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ABSTRACT

Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is
desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review
process or to have automatic indication for highly suspicious areas during an online guidance. This also applies
to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role.
Image classification is a standard pattern recognition problem and is well studied in the literature. However,
performance on the challenging endoscopic images still has room for improvement. In this paper, we present
a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard
Deep neural network based methods. During the learning phase, CDDN automatically builds a network which
discards samples that are classified with high confidence scores by a previously trained network and concentrates
only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate
CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor
classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%.
In addition, CDDN can also be applied to other image classification problems.
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1. INTRODUCTION

Endoscopic image analysis continues to play a quintessential role in visual diagnosis of medical conditions origi-
nating primarily in the gastrointestinal, respiratory, or other vital tracts of the human body. Early and precise
detection of a plethora of these conditions, can increase the chances of survival of an ailing patient through appro-
priate clinical procedures. For example, the relative 5-year survival rate for Colo-Rectal Cancer, when diagnosed
at an early Polyp stage before it has spread, is about 90%.1 Similarly, Meningioma, a benign intra-cranial tumor
condition, occurring in approximately 7 of every 100, 000 people ,2 if detected early, can be treated surgically or
by radiation, thereby drastically reducing the chances of growth and potential transformation to malignancy.

Figure 1. Sample images from the Polyp Classification Dataset obtained during a typical colonoscopic examination. Note
the translucent blob-like shapes (pointed by arrows in red color) indicates a colon polyp.

Currently, clinicians visually scan endoscopic images, usually captured through electro-optical probes, for
abnormal cell or tissue growth in the region under observation. Such manual screening procedures can often
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become tedious as a single probe typically generates multitude of images. Furthermore, since the screening relies
heavily on the dexterity of the clinician in charge, cases of miss detection are not uncommon. This emphasizes
on an inevitable necessity of computer aided diagnostic (CAD) solutions that can not only efficiently minimize
human effort required while screening a large fraction of negative cases, but also provide reliable reference to
the clinicians. In this work, we focus only on eliminating negative images and all the experimental results are
reported based on this.

Figure 2. Sample Confocal LASER Endoscopic images from the Tumor Classification dataset with malignant Glioblastoma
cases on the left and beningn Meningioma cases on the right. Note the sharp granular texture patterns in Glioblastoma
cases.

In practice, each endoscopic procedure is specific to the medical condition and region of the body under
observation. For example, within Capsule Endoscopy ,3 an encapsulated wireless video camera is used to capture
images from the gastrointestinal tract. In a different vein, neurosurgeons employ Confocal Laser Endomicroscopy
(CLE)4 probes as a surgical guidance tool to examine brain tissues for intracranial tumors. Although, these
application scenarios are vastly different, their fundamental objective involves searching for visually discriminative
patterns that can be decisive for a binary classification task primarily to segregate positive from negative image
samples.

More specifically, we focus on the following two tasks: (1) In colonoscopic images, the objective is to filter
out a large number of images that do not contain colon polyps (visually translucent blobs in the GI tract as seen
in Fig. 1), and (2) Identify malignant cases of brain tumors (Glioblastoma, often identified by sharp granular
patterns) from the benign ones (Meningioma, characterized by smooth homogeneous patterns) in CLE images
containing either of the two (refer to Fig. 2). Both of these scenarios have their own challenges. The former
case has several non-trivial inhibitors encountered by current computer vision systems: non-uniform illumination
from light emitting diodes, noise from bubbles, bowel fluids, occlusion posed by anatomical complexity, large
degrees of variation in shape and size. The latter is limited with the low resolution of current CLE imagery,
motion artifacts and often presence of both kind of patterns in the probing area.

Automatic visual analysis of images pertaining to the aforementioned domains using conventional computer
vision based techniques has demonstrated reasonable success in the past. Most of these are based on variants of
Bag of visual Words (BoW) based computational frameworks owing to their simplicity of implementation. These
methods5–9 typically involve extraction of features from image, followed by a vector quantization step based on
a pre-defined visual vocabulary (usually constructed by k-means clustering) which results in an intermediate
compact representation of an image that can be ingested as a training sample for supervised classifiers. While
these methods are effective, they consistently fail to leverage the data-driven aspect of the problem as all three
steps - feature extraction, generation of intermediate representation, and finally the classification, are mutually
independent.

Recently, Deep Learning based approaches,10 have demonstrated significant performance boost on generic
image classification tasks 11 by addressing the final classification objective in an integrated framework using
layered neural networks. This has motivated a lot of researchers to apply deep neural network based methods in
the field of medical image analysis.12–17 In an early work 18 pertinent to classification, the authors introduce a



Figure 3. Cascaded Deep Decision Network (CDDN). For instance, stage-2 is built on top of conv layer (green color) of
stage-1.

two-layer network which utilizes independent subspace analysis to reconstruct a natural representation of tumor
images captured through cell-microscopy.

With that being said, training networks for medical image classification tasks is a challenging task as it often
requires thorough experimentation on large datasets. Due to the lack of large amount of good quality training
data, the trained network architecture often overtly optimizes itself for only training data, and performs poorly
on unseen test samples. The authors of19 avoid this issue by employing a pre-trained Convolutional Neural
Network10 whose parameters are learned from a large database of images from non-medical cases.11 Their
research demonstrates high performance on a medical application of chest pathology detection in X-ray images.
We argue that while such a pre-trained architecture has demonstrated success in a specific cross-domain exercise,
the generalization aspect is still inconclusive. In this paper, we propose a novel elegant computational framework
called Cascaded Deep Decision Network (CDDN) to design an efficient network architecture with limited data
yet without over-fitting characteristics during the training process. In contrast to existing deep learning based
approaches, CDDN is built stage-wise during the learning phase. Our approach leverages a sampling strategy
that discards samples classified with high confidence by a pre-trained network at the first-stage. Successive
expert networks at different stages are trained focusing on samples that are difficult to classify. This work is
inspired by decision trees20 and boosting21,22 which are both classical approaches in machine learning. Many
variants of boosting trees have been explored and are shown to be successful for most of the vision tasks2122.23

The fundamental concept of cascading is, early rejection of majority of test examples that has been widely
utilized to achieve real-time performance. Hence, we provide an efficient and effective approach to utilize this
concept in the context of deep learning. Specifically our contributions are as follows: (a) piece-wise training
strategy helps alleviate problems encountered by gradient based methods, used heavily in contemporary deep
learning research, (b) The proposed network architecture can make early decision thereby significantly reducing
computational time without compromising on the performance, (c) data-driven design of CDDN offers an insight
into underlying structure in the data and finally (d) we demonstrate the effectiveness of our approach through
rigorous experiments on two extremely challenging endoscopic image classification tasks.

On the philosophical perspective, our proposed approach derives some similarity with ensemble methods
commonly used in machine learning.24,25 However, a majority of these approaches encounter difficulties rejecting
outliers in presence of noisy training data. The sample selection strategy in CDDN facilitates circumventing this
issue early on, thereby not affecting the final performance of the network. To the best of our knowledge, this
is the first work that introduces flavors of cascading deep networks 26,27 into computer aided diagnosis of two
crucial medical imaging applications. Extension of this framework to address multi-class classification problem
is provided in one of the recent work.28



2. METHODOLOGY

Given a classification task, training a performant deep network is a difficult task since there are no well established
guidelines to design the network architecture. Thus, training a network involves a thorough experimentation and
statistical analysis. Although going deeper in the neural network design has shown to be effective29 but also at
the same time it increases the risk of over-fitting. Furthermore, as we experiment with the network architecture
during the training process, it is difficult to leverage the results of the network trained in previous iteration. To
this end, we propose an alternate learning strategy to learn a deep neural network which allows building on and
taking advantage of previous training experiments.

2.1 Cascaded Deep Decision Network (CDDN)

A cascaded deep decision network is a multi-stage deep neural network, with decision stumps at each stage to
classify easily separable data earlier in the network. Overview of the CDDN computational framework is provided
in the Figure 3.

Given a dataset, stage-1 (root) network is trained using the back propagation algorithm. Instead of optimizing
the network to obtain the best performance, we only need to optimize until a reasonable performance is achieved
e.g. 60-70%. Alternatively, a pre-trained network can be used as a stage-1 network if it achieves reasonable
performance. The samples classified with high confidence are no longer considered for subsequent training.
Further, a stage-2 network is trained to correctly classify the previously misclassified samples and/or the samples
classified with low confidence; note that stage-2 network is only optimized on a subset of the training data which
was considered difficult by stage-1. This has the effect that as we go deeper we continue to “zoom-in” on resolving
the problem cases. This stage-wise process is then continued until desired performance is achieved.

There are several key differences between the CDDN architecture and the traditional deep networks. For
instance, as we go deeper, the newly introduced layers gets trained only on the subset of the data. All the layers
in previous stages are frozen while training the current stage. Furthermore, each subsequent stage builds on the
feature space trained in the previous stage. Note that subsequent stage can also be trained starting from any
layer of the previous stage, which can be determined using a cross validation data set.

2.2 Piece-wise training for CDDN

The proposed architecture is trained in a unique fashion, starting with a root network which is trained in a
traditional way, we use the softmax layer to compute its performance and learn a threshold of confidence score
for classification using cross-validation. The cross validation at each stage of the network is setup as follows:
in the first stage, the training data is split into training (90%) and validation (10%) set, while the network
gets trained on the training set, the confidence score is determined using the validation set. For the next stage
training, we mix up both training and validation set of the previous stage and create a new split to continue the
training process. This way we make sure that the entire training dataset gets utilized for training and as well
as the threshold value at each stage is determined based on the unseen samples which comes into effect during
testing.

At each stage, the samples with a confidence value below a threshold value are considered to be as hard
samples or confusion cases. These will be handled by the subsequent expert network which could be as simple
as a single layer or a composition of multiple convolutional layer along with fully connected layers. In this work,
we consider a shallow network as the expert network consisting of a convolutional and two fully connected layers
along with some non-linearity and dropout layers. We continue to train the subsequent network layers using
only the hard samples. While we do this, we completely freeze the previously trained layers. In other words,
we set the learning rate of the previously trained network to zero and only train the newly added layers, this
process can be recursively implemented until there are no more hard samples in the training dataset or until the
desired depth of the network is met. This way, we are able to make use of the previous layers efforts and also
have the benefit of making an early decision based on the confidence score (provided by the softmax layer). The
proposed training helps in overcoming the over-fitting problem during the training of expert shallow networks
which concentrates only on the subset of the entire dataset. In addition, it also helps in avoiding the gradient
optimization getting stuck in poor solutions and most importantly it provides better generalization, which is
validated by our experimental evaluations.



2.3 Classification using CDDN

Given an image, we feedforward it through the first stage of the CDDN and obtain the confidence score from
the softmax layer, If the score is higher than the threshold value (determined during the training process) then
we declare it as final output. If not, we continue onto the next stage in the network and repeat the process until
the last layer to get the final response. Mathematically,

f(I) =
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where the above mentioned parameters are defined as follows: I: input image, y: predicted label, sj : different
stages of the network and j ∈ 1 . . . n, n: number of stages, f(.): embedding function representing the network
that predicts class labels with confidence, Î: embedded image and Tsj{i}: threshold of a class label i at stage
sj .

2.4 Experimental Validation on MNIST digits

To validate CDDN and to provide more insight, we carried out a simple binary classification of digits ’6’ and
’8’ from MNIST dataset.30 Training set consists of 11769 samples and testing set has 1932 images. Here we
considered LeNet has our starting stage-1 network and for every subsequent stages we added a convolution layer
and a fully connected layer (going deeper but to handle only subset of the data which are considered to be the
hard ones). In Figure 4 we can see that at stage-1 network, 11522 samples in the training and 1884 samples in
the testing were classified with high probability (i.e., easy samples) and the remaining samples of 247 training
and 48 testing were considerably hard to discriminate. Now, we build an expert network stage-2, which is built
upon stage-1 feature space. Since the resulting network is data-driven, the stopping criterion for network-growth
is when the subsequent network fails to discriminate or there are very few training samples left out. The hard
samples resulting from stage-1 and subsequent layers are shown in Figure 5. We can clearly see that the stage-1
had some confusion cases which were resolved by the subsequent stage-2. Hence, in addition to improving the
classification, the proposed approach provides some insight into the distribution of the samples.

Table 1. Quantitative Performance Comparison on Tumor Classification Dataset; ImageNet pre-trained features were
reported using ’Conv4’ [10] layer with Linear SVM.

SIFT+BOW ImageNet Traditional Deep
+SVM(RBF) Pre-trained features Deep Network Decision Network

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec.
split-1 81 0.96 0.71 67 0.90 0.50 78 0.91 0.69 81 0.87 0.76
split-2 63 0.97 0.49 61 0.94 0.47 66 0.93 0.69 73 0.97 0.63
split-3 82 0.91 0.75 89 0.97 0.86 77 0.77 0.77 89 0.90 0.88
split-4 98 0.98 0.97 95 0.96 0.94 93 0.93 0.93 97 0.95 1.0
split-5 77 0.70 0.84 83 0.73 0.92 74 0.79 0.69 85 0.70 0.99

Overall 79 78 76 86

3. NETWORK ARCHITECTURE AND IMPLEMENTATION DETAILS

In this section, we provide all the required implementation details of our proposed method along with the baselines
setup such as TDN, using ImageNet Pre-trained features with SVM and conventional approach of using BOW
representation for SIFT with SVM.



Figure 4. For validating the proposed method, CDDN was applied to the binary classification of digit ’6’ and ’8’ of MNIST
dataset. One of the stopping criteria for network growth is when we see no improvement on the validation/training dataset
performance, hence in this case it will result in two-staged network.

Figure 5. CDDN method idea validation on classification of digit ’6’ and ’8’ of MNIST dataset. left image indicates some
of the confusion classes at stage-1 and the right one indicates some confusion cases at stage-2. One could observe that
some of the confusion cases of stage-1 are resolved at stage-2.



Figure 6. Workflow of BOW representation for DSIFT with SVM classifier. White dots in the image represent the sampling
points.

3.1 Bag-of-Words SIFT feature with SVM

For a given image, Dense SIFT (DSIFT) descriptors of 128 dimension are computed for every ns pixels inside
the region of interest R of each image. where R is the lens area and ns is the sub-sampled pixels. Further,
a modified vocabulary tree structure31 is utilized to construct a visual vocabulary dictionary. The vocabulary
tree defines a hierarchical quantization using a hierarchical k-means clustering. In this work, a complete binary
(k = 2) search tree structure is utilized. 2nd leaf nodes are finally used as visual vocabulary words, where, nd is
the depth of the binary tree. In the vocabulary tree learning stage, first the initial k-means algorithm is applied
to the training data (a collection of SIFT descriptors derived from training data set. We randomly selected
subset of the samples from these descriptors for final training) and then partitioned into 2 groups, where each
group consists of SIFT descriptors closest to the cluster center. This process is then recursively applied until
tree depth reach nd. In the online stage, a SIFT descriptor (a vector) is passed down the tree by each level via
comparing this feature vector to the 2 cluster centers and choosing the closest one. The visual word histogram
is computed for all the dense SIFT descriptors on each image. The resultant quantized representation is used to
train an SVM classifier with a RBF kernel. The parameters of the SVM classifier are chosen using a coarse grid
search algorithm. The entire workflow is depicted in the Figure 6 for brain tumor classification data and we use
similar kind of setup for the polyp classification as well.

3.2 ImageNet Pre-trained Features with SVM

For an image, we extract feature vectors from all the layers of a pre-trained CNN on ILSVRC-2012 dataset.32

The dataset contains 1.2 million images which are manually annotated with labels from 1000 words vocabulary.
Features are computed by forward propagating a mean-subtracted 224x224 RGB image through eight convolu-
tional layers and three fully connected layers. In our case, we resize all the images irrespective of their aspect
ratio to 224x224 to make it compatible with pre-trained CNN. Features extracted from various layers were fed
to the linear SVM classifier to evaluate its classification performance. This study was conducted to evaluate the
performance of off-the-shelf pre-trained CNN features when applied to a couple of medical image classification
problems and this also serves as a baseline.

3.3 Traditional Deep Network (TDN) and Cascaded Deep Decision Network (CDDN)

We used different deep network architectures to solve polyp/no-polyp and meningioma/glioblastoma classification
problems. The network architecture is summarized in Table 2. Notice that in the second stage, a convolution
layer (Conv3) is introduced after the Conv2 layer, followed by fully connected (FC) layers. During stage 2
training, all the layers before Conv3 were frozen and the subsequent FC layers were randomly initialized. The
final network architecture was determined based on performance on a validation dataset. For all experiments,
the step learning rate policy was adopted with the following parameters: learning rate set to 0.001, step size of
10000 and momentum of 0.9. The training loss converged well for both the datasets.



Low	  confidence	  
(hard)	  Samples	  

Stage-‐1	  

Stage-‐2	  

SCN	   F-‐SCN	  CDDN	  

High	  confidence	  
(easy)	  Samples	  

High	  confidence	  
(easy)	  Samples	  

Low	  confidence	  
(hard)	  Samples	  

Stage-‐1	  

Stage-‐2	  

High	  confidence	  
(easy)	  Samples	  

High	  confidence	  
(easy)	  Samples	  

Low	  confidence	  
(hard)	  Samples	  

Stage-‐1	  

High	  confidence	  
(easy)	  Samples	  

Stage-‐2	  

High	  confidence	  
(easy)	  Samples	  

Figure 7. Comparison between Network Architectures. From left to right, Simple Cascaded Network (SCN), Cascaded
Deep Decision Network (CDDN) and Fine-tuned Simple Cascaded Network (FSCN). Notice that CDDN’s stage-2 is built
on previous stage’s feature space but for others cascade networks, the stage-2 is trained starting again from original image.
For F-SCN, the first stage and second stage have the same architecture (depicted by color).

For comparison with traditional deep neural networks, we also train a deep network with similar model
complexity as CDDN, in terms of number of layers and weight parameters. Thus, all the stage-1 and stage-2
layers of CDDN are combined to obtain a deep neural network, referred as TDN in our experiments. This
network (TDN) serves as a strong baseline to CDDN, since starting from stage-1 deep network, TDN can be
interpreted as a classic ”going deeper” alternative to CDDN (which instead learns a stage 2 network on a subset
of samples).

3.4 Cascaded Network

Cascading is a type of ensemble learning which involves concatenation of several classifiers. It is a multi-
stage (classifier at each stage with same or different feature) approach, where the output information of the
classifier is fed to the next classifier in the cascade. Since our approach bear similarities to cascading, we present
alternate deep network architectures that directly embody cascading (ensemble of deep network classifiers), and
provide a comparison with CDDN. We refer to these networks as simple cascaded networks (SCN) and fine-tuned
simple cascaded network (F-SCN). Figure 7 provides a comparison between CDDN and simple cascaded network
architectures (SCN and F-SCN).

Simple Cascaded Networks (SCN): This network is realized as a cascade of deep network classifiers,
where each stage network is trained only on the misclassified samples from previous stage. Unlike CDDN where
each stage builds on the feature space of the previous stage, SCN trains the network in every stage starting from
the original image; hence the correlation between the networks across stages is weaker in SCN. To enable a direct
comparison, the size of the network (number of parameters) at each stage of SCN and CDDN is kept same in all
the experiments (ensuring similar model complexity).



Figure 8. Classification Accuracy of different layers of pre-trained network as features with SVM classifier for Brain
Tumor Classification
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Fine-tuned Simple Cascaded Networks (F-SCN): Similar to SCN, this network is also realized as a
cascade of deep network classifiers. However, instead of using a shallow network in subsequent stages, F-SCN
duplicate the previous stage’s network (including the parameters) and fine-tune the parameters to correct the
misclassified samples from previous stage. In other words, a 2 stage F-SCN has two deep CNN networks with
similar architecture (for network details in each stage please refer to Table 2). Similar to SCN, F-SCN trains
each stage starting from the original image. The motivation behind this cascaded network design with fine-tuned
networks at each stage is to help avoid over-fitting/under-fitting, since the number of training samples reduced
after each stage and deep networks are known to easily over-fit on smaller datasets. Notice that the 2 stage
F-SCN has almost twice the number of parameters network compared to CDDN (since stage-1 are generally
much larger than stage-2) resulting in an increased model complexity and computational time.

Table 2. CDDN Configuration details. Conv: Convolutional layer, FC: Fully connected layer, AvePool: Average pooling
and MaxPool: Max pooling. Each Conv layer is followed by a nonlinear function ReLU. Except for the last FC layer, rest
of the FC layers are followed by ReLU and dropout layer with p=0.5.

Dataset Convnet Configuration

Polyp

stage-1 image Conv1 Maxpool Conv2 Avepool FC FC
(92x110x3) (64x11x11) (3x3) (128x5x5) (3x3) (512) (2)

stage-2 Conv3 AvePool FC FC
(256x3x3) (3x3) (512) (2)

Brain
stage-1 image Conv1 MaxPool Conv2 MaxPool FC FC FC

(110x110x1) (96x11x11) (3x3) (256x5x5) (3x3) (4096) (4096) (2)

Tumor
stage-2 Conv3 FC FC FC

(384x3x3) (4096) (4096) (2)

4. EXPERIMENTS

We report performance of our proposed method in comparison to other methods on two different setup for
endoscopic imaging - Brain tumor classification (classify images into Meningioma or Glioblastoma) and Polyp
classification (to flag images containing a polyp). In both cases, we report results using bag of visual words
(BOW) SIFT feature with SVM (RBF kernel and ImageNet pre-trained features (Best performing layer) with
SVM. In addition, we report results using our proposed method CDDN and the strong baseline TDN (all the
stages/network layers combined). Please note that, in order to have a fair comparison, both the TDN and CDDN
was designed to have the same complexity (number of layers and parameters).



4.1 Tumor Classification

Dataset: We use a commercially available clinical endo-microscope in the market called Cellvizio (Mauna
Kea Technologies, Paris, France). Cellvizio is a probe-based CLE system. It consists of a laser scanning unit,
proprietary software, a flat-panel display and fiber optic probes providing a circular field of view with a diameter
of 160µm. The device is intended for imaging the internal micro-structure of tissues in the anatomical tract
that are accessed by an endoscope. The system is clinically used during an endoscopic procedure for analysis
of sub-surface structures of suspicious lesion, which is primarily referred to as optical biopsy [20]. In a surgical
resection application, a neurosurgeon inserts a hand-held proof into a surgical bed to examine the remainder of
the tumor tissue to be resected.

The equipment is used to collect 117 short videos, each from a unique patient suffering from Glioblastoma and
relatively longer videos from patients with Meningioma. All videos are captured at 24 frames per second, under
a resolution of 464x336. The collection of videos are hereafter being referred to as the Brain Tumor Dataset.

Pre-processing: Due to the limited imaging capability of CLE devices or intrinsic properties of brain
tumor tissues, the resultant images often contain little categorical information and are not useful for recognition
algorithms. Image entropy has been constantly used in the past33 to quantitatively determine the information
content of an image. Specifically, low-entropy images have very little contrast and large runs of pixels with the
same or similar values.
In order to filter uninformative video frames, we empirically determine an entropy threshold, by calculating the
distribution of the individual frame entropy throughout the dataset (calculated over 34, 443 frames). In our case,
this threshold is 4.15. This simple thresholding scheme allows us to select 14,051 frames containing Glioblastoma
and 11,987 frames containing Meningioma cases. Experimental results are provided based on a leaving a pair of
patients (one with Glioblastoma and other with Meningioma) out. Further, we took a center crop of 220x220
square image inscribed in the circular lens region. Please note that for all the deep learning related experiments,
images were resized to 110x110x1 to reduce the computational complexity.

Discussion: See table 1 for performance comparison. It is clearly evident that our proposed method CDDN
significantly outperforms all the other methods. In comparison to TDN, CDDN improves the performance by
around 9%, it does well on all the three measures of accuracy, sensitivity and specificity. This provides the
evidence that our proposed method of building deeper networks is better than the traditional way of going
deeper. Since CDDN makes early decision on several samples, the average processing time for each sample for
CDDN is lower as compared to TDN. We also provide the evaluation of different layers of the Pre-trained network
as features with SVM classifier in the Figure 8. We can see that on an average ’Conv4’ layer performs better
across all the splits and hence to be consistent we report their results in the Table 1 as a baseline.

4.2 Polyp Classification for Colonoscopy

Dataset: Results are reported on a publicly available Polyp dataset from ISBI 2014 Challenge on Automatic
Polyp Detection in Colonoscopy Videos.34 The dataset consists of 21 short colonoscopy videos from ASU-Mayo
Clinic polyp database, of which 11 videos have a unique polyp inside (positive shots) and the other 10 videos
have no polyps (negative shots). Some videos are high resolutions but some are recorded in lower resolution,
some videos display a careful colon examination while others show a hasty colon inspection, finally some videos
have biopsy instruments in them. Please note that, even the videos containing polyp will have a large number
of frames where polyp is absent and hence groundtruth labels are provided at frame level. In our evaluation, we
provide experimental results on four random splits (are at video level to avoid bias during train and test split)
by reporting classification accuracy at frame level and also provide ROC curves.

Pre-processing: Since the videos were of different resolutions and region around the frames were varying,
we fixed the final image size to be 636x530 (chosen based on the average resolutions of all the video frames.
We identified the lens region separated from rest of the black region and then resized (maintaining the aspect
ratio) to fit the fixed window size of 636x530. Since frames containing polyp were relatively very low we chose
to perturb only the positive (contains polyp) frames. Perturbation involved rotation by angles of 90,180 and 270
degrees followed by flip and again rotate with the same set of angles. Please note that for all the experimentation
the resulting image were later resized to 110x92x3 to handle the computational complexity.



Figure 9. Classification Accuracy of different layers of pre-trained network as features with SVM classifier for Polyp/No-
Polyp Classification
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Discussion: Table 3 demonstrates the performance comparison. We observe similar performance trends as
reported for brain tumor classification, where our proposed method CDDN outperform all the other methods. In
addition to accuracy metric, we have also provided the ROC curve for all the splits in Figure 10. Overall, area
under the curve is significantly better for CDDN when compared to rest of the methods. All these experimental
results convey that the proposed CDDN method is an efficient and effective alternative to traditional way of
building a deeper network. Considering a clinical use case, if we pick an operating point of false positive rate=17%
with true positive rate=90%, then our system on an average is able to eliminate 84% of the negative images
(do not contain polyp) but still be able to identify 90% of the positive cases (containing polyp) accurately. In
Figure 9 we provide the effectiveness of different layers of the Pre-trained network as features when combined
with SVM classifier. On an average across all the splits, we found that ’Conv3’ layer gives the best performance
and thus their results are reported in the Table 3 as a baseline.

Table 3. Quantitative Performance Comparison on Polyp Classification Dataset

SIFT+BOW ImageNet Pre-trained
+SVM(RBF) features (Conv3) TDN CDDN

Acc. Acc. Acc. Acc.
split-1 89.1 88.89 78.34 87
split-2 37.46 73.41 67.81 83
split-3 70.82 90.95 88.88 92.75
split-4 82.90 85.59 84.45 92.40

Overall 70.08 81.66 80.67 87.43

4.3 Comparison with SCN and F-SCN

The stage-wise performance comparisons of our proposed method CDDN in comparison to SCN and F-SCN are
provided in Table 4 and Table 5 for polyp and tumor classification dataset respectively. We can observe that
CDDN outperforms both SCN and F-SCN at each stage for all splits and its better even in terms of overall per-
formance. We believe that SCN and F-SCN couldn’t perform well because of over-fitting/under-fitting problem
in the second stage due to limited number of samples (hard samples). This clearly indicates that our proposed
method has the ability to dodge this prevalent problem while applying deep learning networks for medical related
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Figure 10. ROC curves for Polyp dataset across all the splits.

problems where the data is limited.

Table 4. CDDN Performance analysis on Polyp Classification Dataset. # - number of samples; Acc. - Accuracy (%).
SCN F-SCN CDDN

Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall

# Acc. # Acc. Acc. # Acc. # Acc. Acc. # Acc. # Acc. Acc.
split-1 3373 96.02 4090 67.41 67.41 4696 97.84 2767 58.07 83.1 3712 98.94 3751 86.36 83.36
split-2 1248 92.62 1595 51.28 51.28 1227 92.25 1616 50.99 68.8 1501 94.53 1342 83.07 83.07
split-3 1740 100 3665 62.49 62.49 3830 98.09 1575 63.23 87.93 4245 99.74 1160 92.74 92.74
split-4 3325 99.06 2629 66.67 66.67 3593 98.71 2361 75.91 89.46 3391 99.97 2563 92.40 92.40

4.4 Computational efficiency of CDDN during testing phase

Let us assume, Q input feature maps produces R output feature maps, and the feature map size is M M (being
equal for simplicity). Let the convolution kernel size be KxK. If we consider CDDN, then in the first stage
there are 2xO(R × Q ×M2 ×K2) computations for two convolutional layer and 2O(Q ×M2) for two pooling
layers. In the second stage, there would be 1xO(R × Q ×M2 × K2) computation for one convolutional layer
and 1xO(Q ×M2) for one pooling layer. Since Fully connected layer computations remain same in the first
and second stage we ignore that. Now consider TDN, since it consists of first and second stage put together
(end-to-end learning) it involves 3xO(R×Q×M2 ×K2) and 3xO(Q×M2) computations.



Table 5. CDDN Performance analysis on Tumor Classification Dataset. # -number of samples; Acc. -Accuracy (%).
SCN F-SCN CDDN

Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall Stage-1 Stage-2 Overall

# Acc. # Acc. Acc. # Acc. # Acc. Acc. # Acc. # Acc. Acc.
split-1 540 96.14 791 25.53 54.99 333 92.79 998 69.13 75.05 340 77.35 991 82.44 81.13
split-2 203 91.03 481 16.83 39.47 255 92.94 429 40.79 60.23 121 100 563 67.49 73.24
split-3 1384 86.56 1962 46.48 63.06 444 88.51 649 62.71 73.19 445 97.75 648 82.87 88.92
split-4 445 100 237 67.93 88.85 544 100 138 78.26 95.6 537 100 145 87.58 97.35
split-5 1367 87.63 1979 47.85 64.1 1507 90.31 1839 60.95 74.17 1177 99.15 2169 80.26 86.90

For instance, if we consider split-1 of Polyp classification classification using CDDN (see Table 4, we can
observe that among all test samples, 3712 samples was able to advantage of early decision and rest of 3751 samples
(hard cases) went to the second stage. So effectively, for 3712 samples we saved additional computations made in
the second stage (O(R×Q×M2×K2)and O(Q×M2)) when compared to TDN. In case of TDN, for each of the
test sample (irrespective of hard/easy case) it requires same number of computations (3xO(R×Q×M2×K2)and
3xO(Q×M2)). Hence, our proposed method is efficient making it more suitable for real-world applications.

5. CONCLUSION

We presented an efficient and effective alternative for building a deep neural network called CDDN. CDDN
is built stage-wise by greedily discarding the samples classified with high confidence and only focusing on the
confusing cases in the subsequent expert networks built at different stages. As an idea validation, we presented
detailed experimental results on binary classification of digit ’6’ and ’8’ as part of MNIST dataset. Further, the
proposed method was shown to outperform all the other methods on real world challenging problems such as
polyp/no-polyp and meningioma/glioblastoma classification. One could also benefit from making early decisions
in the deep network to meet the real-time performance with little compromise on the performance. The proposed
approach can be in general applied to any image classification task.
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