
Ω

δ

∞≈
ξ

λ σ κ

Practical Scalability Analysis With The

Universal Scalability Law

November 9, 2015 • Revision 1



Meet the Author

Baron Schwartz

Baron is a performance and scalability expert who participates

in various database, opensource, and distributed systems

communities. He has helped build and scale many large,

high-traffic services for Fortune 1000 clients. He has written

several books, including O'Reilly's best-selling High Performance

MySQL. Baron has a CS degree from the University of Virginia.

Table of Contents

• Introduction 3

• What is Scalability? 4

• Linear Scalability: The Holy Grail 6

• Why Systems Scale Sublinearly 8

• The Universal Scalability Law 10

• The USL’s Relationship to Queueing Theory 13

• Measuring Scalability 15

• Modeling Response Time 19

• Capacity Planning with the USL 28

• Using the USL to Improve Scalability 32

• Probing the USL’s Limits 34

• Superlinear Scaling 41

• Other Scalability Models 42

• Modeling Hardware, Software, and MPP Systems 45

• Conclusions 47

• Further Reading 50

Copyright ©2015 VividCortex



Page 3

Introduction
Making systems big, fast, and efficient is one of the most interesting and
satisfying things I’ve done. It’s a great feeling when you fix a bottleneck,
and get dramatically improved performance at scale. You suddenly
realize how wasteful your systems were before the improvement.

I’ve participated in lots of projects that have produced those kinds of
outcomes. It’s no coincidence that the best results came from the
projects where the most disciplined analysis was performed up front.
Like performance optimization, scalability optimization can be a real
mystery unless you have an accurate model of how the world works,
good measurements of how your systems are performing, and the ability
to identify the problem and its likely fix with high certainty.

What’s even better than fixing problems with scalability is the ability to
design systems (and organizations) that scale in the first place. This is
worth its weight in gold.

Scalability is quite a scientific topic, but it doesn’t need to be mysterious.
It’s true that queueing theory is intimately involved, and queueing is
complicated and unintuitive. But what’s really cool is that scalability,
correctly understood, is quite straightforward despite the complexity of
what’s going on behind the scenes.

I wrote this book to help you understand the simple, but profoundly
powerful, truths about scalability. I also wanted to help you understand
the connections between scalability and other disciplines, such as
performance optimization or the study of queueing. My hope is that this
book is as transformational and rewarding for you as the process of
learning these concepts has been for me.
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What is Scalability?
Scalability is ambiguous for many people—a vague term often bandied
about in conference presentations, for example. It can be confusingly
similar to performance, efficiency, capacity, availability, and many other
terms related to making things big and fast.

Wikipedia’s definition of scalability, borrowed from a 2000 paper by André
B. Bondi, is “the capability of a system, network, or process to handle a
growing amount of work, or its potential to be enlarged in order to
accommodate that growth.” This isn’t wrong, but it’s still a bit informal,
and this book needs a more formal definition.

Dr. Neil J. Gunther provides one such definition: scalability is a function. I
read his books and heard him speak, but it was still a year or so before I
understood. Scalability can be defined as a mathematical function, a
relationship between independent and dependent variables (input and
output). This is the type of formal definition you need to model and
analyze scalability.

The most important part of understanding such a scalability model is
choosing the correct variables to describe the way systems really
operate. Bondi’s definition provides a good clue: work is the driving factor
of scalability. Useful ways to think about work include, to mention a few,

• Units of work (requests).

• The rate of requests over time (arrival rate).

• The number of units of work in a system at a time (concurrency).

• The number of customers, users, or driver processes sending
requests.

Each of these can play sensible roles in the scalability function,
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depending on the situation. For example, it’s common to configure the
number of threads a benchmark uses to send requests to a database.
The benchmark threads usually block until queries complete, and send
requests as fast as possible with zero delay between them. As a result, in
this configuration the arrival rate is influenced by the benchmark
configuration as well as back pressure exerted by the database. You
could say that the amount of work requested is the input to the
benchmark’s scalability function, and the completion rate is the output.

In another scenario, you might vary the number of CPUs for the system
under test (SUT) while holding constant the amount of work each CPU is
assigned, or if it’s a clustered database, vary the cluster size and hold
constant the amount of work per node. In this case, the independent
variable is the system size and the dependent variable is the completion
rate.

In most cases I’ve analyzed, either size or load is the sensible
independent variable for the scalability function, meaning that scalability
is a function of size or load. The dependent variable will be the rate at
which the system can complete work, or throughput. The hope is that the
system should complete more work as size or load grows, so it should be
an increasing function.

Size or Load
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For those who are like me and need extra emphasis, I’ll repeat that this is
a mathematical function, with size or load on theX axis, and throughput
on the Y axis. I’ll make this more precise later.

Linear Scalability: The Holy Grail
In my experience, never was a marketechture slide deck created that
mentions scalability without also including the word “linear.” But as you
might expect, “linear scalability” is not what people would have you
believe.

Hand-waving claims of linear scaling usually coincide with vague
definitions of scalability, and people who know a lot about scalability
rarely say the word “linear.” Here are a few of the misdefinitions of linear
scalability I’ve heard:

• A web architect at a conference said, “I designed our system to be
shared-nothing so it would be linearly scalable.” He meant there was
no single resource or system imposing a hard upper limit on how
many servers could be added to the system. But he didn’t really know
whether his system actually scaled linearly.

• A technical evangelist giving a presentation about a clustered
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database said, “adding a node to the cluster adds a predictable
amount of capacity.” Predictable isn’t the same as linear.

• A sales presentation for another clustered database said the
database scaled linearly, with a “linearity factor” of 97%, meaning that
each additional node increased the system’s capacity by 0.97 times
the amount the previous node added. That’s a curve, not a line. (Later
you’ll learn how to instantly determine the asymptotic upper bound on
such a system’s total capacity.)

This may seem like a pointless rant, but it’s actually important if you want
to be able to design and improve highly scalable systems.

Spotting bogus linearity claims is fun. Here are some ways
“benchmarketing” makes systems appear linear:

• Show graphs without numbers, so readers can’t do the math.

• Show graphs with nonlinear axes.

• Begin the axes, especially the Y axis, at a nonzero value.

Here is a real example, redacted to protect the not-so-innocent, that
employs some of these tricks.
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Looks pretty linear, doesn’t it? Yet if you do the math, it’s nowhere near
linear. It’s an optical illusion, because theX axis begins around 1.45
instead of zero, and the Y axis starts at 100000, so you can’t tell that the
chart isn’t going to intersect the origin if you extend it downwards.

The real test of linearity is whether the transactions per second per
node remains constant as the node count increases. The chart’s original
source mentioned that throughput increased from “182k transactions per
second for 3 nodes to 449k for 12 nodes.” The math is easy: the system
achieves 60700 transactions per second per node at 3 nodes, but only
37400 at 12 nodes, which represents a 39% drop in throughput versus
linear scalability. If it actually scaled linearly, it would achieve 728k
transactions per second at 12 nodes.

Linear means linear, folks! And seemingly small amounts of nonlinearity
really matter, as you’ll see later, because small sublinear effects grow very
quickly at larger scale.1

Why Systems Scale Sublinearly
Linear scalability is the ideal, yet despite the claims, systems that actually
scale linearly are rare. It’s very useful to understand the reasons for this,
because a correct understanding of scalability, and the reasons and
sources of sublinear scaling, is the key to building more scalable systems.
That’s why it’s useful to be a linearity skeptic. It’s not just being pedantic.

The best way to think about linearity is as a ratio of the system’s
performance at a size of 1. Neil Gunther calls this the efficiency. If a
system produces 1800 transactions per second with 1 node, then ideally
4 nodes produce 7200 transactions per second. That would be 100%
efficient. If the system loses a bit of efficiency with each node and 4
nodes produce, say, 5180 TPS, then the 4-node system is only 72%

1 In fact, they grow—wait for it—nonlinearly!
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If you do this math, you’ll often be surprised at how large the efficiency
loss is. Graphs can be deceptive, but the numbers are quite clear.1

In the real world there’s almost always some efficiency loss, and if you
can figure out why, you may be able to fix it. In fact, you’ve probably
noticed that real systems tend not only to fall behind linear scalability a
bit, but actually exhibit retrograde scalability at some point:
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This is quite common in the real world—you scale things up and at some
point your system starts going backwards and losing performance,

1 Drawing a linear scaling line on the graph helps, too. Without that line, the eye tends to see the graph as
more linear than it really is, and the efficiency loss becomes less obvious.
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instead of just gaining more and more slowly. In the MySQL 5.0 days, for
example, it was common to see people upgrading from 4-core servers to
8-core servers and losing performance.

Why does this happen? Why don’t systems scale linearly, and why do they
sometimes show retrograde scalability?

According to Neil Gunther, there are two reasons: contention and
crosstalk. Contention degrades scalability because parts of the work
can’t be parallelized and queue up, so speedup is limited. Crosstalk
introduces a coherency penalty as workers (threads, CPUs, etc)
communicate to share and synchronize mutable state. I’ll explore these
effects in the next section.

The Universal Scalability Law
Neil Gunther’s Universal Scalability Law (USL) provides a formal definition
of scalability,1 and a conceptual framework for understanding, evaluating,
comparing, and improving scalability. It does this by modeling the effects
of linear speedup, contention delay, and coherency delay due to crosstalk.

I’ll build up the equation in steps, but avoid details that could be
distracting. An ideal system of size 1 achieves some amount λ of
throughputX , in completed requests per second. Because the system is
ideal, the throughput doubles at sizeN=2, and so on. This is perfect
linear scaling:

X(N) =
λN

1
(1)

The λ parameter defines the slope of the line. I call it the coefficient of
performance. It’s how fast the system performs in the special case when
there’s no contention or crosstalk penalty. Here are two ideal systems,

1 Neil Gunther originally called a slightly different form of the USL “superserial,” and you may encounter this
terminology, especially in older books and papers.
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with λ of 1800 and 800, respectively.
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Note that every linearly scalable system is just as scalable as any other,
regardless of the slope of the line. They have different performance but
identical scalability characteristics: speedup is unlimited.

Contention appears in most systems1 at some point, for example as a
final stage in scatter-gather processing when assembling multiple
intermediate results into a single output. As parallelization increases,
contention becomes the limiting factor. This is codified in Amdahl’s Law,
which states that the maximum speedup possible is the reciprocal of the
serialized (non-parallelizable) portion of the work. If I add a term to the
denominator expressing the serialized fraction of the work, and multiply it
by the coefficient of serialization2 σ, it becomes Amdahl’s Law:

X(N) =
λN

1 + σ(N − 1)
(2)

A system with serialization will asymptotically approach a speedup limit.
If σ is .05, for example, the speedup approaches 20. Let’s see that
graphically:

1 Including teams of people. This is a joke but it’s also true in the queueing sense.
2 Or in Neil Gunther’s preferred terminology, contention.
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Remember the system I mentioned earlier, which a salesperson claimed
to have 97% scalability with each additional node? That’s 3% loss of
scalability per node, so this system will never achieve a speedup factor of
more than 33, no matter how many nodes it has.

The last bit is the crosstalk penalty, also called the consistency or
coherency penalty.1 Crosstalk potentially happens between each pair of
workers in the system (threads, CPUs, servers, etc). You probably
remember that the number of edges in a fully connected directed graph is
n(n− 1). The USL adds a term to represent the amount of crosstalk,
multiplied by the coefficient κ:

X(N) =
λN

1 + σ(N − 1) + κN(N − 1)
(3)

Equation 3 is the Universal Scalability Law.

The crosstalk penalty grows fast. Because it’s quadratic,2 eventually it
grows faster than the linear speedup of the ideal system we started with,
no matter how small κ is. That’s what makes retrograde scalability
happen, as you can see in the following chart:

1 I call it crosstalk because in my opinion it’s the best description of the pairwise communication that must
occur to make distributed data or other shared resources consistent or coherent.

2 The cost of n(n− 1) is O(n2). If you’re not familiar with it, this blog post introduces Big-O notation.
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That’s the Universal Scalability Law in all its glory. This plot has the same
parameters as the ones I showed before, where a system of size 4
produced only 72% of its ideal output. That system has 5% contention
and 2% crosstalk, and now that I’ve plotted it out to size 20 you can see
it’s embarrassingly inefficient. In fact, I should have given up trying to
scale this system after size 6 or so.

This shows visually how much harm a “small amount” of nonlinearity can
do in the long run. Even very small amounts of these damaging
coefficients will create this effect sooner or later (mostly sooner). This is
why it’s rare to find clustered systems that scale well beyond a couple
dozen nodes or so. If you’d like to experiment with this interactively, I’ve
made a graph of it at Desmos.

The USL’s Relationship to Queueing
Theory
The USL is closely related to queueing theory. Neil Gunther proved that it’s
equivalent to synchronous repairman queueing. If you’re not familiar with
queueing theory, I wrote an approachable introduction called Everything
You Need To Know About Queueing Theory.
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The two causes of sublinearity are related to key concepts in queueing
theory. Contention, the first term I added to the denominator to obtain
Amdahl’s Law, expresses the penalty from queueing delay that occurs
when there is competition for shared resources—the servers (in the
queueing theory sense) that process work from queues.

The queue length is nonlinear with respect to utilization and therefore to
offered load. Queueing theory is confusing and counterintuitive! As the
queues lengthen, the queueing delay lengthens in direct proportion.

As you probably know, queueing theory treats service time—the amount
of time it takes to complete a job after it leaves the queue and enters
service—as independent of utilization or queueing. The job takes as long
as needed to execute all the instructions, whether the server is busy or
idle. The customer’s total wait time at a busy server is longer only
because of queueing delay.

Coherency penalty, which comes from crosstalk, actually expresses an
increase in service time that is not due to queueing delay. As the system
has to do more crosstalk to synchronize mutable shared state, the jobs
take longer and longer.1 This is not due to queueing—the job is already
out of the queue and in service.

These effects are clearly visible in the USL when it enters the region of
retrograde scalability. An increase in service time is the only thing that
can explain retrograde scalability. If the service time remained constant,
throughput would approach a flat line. Queue length and queue wait time
cannot explain retrograde scalability; queueing can only cap throughput,
not decrease it.

1 An alternative explanation is that the cost of managing the queues actually increases as they grow. My
personal experience leads me to believe it’s typically crosstalk in multi-node clusters, and it’s more often
queue management in single-server systems under high load. For examples, see John D.C. Little’s pa-
per Little’s Law as Viewed on Its 50th Anniversary, http://on.fb.me/1NmVeGM, http://bit.ly/1MtQdqM, and
http://bit.ly/1NNE0k4.

Copyright ©2015 VividCortex

http://on.fb.me/1NmVeGM
http://bit.ly/1MtQdqM
http://bit.ly/1NNE0k4


Page 15

Measuring Scalability
To recap, at this point we’ve figured out the right dimensions for a formal
model of scalability that seems to behave as we know real systems
behave, and examined Neil Gunther’s USL, which fits that framework well
and gives us an equation for scalability. (Are you excited yet?)

Now what can you do with it?

Great question! It turns out you can do a lot of extremely useful things
with the USL. Unlike a lot of models of system behavior, this one is
actually practical to apply in the real world. That’s the real genius of it, in
fact. Not only is the equation uncomplicated, but the variables it
describes are easy to get most of the time.

I use the USL mostly for modeling system scalability, by working
backwards from observed system behavior and estimating the likely
coefficients. To accomplish this, you need a set of measurements of the
system’s load or size (usually concurrency or node count) and the
corresponding throughput. Then you fit the USL to this dataset, using
nonlinear least squares regression. This is a statistical technique that
finds the optimal coefficient values in order to calculate a best-fit line
through the measurements. The result is values for λ, σ, and κ.

If you’re reading about the USL in Neil Gunther’s books, he takes a
different approach. First, he doesn’t use regression to determine λ, he
assumes that you can measure it in a controlled way at N = 1. (I’ve often
found that’s not true for me.) Secondly, there are a couple of different
forms of the USL—one for hardware scaling and one for software
scaling—which are the same equation, but with different parameters. For
simplicity I’m treating them as interchangeable. I will write a bit more
about this later.
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Examples of systems I’ve analyzed with the USL include:

• Black-box analysis of networked software simply by observing and
correlating packet arrivals and departures, looking at the IP
addresses, port numbers, and timestamps. From this I computed the
concurrency by averaging the number of requests resident in the
system over periods of time. The throughput was straightforward to
get by counting packet departures.

• MySQL database servers. Some of its counters are
essentially equivalent to throughput and concurrency.

• Linux block devices (disks) by looking at , from which
you can get both instantaneous and average concurrency over time
deltas, as well as throughput (number of I/Os completed).

• Lots and lots—and lots—of benchmark results.

Data often needs to be cleaned and curated. This is a big topic, but in
brief, you will get dirty data, and that will make your results less useful.
I’ve used a variety of techniques to help clean, resample, and analyze data
before arriving at satisfactory results. I usually visualize the data in both
scatterplot and time-series formats, and ensure I’m working with a
relatively consistent set of data. You can remove individual points or trim
the time range you use, and you may need to experiment with averaging
the data over time to get good results.

As for the R code, I’ll give a little bit of a quickstart to show the
soup-to-nuts approach. You’ll save the data into a delimited file, with
column headers and . Then you’ll load this into a variable in R
and regress it against the USL.

Here’s a complete sample, based on a benchmark that Vadim Tkachenko
ran on a Cisco server:
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Save that data into a file, say, . Then load it and run the
following commands:

The results are as follows:

λ 995.6486

σ 0.02671591

κ 0.0007690945

Note the extremely small value for κ which nonetheless degrades
scalability beforeN becomes very large. Here’s the resulting plot:
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If you’re an R user, that’s probably all you need to get going. You really
should do more diligence, such as checking the R2 value of the fit. But
instead of doing all this work manually (which you can certainly do if you
want), I suggest trying the USL package from CRAN. It has many features
built in, although it does have some limitations.

One final thing: if the κ coefficient has a nonzero value, the function has a
maximum. You can find the size of the system at that maximum as
follows:

Nmax =

⌊√
1− σ

κ

⌋
(4)

You can find the maximum predicted throughput by plugging Nmax into
Equation 3. Doing so with the coefficients in this example predicts the
system’s throughput will increase until N = 35, which in this case means
35 threads, and the peak throughput will be 12341 queries per second. It
also found λ, the throughput at N = 1, to be 995 QPS, which is close to
the actual value of 955.

It’s always interesting to use the USL on a subset of the performance
data, such as the first third or so, to see how well it predicts the higher N
values. This can be quite educational.

Note that you should have at least half a dozen or so data points in order
to get good results in most circumstances. In practice I usually try to
capture at least a dozen for benchmarks, and more—often
thousands—when analyzing systems that aren’t in a controlled laboratory
setting.

Modeling Response Time
What is the relationship between scalability and performance?
Throughput and latency are two common ways to describe and measure

Copyright ©2015 VividCortex
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performance. Most benchmarks measure overall system throughput, and
claims of performance are almost always in throughput terms: “a million
transactions per second,” and so on. Benchmarks usually define
performance as how much work the system can do.

On the other hand, users care mostly about the performance of individual
requests. For example, a user’s opinion of website performance is based
entirely on how quickly pages load and render. From this viewpoint, as
Cary Millsap says, performance is response time.

Which view is right? Both. System performance is measured in
throughput, and request performance is measured in latency.1 And
because throughput and latency are related, scalability also has dual
meanings: the system’s ability to complete more work at larger sizes, and
its response time characteristics.

I’ve shown that the USL can model and forecast how size affects
throughput. Can it also model latency? Yes, it can when the independent
variable is concurrency, because of a relationship called Little’s Law:

N = XR (5)

Little’s Law says that the mean number of requests resident in a system
(N ) is equal to the throughput (X) times the mean response time (R).
This relationship is valid for stable systems, in which all requests
eventually complete. If you use Little’s Law to solve the USL for response
time as a function of concurrency, the result is a quadratic function:

R(N) =
1 + σ(N − 1) + κN(N − 1)

λ
(6)

This means that response time is related to the square of concurrency. Of
course, just as with the USL, if the σ or κ coefficients are zero, the
equation is simplified, removing the causes of nonlinear behavior. One of

1 Response time, latency, and residence time are synonymous.
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the nice things about Equation 6 is that you can now see the effects of
contention (linearly increasing queueing delay) and coherency
(quadratically increasing service time) on residence time. Here’s the Cisco
data I used previously, rearranged to predict response time.1 The dashed
lines show linear and Amdahl response time scaling for the same λ:
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Be careful not to confuse this chart with another famous “hockey stick”
chart, that of response time versus utilization, which is familiar from
queueing theory:
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1 Mean response time. You could use queueing theory to add nuance, such as quantiles or the probability
that any given request needed to wait more than a set amount of time.
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The difference is that one chart uses utilization as the independent
variable, which ranges only from 0 to 1, whereas the other uses
concurrency, which has no fixed upper limit.1

Little’s Law also lets you rearrange the USL in terms of the relationship
between throughput and latency, which is useful for a few reasons. It lets
you model scalability and performance in these dimensions, it helps build
intuition about what happens when systems don’t scale linearly, and it
relates the USL to queueing theory visually in an important way. I’ll begin
by showing response time as a function of throughput, which is a
common way I’ve seen people (and vendors) plot it. Beginning with a
linearly scalable system,

R(X) =
1

λ

Response time is constant. Adding a positive σ coefficient2 makes it a
rational function with a pole:

R(X) =
σ − 1

σX − λ
(7)

Response time goes to infinity as throughput approaches λ/σ. The
following plots are generated with the parameters σ = κ = .06,λ = 40:
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1 The relationship between concurrency and utilization is nonlinear; according to the USL, it is quadratic.
2 I am omitting step-by-step solutions for brevity, but Wolfram Alpha can show this if you’re curious. The

easiest way is to solve the USL for R as a function of X and simplify.
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The response time curve’s relationship to the queueing theory response
time curve (which is in terms of utilization, or ρ) is more obvious now.

What happens when you add coherency to the equation? It turns out that
the resulting equation has multiple solutions. Instead of merely lifting
away from the response-time line, it folds back on itself like a “nose.” The
solution for the lower portion of the curve is as follows:

R(X) =
−
√

X2(κ2 + 2κ(σ − 2) + σ2) + 2λX(κ− σ) + λ2 + κX + λ− σX

2κX2

(8)

The other solution is similar, but without the negative in the numerator.
Here’s a plot of both:
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As you can see, this is not a simple function ofX , since a singleX value
can map to two values of R due to the multiple solutions. Response time
is not a simple function of throughput if κ is nonzero. The inverse is
actually true—given a target latency, you can uniquely identify the
throughput at which it will occur:

X(R) =

√
σ2 + κ2 + 2κ(2λR + σ − 2)− κ+ σ

2κR
(9)

Here’s a plot of that:
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The maximum throughput is the same as in Equation 3 with the same
parameters; it’s equivalent toNmax from Equation 4, but in latency instead
of concurrency. You can use these equations to model scalability and
performance in terms of latency, just as the USL models it in terms of
concurrency or size.1 Referencing the Cisco benchmark again, a
scatterplot shows that the system has exceeded the point of diminishing
returns and is climbing up the nose:
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1 Because of the folded-back nature of the nose curve, it’s difficult to use regression to estimate the USL
parameters in this form. It’s easy to use Little’s Law to compute concurrency, though, and just perform the
regression against that instead.
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I’ll repeat that this isn’t a simple function of throughput alone. That is why
you can’t model it with a curve such as a parabola or a rational function.
The lower portion of the nose might look like such a curve, but it isn’t. It’s
quite different. Here’s what happens if you try to fit a rational function,
such as Equation 7, through the benchmark’s results.
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That dramatically underestimates how fast latency grows. Using
Equation 9 is a better fit:

0 5000 10000 15000

0.
00
0

0.
00
2

0.
00
4

Throughput

La
te
nc
y

0 5000 10000 15000

0.
00
0

0.
00
2

0.
00
4

Another example of this apparently beginning to happen is the SPEC
benchmark for NFS on the Isilon S210, which requires reporting latency
as a function of throughput. Here are the results:
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Throughput (ops/sec) Response (msec)

25504 0.7

51054 0.6

76667 0.7

102288 0.8

127879 0.9

153497 1.0

179261 1.2

205226 1.4

231069 2.0

253357 5.7

Let’s pretend that we didn’t see the last row in that table. If you thought
response time was a rational function of throughput, your curve would
appear to “fit” very well. What would you predict would happen at 253,357
ops/sec? You’d expect latency to be much lower than it actually is. Here’s
the curve, fit to all but the last point, overlaid with all the measurements:
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Using the USL will model the effect more closely, but note that the USL
appears to be a bit pessimistic, a topic we’ll return to later:
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Most people probably never will see a system curve around the tip of the
nose and start climbing backwards “in the wild,” because the system’s
performance becomes extremely bad. Often this doesn’t happen in
production because the load-generating systems (and users) are finite,
experience back pressure, and can’t continue adding work to the system
you’re measuring. The only way to drive a system past the nose is to
increase concurrency beyond the system’s saturation point. Another way
to look at this is that the request arrival rate is a free parameter you can
choose at will, but completion rate (throughput) isn’t; the system can’t
produce more than its capacity, no matter how many requests arrive. If
arrivals are constrained by back pressure you won’t see the nose.

If you won’t see it in production, then where will you? Easy—in
benchmarks, where you can fire up lots of driver threads. I’ve seen it in
many benchmarks. So has John Little; his paper Little’s Law as Viewed on
Its 50th Anniversary shows a plot of this phenomenon on page 544.

To sum up: even though production systems often don’t climb around the
tip of the nose, the nose’s precise equation matters a lot. That’s because
if you want to model how response time behaves as it approaches the
nose, you need the right model. With the wrong model you’ll be far off
when doing things like capacity planning, which coincidentally is the next
topic I want to cover.
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Capacity Planning with the USL
“How much load can this system sustain?” is a common question in
capacity planning. The practical purpose is usually something like the
following:

• How soon will the system begin to perform badly as load increases?

• How many servers will I need for the expected holiday load?

• Is this system close to a point of failure?

• Are we overprovisioned? By how much?

Capacity planning is often a difficult problem because it’s hard to tell what
a system’s true capacity is. The USL can help you estimate this.

Conventional ways to determine system capacity are often difficult,
expensive, and don’t give results you can really believe in. For example,
you can set up load tests, but it takes a lot of work and time, and the
results are suspect because the workload is always artificial in some way.

You can also run benchmarks, but most benchmarks are pretty useless
for predicting a system’s usable capacity. In addition to being an artificial
workload, they push a system to its maximum throughput and beyond.
As I mentioned, it’s rare for benchmarks to be run by people who
understand the importance of latency. But when I do see benchmarks
that measure latency percentiles, the systems almost always perform
very badly at their peak throughput.1

Another way I’ve tried to predict system capacity in the past is with
queueing theory, using the Erlang C formula to predict response time at a

1 This is a problem with the way benchmarks are usually designed, in my opinion. I’d really prefer for the
benchmark system to be intelligent enough to back off and reduce pressure on the system under test if it
violates a service level objective (SLO). Ideally, this is defined as a quantile, such as 99th percentile latency
less than 10ms. A smart benchmark would throttle load, eventually finding a longterm stable arrival rate
at which the SUT can consistently perform well.
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given utilization. Unfortunately, this requires that you know service times,
which are often impossible to obtain. You can measure total response
time, but that includes waiting time in the queue, so it’s not the same
thing as the service time. The utilization is also often deceptive, because
the real utilization of the resources you’re trying to model can be difficult
to measure correctly too. Most people I know consider the Erlang
approach to be difficult to apply.

If load tests, benchmarks, and queueing theory are difficult to use, can the
USL help? Yes, it can. Because the USL is amodel, it can help you predict
how a system will perform under load beyond what you can observe. The
USL’s point of maximum predicts the system’s maximum throughput, so
it’s a way to assess a system’s capacity. It can help you get a better idea
of how close you are to the system’s maximum capacity.

Here’s an example. Imagine that I had measured the first 10 data points
in the Cisco benchmark, in a live production environment serving real
users, not a lab. Here’s the result of fitting the USL to the data:
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Using the formulaNmax =
√
(1− σ)/κ from Equation 4, the USL predicts

a max of 16,049 queries per second at a concurrency of 46 threads.

I have a rule of thumb for using the USL to project out into the unknown.
I’ve seen so many systems that appear to be scaling beautifully—fitting
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the USL cleanly, just as this one does—and then they hit rough waters,
that I don’t trust anything farther out than twice the measured throughput
or twice the measured size, whichever comes first.1 And that’s if I’m not
seeing telltale signs of leveling off or retrograde throughput. If I see those
signs, I lower my expectations accordingly. I will also include other
information such as CPU utilization to guide my estimates, if I have it, but
in the absence of more data this is a good way to keep expectations
capped.

Back to the model: I have measurements only toN = 10, where observed
throughput is 7,867, so I’m going to compute the predicted throughput at
N = 20. The result is a throughput forecast of 12,572. This is less than
twice my maximum observed throughput, so I’ll allow it. In my
experience, it’s an optimistic but not unrealistic guess that I won’t get
more than about 12,500 queries per second from this server. (As you may
remember, this system topped out at 12,211 QPS.)

The outcome is that my system appears to be operating at about half of
its maximum capacity. However, as discussed previously, maximum
throughput isn’t maximum usable capacity. Again, when the system is at
its maximum throughput, response time is probably terrible, and will be
extremely inconsistent. That’s why it’s more important to focus on the
system’s maximum throughput within the constraints of a service level
objective.

As a first step towards this, I can use average latency to help understand
the potential QoS end-users will get from this server. Again using the
rearranged form of the USL, I obtain the following response time forecast:

1 When I explain superlinear scaling, you’ll see why I don’t use throughput alone as a guide.
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Using the estimated coefficients and the formula for response time from
Equation 6, I can predict a mean response time of 0.00159 seconds at 20
threads. Let’s imagine that this is unacceptable; I need mean response
times to be 1.5ms or less. Solving the response time equation as a
function of latency lets me use it to compute the maximum usable
concurrency. The resulting equation has two roots; I’m only interested in
the positive one:

N(R) =
κ− σ +

√
σ2 + κ2 + 2κ(2λR + σ − 2)

2κ
(10)

Plugging in an R target of 0.0015 yieldsN = 17, so if I want to avoid
violating my SLO I can’t drive my server higher than approximately 11,450
QPS. I’m actually at about two-thirds of my usable capacity, not half. I can
grow traffic about 145% before I get into trouble, if I’m lucky.

This process is something like what I might use if I were encountering
this server in the wild. It’s not perfect; as Niels Bohr said, “It’s hard to
make predictions, especially about the future.” Despite the uncertainty
that remains, this approach is much better than staring at a chart and
thinking, “I don’t know, it looks like it’s scaling linearly and CPU utilization
is only 10%, so I guess we have a lot of headroom?” You usually have less
headroom than you think, because of how nonlinearly throughput and
latency degrade.
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The USL has a few nice properties that make it suitable for this type of
capacity planning:

• It’s a “black box” technique, which uses data that’s usually easy to get.

• Gathering data and using regression to analyze it is also easy.

• The USL is a relatively simple model, so people like me can
understand the math.

• The USL is highly intuitive in comparison to most other approaches.

I would just repeat my caution that a lot of systems perform worse than
the USL predicts they will, because their degradation in scalability at
larger sizes is more severe than predicted. This is why I suggest viewing
the USL’s prediction as optimistic: “I won’t count on being able to scale
this system as high as the USL predicts I can.”

You can also combine the USL with selected techniques from queueing
theory, such as the Square Root Staffing Rule, to forecast how much
capacity is needed and what quality of service it will provide. See the
aforementioned queueing theory book for more on this topic.

Using the USL to Improve
Scalability
One of the best uses of the USL is to explain why a system doesn’t scale
as well as it might. Armed with this knowledge, you can get clues about
where to look for bottlenecks, so you might be able to alleviate them and
improve the system’s scalability. With practice, you’ll also develop a
mindset of scalability, building intuition about which design decisions can
cause serious sublinearity.

An example will help illustrate. A few years ago PayPal published
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benchmark results of a Java application they rewrote in NodeJS. I
analyzed their benchmark results and wrote about it on the VividCortex
blog. Here are the plots and the key scalability parameters:
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σ κ

Java 0.000011 0.006323

NodeJS 0.080319 0.000222

These systems scale very differently,1 and for very different reasons. In a
nutshell, the Java benchmark shows much higher crosstalk penalty,
whereas the NodeJS benchmark exhibits more contention from queueing
and serialization. Examining the architectures of the two systems reveals
why: the Java app is multi-threaded and NodeJS is single-threaded with
an event loop, and the PayPal blog post even mentions that they used “a
single core for the NodeJS application compared to five cores in Java.”

This is a great real-life example of key scalability tenets:

• Avoid serialization and queueing; make things as parallel as possible.

• Avoid crosstalk and synchronization.

If you’re using the USL to model and analyze system scalability, another
valuable practice is to approach the USL as a pessimistic scenario.

1 Both of them scale pretty poorly, in fact.
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Synchronous repairman queueing, the basis of the USL, is actually a
worst-case in terms of the amount of queueing delay that occurs in a
system. This is another way of saying that well-built systems theoretically
ought to scale at least as well as the USL predicts. This should prompt
you to ask the question, “why is this system degrading more than it
should?” The answer is to look at whether the system degrades because
of contention (queueing, serialization) or crosstalk (synchronization,
communication, pairwise data interchange). If you can identify the likely
cause, you might suspect that you need to look at mutex contention, for
example.

One of the biggest changes in my mindset since learning to use the USL
is that it’s possible, and important, to explain why systems behave as they
do. As Neil Gunther tweeted, it’s no longer enough just to benchmark,
measure, and present the results on a chart. You can and should explain
the results. As I tweeted myself, “Benchmarking is good, publishing
results is better, explaining results is best. Publishing charts only
(pictures without numbers) is sad.”

Probing the USL’s Limits
For many people, the USL is a huge shift in mindset. I know it was for me.
But is it the be-all and end-all? Of course not.

Not only is the USL not the answer for every problem related to scalability
or capacity planning, sometimes it’s hard to apply for the problems it can
solve. The examples I’ve shown thus far are remarkable in that they’re
extremely clean data. Real-world systems often have noisy data that
doesn’t “look like” the USL much at all. It may look more like something
your cat threw up on the screen. Even when there is a nice-looking shape
to the data, regression can produce unphysical results, or refuse to
produce results.
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And then there are the systems for which you have nice, highly
reproducible, clean-room measurements, but they just don’t seem to fit
the USL very well. They might appear to scale nicely, following the USL,
but suddenly flatline instead of continuing a graceful curve. Or they
abruptly degrade faster than predicted—or the reverse, appearing to
degrade more slowly than predicted once you enter the region where the
higher-order terms prevail. Here’s an example:
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Maybe this is queue saturation or resource saturation, or maybe it’s
something else, but the USL can’t model or predict it. If you’d tried to
predict this behavior by fitting the USL to the first dozen or so data points,
you’d get something like this:
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The USL doesn’t give you the tools to forecast those kinds of behavioral
shifts. There’s no way to tell it how many servers are servicing queues, for
example. I’ve seen many benchmarks that fit the USL nicely with
increasing numbers of threads until there is one thread per physical CPU
core; then there’s an abrupt change such as those in the diagram. I’ve
seen others where a resource such as network bandwidth becomes a
limiting factor.

I say this not to criticize the USL, but to point out that even a Swiss Army
Knife is not always the tool you need.

If the USL is incomplete, what is it good for? The answer is lots. Any
model is better than none. In the absence of a model explaining the
workings of system scalability, there isn’t even a point of comparison to
assess your expectations and results. There’s no frame of reference to
say, “this system should scale better than it does,” or “these
measurements look wrong.” Whether the USL is applicable to a given
problem or not, it still provides a framework. Without it, why not just draw
lines at will? You could get a set of French curves and follow your muse.

As George E. P. Box famously said, “all models are wrong, but some are
useful.” And as Richard Feynman said in a 1964 lecture at Cornell
University, “If it disagrees with experiment, it’s wrong. That simple
statement is the key to science.” If the USL were able to model the
physical world completely and correctly, for example including knowledge
about capped resources such as number of CPUs (which is a vitally
important parameter for queueing theory problems) or network
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bandwidth, it could describe more systems and scenarios than it does in
my experience.

But that’s too much to ask. Every physical law has limits, and there’s a lot
of research devoted to identifying the limits of various natural laws. For
example, there’s the ideal gas law, which relates quantities such as
pressure, volume, and temperature. It isn’t a completely accurate model
when you reach the bounds of its domain as temperature approaches
absolute zero. But it’s a great alternative to solving Schrödinger’s
probabilistic model of gas behavior for every molecule in a container!

Similarly, the Universal Scalability Law is not a bottom-up model
composed of submodels. It’s amacro approach. Rather than trying to
model individual CPU instructions, processor pipelining, cache misses,
and so on, it models the system as a whole. It expresses this model in
terms of simple relationships that hold true over most of the domain and
in most conditions.

I’d also like to note that you could easily conjecture and analyze other
USL-like models. For example, many computer algorithms, such as those
that might perform pairwise interchange to cause the coherency penalty,1

can be shown by analysis to beO(n logn) instead ofO(n2). You might
intuit that the quadratic κ term is too pessimistic, and could be replaced
by a logarithmic term, like so:

X(N) =
λN

1 + σ(N − 1) + κ log(N)(N − 1)
(11)

To give some visual intuition of how this differs from the accepted form
of the USL, here they are together on a single plot. The standard USL is
the solid line and the logarithmic variant is the dashed line.

1 Or queue management, if you believe that’s the explanation of service time bloat; see John Little’s paper.
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You might think that you could choose parameters to the standard USL to
make it follow the dashed line better, but it doesn’t work. The functions
are of different order and type, and won’t behave the same.

Would this be a better model for the data I showed previously? Visually, it
does appear to model the observed data somewhat more closely:
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Dr. Jayanta Choudhury has suggested changes to the USL to model
cases such as this, where resources apparently become saturated. His
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Asymptotically Improved Super-Serial Law1 is slightly more complex:

X(N) =
λN

1 + σ(N − 1) + σκN β(N − 1)
(12)

The β parameter ranges from 0 to 1, inclusive. The following plot shows
the logarithmic variant I proposed in a solid line, and the AISSL in a
dashed line. As you can see, the logarithmic variation fits the data better.

0 50 100 150 200

0
40
00
0

80
00
0

12
00
00

Connections

Th
ro
ug
hp
ut

0 50 100 150 200

0
40
00
0

80
00
0

12
00
00

Unfortunately it’s a bit difficult to estimate parameters for the AISSL,
making it harder to use than the USL.

If you recall the Isilon example from before, it seemed that the USL was
too pessimistic in predicting the maximum achievable throughput. This is
another way of saying that retrograde scalability was less severe than the
USL predicted. On the other hand, that system clearly didn’t scale exactly
like Amdahl’s Law, either. Maybe the logarithmic variant of the USL is
more realistic? I’ve fit the USL as a solid line and the logarithmic variant
as a dashed line to see:

1 See Parameter Estimation of Asymptotically Improved Super-serial Scalability Law by Dr. Jayanta Choud-
hury, of TeamQuest Corporation.
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As I’m sure you can imagine, you could play games like this all day long.
Dreaming up an idea is much easier than proving that it’s correct or
showing how it might arise analytically from the underlying mechanisms
as we understand them to operate in the system.

One way to look at some of the examples I’ve given in this section is to
stop trying to predict what happens after retrograde scalability or
resource saturation kicks in. There are at least two good reasons for
taking this pragmatic approach.

1. It’s a different model. The system’s behavior is being influenced by
factors that weren’t present at a smaller size. It’s not just different
parameters, the entire model has changed, and I doubt that a single
model could explain those wildly different behaviors.

2. It’s pointless. When you see retrograde scaling, you know the system
has gone past the point where it’s in trouble. Nothing good can come
of pushing it further, so why should you try to model how bad it is? It’s
a lost cause with no practical purpose.
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Superlinear Scaling
I’ve spent some time analyzing the possible causes of sublinear scaling.
Is superlinear scaling possible? As I’ve worked with the USL over the
years, I’ve found a number of cases where systems apparently do scale
superlinearly. It manifests as a negative σ coefficient and a USL curve
that has a more complex shape, rising above linear and then below again:
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At first I dismissed this result as unphysical (how can there be less than
zero contention?), but after repeatedly seeing this happen and having
many conversations with Neil Gunther about it, I started to wonder. So did
he, and eventually he reproduced and explained the effect on a large-scale
Hadoop TeraSort benchmark.

The TeraSort case is quite a specific one. In the more general case, I
would explain superlinear scalability as a disproportionate scaling of
some resource relative to the load placed upon it, creating an economy of
scale. For example, adding more nodes to a clustered database system
adds more memory; if the dataset size is not scaled proportionately, then
more of the data fits into memory on each node, and access times
improve relative to disk reads. Any resource that is more efficient when
shared than when used singly may cause this effect.
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It’s worth noting that this initial boost, depending upon its cause, may be
countered by a correspondingly disproportionate “payback” later when
performance falls quickly below linearity again.

Another special case to be aware of is that some clustered systems
behave differently at sizes 1 and 2 than they do at 3 and above. For
example, at size 1 there is no crosstalk or contention—it isn’t a distributed
system. At size 2 special-cases may be in play. At size 3 and above,
usually generic algorithms and techniques suited for any size n are in use.
Some clustered systems have to be benchmarked or measured at larger
sizes in order to avoid skew from these effects.

Finally, negative σ coefficients can arise from data that includes some
type of skew. For example, if you are measuring throughput at various
levels of concurrency and something is inflating the apparent
concurrency measurements (such as idling threads), all of your points will
be shifted to the right on the scatterplot. This can cause apparently
superlinear scaling (though it’s just bad data).

Other Scalability Models
In addition to the USL and the variants I’ve already discussed, there are
many other potential models of scalability you could consider. In my
opinion some are good, some are useful, some are not. I also believe that
there is much more work to be done on this topic.

Some alternative theories, however, are just garbage. Chief amongst
them is “quadratic scalability.” Observing that systems under increasing
amounts of load will first increase in throughput, then level off and begin
to decline, some people inevitably decide to“fit a curve to it.” The curve is
always a quadratic polynomial and the fitted curve ends up being a
parabola opening downwards. Let’s see how this looks on the Cisco
benchmark data once again:
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Look, Ma, it’s a great fit! I don’t even need to compute the R2 value to
know that. There’s just one problem: it predicts that at some point you’ll
achieve negative throughput.

You should ignore this model because by definition it doesn’t work.
Rather than use it, I’d suggest that you get out that French curve set again
and get in touch with your inner artist.

Another model that I’ve seen is latency as a function of throughput. Here
are three examples:

• New Relic’s scalability chart, which plots latency as a function of
throughput and renders a smoothed line through the points. The line
has no predetermined form and doesn’t express any particular model.

• AppDynamics’s scalability analysis feature does the same thing, but
fits a parabola through the lines instead of a polynomial of arbitrarily
high degree.

• Cockcroft headroom plots, by Adrian Cockcroft. These are also
latency-versus-throughput charts, but add some histograms and
other useful visual cues around the edges.

These three express essentially the same beliefs about the relationship
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between variables–that throughput is a free parameter that can be set at
will, and determines latency. AppDynamics models latency as quadratic,
but otherwise the differences among the three are relatively minor. Here’s
an example of a Cockcroft Headroom Plot:

As I have shown, the relationship between throughput and response time
is never quadratic according to the USL model, and is not even a simple
function of throughput unless κ is zero. In other words, you really can’t
model the relationship in this way unless you ignore the possibility of a
nonzero κ, which is far from rare. It is better to use a more capable model
such as the USL.
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Modeling Hardware, Software, and
MPP Systems
Imentioned that Neil Gunther actually defines two forms of the USL, one
for hardware scaling and one for software. They’re essentially the same
equation, with different Greek letters.

For most purposes it’s not important to care about the distinction.
However, it is very important, in general, to have a firm grasp on the
meaning of theX axis in the USL chart. I’ve been somewhat casual about
it, essentially treating it as a generic metric of size by which you scale the
system or workload, but now I will be more precise.

In fact there are at least three important dimensions of the work a system
performs, and how it scales, and these three interact with each other. A
correct understanding of the concepts is important to get sensible results:

1. Drivers. The number of things producing work requests for the
system. In a benchmark, for example, this is typically the configured
concurrency of the benchmark—that is, the number of driver threads.
It could also be the number of connections to the database, the
number of users on a web application, and so on.

2. Servers. The number of servers as defined in queueing theory. It
could be the number of CPUs in a server, the number of servers in a
cluster, or the like.

3. Data. The size of the dataset. This will most typically be in the usual
units—megabytes or gigabytes, number of rows—but will occasionally
be the number of logical partitions in the dataset (“shards”). A VoltDB
benchmark that I analyzed once needed to be couched in terms of
partitions, because of the configured per-partition redundancy.
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The key point in scalability analysis with the USL is that everything needs
to be held constant relative to the unit of scale you’re using, so you are
changing only one variable at a time. If you’re measuring scalability at
different cluster sizes, for example, you need to grow the number of driver
threads and the data size proportionately to the number of nodes in the
cluster, so each node receives the same amount and rate of work to
perform upon the same amount of data no matter the cluster size. (If you
hold the dataset constant and increase the number of nodes, you’ll get
superlinear scalability.)

I’ve shown that the USL can be solved for a variety of variables, such as
response time (latency). Yet another way to think about the USL is in
terms of response time reduction, or speedup. I mentioned this briefly
while motivating the introduction of Amdahl’s Law, but a system that
literally behaves like Amdahl’s Law is probably less familiar to most
readers. However, it’s a perfect model to use for massively parallel
processing (MPP) systems, which subdivide work and execute fractions
of it in parallel, then combine the intermediate results into a final answer.
In such a system, you can vary the degree of parallelism, measure how
latency reduces, and produce a model of the system’s scalability in terms
of response time reduction.1

To accomplish this, I need to make explicit what’s been a bit bundled
together into the USL when applied to hardware scalability. The
assumption, not shown in Equation 3 directly, is that as you scale the
number of serversN , you scale the drivers proportionately, and each
request is served by a single server. In this way you hold the concurrency
constant at each server. Again, I’m using the term “server” in the queueing
theory sense of the word, e.g. nodes in the cluster, CPUs in the
motherboard.

If you solve the USL to represent response time as a function of the

1 Throughput and concurrency do not enter into the equation; you are not measuring aggregates of num-
ber of requests completed per time, but merely measuring the response time of individual requests at a
concurrency of 1, by definition.
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degree of parallelism in an MPP job, of course you’ll find that it’s just the
inverse of the speedup. And the standard form of the USL is equivalent to
speedup in the MPP sense, so the response time of individual requests
becomes:

R(N) =
1 + σ(N − 1) + κN(N − 1)

λN
(13)

Characteristic response time curves in an MPP system, then, are as
follows. A perfectly linear system will result in speedup towards an
asymptote of zero. A system with serialization will speedup towards an
asymptote of the serial fraction. And a system with retrograde scalability
due to service time bloat will actually exhibit, well, bloat. It looks like this:
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You can use that model just like any other form of the USL: to evaluate
scalability, predict performance beyond what you can observe, figure out
whether a system is scaling well enough and why, and so on.

Conclusions
The Universal Scalability Law is a wonderfully versatile, easy-to-apply, yet
formal framework for modeling, thinking about, and analyzing scalability
and performance. It applies to many different situations, as long as you
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can define the variables correctly. It even explains why human
organizations (companies and teams) struggle as they grow. As anyone
who’s managed a growing company knows, the chief scaling problem in a
big company is a communications problem.

In this book I’ve given you a whirlwind tour of modeling scalability and
performance with the USL. A few of the key takeaways are as follows:

• Scalability is a formal concept that is best defined as a mathematical
function.

• Linear scalability means equal return on investment. Double down on
workers and you’ll get twice as much work done; add twice as many
nodes and you’ll increase the maximum capacity twofold. Linear
scalability is oft claimed but seldom delivered.

• Systems scale sublinearly because of contention, which adds
queueing delay, and crosstalk, which inflates service times. The
penalty for contention grows linearly and the crosstalk penalty grows
quadratically. (An alternative to the crosstalk theory is that longer
queues are more costly to manage.)

• Contention causes throughput to asymptotically approach the
reciprocal of the serialized fraction of the workload. If your workload
is 5% serialized you’ll never grow the effective speedup by more than
20-fold.

• Crosstalk causes the system to regress. The harder you try to push
systems with crosstalk, the more time they spend fighting amongst
themselves.

• To build scalable systems, avoid contention (serialization) and
crosstalk (synchronization). The contention and crosstalk penalties
degrade system scalability and performancemuch faster than you’d
think. Even tiny amounts of serialization or pairwise data
synchronization cause big losses in efficiency.
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• If you can’t avoid crosstalk, partition (shard) into smaller systems that
will lose less efficiency by avoiding the explosion of service times at
larger sizes.

• To model systems with the USL, obtain measurements of throughput
at various levels of load or size, and use regression to estimate the
parameters to Equation 3.

• To forecast scalability beyond what’s observable, be pessimistic and
treat the USL as a best-case scenario that won’t really happen. Use
Equation 4 to forecast the maximum possible throughput, but don’t
forecast too far out. Use Equation 6 to forecast response time.

• Use your judgment to predict limitations that USL can’t see, such as
saturation of network bandwidth or changes in the system’s model
when all of the CPUs become busy.

• Use the USL to explain why systems aren’t scaling well. Too much
queueing? Too much crosstalk? Treat the USL as a pessimistic model
and demand that your systems scale at least as well as it does.

• If you see superlinear scaling, check your measurements and how
you’ve set up the system under test. In most cases σ should be
positive, not negative. Make sure you’re not varying the system’s
dimensions relative to each other and creating apparent superlinear
efficiencies that don’t really exist.

• It’s fun to fantasize about models that might match observed system
behavior more closely than the USL, but the USL arises analytically
from how we know queueing systems work. Invented models might
not have any basis in reality. Besides, the USL usually models systems
extremely well up to the point of inflection, and modeling what
happens beyond that isn’t as interesting as knowing why it happens.

• Never trust a scatterplot with an arbitrary curve fit through it unless
you know why that’s the right curve. Don’t confuse the USL, hockey
stick charts from queueing theory, or other charts that just happen to
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have similar shapes. Know what shape various plots should exhibit,
and suspect bad measurements or other mistakes if you don’t see
them.

The USL succeeds because it encapsulates many different effects
implicitly, and doesn’t require you to capture arcane measurements that
may be impossible to obtain. It’s simpler to use and often gives better
results than many other types of forecasting tools, such as Erlang C
formulas. For the same reasons, it’s limited in its predictive ability. But
remember: as Neil Gunther says, “Models don’t get confused, only
modelers do.”

Many thanks to Dr. Neil Gunther, Cary Millsap, John Allspaw, Adrian
Cockcroft, John Miller, Dr. Nathaniel Schwartz, Vadim Tkachenko, Mark
Callaghan, Peter Zaitsev, Dr. Jayanta Choudhury, Dr. Heinrich Hartmann,
and others too numerous to mention. They deserve credit for most of the
things I’ve gotten right in this book. The errors, confusions, and
thickheadedness are all mine. I also beg Neil Gunther’s perpetual
forgiveness in advance.

Further Reading
The Universal Scalability Law is only a couple of decades old, and there is
not a great deal of literature about it. Interested readers should purchase
the canonical books from Dr. Neil J. Gunther. I include a variety of other
excellent reading in the list below, but Neil Gunther’s books are the
definitive sources.

• Guerrilla Capacity Planning by Neil Gunther. This book is more or less
the canonical text.

• Analyzing Computer System Performance With Perl::PDQ by Neil
Gunther, which introduces the background to the USL.
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• Practical Performance Analyst by Neil Gunther.

• Forecasting MySQL Scalability with the Universal Scalability Law by
Baron Schwartz and Ewen Fortune.

• Fundamentals of Queueing Theory by Gross and Harris.

• Practical Queueing Analysis by Mike Tanner.

• Probability, Statistics, and Queueing Theory by Allen.

• Capacity Planning for Web Performance by Menascé and Almeida.

• The Art of Computer Systems Performance Analysis by Jain.
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About VividCortex
VividCortex is a SaaS database performance monitoring
platform. The database is the heart of most applications, but
it’s also the part that’s hardest to scale, manage, and optimize
even as it’s growing 50% year over year. VividCortex has
developed a suite of unique technologies that significantly
eases this pain for the entire IT department. Unlike traditional
monitoring, we measure and analyze the system’s work and
resource consumption. This leads directly to better
performance for IT as a whole, at reduced cost and effort.

Related Resources From VividCortex

Everything You Need To
Know About Queueing

Theory

This highly accessible introduction

demystifies queueing theory without

using pages full of equations, helping

you build intuition about it.

Case Study: SendGrid

VividCortex is the go-to solution for

seeing what’s happening in SendGrid’s

production systems. It has saved

months of effort and made query

performance data available instantly to

the entire team.
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