{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AIChE 2019 pMuTT Workshop\n",
"\n",
"Instructions and materials for the Computational Catalysis workshop can be found on webpage.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents\n",
"\n",
"| **1\\. [Introduction](#section_1)**\n",
"\n",
"|-- **1.1. [Some of pMuTT's Capabilities](#section_1_1)**\n",
"\n",
"| **2\\. [Useful Links](#section_2)**\n",
"\n",
"| **3\\. [Creating statistical mechanical objects using StatMech](#section_3)**\n",
"\n",
"|-- **3.1. [Supported StatMech models](#section_3_1)**\n",
"\n",
"|--|-- **3.1.1. [Translations](#section_3_1_1)**\n",
"\n",
"|--|-- **3.1.2. [Vibrations](#section_3_1_2)**\n",
"\n",
"|--|-- **3.1.3. [Rotations](#section_3_1_3)**\n",
"\n",
"|--|-- **3.1.4. [Electronic](#section_3_1_4)**\n",
"\n",
"|--|-- **3.1.5. [Miscellaneous](#section_3_1_5)**\n",
"\n",
"|-- **3.2. [Initializing StatMech modes individually](#section_3_2)**\n",
"\n",
"|-- **3.3. [Initializing StatMech modes using presets](#section_3_3)**\n",
"\n",
"| **4\\. [Creating empirical objects](#section_4)**\n",
"\n",
"|-- **4.1. [Inputting a NASA polynomial directly](#section_4_1)**\n",
"\n",
"|-- **4.2. [Fitting an empirical object to a StatMech object](#section_4_2)**\n",
"\n",
"| **5\\. [Input/Output](#section_5)**\n",
"\n",
"|-- **5.1. [Input via Excel](#section_5_1)**\n",
"\n",
"| **6\\. [Reactions](#section_6)**\n",
"\n",
"|-- **6.1. [Initializing Reaction objects using from_string](#section_6_1)**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Introduction\n",
"\n",
"\n",
"\n",
"- Estimates thermochemical and kinetic parameters using statistical mechanics, transition state theory\n",
"- Writes input files for kinetic models and eases thermodynamic analysis\n",
"- Implemented in Python\n",
" - Easy to learn\n",
" - Heavily used in scientific community\n",
" - Object-oriented approach is a natural analogy to chemical phenomenon\n",
"- Library approach allows users to define the starting point and end point\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1 Some of pMuTT's Capabilities\n",
"### Reaction Coordinate Diagrams\n",
"\n",
"See the thermodynamic and kinetic feasibility of reaction mechanisms.\n",
"\n",
"\n",
"\n",
"### Ab-Initio Phase Diagrams\n",
"\n",
"Predict the most stable configuration with respect to temperature and pressure.\n",
"\n",
"**Configurations**\n",
"\n",
"Typically we would consider more configurations than this.\n",
"\n",
"**1D Phase Diagram**\n",
"\n",
"\n",
"**2D Phase Diagram**\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Useful Links\n",
"\n",
"- [Documentation](https://vlachosgroup.github.io/pMuTT/): find the most updated documentation\n",
"- [Issues](https://github.com/VlachosGroup/pmutt/issues): report bugs, request features, receive help\n",
"- [Examples](https://vlachosgroup.github.io/pMuTT/examples.html): see examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. Creating statistical mechanical objects using StatMech\n",
"\n",
"Molecules show translational, vibrational, rotational, electronic, and nuclear modes.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.1. Supported StatMech modes\n",
"\n",
"\n",
"\n",
"The StatMech object allows us to specify translational, vibrational, rotational, electronic and nuclear modes independently, which gives flexibility in what behavior you would like. Below are the available modes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.1.1. Translations\n",
"- [``FreeTrans``](https://vlachosgroup.github.io/pMuTT/statmech.html#freetrans) - Translations assuming no intermolecular interactions. Can be adjusted for 1, 2, or 3 degrees of translation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.1.2. Vibrations\n",
"- [``HarmonicVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonicvib) - Harmonic vibrations\n",
"- [``QRRHOVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonicvib) - Quasi rigid rotor harmonic oscillator. Low frequency modes are treated as rigid rotations.\n",
"- [``EinsteinVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#einsteinvib) - Each atom in the crystal vibrates as independent 3D harmonic oscillators\n",
"- [``DebyeVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#debyevib) - Improves upon ``EinsteinVib`` by considering simultaneous vibrations. Improves accuracy at lower temperatures."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.1.3. Rotations\n",
"- [``RigidRotor``](https://vlachosgroup.github.io/pMuTT/statmech.html#rigidrotor) - Molecule can be rotated with no change in bond properties"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.1.4. Electronic\n",
"- [``GroundStateElec``](https://vlachosgroup.github.io/pMuTT/statmech.html#groundstateelec) - Electronic ground state of the system\n",
"- [``LSR``](https://vlachosgroup.github.io/pMuTT/statmech.html#linear-scaling-relationships-lsrs) - Linear Scaling Relationship to estimate binding energies using reference adsorbate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.1.5. Miscellaneous\n",
"- [``EmptyMode``](https://vlachosgroup.github.io/pMuTT/statmech.html#empty-mode) - Default mode if not specified. Does not contribute to any properties\n",
"- [``ConstantMode``](https://vlachosgroup.github.io/pMuTT/statmech.html#constant-mode) - Specify arbitrary values to thermodynamic quantities\n",
"\n",
"Using a ``StatMech`` mode gives you access to all the common thermodynamic properties.\n",
"\n",
"\n",
"\n",
"For this example, we will use a hydrogen molecule as an ideal gas:\n",
"- translations with no interaction between molecules\n",
"- harmonic vibrations\n",
"- rigid rotor rotations\n",
"- ground state electronic structure\n",
"- no contribution from nuclear modes.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.2. Initializing StatMech modes individually"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we will create an ASE Atoms object of H2. This will make it easier to initialize translations and rotations."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from ase.build import molecule\n",
"from ase.visualize import view\n",
"\n",
"H2_atoms = molecule('H2')\n",
"view(H2_atoms)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we will initialize each mode separately"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -618.6 kJ/mol\n",
"S_H2(T=298 K) = 130.23 J/mol/K\n"
]
}
],
"source": [
"from pmutt.statmech import StatMech, trans, vib, rot, elec\n",
"\n",
"'''Translational'''\n",
"H2_trans = trans.FreeTrans(n_degrees=3, atoms=H2_atoms)\n",
"\n",
"'''Vibrational'''\n",
"H2_vib = vib.HarmonicVib(vib_wavenumbers=[4342.]) # vib_wavenumbers in cm-1\n",
"\n",
"'''Rotational'''\n",
"H2_rot = rot.RigidRotor(symmetrynumber=2, atoms=H2_atoms)\n",
"\n",
"'''Electronic'''\n",
"H2_elec = elec.GroundStateElec(potentialenergy=-6.77,spin=0) # potentialenergy in eV\n",
"\n",
"'''StatMech Initialization'''\n",
"H2_statmech = StatMech(name='H2',\n",
" trans_model=H2_trans,\n",
" vib_model=H2_vib,\n",
" rot_model=H2_rot,\n",
" elec_model=H2_elec)\n",
"\n",
"'''Calculate thermodynamic properties per mole basis'''\n",
"H_statmech = H2_statmech.get_H(T=298., units='kJ/mol')\n",
"S_statmech = H2_statmech.get_S(T=298., units='J/mol/K')\n",
"print('H_H2(T=298 K) = {:.1f} kJ/mol'.format(H_statmech))\n",
"print('S_H2(T=298 K) = {:.2f} J/mol/K'.format(S_statmech))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you specify the composition of your species, you can calculate per mass quantities too."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -306.8 kJ/g\n",
"S_H2(T=298 K) = 64.60 J/g/K\n"
]
}
],
"source": [
"'''Input composition'''\n",
"H2_statmech.elements = {'H': 2}\n",
"\n",
"'''Calculate thermodynamic properties per mass basis'''\n",
"H_statmech = H2_statmech.get_H(T=298., units='kJ/g')\n",
"S_statmech = H2_statmech.get_S(T=298., units='J/g/K')\n",
"print('H_H2(T=298 K) = {:.1f} kJ/g'.format(H_statmech))\n",
"print('S_H2(T=298 K) = {:.2f} J/g/K'.format(S_statmech))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.3. Initializing StatMech modes using presets\n",
"\n",
"Commonly used models can be accessed via [``presets``](https://vlachosgroup.github.io/pMuTT/statmech.html#presets). The currently supported models are:\n",
"\n",
"- [``idealgas``](https://vlachosgroup.github.io/pMuTT/statmech.html#ideal-gas-idealgas) - Ideal gases\n",
"- [``harmonic``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonic-approximation-harmonic) - Typical for surface species\n",
"- [``electronic``](https://vlachosgroup.github.io/pMuTT/statmech.html#electronic-electronic) - Only has electronic modes\n",
"- [``placeholder``](https://vlachosgroup.github.io/pMuTT/statmech.html#placeholder-placeholder) - No contribution to any property\n",
"- [``constant``](https://vlachosgroup.github.io/pMuTT/statmech.html#constant-constant) - Use arbitrary constants to thermodynamic properties\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -618.6 kJ/mol\n",
"S_H2(T=298 K) = 130.23 J/mol/K\n"
]
}
],
"source": [
"from ase.build import molecule\n",
"from pmutt.statmech import StatMech, presets\n",
"\n",
"H2_statmech = StatMech(atoms=molecule('H2'),\n",
" vib_wavenumbers=[4342.], # cm-1\n",
" symmetrynumber=2,\n",
" potentialenergy=-6.77, # eV\n",
" spin=0.,\n",
" **presets['idealgas'])\n",
"\n",
"'''Calculate thermodynamic properties'''\n",
"H_statmech = H2_statmech.get_H(T=298., units='kJ/mol')\n",
"S_statmech = H2_statmech.get_S(T=298., units='J/mol/K')\n",
"print('H_H2(T=298 K) = {:.1f} kJ/mol'.format(H_statmech))\n",
"print('S_H2(T=298 K) = {:.2f} J/mol/K'.format(S_statmech))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. Creating empirical objects\n",
"Currently, pMuTT supports\n",
"\n",
"- [NASA polynomials](https://vlachosgroup.github.io/pMuTT/empirical.html#nasa)\n",
"- [NASA9 polynomials](https://vlachosgroup.github.io/pMuTT/empirical.html#nasa9)\n",
"- [Shomate polynomials](https://vlachosgroup.github.io/pMuTT/empirical.html#shomate). \n",
"\n",
"They can be initialized in three ways:\n",
"- inputting the polynomials directly\n",
"- from another model (e.g. ``StatMech``, ``Shomate``) using (``from_model``)\n",
"- from heat capacity, enthalpy and entropy data using (``from_data``)\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.1. Inputting a NASA polynomial directly\n",
"\n",
"The H2 NASA polynomial from the [Burcat database](http://combustion.berkeley.edu/gri_mech/version30/files30/thermo30.dat) is represented as:\n",
"\n",
"```\n",
"H2 TPIS78H 2 G 200.000 3500.000 1000.000 1\n",
" 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2\n",
"-9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3\n",
" 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4\n",
"```\n",
"\n",
"This can be translated to pMuTT syntax using:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -0.0010337769809016294 kcal/mol\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAANxCAYAAADQFyWUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhc133f//fBRhDcsVMkJe67LMuWxEUSRW2U5Di1nTS227SJ7Wx1WqdOXSdOmja2n6Rt4rpNmyY/O61b2U6d2ImdpK6j1RK1U6IsL+K+S6RE7NxJENv5/XEvgBENAjMkBsBg3q/nmQczc+85+GIuZ4gP7rnnhBgjkiRJkiQVqpLxLkCSJEmSpKthsJUkSZIkFTSDrSRJkiSpoBlsJUmSJEkFzWArSZIkSSpoBltJkiRJUkEz2EqSJEmSCprBVpIkSZJU0Ay2kiRJkqSCZrCVJEmSJBU0g60kSZIkqaAZbCVJkiRJBc1gK0mSJEkqaAZbSZIkSVJBM9hKkiRJkgqawVaSJEmSVNDKxrsATX4hhCnA9enDVqB3HMuRJEmSNH5Kgbr0/qsxxouj0anBVmPhemD7eBchSZIkaUK5GXh5NDpyKLIkSZIkqaB5xlZjobX/zksvvcTcuXPHsxZJkiRJ4+T48ePccsst/Q9bh9s3FwZbjYWBa2rnzp3L/Pnzx7MWSZIkSRPDqM2941BkSZIkSVJBM9hKkiRJkgqawVaSJEmSVNAMtpIkSZKkgmawlSRJkqQi0NsX6euL411GXhhsJUmSJGmS6unt49n9bfybv3mVdf/+cV55/cR4l5QXLvcjSZIkSZNIV08fzx1s46FXj/PYrmZOnO8e2Pb3rzZx08LqcawuPwy2kiRJklTgOrt7eWZ/GmZ3N3Oms2fI/R7ecZx/++5VhBDGuML8MthKkiRJUgE639XD1r2tPLSjiSd2N3Ouq3fENm+e6mT38TOsvmbmGFQ4dgy2kiRJklQgznR288SeFh7e0cSTe1vo7O7Lqt3b5s/i/rWNPLB2Lotqp+W5yrFnsJUkSZKkCezU+W4e293MwzuO8/T+Nrp6sguz77h2Nu+6fi73rWlkQXVVnqscXwZbSZIkSZpg2s9e5NFdzTy0o4nnD7TRk8UyPSHALQureWBtI/evnUvjrMoxqHRiMNhKkiRJ0gTQfLqTh3c08dCO47x0uINslpwtLQlsWFzDA9c3smV1I3UzpuS/0AnIYCtJkiRJ4+TYifNpmG3ie69lt8ZseWng1qW1vGvtXO5d3cCcaRV5rnLiM9hKkiRJ0hg63HaOh3Yc56FXm3j1jVNZtakoK+GO5XU8sLaRu1c1MGtqeZ6rLCwGW0mSJEnKoxgje5vP8PCOJh7e0cSepjNZtauqKOXOFfU8cH0jd66oZ9oU49vl+MpIkiRJ0iiLMfLqG6d4KA2zh9vOZdVuxpQy7lndwP1rG7ljeR2V5aV5rnRyMNhKkiRJ0ijo64u88vqJgTD7xskLWbWbXVXOltUNPLB2LhuX1jClzDCbK4OtJEmSJF2hnt4+XjrcwUM7mnhkZxMtZy5m1a52+hTuW5OE2XWLqykvLclzpZObwVaSJEmScnCxp5fnD7Tz0I7jPLarmRPnu7Nqd82sSu5b28gDa+fyzuvmUFoS8lxp8TDYSpIkSdIILnT18tS+Fh7a0cQTu1s4c7Enq3bX1VRxfxpmb5g/ixAMs/lgsJUkSZKkIZzu7ObJPS089GoTW/e10Nndl1W75Q3TuX/tXB5Y28jKxhmG2TFgsJUkSZKkVMe5Lh7blUz+9NyBdrp6swuza+fN5IG1c7l/bSNL6qbnuUpdymArSZIkqag1n+7kkZ1JmH3xcAe9fTGrdu+8bg73r2nk/rWNLKiuynOVGo7BVpIkSVLReb39PI/sbOKhHcd55fWTWbUpLQmsW1TNA2sb2bKmkYaZlXmuUtky2EqSJEma9GKMHGg5y8M7mnhoRxO7jp/Oql15aeC2pbU8sHYu96xuoHpaRZ4r1ZUw2EqSJEmalGKM7HjjNA/vPM5DO5o41Houq3aV5SVsXl7PA9c3cufKemZWlue5Ul0tg+1lhBBmAXVADXABaAXaYozZLVIlSZIkacz19kVeef0ED73axCM7m3jj5IWs2s2YUsbdq+q5f20jdyyvZ2pFaZ4r1Wgy2KZCCLcBm4HbgQ3AtMvstw94Jr09EmNsGasaJUmSJP247t4+th1q56EdTTy6s5m2sxezalc9rYJ7VzVw/9pGNi6tYUqZYbZQFXWwDSHMBT4KfAiYl7lpmGYrgOXALwC9IYTHgD+NMX4nX3VKkiRJeqsLXb08vb+VR3Y28fiuZk539mTVrnFmJfevbeS+NY3cvHAOZaUlea5UY6Eog20IYR7wO8CHgXIGg2wvsBP4HtACdAAngKlANTCHJNTeBNSSvH4PAPeHEPYAn4kxfmPsfhJJkiSpeJzu7ObJPS08vKOJrXtbudDdm1W762qquH9tI/evaeSG+bMpKRnuPJYKUdEF2xDC7wKfJAmrgSTAfh34JrA9xpjVIPwQwiLgbuAfA5uAVcBfhBB+HfilGOOOPJQvSZIkFZW2sxd5fFczD+9s4rkDbXT3ZrfG7MrGGdyXrjG7snEGIRhmJ7OiC7bA76ZfHwM+DzweY+zLtZMY42HgfwL/M4RwDfAR4OPAOuCnAIOtJEmSdAXePHmBR3Y28fCOJrYf6aAvuyzLDfNncf/audy3poHFddPzW6QmlGIMtg8Bn40xvjhaHcYY3wR+L4TwX4B/DpwZrb4lSZKkYnCwNVlj9tGdTfzw2Kms2pQEuGVRNfevaWTLmkaumT01z1Vqoiq6YBtj/Ik89n0O+MN89S9JkiRNFjFGdr55mod3JMvy7G85m1W7itISbltWy/1rGrl7VT0106fkuVIVgqILtpIkSZLGR29f5HuvnRgIs9muMVtVUcqdK+q5b20jd66oY0ZleZ4rVaEx2EqSJEnKm66ePp4/2MYjO5t4bFczbWe7smo3a2o596RrzN6+rJbKcteY1eUZbCVJkiSNqvNdPTy1t5WHdzbxxJ4WzmS5xmz9jClsWdPAfWsaWb+4hnLXmFWWii7YhhA25aPfGOPT+ehXkiRJKgQnz3fx+O4WHtnZxNP7WrnYk93CI9dWJ2vM3remkRsXuMasrkzRBVtgK5DlhOFZixTnaylJkqQi1nSqk0d3JdfLbjvUQW+W6/K4xqxGW7GGMd85kiRJ0hU41HqWR3Y288jOJn5w9GTW7d5x7WzuW5OcmV1YOy2PFaoYFWOwvXO8C5AkSZIKRf+yPI/sTM7M7mvOblme0pLAhsU13LemgS1rGmmYWZnnSlXMii7YxhifGu8ashVCeAdwP3A7sBaoB7qBN4HngS/FGJ/Job/7gV8GbgHqgFbgJeDPYowPj271kiRJKlS9fZGXj3QMnJnNdlmeKWUl3LG8jvvSNWZnV1XkuVIpUXTBtlCEEJ4ChproqgJYlt5+PoTwVeAXY4yXnTc9JBctfIEk1GaaB7wPeF8I4c+AfxZjHO3rjyVJklQAOrt7k2V5djTz+O5m2s9ltyzPjMoy7lnVwH1rGti0vI6qCiOGxp7/6iaueenXN4G/Ap4BXgdKgQ3AJ9J9/inJcfzHw/T1ewyG2u8DfwgcBJYAvwHcmG5vBX5nNH8ISZIkTVxnOrt5cm8rj+xsYuueFs519WbVrm7GFLasHlyWp6LMZXk0voIn6IYWQmgANpMMAa5On+4AdgBbY4zNef7+/w/4CvDNGOOPfcKEEGqB54Dl6VObhhqWHEJYCuwmCb8vp/tdyNheBTwF3AT0ACtjjAdH+WeZDxwFOHr0KPPnzx/N7iVJkpSD1jMXeXx3MsT4+QPtdPVmtyzPdTVV6eRPDdy4YI7L8uiKHDt2jAULFvQ/XBBjPDYa/XrG9hIhhLnAfwZ+isu/Pr0hhL8GPhFjPJ6POmKM7x5he1sI4RPAt9On/iHJWd1L/TqDP8fHMkNt2s/5EMLHgBfS/T4OfOxqapckSdLE8nr7+YFleV5+7QTZnttaNXcm961Jzsy6LI8mMoNthhDCDcDjJGdoh3vXlgEfAO4JIdwdY3x1LOobwtaM+0su3ZheW/ue9OGeGOO2oTqJMW4LIewFVgDvDSH8mtfaSpIkFa4YI7uPn+GRnU08uquZ3cdPZ9UuBLjpujnct6aRLasbubamKs+VSqPDYJsKIUwDvgPUpE89DvwP4EWgKX2ukWRG4V8EtgC1wHdCCCtjjOfHtmIgmUiq31BjSBYxeK3uSLNBP0USbOcDC4HDV1ucJEmSxk5vX+R7r51Iw2wTRzuym8m4vDRw69Ja7lvTyD2rGqibMSXPlUqjz2A76F8A15AExF+JMX5piH1eT29/HUL4CEnwnQf8c+BzY1Vohjsy7u8ZYvuqEbZzme2ryCHYptfQDqcx274kSZKUvSudyXhaRSmbV9Zz35pG7lxRx4zK8jxXKuWXwXbQe4AIPHiZUPsWMcb/FULYCHyEZMmcMQ22IYQS4FMZT31jiN0WZNwf6aLso5dpl42jI+8iSZKk0XC6s5sn97Tw6M5mtu7Nfibj6mkV3LuqgfvWNrBxSS2V5aV5rlQaOwbbQf2zC/9lDm3+giTYLh9pxzz4dZJh0QB/E2N8eYh9ZmTcPztCf+cy7k+/msIkSZI0ulpOd/LormYe3dXMCwfb6O7NbjqUebOnDsxkfNPCakqdyViTlMF2UH+Y68ihzYn067RRrmVYIYQ7gP+YPmwBPnqZXSsz7o80LuVixv2pOZY00hneRmB7jn1KkiQVtUOtZ3l0V7Isz/dfP5l1u5WNM9iShtnVc2c6k7GKgsF2UCvJNbargFeybNN/DWtbXioaQghhDfA3JMfuIvD+YdbU7cy4X3GZffplzhKQ3UwDqZHWnvLDVJIkaWQxRn507FS6LE8zB1pGGnCX6J/JeMvqRrasaeC6mjE95yJNCAbbQduAnwb+VQjh6zHGnuF2DiGUA58guS53yGV0RlsIYRHwKDAH6AX+UYxxuNmOz2TcH2l4ceYnYHafopIkSboq3b19vHiog0d3NfHozmaaTneO3AioKC3h1qU1bHEmYwkw2Gb6CkmwfTvJEj4fjjG+OdSOIYR5wP9K943Ag/kuLoRwDckSRNek3/MjMca/GaFZ5pnUkWYuzhxO7GRQkiRJeXLuYg9P72vl0V3NfHd3M6c7hz2fMmD6lDI2r6jjvjWNbHYmY+ktDLapGOO3Qwh/C7wXuAc4FEJ4jGQd22aSMNkIrAPuBfo/Sf4mxvidfNYWQqgFHgMWp099LMb4lSya7sq4v3KEfTO3786hPEmSJI2g/exFvru7hUd3NfHM/jYu9vRl1a5uxhTuXd3AltUNbFhSw5QyZzKWhmKwfat/RHLm9mdIrkl9V3q7VP9Fo38F/Fw+CwohzAIeAVanT30qxvgnWTY/DLxJcpb3jhH23ZR+fQM4kmOZkiRJusRr7ed4bFczj+5s5uXXOujLbiJjFtVOY8uaBrasbuTGBbMpcSZjaUQG2wwxxovAB0IIXwF+lSQMVl2y23ngKeBPYox/n896QghVwHeAd6RP/X6M8Q+ybR9jjCGEvyOZNXllCGF9jPHHrgcOIaxn8Izt38UYs/zYlSRJUr8YIzvfPM2jO5t4dFcze5rOjNwodcP8WWxZ08iW1Q0srZ/u5JtSjgy2Q0iHFn8nhFBKMvy3Ot3UARyKMWa3CvZVCCFUkMx+fGv61H+NMf7OFXT1R8AvkRzrPw4hbIoxDsx6HEKYCvxx+rAn3V+SJElZ6O7tY/vhjmSN2Z1NvHkqu8mfykoC6xfXsGVNA/esauCa2bmutigpk8F2GGmA3T9O3/4vgC3p/SeAL4UQ1g6zf1eMcd+lT8YY94UQ/hPwKeAm4LkQwh8AB4ElwG8CN6a7fy7GOF4/ryRJUkE4d7GHZ/a38ujOZr67p4VTF7qzaldVUcody+vYsqaBu1Y0MKvKyZ+k0WKwnbh+KuP+XcCPRtj/NWDhZbb9G6Ae+AhJiP3LIfb5EnAlZ4QlSZImvdYzF/nu7mYe29XMMwfa6Mpy8qeaaRXJ5E9rGti4pJbKcid/kvLBYFsEYox9wC+EEL4J/DJwM1ALtAHbgS/GGB8axxIlSZImnMNt5waul33l9RNkOwvJdTVV3JdeL3vjtXModfInKe8MtpdIl9b5WeB2kutrZwAj/WktxhiXjGYdMcZR/wRMJ7vK64RXkiRJhaqvL/LDYyeTmYx3NXOg5WzWbd82fxZbVjewZU0jy5z8SRpzBtsMIYR/DPwpSZiFwWV9RuIswpIkSQXoYk8vLxxs59FdzTy+q5mWMxezaldWEli3uJr71jQ6+ZM0ARhsUyGEu4CvMhhmXyO5rvUkkN1FFJIkSZrwTl3oZuveFh7d1cxTe1s5e7Enq3bTKkrZvKKeLWsa2LyinllTnfxJmigMtoM+RRJqTwI/6zWnkiRJk8cbJy/w2M4mHtvdzIuHOujpy27AXd2MKdy7uoF7VzewcUkNU8qc/EmaiAy2g24mGVL8u4ZaSZKkwhZjZNfx08n1sjub2XX8dNZtl9ZPT2YyXt3ADfNnU+LkT9KEZ7AdVJJ+fW5cq5AkSdIV6e7t46XDHTy2K1mW542TF7JqFwK849o5bEnPzC6um57nSiWNNoPtoIPADcC08S5EkiRJ2Tl7sYen9rby2K4mntjTwunO7K6XrSgr4faltdy7uoG7VzVQN2NKniuVlE8G20F/CbwduA94ZpxrkSRJ0mU0nerksd3JWdltB9vp6s1uns/ZVeXctbKeLasbuH1ZHdOm+KuwNFn4bh70p8DPAR8PIfxtjPHl8S5IkiRJyfWye5rO8PiuZh7b3cyPjp3Kuu2C6qncu6qRe1c3cPPCOZSVlozcSFLBMdimYoxnQwjvAr4FPB1C+M/AN4B9McbO8a1OkiSpuPT09vHSkeR62cd3N3O0I7vrZQGunzcrmfxpTQMrGmYQgpM/SZOdwTZDjPH1EMLPA08Av5XesvkwjDFGX0tJkqSrkHm97JN7Wzl1oTurduWlgfWLa7h3dQP3rGrgmtlT81yppInGMJYhhPBx4HMkMyT7pz1JkqQ8679e9vFdzbyQw/WyMyrLuHNFPfeubuCOFXXMrCzPc6WSJjKDbSodhvyf04e9wLPAj4CTQHafsJIkSRpWjJHdx88MDDF+9Y3sr5edN3vqwFnZWxZVU1Hm9bKSEgbbQZ9Mv74J3B9j3DGexUiSJE0WXT3J+rKP785tfVmAtfNmcs+qZH3Z1XNner2spCEZbAe9DYjAvzXUSpIkXZ1TF7rZureFx3e3sHVvC2eyXF/W62UlXQmD7aDS9OsPxrUKSZKkAnW04zyP706GGL94qIOevphVuxmVZdy1sp57Vnm9rKQrY7AdtB94BzBnvAuRJEkqBH19kR+9cYrH0+tl9zSdybrt/DlTuWdVA1tWN3DzomrKXV9W0lUw2A76C+CdwHtJlvuRJEnSJTq7e3nuQFt6ZraF1jMXs257w/xZyfWyri8raZQZbAf9MfB+4FdCCI/FGL893gVJkiRNBK1nLvLknhYe293MM/tb6ezObsGIitISNi5Nrpe9e2UDjbMq81yppGJlsB00F/gl4M+AvwkhfB34OrAPOD9S4xjj6/ktT5IkaWzEGDnQcnZgfdnvHz1JzO5yWeZUlXPnynruXdXApuV1TJvir5uS8s9PmkFHSGZFBgjAB9NbNiK+lpIkqYB19/ax/XAHj+9u4fHdzbzeMeLf9QcsrpvGvasauGd1A++4dg6lJQ4xljS2DGNvFS5zX5IkadLpX5Lnu7tbeDKHJXlKAtx0XTX3rK7n7lUNLKmbnudKJWl4BttBHx7vAiRJkvLttfZzyVnZXc1sP5L9kjxVFaXcsbyOe1Y1cOfKeqqnVeS5UknKnsE2FWP88njXIEmSNNp6+yI/OHpiIMzubzmbddvGmZXcszpZX3b94hoqy0vzWKkkXbmiDLYhhJIYY3bT+UmSJBWYcxd7eGZ/K4/vbuHJPS20n+vKuu3182Zx96okzK65ZqZL8kgqCEUZbIG2EMJDwP8DHooxnhzvgiRJkq7GGycv8N10bdltB9vp6s1ySZ6yEm5dUsM9LskjqYAVa7CdzeCsx70hhOeBbwPfjjHuG9fKJEmSstDXF/nhsZN8N53FeE/Tmazb1k6v4K6VycRPty+rpaqiWH8llDRZFOun2D8B3g3cTxJyNwG3A38YQjhAcib328AzMcbecatSkiQpw/muHp7Z38Z3dzfzxJ5W2s5ezLrtioYZyRDj1Q28ff5sSlySR9IkUpTBNsb4NeBrIYRSkkD7kyRBd1l6+3h6OxVCeJjBIcsnxqlkSZJUpN48eYEn9rTw3d3NPHewna6e7IYYl5cG1i2q4e5V9dy9soFra6ryXKkkjZ+iDLb90rOxW9PbJ0IIy0lC7k8CGxkcsvwBHLIsSZLGQF9f5EdvnOKJ9HrZXcdPZ912TlU5d65Ihxgvr2VmZXkeK5WkiSPEmN3aZcUmhDAbeIAk5PYPWQbof8EOkoZcHLI8rBDCfOAowNGjR5k/f/44VyRJ0sRyNUOMl9ZPH5jF+B3XzqHUIcaSJrBjx46xYMGC/ocLYozHRqPfoj5jO5x0puS/AP4iY8jyu0mC7jJgKW8dsvwIScj9Tozx1PhULUmSCsUbJy8MnJV94VD2Q4zLSgI3L6weCLMLa6fluVJJmvgMtlm4ZMjyv84Ysvxu4FaSs7kfAN4PfAb47LgUKkmSJqzegVmMm/nu7pacZjGeNbWczSvquHtVA3csr2PWVIcYS1Img+0VSK+v/Tzw+Ywhy/8A2DKuhUmSpAnlTGd3OsS4ha17W2g/15V12yV107hnVQN3raznndfNoay0JI+VSlJhM9hepSGGLFePc0mSJGkcvdZ+ju/ubuGJPS28eLid7t7s5jMpKwncsqiau1c1cPfKeocYS1IODLajKB2y3DredUiSpLHT09vHy6+dGFiS52Druazbzh6YxbieTcvrnMVYkq5Q0QXbEMK1+eg3xvh6PvqVJEkTz8nzXTy1r3VgiPHpzp6s2zqLsSSNvqILtsDhPPQZKc7XUpKkohBjZF/zWZ7Y08ITe5r53msn6MtyxcSK0hLWLa7m7pX13LWygWtrqvJbrCQVoWIMY/5ZVJIkjaizu5cXDrXzRHq97BsnL2Tdtnb6FO5aWcddKxu4bVkt06cU469ckjR2ivFT9sPjXYAkSZqYmk51DpyVfe5AOxe6e7Nuu+aamQMTP10/bxYlDjGWpDFTdME2xvjl8a5BkiRNDP1ry/afld11/HTWbSvLS7htaS13rUyW5GmcVZnHSiVJwym6YCtJkorbqQvdPLO/lSf2tPDU3tac1padN3sqd62s566V9WxYUkNleWkeK5UkZctgK0mSJrUYIwda+id+auHl107Qm+XMTyUB3nndHO5cWc/dKxtY3jCdEBxiLEkTjcFWkiRNOv0TPz2ZhtljJ7Kf+GlmZRmbVyRnZe9YXsecaRV5rFSSNBoMtkMIyZ9i3w7cANQCUxlhNuUY42fHoDRJknQZb568wBN7WnhyTwvPHWyjs7sv67bL6qdz16rkrOw7rp1NWWlJHiuVJI02g+0lQgg/D/wucF2OTQ22kiSNoZ7ePr5/9OTAWdk9TWeybltRVsKGxTUD18suqHZtWUkqZAbbDCGE3wc+RXZr3cYs95MkSaOk/exFnt7fyhN7Wnl6XyunLnRn3XburEruXFnPXSvq2bi0hqoKfw2SpMnCT/RUCGEd8FskgfUx4JNACfBK+lwZMAe4Cfgo8B7gWeBnYozN41GzJEmTXV9fZNfx08kQ470t/ODoSWJ28z5REuAd1yYTP921sp6VjTOc+EmSJimD7aCPpl9fA34ixtgTQljTvzHGGIEO4FHg0RDCR4E/AR4OIayLMWa/VoAkSbqsM53dPLu/jSf3tvDk3lZaz1zMuu2sqeXcsbzOiZ8kqcgYbAdtJDkz+99ijD0j7Rxj/P9CCHcBPwX8KvBHea5PkqRJKcbIwdazPLknWVt2+5EOerJcjgdgZeOMgbOyNy5w4idJKkYG20Fz0687M54bmE4xhFAeY7z0Qp6vAj8NfACDrSRJWbvQ1csLh9p4ck8rT+7NbTmeqeWl3Lq0lrtW1rN5RR3XzJ6ax0olSYXAYDuoPP3akvHc2Yz7dcCbl7Q5mn5dmq+iJEmaLF5rP8eTe5LhxS8caqerJ/vleK6rqeLOdG3ZWxZVU1lemsdKJUmFxmA7qBW4BpiZ8Vwz0EsyidQqfjzY9p/lnZH36iRJKjAXe3p56XAHT+5pZeveFg61ncu6bXlpYN2iGu5cWc+dK+pYXDc9j5VKkgqdwXbQTpJguxJ4BiDG2BVC2AlcTzLc+LuXtPnZ9OulgVeSpKL0xskLbN3bwpN7WnnuQBsXunuzbts4s5LNK+q4c2U9ty2tZdoUf02RJGXH/zEGPQNsAe4E/kfG818H3gZ8JITQlD6uAn4e+EckE049NLalSpI0MXT19PHykQ627mvlyT0t7G85O3KjVGlJ4J3XzmHzyjruXOFyPJKkKxditovBTXLp0j6vklxXOz/GeDp9vgrYASwkCbFvaUayBNDbY4zH8lBTPXBLers5vdWkm78cY/xQjv3dD/xy2l8dyfDrl4A/izE+PEplD/V955Nej3z06FHmz5+fr28lSRoDx09dYOveJMg+d6CNc13Zn5WtnT6FzSvq2LyijtuX1jGrqnzkRpKkSePYsWMsWLCg/+GC0cpRnrFNxRh3hhDuJHlNyjKeP58+/+fArZc02wH803yE2lTzaHQSkj9/f4Ek1GaaB7wPeF8I4c+Afxb9S4ck6RLdvX28fOQEW/e1sHVPK3ubz2TdNgR4+4LZ3LminjtX1LPmmpmUlHhWVpI0ugy2GWKMT13m+deA20MIK4A1JK/b/hjj98ewvKPAbpLh0rn6PQZD7feBPwQOAkuA3wBuTLe3Ar9z1ZVKkgpe06lOtu5tYeve5FrZMxdHXOJ9wOyqcu5Yngwv3rS8juppFXmsVJIkg21OYox7gb1j+C0/C2wHtscYm0MIC4HDuXQQQlhKEs5nbecAACAASURBVF4BXgY2xRj7FwvcHkL4v8BTwE3Ab4YQ/neM8eBoFC9JKhyZZ2Wf2tvKnqbsz8oCvG3+LDYvr2PzynpumD+bUs/KSpLGkMF2Aosx/u4odPPrDB7nj2WE2v7vcT6E8DHghXS/jwMfG4XvK0ma4N48mVwr+9S+Fp470M7ZHM7KzppazqbldWxeXsem5XXUzZiSx0olSRqewTYVQihl8BraH8YYT42w/2yS2ZKJMT6d5/KuSHpt7XvSh3tijNuG2i/GuC2EsBdYAbw3hPBrXmsrSZPPxZ5eXj5ygqf2JevK7mvOfgZjgOvnzRqY+OmG+bMpKy3JU6WSJOXGYDvoHpJle9qBa7PYvwv4JlAdQrgnxvhkPou7QotIJoiCZLjxcJ4iCbbzSWaAzmnIsyRpYjp24jxb97aydW8rzx9s43wOMxjPrCzj9oFrZWupn1GZx0olSbpyBttB70+//tWlw3WHkg7h/Trwq8AHgIkYbFdl3N8zwr6Z21dhsJWkgtTZ3ctLhzt4al8rT+1r5UAO68pCclb2juXJWdm3L/CsrCSpMBhsB72TZJ3aJ3Jo8yRJsL0lLxVdvQUZ90dakujoZdqNKF2ndjiNufQnScpejJHDbecGguy2Q+10dvdl3X52VTm3L/NaWUlSYTPYDuoPZ7mcqTySfp033E7jaEbG/ZH+ZH8u4/70HL/P0ZF3kSSNlnMXe3jhYHtyrey+Fo52jDjQaEAI8LZ5s7hjRf3AtbLOYCxJKnQG20FV6ddc/nfv33fmKNcyWjIvhuoaYd+LGfen5qEWSdIVijGyt/kMT+1NzspuP9JBd2/2c/xVT6tg07Ja7lhRx6ZlddRM96ysJGlyMdgOaiU5a7uSZL3XbKxMv7bnpaKr15lxv2KEfTN/y8n+T/+JkYYuN5KsxytJytLJ8108e6CNp/e18vS+NppOd47cKFUS4O0LZrN5RT13LK9j7bxZnpWVJE1qBttB20kC2s8Bf55lmw+RXJf7Sp5qulpnMu6PNLx4Wsb9nGYaiTEOe/1usuqQJGk4vX2RHx07yVP7Wnl6Xys/OHqSvhwWXqufMYU7ltdxx4o6bltay+yqkf6eKUnS5GGwHfTXwE8Bd4cQPhFj/PxwO4cQPgHcRRJs/2oM6rsSmYFzpAmeMs+6es2sJI2B5tOdA0H22QNtnDzfnXXbspLATQvncMfy5FrZlY0z/EOiJKloGWwHfR34TeAG4A9DCBuBPwK2xRi7AUIIZcAG4NeB95CE2h1kf4Z3rO3KuL/ysnv9+PbdeahFkorexZ5evnfkxMAMxnuazozcKMO82VPZvKKOO5bXsXFpLdOn+N+4JElgsB0QY4whhPcBzwFzgfemt+4QQgdJiK0BytMmAXgTeE+MMYfBYmPqMEmN1wB3jLDvpvTrGwzO9ixJugr9S/E8va+Vp/e3se1QO+e7erNuP6WshPWLa7gjXYpnSd00z8pKkjQEg22GGOOREMKNwBeBf0ASXiv48XVYI/At4FdjjC1jW2X20rD+d8BHgZUhhPUxxm2X7hdCWM/gGdu/m8BBXZImvNOd3Tx/oJ2n9ydDjI+dyG0+vmX109m0PDkre8uiairLS/NUqSRJk4fB9hJpUH1fCGEF8C7gRqA23dxGMlHUd2KM+8epxFz9EfBLJMf6j0MIm2KMA79lhRCmAn+cPuxJ95ckZamvL/LqG6fSs7KtvPL6SXpzmPVpRmUZty2tHTgre81sV1yTJClXBtvLiDHuBfaOZw0hhNuApRlP1WbcXxpC+FDm/jHGBy/tI8a4L4Twn4BPATcBz4UQ/gA4CCwhua74xnT3zxVQYJekcdN8unNgePGz+1s5kcOkTyHA9fNmJTMYL6/j7QtmU1ZaksdqJUma/Ay2qRDCrBjjqStsuznGuHWUSwL4ReDnL7Pt1vSW6cHL7PtvgHrgIyQh9i+H2OdLwO/kXqIkTX6d3b1sP9LB0/taeWZ/W86TPtXNmMKmZXVsWl7LbUtrqZk+ZeRGkiQpawbbQX8fQrgnc5huNkII9wB/y8jrxI6bGGMf8AshhG8CvwzcTHL2t41k/d4vxhgfGscSJWlCiTGyr/ksz+xPZi9+6XAHF3v6sm5fUVrCzYvmpGHWpXgkSco3g+2gDcC3Qgg/GWPsyaZBCGELSajNy5/eY4wfAj40iv39PfD3o9WfJE0m7Wcv8uyBNp7Z38Yz+1tpPn0xp/aL66axaVkyvHjd4mqqKvwvVpKkseL/uoN6gS3A/wE+MNLOIYR3AX8NVAJH81uaJGm0dfX08b3XTvDM/mR48Y43T5HLnPAzKsu4dUktm5YnQ4znz6nKX7GSJGlYBttBPw98FfiHIYQvxBj/2eV2DCH8JPANkjO1rwN3jU2JkqQrFWPkYOs5ntnfyrP723ghxzVlSwLcsGA2m5bVcfuyWid9kiRpAjHYpmKMXwshVAP/DfilEMKJGONvXbpfCOE9wNdJ1rc9AtwVYzwylrVKkrLTca6L5w60DYTZN0915tR+3uypbFpey6ZldWxcUsusqvI8VSpJkq6GwTZDjPG/p+H208BvhBA6Yoyf698eQvhp4GtAOXAYuDPG+Pq4FCtJ+jFXO7y4qqKUDYtruH1ZMsR4Ue00J32SJKkAGGwvEWP8bAihBvgY8B/TcPulEML7SYYql5OsAXtXjNFrayVpHCXDi8/y9L7krOyLhztyGl4MsHbezHR4cR3vvG4OFWUOL5YkqdAYbIcQY/yXIYQ5wD8BvhBCeDvwKySv1wGSUHtsPGuUpGLVdvZiOry4jWf3t9F0OrfhxY0zK7l9WS23LXNNWUmSJguD7eV9GJgNvBv4VSAA+0mGH785noVJUjHp7O7lpcMdA0vx7D5+Oqf2U8tLWb+4mtuW1bFpWS1L66c7vFiSpEnGYHsZMcbeEMLPAI8Am4A9JGdqm8a3Mkma3Pr6IruOn07OyB5oZfuRE3T19GXdPgRYe82sgbOy77xuDlPKSvNYsSRJGm9FF2xDCE/k2GQaEIEe4GuX+St/jDHefbW1SVKxevPkBZ7d38YzB9p47kAbHee6cmrfOLOSTctruW1ZHbcuqXF4sSRJRabogi2wmSSoZjsOrX/fNUO06d+Ww5ybkqTTnd28cLCd5w4k18keajuXU/tpFaWsX1zDbctquX1ZLUvqHF4sSVIxK8Zg+zQGUUkaU109fXz/9RPJpE8H2vjh0ZP05fBJXBLghgWzuX1pclb2xmtnU17q7MWSJClRdME2xrh5vGuQpMkuxsi+5rM8e6CNZ69wGZ6FNVXpzMV1bFhSw6yp5XmqVpIkFbqiC7aSpPxoOtWZDC1Ob61nLubUftbUcm5bOrgMz4LqqjxVKkmSJhuDrSTpipzu7GZb/3WyB9o42JrbdbIVZSXcvHAOty6t5falday+ZialJV4nK0mScmewlSRl5WJPL6+8dnIgyP7oWG7XyQKsuWbmwBnZmxdWU1nuMjySJOnqFV2wDSHcEmN8KY/9VwELY4y78vU9JGks9K8n2x9ktx/poLM7+/VkAebNnsrty2q5dWktG12GR5Ik5UnRBVvghRDCw8CnY4zbR6vTEMI04F8AnwD+O/DZ0epbksZCjJHXO87z3IFkePHzB9s4cb47pz5mVpaxccngdbLX1VS5DI8kScq7Ygy2J4AHgPtDCM8DXwX+KsZ44ko6CyHcBvws8H5gNsm6tm2jVKsk5VXrmYs8f7CN5w608dyBdt44eSGn9pnXyd62tJY118zyOllJkjTmijHYLgM+A/wycCuwEfhvIYStwDZgO/B9oCXG2JPZMIQwE1gO3AzcAtwFzO/fDOwEPhljfDj/P4Yk5e5MZzcvHurguYNtPH+gnb3NZ3JqHwKsvWbWQJC9aeEcr5OVJEnjruiCbXpm9tdCCJ8DPgX8HDAN2ALcm7lvCOE8yRneqSRnY0su6a7/tMQrwOeAb8QYc5xKRZLyp3/Cp/6zsj88doreHGd8WlhTNRBkNyypYXZVRZ6qlSRJujJFF2z7xRiPAv88hPDbwAdJhhJvACozdpuW3obyGvAd4KsxxhfzWaskZau3L7LzzVM8d6Cd5w9e2YRPtdMr2LCkltuW1rBxievJSpKkia9og22/GOMp4IvAF0MIFSTDjDeSDDGuA6qBTqA1vb0KPBNjPDY+FUvSoBgjB1rOppM9tbPtUDunO3tGbphh+pQy1i2qZuPSWm5dWsOKhhlO+CRJkgpK0QfbTDHGLuC59CZJE9LRjvO8cLA9uU72YDutZy7m1L6itIQbr53NrWmQfdv82ZSXXnqlhSRJUuEw2ErSBNd65iIvHGrn+fSs7Osd53NqHwKsuWZmEmSX1HLzwmqmVjjhkyRJmjwMtpI0wZy60M2Lh9p5/mA7LxzMfeZigMV107h1SS0bl9Q44ZMkSZr0DLaSNM7Od/Xw8pETaZBt49U3TpHjxMXMnVXJxiXJ0OINS2qYO2tqfoqVJEmagAy2kjTGunr6+MHRkzx3oI0XDrbz/aMn6O7NLcnOqSpn45Jk+Z1bl9aysKbKCZ8kSVLRMthKUp719kV2vHGK5w8mS/C8fOQEF7p7c+pjWkUptyyq5taltWxcUsvKxhmUlBhkJUmSwGArSaOury+yt/kMLxxMrpN98XA7Z3JcgqeirISbrpuTXiNby9vmz3LmYkmSpMsw2ErSVYoxcrjt3MBkTy8caqfjXFdOfZSWBG6YP4uN6YRP77huDpXlzlwsSZKUDYOtJF2BYyfODwTZ5w+20Xw6t7VkQ4DVc2eycUkNG5fUcvOiaqZP8SNZkiTpSvhblCRloeV0Z7qWbHJGNte1ZOGtS/CsX1zDnGkuwSNJkjQaDLaSNIT2sxfZdqiD5w+28cKhdg61nsu5jwXVU9m4uJaNS5Mg2zCzMg+VSpIkyWArScCp891sO5xeI3uwnb3NZ3Luo2HmlGQJnsXJWrILqqvyUKkkSZIuZbCVVJTOdHaz/UjHwGRPO988TcxtKVmqp1WwfnE1G9LhxYtrp7mWrCRJ0jgoymAbQtg02n3GGJ8e7T4ljZ7zXT1sP3KCbYeSM7KvvnGK3r7ckuyMyjLWLapm/eIabl1ay4oG15KVJEmaCIoy2AJbgRzPzQwrUryvpTQhXejq5XuvpUH2UDs/PHqSnhyDbFVFKTcvrE7Xkq1hzTWzKDXISpIkTTjFHMb87VSaRDq7e3nl9RNsO9TBtoPt/ODoSbp6+3LqY0pZCTctnJNeI1vL2+bPory0JE8VS5IkabQUa7D9zAjb64GPkpyJ/Wz+y5GUq4s9vfzg9ZNsO9TBC4faeOX1k3T15BZkK0pLePu1s9mwuIaNS2p4+7WzmVJWmqeKJUmSlC9FGWxjjMMG2xDCGpJgO+K+ksZGV08fPzx2km3pZE/fe+0EF3MMsmUlgRsWzB6Ytfgd185haoVBVpIkqdAVZbCVNPF19fTx6hsneeFgO9sOdfDyax10ducWZEtLAtfPm8WGJTVsWFzDO6+bw7QpfuxJkiRNNv6GJ2lC6O7t40fHTrHtUDvbDrXz8pETXOjuzamPkgBr581iw+Ia1i+u4aaFc5hRWZ6niiVJkjRRGGwljYue3j5efeNUeo1sOy8f6eB8V25BNgRY1Thz4IzszYuqmTXVICtJklRsDLaSxkRPbx873jw9sI7sy0c6OJdjkAVYNXcm6xdXs2FxDbcsqmZ2VUUeqpUkSVIhMdhKyoue3j529gfZdGjx2Ys9OfezsnEG69OhxesWVTNnmkFWkiRJb2WwlTQqevsiO9/sv0a2g+2HOzhzBUF2ecP0gWtk1y2uodogK0mSpBEYbCVdkd6+yK70jOy2Q+28dIVBdln99MEzsourqZ0+JQ/VSpIkaTIz2ErKSm9fZPfxwWtkXzrSwZnO3IPs0vrp6TWytdyyqJq6GQZZSZIkXZ2iDLYhhH83wi71OewLQIzxs1dVlDTBZAbZbYfaefHw1QXZ5BrZGoOsJEmSRl1RBlvg00AcYZ/+7b+bZZ8GWxW0twbZDl463M7pKwiyS+qmvWVocf2MyjxUK0mSJA0q1mALEEaxr5FCsjTh9PVFdjedZtuhjoFrZE9d6M65n8UZQXb9omrqZxpkJUmSNLaKNdjeOd4FSGOtry+yp+nMW4YWX1GQrZ3GusU1A8OLGwyykiRJGmdFGWxjjE+Ndw1SvvX1RfY2vzXInjyfe5BdVDvtLdfINs4yyEqSJGliKcpgK01GfX2R/S1neeFgG9sOdfDi4XZOXEGQXVhTxbpFNWxYklwjO3fW1DxUK0mSJI0eg61UoGJMgmz/8jsvHu6g41xXzv1cV1PF+kU1rF9SzbpFNVwz2yArSZKkwmKwLTIhhGuBXwN+ArgWuAgcAL4B/GmM8fw4lqdhxBg5kAbZ/gmf2q8gyC6onsqGgVmLa5hnkJUkSVKBM9gWkRDCTwD/B5iV8XQVcHN6+8UQwrtijIfGoz69VYyRg63neKH/GtlD7bSdzT3Izp+TGWSrmT+nKg/VSpIkSePHYFskQgg3kJyVrQLOAv8BeBKYCnwQ+CVgBfCdEMLNMcaz41VrseoPsv2TPW071EHb2Ys59zNv9lTWL06vkV1UzYJqg6wkSZImN4Nt8fgjklDbA2yJMb6Qse2JEMJ+4A+BlcC/Aj479iUWl9EKstfMqmT9kuSM7IbFNQZZSZIkFR2DbREIIdwMbE4ffumSUNvv88CHgVXAx0MI/yHGmPuUurqs0Qqyc2dVDgwtXr+4hgXVUwkh5KFiSZIkqTAYbIvDezPu/++hdogx9oUQvkIyRHkOSRB+LP+lTV5JkD07MNHTi4c7aD2Te5BtmDmFDenQ4vWLa7i2usogK0mSJGUw2BaH29Ov54DvDbPfUxn3b8Ngm5P+dWRfPNzOi+k6slcy2VPjzErWL64eOCN7XY1BVpIkSRqOwbY4rEq/Hogx9gyz354h2owohDB/hF0as+2rkPT1RfY2n0lnLO7gpSNXto5s/xlZg6wkSZJ0ZQy2k1wIoRKoTR8eG27fGOOJEMI5YBqwIIdvc/QKyysovX2R3cdP8+LhZGjx9iMdnDyf+2XIBllJkiRpdBlsJ78ZGfezWcKnP9hOz085haOrp49X3zjJS4dP8NLhdl5+7QRnOoc74T20ubMqWbeomnXprMUGWUmSJGl0GWwnv8qM+9mMk+2f3WhqDt9jpLO7jcD2HPobF+e7evj+6yd58XAHLx1u5wdHT9LZ3ZdzP/NmT2Xd4mrWL3LWYkmSJGksGGwnv86M+xVZ7D8l/Xoh228QYxx2iPNEDXWnznez/UhybexLhzvY8cYpevpizv0sqJ7K+kU1rFtcw7pF1a4jK0mSJI0xg+3kdybjfjbDi6elX7MZtlxQTl3o5pn9rbx0OAmye5vPEHPPsSysqWLdohrWL6lm3aIarpmdy8ltSZIkSaPNYDvJxRg7QwhtJBNIDTt7cQhhDoPBdtJNCHWk7Rz/4mvfz7ndysYZ3LywmlsWJbeGmZUjN5IkSZI0Zgy2xWE3yVq2S0MIZcMs+bPykjaTypprZlJVUcr5rt7L7lNaElg7bxbrFlVzy8Jqblo4h9lV2YzgliRJkjReDLbF4VmSYDsNeCfw4mX2uyPj/nP5LmqslZWW8M7r5vDM/raB56aUlXDjtbO5ZVENtyys5sZrZzNtim8LSZIkqZD4G3xx+Fvgt9L7H2aIYBtCKAF+Ln14EnhybEobW5tX1FNWErh5UTXrFlWzdt4sppSVjndZkiRJkq6CwbYIxBhfCiE8Q3LW9hdCCF+OMb5wyW6fAFal9/9rjLF7TIscI79w2yJ+4bZF412GJEmSpFFksC0e/5JkePFU4NEQwr8nOSs7Ffgg8MvpfvuAz49LhZIkSZJ0BQy2RSLG+P0QwgeAPwdmAv9+iN32AT8RYzwzxDZJkiRJmpBKxrsAjZ0Y47eBtwH/hSTEnie5nvZl4DeBG2OMB8avQkmSJEnKnWdsi0yM8TXgX6U3SZIkSSp4nrGVJEmSJBU0z9hqLAysp3P8+PHxrEOSJEnSOLokD4zaupshxjhafUlDCiHcBGwf7zokSZIkTSg3xxhfHo2OHIosSZIkSSponrFV3oUQpgDXpw9bgd5xLKfYNTJ49vxmoGkca9HwPFaFw2NVGDxOhcNjVTg8VoVjIh2rUqAuvf9qjPHiaHTqNbbKu/Qf66gMMdDVCSFkPmyKMR4br1o0PI9V4fBYFQaPU+HwWBUOj1XhmIDH6rXR7tChyJIkSZKkgmawlSRJkiQVNIOtJEmSJKmgGWwlSZIkSQXNYCtJkiRJKmgGW0mSJElSQTPYSpIkSZIKWogxjncNkiRJkiRdMc/YSpIkSZIKmsFWkiRJklTQDLaSJEmSpIJmsJUkSZIkFTSDrSRJkiSpoBlsJUmSJEkFzWArSZIkSSpoBltJkiRJUkEz2EqSJEmSCprBVpIkSZJU0Ay20gQVQohZ3rZm0df9IYRvhRCOhRAupl+/FUK4P4d6ykIIvxJCeDqE0BpCuBBCOBBC+EIIYfVV/bATWAihPoTw7hDCZ0MID4UQ2jJe+wevoL8JcyxCCDUhhM+EEH4YQjgVQjid3v9MCKEm159tPI3GcQohfCiH992HsuivKoTwyRDCSyGEjhDC2RDC7hDCfwohXJvDz3Zt2mZ3COFc2tdLIYR/HUKoyrafiSKE8I4Qwm+nx+lo+j44G0LYF0J4MIRwe479+Z7Kk9E4Vr6v8i+EMDOE8MEQwudDCE+l/3ZPhRC6QggtIYStIYTfyPbfYAhhQwjhqyGEIyGEzhDC8RDCwyGED+ZY1wdDCI+k7TvT/r4aQlifQx+jcrwngtE4TiGEzTm8nz6dRU2T67MvxujNm7cJeANilretw/QRgC+O0P6LQBihlhpg2zB9dAIfGe/XbByOw4M59DOhjgVwM/DmMP28Adw03q//WB4n4EM5vO8+NEJfS4A9w7Q/Cbwri5p+It33cv3sARaP9+ufw3F6KsvX9ytAxQh9+Z4qgGPl+2pMjtU9Wb6+rcB9I/T174DeYfr4v0DlCH1UAt8epo9e4N9m8XONyvGeKLfROE7A5hzeT58eoZ5J99k37gfZmzdvQ98yPhD+FFg7zG3RMH38fkY/rwAfTD+APpg+7t/2e8P0Ucpbf8H5JnA/cAvwMaA5fb5npP8wC/F2yYfz68AjGY8fzKGfCXMsgHlAU7pvN/AHwO3p7Q/S52K6z7zxPgZjdZx46y/gW0Z4380epp/pwO6Mvv4MuAvYAPw2cCZ9/hzwtmH6uSHdJ6Ztfjvt4660z/7+dwPTx/sYZPkaH2DwF50/An46fR+sB34dOJbxc33N91ThHyvfV2NyrO4h+dz7MvBrwPvS47QReD/wjfTfcAQuXu71AX4x4+c/AHwkPebvAZ7I2PbnI9TzfzL2fSJtf3Pa34GMbb+Y7+M9kW6jcZx4a7D98Ajvp/phapmUn33jfpC9efM29C3jw+bTV9h+acYHynZg6iXbq9Ln+z+Mllymnw9l1PInl/k+p9Lt+4Cy8X7tRvk4fAZ4N9CQPl6Y8Xo8WIjHAngwo5+fGWL7z2Rs/1/jfQzG8Dhlvr4Lr6KWT2f088khtm/I+PfwxDD9PJnxb2LDENs/mfF9/t14H4MsX5v/R/ILXOllttcCezN+rtsvs5/vqcI5Vr6v8n+shjxGl+zz3oyf65tDbJ8NnEi3vwbUXvo9SM7W9vex6TLf546Mff7vpbWl/25eS7d3cJk/ZozW8Z5It1E6Tpsztm++ilom5WffuB9kb968DX3L+CD49BW2/5OMPtZfZp/1Gfv88WX22ZnxH1DVZfb5VEY/Pz3er12ej8vCjJ/1wUI7FkADg38RfniYmh9m8K+1DeP9uo/Rccr8j37hFX7fcgZ/OdwFlFxmvy9kfK93DrH95oztX7hMHyXp9+j/N1E+3q/7KB27d2f87P/1Mvv4npoAtyyPle+rCXJj8Axo6xDbMgP9By/Tfn7Gv/VvX2af72T8O59/mX0+mPG9PpGv412otxGO0+aMn3nzVXyPSfnZ5+RR0iQUQggkQ38A9sQYtw21X/r83vThe9N2mf0sA/onD/h6jPH8Zb7lgxn3f+qKip6kJuCx+Ackf3kH+N/DlN7fT2naRtnZTHLmA+DLMca+y+z3YMb9oY7TezPuD3mc0r6/kj6ck37vyWBrxv0ll270PTWhbM24/2PHahRtxvfVaDiXfq0cYlv/a3Ma+NZQjWOMx4DH04f3hhCmZ25PH9+dPnws3X8o30q/Dwx9nDYzOse7UA13nK7aZP7sM9hKk9MikuseILmGYjj92+eTnOXKdPsQ+/2YGGMTyVAVgNuyK7FoTLRjkVU/l2zzmGYv29f3ZQZ/eRnuOJ0DvjdMP5PxOFVk3B/qF1rfUxPHSMdqtPi+ukohhFXA29OHey7ZVkFybSXACzHGrmG66n9tppCcAc90S/p85n4/Ju2//w9St4QQyi/ZZbSOd8EZ7jiNokn72WewlSa+nwkh7E2nYD8TQtgfQvhyCOHOYdqsyrg/0gdj5vZVl2y7kn4WhBCmjbBvMZlox6K/n1Ppf1pDijEeZ/Av6pfWUgweDCE0p8swtIUQtoUQfi+EMG+EdlkdpxhjD3BwiDaX9nMg3fdyhvs3U6juyLg/1Gvoe2ri+P/Zu+/wuK46/+Pvr5pVbUmWbFmWu+PYTrFT7CQQ0iAkISQkgZAAC4QedglLWQgs7FJ+7LKUJZsNZRNIILRAIIGEVNJ7cYodO3HvcpcsyVZv398f9441kkfVMxpJ83k9zzxzZ+69Z47m+o7nM+fcc/o7Vj3pvBpG4VQ5R5nZFwiuLY60rl3fY9OjgIxwebjPqYzw9QddzgCO96gwiOPU039aML1Zq5nVmNmrZnadmc3rZ78x+9mnYCsy8i0E5hF0ScknuKD/Q8CjZvYXM5sQY59pUcu9dQWK2N7LfkMtxwhaRyQwODQ9RAAAIABJREFU0o5FpJz+yogup2ddUsGZwCSCa70mAqcAXwM2mNmn+tgv8l41uHttP68ReX9LzSzSyoGZZRMMsAL9HCd3r6GrxWLUHyczSyO4rivi9hib6ZwaAQZ4rHrSeZVgFjVvMMHfsA74b4LrIQF+SDBqcbRknlN9lTPk4z3SDfE49XQaQe+VTIKu24uBzwGrzeybPS+/iDJmP/sy+t9ERJKkkWBEwUcIfjGrB0oJvhhcTfCl4BLgLjM7193bovYtiFqu7+d1GqKW83usi1c5qWykHYtIOf2VEV1OKh3PTQTXfz1H13/EswmmOnkPwQ9M/2dm7u43xdh/KO8vBO9xS48yBlNOHmPjOH2eri6Rf3H3l2Jso3NqZBjIsYrQeZV8y4Gr3f2FGOvGwjkVKaeltw1Hib6OU8QugvPpaYJzqx2YDlwEfJAg6H6D4FKBf42x/5j97FOwFRm5pvbyS+VDZnYDcD9wAkHQ/TTwv1HbRA840Ne1MtD9P4GcHuviVU4qG2nHIlJOf2VEl5Mqx/MvBAOVeI/nlwF/NLN3EnyZyASuM7O7Y3S/Gsr7C93f48Ec6+hyRvVxMrMzgf8KH+4l+FyLRedUkg3iWIHOq+H2V4JrTyGo+xyCaZsuBX5nZp9z93t67DMWzqlY5YxkQzlOEJw3M3o0ZkAwd/dfzexG4O/ABOArZna7uy/vse2Y/exTV2SREaqv7jfuvofgV+7Ih8k1PTZpjlrOom/RXXeaElROKhtpxyJSTn9lRJeTEsfT3etifPmOXn8PwXy5EMyT+rEYmw3l/YXu7/FgjnV0OaP2OJnZMQQBKIPgC9B7w8+5WHROJdEgj5XOq2Hm7rXuviq8LXP3P7j7ZQSXMM0m6OV1VY/dxsI5FaucEWuIxwl3b4gRaqPXvwj8U/jQopajjdnPPgVbkVHK3TcBD4UP55pZedTqg1HL/XX7iB4MoGd3kniVk8pG2rGIlDOQ7kCRcnQ8u/ycYD4+6D5wTsRQ3l/o/h4P5lhHlzMqj5OZzSJoYSgCOoD3uXtfI2zqnEqSIRyrgdJ5lWDu/hvgTwTf/X9sZkVRq8fCORWrnFGnn+M0UH8E6sLlvs4nGGOffQq2IqPbG1HL0aNKRl/I399ATtEX8m/vsW4o5TgDG0ggVYy0YxF5PJABviLl9KxLynL3vUBV+DDWSK6R9zfPzApjrI8WeX/3ufuh7l7u3hz1Gn0ep/BLT+QLw6g7TuEPcg8D5QT/Xj/q7n/pZzedU0kwxGM1IDqvhs1d4X0ecEHU88k8p/oqZ8jHe5Tr7TgNSDhadGSanr7OJxhjn30KtiKjW28j3kUH3vn9lBG9fnUcytnu7g19bplaRtqxiJQzwczKeivAzKYA43upS6rr7byDAR4nM8sguKYKYr+/kefmhtv2pq9/MyOamZUQ9DqZHT51jbv/egC76pwaZkdwrAb1Mn2s03kVH/uilmdELa8jaIGH4T+n2oENQylnAMd7tOrtOA3GEZ9PPdaPis8+BVuR0W1h1PLOqOXNUY9jdUOJdkZ4vwPY0mPd01HLvZYTfqBF5k17pp/XSzUj7VgMqJwe63RMQ2Y2iWBEcuh+zkUM9P09ma4Wob6OUx5wUh/ljMrjFE5T9iBdn2FfcfefDHB3nVPD6AiP1UBfQ+fV8IhuvTvUJdTdW4EXw4enmVlf10xG3psWugY/ilhG19gffZ1TWcCpkX3C148Wr+M9WsU8TgMVBv7IZ9aQz6fR+NmnYCsySpnZbODc8OEmd98RWRcO1BHpyjLfzE7tuX9Yxql0/Rp3V88BPtx9HV2/rr3XzHJ7qc5VUctx6Zo2VozAY3E30Bkuf6SPqkfK6Qz3kcAn6folPNa1hY/TdW3Th/uYR/CqqOVYx+mvUcsxj1M4j+iHwoe1wGO9vNaIEv7bvRc4MXzqP9z9ewPdX+fU8DnSYzUIOq+Gx+VRyyt7rIu8N+OBy2LtbGYVwNvCh4+4e/S1moSPHwkfvi3cPpbL6GrBi3WcHic+x3u06us4DcSVdL2/h51PY/qzz9110023EXYjmIsso4/1kwmGdvfw9oUY28wD2sL1y4CcHutzwuc93O6oXl7ro1Gv8+MY6+cQ/AfkBN2Jeq33WLgBM6Pej18NcJ8RdSyAX0eV854Y6y8f7N840m6DPU7h9if0s807CVopnGBkx6m9bPftqNf+Uoz1p0X9e3i8j9d7MurfxGkx1n8p6nW+mez3fIDHJYug9S9S7/8ZYjk6p0bBsdJ5NWzH6iogu59tPh/1d23u+W8ZKCYI8k7Qu2Fij/XpBKEkUsbZvbzOOVHb3AWk91hfAmwN19cARYk83iPpdqTHiWDQtrP62X9p+L46QZA8uZftxuRnX9IPsm666Xb4LfxPZQfB3LTvCz/AFxP8UvodggEwIh8UTwHjeinnu1HbvQJcQdB15wq6B+P/7KMu6QTdTSLb/hk4L/zw/AywJ3y+A7gg2e9dAo7F6eF/RpHbv0S9F0/3WHdVH+WMmGNBMIjDXrq+3P1X+HeeHi5HvizsBSqSfQyG4zgBZ4XbPgt8lWDAjpPCY/Re4HaCLwmRMv+pj7oUAGujtr0ROJug691XCUaSdKARWNxHOSeE23i4z1fDMs4Oy4yUvxYoSPYxGOBxuiOq3o8AxwHH9nGbp3Nq9B4rnVfDdqy2ANXATQStzW8GFoX//j7d4994C/C2Xsr5VNR2Gwha4U4GLgYejVr3+37qc1vUto+G+58clrchat2nEn28R9LtSI8TXT/YriCYIutiYAlBj4pLgJsJuoJHyvh+H3UZk599ST/Iuumm2+G38MPPB3D7M1DYRzlp4QddX2X8Akjrpz4lBNff9FZGC/CJZL9vCToWvxrgsXDAR8uxAE4BdvVRzi7glGS//8N1nOj6At7frQH45ADqM5dgQJbeyqkD3jmAci6i61fzWLe1wNxkv/+DOE4DPkbhbYvOqdF7rHReDdux2jLA93k7cG4/ZX2L7j829LzdS/+tjjnhdr2V0cEAWsPjdbxHyu1IjxPdeyL1dWsHvgFYP/UZc599FlZIREYQMzuT4GL70whGoSwhuF6inuAD71ngVnd/boDlvYPgGqYlYVlVBN30bnT3+wdYRgbwCeD9wAKCARt2EvySf727vz7Qv280MbNfAR8e6Pbu3tdIhCPqWIQjnf4zwS+9M8OnNxN0H/sfd68eSDkjwZEeJzMrIPj1+zSCloUpBMcng6Bb1+sE7+8vPJiaZCB1ygP+iaAr1lyCrp3bgfsIjtPWAZYzg+A4XUgwrUIrQavHnwi6kDUOpJyRwMwG+6Vjq7vP7KdMnVMJEI9jpfNqeJjZHIIeXWcT/PudTDAYVzNBy9ty4B7g9oH8XWb2JoL3+C1hWbUErYS/dPfbBlGv9xP0klkEFIZ1eYrg/R3o95e4HO+R4EiPUzjoVuR8WkowyFQJkE0Q8tcSXJ/8C3ffMsA6janPPgVbSTgzG0fQhQmCIcw7+thcRERERETGrnSgNFxe6XGag7ivObwkyQbxa+kT7n5WP2WdT/CL9lKCf0j7CLof3OTuDxxJPQfgOIJfz0VERERERCKWcPjUUUOi6X7GOAvcCNwPXErQbSErvL8UuN/MbuxjKHUREREREZERTS22o8PPgJ/2sb6hj3XfIWipBXgV+D6wkWAY7y8TjA74SYIW3K8fcU1j2xdZePHFF5kyZUqCXkZEREREREayXbt2sXTp0sjDfX1tOxgKtqPDXndfNdidzGwuQXiFoIn/DHdvCh8vM7O7CSZuPhm41sx+6e4b41Lj7g5dUztlyhQqKnqbr1tERERERFJI3MbeUVfkse3zdP14cU1UqAUgHHHtmvBhBvC5YaybiIiIiIhIXCjYjlHhNbPvCh+ucffnY20XPr82fHiJrrUVEREREZHRRsF27JpFMEAUBN2N+xJZX0HX3FMiIiIiIiKjgoLt6HC5ma01syYzO2hm683sVjM7u499FkQtr+mn/Oj1C3rdSkREREREZATS4FGjw8Iej+eGtw+Z2V+Bq9y9rsc206KWK/spf3sv+w2ImfU3GlTZYMsUEREREZH4cHcONLWzo7aJcZlpzCnNT3aV4k7BdmRrBO4GHiFoVa0HSoEzgauBicAlwF1mdq67t0XtWxC1XN/P60RPFzSUf+Xb+99EREREREQSoaW9g911zeyobWJXbTM7a5vYWdfEjnB5V20TDa3BAMTvOamCH16+KMk1jj8F25FtqrvXxnj+ITO7AbifYB7aM4FPA/8btU121HJrP6/TErWcM5SKioiIiIhI/Lk71Q2tQVit7QqrQXgNlvcdbOm/oNDO2qb+NxqFFGxHsF5CbWTdHjN7D7AayCKYtic62DZHLWf181LjopaH8i+9v+7LZcCyIZQrIiIiIjKmtbR3HGpl3VHbxM7aZnbUNrIz6rmW9s64vZ6CrYw47r7JzB4CLgTmmlm5u+8MVx+M2rS/7sV5Ucv9dVuOVY8+r+HVDEIiIiIikooi17ZW1jayo6bpUFDdEdXyOpjW1iNlBp0e1GusfUdXsB393iAIthBM7xMJttFhs7/BnaJbXHW9rIiIiIjIAHR0OvsOtrCjtpHKmkiLaxM7arpaX+tb2oetPvnjMphamEN5YTZTCnMOLZdPyKG8MIfJ47PJyhibE+Mo2I5+vf3U8kbU8vx+yohev/rIqiMiIiIiMja0tneyu66ZykhwDQNr5H5XXRNtHT4sdUlPM8rGZ3eF1cIgrE4tzGFK+Hh8duaw1GUkUrAd/aKnAtoZtbw5fFxOMLhUX84I73cAW+JWMxERERGREay5rYPKmiYqaxq7BdYdNU1U1jSx52AzPjy5lYLsSGtrzqH78sIgyE4tymFSQTbpaWOr+3A8KdiOYmY2Gzg3fLjJ3XdE1rm7m9ldBKMlzzezU939+RhlnEpXi+1d7sN16oqIiIiIJFZTawc7ahvZHgbVypqultfKmiaq6ofn+lYzmFyQHQTVotwgrBZmM7Uo51DLayq3tsaDgu0IZWYXAfe7e8xO+WY2GfgzEDkDfhJjs/8BPkFwnG8wszPc/dAwaGaWA9wQPmwPtxcRERERGRUOBdf9XaE1ugW2qr6/WS/jIysj7VAX4SC05oahNZuKwlzKJozda1tHCgXbkesGINPM7gCeI+gi3ASUAGcBVwMTw22fJkawdfd1ZvZD4CvAycAzZvY9YCMwB7iWYB5cgB+4+/pE/TEiIiIiIoPV3NbBjtqusNo9wDYOW3CNDMo0tSiHiqKcQ8uR+5K8caSpm3BSKdiObOUE89Ne08c2dwAfd/fe+lF8DZgEfJQgxP4hxjY3A18/gnqKiIiIiAxaW0cnu2qb2V7TyPb9jWwPQ+v2/cH93mGaCqcwN/NQYK2IdBUOH08rymV8TsaYmx5nrFGwHbk+TDDo02nAbIKW2vEE88xuB54FbnX35/oqxN07gY+FLb+fBJaEZVUBy4Ab3f3+RP0RIiIiIpK6OjudffUth0Lr9v1N3ZZ31TXROQwjvEzMywqCa1EQXCvCltdIiM0bp1g02ukIjlDu/gTwRBzLuw+4L17liYiIiIgA1DW1BWE1DKzb9ncF2MraJlrbOxNeh5L8LKYW5VJRmENFcRheC3MOhdncLMWesU5HWEREREREetXa3smO2qYwsB4eYOua2hJeh6LczEMtrdOKw/vwsYKrgIKtiIiIiEhKc3f2N7SybX/jofC6tbpredeBxM/lWjAug4riXKaF3YOnFYfBtTi4zrVAU+FIPxRsRURERETGuEir69bqBraHATa4BV2G61tizjAZN+My0g5rbZ1WnBve5zAhJ1ODM8kRUbAVERERERkD6pra2FbdyNb9DUFore5qeU30IE1mUD4h51BL6/TiMLiGj0vyNR2OJJaCrYiIiIjIKNDZ6ew52ByE1UMBtolt1Q1s3d9IbWNir3WdkJMZBtag5XV62OI6vTiX8sIcsjLSEvr6In1RsO3BzNKBxUAFUApMBJqAfeFtpbvvSV4NRURERGSsauvoZEdNE1v3N7K1uoGt1V332/Y30pLAEYYz0uxQd+HpxV2trpH7CTm6zlVGLgVbwMyOAq4AzgJOBXL62X4j8BRwL3CPu7cmuo4iIiIiMjY0t3WwbX8jW6qCLsNbDgXYRnbUNtGRwD7DhbmZh0Lr9B4BdsqEbDLS1eoqo1NKB1szezfwz8CbI08NcNe5wBzgKqDOzG4GbnD3bXGvpIiIiIiMOo2t7WytDsLrlrDVNRJgd9U1J+x10wzKC3OYXpzLjIm5TC/OC+/V6ipjW0oGWzO7FPh/wAK6wmwzsBx4EXgZ2AvsB2oIWnCLgSJgHrAEWApMAwqBLwDXmNktwLfUVVlERERk7KtvaWdLVRBWt1Q3dFvee7AlYa+bk5ketLROzGVGeB8E2Tym6lpXSVEpF2zN7FHgTIJA2wzcB/wOuHewXYrNbC7wfuB9wNHAp4D3m9k/uPs9ca24iIiIiAy7hpb2MLR2hdct1Q1srmqkqj5x4bUwN5MZYVidMTHqvjiX0oJxmhpHpIeUC7YE19FWAdcBP3H3A0MtyN03AN8Gvm1mpwP/BpwLnAgo2IqIiIiMAs1tHYdC6+aqoPvw5vBxIlteJxWM6wqtxbnMKMlj5sRcZhTnMSFXXYZFBiMVg+21BIG2MZ6FuvvTwHlmtgQoiWfZIiIiInJk2jo6qaxpYnNVPZv2NbC5KrhtqWpgZwKveZ0yIZuZE/OYWRIE2JlRra+5Wan4VVwkMVLubHL3HyS4/GWJLF9EREREYuvsdHYfaGZLVQObqrrC6+aqBrbvb6Q9AaMNm0H5hJxuwTUIsnlML84lOzM97q8pIodLuWCbCGZ2prs/kex6iIiIiKSCuqY2Nu3ranndFLbCbqluoLktMfO8lk/IZmZJEFhnhcF15sRgpGGFV5HkS8lga2Zfdvfvx6ms84A7gPx4lCciIiIi0Nreybb9DWyMhNd99eF9A9UNgxrvc8AmFYzrFlxnleQysySPGcV55GQpvIqMZCkZbIH/MrMWd7/+SAoxs4uB2wFd3S8iIiIySO7OvvoWNu7tanXdtK+eTWHX4QT0HKYoN5NZJXnMKslnVkkus0rymVkSdB/OG5eqX41FRr9UPnt/ZGat7v6zoexsZlcAvyYItYnp8yIiIiIyBjS3dbC1upFN++rZGHYh3ljVwKa99RxsaY/76+VmpTMr7DY8uyQvDLLBrTA3K+6vJyLJl6rBdidQDtwQhtubB7OzmV0F/BxIJwi1V8e9hiIiIiKjiLtT3dDKxr31bNzXEAbYYLmyJv6tr+lpxvTiXGaX5DG7NBJi85ldmsckzfMqknJSNdieAzwOlAE3mlmbu/96IDua2aeBG4A0oAP4sLv/PlEVFRERERlJ2sNpczbuq2fD3qAFduO+BjbsraeuqS3ur1daMI5ZJXnMKQ1aXGeX5DOrNBhxODM9Le6vJyKjU0oGW3dfZ2ZvAx4DSoGbw5bbP/S1n5l9Efg+YEAr8H53vzPhFRYREREZZo2t7WwKA+vGsAvxxr3BQE6tHfG9CmtcRhqzS4PW1jkleYeWZ5bkMT5bQ5mISP9SMtgCuPsbYbh9FJgI/Dpsub0j1vZm9nXgWwShtgm43N3vG7YKi4iIiCRAbWMrG/bWs35v0AIbue2obYr7a5WNz2Z2adB1eE5pPrNL85lTmkf5hBzS0tR1WESGLmWDLYC7rzSztwMPA0XA783scne/O3o7M/tP4FqCUNsAvMvdHx32CouIiIgMgbuz92BLEGD3HGTDvq4AW1Uf36lzsjLSmF0SBNc5pXlheA26D+dr1GERSZCU/3Rx91fN7HzgIWA88Eczu9TdHwAws+uAzxKE2gPAhe7+TNIqLCIiItILd2dHbVPQ+rqnnvV7Dx5ajvfow0W5mcydlB8G2PxDy1OLckhX66uIDLOUD7YA7r7MzC4AHgTygTvN7FLgUuATBKF2P3CBuy9LXk1FREREoLMzCLDr9gTBdf2eejbsPciGvfU0tHbE7XXMYFpRLnPCrsNzJ+UzJwywxXmaNkdERg4F25C7P2dmFwL3A7lA5PpZA/YB57r7a8mqn4iIiKSezk5ne00j6/bUs27PwfBa2OC+uS1+AzhlphuzSvKYOymfuaX5zJ1cwNxwAKfszPS4vY6ISKIo2EZx96fM7GLgb0BO+PRO4K3uvjZ5NRMREZGx7FAX4j31rN1zMGiJ3RNcA9vUFr8W2NysdOaU5nNU2PI6N7zNKM4lQ1PniMgolpLB1sw+1M8mdwIfADqBW4BTzOyUvnYY6Dy4IiIikrrcnT0HWlgXhtfgFgzoFM8uxAXZGRw1KZ+jJhVw1OQgvB41uYAp47M1+rCIjEkpGWyBXwHezzZO0A35awMozwEFWxERETmktrGVtbuD8LomvF+7+yAHmuM3iNOEnEzmTc5n7qQCjpqUz7zJQZCdVDAOMwVYEUkdqRpsIQitIiIiIkekqbWD9XsPHhZi9xxoidtrFOZmMm9yAfMmh62wk/KZOzmf0nwFWBERSN1g+5FkV0BERERGl45OZ3NVA2t3H2Tt7gOHAuzW/Y14f/3ABqggO+NQgA3ugxZYBVgRkb6lZLB191uTXQcREREZuarqW1iz6yBrwgAbaY1taY/PSMR5WenMnVzA0ZMj3YcLOHpyAZPHK8CKiAxFSgZbEREREYDmtg7W76nvFmDX7D5AVX1rXMrPSk9jdmke88sKmFdWwPyyAo6aVMDUwhwN4iQiEkcpGWzN7G/A3cC97r4z2fURERGRxHJ3dh9oZvWuA6zedTC8P8DmqgY649CN2AxmFOcyb3JBtxA7Y2IemZpGR0Qk4VIy2AIXAu8AMLNXgXuAv7n7y0mtlYiIiByxSCvs6l0HWL07CLBrdh+ktrEtLuWXFoxjflnQdfjosuB21KQCcrLS41K+iIgMXqoG25sJgu0U4ETgBODfzGw3Qci9B3jY3ZuSV0URERHpi7uz72ALr4etr6t3HWTNrgNsqmqgIw7NsNmZaYdaYI8uG8+CMMROzB8Xh9qLiEg8pWSwdfdPAJjZScBF4e0EgqD78fDWbGaPAn8D7lGXZRERkeQJRiSu5/WdB3hj1wHe2BmE2XhcC2sG04tzDwuwMybmka7rYEVERgXzeI1PP8qZWTnwToKQew6QE66KvEHLCUKuuiwPkplVANsBtm/fTkVFRZJrJCIiI1lDSztrdh88FGDf2HWAtbsP0Nx25CMSF4zLYP6UAuaXjWfBlPHMnxJ0Kc4bl5K/9YuIDLvKykqmTZsWeTjN3SvjUa4+xUNhi+xNwE1mlg28jSDkXgiUE7ToLqary/K9BEFXXZZFRESGqLq+hdd3HmDVzrogxO48wObqhrjMCztjYi4LwgC7YEoBC6aMp6IoR9PpiIiMQQq2Mbh7M13X2kZ3WX4nwTW5U4CPhbdIl+V7CLos70hKpUVEREYwd2dnXTOv76hj1c4DvLGzjlU7DrD7QPMRl52blc78sgIWlo/vaoktUyusiEgqUVfkQRpAl+UvuPv1yajbSKWuyCIiqaWz09lc3cDrOw/w+o664H5nHTVxGJV48vhxLJwynoXl41k4ZQILy8czozhXc8KKiIwS6oo8Qgygy/KEJFZPRERkWLV3dLKpqoGVlXWs3FHHqh11rN51gIbWjiMqN81gTml+GGCDILtgynhKNCKxiIjEoGB7BGJ0WT4R0CR2IiIyJrV3dLJhXz0rK4MAu3JHHW/sOvJBnbIz01gwZTzHhK2wx5SP5+iyArIz9V+qiIgMjIJtHLn7K8mug4iISDy0dXSyfk/9oQC7MmyJbWk/shA7PjuDY8qD8Hrs1OB+dmm+ptUREZEjomArIiKS4jo6nY376nmtso6VlbWsqAxaYluPMMROKhjXLcAeUz5BoxKLiEhCpFywNbNNCSjW3X1OAsoVERGJK3dna3UjKyprWVlZx2uVdazaWUfjEV4TWz4hm2OnTuC4qROCIDt1PJMKsuNUaxERkb6lXLAFZiagTA0tLSIiI05kip1IK2wQZGs50Nx+ROVOLczhuKkTOK4iCLHHlo9nogZ1EhGRJErFYHtrsisgIiKSCHWNbayorGXF9lpWVNayfHsdVfUtR1TmtOIgxB5T3tUaW5yXFacai4iIxEfKBVt3/0iy6yAiInKkmts6WL3rAMu3R4JsHZurGo6ozPIJ2RxXMYHjKwo5vmICx5ZPoEghVkRERoGUC7YiIiKjTWens6mqnuXb6w61xq7edYC2jqFfCVOSn8XxFYUcN3UCi6YFLbG6JlZEREYrBVsREZERpqahleXba3l1Ww2vbq9l+bZaDrYM/brYCTmZHF8RdCWOtMZOmZCt0YlFRGTMULDtgwX/488GisOn9gOb3f3I5j8QEREJtXV0smbXQV7dXsOr24Iwu6W6ccjlZWWkcWz5eBZNK2TxtEKOryhk5sRchVgRERnTFGxjMLPzgM8AZwG5PVY3mtljwI/d/e/DXTcRERnddtc1H2qJfXVbDa9V1tEyxPlizWBuaT6LphWyaFohJ0wrZN7kArIy0uJcaxERkZFNwTaKmWURjJr83shTMTbLAy4ELjSzPwJXuXvrMFVRRERGkdb2Tt7YdYCXt9bwytYaXtlWw6665iGXVzY+m8VhiF00LehaXJCdGccai4iIjE4Ktt39HriUINC2Aw8BLwC7w+cmA0uBc4FM4AqC9/C9sQoTEZHUUl3fwivbag8F2RWVtUNujc3OTOP4qYWcMD24LZ5WRNkEDe4kIiISi4JtyMwuBC4DHHgM+Ki7b+1l2+nALcA5wLvN7B3uft+wVVZERJKus9NZv7eel7fWBEF2W80RTbczuySPxdMLOWF6ESdMK+TosgIy09WlWEREZCAUbLtcFd6vAM5397beNnT3bWZ2AUFr7iLgI4CCrYjIGNbY2s7y7bUs21zDy9tqeHVbDQebhzZF9YuAAAAgAElEQVRScUF2BounhSF2eiGLKwo1X6yIiMgRULDtcipBa+1/9xVqI9y9zcx+CPw23FdERMaQqvoWXtpSw0tb9rNsaw2v76ijvXNo88bOnZTPSdOLOGlGEGTnlOaTlqZRikVEROJFwbZLaXj/xiD2WRPel8S5LiIiMozcnS3VjSzbsp+XtuznpS01bBpit+LcrHQWTyvkpBlFnBi2yBbmqjVWREQkkRRsuzQAhcDEQewTmd926BMOiojIsGvvCEYrfnFzEGJf2rqfqvqhDXBfUZTDSTOKDgXZ+WUFZOjaWBERkWGlYNtlLXAKwUjHDw9wnyuj9hURkRGqtb2T1ypreWHzfl7YvJ+Xt+ynobVj0OWkpxnHlo/n5JnFnDyjiBNnFDF5vEYqFhERSTYF2y53E1wr+xEze8bdf9XXxmZ2FcGgUQ78NeG1ExGRAWtu6+CVbTW8uHk/L2zaz6vba2huG/y0O3lZ6Zw4o4iTZxSzZGYRi6cXkpul/zpFRERGGv3v3OUG4BqgDLjZzC4nmNLnBWBPuM1kglbdjwHnEcxtuwP48bDXVkREDqlvaeflrTW8uLmaFzbtZ0VlLW0dgx/oqbRgHEtnFnPyzCKWzCxWt2IREZFRQsE25O4NZvZOgm7IRcD54a03BtQA73R3XWMrIjKM6lvaWbZlP89vrOb5TdWs2nmAjiGMWDy7NC8MskGL7PTiXMw0WrGIiMhoo2Abxd1fNbPjgOuBS4D0XjbtAP4CfN7ddwxX/UREUlVTawcvb63huU1VPLexmhWVdUMKsvPLCjhlVjGnzJ7IkpnFlBaMS0BtRUREZLgp2Pbg7juBy82sDDgbOJau0Y/3A6uAx919V5KqKCIy5jW3dfDqtlqe21TN8xureXV7zaC7FqcZHDt1AktnRoJskabdERERGaMUbHvh7ruB25JdDxGRVNDa3smKylqe21jNcxureXlbDa3tgxvsKTPdOL6ikKWzijllVjEnzSiiIDszQTUWERGRkUTBVkREhl1np7N2z0Ge2VDF0xuqeGHTfpraBjf9Tma6saiikNPmTOTU2RM5cXoROVm9XUEiIiIiY5mCrYiIDIsdtU08sz4Iss9urKKqvnVQ+6enGcdNncBpcyZy2uyJnDyzSFPviIiICKBgG5OZTQROA2YDBfQ+iNQh7v7tRNdLRGQ0qWts47lNQZB9ZkM1m6saBrW/GRxb3j3IqmuxiIiIxKJgGyUcMOpHwLsZ/HujYCsiKa2lvYOXt9SEQbaKlTvqGOzAxQumjOe02RM5bc5Els4qZkKOgqyIiIj0T8E2ZGalwLPADII5akVEpA/uzuaqBp5ct48n1u3j+SFcJzutOIfT55bw5rklvGlOCcV5GrVYREREBk/Btsu3gJnh8p+AnwErgFp3H/xkiSIiY9DB5jae3VjNE+v28eS6fVTWNA1q/6LcTN40tyQIs3NKmD4xN0E1FRERkVSiYNvlnYADv3H3q5JcFxGREaGz01m1s44n1+3jyXVVvLKthvZB9C8el5HG0lnFh1plF04ZT1qaOsWIiIhIfCnYdikN729Jai0GwMy+D3wp6qmz3f3xfvY5H/gksJTgb90HvAjc5O4PJKiqIjIK7TvYEgTZ9ft4en0V1Q0DH73YDI6bOoHT55Zw+lElnDi9iOxMTcEjIiIiiaVg22UnQVfkwQ3bOczMbBHw+UFsb8D/EYTaaFOBS4FLzewm4Gp1uRZJTZ2dzsoddTy2di+PrdnLisq6Qe0/qWAcZ8wr5Yx5pZw+V9fJioiIyPBTsO3yJEGwPQ54OblVic3M0oCfExy3vcCkAez2HbpC7avA94GNwBzgy8AJ4fp9wNfjXGURGaEONLfx9PoqHl2zl8fX7qOqvmXA+2alp7FkVhFnHBWE2fllBQS/oYmIiIgkh4Jtlx8CVwJfNLM/uHtzsisUw2eBJcBq4K/AV/va2MzmEoRXgJeAM9w9MtLLMjO7G3gCOBm41sx+6e4bE1JzEUkqd2fjvnoeXbOXR9fs5aUtg7tWdnZpHmccVcqZ80o5ZXYxuVn670NERERGDn0zCbn762b2UeBW4EEz+4S7r0t2vSLMbBrw/8KHnwbOHsBun6frGF8TFWoBcPdGM7sGeC7c7nPANfGpsYgkW3NbB89vquaxNXt5dO1etu8f+AjG+eMyePPciUEX46NKmVas0YtFRERk5FKwjeLut5nZeuBe4A0zew1YBzT2v6t/LMHV+ymQD9zq7k+YWZ/BNry29l3hwzXu/nys7dz9eTNbCxwNXGJmn9W1tiKj1/6GVh5ZvYeH3tjDU+urBjWv7OzSPM45ehLnzJ/EyTOLycpIS2BNRUREROJHwTaKmc0DfgSUhE8tCm997kYwTVDCgq2ZvZdgOqL9dB8NuS+zCAaIgqC7cV+eIAi2FQTXGW8efC1FJFm2VDXw0BtBmH1p634G2sM4Kz2NU+dM5JyjSzl7/iRmTMxLbEVFREREEkTBNmRm0wkGkColCKsAB4A6oDOJ9SoErg8fXuvu+wa464Ko5TX9bBu9fgGDDLZmVtHPJmWDKU9E+tbZ6ayorD0UZtfvrR/wvlMmZHNW2Cr75rkTda2siIiIjAn6RtPl3wlGGe4kGEjqp+6+NblVAoJRjMuAZ4GbB7HftKjlyn623d7LfgO1vf9NRORINLd18NzGav7+xh4eWb2HvQcHNopxmsGJ04s4e34QZjWCsYiIiIxFCrZd3krQpfh6d7822ZUBMLPTgY8D7Qx+ntmCqOX+mnOi5+7NH8RriEgCHWxu49E1e3lg1W6eWLePxtaBXS+bk5nOGfNKOHdhGefMn6R5ZUVERGTMU7DtMjm8vyOptQiZWRZwE0G36OvcfeUgi8iOWm7tZ9vopp+cQb4O9N/KWwYsG0K5IimnrrGNh1bv4f6Vu3hqfRWtHQO7EqIkfxxvWzCJcxdO5s1zS8jOTE9wTUVERERGDgXbLrsIBk7qLwQOl38luN51G/CtIewfPQ9vf80146KWBz4fSMjd++zqrG6PIn3b39DKQ2/s5r6Vu3lmQ9WA55edU5rHuQvLOHfhZE6YVkhams41ERERSU0Ktl0eAj4BLAFeSmZFzGw+8NXw4TXu3tDX9r04GLXcX/fi6KFQBz4KjYgM2b6DLfz9jd3cv3I3z22qpmMAYdYMTppexLkLJ3PuwsnMLtWVAyIiIiKgYBvth8D7gWvN7I/uvj+Jdfk8QSvrJiDXzK6Msc2xUcvnmFlk5OG/hUE4uhW1v1GLo7sSayAokQTZc6CZB1bt5r6Vu1i2ZWDT8mSmG285qpTzjynjnAWTKMkf1/9OIiIiIilGwTbk7hvM7FLgduAZM/usuz+UpOpEvrnOBm4bwPb/FrU8i2AwqDeinpvfz/7R61cP4PVEZICq61u4b9Vu7l6+g5e21jCQIeCyMtI4c14p7ziujHPmT2ZCTmbiKyoiIiIyiinYhszs0XCxCjgaeMDMaoH1QGM/u7u7vzWR9RuCzcBOoBw4s59tzwjvdwBbElgnkZRQ39LOQ2/s5q7lO3lqfdWAuhlnZ6ZxzvxJnH/sFM6ZP4n8cfp4FhERERkofXPqchbBdD8RBhQBS/vYx8PtBjMNT7/c/Srgqr62MbNvAt8IH57t7o/3KMPN7C7g08B8MzvV3Z+PUc6pdLXY3jXIKYVEJNTS3sETa/dx14qdPLJ6D81t/Y9mnJeVzjkLJvOOY8s48+hScrP0kSwiIiIyFPoW1eVJ4hxQR4D/IRgQKwO4wczOcPdDox6bWQ5wQ/iwPdxeRAaoo9N5flM1dy/fyf2rdnGgub3ffQrGZfC2hZO54NgyzphXqml5REREROJAwTbk7mcluw7x5u7rzOyHwFeAkwmuHf4esBGYA1wLnBBu/gN3X5+cmoqMHu7Oiso67l6+k3te28negy397pOdmca5C8u4eFE5Z8wrYVyGwqyIiIhIPCnYjn1fAyYBHyUIsX+Isc3NwNeHs1Iio01lTSN3vrKDO1+pZEt1f5fdQ0aacca8Ut61uJy3LZhMnq6ZFREREUmYlPymZWY3AHcDj7t7W7Lrk0ju3gl8zMzuAD5JME9vCcEgWcuAG939/iRWUWTEamxt54FVu/nzy5U8u7F6QPssnVXMuxaXc8GxUyjOy0pwDUVEREQEwFJxrCAz6yS4nrYB+DtwD3Cvu+9LasXGKDOrIJwfd/v27VRU9DetrkjyuDvLttTw55e3c+9ru2ho7eh3n2PKx3PxonIuWlROeWHOMNRSREREZHSqrKxk2rRpkYfT3L0yHuWmZIst8AjwFiAfuAy4FHAzexH4G3CPu69MYv1EZJhFuhrf8UolWwfQ1XjGxFzetaicixeXM3dSwTDUUERERER6k5LB1t3PNbN84DzgIuAdBN1zTwVOAb5jZtsJQu7fgMfGepdlkVQ02K7G47MzuHhxOe8+sYLF0woxs2GopYiIiIj0JyWDLYC71wN3AHdY8O30VIKQexFwDDAd+Mfw1mBmDxGEXHVZFhnF3J1XttVw+7JK7l25i/qWvqfoSTM4Y14p7zmpgrctmKzpeURERERGoJQNttE8uND4ufD2r2Y2g66QeyZBl+VLgUvo6rJ8D/A3dVkWGR0ONLdx16s7+N0L21iz+2C/288pzeM9J03jshOnMnl89jDUUERERESGKiUHjxqMqC7L7yToslwaroq8cZEuy/cQdFluHfZKjnAaPEqSaWVlHb97YSt3Ld9JU1vfA0EVZGdw8aJy3nOSuhqLiIiIJIIGj0qSQXZZrjezz7r7rcmqr4gE187evXwnv3thGyt31PW5bZrBW44Kuhqfu1BdjUVERERGIwXbQRhAl+UCYEbyaiiS2tbsPsDvX9jGX17ZwcF+rp2dXpzLlUuncdkJFZRNUFdjERERkdFMwfYIuPtW4MfAj8Muy28H+r94T0Tiprmtg/tW7uJ3L2zj5a01fW6bnmacu2AyHzh1Om+eU0Jamroai4iIiIwFCrZxEnZZvjPZ9RBJFdv3N3Lrs1v408uV1DX1PRtX+YRs3rd0Ou9dMk0DQYmIiIiMQQq2IjJquDvLttRw89ObeOiNPXT2MfadGZx99CQ+cMp0zjp6EulqnRUREREZs1Iu2JrZowko1t39rQkoV0SAto5O7n1tF7c8s5nXKvseDKq0YBxXLpnGFUumUVGUO0w1FBEREZFkSrlgC5xFMFVPPJpvIuVoziSRBKhtbOV3L2zj189tYc+Blj63fctRJbx/6XTetnAymelpw1NBERERERkRUjHYPomCqMiItnFfPbc8vZk7Xqmkua2z1+3yx2Xw3pOn8aHTZjCzJG8YaygiIiIiI0nKBVt3PyvZdRCRw7k7z2yo5uanN/HY2n19bltRlMNVb5rJFUumUZCdOUw1FBEREZGRKuWCrYiMLC3tHdy1fCe3PL2ZNbv7ni1rycwiPnb6LM5dWKbBoERERETkEAVbEUmKptYObntxGzc+ubHP62cz0owLj5/Cx06fxfEVhcNYQxEREREZLRRsRWRY1be089vnt/KLpzZRVd/a63YTcjJ5/ynT+dBpM5gyIWcYaygiIiIio42CbR/MLB0oAnLoZxRld982LJUSGaXqmtq49dkt3PLMZmob23rdbnZJHh85fRbvPnEquVn6iBIRERGR/ulbYw9mVgJcA1wCLAQGMm+Io/dSJKb9Da3c8vRmbn12Cwdb2nvd7tTZxXzyjNmcNW8Sabp+VkREREQGQWEsipm9CbgTKCU+89yKpKy9B5v5xVOb+e3zW2ls7eh1u7OOLuUzZ8/l5JnFw1g7ERERERlLFGxDZjYRuAuYCNQDvwBqgW8StMh+nKBb8snAu4Bs4Bng5iRUV2TE2lXXxI1PbOK2F7fR0t77HLRvXziZz5wzVwNCiYiIiMgRU7Dt8hmCUNsCnObur5vZMQTBFnf/ZWRDMysDfg+cCTzn7tcOf3VFRpbt+xv56eMb+fPL22nr8JjbmME7jpvCZ86ey4Ip44e5hiIiIiIyVinYdrmAoGX2Fnd/va8N3X23mV0IrAD+xcwedPdHh6OSIiNNdX0LNzy6gd+9sLXXQJueZrxrUTn/ePZc5k7KH+YaioiIiMhYp2DbZW54/3DUc4e+pZtZursfulDQ3ZvM7DrgJ8DVgIKtpJSm1g5ufnoT//fEJup7GRQqM91494kVfPqsOcyYmDfMNRQRERGRVKFg2yXSL3Jr1HPNUcsFBNfcRnspvD8lUZUSGWnaOzr588uV/Oihdew92BJzm6yMNK5cMo1PnTmHqYWag1ZEREREEkvBtks9MIHu78n+qOWZwPIe+2SH95MSVy2RkcHdeXj1Xr73wBo27K2PuU1Wehr/cOoMrj5zNpPGZ8fcRkREREQk3hRsu2wATgKmAy8CuHutme0GJgNnc3iwfVN43zBclRRJhle21fBf963hxS37Y643g0sXT+ULb59HRVHuMNdORERERFKdgm2XFwiC7RLgz1HPPwBcBXzZzO5193UAZrYU+DLBdbjLhreqIsNj0756fvDgWu5ftbvXbc6YV8pXzp/PwnKNciwiIiIiyaFg2+VB4J+Ay4Do6Xt+BPwDQXfjVWa2AsgF5gHpBMH2+uGtqkhi7TvYwvWPrOO2F7fT0Rl7pONjysfz1QsWcPpRJcNcOxERERGR7hRsuzwI/BpIN7NZ7r4ZwN1XmdmngZ8RvF8n9djvm+7+wPBWVSQxGlvbuenJTdz05CYaWztiblNRlMOXzjuai44vJy3NhrmGIiIiIiKHU7ANuXsbQZfjWOtuNrOnw/XHELxv64HfuPtLsfYRGW0eWb2Hf7/rdXbUNsVcX5ibyWfOnssHT5vBuIz0Ya6diIiIiEjvFGwHyN3XAl9Ndj1E4m1nbRPf+tvrPPj6npjrx2Wk8dHTZ3H1mXOYkJM5zLUTEREREemfgq1Iimrv6ORXz27hRw+ti9nt2Azec2IFnz93HuWai1ZERERERjAFW5EU9Mq2Gr72l1Ws3nUg5vpTZhXzrXcdw/wyjXQsIiIiIiOfgm3IzOYRTO3TDpzl7jv72X4q8ARgwDnuvjXxtRQ5MnWNbXzvwTXc9uI2PMZgx8V5WXztHQu47MSpmGlgKBEREREZHRRsu1wBzAQe6C/UArj7DjNbB5wHXAl8L7HVExk6d+eu5Tv5zr1vUFXfGnOb9y2dxrXnz6cwN2uYayciIiIicmQUbLucRzAn7d8Gsc9dwPnAO1CwlRFq4756/u2vq3h2Y3XM9fPLCviPS4/lpBnFw1wzEREREZH4ULDtMj28f20Q+6zqsa/IiNHc1sFPH9/I/z2+kdaOzsPW52Sm8/lzj+Ijb55FZnpaEmooIiIiIhIfCrZdJoX39YPYJ7JtWZzrInJEntlQxdf+spIt1Y0x15+7cDLfvPgYpmq0YxEREREZAxRsu9QBJQQhdcUA94kE2tjpQWSYtbR38P0H1nLz05tjri+fkM03Lz6Gtx+j32JEREREZOxQsO2yniDYng88OMB9LgjvNyakRiKDsH7PQT77h+Uxp/BJTzM+fvosPvvWo8gbp9NeRERERMYWfcPt8iDwJuCTZnaTu6/ua2MzOwb4BMGAUw8MQ/1EYnJ3fvv8Vr5z72pa2g+/lvakGUV855JjWTBFc9KKiIiIyNikYNvlZ8CXgVzgUTP7pLvHHCHZzC4GbgRyCLoh/2TYaikSpbq+hWvveI2HV+89bF1WRhpfvWA+Hz5tJmlpmpNWRERERMYuBduQu1eZ2dXAbwgGkvqrmW0GngJ2EbTMlgNvAWYBFj73aXffk5xaSyp7Yt0+vnj7CqrqWw5bd/TkAv73fSdwdFlBEmomIiIiIjK8FGyjuPvvzCwd+ClBy+1sghAbLdL01UAQan87jFUUobktGCDqlmdiDxB11Ztm8pUL5pOdmT7MNRMRERERSQ4F2x7c/ddm9hDwWeAdwLF0hdlOYCXwN+DHaqmV4bZuz0E+e9urrNl98LB1JflZ/ODyRZx99KQYe4qIiIiIjF0KtjG4+y7gq8BXzSwDKA5X7Xf39uTVTFKVu/Ob57fyH70MEHX20aX84PJFlOSPS0LtRERERESSS8G2H2GQPXxkHpFhUlXfwrV/fo1H1hz+z3BcRhpfu3ABHzx1BmYaIEpEREREUpOCrcgI9vjavfzLn16LOUDU/LJggKh5kzVAlIiIiIikNgVbkRHI3bn+kfX8z8PrY67/yJtncu35GiBKRERERARSMNia2Urg2+7+pwSUPY3g2tyt7v69eJcvqaG5rYMv//k17l6x87B1Jfnj+OHlx3OWBogSERERETkkLdkVSIJjgD+Y2Uoz+6iZjT/SAs3sFDO7CVgPfArQCD4yJHsPNnPlTc/HDLVvnT+JBz73FoVaEREREZEeUq7FFvgI8F2CgPtz4Mdmdg9wJ/C8u2/prwAzywNOBt4KvI9gvlsIpgW6HfhF/KstY93qXQf42K+WsbOuudvzaQZfu3AhH33zTA0QJSIiIiISQ8oFW3e/1cz+BPwz8AVgIvDu8IaZ7QdeJRgJuSa85RBM+VMEzAOOpqu1O5I0HgS+4e4vDs9fImPJw2/s4bN/eJXG1o5uz+ePy+DH7z9BrbQiIiIiIn1IuWAL4O6NwHfN7Drgg8BHgVPC1RMJWmJ7E91kVkPQQvsTd1+ViLrK2Obu3Pz0Zv7jvtW4d19XUZTDLVct0ajHIiIiIiL9SMlgG+HuzQTdkX9uZtOBs4C3AG8CKoDoRNEOVAErgafC27Pu3jacdZaxo7W9k3+/axV/WLb9sHUnzyjixg+exMR8Xa4tIiIiItKflA620dx9G/Dr8AaAmWURdEFudvfaZNVNxp7axlau/u3LPL9p/2HrLjthKt9993GMy9BUPiIiIiIiA6Fg2wd3bwV2J7seMrZs2lfPx259ic1VDYet+9J5R/OPZ83RIFEiIiIiIoOgYCsyjJ7ZUMWnf/syB5rbuz2fnZnGde9dzAXHTUlSzURERERERi8FW5Fh8vsXtvHvd62ivbP7KFGTx4/jFx9awnEVE5JUMxERERGR0U3BViTBOjqd/7h3Nbc8s/mwdcdOHc8vPrSEsgnZSaiZiIiIiMjYoGArkkCt7Z1cc9srPPj6nsPWnXfMZK67YjG5WToNRURERESOhL5RiyRIW0cnn73t1Zih9h/PmsO/vP1o0tI0SJSIiIiIyJFSsBVJgPaOTj73x+U88Hr3QbUz043vXnY87zmpIkk1ExEREREZexRsReKso9P54p9WcO9ru7o9n5uVzi1XLeHU2ROTVDMRERERkbEpLdkVEBlLOjqdL/15BXct39nt+ezMNIVaEREREZEEUbAViZPOTuerd77Gna/s6Pb8uIw0bvmwQq2IiIiISKIo2IrEQWen87W/ruL2lyq7PZ+VkcbPP3Qyb5pbkqSaiYiIiIiMfQq2g2BmE82sKNn1kJHF3fnG3a9z24vbuj2flZ7Gjf9wEmfMK01SzUREREREUoOCbT/MbLKZ3WRmVcBeoMrMaszsV2Y2Pdn1k+Ryd759zxv85vmt3Z7PTDd++oETOXv+pCTVTEREREQkdaRksDWzMjPbGd4+3cd2s4GXgY8BxYCFtwnAB4FXzWzxcNRZRh535z/vW80vn9nS7fn0NOOG953I2xZOTk7FRERERERSTEoGW+BMoIwgrN7ex3Z/AMoJwizAduAF4GD4XBFwm5lp2qQU4+58/8G1/Pypzd2eT08z/vfKEzj/2LIk1UxEREREJPWkarA9K7x/zN2rY21gZu8ETgYc2A+c7+4z3P00glD8y3DTecC7E1tdGWmue2gdP3t8Y7fn0gyuu2IxFx4/JUm1EhERERFJTakabBcRBNaH+tjmA1HLX3T3v0ceuHsT8HFgZfjUu+JdQTMbb2ZXmtl/m9kTZrbBzOrMrNXM9prZ42b2ZTMb0BwyZnaamf3GzLaYWbOZ7TKzB8zsynjXfay7/uH1/O+jG7o9Zwb//d5FXLyoPEm1EhERERFJXanahTZy8eOKPrY5K7yvA37fc6W7u5ndAlxHEJTjbSlwWy/rSgm6U58JfMnM/sHdH+ytIDP7d+AbdP8hoyy8nWdm7wfe6+7Ncan5GPaTxzZw3cPruj1nBt9/9/FcekJFkmolIiIiIpLaUrXFNjJUbVWsleGgUZMJWnWfcve2Xsp5NbxPVDPdduDXwD8DlwGnAW8GrgD+BHQAJcDdZnZ8rALM7OPAtwiO9UaCgbCWApcAj4WbXQT8IkF/w5hx4xMb+cGDaw97/ruXHsflJ09LQo1ERERERARSt8U28ndn9bL+lKjll/sopza8zzviGh3uMXfvazqh283sEuAvBH/HN+hxra+ZFQI/CB9uA05196qo9feE+18EfMDMbnL3J+P4N4wZf311B9+9f81hz/+/S47lyqWa9UlEREREJJlStcU2Eu7m9bL+tKjll/oopyC8j3sXXnfvGMA2fwUiaeuMGJt8AigMl6+NDrVRr/GPBC2/AF8aWm3HttW7DvCVO1877PlvXrSQD546Iwk1EhERERGRaKkabCPX1h42mrGZGUELJkAn8Ewf5URSzZ74VW3QGsL77BjrLgnvDwB3xtrZ3SuBh8OH55pZfnyrN7rVNbVx9W9fprmts9vzX79wAVe9eVaSaiUiIiIiItFSNdjeRTAP7bvM7EM91n2JILA68Ii71/VRTqRl9/ALL4eBmS0AFocP1/RYl0VwLS3Ac+7e2kdRT4T344Alca3kKNbZ6Xzx9uVsrW7s9vwHTpnOx98yO0m1EhERERGRnlL1GtvfAf8KTAd+aWb/BGwAFtB9hOMf9VZA2LJ7CUEAfj5xVT3sdXOBqQStyl8G0sNV1/fY9Ci6ju/hF4d2F71+AV2DSg20Tv0NB1w2mPJGip89sZGHV+/t9tyiaYX8+0ULk1QjERERERGJJSWDrbs3mtkVwN+B8cDJ4Q2CllyAW6Lnro3hHYK4YTEAACAASURBVAQB0+nqypsQZnYV8Ms+NvkhQViPFj1Mb2U/L7G9l/0Ganv/m4wuT67bxw//3r0hvjgvi5994ETGZaT3speIiIiIiCRDqnZFxt1fBE4imDaniSDQGrAV+Jf/z96dh9d1lfce/y6NtixLljV5nmc7c+zYSRwPcRKGtKW0QCgthLkt5VLKcCH3UgIXCqVw214CT6CUhiFlKpQZMtiOYyd27CTOgGd5tmNrsiTbsmVN7/1j72NvC51JPtM++n2eZz/a5+y11lk6S3vrvGetvRbwnjhFfML/edLMMtZjO8ALeDMdf8TMbMCx0YH9s3HK6QzsD/t7bI+1neMD399O8B0tcPDlN1/HhDEjs1cxEREREREZ1LDssY0ws/3Am5xzBUAt0G1mbQlmv93/2ZuWyl3up1yanXkkMBN4I/DHwMPOub81s18OyBOcTCrW/bUAFwL7Q4nc4vXyjgO2DaHcjOvq6eOvH36etnOXL1384bvmcsusmizVSkREREREYhnWgW2EmfWT5MzGZtYZP1VqmFk7l9bMBS9I/L5z7i+AbwE/c86908weCqQJLkEUbb3eiNLA/vkh1C/mUGfvduRw+NQvdvDSscvnC7tzQT1/tWJmlmokIiIiIiLxDNuhyPnAzL6DN5S6AHjAOVcVOHwmsB9vePGowH68Yct56wfbjvC9rZffLjy9ZhRffOM1oQrORURERESGGwW24fcz/+co4NWB54O9qPFmLQ4OJc67iaAS8fKxDj7xsx2XPTeyuJAH//wGKkYUZ6lWIiIiIiKSCAW24dcc2J8a2N8L9Pn78+KUETy+KxWVCpO2zm7+8rvP0d3bf9nzn/+Tq5g7bnSUXCIiIiIikisU2IbfxMD+xWHEZtYNbPUfLnPOxbrPdoX/8wKXJqkaFvr6jQ/84AWOt19+a/Hbb5nGH107MUouERERERHJJQpsw+8Ngf2XBxz7qf+zAnj9YJmdc5OANf7DtWZ2ZrB0+epfH9/Lk3ubL3vuxqlV3Pea+VmqkYiIiIiIJEuBbY5yzt3rnBsRJ80Hgdf4Dw8BmwYk+QYQmeL388656gH5C4GvAoX+U1+8kjqHzdpdjfy/dQ2XPVdTXspX33I9xYU6NUREREREwkLL/eSu+4EvOed+jBew7scbajwauAp4C3CLn7YbeLeZXbamrpmdcs79T+BBvPtvn3HOfRavZ3cC8LfAKj/598xsfVp/oxxyuLWTD/7ghcueKyxwfOXPrqOuIub3CSIiIiIikmMU2Oa2scC7/S2aY8A7zOzxwQ6a2deccxOATwAzgW8OkuzXwDuusK6hcb67j7/87vOc7rrsewA+/up53DSjOkouERERERHJVQpsc9ftePe+rgLmA/VANdAFNAIvAL8Efmhm52IVZGafdM49ArwPWO6X1Q68CPyHmX0vXb9ErjEz/td/v8yuE6cve/61V4/nnbdOz1KtRERERETkSiiwzVFmth9v+PHXUlTe08DTqSgrzL77zBF+sv34Zc/NqivnC39yNc65LNVKRERERESuhGbIkWHj+SNtfPoXOy57rry0iAf//AZGleo7HhERERGRsFJgK8PG3pNn6LfLn/viG65mVl15diokIiIiIiIpocBWho17lkzh4XfdRE15CQDvXTGDVy0an+VaiYiIiIjIlVJgK8PK0hnV/PL9y3nXrdP5yJ1zs10dERERERFJAd1YKMPOuMoR/O+7F2S7GiIiIiIikiLqsRUREREREZFQU2ArIiIiIiIioabAVkREREREREJNga2IiIiIiIiEmiaPkkwojOycOHEim/UQEREREZEsGhAPFEZLlyxnZqkqS2RQzrkbgW3ZroeIiIiIiOSUxWb2bCoK0lBkERERERERCTX12EraOedKgav8h81AXxarM9yN41Lv+WLgZBbrIrGprcJDbRUOaqfwUFuFh9oqPHKprQqBWn//ZTO7kIpCdY+tpJ3/x5qSIQZyZZxzwYcnzexYtuoisamtwkNtFQ5qp/BQW4WH2io8crCtDqe6QA1FFhERERERkVBTYCsiIiIiIiKhpsBWREREREREQk2BrYiIiIiIiISaAlsREREREREJNQW2IiIiIiIiEmoKbEVERERERCTUnJlluw4iIiIiIiIiQ6YeWxEREREREQk1BbYiIiIiIiISagpsRUREREREJNQU2IqIiIiIiEioKbAVERERERGRUFNgKyIiIiIiIqGmwFZERERERERCTYGtiIiIiIiIhJoCWxEREREREQk1BbYiIiIiIiISagpsRXKUc84S3J5IoKxXOed+4pw75py74P/8iXPuVUnUp8g5917n3JPOuWbn3HnnXINz7kHn3IIr+mVzmHOuzjl3t3Pu08653zjnWgLv/UNDKC9n2sI5V+2c+5Rz7kXnXIdz7rS//ynnXHWyv1s2paKdnHP3JnHe3ZtAeWXOuY8457Y65045584653Y5577onJuSxO82xc+zyznX6Ze11Tn3YedcWaLl5Arn3PXOufv8djrqnwdnnXN7nXMPOeeWJ1mezqk0SUVb6bxKP+dchXPuHufcl5xzG/y/3Q7nXLdzrsk594Rz7qOJ/g0655Y5577jnDvknOtyzp1wzv3WOXdPkvW6xzn3iJ+/yy/vO865pUmUkZL2zgWpaCfn3Mokzqf7E6hTfl37zEybNm05uAGW4PZEjDIc8LU4+b8GuDh1qQa2xCijC3hHtt+zLLTDQ0mUk1NtASwGXolRznHgxmy//5lsJ+DeJM67e+OUNRPYHSN/O/CaBOr0Wj9ttHJ2AzOy/f4n0U4bEnx/vw2UxClL51QI2krnVUbaak2C728zcFecsv4e6ItRxs+BEXHKGAH8IkYZfcAnEvi9UtLeubKlop2AlUmcT/fHqU/eXfuy3sjatGkbfAtcEL4KLIqxTY9RxmcD5TwP3ONfgO7xH0eOfSZGGYVc/gHnx8CrgCXA+4FG//neeP8ww7gNuDgfAR4JPH4oiXJypi2AicBJP20P8I/Acn/7R/8589NMzHYbZKqduPwD+J1xzrsxMcopB3YFyvo6sBpYBtwHnPGf7wSujlHONX4a8/Pc55ex2i8zUv4uoDzbbZDge9zApQ86/wL8iX8eLAU+CBwL/F7/qXMq/G2l8yojbbUG77r3LeB/AH/st9PNwBuBH/p/wwZciPb+AO8K/P4NwDv8Nv8jYF3g2Hfj1OfhQNp1fv7FfnkNgWPvSnd759KWinbi8sD27XHOp7oYdcnLa1/WG1mbNm2Db4GLzf1DzD8rcEHZBowccLzMfz5yMZoZpZx7A3X5SpTX6fCP7wWKsv3epbgdPgXcDdT7j6cF3o+HwtgWwEOBct4wyPE3BI5/M9ttkMF2Cr6/066gLvcHyvnIIMeXBf4e1sUoZ33gb2LZIMc/Enidv892GyT43vwS7wNcYZTjNcCewO+1PEo6nVPhaSudV+lvq0HbaECa1wV+rx8PcnwM0OYfPwzUDHwNvN7aSBm3RXmdFYE0Px9YN//v5rB//BRRvsxIVXvn0paidloZOL7yCuqSl9e+rDeyNm3aBt8CF4L7h5j/K4EylkZJszSQ5stR0uwI/AMqi5LmY4Fy/iTb712a22Va4Hd9KGxtAdRz6Rvh38ao82+59G1tfbbf9wy1U/Af/bQhvm4xlz4c7gQKoqR7MPBaNwxyfHHg+INRyijwXyPyN1Gc7fc9RW13d+B3/9coaXRO5cCWYFvpvMqRjUs9oM2DHAsG9PdEyT8p8Lf+iyhpfhX4O58UJc09gdf6ULraO6xbnHZaGfidV17Ba+TltU+TR4nkIeecwxv6A7DbzLYMls5/fo//8HV+vmA5s4HI5AE/MLNzUV7yocD+64dU6TyVg23xh3jfvAP8R4yqR8op9PNIYlbi9XwAfMvM+qOkeyiwP1g7vS6wP2g7+WV/239Y5b92PngisD9z4EGdUznlicD+77VVCq1E51UqdPo/RwxyLPLenAZ+MlhmMzsGPO4/vMM5Vx487j++3X/4mJ9+MD/xXwcGb6eVpKa9wypWO12xfL72KbAVyU/T8e57AO8eilgixyfh9XIFLR8k3e8xs5N4Q1UAbk2sisNGrrVFQuUMOKY2TVyi7++zXPrwEqudOoHnYpSTj+1UEtgf7AOtzqncEa+tUkXn1RVyzs0HrvUf7h5wrATv3kqAzWbWHaOoyHtTitcDHrTEfz6Y7vf45Ue+kFrinCsekCRV7R06sdophfL22qfAViT3vcE5t8efgv2Mc26fc+5bzrlVMfLMD+zHuzAGj88fcGwo5Ux2zo2Kk3Y4ybW2iJTT4f/TGpSZneDSN+oD6zIcPOSca/SXYWhxzm1xzn3GOTcxTr6E2snMeoH9g+QZWE6DnzaaWH8zYbUisD/Ye6hzKnfEa6uBdF5lkL9Uzmzn3N/h3Vsc6V371wFJZwNF/n6mz6ki//WTLieB9g6FJNppoH9w3vJm3c65NufcdufcPzvn5sTJl7fXPgW2IrlvATAHb0hKOd4N/W8F1jnn/ts5VzlInsmB/WhDgSKORsk31HIcXu+IeHKtLSLlxCsjWM7AugwHK4A6vHu9qoGbgP8FNDjn3hsjX+S96jSz9jivEXl/a51zkV4OnHMj8CZYgTjtZGZtXOqxCH07OecK8O7rivjhIMl0TuWABNtqIJ1XaeYC6wbj/Q57gS/h3Q8J8EW8WYuDsnlOxSpnyO2d64bYTgMtwxu9Uow3dPta4G+BXc65+wfefhGQt9e+ovhJRCRLzuHNKLgW7xuzs0At3geDv8T7UPA64GfOuTvMrCeQd3Rg/2yc1+kM7JcPOJaqcoazXGuLSDnxygiWM5za8wDe/V+bufSPeAbeUid/ivcF04POOTOzrw+SfyjvL3jv8YUBZSRTzijyo50+yKUhkf9tZs8OkkbnVG5IpK0idF5l3wvAX5rZM4Mcy4dzKlLOhWgJQyJWO0WcwDufNuGdW73AFOAPgL/AC3Q/iXerwH2D5M/ba58CW5HcNTHKN5WPOee+DPwGuA4v0P0r4P8F0gQnHIh1rwxc/k9g5IBjqSpnOMu1toiUE6+MYDnDpT3/G2+iEhvw/DbgB865u/E+TBQD/+yc+/kgw6+G8v7C5e9xMm0dLCfU7eScWwF83n/YhHddG4zOqSxLoq1A51Wm/RTv3lPw6j4Tb9mmPwYeds79rZn9ckCefDinBisnlw2lncA7b6YO6MwAb+3unzrnvgY8ClQCH3PO/dDMXhiQNm+vfRqKLJKjYg2/MbNGvG+5IxeT9w9I0hXYLyG24NCd82kqZzjLtbaIlBOvjGA5w6I9zaxjkA/fweO/xFsvF7x1Ut85SLKhvL9w+XucTFsHywltOznnFuIFQEV4H4De6F/nBqNzKouSbCudVxlmZu1m9jt/22Zm3zez1+PdwjQDb5TXvQOy5cM5NVg5OWuI7YSZdQ4S1AaPbwXe5z90gf2gvL32KbAVCSkzOwA85j+c5ZybEDh8JrAfb9hHcDKAgcNJUlXOcJZrbREpJ5HhQJFy1J6X/Bveenxw+cQ5EUN5f+Hy9ziZtg6WE8p2cs5Nx+thqAL6gDebWawZNnVOZckQ2ipROq/SzMy+A/wI77P/A865qsDhfDinBisndOK0U6J+AHT4+7HOJ8iza58CW5Fw2xnYD84qGbyRP95ETsEb+Y8OODaUcozEJhIYLnKtLSKPE5ngK1LOwLoMW2bWBLT4DwebyTXy/o5yzo0Z5HhQ5P1tNrOLw73MrCvwGjHbyf/QE/nAELp28r+QexyYgPf3+g4z++842XROZcEQ2yohOq8y5mf+z1HAqwPPZ/OcilXOkNs75KK1U0L82aIjy/TEOp8gz659CmxFwi3ajHfBgHdenDKCx3eloJyjZtYZM+XwkmttESmn0jk3LloBzrnxQEWUugx30c47SLCdnHNFePdUweDvb+S5WX7aaGL9zeQ051wN3qiTGf5T7zezbyeQVedUhl1BWyX1MjGO6bxKjebA/tTA/l68HnjI/DnVCzQMpZwE2jusorVTMq74fBpwPBTXPgW2w4xzbopz7ovOuV3OuU7n3Cnn3Fbn3Iedc2XZrp8kbUFg/5XA/sHA48GGoQTd5v88DhwacGxTYD9qOf4FLbJu2lNxXm+4ybW2SKicAcfUpj7nXB3ejORw+TkXkej7eyOXeoRitdMo4IYY5YSynfxlyh7h0jXsY2b2lQSz65zKoCtsq0RfQ+dVZgR77y4OCTWzbmCr/3CZcy7WPZOR9+YClyY/itjGpbk/Yp1TJcDSSB7/9YNS1d5hNWg7JcoP+CPXrCGfT2G89imwHUacc68FXgI+hPcNTBnefTKLgX8CnnfOzYheguQSv63u8B8eMLPjkWP+RB2RoSzznHNLB+b3y1jKpW/jfjZwgg8z28ulb9feGOPLj3sD+ykZmpYvcrAtfg70+/tvj1H1SDn9fh7xvIdL34QPdm/hE1y6t+ltMdYRvDewP1g7/TSwP2g7+euIvtV/2A6sj/JaOcX/2/0VcL3/1GfN7B8Tza9zKnOutK2SoPMqM94Q2H95wLHIe1MBvH6wzM65ScAa/+FaMwveq4n/eK3/cI2ffjCv51IP3mDt9ASpae+witVOibiHS+/v751PeX3tMzNtw2ADrsFbQ8rwbva+D29h59XA1/3nDe8PvTzb9R3uG95aZEUxjtfjTe0eabe/GyTNHKDHP74NGDng+Ej/efPTzY7yWu8IvM4DgxyfifcPyPCGE0Wtdz5swLTA+/FQgnlyqi2AbwfK+dNBjr8h2d8x17Zk28lPf12cNHfj9VIY3syOE6Ok+3TgtT8yyPFlgb+HJ2K83pOBv4llgxz/SOB17s/2e55gu5Tg9f5F6v0vQyxH51QI2krnVcba6l5gRJw0Hwz8XgcH/i0DY/ECecMb3VA94HghXlASKWNVlNdZHUjzM6BwwPEa4LB/vA2oSmd759J2pe2E1xm1Mk7+Jf77aniB5I1R0uXltS/rjawtMxveN46JXsj/Ptv1He6b/0/lON7atG/2L+DX4n1T+hm8CTAi7bURKI1SzucC6Z4H3oQ3dOdNXB4Y/0OMuhTiDTeJpP0v4C7/4vk3QKP/fB/w6my/d2loi1v9f0aR7cOB92LTgGP3xignZ9oCbxKHpsA14fP+73mrvx/5sNAETMp2G2SinYCVftqngY/jTdhxg99GbwR+iPchIVLm+2LUZTSwJ5D2a8AqvKF3H8f7ctGAc8C1Mcq5zk9jfp6P+2Ws8suMlL8HGJ3tNkiwnX4cqPda4CpgUYxtjs6p8LaVzquMtdUhoBWvo+KtwC14HRq34q0xHPwbvwCsiVLOewPpGvB64W4E/hBYFzj2n3Hq871A2nV+/hv98hoCx96b7vbOpe1K24lLX9i+iLdE1h/ijbq8Hngd8O94Q8EjZXwhRl3y8tqX9UbWlv7N/6OP/OE+GCVNAd5N4AacAoqzXe/hvPkXP0tg+y9gTIxyCvwLXawyvgEUxKlPDd79N9HKuAC8O9vvW5ra4qEE28IAC0tbADcBJ2KUcwK4Kdvvf6baiUsfwONtncB7EqjPLLwJWaKV0wHcnUA5f8Clb80H2/YAs7L9/ifRTgm3kb8d0jkV3rbSeZWxtjqU4Pt8FLgjTlmf4vIvGwZuvyJ+r+NIP120MvpIoDc8Ve2dK9uVthOXj0SKtfUCnwRcnPrk3bUv642sLQONDJ8N/HFF/cMCPhZIF/PCpy3tbbYC+HvgN/4/2Fa8b73a8O6TfpBBet5jlPcavPtnjvsXquP+44R7WIEivG8UN+L1GJ8H9uN987gw2+9ZGtvioQT/kRhgYWoL/5/a/8G7h+eMv73kP1edaDm5sF1pO+H1DrwFeADYgjdUrtNvo5N4PVb3AXVJ1GkU8FG8IbFtfnm7gf8LTE2inKl+nj1+GW1+mR8FyrL93ifZTgm3EVGCpUHK1DmVo22l8ypjbTUTr7f1+3i9eSfxPjOcwesh/S+80SoJ/V7AzcDDwBG/rRrx1i9+c5L1+jM/X6NfzhG/3GQ+v6SkvXNhu9J2wrs94E+BL/nXqgPAabxe2ma8HtjPANOSqFNeXfucXxnJY865J4HleBeDMeatbzVYumV4w4UAPm1mn0zR65fiDWEC78Tri5FcRERERETyVyFQ6++/bClagzjWGl6SP+b7PxuiBbW+3YPkiSvGrHcRV+MNSREREREREYlYzO8vHTUkCmzznHNuBN7wAIBjsdKaWZtzrhNv2MfkJF7m6BCrJyIiIiIicsUU2Oa/0YH9RBZ5jgS25emozNatWxk/fnw6ihYRERERkRx34sQJlixZEnnYnKpyFdjmvxGB/e4E0kfGuI9M4jXi9e6Ow7vpn/HjxzNpUryRyyIiIiIiMgykbO4dBbb5ryuwX5JA+lL/5/lEX8DMYg5xds4lWpSIiIiIiEjSCrJdAUm7M4H9RIYXj/J/JjJsWUREREREJOsU2OY5M+vCW5cKIOYYYOdcFZcCW00IJSIiIiIioaDAdnjY5f+c5ZyLNfx83iB5REREREREcpoC2+Fhk/9zFHBDjHQrAvtPpa86IiIiIiIiqaPJo4aHnwIf9/ffDjwzMIFzrgB4q/+wHVifmapl1ud+vYtth06xaGIliyZUsnBiBXPqR1NcqO94RERERETCSoHtMGBmW51zG4HlwDudc98ys80Dkn0ImO/v/6uZ9WS0khmy9dApth9p5/kj7RefKyksYN740SycUMmiiRVcNbGSOfWjGVFcmMWaioiIiIhIohTYDh8fwBtePBJ41Dn3D3i9siOBe4D3+On2Al/KSg3TrLevn10nTv/e8919/bx0rIOXjnVcfK6owDG7fjSLJlR4vbsTK5k/fjRlJTplRERERERyjT6lDxNmtt059ybgu0AF8A+DJNsLvNbMzgxyLPQOtHTS1dOfUNrefmPXidPsOnGaHz3nLdNb4GBmbTlXTazkmsljuHpSJfPHV6hnV0REREQky5yZZbsOkkHOual4vbevxVv+pxtoAH4EPGBm59LwmpPwlw86evQokybFXHUobc519/LsoTZ+90oHvzvewe+On+bIqSv7dYsKHPPGj+bqSWO4ZlIlV08aw+y6cop0z66IiIiIyO85duwYkydPjjycbGbHUlGuAltJu1wJbAfTca6HHScuBbq/e6WDgy2dXMlpMbK4kEUTK7h6ktere82kMUytLsM5l7qKi4iIiIiEkAJbCa1cDmwHc/ZCL7tOnOblYx387pUOdhw/zb6mM/RfwalSObKYqydVct3kMVw3pYprJ4+halRJ6iotIiIiIhICCmwltMIW2A7mfHcfu0+e5uXjHbx4tIOXjrXT0Hz2inp2p1WXcW0g0J0/voKSIg1hFhEREZH8pcBWQisfAtvBnL3Qy8vHvCD3pWMdvHisnWNt54dcXklRAYsmVFwMdK+bMoaJY0ZqCLOIiIiI5I10BbaaFVlkiMpLi1g2s5plM6svPtd69gIvHe/gpaNeoPvSsXZaznYnVF53bz/PD1hjt6a8lOumjOH6KVXcMLWKqydVahZmEREREZEB1GMraZevPbaJMDNe6ejixaPtvHi0ne1H2nnpeHvCyw4NVFTgWOj36t4wtYrrp1YxoXKEenVFREREJBQ0FFlCazgHtoPp6etnz8kzbD/azgtH2tl+tI0DzZ1DLm9cxQiun+r16l4/tYqFEyooLVKvroiIiIjkHgW2EloKbOPrONfDC8fa2X6kjRf8nt2O8z1DKqukqICrJlZ6PbpTqrhxWhU15aUprrGIiIiISPIU2EpoKbBNnplxqPUc24+0sf1IO88dbmP3ydNDXnJoWnUZN04by41TvUB3Zm25hi+LiIiISMYpsJXQUmCbGmcv9PLSUS/Iff5IG89fQa/umLJibpxaxQ1Tx3LjtCqumqhJqUREREQk/RTYSmgpsE2P/n7jQEsnz/uB7nOH29jXdHZIZZUUFnDVpEo/2K3ixmljGTuqJMU1FhEREZHhToGthJYC28zpONfD9qNeb+5zh0+x/Ug757r7hlTWzNpRLJk+lsXTvG1SldbUFREREZEro8BWQkuBbfb09vWz++QZnj10imcPt/HsoTZOnu4aUlnjKkawePpYlkyrYvH0scypG01BgQJdEREREUmcAlsJLQW2ucPMON5+nuf8IPdZf1KqoVwGKkYUcaPfm7tkehWLJlZqmSERERERiUmBrYSWAtvcdrqrx5t52e/V3X6knfM9yQ9fLi0q4JrJY7hp+liWTB/L9VOqGFValIYai4iIiEhYKbCV0FJgGy49ff3sfOU02w6dYutBL9g91dmddDmFBY5FEyu9QNfv2a0sK05DjUVEREQkLBTYSmgpsA03M2N/cyfbDp1i28FTbD10imNt55MuxzmYWz+apTOqL05KVTu6NA01FhEREZFcpcBWQkuBbf450XGebYfa2HbwFNsOnWJP45kh3ac7o3bUxaHLS6ZXM3HMyNRXVkRERERyRl4Ets65ImAxcDMwCagFqoHzQLO/vQxsNLNXMlYxSSsFtvmv41wPzx05xdaDbWw92MpLxzro7U/+2jKpaiQ3Ta9m6YyxLJ1RrSWGRERERPJMaANb51wF8CZ/WwaMSDDrIeBXwHfNbGt6aieZoMB2+DnX3csLR9rZcvAUWw+2sv1IOxd6+5MuZ0LlCG6a4QW6N02vZmp1mQJdERERkRALXWDrnJsMfBR4GzAKGOzT6HmgDRgJVAIFA45HKvc88EUz+0FaKitppcBWLvT28fKxDp456E1I9dzhNs5e6E26nPqKUm6aXs1Nfo/ujJpRCnRFREREQiQ0ga1zrgq4H3gPUIIX0PYCm4AtwFbgOaDRzLoD+RxecDsHb7jyEmAV3pBl8ILcncBHzew3Ka20pJUCWxmot6+fXSfO8MzBVrb6E1K1n+tJupya8tKLQe6yGdXMrFWgKyIiIpLLwhTYtgBVd4ZZFgAAIABJREFUeAHtFuA/gR+YWfMQy7sNeAvwBmAMXoD7ATN7IDU1lnRTYCvx9Pcbe5vO8MyBU2w54AW7rUNYYqh2dClLZ1y6R1c9uiIiIiK5JUyBbT/wCPBpM9ucwnLLgfcDHwQeMLNPp6psSS8FtpIsM6Oh6SxbDnqB7jMHTtFy9kLS5dRdDHSrWTazmmm6R1dEREQkq8IU2C42s20pLfTy8suAqWa2K12vIamlwFaulJlxoKXzYo/uMwdbaTydfKA7rmLExd7cpTM0GZWIiIhIpoUmsBUZSIGtpJqZcbj1nB/knmLz/lZOnu5KupzxlSNY5vfmLptZzaSqsjTUVkREREQiFNhKaCmwlXSLBLqbD7Sy5UArm/e30nQm+R7dyWNHcvOMmouBbn1FoquTiYiIiEgiFNhKaCmwlUwzMw62dLLFH7q8+UArzUMIdGfUjrrYo7t0RjU15aVpqK2IiIjI8KHAVkJLga1kW+Qe3c37vR7dLUOcjGpu/eiLvblLp1dTWVachtqKiIiI5K/QBLbOuXUpLdBjZnZ7GsqVDFBgK7kmMuvyZn/Y8pYDrbQluY5ugYNFEytZNrOam2fWsHhaFWUlRWmqsYiIiEh+CFNg24+31mwqphqNlGNmVpiC8iQLFNhKruvvN3afPHMx0H3mYCtnunqTKqO40HHt5DHcPLOGm2dWc+2UMZQW6bIlIiIiEhSmwPYJvIA0pcxsVarLlMxQYCth09dv7Hilg837W3l6fyvbDp3iXHdfUmWMKC5g8bSxFwPdRRMrKSzQ0kIiIiIyvIUmsBUZSIGthF1PXz8vHetg8/4Wnt7fynOH27jQ259UGaNHFHHT9GpumVXNLbNqmF1XrjV0RUREZNhRYCuhpcBW8k1XTx/PH2m72KP7wtF2+vqTu5bWji7llpnV3Dyrhltm1TBxzMg01VZEREQkdyiwldBSYCv57uyFXrYdPMXTfo/uzhOnSfbSOq26jFv8IHfZjGqqRpWkp7IiIiIiWZS3ga1zrgio8h+2mVlyM7ZIzlNgK8NNW2c3Ww54vblP7W/hQHNnUvmdgwXjK7h1Vg03z9KMyyIiIpI/8iqwdc7NB/4aWAPM5tIMygbsAx4DHjSznRmvnKScAlsZ7k52dF3szX26oYVXOrqSyl9c6Lh+ShW3zqrhltk1XD2xkqLCgjTVVkRERCR98iawdc59DvgwUED0JYEM6Af+yczuy1TdJD0U2IpcYmYcbOnkKT/I3XyglfYk19AdXVrE0pnVXqA7q4aZtaM0EZWIiIiEQl4Ets65L+P11EY+ge0CngFO+s/VA0uABf5xAx4wsw9krJKScgpsRaLr7zd2njjNUw0tbGpoYduhU3T1JDfj8riKEdwyq4ZbZ1dzy8wa6ipGpKm2IiIiIlcm9IGtc+4WYCNesLoLeI+ZPR0l7TLgQeAqP/3yaGkl9ymwFUnchd4+th9p5+mGFp4a4ozLc+rLvUB3Vg03zaimvFT354qIiEhuyIfA9tvAnwMHgBvMrCNO+krgOWA68LCZvTX9tZR0UGArMnRnL/TyzIFWnmpo5amGFvY0nkkqf2GB47rJY7h1thfoXjN5DMW6P1dERESyJB8C24PAFOC9ZvaNBPO8G/gacNjMpqezfpI+CmxFUqfpdBdP729lU0MLm/a1cPJ0chNRlZcWsXRGNctn6/5cERERybx8CGzPAyXAEjN7LsE8NwDbgC4zK0tn/SR9FNiKpIeZcaCl07s/d583EdWZruRWTJtQGbk/1wt0a8pL01RbERERkfQFtpm88aoLL7AdlUSecv/nhdRXR0Qk3JxzzKwtZ2ZtOW9dNo3evn5ePt5xcSKq5w630dMX+8vLVzq6+NFzx/jRc97/lPnjK1juD1teMn0sI4oLM/GriIiIiFyRTAa2B4FrgD8Enkwwzx/4Pw+kpUYiInmkqLCA66ZUcd2UKv5m9WzOdfey9eApNu3zAt3dJ+Pfn7vrxGl2nTjN1588QElRAUumjb14f+6C8RUUFGjYsoiIiOSeTAa2vwauBf7GOfcbM1sbK7Fz7nbg/XizIv86A/UTEckrZSVFrJxbx8q5dQA0neni6YZWNu5rYVNDM42nYw+G6e7t9+7lbWgBoHpUCbfMqmH57BqWz65lXKWWFRIREZHckMl7bGuABmA00Af8G/BNYLuZ9ftpCoDrgHcC78ILvDuAWWbWmpGKSsrpHluR3GNmNDSdZeO+Fp5qaGHLgVY6u/uSKmN2XTm3zq7httm13DRjLGUlWlZIREREYgv95FEAzrk7gZ/j3WsbeeFu4JT/uNo/BuD8Y3eb2eMZq6SknAJbkdzX3dvPC0fb2bSvmY0NLbx4tJ1kls8tLnTcMLWK5bNrWT67hkUTKjVsWURERH5PXgS2AM65a4GvAzfGSboNeI+ZvZj+Wkk6KbAVCZ+O8z1s3t/Kxn3NbGpo4XDruaTyV5UVc8usGm6b4wW64ytHpqmmIiIiEiZ5E9hefGHnFgNrgEXAWP/pU8DvgMfNbFtWKiYpp8BWJPyOtJ5jY0Mzm/yhy6eTXFZodl2515s7p4abpmvYsoiIyHCVd4GtDB8KbEXyS1+/8dKxdm8Sqn0tPH+kjd4kxi2XFBawePqlYcvzx2m2ZRERkeFCga2ElgJbkfx29kIvW/a3sqmhhSf3NnOgpTOp/DXlpf5MyzXcOruGutGabVlERCRfKbCV0FJgKzK8HGs7x6Z9Lf6yQi10nO9JKv/88RXcNqeGFbNruWFaFaVFhWmqqYiIiGRaXgW2/rI+C4AZeMv/xP3UYmbfTne9JD0U2IoMX8Fhyxv3NfP8kXb6khi2PLK4kGUzq7lttjcR1fSaUTinYcsiIiJhlReBrXOuDPjfeGvUVieR1cxMM42ElAJbEYk43XVptuWN+5KfbXlS1UiWz65lxZwabp5VQ8WI4jTVVERERNIh9IGtc64cWA9cj7dGbTLMzDQWLaQU2IpINIdbO9m4z7s39+n9rZy9kPhsy4UFjusmj+G2ObXcNqeWqyZWUqhJqERERHJaPgS2nwc+6j/cgreW7YtAO9AfL7+ZHU5f7SSdFNiKSCJ6+vrZfqSdjfuaeXJvMy8d7yCZf1FVZcXcOruWFXNquW12DXUVmoRKREQk1+RDYNsATAd+DfyRmcUNZiU/KLAVkaE41dl9cablJ/c203TmQlL5L05CNaeWG6eOpaSoIE01FRERkUTlQ2B7HigBXmVmj2XkRSUnKLAVkStlZuxpPMOTe717c585eIru3sS/Hy0rKeTmmdXcNsfr0Z1aPSqNtRUREZFo8iGwPQxMAm40s+0ZeVHJCQpsRSTVznf38czBVp7c28KGvU3sb05u7dyp1WXc5g9bXjazmlGlmp9QREQkE/IhsP0R8HrgLWb2/Yy8qOQEBbYikm7H28/z5N5mNuxp5qmGFs4kMQlVcaFj8bSxrJxby4o5dcypL9eSQiIiImmSD4HtzcBGYDOw3LKxgK5khQJbEcmknr5+Xjja7gW6e5t5OclJqMZVjGDFnFpWzK3lllk1VI7UkkIiIiKpEvrAFsA592HgC8CPgPeaWXvGXlyyRoGtiGRT69kLbGpoYcOeZp7c10LL2cQnoSoscFw/ZYwX6M6pY+GECgq0pJCIiMiQ5UVgC+Ccex3wDaAUeAzYC5yLl8/MPp3mqkmaKLAVkVzR32/sPHGaJ/d5w5afO9xGb3/i/werR5VcnIBq+ewaqstL01hbERGR/JMXga1zrg74IvBmIKl1F8ysMC2VkrRTYCsiuepMVw9P729lg39/7vH28wnndQ6unljJirl1rJxbyzWTxlCo3lwREZGYQh/YOueqgaeA2UDS//nNTAsQhpQCWxEJAzNjf3MnG/Y288SepqSXFBpTVszy2bWsnFPLbXNqqR2t3lwREZGB8iGw/RLwQf/hj4CvAi8B7ZpIKr8psBWRMDrf3ceWg63evbl7mznQktySQldNrGTFnFpWzq3l2sljKCrU97MiIiL5ENjuA2YA3zWzt2XkRSUnKLAVkXxwpPUcG/Y1s2FPE0/vb+Vcd1/CeStGFLHcvzd35Zxa6ipGpLGmIiIiuSsfAttzeBNGrTazDRl5UckJCmxFJN9c6O3j2UNtPLGniQ17m9nbeDap/AvGV7BqXi0r59ZxnXpzRURkGMmHwPYIMBFYbGbPZ+RFJScosBWRfHe8/Twb9jSzYW8TTzW0cvZCb8J5K0YUeffmzvXWzq0brd5cERHJX/kQ2D4M3AO83cy+nZEXlZygwFZEhpPu3n6eO9zGE3ub2LCnmd0nzySVf+GEClb5My3r3lwREck3+RDYXg88jbdu7RIz68rIC0vWKbAVkeHsZEcXG/Z6Q5Y37mvhTFfivbmVI4tZPruGlXPrWKGZlkVEJA+EPrAFcM79OfANYCvwLjPbm7EXl6xRYCsi4unp62f7kXbW72niiT3N7DpxOqn8V02sZNXcWlbOq9O6uSIiEkqhD2ydc9/0d6/1NwNexOvBPRcnu5nZO9NYPUkjBbYiIoOL9OY+saeZTftaOJPEvblVZcX+ckJ13DanlrGjStJYUxERkdTIh8C2Hy+YvfjUgMdRs+IFtoVpqZiknQJbEZH4evr8e3P3NPPEnqak7s11Dq6dPIZVc+tYNbeOhRMqKFBvroiI5KB8CGwPkVggOygzm5662kgmKbAVEUneiQ5vpuUn9jSzqaElqZmWa8pLWTGnllXzalk+u5bKkcVprKmIiEjiQh/YyvClwFZE5MpcnGl5TxPr9zQltW5uYYHjhilVrJxXy+p5dcytH41z6s0VEZHsUGAroaXAVkQktY61nbs4ZPmphlbO9/QlnHdC5QhWzvOGLN88s5pRpUVprKmIiMjlQhXYOuc+BPxCsx4LKLAVEUmnrp4+th06xfrdXqB7oKUz4bwlhQXcNGMsq+bWsXpeHdNqRqWxpiIiIuELbCMTRTUAvwB+CWw0s8S/Upa8ocBWRCRzDrV0+kOWm9l8oJXu3v6E806vGcXKud6Q5SXTx1JapHkbRUQktcIW2O4FZvkPIy/QAfwWL9D9jZm1p/yFJScpsBURyY7z3X1sPtDC+t3NrNvdxPH28wnnLSsp5OaZNaye5/XmjqsckcaaiojIcBGqwBbAOTcH+AN/uwWIfO1rQB/wNF6QqyHLeU6BrYhI9pkZDU1nWbfbm4Dq2UNt9PYn/hlg/vgKVvsTUF07uYpCLSckIiJDELrA9rIXcW4M8Gq8IPdVwBj/UOTFG/CGK/8CDVnOOwpsRURyz+muHjbta2H9bm/YcsvZCwnnrSor9pcTqmPFnFrGlJWksaYiIpJPQh3YXvaCzhUCy4G78QLd2f6hgUOWf4k3ZLktoxWUlFNgKyKS2/r7jR2vnGa9v5zQC0fbSfTjQYGDG6ZWscofsqzlhEREJJa8CWx/rwKXhizfjTdkObLuwMAhy780sz1ZqaRcEQW2IiLh0nr2Ahv2NrN+TzMb9jRxuqs34bwTKkdcDHJvnlnDyBJNQCUiIpfkbWAblOCQ5Y+a2c+yUD0ZIgW2IiLh1dvXz/NH2r17c3c3safxTMJ5S4sKuHlmNavn1bFqXh2TqsrSWFMREQmDYRHYBvlDlm/l0gRUkSHL95vZp7NWMUmaAlsRkfxxrO0c6/c0s353E0/vb6GrJ/HlhObWj77Ym3v9lDEUFRaksaYiIpKLhl1gO5A/ZPlu4KiZ/Sjb9ZHEKbAVEclPXT19bN7fyrrdTUkvJ1Q50puA6vb5moBKRGQ4GfaBrYSXAlsRkfwXXE5o3e4mnj3cRl+CywkVOLh+ShWr52sCKhGRfKfAVkJLga2IyPDTca6HJ/c1s253E0/saaLtXE/CeSeOGcnqeXWsnl/HshnVjCjWBFQiIvkiNIGtc+6bKS3QY2b2zjSUKxmgwFZEZHjr6zdeONrGut1NrN3VxO6TiU9ANbK4kFtm1XC735tbXzEijTUVEZF0C1Ng28+lWYxTUiReYKuva0NKga2IiAS90n6e9XuaWLeriaeSnIBq0cQKVs+r5/Z5dVw1sZKCAg1ZFhEJkzAFtodIbWALgJlNT3WZkhkKbEVEJJormYCqpryU1fNqWT2vjltn11JeWpTGmoqISCqEJrAVGUiBrYiIJMLM2NN4xgtydzXx/JE2Epx/ipLCAm6aMZbb59Vx+/x6Jo/VmrkiIrlIga2ElgJbEREZilOd3WzY692Xu2FvM2e6ehPOO6e+nNXz6lkzv47rplRRqCHLIiI5QYGthJYCWxERuVI9ff08e6iNdbsbWbu7iQPNnQnnrSorZtVcb5bl2+bUUjGiOI01FRGRWBTYSmgpsBURkVQ71NJ58b7cZw620tOX2OeZogLHkuljWT2vjjXz65lWMyrNNRURkSAFthJaCmxFRCSdznT1sHFfC2t3NbF+TxOnOrsTzjujdhRr5tezel4dN06toqiwII01FRGRvAlsnXMlwFuA1wHXADXAyDjZzMw01WFIKbAVEZFM8dbMbWftrkbW7U5uzdzKkcWsnFvL7fPrWTGnlsqRGrIsIpJqeRHYOufmAD8F5uKtT5sorWMbYgpsRUQkW461nWPdbm8Cqs37W+nuS2zN3KICx+JpY7l9vjfL8nQNWRYRSYnQB7bOuVHAS8B0oB/4OdAMvBtv3dvPAFXAjcBS/7nNwGMAZvapjFRUUk6BrYiI5ILOC71samjxe3ObaTl7IeG8kSHLt8+r4wYNWRYRGbJ8CGw/BPwT0AfcZWbrnHMLgZcZ0CPrnLsW+C4wD/hbM3sgI5WUtFBgKyIiuaa/33jpeAfrdjXy+K4mdp44nXBeDVkWERm6fAhsnwCWA983s7f4zw0a2PrHaoEX8e7BXWZmz2WkopJyCmxFRCTXvdJ+nrW7m1i3q5Gn9rfS3Zv4kOUl08dy+3xvzdyp1RqyLCISSz4Etk1ANfAmM/sv/7mLgS1QZAMq45z7MPAF4Ftm9vaMVFRSToGtiIiEybnuXjb5syyv3d2U1JDl2XXl3D6/njsW1HHt5CoKC5KZUkREJP+lK7DN5EzDY/yfhwPPBf9TlAMDpy58yv+5Il2VEhEREQkqKynizoXjuHPhOPr7jZePd7A2wSHL+5rOsq/pLA9u2M/YUSWsmlvHHQvqWD67llGlWuBBRCRdMtlj2w6MBm4ys2f952qAJrwe26vNbMeAPEuBp4EuMyvLSEUl5dRjKyIi+SIyZHntrkaeTmLIcklhAUtnVrPGn2V54ph4Kx2KiOSnfBiKvB24GvhjM/t54PkWvNmQ/8rMvj4gz/uALwOnzWwMEkoKbEVEJB9FZll+fGcj6/c00XK2O+G8C8ZXsGZ+HWsW1LNoQiUFGrIsIsNEPgS2/wa8A/ismf194PkfAG8A9gNLzazVf34a8CQwEdhoZiszUlFJOQW2IiKS7/r7jReOtfP4zkbW7mpiT+PAu6uiq68ovTj51M0zaxhRXBg/k4hISOVDYPtG4PvAS2Z2beD5W4CNeMOR24F1QBlwK97QZQP+wsz+MyMVlZRTYCsiIsPN0VPneHyXF+RuOdBKb39in7dGFheyfHYNa+bXs2peHbWjS9NcUxGRzMqHwLYM+DVQCNxrZvsDx+4HIr24kQpFxuR808zelZFKSloosBURkeHsdFcPT+5tZu2uJtbvaaL9XE9C+ZyD6yaPYc2CetbMr2d2XTnOaciyiIRb6APbeJxztwPvAhbizda8D/i2mf04qxWTK6bAVkRExNPb189zh9t43J9l+WBLZ8J5p4wtY838etYsqGPxtLEUFxaksaYiIumR94Gt5C8FtiIiIoPb33yWx3c28viuRp473EaCI5apHFnMqrm1rFlQz4o5tYweUZzeioqIpIgCWwktBbYiIiLxnersZv3uJh7f1ciTe5vp7O5LKF9xoWPpjGrWzK/n9vl1TKrSCokikrsU2EpoKbAVERFJzoXePrYcOOXPstzIKx1dCeddML6CNQvquWN+PYsmVui+XBHJKaEPbJ1zk4FvcWmW41fipJ8IfNt/+GYza0pzFSVNFNiKiIgMnZmx45XTrN3l9ea+fLwj4bzjKkZwu79e7s0zqykt0lJCIpJd+RDY/h3wRWCTmd2WYJ4NeMv+fMDMHkhn/SR9FNiKiIikzomO8zy+q4nHdzayeX8r3X39CeUbVVLIirm1rJlfz+p5dYwpK0lzTUVEfl8+BLbrgBXAh83snxPM8wHgn4HHzezOdNZP0keBrYiISHqcvdDLxr3NPLazkXVJLCVUWOBYPK2KNfPruXPBOKZU675cEcmMfAhsDwBTgdVmtiHBPCuA9cB+M5udzvpJ+iiwFRERSb/gUkKP7WzkUOu5hPPOqS/njgX13LFgHFdPrKSgQPflikh65ENgex4oAa43sxcTzHMNsB04b2aj0lk/SR8FtiIiIpllZuxv7uSxnY08tvMk24+2k+hHvrrRpdw+v547F9SzbGY1I4p1X66IpE66AtuiVBSSoE68wLY6iTyRtN2pr46IiIhIfnLOMauunFl15fzVypk0n7nA+t1NPLqzkU0NzXT1RL8vt+nMBb639Qjf23qEspJCbptdyx0LvPtyq0bpvlwRyU2ZDGwPAVXASmBdgnlW+T+PpKE+IiIiIsNC7ehS3rh4Mm9cPJnz3X1samjhsZ0nWburidbO6P0H57r7+O2Ok/x2x0kKCxw3Tq3ijgW6L1dEck8mhyJ/Hvgo0AYsMrMTcdJPBF4GKoF/MbMPpb+WqeGcKweuB5b422Jgmn/4sJlNGzxn1PIWAu8H1gATgbPALuBh4N/NrDfBcl4FvMevUy3QDGwFvm5mv02mTsnQUGQREZHc1NdvvHC0jUd3NvL4zkb2N3cmnHdu/Wj/vtx6rtJ9uSKSoHy4x3YqsBevl3gPcI+ZvRQl7TXA94G5QA+wwMz2Z6SiKeCcW4/XMz2YpAJb59w7ga8ApVGSbAHuNrPWGGU44EG8oDaarwN/aWn4g1BgKyIiEg4Hms9enHzqucNt9Cf4qaC+opQ1870gd5nWyxWRGEIf2AI45z4MfAEwf9sAPAmc8B9PAG7DWxYo8rXffWb2jxmrZAo4557A+x3A66F+FlgGlJNEYOucuwv4NVAANAKfBZ4BxgLvBl7vJ30SWGVmg94w45z7LHCf/3A7XhvsB2bi9aJf5x/7rJn970TqlgwFtiIiIuHTevYCa3c38djORjbui31fblB5aREr5nj35a6aW0dlWXGaayoiYZIXgS2Ac+4TwCfxgrVoL+6AfuCTZvbZTNUtVZxz78EbLrzVzBr85w7hLXeUUGDrnCvCG248CziNN5v0/gFpvgL8tf/wbWb27UHKmeWXU4QXYN9mZucDx8vwvmC4EegF5qW6d1yBrYiISLglc19uUFGB46YZY7lzwTjWLKhn4piRaa6piOS6vAlsAZxz1+H1FN4FjBlwuA2vl/KLiS4LFAZDCGzfAPzQf/hxM/v8IGnKgGN4k3L9zsyuGiRNMPhdZmZbBkmzFNjsP3zAzN4f9xdKggJbERGR/NHXb2w/0uYvJdTIgZbE78tdOKGCOxeM444F9cwfPxrvbikRGU7yKrC9+OLe1Ww6UOM/1QIcTMd9ntk2hMD2YeDP/IfjzexklHQPAu/1H84xs32BYw4voJwI7Daz+TFebzfePc3HgCmpbAMFtiIiIvmroenskNbLnVQ18uLkU0umjaWosCC9FRWRnJAP69j+Hj94OuBvUTnnihKd+TePLPd/7okW1Po2cCmwvRXYFzg2HS+ojaSLZQNeYDsJbwbng8lUVkRERIangevlrt3V6K+X20J3b/T7co+1nec/njrEfzx1iDFlxayeW8edC+tZPruWUaVZ/YgqIiGUsauGc+4tZvbwEPIVA/8F/FHqa5Wb/OWCIt2au+MkDx4f2CM7P0q6RMpJOLD1e2RjGZdoWSIiIhJetaNLuWfJFO5ZMoXOC71s3NfMozsbWburiY7zPVHztZ/r4Sfbj/OT7ccpKSpg+awa7lxYz+3z66kpj7YwhIjIJZn8Ouybzrl2M/tVohn8oPanwKvSV62cNIlLs0LH65o/GtifPOBY8PGVlBPP0fhJREREZDgZVVrEqxaN51WLxtPb18+2Q208uvMkj+1s5Fjb+aj5unv7Wbu7ibW7m3DuZW6YUsWdC+u5c8E4ptWMyuBvICJhksnAthj4oXPuVWa2MV5i51wJ8DO8Caby7p7bOEYH9s/GSRucsaE8TeWIiIiIDFlRYQHLZlazbGY1f3/3AnadOMNjOxt5dOdJdrxyOmo+M3j2cBvPHm7jH369mzn15Rcnn7p6UqUmnxKRizIZ2G7GW8v1F865lWb2QrSEzrkRwM+BNf5Tn8tA/XLJiMB+vPn0LwT2B86hn6py4onXwzsO2JZkmSIiIpKHnHMsmFDBggkVfGDNbI63n+dxP8h95sApevuj92fsbTzL3sYGHljfwLiKEdyxoJ47F9Zz0/RqSoo0+ZTIcJbJwPY1wJPAVcBvnXPLgzP4RjjnRgK/AFb7T/0fM/tkqivjrxMb/WaPxL3dzB5KQTlBXYH9kjhpgzeeDBzXk6pyYoo3k5m+TRUREZFoJo4Zydtunsbbbp5Gx7ke1u9p4tGdJ3liTzPnuvui5jt5uovvbDnMd7YcZvSIIlb5k0+tnFtHuSafEhl2MnbWm1mHc+4uYBMwA3jUOXermR2PpHHOjQJ+Cazwn7rfzD6dqTrmkDOB/XjDgoM3mwwcbpyqckRERETSrrKsmNddN5HXXTeRrp4+Nu9vvXhfbsvZ6IPPznT18vMXX+HnL75CSWEBt8yq5s6F41gzv57a0Zp8SmQ4yOjXWWZ20jl3B15wOwUvuL3NzFr9mYB/xaVlbj5hZp9NY116nXNR13VNwokUlDFQsAc03ozDwWHAAydxSlU5IiIiIhk1oriQVfPqWDWvjs+8znjhaBuP7vCWEjrY0hk1X3dfP+vBeWxsAAAgAElEQVT3NLN+TzP3afIpkWEj4+M0zOyg33O7AZgH/MY598fAD/HuwQW4z8w+n4G6xFsCJyvM7Kxz7ihesDkvTvLg8V0Dju2Mki7ZckRERESyprDAccPUsdwwdSwfe/U89jef5RE/yH3xaHvUfNEmn7pzYT1XTdTkUyL5xJllZ8Jh59wy4FGgDG/ioshERx8zsy9kpVJp5Jw7BEwFDpvZtATS/yfwZv/heDM7GSXdg8B7/YdzzWxv4JjD67WdAOw2s6g91M65XXjB7XFgsqXwD8Nf5/YowNGjR5k0KV7nsYiIiEhiGk938ejORh7b2cjm/S309CX2EWZ85QjuXFDPnQvHsWT6WIoLNfmUSCYcO3aMyZMvDhadHG++nkRlLbAFcM7diTf7cQnekj4fMbP/m7UKpdEQAts3Aj/wH358sB5s51wZXuBaBew0s4WDpPkq8Ff+w2VmtmWQNEvxZq0G+KqZvS/uL5QEBbYiIiKSCR3ne3hiTxOP7mzkid1NdMaYfCqoYkQRt8+v566F9dw2p5ayEk0+JZIuoQlsnXO3JZnlDcD7gB8DX46WyMyevJJ6ZdsQAttivCHBM4HTwPVmtn9Amq8Af+0/HHR2ZufcHGAH3rDzZ4HbzOx84PhIvNmqbwR6gQWDzVZ9JRTYioiISKZd6O3j6f2tPLqj0Z986kL8TEBpUQHLZ9dy18J6bp9fz9hR8RaWEJFkhCmw7cfrfU0lM7PQfHXmnJsF3Drg6S8C1UAr8OEBx3472FBj59xr8JY+KgAagc8AW/F6aN8N/ImfdBOw0swG/VrSOfc54GP+w+3APwL78YLm/wlc5x/7nJndl9hvmTgFtiIiIpJNff2XJp96ZMdJDrWeSyhfgYMl08dy18Jx3LGgnklVZWmuqUj+C1tgm2pmZoVpKDctnHP3Av+RRJZVZvZElLLeDTxA9HVotwKvNbOWGPUpAP4NeEeMOvw78B4zS3n7KbAVERGRXGFmNDSd5ZEdJ3l0ZyMvHetIOO+iiRXcuWAcdy0cx5z6ck0+JTIEYQpsV8RPlTwz25COctMhlYGtX94i4H8At+NNBNWJN0z5YeAbZtabYL1eA7wHWAzUAC3ANuBrZvabJOqbFAW2IiIikqteaT/PYzsbeXTnSbYcOEVff2KfjadWl3HXwnHctbCe6yZXUVCgIFckEaEJbEUGUmArIiIiYdB+rpt1u5t4ZMdJNuxtpqsnsYFstaNLuWNBPXctHMeyGdWUFGmGZZFoFNhKaCmwFRERkbA5393Hxn3NPLKjkbW7G2k/15NQvtGlRayaV8ddC8excm4to0pDM02MSEYosJXQUmArIiIiYdbb18/WQ6d4dEcjj+44ySsdXQnlKykqYPmsGu5aOI41CzTDsggosJUQU2ArIiIi+cLM2PHKaR7ZcZJHdpxkb+PZhPIVOFg8zZth+a5F45g4ZmSaayqSm0IT2DrnfgXcb2bbUlqwV3YZ8DfAWTP7aqrLl/RQYCsiIiL56mBL58Ugd/uR9oTz/f/27j3Mrro89Pj3zf1CyIVcZghICBAJmagoIFAxIGIyqNXaaqnntEVrqx5Prba1tVoVrdX2PLW1p7VHOa1F7U2tF6yQAIKoFCl4z4RLCDcBZ3IhkJBAbpNf/1hrk8WwZ8+ay57Za+b7eZ717L1nrd+7fnu9e63Z7163jqVHs25VdoXlkxd7hWVNHFUqbGv3sd0AfCyldMMIxGwH3gC8g+xesB9MKX1ouHE1OixsJUnSRLB19z6uvT07XPm79zzCoZJXWF6+cDYvW9XGuo42nrN0rldY1rhWpcL2A8AfADPJCtxu4F+ALwM/SCkdKBnnBLLb27weWANMAgK4BXhTSun2Ee24msbCVpIkTTS7njjIDXdt5ZqurXxr83aePNhbql3b0TN42arsCstnnbiAqZO9wrLGl8oUtgARsRR4P3ApMJWswAU4CGwEfghsAx7Nh5nAAmA+sIIj91mFrJiF7L6tl6WUvjjiHVZTWdhKkqSJbKhXWJ43ayoXnrqEtauW8OIVi5gxdXKTeyo1X6UK26eCRxwLvA34deDYwqiBZlorZnuBbwCfAK5KXumqkixsJUmSMod6D3PrfTvz83K30rO73BWWZ06dzPnPXsTaVW1ccOpi5s6c2uSeSs1RycL2qZlkZ8O/CLgAOA84G5jdz+R3A9/Jhw0ppa1N76CaysJWkiTpmQ4fTvzk4V1PXXzq3u17S7WbOjk496TsNkIXnbaERXOmN7mn0sipdGFbd8YR84FFZIcg7wO2A9vLnoOr6rCwlSRJGtiWbY+zoSvbk7vx4V2l2kTAmScseOq83OMXzGpyL6XhGXeFrSYOC1tJkqTBefixJ7l2Uw8bunq47f6dlLzAMh1Lj2btadkVlr2NkFqRha0qy8JWkiRp6B7Zs5/r79jGhk093HT3Dg70Hi7VbvnC2aztaGPdqjaec9xci1y1BAtbVZaFrSRJ0sh4fN9BbrxrO9ds6uGbd25j74FytxFqnzuDtavaWLuqjTOXzWeKtxHSGLGwVWVZ2EqSJI28fQd7+c8tO7hmUw/X3b6VR0veRmjB7GlctHIJ61a3ce5JxzB9ircR0uixsFVlWdhKkiQ116Hew9x2/6Nck5+XW/Y2QnOmT+ElKxezblUba569iFnTpjS5p5roLGxVWRa2kiRJo+dptxHq6uHeHeVuIzR9yiTWrFjEuo42Ljx1CXNnea9cjTwLW1WWha0kSdLYSClx97Y9XNPVw4ZNPWz62e5S7aZMCs456RjWdWT3yl08Z0aTe6qJwsJWlWVhK0mS1Boe3PnEU4crf/+nj1KmFIiAM06Yz7qOdtauWsJx871XrobOwlaVZWErSZLUerbt3se1t2/lmk093HzPI/SWvFnu6qVzWdeR3Sv3pEVHNbmXGm8sbFVZFraSJEmt7bEnDjx1r9xvb97O/kPl7pV7yuKj6OxoY21HG6e1H+29cjUgC1tVloWtJElSdezdf4hvbd7Ohq4ebrhzG3v2HyrV7lkLZrGuI7tX7unHz2PSJItcPZOFrSrLwlaSJKma9h3s5eZ7drB+Yw/X3bGVx0reK3fJ0dNZu6qNdavaOOvEBUyZPKnJPVVVjLvCNiJmAWcMMNmTKaXbRqM/ah4LW0mSpOo71HuYW+/byfquHq7Z1MO2x/eXardg9jQuWrmEdR1tnHvyMUyfMrnJPVUrq1xhGxHnAO/LX/5DSulLfcavAjYCA3Xg51JKtzShixolFraSJEnjy+HDiR8++BgburpZ39XDQ48+WardnOlTuHDlYtZ1tLFmxWJmTrPInWiqWNh+E1gDbAJekFI60Gd8rbAdyHdSSmua0EWNEgtbSZKk8SulxKaf7X7qNkJ3b9tTqt2MqZM4f8ViOle38ZJTFzNnxtQm91StoFKFbUScAtxFtjf2VSmlr9eZprjH9kN1wswH3p6PX5VSunPEO6pRYWErSZI0cWzZtodrNvWwvqubrod3l2ozbfIkfu7kY+jsaOei05Ywf/a0JvdSY6Vqhe0fAh8F7kwpndbPNE8VtimluscgRMQtwJnAZSmlPxnxjmpUWNhKkiRNTA/ufCIvcnv4/gOPlmozeVLwwhMX0Lm6nbWrlrB4zowm91KjqVmF7ZSRCFLHOWR7Wq8aZpyvAGflgyRJkqQKOX7BLN503nLedN5ytu7ex7V5kftf9+2k93D9HWy9hxM33/MIN9/zCO+/soszTpjPuo521nW0sXTezFF+B6qKZu2xvQdYBvxiSumr/UxTZo/tOuBq4P6U0vIR76hGhXtsJUmSVLRz7wG+cftW1nd1c9OWHRzsLVeTPPe4uazraKezo41lC2c3uZdqhqodirwLOAp4UUrpu/1McxrwE+BwSqnuQfQR8Xzge8DulNK8Ee+oRoWFrSRJkvqze99BbrhjGxu6erhx8zb2HTxcqt2pbXPo7Ginc3Ubpyw+iohock81EqpW2O4nO8z5jJTSD4cR53Tg+8DBlNL0keqfRpeFrSRJksp44sAhvnXXdtZ39XDDndvYs/9QqXbLF82ms6ONzo52Vh17tEVuC6taYdsDLALWppS+MYw4LwWuBballNpGqn8aXRa2kiRJGqx9B3v5zy07WN/Vw3W3b2XXkwdLtTt+wUw683Nyn3fcPCZNsshtJVW7eFStsD0dGHJhCzynEE+SJEnSBDFj6mQuXLmEC1cu4WDvYW659xHWd/Vw7aYeduw50G+7B3c+yeXfvpfLv30vbUfPYF1HG50dbZyxbAGTLXLHrWbtsf074C3ATSmlFw8jzo3AecDlKaW3jlD3NMrcYytJkqSR0ns48b37d7K+q4drNvXQvWtfqXYLj5rO2lVL6Oxo54XLFzB18qQm91T1VO1Q5FeR3aonAS9LKV0/hBhrgG/mMV6TUrpyZHup0WJhK0mSpGY4fDjx44ceY0NXdhuhn+58olS7ebOmctHKJVy8up1zTz6G6VPq3qRFTVC1wjaATcCpwHbgvJTS5kG0Xw7cBCwB7gZWpmZ0VKPCwlaSJEnNllLi9u7dbOjq4eqN3dyzfW+pdnOmT+HClYvpXN3OmhWLmDHVIreZKlXYAkTExcB/5C/3Au8FPp1S6vcTFhEzgUuBjwBzgcPAq1JKVzWlkxoVFraSJEkabXdvfZz1eZF7Z8/jpdrMmjaZC05dzMUd7Vxw6iJmTWvWJYkmrsoVtgAR8YfAR8kOJwbYA3wH+AHZntw9wGyyC009n+x82jlA7azuP04pfaRpHdSosLCVJEnSWLp/x17Wd/Wwvqubnzy0q1SbGVMnsWbFIi5e3c5LTl3MnBlTm9zLiaGShS1ARPwa8P+AmfmfGs2wVtA+CbwtpXRFE7umUWJhK0mSpFbx0KNPPHVO7vcfeLRUm2mTJ3HeKQvpXN3ORSuXMHeWRe5QVbawBYiIY4HfA34VWNhg0keAzwJ/mVJ6uOkd06iwsJUkSVIr2rp7X17kdnPrfTs5XKI0mjIpOPfkhVzc0cbLVrWxYPa05nd0HKl0Yfu0GUasIrs/7UKyw44fJytof5xS2jSqndGosLCVJElSq9uxZz/XbtrK+q5ubr7nEXpLVLmTJwUvPHEBnavbWbtqCYvnzBiFnlbbuClsNfFY2EqSJKlKHt17gOvu2Mr6jd3ctGUHB3sHrpki4MxlC7i4o411He20zbXIrcfCVpVlYStJkqSq2vXkQa6/Yyvru3r41ubtHDh0uFS7F5wwn86ONjpXt7N03syBG0wQFraqLAtbSZIkjQd79h/ihju3saGrmxvu3Ma+g+WK3OceP4+LO9ro7GjnWcfManIvW5uFrSrLwlaSJEnjzRMHDvHtzdu5emMP19+xlb0Heku161h6NJ0d7XR2tLF80VFN7mXrsbBVZVnYSpIkaTzbd7CX79y9g/Ubu7nu9q08vv9QqXants3h4tXtXLy6jZMXz2lyL1uDha0qy8JWkiRJE8X+Q73cvOURrt7YzbW3b2XXkwdLtTtl8VF5kdvOiiVHERFN7unYsLBVZVnYSpIkaSI62HuY797zCOu7urlm01Z27j1Qqt3yRbN5+ep2OjvaWdk+Z1wVuRa2qiwLW0mSJE10h3oPc+t9O7m6q5sNXVvZsWd/qXbLjplF5+p2Xr66nVXHHl35ItfCVpVlYStJkiQd0Xs48b37d7K+q4f1Xd1s3V2uyD1+wUwu7minc3U7zz1ubiWLXAtbVZaFrSRJklTf4cOJH/z0Ua7emBW53bv2lWq3dN5MLl6d3Sf39OPnVabItbBVZVnYSpIkSQM7fDjxo4ceY/3Gbq7e2MPDjz1Zqt2xc2fQmV9d+fTj5zNpUusWuRa2qiwLW0mSJGlwUkpsfHgXV23sZv3GHn6684lS7dqOnkHn6jYuXt3OC57VekWuha0qy8JWkiRJGrqUEpt+tpurN3azvquH+3bsLdVu8ZzpdHZkRe4ZyxYwuQWKXAtbVZaFrSRJkjQyUkrc0f0467u6uWpjN/duL1fkLpoznXWrsiL3rBPHrsi1sFVlWdhKkiRJIy+lxOate7hqYzdXb+xmy7Y9pdqt/53zWNl+dJN7V1+zCtspIxFEkiRJkjS6IoJnt83h2W1z+N2LVnD31sefKnI3b61f5C5fOJtT2+aMck+bz8JWkiRJksaBU5bM4R1L5vCOl65gy7bHuXpjD1dv7ObOnsefmubi1e2VuTXQYFjYSpIkSdI4c/LiObz9wjm8/cJTuGf7nqduIdS5um2su9YUnmOrpvMcW0mSJEnQvHNsJ41EEEmSJEmSxoqFrSRJkiSp0ixsJUmSJEmVZmErSZIkSao0r4qs0TC59qS7u3ss+yFJkiRpDPWpByb3N91geVVkNV1EnAHcNtb9kCRJktRSzkwpfW8kAnkosiRJkiSp0txjq6aLiOnA6vzldqB3DLsz0bVxZO/5mUDPGPZFjZmr6jBX1WCeqsNcVYe5qo5WytVkYFH+fGNKaf9IBPUcWzVd/mEdkUMMNDwRUXzZM1I3xNbIM1fVYa6qwTxVh7mqDnNVHS2YqwdGOqCHIkuSJEmSKs3CVpIkSZJUaRa2kiRJkqRKs7CVJEmSJFWaha0kSZIkqdIsbCVJkiRJlWZhK0mSJEmqtEgpjXUfJEmSJEkaMvfYSpIkSZIqzcJWkiRJklRpFraSJEmSpEqzsJUkSZIkVZqFrSRJkiSp0ixsJUmSJEmVZmErSZIkSao0C1tJkiRJUqVZ2EqSJEmSKs3CVpIkSZJUaRa2UouKiFRyuLFErHUR8eWIeCgi9uePX46IdYPoz5SIeHNEfDsitkfEkxGxJSI+GRGnDevNtrCIWBwRr4iID0XE+ojYUVj2VwwhXsvkIiKOiYgPRsSPI2JXROzOn38wIo4Z7HsbSyORp4i4dBDr3aUl4s2KiHdFxK0RsTMi9kTEHRHxFxHxrEG8t2flbe6IiL15rFsj4vcjYlbZOK0iIp4fEe/J8/Rgvh7siYjNEXFFRJw3yHiuU00yErlyvWq+iDg6Ii6JiI9FxLfyz+6uiDgQEdsi4saI+IOyn8GIOCciPhcR90fEvojojogNEXHJIPt1SURck7ffl8f7XEScPYgYI5LvVjASeYqI8wexPl1Wok/ja9uXUnJwcGjBAUglhxsbxAjgUwO0/xQQA/TlGOCWBjH2AW8c62U2Bnm4YhBxWioXwJnAzxrEeRg4Y6yX/2jmCbh0EOvdpQPEOgm4s0H7x4CLS/Tp5fm0/cW5E1g+1st/EHn6Vsnl+1lg2gCxXKcqkCvXq1HJ1UtLLt/twNoBYr0f6G0Q42vAjAFizAD+o0GMXuB9Jd7XiOS7VYaRyBNw/iDWp8sG6M+42/aNeZIdHBzqD4UNwt8BHQ2GExvE+NNCnB8Al+QboEvy17VxH24QYzJP/4LzJWAdcBbw28DW/O+HBvqHWcWhz8b5p8A1hddXDCJOy+QCWAr05NMeBP4cOC8f/jz/W8qnWTrWORitPPH0L+AvG2C9m9cgzlHAHYVYlwMvAc4B3gM8nv99L/CcBnGem0+T8jbvyWO8JI9Zi38HcNRY56DkMt7CkS86Hwd+MV8PzgbeCTxUeF//4jpV/Vy5Xo1Krl5Ktt37DPB24BfyPJ0LvA74Qv4ZTsD+/pYP8KbC+98CvDHP+auAGwrj/mmA/vxzYdob8vZn5vG2FMa9qdn5bqVhJPLE0wvbNwywPi1u0Jdxue0b8yQ7ODjUHwobm8uG2P7kwgblNmBmn/Gz8r/XNkYn9RPn0kJfPtHPfHbl4zcDU8Z62Y1wHj4IvAJYkr9eVlgeV1QxF8AVhTivrTP+tYXxnx7rHIxinorLd9kw+nJZIc676ow/p/B5uKFBnG8WPhPn1Bn/rsJ83j/WOSi5bL5O9gVucj/jFwJ3Fd7Xef1M5zpVnVy5XjU/V3Vz1GeaVxfe15fqjJ8HPJqPfwBY2HceZHtrazFe3M981hSm+VrfvuWfmwfy8Tvp58eMkcp3Kw0jlKfzC+PPH0ZfxuW2b8yT7ODgUH8obAguG2L7TxRinN3PNGcXpvmbfqbZVPgHNKufad5diPOLY73smpyXZYX3ekXVcgEs4cgvwhsa9HkDR36tXTLWy32U8lT8R79siPOdypEvh7cDk/qZ7pOFeb2gzvgzC+M/2U+MSfk8ap+JqWO93Ecod68ovPe/7mca16kWGErmyvWqRQaO7AHdXmdcsaC/pJ/2xxU+6//RzzRXFT7nx/UzzSWFef1es/Jd1WGAPJ1feM/nD2Me43Lb58WjpHEoIoLs0B+AO1NKt9SbLv/7XfnLV+ftinFOAWoXD/h8SumJfmZ5ReH5a4bU6XGqBXPx82S/vAP8Y4Ou1+JMztuonPPJ9nwAfCaldLif6a4oPK+Xp1cXntfNUx77s/nL+fm8x4MbC89P6jvSdaql3Fh4/oxcjaDzcb0aCXvzxxl1xtWWzW7gy/Uap5QeAr6Rv7woIo4qjs9fX5i/vC6fvp4v5/OB+nk6n5HJd1U1ytOwjedtn4WtND6dSHbeA2TnUDRSG38c2V6uovPqTPcMKaUeskNVAF5UrosTRqvlolScPuPMaXlll+/3OPLlpVGe9gLfbxBnPOZpWuF5vS+0rlOtY6BcjRTXq2GKiJXA8/KXd/YZN43s3EqA76aUDjQIVVs208n2gBedlf+9ON0z5PFrP0idFRFT+0wyUvmunEZ5GkHjdttnYSu1vtdGxF35Jdgfj4i7I+IzEXFBgzYrC88H2jAWx6/sM24ocY6PiNkDTDuRtFouanF25f+06kopdXPkF/W+fZkIroiIrfltGHZExC0R8eGIWDpAu1J5SikdAu6p06ZvnC35tP1p9JmpqjWF5/WWoetU6xgoV325Xo2i/FY5p0TE75KdW1zbu/bXfSY9BZiSPx/tdWpKPv9BxymR70oYRJ76+khktzc7EBGPRsQPI+KvImLFAO3G7bbPwlZqfacBK8gOSTmK7IT+XwNuiIivRMTcOm2OLzzv71Cgmgf7aTfUOEG2d0SZVstFLc5AMYpx+vZlIlgDLCY71+sY4IXAe4EtEfHmBu1qy2pvSumxAeZRW76LIqK2l4OImEF2gRUYIE8ppUc5ssei8nmKiElk53XVfKHOZK5TLaBkrvpyvWqyKNw3mOw9bAY+RnY+JMBfkF21uGgs16lGcYac71Y3xDz1dQ7Z0StTyQ7dfh7wDuCOiLis7+kXBeN22zdl4EkkjZEnyK4oeD3ZL2Z7gEVkXwzeQval4NXAlRFxUUrpYKHtnMLzPQPMZ2/h+VF9xo1UnIms1XJRizNQjGKciZTPe8nO//ouR/4RLye71ckvkf3A9MmISCmly+u0H8ryhWwZ7+8TYzBxZjM+8vROjhwS+ZWU0vfqTOM61RrK5KrG9Wrs/Qh4S0rpv+qMGw/rVC3O/v4mrIhGearpJlufbiJbtw4BzwJeCfwqWaH7AbJTBd5Tp/243fZZ2Eqta2k/v1ReFxF/A6wHTicrdN8K/N/CNMULDjQ6Vwae/k9gZp9xIxVnImu1XNTiDBSjGGei5PMrZBcqSX3+fhvw+Yh4BdmXianAX0XE1+ocfjWU5QtPX8aDyXUxTqXzFBFrgD/LX24j267V4zo1xgaRK3C9Gm1fJTv3FLK+n0R226ZfAP45It6RUvp6nzbjYZ2qF6eVDSVPkK03J/TZmQHZvbu/GhGfAq4F5gLvjogvpJR+1Gfacbvt81BkqUU1OvwmpbSV7Ffu2sbkt/tMsq/wfBqNFQ/debJJcSayVstFLc5AMYpxJkQ+U0q76nz5Lo7/Otn9ciG7T+pv1JlsKMsXnr6MB5PrYpzK5ikiVpEVQFPIvgC9Lt/O1eM6NYYGmSvXq1GWUnospdSVD7ellP4tpfQaslOYlpMd5XVpn2bjYZ2qF6dlDTFPpJT21ilqi+NvBd6Wv4zC86Jxu+2zsJUqKqV0L3Bd/vLkiDi2MPrxwvOBDvsoXgyg7+EkIxVnImu1XNTilDkcqBbHfB7x/8nuxwdPv3BOzVCWLzx9GQ8m18U4lcxTRJxItodhPtAL/EpKqdEVNl2nxsgQclWW61WTpZQ+B3yR7Lv/30bE/MLo8bBO1YtTOQPkqazPA7vy543WJxhn2z4LW6nabi88L15Vsngi/0AXciqeyP9gn3FDiZModyGBiaLVclF7XeYCX7U4ffsyYaWUtgE78pf1ruRaW76zI2JenfFFteW7PaX01OFeKaV9hXk0zFP+paf2haFyecp/kPsGcCzZ5/WNKaWvDNDMdWoMDDFXpbhejZor88fZQGfh72O5TjWKM+R8V1x/eSolv1p07TY9jdYnGGfbPgtbqdr6u+JdseA9dYAYxfF3jECcB1NKextOObG0Wi5qceZGRFt/ASKiHTi6n75MdP2td1AyTxExheycKqi/fGt/Ozmftj+NPjMtLSIWkh11sjz/02+nlD5boqnr1CgbRq4GNZsG41yvRsb2wvMTCs83k+2Bh9Ffpw4BW4YSp0S+q6q/PA3GsNenPuMrse2zsJWq7bTC858Vnt9XeF3vMJSiF+ePDwP39xl3U+F5v3HyDVrtvmn/OcD8JppWy0WpOH3GmdNcRCwmuyI5PH2dqym7fM/gyB6hRnmaDbygQZxK5im/Tdk1HNmGvTul9ImSzV2nRtEwc1V2Hq5Xo6O49+6pQ0JTSgeAW/OX50REo3Mma8tmP0cuflRzG0eu/dFonZoGnF1rk8+/aKTyXVV181RWXvDXtllDXp+quO2zsJUqKiKWAxflL+9NKT1cG5dfqKN2KMupEXF23/Z5jLM58mvclX0v8JFS2syRX9deFxGz+unOpYXnI3Jo2njRgrn4GnA4f/6GBl2vxTmct1HmtzjyS3i9cwtv5Mi5Tb/e4D6Clxae18vTVwvP6+Ypv4/or+UvHwO+2c+8Wkr+2b0KeH7+pz9NKf152fauU6NnuLkaBNer0fHawvONfcbVls3RwGvqNUMV43QAAAnkSURBVI6I44CX5i+vTykVz9Ukf319/vKl+fT1vIYje/Dq5elGRibfVdUoT2VcwpHl+4z1aVxv+1JKDg4OLTaQ3YtsSoPxS8gu7Z7y4XfrTLMCOJiPvw2Y2Wf8zPzvKZ/ulH7m9cbCfP62zviTyP4BJbLDifrt93gYgGWF5XFFyTYtlQvgs4U4v1Rn/GsH+x5bbRhsnvLpTx9gmleQ7aVIZFd2XNrPdB8qzPtddcafU/g83Nhgft8ufCbOqTP+XYX5XDbWy7xkXqaR7f2r9fvjQ4zjOlWBXLlejVquLgVmDDDNOwvv676+n2VgAVkhn8iObjimz/jJZEVJLcYF/cznJYVprgQm9xm/EHggH/8oML+Z+W6lYbh5Irto2/kDtD8rX66JrJA8o5/pxuW2b8yT7ODg8Mwh/6fyMNm9aX8l34A/j+yX0g+TXQCjtqH4DjC9nzgfLUz3A+CXyQ7d+WWeXhh/pEFfJpMdblKb9t+BtfnG838DW/O/9wKdY73smpCLF+X/jGrD7xeWxU19xl3aIE7L5ILsIg7bOPLl7s/y9/mi/Hnty8I24LixzsFo5Ak4P5/2ZuCPyC7Y8YI8R68DvkD2JaEW820N+jIHuKsw7aeAC8gOvfsjsitJJuAJ4HkN4pyeT5PyNn+Ux7ggj1mLfxcwZ6xzUDJPXyr0+3pgNdDRYFjhOlXdXLlejVqu7gceAS4n29v8c8Bz88/fW/t8xvcDL+0nzpsL020h2wt3BvDzwA2Fcf8yQH/+tTDtDXn7M/J4Wwrj3tzsfLfSMNw8ceQH2x+T3SLr54EzyY6oeDXwD2SHgtdi/J8GfRmX274xT7KDg8Mzh3zjl0oM/w7MaxBnUr6haxTj74FJA/RnIdn5N/3F2A/85lgvtybl4oqSuUhAqkougBcC3Q3idAMvHOvlP1p54sgX8IGGvcBvlejPyWQXZOkvzi7gFSXivJIjv5rXG+4CTh7r5T+IPJXOUT7c7zpV3Vy5Xo1aru4vuZwfBC4aINYHefqPDX2Hqxh4r+PMfLr+YvRSYm/4SOW7VYbh5omnH4nUaDgEfACIAfoz7rZ9kXdIUguJiDVkJ9ufQ3YVyoVk50vsIdvg3Qx8JqX03ZLxLiY7h+nMPNYOssP0PpVSWl8yxhTgN4HXAyvJLtjwM7Jf8v86pbSp7Purkoi4Avj1stOnlBpdibClcpFf6fR3yH7pXZb/+T6yw8c+nlJ6pEycVjDcPEXEHLJfv88h27PQTpafKWSHdW0iW75/n7Jbk5Tp02zgbWSHYp1Mdmjng8DVZHl6oGScE8jy9HKy2yocINvr8UWyQ8ieKBOnFUTEYL90PJBSWjZATNepJhiJXLlejY6IOInsiK4LyD6/S8guxrWPbM/bj4CvA18o874i4lyyZXxeHusxsr2E/5hS+tdB9Ov1ZEfJPBeYl/flO2TLt+z3lxHJdysYbp7yi27V1qezyC4ytRCYQVbk30V2fvLfp5TuL9mncbXts7CVJEmSJFWaV0WWJEmSJFWaha0kSZIkqdIsbCVJkiRJlWZhK0mSJEmqNAtbSZIkSVKlWdhKkiRJkirNwlaSJEmSVGkWtpIkSZKkSrOwlSRJkiRVmoWtJEmSJKnSLGwlSZIkSZVmYStJkiRJqjQLW0mSJElSpVnYSpIkSZIqzcJWkiRJklRpFraSJEmSpEqzsJUkSZIkVZqFrSRJarqIOCUi9ufDs5o4n6sjIkXEB5s1D0lS67GwlSRpgoiIZXnRN6xhiLP/GDAN+MeU0k/r9O2KwjyWDfA+fiEiDuTT7o2ICwujP5Q/visijh9iXyVJFWNhK0mSmioizgZeCRwEPjLMWK8DvgBMBfYAnSml62vjU0q3ANcBM4E/Hs68JEnVMWWsOyBJkkbNw8DqBuOvAY4FfgasHcH5vi9//GK9vbVlRcT/AD4DTAZ2kxW1N9eZ9GPARcAbIuJDKaWHhzpPSVI1WNhKkjRBpJQOAl39jY+Ig/nTgymlfqcbjIhYAXTmL/9pGHEuBf6B7Gizx4C1KaVb+5n8G8A2YDHwVtxzK0njnociS5KkZnojEGSF5nVDCRARvwl8mux7yyPASxoUtaSUeoHP5y8vjQi/70jSOOeGXpIkNdPr8scrU0qHBts4It4GfIqsON5OVtT+sETTL+WPS4EXDXa+kqRqsbCVJElNEREnACfmL28ZQvt3An9LVtT2AOenlH5SsvltQG/+/PzBzluSVC0WtpIkqVnOKzy/bTANI+IPgb/MXz4MrEkp3V62fUrpCWBTnX5IksYhC1tJktQs5+aPB4DSRSnwXuDP8uc/JStqNw9h/t/PH8+JiBhCe0lSRVjYSpKkZjkuf3wkv6BTWW/KH7cCL04p3TPE+W/LH2cD84YYQ5JUARa2kiSpWRblj48Osl3KHxcDa4Yx/511+iJJGocsbCVJUrMsyB8HW9i+EzhEdtGoT0fEa4c4/+J8jxliDElSBVjYSpKkZtmXP84cZLsrgf9JdlXjycA/R8QrhzD/4nyfHEJ7SVJFWNhKkqRm2Z4/Lmg4VR0ppc8Dv0F2WPJU4IsRcdEgwxTnu73fqSRJlWdhK0mSmqVWTM4fSuOU0meA/5W/nA58NSJePIgQxfnuGEofJEnVYGErSZKaZWP+ODciFg8lQErpk8Dv5S9nAV+PiBeWbL4if9ycUto/lPlLkqrBwlaSJDXLdwrPzxxqkJTSXwLvy1/OATZExOklmp5Rpx+SpHHIwlaSJDXLrUBtT+lZwwmUUvow8JH85Tzg2og4rb/pI2I5sDB/aWErSeOcha0kSWqK/PDf6/OXF45AvPcCH89fLgSuj4hT+pm8Nr9e4JrhzluS1NosbCVJUjN9Ln88NyKWDTdYSumdwOX5yzay4vaEOpO+Pn/8RkqpZ7jzlSS1NgtbSZLUTF8GeoAAfmWEYr4F+Gz+/HjghohYWhuZP69dPfnvRmiekqQWFimlse6DJEkaxyLi3cBHgbuBU1NKh5s8vz8G/gS4Czit2fOTJI09C1tJktRUEXEUcC+wCHh9Sulfmzyv+4Fjmj0vSVLr8FBkSZLUVCmlPcAH8pfvi4hmfv94G1lRexvwb02cjySphUwZ6w5IkqQJ4XKy2/RMB44FHmrSfB4HPgh8OXlYmiRNGB6KLEmSJEmqNA9FliRJkiRVmoWtJEmSJKnSLGwlSZIkSZVmYStJkiRJqjQLW0mSJElSpVnYSpIkSZIqzcJWkiRJklRpFraSJEmSpEqzsJUkSZIkVZqFrSRJkiSp0ixsJUmSJEmVZmErSZIkSao0C1tJkiRJUqVZ2EqSJEmSKs3CVpIkSZJUaRa2kiRJkqRKs7CVJEmSJFWaha0kSZIkqdIsbCVJkiRJlWZhK0mSJEmqtP8GfXKrS0MzQ4IAAAAASUVORK5CYII=\n",
"text/plain": [
"