# The Cantor–Schröder–Bernstein–Escardó theorem ```agda module foundation.cantor-schroder-bernstein-escardo where ```
Imports ```agda open import foundation.action-on-identifications-functions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.law-of-excluded-middle open import foundation.perfect-images open import foundation.split-surjective-maps open import foundation.universe-levels open import foundation-core.coproduct-types open import foundation-core.embeddings open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.negation ```
## Idea The classical Cantor–Schröder–Bernstein theorem asserts that from any pair of [injective maps](foundation-core.injective-maps.md) `f : A → B` and `g : B → A` we can construct a bijection between `A` and `B`. In a recent generalization, Escardó proved that a Cantor–Schröder–Bernstein theorem also holds for ∞-groupoids. His generalization asserts that given two types that [embed](foundation-core.embeddings.md) into each other, then the types are [equivalent](foundation-core.equivalences.md). {{#cite Esc21}} ## Statement ```agda type-Cantor-Schröder-Bernstein-Escardó : (l1 l2 : Level) → UU (lsuc (l1 ⊔ l2)) type-Cantor-Schröder-Bernstein-Escardó l1 l2 = {X : UU l1} {Y : UU l2} → (X ↪ Y) → (Y ↪ X) → X ≃ Y ``` ## Proof ### The law of excluded middle implies Cantor-Schröder-Bernstein-Escardó ```agda module _ {l1 l2 : Level} (lem : LEM (l1 ⊔ l2)) where module _ {X : UU l1} {Y : UU l2} (f : X ↪ Y) (g : Y ↪ X) where map-Cantor-Schröder-Bernstein-Escardó' : (x : X) → is-decidable (is-perfect-image (map-emb f) (map-emb g) x) → Y map-Cantor-Schröder-Bernstein-Escardó' x (inl y) = inverse-of-perfect-image x y map-Cantor-Schröder-Bernstein-Escardó' x (inr y) = map-emb f x map-Cantor-Schröder-Bernstein-Escardó : X → Y map-Cantor-Schröder-Bernstein-Escardó x = map-Cantor-Schröder-Bernstein-Escardó' x ( is-decidable-is-perfect-image-is-emb (is-emb-map-emb g) lem x) is-injective-map-Cantor-Schröder-Bernstein-Escardó : is-injective map-Cantor-Schröder-Bernstein-Escardó is-injective-map-Cantor-Schröder-Bernstein-Escardó {x} {x'} = l (is-decidable-is-perfect-image-is-emb (is-emb-map-emb g) lem x) (is-decidable-is-perfect-image-is-emb (is-emb-map-emb g) lem x') where l : (d : is-decidable (is-perfect-image (map-emb f) (map-emb g) x)) (d' : is-decidable (is-perfect-image (map-emb f) (map-emb g) x')) → ( map-Cantor-Schröder-Bernstein-Escardó' x d) = ( map-Cantor-Schröder-Bernstein-Escardó' x' d') → x = x' l (inl ρ) (inl ρ') p = inv (is-section-inverse-of-perfect-image x ρ) ∙ (ap (map-emb g) p ∙ is-section-inverse-of-perfect-image x' ρ') l (inl ρ) (inr nρ') p = ex-falso (perfect-image-has-distinct-image x' x nρ' ρ (inv p)) l (inr nρ) (inl ρ') p = ex-falso (perfect-image-has-distinct-image x x' nρ ρ' p) l (inr nρ) (inr nρ') p = is-injective-is-emb (is-emb-map-emb f) p is-split-surjective-map-Cantor-Schröder-Bernstein-Escardó : is-split-surjective map-Cantor-Schröder-Bernstein-Escardó is-split-surjective-map-Cantor-Schröder-Bernstein-Escardó y = pair x p where a : is-decidable ( is-perfect-image (map-emb f) (map-emb g) (map-emb g y)) → Σ ( X) ( λ x → ( (d : is-decidable (is-perfect-image (map-emb f) (map-emb g) x)) → map-Cantor-Schröder-Bernstein-Escardó' x d = y)) a (inl γ) = pair (map-emb g y) ψ where ψ : ( d : is-decidable ( is-perfect-image (map-emb f) (map-emb g) (map-emb g y))) → map-Cantor-Schröder-Bernstein-Escardó' (map-emb g y) d = y ψ (inl v') = is-retraction-inverse-of-perfect-image { is-emb-g = is-emb-map-emb g} ( y) ( v') ψ (inr v) = ex-falso (v γ) a (inr γ) = pair x ψ where w : Σ ( fiber (map-emb f) y) ( λ s → ¬ (is-perfect-image (map-emb f) (map-emb g) (pr1 s))) w = not-perfect-image-has-not-perfect-fiber ( is-emb-map-emb f) ( is-emb-map-emb g) ( lem) ( y) ( γ) x : X x = pr1 (pr1 w) p : map-emb f x = y p = pr2 (pr1 w) ψ : ( d : is-decidable (is-perfect-image (map-emb f) (map-emb g) x)) → map-Cantor-Schröder-Bernstein-Escardó' x d = y ψ (inl v) = ex-falso ((pr2 w) v) ψ (inr v) = p b : Σ ( X) ( λ x → ( (d : is-decidable (is-perfect-image (map-emb f) (map-emb g) x)) → map-Cantor-Schröder-Bernstein-Escardó' x d = y)) b = a ( is-decidable-is-perfect-image-is-emb ( is-emb-map-emb g) ( lem) ( map-emb g y)) x : X x = pr1 b p : map-Cantor-Schröder-Bernstein-Escardó x = y p = pr2 b (is-decidable-is-perfect-image-is-emb (is-emb-map-emb g) lem x) is-equiv-map-Cantor-Schröder-Bernstein-Escardó : is-equiv map-Cantor-Schröder-Bernstein-Escardó is-equiv-map-Cantor-Schröder-Bernstein-Escardó = is-equiv-is-split-surjective-is-injective map-Cantor-Schröder-Bernstein-Escardó is-injective-map-Cantor-Schröder-Bernstein-Escardó is-split-surjective-map-Cantor-Schröder-Bernstein-Escardó Cantor-Schröder-Bernstein-Escardó : type-Cantor-Schröder-Bernstein-Escardó l1 l2 pr1 (Cantor-Schröder-Bernstein-Escardó f g) = map-Cantor-Schröder-Bernstein-Escardó f g pr2 (Cantor-Schröder-Bernstein-Escardó f g) = is-equiv-map-Cantor-Schröder-Bernstein-Escardó f g ``` ## References - Escardó's formalizations regarding this theorem can be found at . {{#cite TypeTopology}} {{#bibliography}}