
Uniswap v4 Core
August 2024

Hayden Adams

hayden@uniswap.org

Moody Salem

moody.salem@gmail.com

Noah Zinsmeister

noah@uniswap.org

Sara Reynolds

sara@uniswap.org

Austin Adams

me@aada.ms

Will Pote

willpote@gmail.com

Mark Toda

mark@uniswap.org

Alice Henshaw

alice@uniswap.org

Emily Williams

emily@uniswap.org

Dan Robinson

dan@paradigm.xyz

ABSTRACT
Uniswap v4 is a non-custodial automated market maker imple-

mented for the Ethereum Virtual Machine. Uniswap v4 offers cus-

tomizability via arbitrary code hooks, allowing developers to aug-

ment the concentrated liquidity model introduced in Uniswap v3

with new functionality. In Uniswap v4, anyone can create a new

pool with a specified hook, which can run before or after pre-

determined pool actions. Hooks can be used to implement features

that were previously built into the protocol, like oracles, as well

as new features that previously would have required independent

implementations of the protocol. Uniswap v4 also offers improved

gas efficiency and developer experience through a singleton imple-

mentation, flash accounting, and support for native ETH.

1 INTRODUCTION
Uniswap v4 is an automated market maker (AMM) facilitating effi-

cient exchange of value on the Ethereum Virtual Machine (EVM).

As with previous versions of the Uniswap Protocol, it is non-

custodial, non-upgradable, and permissionless. The focus of Uniswap

v4 is on additional customization for developers and architectural

changes for gas efficiency improvements, building on the AMM

model built by Uniswap v1 and v2 and the concentrated liquidity

model introduced in Uniswap v3.

Uniswap v1 [2] and v2 [3] were the first two iterations of the

Uniswap Protocol, facilitating ERC-20 <> ETH and ERC-20 <>

ERC-20 swaps, respectively, both using a constant product market

maker (CPMM) model. Uniswap v3 [4] introduced concentrated

liquidity, enabling more capital efficient liquidity through positions

that provide liquidity within a limited price range, and multiple fee

tiers.

While concentrated liquidity and fee tiers increased flexibility for

liquidity providers and allowed for new liquidity provision strate-

gies, Uniswap v3 lacks flexibility to support new functionalities

invented as AMMs and DeFi have evolved.

Some features, like the price oracle originally introduced in

Uniswap v2 and included in Uniswap v3, allow integrators to uti-

lize decentralized onchain pricing data, at the expense of increased

gas costs for swappers and without customizability for integrators.

Other possible enhancements, such as time-weighted average price

orders (TWAP) through a time-weighted average market maker

(TWAMM) [8], volatility oracles, limit orders, or dynamic fees, re-

quire reimplementations of the core protocol, and can not be added

to Uniswap v3 by third-party developers.

Additionally, in previous versions of Uniswap, deployment of

new pools involves deploying a new contract—where cost scales

with the size of the bytecode—and trades with multiple Uniswap

pools involve transfers and redundant state updates across multiple

contracts. Additionally since Uniswap v2, Uniswap has required

ETH to be wrapped into an ERC-20, rather than supporting native

ETH. These design choices came with increased gas costs for end

users.

In Uniswap v4, we improve on these inefficiencies through a

few notable features:

• Hooks: Uniswap v4 allows anyone to deploy new concen-

trated liquidity pools with custom functionality. For each

pool, the creator can define a “hook contract” that imple-

ments logic executed at specific points in a call’s lifecycle.

These hooks can also manage the swap fee of the pool

dynamically, implement custom curves, and adjust fees

charged to liquidity providers and swappers though Cus-
tom Accounting.

• Singleton: Uniswap v4 moves away from the factory model

used in previous versions, instead implementing a single

contract that holds all pools. The singleton model reduces

the cost of pool creation and multi-hop trades.

• Flash accounting: The singleton uses “flash accounting,”

which allows a caller to lock the pool and access any of

its tokens, as long as no tokens are owed to or from the

caller by the end of the lock. This functionality is made

efficient by the transient storage opcodes described in EIP-

1153 [5]. Flash accounting further reduces the gas cost of

trades that cross multiple pools and supports more complex

integrations with Uniswap v4.

1



Adams et al.

• Native ETH : Uniswap v4 brings back support for native

ETH, with support for pairs with native tokens inside v4

pools. ETH swappers and liquidity providers benefit from

gas cost reductions from cheaper transfers and removal of

additional wrapping costs.

• Custom Accounting: The singleton supports both augment-

ing and bypassing the native concentrated liquidity pools

through hook-returned deltas, utilizing the singleton as

an immutable settlement layer for connected pools. This

feature can support use-cases like hook withdrawal fees,

wrapping assets, or constant product market maker curves

like Uniswap v2.

The following sections provide in-depth explanations of these

changes and the architectural changes that help make them possible.

2 HOOKS
Hooks are externally deployed contracts that execute some developer-

defined logic at a specified point in a pool’s execution. These hooks

allow integrators to create a concentrated liquidity pool with flexi-

ble and customizable execution. Optionally, hooks can also return

custom deltas that allow the hook to change the behavior of the

swap — described in detail in the Custom Accounting section (5).

Hooks can modify pool parameters, or add new features and

functionality. Example functionalities that could be implemented

with hooks include:

• Executing large orders over time through TWAMM [8]

• Onchain limit orders that fill at tick prices

• Volatility-shifting dynamic fees

• Mechanisms to internalize MEV for liquidity providers [1]

• Median, truncated, or other custom oracle implementations

• Constant Product Market Makers (Uniswap v2 functional-

ity)

2.1 Action Hooks
When someone creates a pool on Uniswap v4, they can specify a

hook contract. This hook contract implements custom logic that

the pool will call out to during its execution. Uniswap v4 currently

supports ten such hook callbacks:

• beforeInitialize/afterInitialize

• beforeAddLiquidity/afterAddLiquidity
1

• beforeRemoveLiquidity/afterRemoveLiquidity

• beforeSwap/afterSwap

• beforeDonate/afterDonate

The address of the hook contract determines which of these hook

callbacks are executed. This creates a gas efficient and expressive

methodology for determining the desired callbacks to execute, and

ensures that even upgradeable hooks obey certain invariants. There

are minimal requirements for creating a working hook. In Figure

1, we describe how the beforeSwap and afterSwap hooks work as

part of swap execution flow.

1
Having separate permissions for ‘beforeAddLiquidity‘ and ‘beforeRemoveLiquidity‘

reflects the difference in security assumptions between those two actions. Hooks that

can affect minting but not burning of liquidity are safer for liquidity providers, since

they are guaranteed to be able to withdraw their liquidity.

2.2 Hook-managed fees
Uniswap v4 allows fees to be taken on swapping by the hook.

Swap fees can be either static, or dynamically managed by a hook

contract. The hook contract can also choose to allocate a percentage

of the swap fees to itself. Fees that accrue to hook contracts can

be allocated arbitrarily by the hook’s code, including to liquidity

providers, swappers, hook creators, or any other party.

The capabilities of the hook are limited by immutable flags cho-

sen when the pool is created. For example, a pool creator can choose

whether a pool has a static fee (and what that fee is) or dynamic

fees.

Governance also can take a capped percentage of swap fees, as

discussed below in the Governance section (6.2).

3 SINGLETON AND FLASH ACCOUNTING
Previous versions of the Uniswap Protocol use the factory/pool

pattern, where the factory creates separate contracts for new token

pairs. Uniswap v4 uses a singleton design pattern where all pools

are managed by a single contract, making pool deployment 99%

cheaper.

The singleton design complements another architectural change

in v4: flash accounting. In previous versions of the Uniswap Pro-

tocol, most operations (such as swapping or adding liquidity to a

pool) ended by transferring tokens. In v4, each operation updates an

internal net balance, known as a delta, only making external trans-

fers at the end of the lock. The new take() and settle() functions
can be used to borrow or deposit funds to the pool, respectively. By

requiring that no tokens are owed to the pool manager or to the

caller by the end of the call, the pool’s solvency is enforced.

Flash accounting simplifies complex pool operations, such as

atomic swapping and adding. When combined with the singleton

model, it also simplifies multi-hop trades or compound operations

like swapping before adding liquidity.

Before the Cancun hard fork, the flash accounting architecture

was expensive because it required storage updates at every balance

change. Even though the contract guaranteed that internal account-

ing data is never actually serialized to storage, users would still

pay those same costs once the storage refund cap was exceeded

[6]. But, because balances must be 0 by the end of the transaction,

accounting for these balances can be implemented with transient

storage, as specified by EIP-1153 [5].

Together, singleton and flash accounting enable more efficient

routing across multiple v4 pools, reducing the cost of liquidity

fragmentation. This is especially useful given the introduction of

hooks, which will greatly increase the number of pools.

4 NATIVE ETH
Uniswap v4 is bringing back native ETH in trading pairs. While

Uniswap v1 was strictly ETH paired against ERC-20 tokens, native

ETH pairs were removed in Uniswap v2 due to implementation

complexity and concerns of liquidity fragmentation across WETH

and ETH pairs. Singleton and flash accounting mitigate these prob-

lems, so Uniswap v4 allows for both WETH and ETH pairs.

Native ETH transfers are about half the gas cost of ERC-20 trans-

fers (21k gas for ETH and around 40k gas for ERC-20s). Currently

Uniswap v2 and v3 require the vast majority of users to wrap

2



Uniswap v4 Core

Start swap

S0. Check beforeSwap flag H1. Run beforeSwap Hook

S1. Execute swap

S2. Check afterSwap flag H2. Run afterSwap Hook

End swap

True

False

Return

True

False

Return

Figure 1: Swap Hook Flow

(unwrap) their ETH to (from) WETH before (after) trading on the

Uniswap Protocol, requiring extra gas. According to transaction

data, the majority of users start or end their transactions in ETH,

adding this additional unneeded complexity.

5 CUSTOM ACCOUNTING
Newly introduced in Uniswap v4 is custom accounting - which

allows hook developers to alter end user actions utilizing hook-

returned deltas, token amounts that are debited/credited to the

user and credited/debited to the hook, respectively. This allows

hook developers to potentially add withdrawal fees on LP positions,

customized LP fee models, or match against some flow, all while

ultimately utilizing the internal concentrated liquidity native to

Uniswap v4.

Importantly, hook developers can also forgo the concentrated

liquidity model entirely, creating custom curves from the v4 swap

parameters. This creates interface composability for integrators -

allowing the hook to map the swap parameters to their internal

logic.

In Uniswap v3, users were required to utilize the concentrated

liquidity AMM introduced in the same version. Since their intro-

duction, concentrated liquidity AMMs have become widely used as

the base liquidity provision strategy in the decentralized finance

markets. While concentrated liquidity is able to support most ar-

bitrary liquidity provision strategies, it may require increased gas

overhead to implement specific strategies.

One possible example is a Uniswap v2 on Uniswap v4 hook,

which bypasses the internal concentrated liquidity model entirely -

utilizing a constant product market maker fully inside of the hook.

Using custom accounting is cheaper than creating a similar strategy

in the concentrated liquidity math.

The benefit of custom accounting for developers - compared

to rolling a custom AMM - is the singleton, flash accounting,

and ERC-6909. These features support cheaper multi-hop swaps,

security benefits, and easier integration for flow. Developers should

also benefit from a well-audited code-base for the basis of their

AMM.

Custom accountingwill also support experimentation in liquidity

provision strategies, which historically requires the creation of an

entirely new AMM. Creating a custom AMM requires significant

technical resources and investment, whichmay not be economically

viable for many.

6 OTHER NOTABLE FEATURES
6.1 ERC-6909 Accounting
Uniswap v4 supports theminting/burning of singleton-implemented

ERC-6909 tokens for additional token accounting, described in the

ERC-6909 specification [7]. Users can now keep tokens within the

singleton and avoid ERC-20 transfers to and from the contract. This

will be especially valuable for users and hooks who continually use

the same tokens over multiple blocks or transactions, like frequent

swappers, liquidity providers, or custom accounting hooks.

6.2 Governance updates
Similar toUniswap v3,Uniswap v4 allows governance the ability to

take up to a capped percentage of the swap fee on a particular pool,

which are additive to LP fees. Unlike in Uniswap v3, governance

does not control the permissible fee tiers or tick spacings.

6.3 Gas reductions
As discussed above, Uniswap v4 introduces meaningful gas op-

timizations through flash accounting, the singleton model, and

support for native ETH. Additionally, the introduction of hooks

makes the protocol-enshrined price oracle that was included in

Uniswap v2 and Uniswap v3 unnecessary, which also means base

pools forgo the oracle altogether and save around 15k gas on the

first swap on a pool in each block.

3



Adams et al.

6.4 donate()
donate() allows users, integrators, and hooks to directly pay in-

range liquidity providers in either or both of the tokens of the pool.

This functionality relies on the fee accounting system to facilitate

efficient payments. The fee payment system can only support either

of the tokens in the token pair for the pool. Potential use-cases could

be tipping in-range liquidity providers on TWAMM orders or new

types of fee systems.

7 SUMMARY
In summary, Uniswap v4 is a non-custodial, non-upgradeable, and

permissionless AMM protocol. It builds upon the concentrated

liquidity model introduced in Uniswap v3 with customizable pools

through hooks. Complementary to hooks are other architectural

changes like the singleton contract which holds all pool state in one

contract, and flash accounting which enforces pool solvency across

each pool efficiently. Additionally, hook developers can elect to

bypass the concentrated liquidity entirely, utilizing the v4 singleton

as an arbitrary delta resolver. Some other improvements are native

ETH support, ERC-6909 balance accounting, new fee mechanisms,

and the ability to donate to in-range liquidity providers.

REFERENCES
[1] Austin Adams, Ciamac Moallemi, Sara Reynolds, and Dan Robinson. 2024.

am-AMM: An Auction-Managed Automated Market Maker. arXiv preprint
arXiv:2403.03367 (2024).

[2] Hayden Adams. 2018. Uniswap v1 Core. Retrieved Jun 12, 2023 from https:

//hackmd.io/@HaydenAdams/HJ9jLsfTz

[3] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.
Retrieved Jun 12, 2023 from https://uniswap.org/whitepaper.pdf

[4] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-

son. 2021. Uniswap v3 Core. Retrieved Jun 12, 2023 from https://uniswap.org/

whitepaper-v3.pdf

[5] Alexey Akhunov and Moody Salem. 2018. EIP-1153: Transient storage opcodes.
Retrieved Jun 12, 2023 from https://eips.ethereum.org/EIPS/eip-1153

[6] Vitalik Buterin andMartin Swende. 2021. EIP-3529: Reduction in refunds. Retrieved
Jun 12, 2023 from https://eips.ethereum.org/EIPS/eip-3529

[7] JT Riley, Dillon, Sara, Vectorized, and Neodaoist. 2023. ERC-6909: Minimal Multi-
Token Interface. Retrieved Aug 26, 2024 from https://eips.ethereum.org/EIPS/eip-

6909

[8] Dave White, Dan Robinson, and Hayden Adams. 2021. TWAMM. Retrieved Jun

12, 2023 from https://www.paradigm.xyz/2021/07/twamm

DISCLAIMER
This paper is for general information purposes only. It does not

constitute investment advice or a recommendation or solicitation to

buy or sell any investment and should not be used in the evaluation

of the merits of making any investment decision. It should not be

relied upon for accounting, legal or tax advice or investment rec-

ommendations. This paper reflects current opinions of the authors

and is not made on behalf of Uniswap Labs, Paradigm, or their

affiliates and does not necessarily reflect the opinions of Uniswap

Labs, Paradigm, their affiliates or individuals associated with them.

The opinions reflected herein are subject to change without being

updated.

4

https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://eips.ethereum.org/EIPS/eip-1153
https://eips.ethereum.org/EIPS/eip-3529
https://eips.ethereum.org/EIPS/eip-6909
https://eips.ethereum.org/EIPS/eip-6909
https://www.paradigm.xyz/2021/07/twamm

	Abstract
	1 Introduction
	2 Hooks
	2.1 Action Hooks
	2.2 Hook-managed fees

	3 Singleton and Flash Accounting
	4 Native ETH
	5 Custom Accounting
	6 Other Notable Features
	6.1 ERC-6909 Accounting
	6.2 Governance updates
	6.3 Gas reductions
	6.4 donate()

	7 Summary
	References

