
Byzantine Fault Tolerant Consensus for Lifelong
and Online Multi-Robot Pickup and Delivery

Kegan Strawn and Nora Ayanian

University of Southern California, Los Angeles, CA, 90007, USA
{kegan.j.strawn, ayanian}@usc.edu

Abstract. Lifelong and online Multi-Agent Pickup and Delivery is a
task and path planning problem in which tasks arrive over time. Real-
world applications may require decentralized solutions that do not cur-
rently exist. This work proposes a decentralized and Byzantine fault
tolerant algorithm building upon blockchain that is competitive against
current distributed task and path planning algorithms. At every timestep
agents can query the blockchain to receive their best available task pair-
ing and propose a transaction that contains their planned path. This
transaction is voted upon by the blockchain network nodes and is stored
in the replicated state across all nodes or is rejected, forcing the agent
to re-plan. We demonstrate our approach in simulation, showing that it
gains the decentralized Byzantine fault tolerant consensus for planning,
while remaining competitive against current solutions in its makespan
and service time.

Keywords: Robotics · Blockchain · MAPD · Consensus.

1 Introduction

Path planning for teams of robots is a fundamental problem for many applica-
tions of multi-robot systems. Often, teams of robots must reliably navigate to
given locations without collisions. In Multi-Agent Pickup and Delivery (MAPD),
given a set of tasks with known locations, agents must find an assignment of tasks
to agents and plan the paths necessary to arrive at the locations of those tasks.
We are interested in the lifelong and online version of MAPD (LO-MAPD),
wherein tasks arrive over time for indefinite periods, in known environments.
Examples include warehouse robots [33], video game characters [26], aircraft-
towing vehicles [21], and general autonomous mobile robots [30].

In this work we focus on MAPD in a warehouse environment with multiple
interested parties operating within the same system with no central author-
ity. Here, multiple self-serving agent teams must collaborate to accomplish all
tasks without complete trust in the other agents. Therefore, not only do cen-
tralized algorithms scale poorly for large numbers of agents, but are not a valid
choice. Current distributed algorithms attempting to solve this, generally, pro-
duce longer paths for the overall system and make large assumptions on the
behavior of agents. We assume all agents continuously seek to accomplish tasks,



2 K. Strawn and N. Ayanian.

but make no further assumptions about the behavior of agents. For example, we
do not assume that agents seek to perform the best tasks for the overall system
or that agents do not attempt to plan paths with collisions. In this way, agents
may be selfish or uncooperative and introduce Byzantine failures in planning
that break current solutions.

These Byzantine failures are faults beyond simple failures (such as losing a
message or agent) where there is imperfect information on whether there has
been a failure. Existing work on swarm and multi-robot systems often consider
themselves failure resistant due to the number of agents, but in many cases a
single Byzantine failure is enough to stop the system from working [27]. Outside
of the MAPD problem, blockchain based solutions have recently been proposed
as a potential solution to provide Byzantine fault tolerance, a distributed and
immutable storage, and anonymity for multi-robot systems [1, 5, 6, 16,27].

Our algorithm builds upon a blockchain framework to provide Byzantine
fault tolerance in planning for the decentralized warehouse MAPD problem. In
our system and algorithm, each individual agent has a limited scope of informa-
tion. They receive only the current timestep, the used location-timestep pairs
planned so far to avoid collisions, the endpoint locations of agents where they
stay indefinitely, and their best available task without any other attached agent
or task information. This reduces the amount of state information sent between
distributed agents and enables a larger system where multiple teams of agents
operate without conflicts and without sharing identifiable data or trusting any
single source for assignments. As we will show with our simulation results, our
work gains this decentralized Byzantine fault tolerant consensus from building
on top of the blockchain for task and path planning, while remaining competitive
against current distributed solutions in its makespan and service time.

2 Background

2.1 MAPF and MAPD

MAPD is an extension and generalization of the popular Multi-Agent Path Find-
ing (MAPF) problem. In the MAPF problem paths must be found for all agents
from their starting locations to their destinations without colliding with other
agents or obstacles in the environment. Much work exists on the MAPF problem,
its variants, and benchmarks [19]. Similar to Target Assignment and Path Find-
ing (TAPF) [18], MAPD extends MAPF to incorporate tasks that are composed
of pickup and delivery locations agents must move to in order to accomplish
them.

We address discrete LO-MAPD, wherein a stream of tasks arrive over time
in an online setting on a general graph. The goal of the system is to accomplish
each task while minimizing the cost. Depending on the application, costs could
be: service time (the average number of timesteps needed to execute each task),
the makespan (the last timestep used), and/or the runtime (the time it took to
execute the planning of all tasks). To successfully solve a MAPD instance the



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 3

algorithm must have a bounded service time and runtime. While not all MAPD
instances are solvable, sufficient conditions exist that ensure solvability; we only
work with such instances, called well-formed instances [29].

Many algorithms have been developed to solve the MAPF, TAPF, and MAPD
family of problems. Examples include Conflict-Based Search and it’s variants [3,
8,10,18,25], Answer Set Programming [23], Enhanced Partial Expansion A* [9],
suboptimal algorithms [11, 28, 31, 32], and Windowed-Hierarchical Cooperative
A* and similar approaches [15,24,26]. For LO-MAPD, Token Passing and Token
Passing with Task Swaps are the state of the art distributed solutions [17, 20].
However, the distributed approaches can suffer from deadlocks, make strong
assumptions, and sacrifice performance for distribution.

2.2 Blockchain and Byzantine Faults

Our algorithm differs from existing solutions by taking advantage of blockchain
technology. Created as part of Bitcoin [22], a blockchain framework is presented
as a distributed ledger with peer-to-peer sharing of encrypted and linked data
transactions with timestamps. Blockchain technology can provide an immutable
state, decentralized consensus, fault tolerance, and a dynamic framework for
the flexible control of a network of nodes [2]. A blockchain transaction can be
developed to store different forms of data. In this work, we store different types
of MAPD information as transactions on the blockchain. Each transaction has a
string labeling the type of data (for example: a timestep, used timestep-location
pairs, or task assignment) and the data itself in string format.

In the Byzantine Generals Problem, a set of generals with no trust in each
other surround a castle and can only communicate via a messenger to agree
upon when to attack. Lamport et al. [13] present this problem and prove a well-
designed system can survive 1/3 of these Byzantine failures where the generals
are unresponsive or unreliable. There exists a thorough body of work on Byzan-
tine failures in collaborative networks in distributed systems literature [14]. In
distributed systems, to be Byzantine fault tolerant (BFT), nodes in the network
must agree regularly about the current state and have a 2/3 majority agree-
ment, surviving 1/3 of all nodes differing in their judgement [7]. A blockchain
can solve the Byzantine Generals Problem using cryptography and various val-
idation models. Each blockchain framework defines the effort, investment, and
resources a node must put into the system and the outcome of the vote in order
to incentivize and maintain honest and positive behavior. It is important to note
that the use of blockchain alone does not necessarily provide Byzantine fault tol-
erance, but that our work here builds upon blockchain to provide this additional
fault tolerance in a specific multi-robot setting. In the context of robotics, the
definition and categorization of Byzantine faults is not yet widely agreed upon.
We focus on a subset of arbitrary behavior in adversarial agents’ planning and
communication, although Byzantine faults could take more advanced forms in
real-world applications.



4 K. Strawn and N. Ayanian.

Fig. 1. Potential node-agent configurations. Yellow diamonds are Tendermint ABCI
nodes running our BFTC Chain application. Blue circles a1, a2, a3 are agents. A circles
represent the simulation agent that sets the timestep and other simulation/environment
variables on the blockchain.

2.3 Tendermint

Tendermint provides an Application Blockchain Interface (ABCI) for a peer-
to-peer message passing protocol that checks programmer-defined functions to
validate messages passed across the blockchain network. Each proposed transac-
tion goes through Tendermint’s voting process and provides a flexible interface
to integrate the blockchain into our MAPD algorithm. The setup of the Ten-
dermint network is flexible. Each MAPD agent in the system could run the
Tendermint node as well as our algorithm, however, if an agent has insufficient
computational resources it could communicate to the Tendermint node running
on another computing system. In Fig. 1, some possible configurations are shown,
such as all agents connected to separate nodes, all agents connected to the same
node, one agent running the node on its local system, an agent A that can in-
teract with the blockchain but does not accomplish tasks, and various other
possible compositions for all nodes and agents.

We have designed a Tendermint ABCI application, called the Byzantine Fault
Tolerant Consensus (BFTC) chain, that implements this interface and is similar
to a key-value database to store used locations, edges, and endpoints as well
as the current timestep and the set of available tasks. Tendermint runs this
application on all nodes in the Tendermint network. The BFTC chain can be
queried by MAPD agents running our algorithm in two ways. It can be sent either
a Tendermint DeliverTX message that stores the transaction as part of the state
if agreed upon by at least 2/3rds of all chain nodes as a valid transaction (such as
no collisions), or a Tendermint Query message that returns identical replicated
information about the state across all nodes that are part of the chain’s network.

3 Methods

Our proposed BFTC system solves well-formed, LO-MAPD instances by build-
ing an application on top of the blockchain platform Tendermint [4] to reach



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 5

Fig. 2. A visual representation of our BFTC system. Agents send DeliverTX or Query
messages to the nodes, who use the ABCI to utilize Byzantine fault tolerant Ten-
dermint consensus before storing the transactions in the state storage on each node.
All agents a1, . . . , an communicate with nodes 1, . . . , n that maintain identical states
state1, state2, . . . , staten.

consensus on valid task assignments and valid paths in a decentralized network
at every timestep. We assume agents must communicate on the network to re-
ceive and accomplish tasks, but not that all agents propose valid transactions.
All valid agents follow our BFTC algorithm (Algorithm 1) simultaneously. All
agents send messages to a Tendermint node on the network to receive a task
and information to plan their paths, as well as propose these planned paths as
transactions to collectively accomplish all tasks. In contrast, current state of the
art algorithms pass full state knowledge around to each agent in a predefined
order based on their ID number [20].

We assume an agent rests in the last location of its path and each agent
plans its individual path using A*. Paths are sent as transactions, and, if valid,
are stored in the distributed ledger that represents the world state with the
order of transactions determined by the order of consensus rather than the order
determined by a central system. The BFTC chain application has DeliverTX
methods to handle requests for: adding a new timestep, adding a new task,
posting an agent’s location, assigning an agent to a task and storing the path to
the task, storing an agent’s path to a safe endpoint, and checking in for an agent
at a timestep. The chain has Query methods to handle requests for: the current
timestep, current delivery spots, best task for a specific agent’s location (if any),
used timestep-location pairs, edges, and endpoints, as well as if all agents have
checked in for the current timestep. We use an agent A that communicates with
the chain via a Tendermint node in order to increment each timestep once all
agents have checked in for the previous timestep, adding any new tasks to the
task set, and logging any accomplished task pickups or deliveries. This allows us
to follow the same experimental model as in [20]. A visual representation of our
BFTC system is shown in Fig. 2.

Every valid, non-Byzantine failing, node composing the decentralized BFTC
chain simultaneously uses the Hungarian Method [12] in a decentralized fashion



6 K. Strawn and N. Ayanian.

to find the best possible unassigned task-agent location pairings for the overall
system, at every new timestep. To avoid collisions after assignments, our A*
search and validation logic works similar to [20], planning collision-free paths
using the time-location pairs and edges, called usedElements in Alg. 1. Path
costs only need to be found from a location to another endpoint, so heuristic
values for A* are pre-computed. The chain’s Hungarian method only uses this
heuristic value map and does not compute the A* solution at every timestep
for every task, saving computation resources and time. This new best possible
task-agent pairing allows our decentralized BFTC algorithm to assign agents
to tasks that might not be the closest to them, but minimizes the overall cost
for the system. Thus, even without failures, our decentralized solution has the
potential to outperform certain distributed algorithms; this is discussed further
in Section 5.1.

Each agent begins its outer loop by checking if the state’s timestep has been
incremented. If it has been, an agent without a task will query the chain for
the best possible task assignment for only itself. If it receives one it will use
A* to plan a path to the pickup and then the delivery, sending this as a trans-
action containing a single path to the chain for assignment. If the chain replies
with a successful assignment (meaning consensus was reached among Tendermint
nodes), the agent will check in for this timestep. If the agent did not receive a
best possible task, it will check to see if its current location will cause a collision.
If it does, the agent will move out of this endpoint through exhaustive search
from it’s current location for a safe endpoint with the least cost path before
checking in. Otherwise, it will stay in its current location and check in for the
next timestep.

4 Benchmark Algorithms

Ma et al. present three algorithms for solving the LO-MAPD problem: two de-
coupled MAPD algorithms, Token Passing (TP) and Token Passing with Task
Swaps (TPTS), and a centralized algorithm, CENTRAL [20]. The TP algorithm
involves sending the token that stores all world state data to each agent that
needs to choose a task and plan a path. TPTS modifies the TP algorithm to
enable swapping tasks before the tasks have been picked up. In TP, all agents
must wait until the agents before them have received the token and planned their
paths/assignments. In TPTS all agents must wait until the agents before them
have planned and all re-planning has taken place before they can be certain of
their paths/assignments for that timestep. In decentralized systems this is an
important negative attribute, as the system should not prioritize the wait time
of certain agents without apparent reason.

Minimizing the sum of costs is NP-hard to solve optimally and NP-hard
to approximate the makespan within a constant factor less than 4/3 [34], so
they compared their new algorithms with CENTRAL, a centralized strawman
MAPD algorithm. CENTRAL uses the Hungarian Method [12] to assign tasks
and ECBS [10] to plan conflict-free paths at every timestep in a simulated ware-



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 7

Algorithm 1: BFTC (Byzantine Fault Tolerant Consensus)

for each agent ai in A do
ai.path = loc(ai);
/* Start all agent processes, calling IndividualAgent(ai, chain) */

while true do
Add all new tasks if any to the task set T ;
Put the new timestep on the chain;
while ∃ ai not checked-in in the chain for the timestep do

/* system waits, with timeout */

AdvanceTimestep(chain);
/* Move agents one step */

Function IndividualAgent(ai, chain):
while true do

success ← False;
if ai has no task then

τ ← QueryBestTaskAssignment(loc(ai), chain);
while τ and not success do

usedElements← QueryUsedElements(chain);
path ← AStarPath(loc(ai), τ , usedElements);
success ← DeliverPath(path, chain);
if success then

assign ai to τ ;
ai.path = path;
break;

if ai has no task then
if no τj ∈ T with gj == loc(ai) then

while not success do
usedElements← QueryUsedElements(chain);
path ← AStarPath(loc(ai), loc(ai), usedElements);
success ← DeliverPath(path, chain);

ai.path = path;

else
while not success do

usedElements ← QueryUsedElements(chain);
safeEndpoint ← FindSafeEndpoint(loc(ai));
path ← AStarPath(loc(ai), safeEndpoint, usedElements);
success ← DeliverPath(path, chain);

ai.path = path;

DeliverCheckIn(ai, chain);
while Not AdvancedTimestep(timestep, chain) do

timestep = GetTimestep(chain);



8 K. Strawn and N. Ayanian.

Fig. 3. TP and TPTS use the token passing system. This system can have multiple
consensus failures if robots r1, r2, r3, have limited trust in each other, if the network
connection is faulty, or if agents can through error or intent reach false conclusions.
From left to right are four examples of potential planning Byzantine failures in the
MAPD problem: if passing the token fails, if an agent fails, if an incorrect message is
passed, or if a cycle occurs when an agent incorrectly believes it has the better path.

house environment. CENTRAL provides a best possible benchmark to compare
the distributed algorithms against, not to beat. They proved that their algo-
rithms solve a realistic subclass of well-formed MAPD instances and claim that
TP can be extended to a fully distributed MAPD algorithm. Because of this dis-
tribution of computation it is their recommended choice for a real-time solution
of MAPD instances with large numbers of agents and tasks. Their second algo-
rithm TPTS requires more communication, and is presented as an in-between
solution that trades computational complexity for improved solution quality.
While presented as a distributed solution, these algorithms assume full trust be-
tween agents which restricts them from being decentralized, as shown in Fig. 3.

In our work we assume that all agents seek to accomplish tasks and that at
most 1/3rd of the nodes support faulty Byzantine transactions. Our algorithm
is similar to the algorithms presented in [20] and solves all well-formed MAPD
instances, but in comparison reduces the assumptions made about the network
of agents, uses our novel blockchain consensus framework rather than token
passing, and allows swapping of tasks during rounds (not between them).

The TP and TPTS algorithms work well for general MAPD, but fail to work
in the presence of multi-team collaboration and communication failures. Thus, by
comparing against these algorithms we can see that our algorithm performs just
as well, while also successfully working in the multi-team collaboration scenario
with and without failures.

5 Experimental Evaluation

We ran our simulations on a 5.0 GHz Turbo Intel Core i9-9900K desktop com-
puter with 16GB RAM. We implemented TP, TPTS, CENTRAL, and BFTC in
Python to run on a simulated warehouse environment with obstacles as shown
in Fig. 4. We implemented all algorithms in Python, with the exception of CEN-
TRAL which uses an existing ECBS implementation in C++ [10].

We generated a single set of 500 randomly selected tasks to be used across all
algorithms, task frequencies, and number of agents. Five different task frequen-



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 9

Fig. 4. This figure shows two separate captures of the output of our simulation: a 4-
neighbor grid that represents the layout of a simulated warehouse environment. Shown
on the left of the divider is the output of the simulation with 30 agents at their initial
locations. The black cells are obstacles, the gray cells are endpoints, the orange squares
are pickup locations of released tasks, and the orange colored circles are the initial
locations of agents and their IDs. Shown on the right of the divider is a capture of the
simulation output as it is running. The blue circles are agents that have picked up a
task and are delivering them to their corresponding delivery spot ID number.

Table 1. Simulated Warehouse Comparison

Makespan (timesteps) Service Time (timesteps) Runtime per Timestep (sec)

Frequency Agents BFTC TP TPTS CENTRAL BFTC TP TPTS CENTRAL BFTC TP TPTS CENTRAL

0.50 10 1568 1683 1610 1261 154.15 152.19 142.31 83.14 3.45 0.10 0.24 0.08
0.50 30 1044 1087 1054 1042 32.65 44.16 31.67 24.79 4.66 0.41 11.10 0.11
0.50 50 1050 1065 1045 1038 30.70 43.51 29.64 23.09 6.07 0.39 19.91 0.15

1 10 1546 1555 1570 1204 198.93 216.97 200.06 134.78 3.49 0.10 0.16 0.08
1 30 666 700 645 546 55.76 56.59 53.61 26.71 4.64 0.25 1.20 0.17
1 50 576 595 576 542 35.51 46.31 33.52 23.98 5.43 0.62 19.67 0.22

2 10 1547 1608 1544 1186 209.70 230.22 213.47 152.41 3.49 0.10 0.36 0.08
2 30 668 654 639 470 81.66 86.20 80.08 48.93 4.67 0.24 1.18 0.17
2 50 469 495 457 318 54.25 60.45 53.99 28.09 5.62 0.36 4.21 0.33

5 10 1549 1581 1590 1171 221.63 227.56 218.66 166.59 3.49 0.09 0.15 0.80
5 30 659 692 635 445 88.56 96.86 92.79 60.28 4.67 0.21 1.17 0.18
5 50 453 506 464 396 65.22 72.56 66.75 40.22 5.79 0.32 4.58 0.27

10 10 1551 1654 1580 1174 222.16 230.58 218.59 165.62 3.47 0.09 0.17 0.08
10 30 673 677 626 487 95.86 98.20 97.65 61.58 4.59 0.25 1.23 0.19
10 50 471 505 480 302 68.08 72.99 69.90 42.91 5.57 0.37 4.49 0.36

cies were used to experiment with the rate of new tasks added to the set of live
tasks over time: 0.5 (one task every other timestep), 1 (one task every timestep),
2 (two tasks every timestep, 5 (five tasks every timestep), and 10 (ten tasks every
timestep). For each task frequency we ran three different agent set sizes. Each
agent set was generated ahead of time with random initial agent locations and
each set was used for all algorithm and frequency combinations. Table 1 reports
the makespan, service time, and runtime per timestep for experiments without
Byzantine failures. Figure 6 shows the performance of the three algorithms when
two instances of Byzantine failures are present.

5.1 Makespan and Service Time Comparison

The distributed MAPD algorithms in descending order of average makespan
across all non-Byzantine failure experiments (best is last) is: TP (1004), TPTS



10 K. Strawn and N. Ayanian.

Fig. 5. Makespans and service times averaged across all task frequencies presented for
all four algorithms for each set of agents with no failures present. From left to right:
BFTC, TP, TPTS, and best possible (CENTRAL). Generally, makespans and service
times decrease with more agents as all agent sets serve the same set of tasks.

(967), and BFTC (965). The distributed MAPD algorithms in descending order
of average service time across all non-Byzantine failure experiments (best is last)
is: TP (115), and both TPTS and BFTC tied with (107). TP lets each agent
make the best greedy assignment for itself, producing less optimal makespans.
TPTS allows swapping of tasks before the tasks are picked up, decreasing the
makespan/service times by improving upon the greedy assignments each indi-
vidual agent may have made. BFTC is able to take advantage of the replicated
state across all nodes in the blockchain network to reply to each agent with
the optimal assignment at that timestep, but does not let them swap. Letting
them swap could further improve the makespan/service time of BFTC but does
not scale well, as more computation and message passing would be necessary.
CENTRAL demonstrates the best (sub-optimal) performance possible, outper-
forming any distributed algorithm, but will not work for systems that cannot
have a central authority. Thus, BFTC is just as good, and in some cases better
than, current state of the art solutions even in non-Byzantine cases.

5.2 Runtime Comparison

The distributed MAPD algorithms in increasing order of average runtime per
timestep across all non-Byzantine failure experiments is: TP, TPTS, and BFTC.
The BFTC runtime is longer as it is the only algorithm using the network to send
messages and takes on the runtime of the decentralized Tendermint network’s
consensus protocol. This increases the amount of network messages being sent
and BFTC’s runtime. In our experiments, each DeliveryTX transaction took 1-2
seconds to be committed or rejected and returned to the agent. At the start
of every round, agent A adds any new tasks and increments the timestep on



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 11

Fig. 6. Makespans and number of collisions presented for the three distributed algo-
rithms as the number of Byzantine agents is increased. From left to right: BFTC, TP,
and TPTS. BFTC has zero collisions across all Byzantine agent sets.

the chain through two DeliveryTX calls. Then, agent A must wait for all agents
to check in. All agents when planning and checking in make two DeliveryTX
calls concurrently with each other. Since each DeliveryTX call takes 1-2 seconds
BFTC’s average runtime per timestep (across all task frequencies and agent
sets) of 4.63 is dominated by the DeliveryTX message passing. In the BFTC
algorithm agents are able to plan and receive confirmation of their plan in under
1-2 seconds concurrently with each other.

Using Table 1, we can compare how the algorithms perform as the number
of agents increase. Previous work shows that the runtime of CENTRAL and
TPTS increases at a much faster rate than TP, and thus CENTRAL and TPTS
do not allow for real-time lifelong operation for large numbers of agents [20].
Conversely, while the runtime of BFTC does increase with additional agents,
the runtime increases at a slower rate than TPTS and TP. For example, the
change of average runtimes per timestep for each distributed algorithm from
10 to 30 agents in decreasing order (best is last) of rate of growth is: TPTS
(1, 661%), TP (200%), and BFTC (36%). This shows that the runtime of BFTC
grows at a slower rate with the addition of more agents than the other two
distributed algorithms.

5.3 Byzantine Failure Comparison

To see how the distributed algorithms performed when Byzantine failures are
present we ran two experiments with different types of Byzantine failures in the
shared warehouse scenario. In both experiments 30 agents completed a set of 100
tasks with a frequency of 1, varying the number of Byzantine agents (0, 1, 5, 10).
The first experiment had Byzantine agents that attempted to assign themselves
to the furthest task available. The second experiment had Byzantine agents



12 K. Strawn and N. Ayanian.

ignore the paths of other agents. In Figure 6 we can see BFTC outperforms the
other two distributed algorithms in all cases with Byzantine agents present. The
distributed MAPD algorithms in decreasing order of average collisions across all
Byzantine failure experiments (best is last) is: TP (37), TPTS (35), and BFTC
(0). The distributed MAPD algorithms in decreasing order of average makespan
across all Byzantine failure experiments (best is last) is: TP (206), TPTS (198),
and BFTC (189). The other algorithms show increasing makespans as Byzantine
agents are introduced into the system and result in many collisions that increase
as the number of Byzantine agents are increased. BFTC remains at the same
makespan it had before Byzantine agents were introduced into the simulation
and never results in a collision.

6 Conclusion

In this paper, we present a system that solves the lifelong and online MAPD
problem by building on top of a blockchain framework to maintain a distributed
ledger of assigned tasks and planned paths that agents can query for limited
information to individually plan their paths. Our Byzantine Fault Tolerant Con-
sensus algorithm and system demonstrated better makespans and service times
and scaled better in runtime as the number of agents increased than state of
the art distributed algorithms. BFTC is also the only algorithm able to run in
a completely decentralized network with no central authority and is the only
algorithm that can survive Byzantine failures in planning and communication
that resulted in collisions and increased makespans in the state of the art algo-
rithms. The BFTC algorithm and system is an example of how blockchain can
be used in multi-robot and swarm systems to enable consensus when there is
no central authority or trust among robots and the deployment of collaborative,
decentralized, multi-robot systems.

There are potential trade-offs to consider when using a blockchain-based sys-
tem: for example, one must consider the latency or throughput of the network,
validation models that fit some but not all types of problems, and the compu-
tational capabilities of the nodes/robots in the system. While out of the scope
of this paper, we consider these not as roadblocks but avenues for related and
future research to see what best fits a particular robotic application.

Acknowledgement This work was partially funded by ARL DCIST CRA
W911NF-17-2-0181.

References

1. Afanasyev, I., Kolotov, A., Rezin, R., Danilov, K., Kashevnik, A., Jotsov, V.:
Blockchain solutions for multi-agent robotic systems: Related work and open
questions. In: Proceedings of the 24th Conf. of Open Innovations Association.
FRUCT’24, Helsinki, Uusimaa, FIN (2019)



Byzantine Fault Tolerant Consensus for Lifelong and Online MAPD 13

2. Atlam, H.F., Alenezi, A., Alassafi, M.O., Wills, G.: Blockchain with internet of
things: Benefits, challenges, and future directions. Int. Journal of Intelligent Sys-
tems and Applications 10(6), 40–48 (2018)

3. Boyarski, E., Felner, A., Stern, R., Sharon, G., Betzalel, O., Tolpin, D., Shimony,
E.: ICBS: The improved conflict-based search algorithm for multi-agent pathfind-
ing. In: Eighth annual symposium on combinatorial search. Citeseer (2015)

4. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis, The University of Guelph (2016)

5. Calvaresi, D., Dubovitskaya, A., Calbimonte, J.P., Taveter, K., Schumacher, M.:
Multi-agent systems and blockchain: Results from a systematic literature review.
In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) Advances
in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The
PAAMS Collection. pp. 110–126. Springer Int. Publishing, Cham (2018)

6. Castello, E., Hardjono, T., Pentland, A.: Editorial: Proceedings of the first sympo-
sium on blockchain and robotics, mit media lab, 5 dec. 2018. Ledger 4 (04 2019).
https://doi.org/10.5195/ledger.2019.179

7. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (Nov 2002).
https://doi.org/10.1145/571637.571640

8. Cohen, L., Uras, T., Kumar, T.K.S., Xu, H., Ayanian, N., Koenig, S.: Improved
solvers for bounded-suboptimal multi-agent path finding. In: Proceedings of the
Twenty-Fifth Int. Joint Conf. on Artificial Intelligence. p. 3067–3074. IJCAI’16,
AAAI Press (2016)

9. Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N., Holte, R.C.,
Schaeffer, J.: Enhanced partial expansion a*. J. Artif. Int. Res. 50(1), 141–187
(May 2014)

10. Hönig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Conflict-based search
with optimal task assignment. In: AAMAS (2018)

11. Khorshid, M., Holte, R., Sturtevant, N.R.: A polynomial-time algorithm for non-
optimal multi-agent pathfinding. In: SOCS (2011)

12. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

13. Lamport, L., Shostak, R., Pease, M.: The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (Jul 1982).
https://doi.org/10.1145/357172.357176

14. Laprie, J.C.: The dependability approach to critical computing systems. In:
Nichols, H., Simpson, D. (eds.) ESEC ’87. pp. 231–243. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1987)

15. Li, J., Tinka, A., Kiesel, S., Durham, J.W., Kumar, T.K.S., Koenig, S.: Lifelong
multi-agent path finding in large-scale warehouses. In: AAMAS (2020)

16. Lopes, V., Alexandre, L.A.: An overview of blockchain integra-
tion with robotics and artificial intelligence. Ledger 4 (Apr 2019).
https://doi.org/10.5195/ledger.2019.171

17. Ma, H., Hönig, W., Kumar, T.K.S., Ayanian, N., Koenig, S.: Lifelong path plan-
ning with kinematic constraints for multi-agent pickup and delivery. Proceed-
ings of the AAAI Conf. on Artificial Intelligence 33(01), 7651–7658 (Jul 2019).
https://doi.org/10.1609/aaai.v33i01.33017651

18. Ma, H., Koenig, S.: Optimal target assignment and path finding for teams of agents.
In: Proceedings of the 2016 Int. Conf. on Autonomous Agents and; Multiagent
Systems. p. 1144–1152. AAMAS ’16, Int. Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2016)

https://doi.org/10.5195/ledger.2019.179
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/357172.357176
https://doi.org/10.5195/ledger.2019.171
https://doi.org/10.1609/aaai.v33i01.33017651


14 K. Strawn and N. Ayanian.

19. Ma, H., Koenig, S.: Ai buzzwords explained: Multi-agent path finding (mapf). AI
Matters 3(3), 15–19 (Oct 2017). https://doi.org/10.1145/3137574.3137579

20. Ma, H., Li, J., Kumar, T.S., Koenig, S.: Lifelong multi-agent path finding for
online pickup and delivery tasks. In: Proceedings of the 16th Conf. on Autonomous
Agents and MultiAgent Systems. p. 837–845. AAMAS ’17, Int. Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2017)

21. Morris, R., Pasareanu, C., Luckow, K., Malik, W., Ma, H., Kumar, T.K., Koenig,
S.: Planning, scheduling and monitoring for airport surface operations. In: AAAI
Workshop: Planning for Hybrid Systems (2016)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mail-
ing list at https://metzdowd.com (03 2009)

23. Nguyen, V., Obermeier, P., Son, T.C., Schaub, T., Yeoh, W.: Generalized target
assignment and path finding using answer set programming. In: Proceedings of
the 26th Int. Joint Conf. on Artificial Intelligence. p. 1216–1223. IJCAI’17, AAAI
Press (2017)

24. Okumura, K., Machida, M., Défago, X., Tamura, Y.: Priority inheritance
with backtracking for iterative multi-agent path finding. In: Proceedings of
the Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, IJCAI-19. pp.
535–542. Int. Joint Conf. on Artificial Intelligence Organization (7 2019).
https://doi.org/10.24963/ijcai.2019/76

25. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

26. Silver, D.: Cooperative pathfinding. In: Proceedings of the First AAAI Conf. on
Artificial Intelligence and Interactive Digital Entertainment. p. 117–122. AIIDE’05,
AAAI Press (2005)

27. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Proceedings of the 17th Int. Conf. on Autonomous Agents and MultiAgent
Systems. p. 541–549. AAMAS ’18, Int. Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2018)

28. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. 2009 IEEE Int. Conf. on Robotics and Automation pp. 3613–3619 (2009)

29. Čáp, M., Vokř́ınek, J., Kleiner, A.: Complete decentralized method for on-line
multi-robot trajectory planning in well-formed infrastructures. In: Proceedings of
the Twenty-Fifth Int. Conf. on Int. Conf. on Automated Planning and Scheduling.
p. 324–332. ICAPS’15, AAAI Press (2015)

30. Veloso, M., Biswas, J., Coltin, B., Rosenthal, S.: Cobots: Robust symbiotic au-
tonomous mobile service robots. In: Proceedings of the 24th Int. Conf. on Artificial
Intelligence. p. 4423–4429. IJCAI’15, AAAI Press (2015)

31. Wang, K.H., Botea, A.: Mapp: a scalable multi-agent path planning algorithm with
tractability and completeness guarantees. J. Artif. Intell. Res. (JAIR) 42, 55–90
(09 2011). https://doi.org/10.1613/jair.3370

32. Wilde, B.D., Mors, A., Witteveen, C.: Push and rotate: cooperative multi-agent
path planning. In: AAMAS (2013)

33. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine 29, 9–20 (03 2008)

34. Yu, J., LaValle, S.: Structure and intractability of optimal multi-robot path plan-
ning on graphs. In: AAAI (2013)

https://doi.org/10.1145/3137574.3137579
https://doi.org/10.24963/ijcai.2019/76
https://doi.org/10.1613/jair.3370

	Byzantine Fault Tolerant Consensus for Lifelong and Online Multi-Robot Pickup and Delivery

