

操作系统课程作业 1

操作系统作业

姓名，学号

1. The first known correct software solution to the critical-section problem for two

processes was developed by Dekker. The two processes, P0 and P1, share the
following variables:

boolean flag[2]; /* initially false */
int turn;

The structure of process Pi (i == 0 or 1) is shown in Figure 1; the other process is Pj
(j == 1 or 0). Prove that the algorithm satisfies all three requirements for the
critical-section problem.

Figure 1: The structure of process Pi for Question 1.

Answer：

(1) Mutual Exclusion:
Mutual exclusion is ensured through the use of the flag and turn variables.

操作系统课程作业 2

If both processes set their flag to true, only one will succeed, namely, the process whose turn it
is. The waiting process can only enter its critical section when the other process updates the value
of turn.

(2) Progress:
Progress is provided, again through the flag and turn variables.
This algorithm does not provide strict alternation. Rather, if a process wishes to access their
critical section, it can set their flag variable to true and enter their critical section. It sets turn to
the value of the other process only upon exiting its critical section. If this process wishes to enter
its critical section again—before the other process—it repeats the process of entering its critical
section and setting turn to the other process upon exiting.

(3) Bounded Waiting:
Bounded waiting is preserved through the use of the turn variable. Assume two processes wish
to enter their respective critical sections. They both set their value of flag to true; however, only
the thread whose turn it is can proceed; the other thread waits. If bounded waiting were not
preserved, it would therefore be possible that the waiting process would have to wait indefinitely
while the first process repeatedly entered—and exited—its critical section. However, Dekker’s
algorithm has a process set the value of turn to the other process, thereby ensuring that the other
process will enter its critical section next.

2. Consider the code example for allocating and releasing processes shown in Figure 2.

a. Identify the race condition(s).
b. Assume you have a mutex lock named mutex with the operations acquire() and

release(). Indicate where the locking needs to be placed to prevent the race condition(s).

Figure 2: Code for Question 2.

操作系统课程作业 3

Answer：

a. There is a race condition on the variable number_of_processes.
b. A call to acquire() must be placed upon entering each function and a call to release() immediately

before exiting each function.

3. Servers can be designed to limit the number of open connections. For example, a
server may wish to have only N socket connections at any point in time. As soon as
N connections are made, the server will not accept another incoming connection until
an existing connection is released. Use semaphores to limit the number of concurrent
connections in the server.

Answer：

1) A semaphore is initialized to the number of allowable open socket connections.
2) When a connection is accepted, the acquire() method is called; when a connection is released,

the release() method is called.
3) If the system reaches the number of allowable socket connections, subsequent calls to acquire()

will block until an existing connection is terminated and the release method is invoked.

4. Consider the traffic deadlock depicted in Figure 3.

a. Show that the four necessary conditions for deadlock indeed hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.

Figure 3. Traffic deadlock for Question 4.

操作系统课程作业 4

Answer：

a. The four necessary conditions for a deadlock are (1) mutual exclusion; (2) hold-and-wait; (3) no
preemption; and (4) circular wait.
1) The mutual exclusion condition holds since only one car can occupy a space in the roadway.
2) Hold-and-wait occurs where a car holds onto its place in the roadway while it waits to

advance in the roadway.
3) A car cannot be removed (i.e. preempted) from its position in the roadway.
4) Lastly, there is indeed a circular wait as each car is waiting for a subsequent car to advance.

The circular wait condition is also easily observed from the graphic.
b. A simple rule that would avoid this traffic deadlock is that a car may not advance into an

intersection if it is clear it will not be able immediately to clear the intersection.

5. Consider the deadlock situation that can occur in the diningphilosophers problem
when the philosophers obtain the chopsticks one at a time. Discuss how the four
necessary conditions for deadlock hold in this setting. Describe a deadlock-free
solution, and discuss which necessary conditions are eliminated in your solution.

Answer：

Deadlock is possible because the four necessary conditions hold in the following manner:
1) mutual exclusion is required for chopsticks,
2) the philosophers hold onto the chopstick in hand while they wait for the other chopstick,
3) there is no preemption of chopsticks in the sense that a chopstick allocated to a philosopher cannot

be forcibly taken away,
4) there is a possibility of circularwait.
Deadlocks could be avoided by overcoming the conditions in the following manner: (anyone is ok)
 Allow simultaneous sharing of chopsticks. (NO “Mutual Exclusion”)
 Have the philosophers relinquish the first chopstick if they are unable to obtain the other

chopstick. (NO “Hold-and-wait”)
 Allow chopsticks to be forcibly taken away if a philosopher has had a chopstick for a long period

of time. (Preemption)
 Enforce a numbering of the chopsticks and always obtain the lower numbered chopstick before

obtaining the higher numbered one. (NO “Circular Wait”)
 Allow at most four philosophers to be sitting simultaneously at the table. (NO “Circular Wait”)
 “The Final Solution” in our PPT(ch5_part3.pdf). (NO “Hold-and-wait” && NO “Circular Wait”)

6. Discuss how the following pairs of scheduling criteria conflict in certain settings.

a. CPU utilization and response time
b. Average turnaround time and maximum waiting time
c. I/O device utilization and CPU utilization

操作系统课程作业 5

Answer：

a. CPU utilization and response time:
CPU utilization is increased if the overheads associated with context switching is minimized.
The context switching overheads could be lowered by performing context switches
infrequently. This could, however, result in increasing the response time for processes.

b. Average turnaround time and maximum waiting time:
Average turnaround time is minimized by executing the shortest tasks first. Such a scheduling
policy could, however, starve long-running tasks and thereby increase their waiting time.

c. I/O device utilization and CPU utilization:
CPU utilization is maximized by running long-running CPU-bound tasks without performing
context switches. I/O device utilization is maximized by scheduling I/O-bound jobs as soon as
they become ready to run, thereby incurring the overheads of context switches.

7. Consider the exponential average formula used to predict the length of the next CPU

burst. What are the implications of assigning the following values to the parameters
used by the algorithm?
a. α = 0 and τ଴ = 100 milliseconds
b. α = 0.99 and τ଴ = 10 milliseconds

Answer：

a. When α = 0 and τ଴ = 100 milliseconds, the formula always makes a prediction of 100
milliseconds for the next CPU burst.

b. When α = 0.99 and τ଴ = 10 milliseconds, the most recent behavior of the process is given
much higher weight than the past history associated with the process. Consequently, the
scheduling algorithm is almost memoryless, and simply predicts the length of the previous burst
for the next quantum of CPU execution.

8. Consider the following set of processes, with the length of the CPU burst time given

in milliseconds:

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at
time 0.

操作系统课程作业 6

a. Draw four Gantt charts that illustrate the execution of these processes using the
following scheduling algorithms: FCFS, SJF, nonpreemptive priority (a smaller
priority number implies a higher priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the scheduling
algorithms in part a?

c. What is the waiting time of each process for each of these scheduling
algorithms?

d. Which of the algorithms results in the minimum average waiting time (over all
processes)?

Answer：

a. The four Gantt charts are:

b. Turnaround time

c. Waiting time (turnaround time minus burst time)

d. SJF

操作系统课程作业 7

9. Which of the following scheduling algorithms could result in starvation?
a. First-come, first-served
b. Shortest job first
c. Round robin
d. Priority

Answer： b d

10. Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume

that the I/O-bound tasks issue an I/O operation once for every millisecond of CPU
computing and that each I/O operation takes 10 milliseconds to complete. Also
assume that the context-switching overhead is 0.1millisecond and that all processes
are long-running tasks. Describe is the CPU utilization for a round-robin scheduler
when:
a. The time quantum is 1 millisecond
b. The time quantum is 10 milliseconds

Answer：

a. The time quantum is 1millisecond:
Irrespective of which process is scheduled, the scheduler incurs a 0.1 millisecond context-
switching cost for every context-switch. This results in a CPU utilization of 1/1.1 * 100 = 91%.

b. The time quantum is 10 milliseconds:
The I/O-bound tasks incur a context switch after using up only 1 millisecond of the time
quantum. The time required to cycle through all the processes is therefore 10*1.1 + 10.1 (as
each I/O-bound task executes for 1 millisecond and then incur the context switch task, whereas
the CPU-bound task executes for 10 milliseconds before incurring a context switch). The CPU
utilization is therefore 20/21.1 * 100 = 94%.

11. Assume that two tasks Aand B are running on a Linux system. The nice values of

Aand B are −5 and +5, respectively. Using the CFS scheduler as a guide, describe
how the respective values of vruntime vary between the two processes given each of
the following scenarios:
a. Both Aand B are CPU-bound.
b. A is I/O-bound, and B is CPU-bound.
c. A is CPU-bound, and B is I/O-bound.

Answer：

a. Since A has a higher priority than B, vruntime will move more slowly for A than B. If both A
and B are CPU-bound (that is they both use the CPU for as long as it is allocated to them),

操作系统课程作业 8

vruntime will generally be smaller for A than B, and hence A will have a greater priority to run
over B.

b. In this situation, vruntime will be much smaller for A than B as (1) vruntime will move more
slowly for A than B due to priority differences, and (2) A will require less CPU-time as it is I/O-
bound.

c. This situation is not as clear, and it is possible that B may end up running in favor of A as it will
be using the processor less than A and in fact its value of vruntime may in fact be less than the
value of vruntime for B.

12. Give an example to illustrate under what circumstances rate-monotonic scheduling
is inferior to earliest-deadline-first scheduling in meeting the deadlines associated
with processes?

Answer：

Example 1:
Consider two processes P1 and P2 where p1 = 50, t1 = 25 and p2 = 75, t2 = 30.
If P1 were assigned a higher priority than P2, then the following scheduling events happen under
rate-monotonic scheduling.
P1 is scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled at t = 50, and P2 is scheduled at t
= 75. P2 is not scheduled early enough to meet its deadline.
The earliest deadline schedule performs the following scheduling events:
P1 is scheduled at t = 0, P2 is scheduled at t = 25, P1 is scheduled at t = 55, and so on.
This schedule actually meets the deadlines and therefore earliest-deadline-first scheduling is more
effective than the rate-monotonic scheduler.

Example 2:
Example in our course PPT

