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Abstract. As reinforcement learning for robotics continues to grow, it
is essential to consider the critical points that may fail. Robots collabo-
rating with other robots (or humans) must be careful when optimizing
the joint action reward in a multi-agent reinforcement learning solution.
Recent work has shown that learning agents may differ in their decisions
between symmetric joint actions. Our algorithm, Automatic Symmetry
Tracking Other-Play (ASTOP), tracks the rewards the agent sees during
learning to automatically avoid symmetric actions that lead to subop-
timal performance in cooperative scenarios. We run multiple simulated
and physical quadrotors in a location-selection game and evaluate the
performance of ASTOP in the zero-shot coordination problem across
graphs that vary in complexity and represent a wildfire response appli-
cation. ASTOP policies never arbitrarily break ties between symmetric
actions and correctly select the maximum symmetry-safe reward for all
location-selection game graphs.

Keywords: Multi-Robot Systems · Multi-Agent Reinforcement Learn-
ing · Zero-Shot Coordination.

1 Introduction

Deep reinforcement learning has successfully produced beyond-human level poli-
cies for two-player zero-sum games such as Go, poker, chess, and more [5,24,34].
In the popular Self-Play (SP) reinforcement learning method, agents optimize
the discounted expected reward by training against themselves [36]. In cases with
symmetries, where multiple actions yield the same reward, it has been shown
that SP-trained agents can arbitrarily converge on an optimal action when other
equivalent actions exist [16]. For example, given two symmetric options with
equal rewards, SP-trained policies will choose one option without considering
that other agents might choose the other option. While many researchers in
multi-agent reinforcement learning (MARL) apply SP learning to collaborative
games [7, 12, 16, 20, 37], SP agents might disagree on which symmetric joint ac-
tions to choose. We propose a method to automatically find and avoid the joint
actions that lead to arbitrary learned behaviors when symmetries are present to
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Fig. 1. Long exposure of 2 Crazyflie quadrotors flying to their chosen locations.

produce policies aware of the ambiguity. We test these policies in simulation and
demonstrate them on quadrotors as shown in Fig. 1.

There are many challenges in applying reinforcement learning in collabora-
tive scenarios such as autonomous vehicles [17,30,40], delivery robots in crowded
pedestrian environments [8–10], or fire fighting robots collaborating with human
firefighters and ground vehicles [1,18,27,29,31]. It is impossible to know exactly
how all agents will behave, and anticipating the joint actions of all nearby agents
depends on unobservable information (e.g., vehicles’ or pedestrians’ goals). Poli-
cies that seem optimal when training individual agents might in the cooperative
setting choose actions that are at best well below optimal, and at worst, dan-
gerous to others. Understanding where symmetries can occur and accounting for
them helps reduce uncertainty in deployment if all agents are trained with this
knowledge, increasing the predictability of a cooperative system, and thus, its
safety.

In this work, we focus on scenarios with symmetries where all agents agree
on the same task but do not know how the other agents will solve it. Inspired by
previous work to improve SP learning [16] and the pursuit of deploying drones
to help combat fires [27], we formulate an abstract location-selection game. In
this game, each robot must choose then navigate to a location so as to maximize
the joint reward without communication, as shown in Fig. 2. Each robot trains
on the graph individually using the proposed algorithm, ASTOP, and has no
information sharing ability with other agents.

The contribution of this work is an algorithm (ASTOP) that, through train-
ing, automatically finds and avoids equivalent joint actions that lead to a lower
joint reward, and the successful application of this algorithm, including train-
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Fig. 2. A representation of three Crazyflie quadrotors running SP policies that incor-
rectly choose the same location. Each robot uses the estimated value of a location to
learn a belief over the other robots’ decisions. In the fire fighting example, this could
be derived from the heatmap of the area or other context-specific reward information.

ing and transfer of the learned policies to simulated and physical agents, to a
multi-robot game, which we call the location-selection game.

2 Background

We focus on a fully cooperative game where the joint action reward, conditioned
on the joint action and state, is shared by all robots. The goal of MARL is to
generate functions that map Markov decision processes to joint policies for each
agent [26]. Most existing work on cooperative MARL trains agents together,
but agents execute their learned policies independently during testing. Individ-
ual agents maximize the expected (discounted) joint reward. Maximizing this
reward can create an unpredictable agent that develops arbitrary behaviors over
equivalent, yet incompatible, actions during learning.

2.1 Self-Play

In SP MARL, the agents train against themselves before testing independently.
During training, an SP agent will arbitrarily break ties between equally opti-
mal actions [16]. For competitive zero-sum games, all optimal policies are inter-
changeable [25], so SP MARL performs well [36]. In a cooperative setting when
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symmetries are present, SP agents can fail to coordinate when trained separately
from their testing collaborators [16]. Thus, an SP agent’s assumption that other
agents will behave similar to itself (or other policies they encountered during
training) is not realistic when a robot is in an environment with unknown or
unpredictable agents.

2.2 Zero-Shot Coordination

In reality, robots need to perform well in testing against robots trained sep-
arately. The zero-shot coordination (ZSC) problem focuses on achieving high
returns with partners who are trained separately and cannot communicate their
planned actions ahead of time. For robots planning trajectories from start to
goal locations, they must take an action even though the goals of all other indi-
vidual robots is unobservable. While they can agree upon the environment, the
game, and the training algorithms used, they cannot agree upon policy-specific
behaviors or use communication ahead of time.

2.3 Other-Play

Other-Play (OP) successfully enhanced SP by randomly permuting within a
symmetry the equivalent actions an agent might choose to break the symme-
try [16]. They define a symmetry as an arbitrary relabeling of the state/action
space that leaves the resulting action sequences unchanged up to relabeling dur-
ing training. In OP, when an agent attempts to take action as part of the joint
action within a symmetry, the action in the joint action symmetry is permuted
to return any of the resulting joint action rewards. OP policies may reach a sub-
optimal reward during training but perform better than SP policies during ZSC
testing. Furthermore, Hu et al. [16] prove that an OP policy will not converge
on one specific action in a given symmetry.

The OP algorithm uses given symmetries in the underlying Markov game.
The authors applied OP to both a matrix game where the simulated agents
choose levers and a simulated card game called Hanabi. It is difficult to apply
OP to robotics problems because the algorithm requires the user to specify the
symmetries a priori in the OP code. This requires complex knowledge of the
underlying game and additional time to implement successfully.

2.4 Automatically Finding Symmetries

The more nodes and edges a graph contains, the more time it takes to search for
and specify all potential symmetries prior to training. Users may also waste time
searching for symmetries that do not exist or that agents will not encounter. We
instead propose a method that does not require prior user specification of the
symmetries. An automatic process for discovering symmetries does not rely on
a user’s experience or expertise for success, thus reduces uncertainty in the out-
come. The proposed solution extends OP to automatically find these equivalent
joint action symmetries and apply them during training to optimize the reward
for ZSC testing, rather than relying on a user to specify them.
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3 Related Work

Recent work showcases the possibility of finding quasi-equivalent policies to ad-
dress the symmetry problem, presenting a communication problem setting for
zero-shot coordination in referential games [6]. Referential games in commu-
nication require receivers to predict what senders are referring to through the
messages sent. They discover a transformation matrix to identify equivalent poli-
cies in training, showing the importance of finding these equivalences. Similarly,
our work automatically tracks the equivalent actions, but in a different, direct
method applied to a novel location picking game for robotics.

OP and our approach are similar to domain randomization for reinforcement
learning. Domain randomization attempts to produce a model invariant to fea-
tures of the environment [38], and we produce a policy that is invariant to how
an agent’s collaborators break symmetries.

Deciding between symmetries is related to the problem of equilibrium selec-
tion in game theory [13]. Here, the equilibrium selection in the ZSC problem
is choosing between different optimal symmetric policies in a fully coopera-
tive game. A general solution for equilibrium selection is in the framework of
standard-form games and stochastic games, with a large body of work in the
theory of mind in collaboration and deciding between actions [13–15, 33]. ZSC
and these frameworks share the belief that a solution should not depend on ar-
bitrary labels [13]. However, these previous solutions do not scale well, and the
standard-form games have less structure than full Dec-POMDPs.

There exists research on the coordination problem with and without joint
learning. For example, agents randomize between optimal actions until they
successfully coordinate [4], quickly exchange messages and employ probabilistic
belief updating schemes [11], or perform other dynamic programming methods
for fully observable and cooperative stochastic games [32]. In ad-hoc teamwork,
methods produce an average response to a diverse set of agents [2, 3, 35]. Al-
ternatively, some agents learn and imitate responses from observational data of
other agents’ behaviors [23,39]. There exist many approaches to solving decision-
making under uncertainty in controls, search, and learning [21]. While all of these
approaches seek to produce robust strategies, they require either specifying the
other agents’ behaviors or learning to respond to a specific set of agents rather
than the more general problem that we focus on here of zero-shot coordination.

4 Approach

Our work extends OP to automatically find and apply symmetries during train-
ing to produce optimal action agnostic policies in testing on real robots in the
location-selection game.

4.1 Problem Formulation

The Dec-POMDP model considers joint actions and observations. A Dec-POMDP [26]
is defined as M = ⟨D,S,A,O, T,O,R, b0⟩ where D is the set of n agents and S
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is a finite set of states. Here, A = ×i∈DAi is the set of joint actions where Ai

is the set of actions available to agent i. At time t, each agent i takes an ac-
tion ai,t, leading to a joint action a = ⟨a1, . . . , an⟩1. Similar to the joint actions,
O = ×i∈DOi is the set of joint observations where Oi is the set of observa-
tions available to agent i. At time t, the environment emits a joint observation
o = ⟨o1, . . . , on⟩ where each agent i only observes their component oi. In M , T
is the transition probability function T (s′|s, a), O is the observation probability
function O(o|s′, a), R is the immediate reward function, and b0 ∈ ∆(S) is the
initial state distribution at time t = 0. The joint action-observation history τ is
all joint actions taken and joint observations seen up to time t.

The development follows closely that of Hu et al. [16]. We define a symmetry
as an arbitrary relabeling of the state/action space that leaves the resulting
action sequences unchanged up to relabeling during training. These symmetries
occur when actions lead to equivalent rewards. A set of symmetries for a given
Dec-POMDP is a set Φ where each element ϕ is a bijection of S, O, and A onto
itself such that it leaves the Dec-POMDP unchanged2:

ϕ ∈ Φ ⇔ T (ϕ(s′)|ϕ(s), ϕ(a)) = T (s′|s, a)
∧R(ϕ(s′), ϕ(a), ϕ(s)) = R(s′, a, s)

∧O(ϕ(o)|ϕ(s), ϕ(a), ϕ(i)) = O(o|s, a, i)

π′ = ϕ(π) ⇔ π′(ϕ(a)|ϕ(τ)) = π(a|τ),∀τ, a.

In the two agent case, self-play optimization can optimize both policies by
selecting a maximum over both policies:

π∗ = argmax J(π1, π2)

By applying the mapping ϕ an agent can only select an equivalence class and
not a specific action. Thus, we maximize over an equivalence class of policies,
preventing the convergence on an individual action in a symmetry in the zero-
shot coordination test setting. The optimization over the two-agent joint policy
with the ϕ mapping applied to the second policy is:

π∗ = argmax Eϕ∼Φ J(π1, ϕ(π2)).

Here, the expectation is taken with respect to a uniform distribution on Φ.

4.2 Location-Selection Game

Let G = (V,E) be a connected graph consisting of locations V , edges connecting
locations E, and let VD ⊂ V where VD is the set of initial agent locations. The
1 We write ai and oi, the action and observation for agent i (when t is left unspecified).
2 Note that, as in OP [16], the notation here is overloaded since ϕ can act on actions,

states, observation functions, and ultimately, trajectories and policies.
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agents try to maximize the joint reward by selecting the location to travel to,
given three functions: C a path cost function, L a location reward function,
and R the immediate joint action reward function. There exists at least one
edge connecting every initial agent location vi ∈ VD, to a non-agent location
vj ∈ V − VD. Two locations are adjacent if there exists an edge between them
e(vi,vu) ∈ E. For any path pi,j = ⟨e(vi,vu), ..., e(vw,vj)⟩ between two locations vi
and vj where all edges in pi,j are adjacent pairs of vu, ..., vw ∈ V −VD, there is a
path cost C(pi,j) equal to the cumulative cost of edges in pi,j . For every non-agent
location there is a location reward L(vj). An agent k takes an action ak, as part
of a joint action a, to choose their goal location vak

from their initial location vk.
Every joint action has a joint reward R(a) = 1

n

∑n
k=1 L(vak

)−C(pk,ak
), however,

R(a) = 0 if there is at least one duplicate location in the selected actions of the
joint action, a.

4.3 Joint Action Tracking

We define a trajectory as a tuple of the joint actions that yield a reward and
an equivalence class as a set of those trajectories leading to the same reward,
collected as they are executed, in a hashmap. The rewards are the hashmap
keys, and the trajectory sets are the hashmap values. To automatically track
symmetries, when executing a joint action trajectory that we have not seen
before, we insert the trajectory and its reward into the hashmap. In this way,
all trajectories executed during training will be part of an equivalence class. All
equivalence classes will contain one or more trajectories.

4.4 Joint Action Symmetry

Recall that a symmetry is an arbitrary relabeling of the state/action space that
leaves the resulting action sequences unchanged up to relabeling. Where the joint
action reward is the same, the assignment of agent-location pairings does not
matter and is a symmetry. Permuting the different symmetric joint action tra-
jectories will yield the same reward. Trajectories that lead to the same reward
are interchangeable and can be stored to find symmetries. However, permut-
ing the actions that an individual agent can select from within the symmetric
trajectories might produce a different sub-optimal reward.

4.5 Symmetry Crossover

During training, when an agent is attempting to take action as part of a joint
action trajectory, we first use the hashmap to get the equivalence class of sym-
metric trajectories found so far. Then, we sample a second trajectory from the
same equivalence class to randomly mix each agent’s selection between the two
parent trajectories to produce a third trajectory3.
3 An equivalence class of size one would sample the same trajectory, resulting in no

crossover and no changes to the expected equivalence class reward.
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Fig. 3. Shown is a visual representation of a location-selection graph for two agents and
four locations. The immediate joint action rewards are higher for the middle locations
than those closer to the agents. A symmetry exists between the two middle locations
for both agents.

This child trajectory is a crossover of two symmetric parent trajectories and is
guaranteed to be feasible since all agents can reach all locations. The crossover
method randomly swaps actions between parent trajectories. If the resulting
child trajectory of the crossover method yields the same reward as the parent
trajectories, the symmetry remains intact. However, if the child trajectory’s re-
ward is different from the parents’ reward and not part of the same equivalence
class, then the parents’ equivalence class’s expected reward will change. The
agent will learn to avoid that class of joint action trajectories if, after updating,
other higher reward equivalence classes exist.

For example, consider Fig. 3. Two possible joint-action trajectories are b =
⟨3, 5⟩ and c = ⟨5, 3⟩. Both trajectories yield R(b) = R(c) = 1.0 and therefore
belong to the same equivalence class. If no crossover has yet to yield a lower
value for the equivalence class containing b and c, then the expected reward
for the class is 1.0. When agent 0 attempts to execute joint action b during
training, performs the crossover method by sampling c from the equivalence
class containing b and c, and randomly crosses the actions between b and c, it
could produce a child trajectory d = ⟨5, 5⟩. Agent 0 then takes this action and
receives a reward of R(d) = 0.0. They then use R(d) to update the expected value
of the equivalence class for b and c. Doing so lowers the probability that agent 0
will choose locations 3 or 5 because the expected reward of the equivalence class
will converge on 0.5.

We continue this tracking and use the equivalence classes during training
to extend OP to produce policies aware of symmetries in the underlying prob-
lem and prevent a policy from converging onto an individual action within a
symmetry. Note that this does not require specifying the symmetries ahead of
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time. An overview of the symmetry tracking and crossover methods is shown as
pseudocode in Algorithm 1.

Algorithm 1: ASTOP Crossover
for each training iteration do

a← π(τ)
trackEquivalent(a)
aother ← sampleEquivalent(a)
newReward ← crossover(a, aother)
learningStep(π, newReward)

4.6 Learning Method

We acknowledge that the action space in reinforcement learning can be inefficient
at scale. However, work exists to narrow the scope of actions and efficiently prune
irrelevant actions from planning and shape the action space [19, 22]. Future
work is necessary to investigate and prove OP-based methods’ efficiency and
scalability. Deep reinforcement learning can apply function approximation and
gradient-based optimization to solve the Dec-POMDP [16]. We use simple joint
action learning in our work and are agnostic to the precise learning method used.

5 Experiments

We evaluate the performance of ASTOP in ZSC across location-selection games
that range in the complexity of the underlying graph and the number of robots
playing. We test robot policies trained separately with SP, OP, and ASTOP
algorithms for each experiment. We do not hand-tune symmetries for OP on
graphs with more than two robots. For these more challenging graphs, we can
only compare SP and ASTOP.

5.1 Two Robots

All policies learn on the same constant graph (with two robots, four locations,
and a set of edges as shown in Fig. 3). We show the expected reward when
training and ZSC testing.

In Fig. 4 we see that SP policies achieve the maximum reward in training
(1.0) but drop to a lower average reward in cross-play ZSC testing (below 0.6).
SP performs worse because the policies arbitrarily break ties between the two
symmetric trajectories. OP and our ASTOP algorithm converge on a lower re-
ward in training (0.8), but outperform SP in the cross-play ZSC testing. OP
and ASTOP policies cannot arbitrarily break ties between the two symmetric
trajectories. OP and ASTOP correctly converge on 0.8, the maximum expected
equivalence class reward for this specific graph.
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Fig. 4. Training and ZSC testing performance of SP, OP, and ASTOP algorithms on
the location-selection graph in Fig. 3.

5.2 Three Robots

For the three robot case, the same constant graph is used with three robots, six
locations, and a set of edges as shown in Fig. 5.

In Fig. 6 we see that SP policies again achieve the maximum reward in
training (1.0) but drop to a lower average reward in cross-play ZSC testing (below
0.3). Our ASTOP algorithm converges on a lower reward than SP in training
(above 0.7) but does not drop to a lower average reward in cross-play ZSC
testing. Again, ASTOP policies correctly optimize between equivalence classes
to outperform SP in testing.

5.3 Policy Performance

To evaluate performance against SP, we take 30 policies of each algorithm type
and run them against SP. Shown in Fig. 7 are the cross-play performances of
each pairing. We can see that ASTOP outperform SP in the number of symmetry
collisions. Our algorithm ASTOP chooses the maximum expected equivalence
class rather than the optimal joint action to make safer decisions consistently
across all individual policies without being given the symmetries ahead of time.

5.4 Complex Graphs

The graphs robots might encounter can be composed of various robots, locations,
edges, and the values of the edges and locations. To estimate how well ASTOP
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Fig. 5. Shown is a visual representation of a location-selection graph for three robots
and six locations.

performs across a wide array of graphs, we run ASTOP across different com-
binations in Table 1. We ran 1200 randomly composed graphs with randomly
generated location and edge values for each combination of robots and locations.
Some random graphs may not contain symmetries; in such cases, ASTOP and
SP would both find the optimal joint actions. The RANDOM policies randomly
select a joint action to help compare ASTOP and SP to random behavior. We
can see that both algorithms outperform random selection and that ASTOP
outperforms SP in every case.

5.5 Quadrotor Experiments

We ran multiple physical robot experiments to demonstrate the applicability of
the location-selection game and its relevance to robotics. We compare quadrotors
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Fig. 6. Training and ZSC testing performance of SP and ASTOP algorithms on the
location-selection graph in Fig. 5.

running SP or ASTOP trained policies for location-selection. The quadrotors fly
at a preset height from their initial locations to their selected goal locations.

We use Crazyflie 2.0 nano-quadrotors to execute the flight trajectories in
a space with virtual locations marked with numbered and colored circles for
physical visualization. We use a 24-camera VICON motion capture system for
localization. Every circular location has a diameter of 9in. The length of edges
between locations is approximately 3.5 feet. The policies are uploaded to the
quadrotors before takeoff and use the Crazyswarm infrastructure to execute the
flight trajectories [28]. The control and state estimation runs onboard the quadro-
tors and the motion capture system broadcasts the localization. Snapshots of one
flight execution are shown in Fig. 8. In Tables 2 and 3, the quadrotor cross-play
tests obtain a higher reward for policy pairings with ASTOP policies.

6 Conclusions

Collaborative scenarios necessitate protecting policies against erratic behaviors
and finding problematic symmetries. As learning methods for robotics continue
to grow, it is vital to address these critical failure points. In future work, we in-
vestigate how to efficiently search for equivalences classes in larger, continuous,
and more diverse action spaces. Here, we present a novel learning algorithm, Au-
tomatic Symmetry Tracking Other-Play (ASTOP), that builds on the OP algo-
rithm to exploit the presence of unknown symmetries in the underlying problem.
We discuss the performance of ASTOP in the zero-shot coordination problem
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Fig. 7. Cross-play matrix visualization of paired policies trained under SP and ASTOP
algorithms. The y-axis represents the index of robot one and the x-axis represents the
index of robot two. Each block on the grid is obtained by evaluating the pair on the
graph in Fig. 3.

Table 1. Algorithm Reward Over 1,200 Randomly Generated Graphs

(Number of Robots, Number of Locations)
(2,5) (3,7) (4,9) (5,11)

SP 0.847 0.667 0.676 0.654
ASTOP 0.906 0.902 0.915 0.934
RANDOM 0.512 0.637 0.49 0.44

(3,7) (3,9) (3,11) (3,13)
SP 0.817 0.693 0.7 0.586
ASTOP 0.861 0.889 0.921 0.885
RANDOM 0.56 0.58 0.476 0.35

(2,7) (3,7) (4,7) (5,7)
SP 0.817 0.693 0.7 0.586
ASTOP 0.861 0.889 0.921 0.885
RANDOM 0.56 0.58 0.476 0.35

across graphs that vary in complexity and show multiple physical quadrotor ex-
periments to demonstrate the applicability of the location-selection game and its
relevance to robotics. Our ASTOP policies never arbitrarily break ties between
symmetric trajectories and consistently outperform SP across all games played
to improve collaboration and zero-shot coordination.
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