similar to the stimuli used in MEG data)

- Extracting the activations: 
● Pass the facial Stimuli  (300 pictures) used in the 

MEG experiment.
● Get the response of each layer for the three 

networks.
● For each network, concatenate layer activations to 

generate another network response. 

Methods: Networks Training and 
activations extraction

-

Results 1 

Figure 4. 
(A) Maximum similarity scores obtained across all MEG sensors for each 
architecture activations.

 (B) ANN performances on CelebA face stimuli. 
(C) Topographical maps of the MEG-Model similarity scores for each 
architecture and MEG sensor type (i.e. single RDM per architecture).

- Further investigate the robustness of our observations 
including careful considerations of potential caveats and 
known limitations of the RSA approach3.

- Explore the added value of source space MEG data analysis.
- Examine distinct frequency bands of the MEG signal.
- Test different other types of Artificial Neural Networks (GANs, 

Transformers .. )
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