{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NAM 2019 pMuTT Workshop\n",
"\n",
"Instructions and materials for the \"Theory, Applications, and Tools for Kinetic Modeling\" workshop can be found on [our documentation page](https://vlachosgroup.github.io/pMuTT/nam_2019.html).\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents\n",
"\n",
"| **1\\. [Virtual Kinetic Laboratory Ecosystem](#section_1)**\n",
"\n",
"| **2\\. [Useful Links](#section_2)**\n",
"\n",
"| **3\\. [Constants](#section_3)**\n",
"\n",
"|-- **3.1. [Access common constants in appropriate units](#section_3_1)**\n",
"\n",
"|-- **3.2. [Convert between units](#section_3_2)**\n",
"\n",
"|-- **3.3. [Convert between equivalent quantities](#section_3_3)**\n",
"\n",
"| **4\\. [Exercise 1](#section_4)**\n",
"\n",
"| **5\\. [Creating statistical mechanical objects using StatMech](#section_5)**\n",
"\n",
"|-- **5.1. [Supported StatMech models](#section_5_1)**\n",
"\n",
"|--|-- **5.1.1 [Translations](#section_5_1_1)**\n",
"\n",
"|--|-- **5.1.2. [Vibrations](#section_5_1_2)**\n",
"\n",
"|--|-- **5.1.3. [Rotations](#section_5_1_3)**\n",
"\n",
"|--|-- **5.1.4. [Electronic](#section_5_1_4)**\n",
"\n",
"|--|-- **5.1.5. [Miscellaneous](#section_5_1_5)**\n",
"\n",
"|-- **5.2. [Initializing StatMech modes individually](#section_5_2)**\n",
"\n",
"|-- **5.3. [Initializing StatMech modes using presets](#section_5_3)**\n",
"\n",
"| **6\\. [Plot Thermodynamic Quantities](#section_6)**\n",
"\n",
"| **7\\. [Exercise 2](#section_7)**\n",
"\n",
"| **8\\. [Creating empirical objects](#section_8)**\n",
"\n",
"|-- **8.1. [Inputting a NASA polynomial directly](#section_8_1)**\n",
"\n",
"|-- **8.2. [Fitting an empirical object to a StatMech object](#section_8_2)**\n",
"\n",
"| **9\\. [Input/Output](#section_9)**\n",
"\n",
"|-- **9.1. [Input via Excel](#section_9_1)**\n",
"\n",
"|-- **9.2. [Output via Thermdat](#section_9_2)**\n",
"\n",
"| **10\\. [Reactions](#section_10)**\n",
"\n",
"| **11\\. [Exercise 3](#section_11)**\n",
"\n",
"| **12\\. [Solutions](#section_12)**\n",
"\n",
"|-- **12.1. [Solution 1](#section_12_1)**\n",
"\n",
"|-- **12.2. [Solution 2](#section_12_2)**\n",
"\n",
"|-- **12.3. [Solution 3](#section_12_3)**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Virtual Kinetic Laboratory Ecosystem\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"- Estimates thermochemical and kinetic parameters using statistical mechanics, transition state theory\n",
"- Writes input files for kinetic models and eases thermodynamic analysis\n",
"- Implemented in Python\n",
" - Easy to learn\n",
" - Heavily used in scientific community\n",
" - Object-oriented approach is a natural analogy to chemical phenomenon\n",
"- Library approach allows users to define the starting point and end point\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Useful Links\n",
"\n",
"- [Documentation](https://vlachosgroup.github.io/pMuTT/): find the most updated documentation\n",
"- [Issues](https://github.com/VlachosGroup/pmutt/issues): report bugs, request features, receive help\n",
"- [Examples](https://vlachosgroup.github.io/pMuTT/examples.html): see examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. Constants\n",
"\n",
"The [constants module](https://vlachosgroup.github.io/pMuTT/constants.html) has a wide variety of functions for constants and unit conversion."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.1. Access common constants in appropriate units\n",
"Below, we access Planck's constant in J s."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"h = 6.582119513926018e-16 eV s\n"
]
}
],
"source": [
"from pmutt import constants as c\n",
"\n",
"h1 = c.h('eV s', bar=True)\n",
"print('h = {} eV s'.format(h1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.2. Convert between units\n",
"Below, we convert 12 atm of pressure to psi."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"12.0 atm = 176.35175185906093 psi\n"
]
}
],
"source": [
"from pmutt import constants as c\n",
"\n",
"P_atm = 12. # atm\n",
"P_psi = c.convert_unit(num=P_atm, initial='atm', final='psi')\n",
"\n",
"print('{} atm = {} psi'.format(P_atm, P_psi))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3.3. Convert between equivalent quantities\n",
"Below, we convert 1000 wavenumbers (cm-1) to frequency."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1000.0 cm-1 = 29979245800000.0 Hz\n"
]
}
],
"source": [
"from pmutt import constants as c\n",
"\n",
"wave_num = 1000. # cm-1\n",
"freq = c.wavenumber_to_freq(wave_num) # Hz\n",
"\n",
"print('{} cm-1 = {} Hz'.format(wave_num, freq))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. Exercise 1\n",
"\n",
"Using `pmutt.constants`, calculate the dimensionless enthalpy (H/RT) using the following information:\n",
"- H = 0.5 eV\n",
"- T = 77 F"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Fill in your answer for Exercise 1 here\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. Creating statistical mechanical objects using StatMech\n",
"\n",
"Molecules show translational, vibrational, rotational, electronic, and nuclear modes.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.1. Supported StatMech modes\n",
"\n",
"\n",
"\n",
"The StatMech object allows us to specify translational, vibrational, rotational, electronic and nuclear modes independently, which gives flexibility in what behavior you would like. Below are the available modes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1.1. Translations\n",
"- [``FreeTrans``](https://vlachosgroup.github.io/pMuTT/statmech.html#freetrans) - Translations assuming no intermolecular interactions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1.2. Vibrations\n",
"- [``HarmonicVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonicvib) - Harmonic vibrations\n",
"- [``QRRHOVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonicvib) - Quasi rigid rotor harmonic oscillator. Low frequency modes are treated as rigid rotations.\n",
"- [``EinsteinVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#einsteinvib) - Each atom in the crystal vibrates as independent 3D harmonic oscillators\n",
"- [``DebyeVib``](https://vlachosgroup.github.io/pMuTT/statmech.html#debyevib) - Improves upon ``EinsteinVib`` by considering simultaneous vibrations. Improves accuracy at lower temperatures."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1.3. Rotations\n",
"- [``RigidRotor``](https://vlachosgroup.github.io/pMuTT/statmech.html#rigidrotor) - Molecule can be rotated with no change in bond properties"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1.4. Electronic\n",
"- [``GroundStateElec``](https://vlachosgroup.github.io/pMuTT/statmech.html#groundstateelec) - Electronic ground state of the system\n",
"- [``LSR``](https://vlachosgroup.github.io/pMuTT/statmech.html#linear-scaling-relationships-lsrs) - Linear Scaling Relationship to estimate binding energies using reference adsorbate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5.1.5. Miscellaneous\n",
"- [``EmptyMode``](https://vlachosgroup.github.io/pMuTT/statmech.html#empty-mode) - Default mode if not specified. Does not contribute to any properties\n",
"- [``ConstantMode``](https://vlachosgroup.github.io/pMuTT/statmech.html#constant-mode) - Specify arbitrary values to thermodynamic quantities\n",
"\n",
"Using a ``StatMech`` mode gives you access to all the common thermodynamic properties.\n",
"\n",
"\n",
"\n",
"For this example, we will use a hydrogen molecule as an ideal gas:\n",
"- translations with no interaction between molecules\n",
"- harmonic vibrations\n",
"- rigid rotor rotations\n",
"- ground state electronic structure\n",
"- no contribution from nuclear modes.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.2. Initializing StatMech modes individually"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -618.6 kJ/mol\n",
"S_H2(T=298 K) = 130.23 J/mol/K\n"
]
}
],
"source": [
"from ase.build import molecule\n",
"from pmutt.statmech import StatMech, trans, vib, rot, elec\n",
"\n",
"H2_atoms = molecule('H2')\n",
"\n",
"'''Translational'''\n",
"H2_trans = trans.FreeTrans(n_degrees=3, atoms=H2_atoms)\n",
"\n",
"'''Vibrational'''\n",
"H2_vib = vib.HarmonicVib(vib_wavenumbers=[4342.]) # vib_wavenumbers in cm-1\n",
"\n",
"'''Rotational'''\n",
"H2_rot = rot.RigidRotor(symmetrynumber=2, atoms=H2_atoms)\n",
"\n",
"'''Electronic'''\n",
"H2_elec = elec.GroundStateElec(potentialenergy=-6.77,spin=0) # potentialenergy in eV\n",
"\n",
"'''StatMech Initialization'''\n",
"H2_statmech = StatMech(name='H2',\n",
" trans_model=H2_trans,\n",
" vib_model=H2_vib,\n",
" rot_model=H2_rot,\n",
" elec_model=H2_elec)\n",
"\n",
"'''Calculate thermodynamic properties'''\n",
"H_statmech = H2_statmech.get_H(T=298., units='kJ/mol')\n",
"S_statmech = H2_statmech.get_S(T=298., units='J/mol/K')\n",
"print('H_H2(T=298 K) = {:.1f} kJ/mol'.format(H_statmech))\n",
"print('S_H2(T=298 K) = {:.2f} J/mol/K'.format(S_statmech))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.3. Initializing StatMech modes using presets\n",
"\n",
"Commonly used models can be accessed via [``presets``](https://vlachosgroup.github.io/pMuTT/statmech.html#presets). The currently supported models are:\n",
"\n",
"- [``idealgas``](https://vlachosgroup.github.io/pMuTT/statmech.html#ideal-gas-idealgas) - Ideal gases\n",
"- [``harmonic``](https://vlachosgroup.github.io/pMuTT/statmech.html#harmonic-approximation-harmonic) - Typical for surface species\n",
"- [``electronic``](https://vlachosgroup.github.io/pMuTT/statmech.html#electronic-electronic) - Only has electronic modes\n",
"- [``placeholder``](https://vlachosgroup.github.io/pMuTT/statmech.html#placeholder-placeholder) - No contribution to any property\n",
"- [``constant``](https://vlachosgroup.github.io/pMuTT/statmech.html#constant-constant) - Use arbitrary constants to thermodynamic properties\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"H_H2(T=298 K) = -618.6 kJ/mol\n",
"S_H2(T=298 K) = 130.23 J/mol/K\n"
]
}
],
"source": [
"from ase.build import molecule\n",
"from pmutt.statmech import StatMech, presets\n",
"\n",
"H2_statmech = StatMech(atoms=molecule('H2'),\n",
" vib_wavenumbers=[4342.], # cm-1\n",
" symmetrynumber=2,\n",
" potentialenergy=-6.77, # eV\n",
" spin=0.,\n",
" **presets['idealgas'])\n",
"\n",
"'''Calculate thermodynamic properties'''\n",
"H_statmech = H2_statmech.get_H(T=298., units='kJ/mol')\n",
"S_statmech = H2_statmech.get_S(T=298., units='J/mol/K')\n",
"print('H_H2(T=298 K) = {:.1f} kJ/mol'.format(H_statmech))\n",
"print('S_H2(T=298 K) = {:.2f} J/mol/K'.format(S_statmech))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 6. Plot Thermodynamic Quantities\n",
"Use [`pmutt.plot_1D`](https://vlachosgroup.github.io/pMuTT/visual.html#plot-1d) and [`pmutt.plot_2D`](https://vlachosgroup.github.io/pMuTT/visual.html#plot-2d) to plot any function with respect to 1 or 2 variables."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABGsAAAQICAYAAAC6SVZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXRc2WHn99/Fvu+vuIE7WAV1q/dmd7O5oGCPl4mOj5WMNXZ8ZC2J40XxZBJPJp7RSWzFRzPO0cQ6juV4fOQzI8mKJVmxPWPLPt6DArtJqrvZrVarpUYVwBVkk6yHfSO2ws0f76GIpkDyPaCKqEJ9P+fgoApV99YVSmiCP/7evcZaKwAAAAAAABSGsq1eAAAAAAAAAO4grAEAAAAAACgghDUAAAAAAAAFhLAGAAAAAACggBDWAAAAAAAAFBDCGgAAAAAAgAJCWAMAAAAAAFBACGsAAAAAAAAKCGENAAAAAABAASGsAQAAAAAAKCCENQAAAAAAAAWEsAYAAAAAAKCAENYAAAAAAAAUEMIaAAAAAACAAkJYAwAAAAAAUEAIawAAAAAAAApIxVYvAMgVY0y1pMf8u66kzBYuBwAAAACw/ZVLcvzb37HWLuRiUsIabCePSXptqxcBAAAAAChJRyWdz8VEXAYFAAAAAABQQGjWYDtxV2+8+uqr2rVr11auBQAAAACwzd24cUPPPffc6l33fs8Ng7AG20l2j5pdu3aps7NzK9cCAAAAACgtOds3lcugAAAAAAAACghhDQAAAAAAQAEhrAEAAAAAACgghDUAAAAAAAAFhLAGAAAAAACggBDWAAAAAAAAFBDCGgAAAAAAULCstVu9hIeuYqsXAAAAAAAAsMpaq+StaSWSrhLJtA47Dfo3/+VjW72sh4qwBgAAAAAAbKmZhWW9PDii/lRaiaSrG5Pz2ccujczq0x98v4wxW7jCh4uwBgAAAAAAPFTWWg2mZ9Q34IUz56+MaSmz/uVOt6YW9M6NaT2yu+khr3LrENYAAAAAAIC8m11Y1pmhESVSrhIDab27pj3zIIlUmrAGm2OMaZD0tKTn/I+jkg74D1+x1h5Yf2Tg+b8u6UNrvnTQWns54Nh/JOnDkk5I2iVpWdItSW9J+gdJX7bWzmxwXZcl7Q/w1E1/DwAAAAAAhc1aq6H0jLf3TCqtVy/duz2znj0ttertdhSPRnTscHseV1p4CGvy4xuS4vmY2BjzAb03qAk6rlXSFyT9+DoPN0k6IumfSDon6c3NrBEAAAAAUJrmFpd1dmhUfUnv8qbrE7cDj60sN3ruYJt6YxHFY44OOw0ltU/NWoQ1+bH2/03jks5LOiapYVOTeo2d3/XvpiVFAo5rlvR3kp7xv/SXkr4maUhSubw2zFFJP7GZ9a3xZ5L+1/s8vpij1wEAAAAAbCFrrS64s0r44cyrl8a0mFkJPH5PS616Yo7iUUcvdnWooZqYQiKsyZevSPq8pFettUNS9hKhTYU1kj4taZ+8y5WuSfpowHGfkxfULEv6sLX2j+56/IykrxhjflleeLNZE9bat3MwDwAAAACgwMwtLuvchVElkq76kmldGw/Xnnl2f5t3eVMsoiOR0m3P3A9hTR5Yaz+f6zmNMc9K+iVJC5I+IemTAcedkPQz/t1PrxPUZFlrrbxABwAAAAAASV575uLIrLf3TDKtVy6NaXE5eHtmV3ON4jEvnDlOeyYQvkNFwBhTIen35bVePm2tTYVIHn/J/zwj6TfzsDwAAAAAwDZzezGjcxdHsu2Z4bHg7ZmKMqNnD7Qq7u89E9vRSHsmJMKa4vDLkp6UNCjpN4IOMsZU6c6Gwn+1esqTH/7skWQl3bTWsocMAAAAAJS4SyOz6htIK5Fy9c2Lo6HaMzuaqrMbAx/v6lBjTWUeV7r9EdYUOGPMQUm/5t/9hLV2IcTwJyTV+LfPGWN2ygt7PiSp3v/6vDGmT15j52wu1izplDHmLUmH5W22fEvSq5K+KunP/MutAAAAAABb6PZiRt+8OOptDpxydWV0LvDY8jKjZ/a3ZgOa7p20Z3KJsKbw/Z6kOklftdb+fcixj6y5XSPpO5I67npOjaR/LOlHjDH/wlr7Wxte6R0H77p/wP/4p5LOGGN+0lp7PeykxpjOBzxlZ9g5AQAAAKCUXB7xTm7qS3rtmYUQ7ZlIY/V79p5prqU9ky+ENQXMGPNhST8saVLepVBhta25/WuSqiX9haRPSXpbUrOkfyLp/5DUJOmzxpiktfavNrjkRUl/Lulv/fknJbXIO7b8FyXtlXRc0t8ZY45ZaydDzj+8wXUBAAAAQEmaX1ptz3ibA18O257Z1+odrR1z9MiuJtozDwlhTYEyxrRJ+qx/95PW2psbmKZ+ze1qSd+Q9EFr7Wp0mpb0740x35HUL6lM0meMMX+9wUuVnrPWTqzz9YQx5nck/bG88Ol98sKjjQRQAAAAAID7uDo6p75kWolkWucujmp+KXh7xmmsVk/UC2dOHnFoz2yRkg1r/E12l3Iw1cettV/MwTx3+6wkR9Jr8i6F2oj5u+7/yzVBTZa19mVjzJ9K+glJ7/c/vhP2xe4R1Kw+Nm2M+aeSLkhql/Rzxph/FXJz470PeHynvO8XAAAAAJSM+aWMXr00pr5kWv1JVxdHZgOPLTPS0/ta1dsdUU/Ua8+UldGe2WolG9YUMmPMD0j6qKSMpJ9fL2AJaHrN7UvW2uR9nvs38sIaSTqqDYQ1D2KtnTTGfE3Sfy+v9fOspMCbGltrr93vcep4AAAAAErF8NictzFw0tXZC6O6vZQJPLajwWvP9HY7OtnlqLmO9kyhKdmwxlq7bIx5Xw6mupGDOe72K/7n85JixpjYOs9Zu4nvjxljXEmy1n5tzdfX7vFy36DjrudGgi50A7635vaePL4OAAAAAGwbC8tee2Z175kLbrj2zFP7WhWPOurtjtCeKQIlG9ZIkrV2YKvXcA/V/ufn5R13/SC/veb22rDmu2tulz9gjrWPLwd4zY3ivwgAAAAAEMDw2JwSKVf9ybTOXhjV3GKY9kyVTkW9k5tOHelQS11VHleKXCvpsGa7s9ZeMcZclbRP0uEHPH3t46GP1Q5h7XHi7+bxdQAAAACgqCwsZ3T+8nj2aO2h9EzgscZIT+1tUTwWUTzm6P27m2nPFDHCmgJkrY0/6DnGmC/K29dGkg5aay/f46l/Iul/krTDGPOitfZee8T8V2tuvxRspeEYY5ol/aR/d07eZV4AAAAAULKuT9zO7j1zZmgkVHumvb5KPVFHPTFHp444aq2nPbNdENZsf78l6Rcl1Uj6bWNMj7X2PRc3GmM+LCnu3/3L9TbyNcYkJPX4d78vHDLG/Kikfmvt7fUWYYxplPR1eSdBSdJ/sNYubOR/EAAAAAAUq8XlFZ2/cmfvmdStcO2ZJzpbFI856o1F9Nge2jPbFWFNHhhjuiSduOvLDaufjTEfu+uxv7bW3szHWqy1V40xvyrpM5KekfSqMeYzkt6W1CyvUfML/tOn5LVwNuJfSfpD/wjwl+Ud0T0jqUXSMXmB0erR20lJn9rg6wAAAABAUbkxeVuJpKu+gbTODI1oNkR7pq2+SqeOdHh7z0QdtdGeKQmENflxQtIX7vFY+zqP9UrKS1gjSdbaf2eMaZN3ytQjkr64ztPSkj5orR3cxEu1SfpZ/+NeTkv6aWvt2CZeBwAAAAAK1lJmxdt7JpVWf9LVwM3pwGONkR7f05zde+bxzhaV054pOYQ1JcJa+6+NMX8ur+FyUtIuSfOSUpL+XNLnrLWTm3iJ/1nSD8pr0cQkdchr1czJ20j4FXknW/2ttdZu4nUAAAAAoODcnJx/z94z0wvBD9ltqavUqSOO4jFHPVFH7Q3VDx6Ebc3w92ZsF8aYTknDkjQ8PKzOzs4tXhEAAACA7Wops6I3rowrkfIubwrTnpGkxzubFY86indH9ATtmaJ17do17d27uuOH9q63B+xG0KwBAAAAACCAW1Pz6k+66kum9fJguPZMc22lTkUdxaOOTkUdOY20Z3BvhDUAAAAAAKxjObOiN65OKJFMqy/p6p0bU6HGv39Pk3r9vWee6GxRRXlZnlaK7YawBgAAAAAAX3pqXomUq/6kq9ODrqbng7dnmmoqdNJvz/TEHEUaa/K4UmxnhDUAAAAAgJK1nFnRt4YnspsDf/fdcO2ZR3Y1qbfbUTwW0VN7ac8gNwhrAAAAAAAlJT3t7T2TSLl6KeVqKkR7prGmQiePdHhHa0cdRZpozyD3CGsAAAAAANtaZsXqzeFx9Q24SqTSevt6uPbM+3Y1KR5z1BuL6Kl9LaqkPYM8I6wBAAAAAGw77vSCTqe8k5teGhzR5O2lwGMbqyt04kiH4jFHPdGIdjbTnsHDRVgDAAAAACh6XntmQv3JtBIpV29dmww1vntno3dpU8zRM/tbac9gSxHWAAAAAACK0ujMgvpTrhL+yU0Tc8HbMw3VFTre1Z4NaHY11+ZxpUA4hDUAAAAAgKKQWbF669qEEklXiWRab12flLXBx8d2NCoe805uemZ/q6oqaM+gMBHWAAAAAAAK1tjsok6nvHCmP+VqPER7pr6qXMe7OrLtmd0ttGdQHAhrAAAAAAAFY2XF6jvXJ9WXTCuRdPXtaxOh2jPRHQ3ZcObZ/W20Z1CUCGsAAAAAAFtqfHZRpwf9vWdSrkZnFwOPrcu2Z7zLm/bQnsE2QFgDAAAAAHioVlas3n53Uomkd7T2t4cntBKiPXMk0pANZ5490KrqivL8LRbYAoQ1AAAAAIC8m5hb1OnBESWSaZ1OuRqZCd6eqa0sf8/JTZ2tdXlcKbD1CGsAAAAAADm3smL1vRtT6htIK5Fy9a2r46HaM4edesVjEfXGIjp6kPYMSgthDQAAAAAgJybnlvTSkKu+AVf9KVcjMwuBx9ZUlun44Tt7z+xtoz2D0kVYAwAAAADYEGutvvvulBL+yU1vhGzPHOqoz17a9NzBNtVU0p4BJMIaAAAAAEAIk7eX9PLgiPqSafWnXLnT4dozxw7d2Xtmf3t9HlcKFC/CGgAAAADAPVnr7T2TSLpKJNN64+qEMiHqMwc76tUTdRSPOXrhUDvtGSAAwhoAAAAAwHtMzXvtmYTfnrk1Fbw9U11RpmOH2xWPenvPHOigPQOERVgDAAAAACXOWquBm9PqW9175sq4lkO0Z/a313nhTHdEx2jPAJtGWAMAAAAAJWh6fklnhkayJzfdnJoPPLaqokwvHPLaM73dER2kPQPkFGENAAAAAJQAa62St6aze8+cvxyuPbO3rVa9/sbALxxqV10Vf50E8oWfLgAAAADYpmYWlvXy4Ij6U97lTTcmQ7Rnysv0/KG27MlNhzrqZYzJ42oBrCKsAQAAAIBtwlqrwfSMEsm0+gZcnb8ypqVM8PZMZ+ud9syxw7RngK3CTx4AAAAAFLHZhWWdGRpRIuWqP+nq+sTtwGOrysv03ME2xWPeyU2HHdozQCEgrAEAAACAImKt1VB6xtt7JpXWa5fGtZhZCTx+T0ut4jFHvbGIjh1uV301fy0ECg0/lQAAAABQ4OYWl3V2aDR7tHaY9kxlufHaM9GIersdHXYaaM8ABY6wBgAAAAAKjLVWF9xZJfxw5tVLY6HbMz0xR/Gooxe7OtRAewYoKvzEAgAAAEABmFtc1rkLo0okXfUl07o2Hq498+z+NvV2e3vPHInQngGKGWENAAAAAGwBa60ujsx6e88k03rl0pgWl4O3Z3Y112Q3Bj5OewbYVvhpBgAAAICH5PZiRucujmTbM8NjwdszFWVGzx5oVdw/Wju2o5H2DLBNEdYAAAAAQB5dGplV30BaiZSrb14cDdWe2dFUrV4/nDne1aHGmso8rhRAoSCsAQAAAIAcml/K6NzFUSX8gObK6FzgseVlRs/sb80GNN07ac8ApYiwBgAAAAA26fKId3JTX9JrzyyEaM9EGqvfs/dMcy3tGaDUEdYAAAAAQEjzSxl98+JodnPgy2HbM/tavaO1Y44e2dVEewbAexDWAAAAAEAAV0fn1JdMK5FM69zFUc0vBW/POI3Vike99syJI7RnANwfYQ0AAAAArGN+KaNXL41l2zMXR2YDjy0z0tP7WtXbHVFP1GvPlJXRngEQDGENAAAAAPiGx+aye8+cuzCq20uZwGM7GqrVE3XU2+3oZJej5jraMwA2hrAGAAAAQMlaWL7TnulLpnXRDdeeeWpfq+JRR73dEdozAHKGsAYAAABASRkem1Mi5ao/mdaZobDtmSqdijrqjUV08kiHWuqq8rhSAKWKsAYAAADAtrawnNFrl8aVSKaVSLkaSs8EHltmpCf3tigei6g3FtGju2nPAMg/whoAAAAA2871idvqG0grkXR19sKI5haDt2fa66vUE3XUE3N06oij1nraMwAeLsIaAAAAAEVvcXlF5y+P+UdruxoM0Z4xRnqis0W9sYjiMUeP7WmmPQNgSxHWAAAAAChK707czm4MfHZoRLMh2jNt9VU6daRDvd0RnTziqI32DIACQlgDAAAAoCgsLq/o/JUx9fsBTepWuPbM450tikcdxWOOHu9sUTntGQAFirAGAAAAQMG6Mem1ZxL+yU0zC8uBx7bUVerUEUe93d7eM+0N1XlcKQDkDmENAAAAgIKxlFnR61fG1ZdMqz/pauDmdKjxj3c2K+7vPfME7RkARYqwBgAAAMCWujk5r/5UWn0Drs4MjWg6RHumubZSp6KOemOOTkUdddCeAbANENYAAAAAeKiWMit648q4EilXiaSrd25MhRr/2J5mxWOO4rGIntxLewbA9kNYAwAAACDvbk3Nqz/pKpFK66XBEU3Ph2vPnDzSoXgsop6oI6eR9gyA7Y2wBgAAAEDOLWdW9K3hCfUNpJVIuvpeyPbMo7ub1OvvPfPk3hZVlJflaaUAUHgIawAAAADkRHp6tT3j6qWUq6kQ7ZnGmgqdijqKRx31xBxFGmvyuFIAKGyENQAAAAA2ZDmzojeHJ7yjtVNpvX09XHvmkV1N6u329p55ivYMAGQR1gAAAAAIzJ1eUH/KVSLp7T0zeXsp8NjGmgpv75loRD0xRzuaaM8AwHoIawAAAADcU2bF6s3hca89k3T1neuTocZ372xUb3dE8aijp/e3qpL2DAA8EGENAAAAgPcYmVm4s/fMoKuJueDtmYbqCp3o6lBvt6OeaEQ7m2nPAEBYhDUAAABAicusWH37mr/3TDKtt66Fb8/0xBz1xiJ6hvYMAGwaYQ0AAABQgkZnFnR60Lu06XTK1XjI9szxrnbF/aO1dzXX5nGlAFB6CGsAAACAEpBZsXprtT2TcvXWtQlZG3x8dEeDemPexsDP7m9TVQXtGQDIF8IaAAAAYJsam13Uaf/kptODIxqbXQw8tq6qXMe7OrIBzZ4W2jMA8LAQ1gAAAADbxMqK1XeuTyqRdNWXTOvbIdszRyINisccxWMRPXugVdUV5flbLADgnghrAAAAgCI2Pruo04Ou+pOu+lOuRkO2Z1483OEHNI46W+vyuFIAQFCENQAAAEARWVmx+u67U+pLppVIpvXm8IRWQrRnDjv16o1FFI9FdPQg7RkAKESENXlgjGmQ9LSk5/yPo5IO+A9fsdYeWH9k4Pm/LulDa7500Fp7eZ3nxSX1hZy+31ob3/DivNfdJ+l/kPQBSfskLUgakvR1Sb9rrZ3bzPwAAAClZnJuSacHvUubTqdcjcwEb8/UVpbrxcPtindHFI862ttGewYACh1hTX58Q1I8HxMbYz6g9wY1uZbczGB/fX8oqXnNl+vkBVZHJf2sMea/sNZe3MzrAAAAbGcrK1bfuzGlRDKtvqSrb10dD9WeOZRtzzg6eqBNNZW0ZwCgmBDW5IdZc3tc0nlJxyQ1bGpSr7Hzu/7dtKTIA4a8JumxAFP/jqQe//aXNrY6yRjzhLz2TJ2kGUm/Ia/ZUyvppyT9d5Jikv7SGHPUWjuz0dcCAADYbibnlvTSkKuEv/eMO70QeGxNZVl275neWIT2DAAUOcKa/PiKpM9LetVaOyRJxpjL2mRYI+nT8i4r+gdJ1yR99H5PttbOSnr7fs8xxrRIesG/O2StPbuJ9f2WvKBmWdIPW2vPrXns/zPGDEr6jKRuSb8s6dc38VoAAABFzdrV9ox3tPYbVyeUCVGfOdRRrx4/nHnuIO0ZANhOCGvywFr7+VzPaYx5VtIvydv/5ROSPpmjqX9SUrV/+8sbncQYc1R3Lv36D3cFNat+U9LHJb1P0v9ojPkNa+3SRl8TAACg2EzNL+nlwRElkmklkq7SIdoz1RVl3t4z/uVN+9vr87hSAMBWIqwpAsaYCkm/L6lc0qettSljzANGBfYR/7PVJsIaSR9cc/sL6z3BWrtijPkDeZdHtcoLd/5uE68JAABQ0Ky1eufGtBKptBIDrl6/Oh6qPXOgvS4bzrxwqJ32DACUCMKa4vDLkp6UNCgv6MgJY8xhSS/6d1+y1l7axHQn/c+zkl6/z/P619w+IcIaAACwzUzNL+nM4Ih3eVMqrVtT4dozLxxqVzzmKB6L6GAH7RkAKEWENQXOGHNQ0q/5dz9hrQ3+p/2DfWTN7Q1vLOx7n/95yFq7fJ/nDawzBgAAoGhZazVwczq798zrV8a1HKI9s6+tTr1+OPPCoXbVVtGeAYBSR1hT+H5P3qa9X7XW/n2O5/6w//m2pD/e6CTGmBpJHf7da/d7rrV23BgzK6le0t6Qr9P5gKfsDDMfAADARk3PL+nMkN+eSbq6OTUfeGzVansm6igec3Swo145vMQdALANENYUMGPMhyX9sKRJeZdC5XLuk5IO+Xf/k7V2ahPTNa65HeQ47tWwJuzpWMMhnw8AAJAT1lqlbs2oL5lWIpnW+cvh2jN722oVj0bU2+3tPVNXxa/hAIB740+JAmWMaZP0Wf/uJ621N3P8Ej+z5vYfbHKumjW3FwM8f/VSrtpNvi4AAEDezCws++0Z7+SmG5Mh2jPlZXr+UJt6oo56uyM6RHsGABBCyYY1/glLuTg2+uPW2i/mYJ67fVaSI+k1eZdC5YwxplrSh/y770ra7OVVa39zqQrw/NWjwm+HfJ0HXTa1U973CwAAIDRrrQbTM9lw5rXLY1rKBG/P7GmpVW+3o3g0omOH21VfXbK/agMANok/QQqQMeYHJH1UUkbSz1trV3L8Ej8uqcW//YfW2swm55teczvIpU2rxxoEuWQqy1p73/1w+NcqAAAQ1uzCss5eGFVfMq3+pKvrE8H/Lamy3Oi5g23Zy5sOOw38PgIAyImSDWustcvGmFycRnQjB3Pc7Vf8z+clxYwxsXWec3DN7R8zxriSZK39WoD5154CtdlLoGStnTfGjMjbZPi+mwAbY1p1J6xhDxoAAPBQWWt1wZ1RIumqL5nWa5fGtZgJ/u9ie1pq1RNz1BuL6EXaMwCAPCnpP12stQMPftaWWL1M6HlJXw3w/N9ec/u+YY0xJiLpR/y7b1hr3w6/vHW9I+mkpC5jTMV9ju/uvmsMAABAXs0tLuvs0Ki/OXD49szRA22K+wFNV4T2DAAg/0o6rClRP6077/umWzVrvCwvrKmX9IykV+7xvJ41t8/k8PUBAAAkrbZnZrN7z7x6aSxUe2Z3c416YhHFY46Od3WogfYMAOAh40+eAmStjT/oOcaYL8rb10aSDlprLwecfvUSqGVJXwm7tvv4z5L+tX/741onrDHGlK15/QlJfTl8fQAAUMLmFpd17sKoEklXiVRaw2PB2zMVZXfaM/FYRNEdtGcAAFuLsKaEGGMelfSUf/evrLVuiLGXJe2XJGvt9/32Yq191Rjzkrx2zX9rjPmStfbcXU/7F5JW9wn6v6y1uTiNCwAAlCBrrS6OzHrhTDKtVy6NaXE5eHtmZ1ONersd9UQjOt7VrsaayjyuFgCAcAhr8sAY0yXpxF1fXj0lqcEY87G7Hvtra+3NvC/sThNHkr6Uh/n/ubxLm2ol/a0x5t/Ka8/USvopST/nPy8l6Tfz8PoAAGAbu72Y0bmLI35A4+rq2FzgsRVlRs/sb1Vvt3d5U2xHI+0ZAEDBIqzJjxOSvnCPx9rXeaxXUl7DGv8SpJ/2745L+otcv4a19lvGmJ+U9P9IapL0b9d5WkrSB6y10+s8BgAA8B6XRmbVN5BWIuXqmxdHQ7VndjRVZ4/VfrGrQ020ZwAARYKwpnT8oKQ9/u0/stYu5ONFrLXfMMY8Lq9l8wF5R3kvShqS9P9K+h1rbfB/BgMAACVlfimjcxdH1e8frX1lNPivDeV+eyYecxSPRvS+XbRnAADFyVhrt3oNQE4YYzolDUvS8PCwOjs7t3hFAAAgiMsj/slNKVfnLoxqIUR7JtJYnd0Y+HhXh5prac8AAB6ea9euae/evat391prr+ViXpo1AAAAeKjmlzJ65dKY+gbS6k+5ujQyG3hseZnR0/taFI9F1BN19OjuJtozAIBth7AGAAAAeXd1dE6JVFp9A2mduziq+aXg7RmnsVo9UUe9sYhOdHWouY72DABgeyOsAQAAQM7NL2X06qWx7NHaF0O0Z8qM9PS+1uzlTY/salJZGe0ZAEDpIKwBAABATgyPzSmRTKsv6e09c3spE3hsR4PXnonHHJ080qGWuqo8rhQAgMJGWAMAAIANWVi+057pS6Z10Q3XnnlqX6viUa898+hu2jMAAKwirAEAAEBgw2NzSqRc9SfTOjMUrj3TXl+lHv/SplO0ZwAAuKe8hjXGmFO5ntNaezrXcwIAAGB9C8sZvXZpPHu09lB6JvBYY6Qn97aoNxZRPObo/bubac8AABBAvps1CUk2h/NZ0QYCAADIq+sTt729ZwZcnb0wornF4O2ZtvqqNXvPOGqrpz0DAEBYDyP44J9PAAAACtji8orOXx5TIuWqbyCtwZDtmSc6W7InNz2+h/YMAACble+w5n9/wOMRSb8orzHz63leCwAAAHzvTtzOHqt9ZmhEsyHaM611lToVddQbi+jkkQ61N1TncaUAAJSevIY11tr7hjXGmEflhTUPfC4AAAA2bimzovOX/b1nkq6St6YDjzVGenxPs3r8vWee6GxROe0ZAADyhv1fAAAAtqmbk/PZcObloRHNLCwHHttSV6lTR/7+IjoAACAASURBVLy9Z05FHXXQngEA4KEhrAEAANgmljIrev3KePbypoGbwdszkvR4Z7PiUUc9sYie3Et7BgCArUJYAwAAUMRuTa1pzwyOaDpEe6a51tt7Jh712jNOI+0ZAAAKAWENAABAEVnOrOiNqxPe0dpJV+/cmAo1/rE9zf7JTd7eMxXlZXlaKQAA2CjCGgAAgAKXnppXIuWqP+nq9KCr6fng7ZmmmgqvPROL6FS0Q5HGmjyuFAAA5AJhDQAAQIFZzqzoW8MT2cubvvtuuPbMo7ubFI95R2s/uZf2DAAAxYawBgAAoACkp+fVn3SVSLl6KeVqKkR7prGmQqeOOOqJefvPRJpozwAAUMwIawAAALZAZsXqzeFx9Q24SqTSevt6uPbMI7ua/L1nInp6H+0ZAAC2k7yGNcaYX33AUyIhnitJstb++qYWBQAAsEXc6QWdTrnqS6b10uCIJm8vBR7bWF2hE0c61BuLqCfmaAftGQAAtq18N2s+Jck+4Dmrj/9awDkJawAAQFHw2jN39p75zvXJUOO7dzYqHosoHnP0zP5WVdKeAQCgJDyMy6BMDud6UPADAACwpUZmvPZMwj+5aWIueHumobpCJ7o6FI95+8/saq7N40oBAEChyndY05vn+QEAALZUZsXq29cmlEi66k+m9db1SdkQ/7wU29GoeLejeDSiZ/a3qqqC9gwAAKUur2GNtbY/n/MDAABshbHZxezeM6dTrsZDtGfqq8p1vKtDvd0R9UQd7W6hPQMAAN6L06AAAAAeYGXF6q3rk0ok0+pLunrr2kSo9kx0R0N275ln97fRngEAAPdFWAMAALCO8dlFnR70955JuRqdXQw8ts5vz6werb2H9gwAAAiBsAYAAEBee+btdyfVN+AqkUrr28MTWgnRnjkSaciGM88eaFV1RXn+FgsAALY1whoAAFCyJuYWdXpwRImBtE4PuhqZCd6eqa1c255x1Nlal8eVAgCAUkJYAwAASsbKitV3351SXzKtRDKtN0O2Zw479eqNRRSPRXT0IO0ZAACQH4Q1AABgW5ucW9LpwTsnN4Vtz7x4uF3x7ojiUUd722jPAACA/COsAQAA28rKitX3bkxlT2761tXxUO2ZQ0694tGIersdHT3QpppK2jMAAODhIqwBAABFb3JuSS8NeSc3JZKuRmYWAo+tqSzTi4f9vWeiEe1rpz0DAAC2FmENAAAoOtZ6e8/0p1wlkmm9cXVCmRD1mYMd9dmTm54/SHsGAAAUFsIaAABQFCZvL+nlwRElkmn1p1ylp4O3Z6orynTscLu/ObCj/e31eVwpAADA5hDWAACAgmSt1Ts3ppVIpZUYcPX61fFQ7Zn97XXZcOaFQ+20ZwAAQNEgrAEAAAVjan5JZwZHvL1nUmndmgrXnnnhUHv28qaDHbRnAABAcSKsAQAAW8Zaq4Gb0/7GwGm9fmVcyyHaM/va6tTrhzMvHGpXbRXtGQAAUPwIawAAwEM1Pb+kM0OjSiTTSiRd3ZyaDzy2arU9E3UUjzk62FEvY0weVwsAAPDwEdYAAIC8stYqdWtGiWRafcm0zl8O157Z21b7nr1n6qr49QUAAGxv/LYDAABybmZhWWeGvL1n+pNpvTsZoj1TXqbnD7Up7gc0h2jPAACAEkNYAwAANs1aq6H0jBJJV33JtF67PKalTPD2TGdrreIxR72xiI4dpj0DAABKG78JAQCADZldWNbZC6PqS6bVn3R1feJ24LGV5UbPH1w9ucnRYaeB9gwAAICPsAYAAARirdUFd0175tK4FjMrgcfvaanNHqv94uF21VfzawgAAMB6+C0JAADc09ziss4OjSqRSqtvIHx75uiBtuzmwF0R2jMAAABBENYAAIAsrz0zq0Qyrf6Uq1cujoVqz+xqrsluDHy8q0MNtGcAAABC4zcoAABK3Nziss5dGFUi6SqRSmt4LHh7pqLMa8+sXt4U3UF7BgAAYLMIawAAKDHWWl0amVVf0lUimdYrl8a0uBy2PeOoJxrR8a52NdZU5nG1AAAApYewBgCAEnB7MaNvXvRObkokXV0dmws8tqLM6NkDrdnLm2I7GmnPAAAA5BFhDQAA29SlEW/vmUTS1TcvjmohRHtmR1N1dmPg410dtGcAAAAeIsIaAAC2ifklrz2T8C9vujwavD1TXmb0zP7WbEDTvZP2DAAAwFYhrAEAoIhdGZ1VIumqL5nWuQvh2jORxursxsDHuzrUXEt7BgAAoBAQ1gAAUETmlzJ65dKY+ga8o7UvjcwGHlteZvTMvlb1xBzFY44e2dVEewYAAKAAEdYAAFDgro7OKZFKq28grXMXRzW/FLw94zRWKx712jMnjtCeAQAAKAaENQAAFJj5pYxevTSW3XvmYoj2TJmRnt7Xmr286ZFdTSoroz0DAABQTAhrAAAoAMNjc9mTm85eGNXtpUzgsR0NVToVddQbi+jkkQ611FXlcaUAAADIN8IaAAC2wMLye9szF9xw7Zkn97b4JzdF9Ohu2jMAAADbCWENAAAPyfDYnBIpV/3JtM5eGNXcYvD2THt9lXqijuLdEZ3s6lBrPe0ZAACA7YqwBgCAPFlYzuj85XElkmn1JV0NpWcCjzV+eyYejai329H7dzfTngEAACgRhDUAAOTQ9Ynb2b1nzgyNhGrPtK22Z2KOTh5x1EZ7BgAAoCQR1gAAsAmLyys6f3lMiZS390zqVrj2zOOdLer1T256bE+zymnPAAAAlDzCGgAAQroxeVuJpKu+gbTODI1oNkR7prWu8j0nN7U3VOdxpQAAAChGhDUAADzAUmbF23smlVZiwFXy1nTgscZIj+9pVk8sot6Yo8c7W2jPAAAA4L4IawAAWMfNyXl/Y+C0zgyNamZhOfDYlrpKnTri7T1zKuqog/YMAAAAQiCsAQBAXnvm9SvjSiS9vWcGbgZvz0jS453Nikcd9cQienIv7RkAAABsHGENAKBk3ZycV3/KO7np5cERTYdozzTXVurkkQ71xiI6FXXkNNKeAQAAQG4Q1gAASsZSZkVvXBn3T25y9c6NqVDj37+nSb2xiOIxR090tqiivCxPKwUAAEApI6zJA2NMg6SnJT3nfxyVdMB/+Iq19sD6IwPP/3VJH1rzpYPW2svrPC8uqS/k9P3W2vgG12Xz/RoAEFZ6aj57rPZLgyOang/enmmqqdBJ/+SmU9EORRpr8rhSAAAAwENYkx/fkBTPx8TGmA/ovUFNriXzODcA5N1yZkXfGp7wNgcecPW9kO2ZR3c3KR7zApon99KeAQAAwMNHWJMfa3eVHJd0XtIxSQ2bmtRr7PyufzctKfKAIa9JeizA1L8jqce//aWNre49/r3urHM9szl4DQDISk/Pqz/pKpFy9VLK1VSI9kxjTYVOHXHUE3MUjzqKNNGeAQAAwNYirMmPr0j6vKRXrbVDkmSMuaxNhjWSPi1pn6R/kHRN0kfv92Rr7aykt+/3HGNMi6QX/LtD1tqzm1yjJKWttfd9XQDYjMyK1ZvD4+obcJVIpfX29XDtmfftutOeeWpfiyppzwAAAKCAENbkgbX287me0xjzrKRfkrQg6ROSPpmjqX9S0uoRJl/O0ZwAkHPu9IJOp7z2zOmUq8nbS4HHNlZX6IR/clNPzNEO2jMAAAAoYIQ1RcAYUyHp9yWVS/q0tTZljHnAqMA+4n+2IqwBUEC89syE+pNpJVKu3ro2GWp8985Gxf2Tm57Z30p7BgAAAEWDsKY4/LKkJyUNSvqNXE1qjDks6UX/7kvW2ku5mhsANmJ0ZkH9/rHapwddTcwFb880VFfoRFeH4jFv/5ldzbV5XCkAAACQP4Q1Bc4Yc1DSr/l3P2GtXcjh9B9ZczsXGwuv+pAx5r+Wt7/OsqSbks5K+qK1NuxR4lnGmM4HPGXnRucGsDUyK1ZvXZtQX9JVfzKtt65Pytrg47t3NvobA0f0zP5WVVXQngEAAEDxI6wpfL8nqU7SV621f5/juT/sf74t6Y9zOO8jd93v8j8+Yoz5z5I+Zq0Ndz2DZ3jTKwOw5cZmF729Z5Jp9adcjYdoz9RXlevEkQ7FYxH1RB3tbqE9AwAAgO2HsKaAGWM+LOmHJU3KuxQql3OflHTIv/ufrLXhjlJZ35ykP5d3WtWApBlJjrxjwX9BUrukD0r6M2PMD1lrg/8NDUDRWlmxeuv6pBLJtBJJV9++NhGqPRPd0ZDdGPjZ/W20ZwAAALDtEdYUKGNMm6TP+nc/aa29meOX+Jk1t/8gR3PusdZOrPP1vzPGfE7SX0l6Sl5484uSfjvk/Hsf8PhOSa+FnBNAHozPLur0oL/3TMrV6Oxi4LF1VeU63nXn5KY9tGcAAABQYko2rPFPWMpFs+Pj1tov5mCeu31WXivlNXmXQuWMMaZa0of8u+9KysnlVfcIalYfu2WM+QlJ70iqkvTPFDKssdZeu9/jOTwhC0BIKytWb787qb4BV4lUWt8entBKiPbMkUiD4jFH8VhEzx5oVXVFef4WCwAAABS4kg1rCpkx5gckfVRSRtLPW2tXcvwSPy6pxb/9h9baTI7nX5e19qIx5u8kfUBSlzFmt7X23Yfx2gByb2JuUacHR5QYSOv0oKuRmeDtmdrKch3vas8erd3ZWpfHlQIAAADFpWTDGmvtsjHmfTmY6kYO5rjbr/ifz0uKGWNi6zzn4JrbP2aMcSXJWvu1APOvPQUqV5dABfU9eWGNJO2R1+wBUARWVqy+++6U+pJpJZJpvRmyPXPYqVc8FlFvLKKjB2nPAAAAAPdSsmGNJFlrB7Z6DfdQ7X9+XtJXAzx/7eVE9w1rjDERST/i333DWvt2+OVtCtcqAUVkcm4pu/dMfyoduj3z4uH27OVNe9tozwAAAABBlHRYU6J+Wnfe94fdqpHee6w3rRqgwKysWH3vxlT25KY3ro6Has8c6qjPXtr03ME21VTSngEAAADCIqwpQNba+IOeY4z5orx9bSTpoLX2csDpVy+BWpb0lbBr2wxjzCFJP+TfvWitvf4wXx/A+ibnlvTS0Gp7xpU7vRB4bE1lmY4daldvd0TxaET72mnPAAAAAJtFWFNCjDGPyjs6W5L+ylrrhhh7WdJ+SbLWft+lTMaYH/PnXL7H+B2S/lhSpf+l/zv4ygHkkrWr7RlXiWRab1ydUCZEfeZgR716oo56uyN6nvYMAAAAkHOENXlgjOmSdOKuLzesfjbGfOyux/7aWnsz7wu708SRpC/leO7PSao0xvyJpHOSLku6LalDUlzSL0hq95/7sghrgIdqan5JLw+OZC9vSodoz1RXlOnY4XbFo97eMwc66vO4UgAAAACENflxQtIX7vFY+zqP9UrKa1hjjCmTt1+NJI1L+os8vMxuSf/M/7iXP5H0s9ba4H9TBBCatVbv3JhWIuWFM69fGQ/VntnfXqfeWEQ9MUfHDrXTngEAAAAeIsKa0vGD8o7KlqQ/ykNY8lFJPZKOSTokr1HTJGlG0rCks5K+ZK09l+PXBeCbml/SmcGR7N4zN6fmA4+tqijTC4fa1euf3HSQ9gwAAACwZYy1IY75AAqYMaZTXjCk4eFhdXZ2bvGKgPyy1ip5a1p9A97eM69fGddyiPbMvrY6xWOOemMRvXCoXbVVtGcAAACAMK5du6a9e/eu3t1rrb2Wi3lp1gBAEZmeX9KZoVElkmn1p1zdmAzXnnn+YJvisYh6Y44OdtTLmO/bLxwAAADAFiOsAYACZq1V6taMEsm0+pJpnb8crj2zt61W8WhE8ZijY4fbVVfFf/YBAACAQsdv7QBQYGYWlnVmyN97JpnWu2HaM+Vlev5QW/Zo7UO0ZwAAAICiQ1gDAFvMWqvB9Ez2WO3XLo9pKRO8PbOnpVa93Y7i0YiOHW5XfTX/aQcAAACKGb/RA8AWmF1Y1tkLo+pLptWfdHV94nbgsZXlRs8dbFNvzLu86bDTQHsGAAAA2EYIawDgIbDW6oI7o0TSVV8yrdcujWsxsxJ4/J6WWvX4Jze9SHsGAAAA2Nb4bR8A8mRucVlnh0aVSKXVNxC+PXP0QJviMUfxWERHIrRnAAAAgFJBWAMAOeK1Z2azx2q/cnEsVHtmd3ONevxLm453daiB9gwAAABQkvibAABswtziss5dGFUi6SqRSmt4LHh7pqLsve2Z6A7aMwAAAAAIawAgFGutLo3Mqi/pKpFM65VLY1pcDt6e2dVco3jMUU80ouNd7WqsqczjagEAAAAUI8IaAHiA24sZffOid3JTIunq6thc4LEVZUbP7G9Vb7d3eVNsRyPtGQAAAAD3RVgDAOu4NOLtPdOXdPXKxVEthGjP7GiqVjzq7z1zpENNtGcAAAAAhEBYAwCS5pcyOndxVP3+0dpXRoO3Z8r99kzcP1q7eyftGQAAAAAbR1gDoGRd9tsziZSrcxfCtWcijdXZjYGPd3WouZb2DAAAAIDcIKwBUDLmlzJ65dKY+ga8o7UvjcwGHlteZvT0vhbF/aO1H9nVRHsGAAAAQF4Q1gDY1q6OzimRSqtvIK1zF0c1vxS8PeM0Vqsn6igec3Syy1FzHe0ZAAAAAPlHWANgW5lfyujVS2NK+EdrXwzRnikz0tP7WrOXNz2yq0llZbRnAAAAADxchDUAit7w2Jy390zS1dkLo7q9lAk8tqOhSj3+yU0nj3Sopa4qjysFAAAAgAcjrAFQdBaWM3rt0rj6kmklkmldcMO1Z57a16p41GvPPLqb9gwAAACAwkJYA6AoXBufy17adPbCqOYWg7dn2uur1ONf2nSK9gwAAACAAkdYA6AgLS6v6LXLY0ok0+pLuhpKzwQea4z05N4W9fonN71/dzPtGQAAAABFg7AGQMG4PnH7zt4zQyOaDdGeaauvyp7cdOqIo9Z62jMAAAAAihNhDYAts7i8ovNX7pzclLoVrj3zRGeL4jFHvbGIHttDewYAAADA9kBYA+ChujF5W4mkq76BtM6EbM+01lX67ZmITh7pUHtDdR5XCgAAAABbg7AGQF4tZVZ0/vK4Eqm0EgOukremA481Rnp8T7N6YhH1xhw93tmictozAAAAALY5whoAOXdzct7fGDitM0OjmllYDjy2pa5Sp474e89EHXXQngEAAABQYghrAGzaUmZFr18Zz+49M3AzeHtGkh7vbFY86qgnFtGTe2nPAAAAAChthDUANuTW1Hz25KaXB0c0HaI901xbqVNRR/Go155xGmnPAAAAAMAqwhoAgSxnVvTG1Qn1+QHNOzemQo1//54m9cYiisccPdHZoorysjytFAAAAACKG2ENgHtKT80rkfIubXppcETT88HbM001FToZ9Y7VPhXtUKSxJo8rBQAAAIDtg7AGQNZyZkXfGp7IXt703XfDtWce3X2nPfPkXtozAAAAALARhDVAiXOnF9SfctWXTOullKupEO2ZxpqK7MlNPVFHkSbaMwAAAACwWYQ1QInJrFi9Oeyd3NSXTOvt6+HaM4/salI85igei+jpfbRnAAAAACDXCGuAEuBOL+j0antmcESTt5cCj22srtCJIx3qjUXUE3O0g/YMAAAAAOQVYQ2wDXntmQn1J9PqS7r6zvXJUOO7dzYqHouoN+bo6f2tqqQ9AwAAAAAPDWENsE2MzHjtmUTS1elBVxNzwdszDdUVOtHV4e09E3O0q7k2jysFAAAAANwPYQ1QpDIrVt++NqFE0lV/Mq23rk/K2uDjYzsaFe92FI9G9Mz+VlVV0J4BAAAAgEJAWAMUkdGZBZ0e9NszKVfjIdoz9VXlOt7Vod7uiHqijna30J4BAAAAgEJEWAMUsJUVq7euT6pvIK1EytVb1yZCtWeiOxoUj0UUjzl6dn8b7RkAAAAAKAKENUCBGZ9dzLZn+lOuxmYXA4+t89szq0dr76E9AwAAAABFh7AG2GIrK1ZvvzupvgFXiVRabw6Ha890RRoUjzrq7Y7o2QOtqq4oz99iAQAAAAB5R1gDbIGJuUWdHhxRYiCt04OuRmaCt2dqK8t1vKtd8Zi398zetro8rhQAAAAA8LAR1gAP2Uf/46t6adDVSoj2zGGnXvFYRL2xiI4epD0DAAAAANsZYQ3wkNVUlj0wqKmtLNeLh9uze8/QngEAAACA0kFYAzxk8VhEf/PdW9/39UNOveJR7+Sm5w62qaaS9gwAAAAAlCLCGuAhi8ccSV7D5sXD/slN0Yj2tdOeAQAAAAAQ1gAP3a7mWv3Rz72gJ/a20J4BAAAAAHwfwhpgCzx/qH2rlwAAAAAAKFBlW70AAAAAAAAA3EFYAwAAAAAAUEAIawAAAAAAAAoIYQ0AAAAAAEABIawBAAAAAAAoIIQ1AAAAAAAABYSju7GdlK/euHHjxlauAwAAAABQAu76u2f5vZ4XlrHW5mouYEsZY56V9NpWrwMAAAAAUJKOWmvP52IiLoMCAAAAAAAoIDRrsG0YY6olPebfdSVltnA5D7JTd1pARyXd3MK1YH28R8WB96k48D4VPt6j4sD7VBx4nwof71FxKJb3qVyS49/+jrV2IReTsmcNtg3/hyInlbN8M8asvXvTWnttq9aC9fEeFQfep+LA+1T4eI+KA+9TceB9Kny8R8WhyN6nK7mekMugAAAAAAAACghhDQAAAAAAQAEhrAEAAAAAACgghDUAAAAAAAAFhLAGAAAAAACggBDWAAAAAAAAFBDCGgAAAAAAgAJirLVbvQYAAAAAAAD4aNYAAAAAAAAUEMIaAAAAAACAAkJYAwAAAAAAUEAIawAAAAAAAAoIYQ0AAAAAAEABIawBAAAAAAAoIIQ1AAAAAAAABYSwBgAAAAAAoIAQ1gAAAAAAABQQwhoAAAAAAIACQlgD3IMxpskY81PGmN80xvQbY4aMMZPGmEVjTNoYkzDG/C/GmPaA8x0zxnzZGHPZGDNvjLlhjPlrY8xPhVzXTxlj/sYfP+/P92VjzAsb+19a3HLxPhljKowxP2SM+XfGmJeMMa4xZskYM2GMecMY838aYw4HWMsXjTE24MeBXH4fCl2O3qd4iO/vpwKsqcIY8/PGmNP+e37bX9fvGWMeyek3oAjk6D0K+v5kP+4xDz9LG2CM+cxd35t4gDE/aoz5U2PMNWPMgv/5T40xPxridflZCiHo+2SMqTHG/Lgx5nPGmFeMMWP+n01jxphzxphPGWN2BXi9xGZ+HktViPfpYyH+e/WxAK9bZ4z5l8aYV/33esYY847xfhfZl+v/ncUsyHtkjDmwgT+bLt/j9fhZuo8Q399EgLn4s0mSrLV88MHHOh+S/pEkG+DDlfQjD5jrVyVl7jPHn0uqecAcNZK+cZ85MpL+t63+vhXb+yTJkTQSYPyCpH/+gLV8MeBarKQDW/29K6b3yZ8jHuL7+6kHrKdd0jfvM35e0n+z1d+3InyPgr4/qx/J/5+9O4+vM7sL+/85kmx5k2zt8njfl7Ezm8cznn3PQgIhCYFCICFpCC2lhLYQlv5KWlr6K4UfUFIgJDRJ+wsJgUAmhCSzejKbx+PZZ7yO92Vsa5dXWdvpH88j+Y6i5V5J19o+79frvvRcPc859+g+Onquvs853zNAPfal3M/fNUBHn/fmrkGOD8Dnh3hvPw+EIV7XvpSH8wS8AziTxe//GeDDQ7zmE9n2p7F+f8bLI5f+BHwsh79XHxvidVcAewYp3wK8Z6zfn/HwyKEvLc3h/PQ8HhrgNe1Lg5+TbN/fJwapw2tTxqMISYM5BmwFXky3T5KMSFsIfAj4AFAJfDuEcGOM8bW+FYQQ/jnwH9OnB4DfA14HrgJ+BbgbeB/wReAjg7Tlr4D3pttbgT8B3gI2Ar9FcoH/TyGEkzHGLw7z552oRnKeikn+oAO8AjwIbAdOA3OBdwO/TBIs++MQwsUY418O0Z63gHcOccyJ7H60SWXE/SnDx4Edg+yvG2hHCKEQ+HvgpvRbfw98AWhKv/fvgWrgL0MIJ2KMDw39o00aIz1HG7N4jY8C/y7d/soQx9qXshBCKCD5HS4i+d2vzqLYfwZ+Id1+Gfh9kmvUCuDXgevS/fUkfaK/17Uv5SDH81QKlKTbzwDfAV4AGkluMnwA+OfpMX8dQjgbY/zeEE14Afj5Yf8AU8Qw+1OPd5L83RrI8UFedw7JeV6TfusLwNeBiySfFX+T5HPJ34YQtgxxjZzUcjxHJ8ju2vSbwE+n20Ndm+xLg/tz4M8G2X9+kH1emzKNdbTIh4/x+gAKszjm/VyO0H6zn/3zgOZ0/xGgsu9rkIyq6anjjgFe586MY77dt20k/zwdSfc3AfPG+v2bKOcJWAA8DNw8SPmbgAtcvqtVMsBxX06POTzW78t4e4xSf7orY/9dI2jLxzLq+Z/97F8JtKb79wFFY/3+TZRzlOXrbE/LdwOLBzjGvpTbe/rp9P3aRXJDYKiRACu5fEd6BzCzz/5Z6fdjetyKAeqxL+XpPAG3AH8DrB+kvh9L+1EE9jPAnWYujwZ4Yqzfg4nwGEZ/yuwHS0fwup/NqOfX+tm/JaPfPj7W79NEOkdZ1FdIEtSJJKPVZg1wnH1p8Pex5zx8dpjlvTb1eZizRhpAjLEri2O+RTJcFeCOfg75JEnABuAzMcaGfl7jX5JMYQL4tQFe6tfTr13Av+zbtrTez6RPy4BPDNX2yWKk5ynGeCLG+ECM8blBym/n8h2CuSTTRZSDUepPo6WnnzXTT5+LMe4H/mv6dBXJP0ST3pU4RyGENcDm9OkTMcajudahtwshLAJ+N336L4D2LIr9KvSOrv7lGOPFzJ0xxgskIwpJj/v0APXYl7KU63mKMT4bY/zJGOOuQY55kOSOMSR3na8djbZOZcPsT6PxutNIRlsD7Ab+sO8xMcZtJKOsAe4OIdxwJdo23uTpHN1HMuId4O/Sv4G68rw29WGwRhq5nqF8M/rZ9/706xkuf6B6mxjjceDR9On96TDYXunze9Onj6TH9+fv09eBZHi03m6w85SNrRnbQyYb1rCNhoIuSAAAIABJREFU9DwNKoSwCuhJKvc3g3wg+3LGtv3p7UZyjn4uY3uoYebKzp8Bc4CvxBh/MNTBIYTA5Q+mewYKVKff35s+fX9aLrMe+1JucjpPOfDaNLrydZ6GcheXb+59JcbYPcBxX87Ynqr9KR/nyGvTGPPa1D+DNdIIhBDWcflO1p4++6Zz+Q7ythjjYJH/notNMXBjn32b0+9nHvdD0vp7/rBtTu/SiMHPUw6KM7YH+hClERil8zSU2zO2B+tPp0iGxgLclqe2TDgjOUfpB6qfSZ+eB745ik2bkkIIHybJZdbEwCMz+1pGMv0TBukDffYvJEnSmcm+lKVhnqdseW0aJXk+T0PJqj+R5ErpCZhPuf6Uj3MUQijh8s3VI8CTo1Gvcua1qR8Ga6QcpUsqrgoh/BuSO1qF6a4/6XPoKi4P5Rvqn5rM/ev67Fs3wHGD1VOUvv6UlcN5ytadGdtDnYeKkCwB3pIuN3gyJMut/6sQwqxhvv6kNILz9HvpMo7tIYTmEMLLIYQ/CiGsHqLccPrTohDC7CGOnbRGsS/dBSxJt/8+xnguizL2pQGEEOZx+Rx8JsZYn2XR4fSBvuWGW8+U60sjOE/ZyuXatDaEsCOEcDaE0Jb+DX0whPBzU/0Gzyiepy+HEE6n16aGEMJzIYT/HEJYMES5rPpTjLGTJNlq3zKTXh770odIcqEA/O+YJjUZgn1pcD8RQtibLpV9NoTwZgjhKyGEuwcp47WpHwZrpCyEED4WQoghhEhyR2MfyXzimvSQPwC+2qfYooztAbP/p44NUG4065n0hnmesql3Ppez/jfw9mHn/ZlDEqWfC0wHaoEHgD8F9oUQbsm1DZPJKJ2nLSR3YKaRDB2/lmTu8u4Qwmf7DovNMJz+FEju3kwZeepLmcPM/3eWZexLA/t9kvfjWS7nscjGWF6bplxfYvjnaUghhGuAH0mf7hwsv02qBthE0q+KSf6G/ijJtI9X0pFzU9Vonac7SVaZmUay0uRNwG8D+0MInxqkXE9/Oh9jbBniNXr6U1UIoXjQIyeXfPWl4Vyb7EuDWw+sJpkuPYckoe/PAY+HEP4hhDC3nzJem/rh0t3SyLwC/GKagLavkoztoe4gZy5hN6fPvtGqZyob7DwNKv2n/y+4fB5+t2/CswyRZCraPwIvkSz/PYNkychPkExpWwA8HEK4Pcb4cq7tmeSyOU8nSfIzPQ0cBDqBxcD7gJ8l+YD8OyT/2P9WP+XtTyMzrL6UjoL5YPr0OPD4EEXsS4MIIdxGsmxzJ8n5yOZOcA+vTVfICM/TUHUXA1/k8ki3/v7e9egGHgO+C7xKsvx3CXA98CmSO9Hrga0hhM1TLfH3KJ2ngyTXpm1c/gdwOcnfvQ+R/P36ixBCjDH+ZT/le/pTNiMO+/anS8No74SSr74UQljM5dFpz6aJZwdjXxrcBZJVax8jGbVyDqgieY9/kSSA+X7gwRDC/THGjoyyXpv6YbBGys63SOYJA8wkSeL3YeDHga+GED4dY/xOnzKZyTeHylSfeaGdmad6poLhnKeh/BbJ3RJIRtR8bpBjf3WAO2LbQghfAP5zWt9s4IshhE2j+eF9AhnuedoBLOlzcYfkn/lvhRA+T7IM+1zgN0II34gxvtLnWPtTdka7L/04lz9A/f+DJM/sYV8aQJoP7S9J7gT+UYzx9Ryr8Np0BYzCeRrK50ju7EOSaPXbgxz7gQH601MhhD8DvgB8lGS0wB8zjpNtjrZROk//QHIO+v4N2gH8TQjhvSSBnGnAH4UQvp3my8jU05+yWdloSvWnPPelj6T1QnajauxLg1swwPvzSAjhT4HvAdeRBG/+BfA/Mo7x2tQPp0FJWYgxtsQY30gfO2KMX48xfoBkSN9ykgjxx/oUa8vYnj7ES2QOY+07amO06pn0hnmeBhRC+BkuLw95GPjpwf7JHGzockz8NpdX/roemJJTOIZ7nmKM5/sJ1GTufx74pfRpyNjOZH/Kwmj3JZJRTz2G/EBsXxrUb5HcvT0K/MdhlPfadGWM9DwNKITwmySjDABepP+/db2G6E8daV09uRt+PIv8KpPJiM9TjLF1sGBxGtjuqXsWyejAvnr601B9CaZef8pbX+LytekS8DdDHWxfGtwQ789pklFmPQGUX+5ziNemfhiskUYgxvh/gL8l6UufCyGUZew+m7E91NC6zKRWfYfsjVY9U9YQ56lfIYQfAb5E8k//aeD+fu6EDcfnM7bvHPCoKWg456kffwO0ptv9vb/2pxEYZl+aD9yXPt0RY9w9Ss2Zcn0phLAW+M306S/HGM8PdvwAvDbl2Sidp4Hq/hTwe+nTvcC7R1p/mrQ2MweI/Wn0fYFkeicMfm3KZirGlOlPee5Lm4G16dNvZ5EraEhTtS9lK8Z4EHgkfboyhHBVxm6vTf1wGpQ0cg+STA+YDbwb+Ov0+5lJrYZKWpWZDOtYn31963mBgQ1Wz1Q30Hn6ISGEu4C/Ixmy3Aw8kMU85mxlJoCcUndcspT1eepPjLEzhLAPuJH+39++/alhkOp6+lNk6CR1U0mu5+hnuJxXI9vkjdmYin3pV0nuFB4EZoUQfqqfYzZkbN8TQqhNt/8x/UcnX9cm+9Jlo3GefkgI4Z8Bf5Y+PQLcN4or4tifRuk89SfGWBdCaCDJ3zHQtekmYHYIYd4QgYOe/lQfY5zs+WryeY6Gk1g4G1OxL+ViF5cToy8A3kq3vTb1w2CNNHKZH5SWZGzvA7pI/klZy+Ay9/e967xrgOMGq6cTGK3gwmQx0Hl6m/ROyz+SzHk9R3LX8rVRbMdAqxQpkdV5GsJg73Hf/tQ3pw199gMcy/Md14km13PUM8y8A/jaKLZjKvalniHby8nuvfx/MraXkSRTHM41BYa+NtmXLhuN8/Q2IYQfJfmHsoAk0fq9McbR/OfC/jS0Ic/TEIa6NvUkYV9LkmD9hysIoYgkhxj8cJ+cjPJyjtLltX8yfVoHfH+4Deyv+lGsazIa6P3x2tQPp0FJI5cZNe8dQhdjbAeeT59uSROkDaRnmOQlfnjkzA4uz+8ccDhlWv/NPWXS19dl/Z6nTCGEd5BcsOeQzHl933BWkBrC+ozttwY8auoa8jwNJv0guzp92t/7+3TG9mD9qTajnmdybcckl/U5CiFcC7wjffpPMcbGUWyHfWl4DnH5/RpqiP4d6dcTJHm7MtmXrpAQwr3AN0husjaSTMs9MMovY3/KoxBCNclKODCCaxNJUumeqRv2p+H7EaAy3f7rdPrSaLEvDW6g98drUz8M1kgj9xMZ230z1H8r/VrKABnhQwgLuZzP4bEYY+ZcS9Lnj6VP70uP788H0teBZGUCvd1g54kQwmqSlYTKSEYAfDDG+EQe2vGpjO0f5KH+iW7Q85SFn+JyP/ih9zfGuI/Ld2E+nC4p3Z+PZWzbn94ul3OUOcz8K6PcjinXl2KMH4sxhsEevD0B590Z+w6ndUSSqWwAa0MIN9OP9Ps9dx0f7JtA1b40sNE4Tz1CCLeQnK9i4AzwzhjjztFsbxrk/njGt54czfrHq9E8T1n4BS6PKOjv79UTXM639tEQwkCjDz6WsT3p+1Mez1Ferk1TtS9lK4SwHLg/fXowxniiZ5/XpgHEGH348NHPg6QTzxjimF8lmecYSSLCRX32lwMt6f7DQEWf/YXAtzPquHuA17kn45gHgcI++ytJ5q9HkhwrZWP9/k2w87SYZJWBSDKF7EPDaMfNwPxB9geS5YZ72vEKEMb6/Zso54kkiHbXEOU3p7//EegGNg1w3MczXudz/exfQfKhOZJMJywa7HUny2M0+lKfYwtJpmtEkjnj07Jsh31pZOfxsxnvzV0DHLOaJCgdSUZvzuyzf2b6/Zget2qAeuxL+T1P12b8TTsH3DqM17kbmDfI/mnAlzPa8u2xfm/G02Oo8wQsBa4boo73koycjiQrziwY4Lj/lPFav9bP/i0Z/faJsX5vxssjm77U5/jyjPPxWg6vY18a/P153xCfCWqAlzLen3/TzzFem/o8zFkjDeyzwB+GEL5JMqTuAMmHpRJgI0nSzFvTY9uBT8Y+wyhjjE0hhM8Af0GS22F7COG/kNyNvgr4NMkff4CvxRi39teQGOPjIYSvk4wa+FHgkRDCH5MMF9wI/DZJwAHgN2KMzSP82SeSzzKC8xRCqCBZArgnydgfAntCCJkJ6/pqjhl3A1LvAn4jhPB9kkz3u0gCdcUk00A+QRJMALiQtiMydXyWkfWnucDWEMJrJCPWXiQJBHSR/O6/jyQ3yrT0+D+IMQ6UjPsrJBfyW4FfSofCfoHkn6LNJHPeS0kCPr/ct19PYp9lhH/z+ngn0JPo8WtxkGXX+7Av5VmMcV8I4Q+A3yCZVvFMCOG/kZzzFcBngOvSw/97jPHNAaqyL+VJCGEF8BAwL/3Wvwdah7g21cUY6/p876PAt0MI3yYZvbGXZITOHOAGkhFq63rKA78yKj/A1LGU5Nq0jSTf3Ssk72MgybPyofTRM1Lm3/Xz+aHHfyfJo7Ia+P0Qwkrg6yQBnrtJlrAuSp9/Oh8/zBTxU1xe0jmXUTX2pcH9KTAt/QyxjeQm9UWSG8p3Ab/I5amATwP/s28FXpv6MdbRIh8+xuuD5I9MzOJxjGT++GB1/UeSPwgD1fFPDH1He2Z63EB1dAGfHev3baKdJ5ILSDblMx9f7qeez2ZZ9gjDuDs60R+jcJ6WZlm+E/gdhhhpQfLh4flB6rlEEgQY8/duopyjfur7ekaZG3Noh31pZOcx8/27a5DjCkiWmB3sPf4iUDDE69mX8nCeSEa65Xpt+mw/9Xw5y7KvAevH+n0Zb48sztNdWb6/54FfyOL1VpIsUDFQPa3Ae8f6fRlPj2z/5mUc/xyXPy/U5vA69qXB35/DWb4/f8fgI5S8NmU8HFkjDexeklwyd5NEymtIIsJtwGmSuyffAb4RY7wwWEUxxt8JITwE/BJwe1pXC/Aq8KUY45AZ7mOMF4EfCSH8NMmHuGtI7ridBp4iGea3Lfcfc8IbtfM0Ql9KX28Lyd3/nmSCnSRTQF4iuev21zHGtjy2Y7wa6Xl6iyRXyhaSuyILSC7EM0g+vO4ludP1xZhFLoEYY0OaC+KTwE+nbZqdvs5jwJ/EUc4LMQGMWl8KIZSSjAIE2BNj3JFDO+xLV0CMsRv4RHoX9BdIlruvJHmPdwCfjzF+L4t67Evj238j6btbSBJ7VnF5GshpkkUN/g74hxhj11g1cgJ7EfgIyfu7CZhP0o+KSO7i7yTpB1+MPzzq6YfEGPeHEK4j+bz4EyTBm+kkQfLvkvSnI3n4OaaEEMIqkiXSAR6JMZ7Kobh9aXAfJUnou4VkVFklyeiVcyS/v88CXxnqfxWvTW8X0siTJEmSJEmSxgFXg5IkSZIkSRpHDNZIkiRJkiSNIwZrJEmSJEmSxhGDNZIkSZIkSeOIwRpJkiRJkqRxxGCNJEmSJEnSOGKwRpIkSZIkaRwxWCNJkiRJkjSOFI11A6TREkIoBjamT+uBrjFsjiRJkiRp8isEqtLt12OMl0ajUoM1mkw2AjvGuhGSJEmSpCnpRuCF0ajIaVCSJEmSJEnjiCNrNJnU92w8//zzzJ8/fyzbIkmSJEma5E6ePMnmzZt7ntYPdmwuDNZoMunNUTN//nwWLlw4lm2RJEmSJE0to5Y31WlQkiRJkiRJ44jBGkmSJEmSpHHEYI0kSZIkSdI4YrBGkiRJkiRpHDFYI0mSJEmSNI4YrJEkSZIkSRpHDNZIkiRJkqRxKcZI64WOsW7GFVc01g2QJEmSJEkCuNjexavHW3jxSDMvH23mpaMtrKyewzc+tWWsm3ZFGayRJEmSJElXXIyREy0XeeloCy8daebFI83sPnmGzu74tuNePdZCR1c30wqnzuQggzWSJEmSJCnvLnV2sfOtM7x0pJmXjibBmdNnLmVRrptdb53hmkXzrkArxweDNZIkSZIkadTVnW1LAzPJtKbXT7TS3tk9rLpeO9FqsEaSJEmSJClbXd2RPafO9E5nevFoM8eaLg6rrsKCwLr5JdywuIzrl5Rx/eIyFpbNHOUWj28GayRJkiRJUk7OtHXwcjpi5qU0GfD59q5h1TVv1jSuX1zGDWlg5ppFc5k1fWqHK6b2Ty9JkiRJkgYVY+RI44XeETMvHWlm7+mzxDh02f6srpnDDUvKuC4N0CyvnE0IYXQbPcEZrJEkSZIkSb3aOrp440QrLx5p5oV05Ezj+fZh1TV7eiHX9U5nmsd1i8qYO2vaKLd48jFYI0mSJEnSFFZ/9hIvHmnqDc7sPHGG9q7hJQJeXD6LG5ZcntK0praEwgJHzeTKYI0kSZIkSVNEd3dkX93ZZErT4WRa05HGC8Oqa3phARsXzu0NzFy/ZB7VJTNGucVTk8EaSZIkSZImqQvtnbxytIUX0lWaXjrazNm2zmHVVTmnmBuWzEtHzpSzYUEpxUWFo9xigcEaSZIkSZImjbdaLiajZo4088KRJnafPEtXd+6ZgEOANTUlbFqaTGm6YXE5i8pnmgj4CjFYI0mSJEnSBNTVHdl98kxvrpkXDzfxVmvbsOrqSQTck2/musXzKJlhIuCxYrBGkiRJkqQJ4NylnilNTbxwuJmXjzZzvr1rWHUtmDfz8qiZJWWsrS01EfA4YrBGkiRJkqRx6K2Wi70jZl440szuk2cYxowmCgsCV19Vyg1Lyti0pJwblpRRO9dEwOOZwRpJkiRJksbYaE5pKp1R1Dti5oYl5VyzaC6zpvvv/0Ti2ZIkSZIk6QrrWaVpx+EkEfDLR1s4d2l4qzQtqZjVO2pm09IyVlbNocApTROawRpJkiRJkvKs7mwbLx5u7g3O7HzrzLBWaSoqCFy9YC6blpSxaUkZNywto7rEKU2TjcEaSZIkSZJGUYyRA/XneCEjOHOk8cKw6uqZ0rRpaZJr5pqF85g5vXCUW6zxxmCNJEmSJEkjcKmzizdOtCaBmcPNvHikieYLHcOqa3H5rN4RM5uWlLOq2ilNU5HBGkmSJEmSctB6sYOXjjSz43CyhPYrx1to7+zOuZ6eVZp6cs1sWlJGdalTmmSwRpIkSZKkQb3VcrE3MLPjcBN7T58lDmMJ7TnFRVy3eB43Li1n05Iyrl08z1Wa1C9/KyRJkiRJSnV3R/bVnU2nNCUBmhMtF4dVV23pDG5clgRmNi0tY21tKYVOaVIWDNZIkiRJkqasto4uXj/R2jty5oXDTZxpy30J7RBgTU0Jm5aWcWOaDHjBvJmEYHBGuTNYI0mSJEmaMnryzTx/uIkdh5p47Xgr7V2555uZXlTAtYvmcePSZKWm6xeXMXfmtDy0WFORwRpJkiRJ0qR1svUiOw43s+NQ04jyzcybNS2dzlTOjUvL2LBgLsVFLqGt/DBYI0mSJEmaFGKMHKg/x/OHkulMzx9u4njz8PLNLCybyeal5b3BmRVVLqGtK8dgjSRJkiRpQuro6uaNE628cDiZ1vTC4SaaL3TkXE8IsK62tHdK06alZcyfOzMPLZayY7BGkiRJkjQhXGjv5OWjLTyfTml6+WgLFzu6cq6nb76ZG5aUUTrDfDMaPwzWSJIkSZLGpZYL7ew43Mzzhxp5/nAzO0+00tmde8KZ0hlF6XSmZErTxoXmm9H4ZrBGkiRJkjQuvNVykR2Hm3pHzuw7fW5Y9cyfO6M3MHPjsnJWV5eYb0YTisEaSZIkSdIVlyQDPs+OdAntkSQDXlk9hxuXlrN5WRmblpSzsGwmIRic0cRlsEaSJEmSlHdd3ZHdJ8/w/KHLI2caz7fnXE9hQWDDVaVsXpZMa9q0tJzy2dPz0GJp7BiskSRJkiSNuvbObl4/0cL2NDjz4uFmzl7qzLme4qICrl+cTGfavLSc6xbPY3ax/8pqcvM3XJIkSZI0Yj0rNSXBmUZePtrCpc7unOspnVGU5JtJR85sXDCX6UUFeWixNH4ZrJEkSZIk5az1QgcvHElGzWw/1MQbw1ypqaa0OM03kwRn1tSYDFgyWCNJkiRJGlL92UtpvplGth9qYu/ps8TcYzMsrZjVG5jZvKycxeWzTAYs9WGwRpIkSZL0Q060XOT5Q429I2cO1p8fVj1ra0vYvCwJzGxeWk516YxRbqk0+RiskSRJkqQpLsbI4cYLvaNmnj80vGW0CwsCGxfM7Q3MbFpaxrxZrtQk5cpgjSRJkiRNMd3dkTfrzr0tOFN39lLO9RQXFXDd4nlsXlbhSk3SKLIXSZIkSdIk19Ud2fXWGban05p2HG6i+UJHzvXMKS5i09Iyblxazs3Ly9mwYC7FRYV5aLE0tRmskSRJkqRJpqOrmzdOtLL9UBPbDzbywuFmzl7qzLmeebOmcePScm5aVs5NyypYN7+EokKX0ZbyzWCNCCGUAu8BbgQ2AQuAKmAm0ALsAr4L/FWMsTHHuguAZ4Cbe74XYzTVuyRJkjSKLnV28drxVrYfTKY1vXikmQvtXTnXU1VSzOZl5dy8rJzNyypYVT3HZbSlMWCwRgCbga8NsK8KuDN9/FoI4SMxxodyqPtfkhGokSRJkjRybR1dvHy0he2HGtl+sImXjjZzqbM753oWzJvJTelKTTctr2BphctoS+OBwRr1OAZsBV5Mt08CBcBC4EPAB4BK4NshhBtjjK8NVWEIYQHwX4AINKblJUmSJOXoQnsnLx5pZvvBJrYfauTVY620d+UenFlaMYubllVw0/IkQLOwbFYeWitppAzWCGBrjHHxIPu/EUJ4P/APwHTgd4APZlHv54BS4K+AlSSjcyRJkiQN4dylTl443NSbc+a14610dsec61lVPScNzFRw07Jyakpn5KG1kkabwRoRYxxyMmuM8VshhD3AWuCOoY4PIXwAeD/QAHwG+OZI2ylJkiRNVmfbOnjhcDPPHWrkuYNNvHGila4cgzMhwJqaEm5eXtE7taliTnGeWiwpnwzWKBfn06+DhuPThMX/I336azHGRue9SpIkSZe1Xuxgx6FkStP2Q0lwJteBMwUBrr5qbrJS0/IKblxaxrxZ0/PTYElXlMEaZSWEsA64Nn26Z4jD/1+SFaWejDF+OZ/tkiRJkiaClgvtPH8omdb03MFGdp08Q8wxOFNUENi4cG5vzplNS8oomTEtPw2WNKYM1mhAIYRZJEGX9wG/DhSmu/5kkDJbgE8BHcC/yHcbJUmSpPGo5UJ7b2DmuYNN7DmVe3BmWmHgmoXzkmlNy8u5YUkZs6b7L5w0FdjT9TYhhI8BXxrkkD8AvjpA2WnAX5KsIvXfYoy7RrltC4c4pHY0X0+SJEnK1mgEZ6YXFnDt4nncnE5run5xGTOnFw5dUNKkY7BG2XoF+MUY4/ZBjvkMsAE4BPxuHtpwLA91SpIkSTkbleBMUQHXL57HTcsquHl5BdctnseMaQZnJBms0Q/7FvBCuj0TWAF8GPhx4KshhE/HGL/Tt1AIYRXw2+nTfxVjvHglGitJkiRdCaMRnCkuKuCGJWW9qzVds8jgjKT+GazR28QYW4CWjG/tAL4eQvhZ4CvAgyGET/STOPjzJKtEfTPG+N08NW/REPtrSdorSZIkjchoBGdmTCtg05Jybl6eTGt6x8K5FBcZnJE0NIM1ykqM8f+EEN5LMsrmcyGEB2OMzQAhhI8DdwNngV/JYxuOD7bf5cElSZI0XK0XOnj+cBPbDjTy3MFGdo8wOHPz8gresXAe04sK8tNgSZOawRrl4kGSYM1s4N3AX6ff/0z69QfA7QMETap7NkIIP5Vuno8x/mN+mipJkiQN7ExbBzsOpcGZQ43sfMvgjKTxw2CNclGfsb0kY7s4/fre9DGUr6VfjwAGayRJkpR35y51siOd1rTtYCNvnGil2+CMpHHKYI1ysSBj+9yYtUKSJEkawvlLnew43MRzB5t6gzNdOUZnDM5IGisGa5SLn8jYfr1nI8a4dKiCIYQngDvT400uI0mSpFF1sb2LF480s+1gA9sONPLa8VY6cwzOZK7WtGWFCYEljR2DNSKE8DHg6zHGtkGO+VXgPenTw8DT+W+ZJEmS1L9LnV28fLSFbQeSaU2vHG2hvas7pzqmFxZw3eJ5bFlRwc3LK7jWpbQljRMGawTwWeAPQwjfJAnCHCCZ5lQCbAR+Brg1PbYd+GSMsXMM2ilJkqQpqr2zm9eOXw7OvHikmUuduQVnphUGrltUxs0rKrh5eTnXLy4zOCNpXDJYox7lwCfTx0COAx+PMT56ZZokSZKkqaqzq5s33jrTG5zZcaiJix1dOdVRVBC4dtG83mlN1y8uY+Z0gzOSxj+DNQK4F7gPuBtYB9QAFUAbcBp4BfgO8I0Y44WxaqQkSZImr+7uyO5TaXDmQCPPH2ri7KXcBnMXBNi4cB5blldwy4oKNi0tY9Z0/+WRNPH4l0vEGA+QTH36fB5f46581S1JkqSJJ8bIgfpzbDvQyLPp6JmWCx051RECXH1VKVvSkTM3Li2nZMa0PLVYkq4cgzWSJEmS8i7GyLGmi2w72MCzaYCm/uylnOtZW1vClhUVbFlewU3LKpg7y+CMpMnHYI0kSZKkvDjV2pYEZ/YnwZkTLRdzrmNl9ZzekTM3LSunYk5xHloqSeOLwRpJkiRJo6Lx3CWeO9jEswca2HagkYMN53OuY0nFLG5Jl9LesqKC6pIZeWipJI1vBmskSZIkDcvZtg6eP9TEswcaeWZ/A3tOnc25jvlzZ7BlRQW3rKhky4oKFsybmYeWStLEYrBGkiRJUlbaOrp46UgzzxxI8s68dryVru6YUx0Vs6e/LTiztGIWIYQ8tViSJiaDNZIkSZL61dnVzavHW9l2oIFn9jfy4tFm2ju7c6qjdEZR75SmW1ZUsrpmjsEZSRqCwRpJkiRJAHR3R/acOsuz6ciZ5w81ce5SZ051zJxWyI3Lyrk1Dc6sv6qUwgKDM5KUC4M1kiRJ0hQVY+RI44VkWtP+RrYdbKRQgwq3AAAgAElEQVTpfHtOdUwvLOC6xfO4ZUUlt6ys4JqF85heVJCnFkvS1GCwRpIkSZpC6s609SYEHs5y2gUBNi6Yyy0rK7llRQWblpQzc3phnlorSVOTwRpJkiRpEmu92MH2g429AZo3687lXMeampI050wFNy2vYO7MaXloqSSph8EaSZIkaRJp6+jixSPNPLO/gWcONPL68RZyXLCJxeWzuHVlBVtWVLJleQVVJcX5aawkqV8GayRJkqQJrLOrm9dPtPaOnHnhSO4rNlXOKebWlRXcmi6nvah8Vp5aK0nKhsEaSZIkaQKJMXKg/nwycmZ/A9sONnK2LbcVm0qKi7hpeUUSoFlZyapql9OWpPHEYI0kSZI0zp0+08Yz+xt4en+yatOpM205lZ9eVMANi8u4bVWSFHjjgrkUFbpikySNVwZrJEmSpHHmTFsH2w829QZo9ueYFDhzxaZbV1SyaWkZM6a5YpMkTRQGayRJkqQxdqmzi5eOtPDsgSQ489rxVrpyzAq8snoOt66o4JaVldzsik2SNKEZrJEkSZKusO7uyO5TZ9KRM408f6iRto7ckgLXls7glpUV3LaykltXVlJTOiNPrZUkXWkGayRJkqQr4ETLRZ5+s56n9zfy7P4GGs+351S+ZEYRW5ZXpHlnKllRNdukwJI0SRmskSRJkvKg9UIH2w4m05qe2d/IoYbzOZWfXljADUuSpMC3rqxkw1WlJgWWpCnCYI0kSZI0Cnryzjy9Pxk98/rxFnJJOxMCbLhqbu/Upk1Lypk53aTAkjQVGayRJEmShqG7O7Ln1Fme2d/AU/sbhpV3ZknFLG5NV2y6ZUUFZbOn56m1kqSJxGCNJEmSlKVTrW089WZ9OrWpgYZzueWdKZs1jVtWVnJb+lhUPitPLZUkTWQGayRJkqQBnLvUyXMHGnl6f5J7Zn/duZzKFxcVsHlZObemwZn180spKDApsCRpcAZrJEmSpFRnVzevHm/l6TcbeHp/PS8fbaEzh8QzPXlnbluVBGduWFLGjGnmnZEk5cZgjSRJkqasGCOHGy/w9Jv1PPVmA9sONnK2rTOnOhaVz+S2lVXcvqqSLcvNOyNJGjmDNZIkSZpSWi6088z+Rp5KAzQnWi7mVL50RlEyrWlVJbevrGJxhXlnJEmjy2CNJEmSJrX2zm5ePtrMU2828NSb9bx2opWYw5La0woD1y8u4/ZVldy2qoqNC+ZSaN4ZSVIeGayRJEnSpBJj5ED9+bdNbbrQ3pVTHatr5vRObdq8rJzZxX5sliRdOV51JEmSNOE1nW/nmf0NPJ2OnnmrtS2n8lUlxb3Lad+2qpKa0hl5aqkkSUMzWCNJkqQJp72zmxePNPPUm/U8vb+B13Oc2jRjWgE3LatIpzZVsqamhBCc2iRJGh8M1kiSJGnc65na1JMU+LlhTG26+qpSbl9VxR2rKrneJbUlSeOYwRpJkiSNS60XOnh6f8OwV22qLZ3RO3Lm1pWVVM4pzlNLJUkaXQZrJEmSNC50dnXzyrEWnnyzgSf31fPa8Ra6c5jaNHNaITcvL+f2VUli4JXVc5zaJEmakAzWSJIkacwcbbzAk2/W8+S+erYdaOTspc6sy4YAGxfM5baVldy+qorrl8yjuMipTZKkic9gjSRJkq6Ys20dbDvQyFNvNvDkm/UcabyQU/meqU23r67itpWVlM+enqeWSpI0dgzWSJIkKW+6uyM73zrDD/bV8eS+Bl462kxnDnObMldtunN1lVObJElTgsEaSZIkjaq6s208tS8ZOfP0mw00nm/Pqfza2hLuXF3F7auq2LTUVZskSVOPwRpJkiSNyKXOLl483MwP3qznyX0N7D55JqfylXOmc9vKSu5IpzZVl87IU0slSZoYDNZIkiQpJzFGDjWc58l99Tz5ZgPPHWzkQntX1uWnFQZuXJqs2nTH6krW1ZZSUODUJkmSehiskSRJ0pDOtnXw7IHGNEBTz7GmizmVX145mztWJ8GZm5dXMGu6H0MlSRqIV0lJkiT9kO7uyK6TZ/jBvmRZ7ReP5JYYuKS4iFtWViQBmlVVLCqflcfWSpI0uRiskSRJEgBN59t56s36NEDTQMO5S1mXDQE2LpjLHauquHNNFdcumse0woI8tlaSpMnLYI0kSdIU1dnVzavHW/jB3iRA89qJVmL2g2eoKinmjjTvzO2rqiifPT1/jZUkaQoxWCNJkjSFnGy9yJP7kuDM0282cKatM+uy0wsL2LS0jDtXV3HH6irW1pYQgomBJUkabQZrJEmSJrFLnV28cLiZH+yr5wd769l7+mxO5ZdWzOoNzty8vILZxX58lCQp37zaSpIkTTLHmi7wxN46frCvnmcP5Las9qzphdyyoqI3QLOkYnYeWypJkvpjsEaSJGmCa+vo4rmDjb2jZw42nM+p/NraEu5cXcWdq6u4YWkZxUWFeWqpJEnKhsGaKS6EUAq8B7gR2AQsAKqAmUALsAv4LvBXMcbGAepYAjwAbAauAWrSOgLQALwM/C3w9RhjRz5/HkmSpoIYI4cbk9EzT+yt57mDjVzq7M66/NyZ07htVWUyemZVFbVzZ+SxtZIkKVcGa7QZ+NoA+6qAO9PHr4UQPhJjfKif4z4J/PYAdSxMH+9L6/ixGOOhEbZZkqQp50J7J9sOJKNnnthbz9GmC1mXDQHesXAed66u4q41VVyzcB6FBSYGliRpvDJYI4BjwFbgxXT7JFBAEmT5EPABoBL4dgjhxhjja33KdwOvAk8Dr6TlTwMlwArg54FbgI3AIyGEd8QYs/+EKUnSFBRj5ED9OZ7YmwRnnj/URHtX9qNnKmZPT6Y2ralyWW1JkiaYEGMc6zZoDIUQCmOMg2YdDCG8H/iH9Onfxxg/2Gd/UYxx0HU/Qwh/DPxK+vRfxxj/dLhtHuQ1FpIEmzh27BgLFy4c7ZeQJCmvLrR38uz+Rp7Yl0xvOt58MeuyBQGuW1zGXauruGtNNVdfVUqBo2ckScqr48ePs2jRop6ni2KMx0ejXkfWTHFDBWrSY74VQtgDrAXu6Gf/oIGa1H/lcrDmDmDUgzWSJE00yeiZ870rN20/mNvomaqS4t6pTbevrGLurGl5bK0kSbpSDNYoWz3LSgw3A2HmshRmMZQkTVk9uWee2FvPE/vqONaU/eiZwoLADUvKuGtNsnLT+vmlhODoGUmSJhuDNRpSCGEdcG36dM8wq/lnGdvDrUOSpAknxsjBhvNp7pk6th9qoj2HlZtqS2dw15pk9MwtKyspneHoGUmSJjuDNeNYCKEC6I4xNo/Ba88iWcb7fcCvA4Xprj/JoY4yYCnws8C/Sr/dDvzFMNs0VBKa2uHUK0nSaLvY3sVzBxvZmi6tncvKTUW9o2equWtNFWtrSxw9I0nSFGOwZpwJIdQAv0uyAlNZ+r0zwIPAf4gxHs3ja38M+NIgh/wB8NUh6vgy8NEBdl8EPhpjPDCc9pEmD5YkaTw62niBrXvr2Lq3jm0HGrmUw+iZmtJi7lqdBGduXeXoGUmSpjqDNVdACKEWeCl9+rsxxj8f4LjlwJPAfCDzFtpcktEp7wsh3BtjfCWf7e3HK8Avxhi3j6COvwE+E2M8MkptkiRpTF3q7OKFw81s3ZMEaA7Unx+6UCoz98xdq6tZN9/RM5Ik6TKDNVfGnSRTdNqBbwxy3NeBqzKeHwPeAtYDJSQjbb4WQtiY5QpMufoW8EK6PRNYAXwY+HHgqyGET8cYvzNEHb9NMgIHoBR4B/BJ4CeBBSGEj8cY3xxm+xYNsb8W2DHMuiVJGtLJ1os8sbeerXvqeGZ/A+fbh1xUsVd1SXGae6aaW1dWMnemo2ckSVL/DNZcGXelX7fGGBv7OyCE8F5gExCBZuCnY4wPp/tmAp8Dfh5YDXyQZKTKqIoxtgAtGd/aAXw9hPCzwFeAB0MIn4gxfnmQOk4AJzK+9WwI4QvA/wQ+BWwPIdwdY3x1GO0bdL1670hKkkZbZ1c3Lx1tSaY37aljz6mzWZctCPTmnrl7jaNnJElS9gzWXBnXkARhHhnkmJ/J2P63PYEagBjjxRDCPycJ5mwAfow8BGsGEmP8P2kw6cPA50IID+aS9DjG2BVC+NfAe0hGx/w5cEt+WitJ0sg0nLvED/bW8/jeOp7aV8+ZtuwHs1bMns6da6q4e001d6yqYu4sR89IkqTcGay5MmrSr4ONJrkr/doK/HXfnTHGGEL4X8AfkQR/rrQHSYI1s4F3008bBxNjbA8hfJ9kStSWEMJVMca3Rr+ZkiTlprs7svOtMzy+p47H99bx2vEWYsyubAjwjoXzuDsN0GxcMJeCAkfPSJKkkTFYc2VUp18b+tuZJhauIRl981SMsWOAel5Ov141wP58qs/YXjJKdRiskSSNibNtHTz9ZkO6elM99WcvZV127sxp3LG6irvXVHHH6ioq5xTnsaWSJGkqMlhzZfS8z9MH2H9TxvaLg9TTk09m9ohblLsFGdvnxrAOSZJyFmPkYMN5tu6p4/E9dew43ERHV5bDZ4D180u5e20yeubaRfMoKizIY2slSdJUZ7DmymggGQ2zmv5XK9qSsf1CP/t7lKRf20apXbn4iYzt13MtHELomT4FcBE4MBqNkiRpIG0dXWw/1NS7tPaRxgtZl509vZDbVlVy95pq7lpTTe3cGXlsqSRJ0tsZrLkyXiUJ1nwQ+GrmjpAsC/G+9Gk38Mwg9fRMPzo9Wg0LIXwM+HqMccAAUAjhV0mSAwMcBp7O2FcJ3Blj/OYg5WcA/4vL08G+GWPM/hOzJElZOtXaxta9dTy2O1la+2JH9ktrL6uczd1rqrlnbTU3LiujuKgwjy2VJEkamMGaK+NBkmDHj4UQfi7G+L8z9v0aSRAmAo/FGFsHqadnBM7eUWzbZ4E/DCF8kyQIc4BkilIJsJFklapb02PbgU/GGDOXxZgD/F0IYT/wTeB5kqW7LwGVwGbgE8Dy9PgTwGdGsf2SpCmsuzvy6vEWtu6p47E9dex860zWZacXFnDT8nLuSgM0yyrHYpaxJEnSDzNYc2V8FfgtYDHwpRDCLwH7gXW8fWWn/2+gCtIROO8nCeo8N8rtKydZpemTgxxzHPh4jPHRAfavZOggzDbgI64CJUkaibNtHTz1ZgOP76njib11NJxrz7psTWkxd6+p5u611dy2spLZxX4UkiRJ44+fUK6AGOOFEMJPAg8DpcCm9AHQs77n/4oxPjxINe8hSdAbgYECJsNxL3AfcDdJ8KgGqCDJi3MaeAX4DvCNAaYuHSVJkHw3cCewLK2jhGSEzlGSPDx/CzwUY7aLoUqSdNmhhvM8tvs0W/fW8fyh7JMDhwDXLZrXG6C5+qpSkvsfkiRJ41fwf+crJ4SwAvg94EeAWem3jwB/CvzRYIGMEMJzJFOKTsYYFwx03FQWQlgIHAM4duwYCxcuHOMWSZKGq72zmxcON/HYnjq27qnjYMP5rMuWzijizjXV3LO2ijtXV1M+e6DFGCVJkkbm+PHjLFq0qOfpohjj8dGo15E1V1CM8QDwkyGEAqAKaI8xNmdZ/N70a+egR0mSNEE1nrvE1r31PL7nNE/ua+DcpewveSur53Dv2mT0zA1Lypjm0tqSJGkCM1gzBmKM3eS4olOMMftbipIkTQAxRvaePstju+t4bPdpXj7WQrYDfnuSA9+7tpp71tawuGLW0IUkSZImCIM1kiTpimnr6OK5g408vidZXvtEy8Wsy1aVFHPPmmruWWdyYEmSNLn5KUeSJOVV3dk2nthTz6O7T/P0/gYutHdlXfaahXO5e201966t4eqrSikoMDmwJEma/AzWSJKkURVjZNfJM8n0pj11vHqsJeuys6YXcvuqSu5dW8Nda6uoLpmRx5ZKkiSNTwZrJEnSiLV1dPHsgQYe213H43vqONnalnXZBfNmct+6au5ZV8PNy8spLirMY0slSZLGP4M1kiRpWOrOtrF1Tx2P7q7j6TcbuNiR3fSmEOD6xWXcs7aa+9bVsLpmDiE4vUmSJKmHwRpJkpSVGCN7Tp3lsd2neXR3Ha/kML1pTnERd6xOpzetqaJiTnEeWypJkjSxGayRJEkDutTZxfaDTb0BmlxWb1pcPot71yXJgTcvK2d6UUEeWypJkjR5GKyRJElv03S+na176nhsz2l+sLee81mu3lQQ4IYlZdy7rob71lWzosrpTZIkScNhsEaSpCkuxsiB+nM8uruOR3ed5qWjzXTH7MrOKS7iztVV3LuumrvXVFM2e3p+GytJkjQFGKyRJGkK6uzq5sUjzTyy6zSP7j7N4cYLWZddMG8m96+v4d511dy0rMLpTZIkSaPMYI0kSVPEuUudPLmvnkd3nebxvXW0XOjIqlwIcM3Ceb0BmjU1JU5vkiRJyiODNZIkTWInWy/2Tm/adqCR9q7urMrNnFbIbasquX9dDXevraaqxNWbJEmSrhSDNZIkTSIxRnadPMOju+p4dPdpXj/RmnXZmtJi7l1Xw/3ratiyooIZ0wrz2FJJkiQNxGCNJEkTXHtnN9sPNSb5Z3ad5q3WtqzLrp9fyn3rkwDNhgWlTm+SJEkaBwzWSJI0AbVe7OCJvXU8vOs0T+6t5+ylzqzKTSsM3Ly8gvvWJflnFpbNynNLJUmSlCuDNZIkTRAnWi7yyM5TPLL7NNsPNtGZ5frapTOKuGdtNfetr+GO1VWUzpiW55ZKkiRpJAzWSJI0TsUY2fnWGR7ZdZpHdp1m18kzWZddVD6T+9fVct/6am5cWs60QpfXliRJmigM1kiSNI50dHWz/WATj+w6xaO76zjRcjHrstctnsd962q4f30Nq6rnmH9GkiRpgjJYI0nSGDvb1sETe+t5ZNdptu6t42xbdvlnphcVcNvKSu5fn+SfqS6ZkeeWSpIk6UowWCNJ0hg41drGI7uT6U3bDjTQ0ZVd/pl5s6Zxz9pqHlhfw+2rqphd7KVckiRpsvETniRJV0CMkQP153ho52ke3nWaV4+1ZF12cfks7l+fTG/atKSMIvPPSJIkTWoGayRJypPu7sjLx1p4eNcpHtl5moMN57Mu+46Fc3lgfQ33r69ldY35ZyRJkqYSgzWSJI2iS51dPHugkYd3JlOcGs5dyqrctMLAlhVJ/pn719VQO9f8M5IkSVOVwRpJkkao9WIHT+yt4+Fdp3liTx3n27uyKlcyo4h71lZz//oa7lxdRcmMaXluqSRJkiYCgzWSJA3DqdY2Htl1iod3nWbbgUY6u7NLEFxbOoP719fwwNU13LSsgulF5p+RJEnS2xmskSQpS/vrzvHwrlM8tDO3BMGrqufwwNU1PLC+lo0L5lJQYP4ZSZIkDcxgjSRJA4gx8trxVh7aeYqHdp7iQH12CYJDgOsXl6UJgmtYXjUnzy2VJEnSZGKwRpKkDJ1d3Tx/qImHdiZTnE62tmVVbnphAbetquSB9TXcu66GqpLiPLdUkiRJk5XBGknSlHexvYsn36znoZ2neHxPHS0XOrIqVzKjiHvXVvPA1bXcsbqKOcVeViVJkjRyfqqUJE1JrRc6eGzPaR7aeYon9zVwsSO7FZyqS4q5f30N77y6lpuXmyBYkiRJo89gjSRpyqg708ZDu07z0BuneO5g9is4LauczQNXJwGaaxfOM0GwJEmS8spgjSRpUjvSeJ6Hdp7i+2+c4qWj2a/gtGFBKe9cX8s7N9SyqnoOIRigkSRJ0pVhsEaSNKnEGNl7+izffyNZYnv3yTNZlSsIsHlZOQ+sr+WBq2tYWDYrzy2VJEmS+mewRpI04XV3R1493sL3d57ioTdOcbjxQlblphcVcMeqSh64upb71tVQPnt6nlsqSZIkDc1gjSRpQupZYvv7O0/x8M7TnDqT3RLbJcVF3LOumndeXcudq6uY7QpOkiRJGmf8hCpJmjDaOrp4Zn8D33/jFI/uPk1zlktsV8yenqzgtKGWW1ZUUFxUmOeWSpIkScNnsEaSNK6dv9TJE3vr+d4bJ9m6p47z7dktsX3V3Bm8c0Mt77q6lk1Lyyl0BSdJkiRNEAZrJEnjTuvFDh7fc5rvvX6KH+yr51Jnd1blllfN5l1X1/KuDbVsXDDXFZwkSZI0IRmskSSNC43nLvHIrtN8741TPHuggY6umFW5DQtKewM0K6tL8txKSZIkKf8M1kiSxsyp1jYe2nmK771xkucPNdGdRXwmBNi0pIx3bZjPA+trWFTuEtuSJEmaXAzWSJKuqGNNF/j+G0mA5qWjLVmVKSwIbFlewbs21PLA1TVUl8zIcyslSZKksWOwRpKUdwfqz/H9N07x3ddPsvOtM1mVmV5YwO2rKnnXhlruW1dD2ezpeW6lJEmSND4YrJEkjboYI2/WneO7r5/ke6+fYu/ps1mVmzmtkLvWVPGuDbXcs7aakhnT8txSSZIkafwxWCNJGhUxRnadPMP3Xj/Fd984ycH681mVKyku4t511bxrw3zuXF3FzOmFeW6pJEmSNL4ZrBEhhFLgPcCNwCZgAVAFzARagF3Ad4G/ijE2DlBHEXA38ABwM7AWmAecBw4CjwN/HmM8kNcfRtIVFWPkteOtfC/NQXOk8UJW5cpmTeOB9ckKTresrKC4yACNJEmS1CPEmN3SqJq8Qgj3AY9kcWgD8JEY40N9ylcBu4GKIcq3A78eY/yTYTV0CCGEhcAxgGPHjrFw4cJ8vIw05XV3R14+1sz3Xj/F9944xYmWi1mVqyop5l1X1/LuDbVsXlZOUWFBnlsqSZIk5dfx48dZtGhRz9NFMcbjo1GvI2vU4xiwFXgx3T4JFAALgQ8BHwAqgW+HEG6MMb6WUbaYy4GaV4AHge3AaWAu8G7gl4EZwB+HEC7GGP8y7z+RpFHT1R154XBT7wia02cuZVVu/twZvGtDLe/ZOJ/rF5dRWBDy3FJJkiRp4jNYI4CtMcbFg+z/Rgjh/cA/ANOB3wE+mLE/kozM+Q8xxuf6qz+E8E2SYNBM4PdDCF+LMWaXcVTSmOjqjmw/1Mh3Xz/J9984TcO57AI0C8tm8p6N83nXhlquXTiPAgM0kiRJUk4M1ogYY1cWx3wrhLCHJBfNHX32nSDJVTNY+e0hhD8D/i3JaJv7SII/ksaRzq5uth9q4p9eP8nDO0/RcK49q3JLK2bxno3zefeG+WxYUEoIBmgkSZKk4TJYo1z0LO0yY5jlt5IEawBWjLw5kkZDZ1c32w428t3XT/HwzlM0ns8uQLOqeg7v3jifd2+oZW1tiQEaSZIkaZQYrFFWQgjrgGvTp3uGWU1xxnb3yFokaSQ6urrZdiCZ4vTQzlM0X+jIqty6+aW8e0OSJHhVTUmeWylJkiRNTQZrNKAQwiySZbzfB/w60LO27nBXc7ozYzvngE+62tNganOtU5pKOrq6eWZ/A999/SQP7zpNS5YBmquvKuU9G+fzno3zWVY5O8+tlCRJkmSwRm8TQvgY8KVBDvkD4KvDqHc+8PPp0waSKVG5OjaMMtKU1t6ZBGj+6fWTPLLrNK0XswvQbFiQBmg2zGepARpJkiTpijJYo2y9AvxijHF7rgVDksjiL4CeORO/G2O8OJqNk3RZe2c3zxxo4LuvJVOczrR1ZlXuHQvn9gZoFlfMynMrJUmSJA3EYI36+hbwQro9kyQR8IeBHwe+GkL4dIzxOznW+VvAj6bbW4HPDbNti4bYXwvsGGbd0oTW0dXNswca+afX3uKhndmPoLlm0Tx+ZGMt794wn0XlBmgkSZKk8cBgjd4mxtgCtGR8a8f/Ze/O47u67gPvf44kxA4CSYAAG7NI2I4BLzE2tlnc7N5jJ22epoubTNJlJm0yM+k2nafutNN5pk2ettN0ydKndjtN0kzi3YnTLGZxjFcMeAmIxWAQYCSB2BchneePeyV+lqXfIvTT+nm/Xr8X9+rec+7RPRxd6XvPAnwzhPCLwAPAIyGET8YY788nvxDCx4E/Tnd3AT8fY+zV5MIxxr05rtWbbKUhK3OS4CdfO5D3HDRXXVzBrYtq+OAVM5g9xQCNJEmSNNgYrFFeYoz/HEK4jaSXzZdCCI/EGA9nSxNCuJVk/psAvAW8L8Z4oPillYavc23tPLvzEE+8so8nX81/FaerL67glkU1fGhRDbMqxha5lJIkSZIuhMEaFeIRkmDNeOBDwNd7OjGEsAr4NjAKOAy8P8a4vR/KKA0759raee6NQzyezkFz6MTZvNJ19KC5ZVENMw3QSJIkSUOGwRoVojFje05PJ4UQlgKPAWOA48CHYoybi1w2aVhpa48890YzT2zez5OvHqA5zwDNlRclAZoPLXKIkyRJkjRUGaxRIWZlbB/v7oQQwmLgSWACcBq4vTcrSEkjUXt75MXdh3l88z6++8oBmo6fySvdktmTuXVxjZMES5IkScOEwRoV4qMZ2690PRhCqAP+DZgCtAL3xBhX90/RpKEpxsjLe1p4fNN+vvvKfg4cPZ1XusWzJ3cOcTJAI0mSJA0vBmtECOFe4Jsxxh7/SgwhfA64Jd3dBTzd5fjFwA+B6UAbyapP3y1GeaWhLsbIqw1HeXzzPh7fvJ+GllN5pbti1iRuXTSTWxfVcHGlARpJkiRpuDJYI4D7gC+GEL5DEoTZQTLMaSKwCPg4cGN67lngUzHGcx2JQwiVJIGai9IvfRHYEkK4Iss1D8cYG/rym5AGsxgjP91/jCdeSQI0u5tP5pXu8ppJ3Lq4htsW1zCncnyRSylJkiRpMDBYow5TgU+ln57sBT4RY/xhl68vAmoz9n87/WTzAHBvgWWUhpxtbx3jsc37eXzzPnY2nsgrTd30Cdy2eCa3Lq5hfvWEIpdQkiRJ0mBjsEYA7wHeC9wMXEYylKmSZILgt4CNwOPAt2KM+XUHkEawXU0neHzzPh7btJ+tbx3LK828qvHctriG25bMpG76xCKXUJIkSdJgZrBGxBh3kAx9+nIv068GQl+WSRpqGlpO8UQaoHml4UheaS6eOi4J0H3RsvwAACAASURBVCyeyWU1EwnBZiRJkiTJYI0k9drBY6f53isHeGzTPl7cfTivNLMqxnbOQbNo1mQDNJIkSZLewWCNJBWg5eRZnnz1AI9t3sf6Hc20x9xppk8anazitLiGqy+uMEAjSZIkKSuDNZKUw7HTrfzwp2/x2Kb9rK1v5FweEZqqCeXcsigZ4vTuOVMoKTFAI0mSJCk/BmskqRunzrbx1NaDPLZpHz/ecpAz59pzppk0powPXVHD7Utmcv28qZSVlvRDSSVJkiQNNwZrJCl19lw767Y18timffzg9bc4cbYtZ5rx5aW87/Lp3L5kJstrqykvM0AjSZIk6cIYrJE0orW1R557o5nHNu3je68eoOVka840o8tK+JlLp3H7kpncvHAaY8tL+6GkkiRJkkYKgzWSRpwYI5v2HuHRjft4fPM+Dh47kzNNWUlgRV01ty+p4b2XTWfimFH9UFJJkiRJI5HBGkkjRv1bx3h04z4e27yP3c0nc55fEuCG+VXctriGD14xg4px5f1QSkmSJEkjncEaScPankMneXTTPh7btI8tB47lleaaOVO4fXENtyyuYdrEMUUuoSRJkiS9ncEaScNO47EzPLF5H49s2sfLb7bkleaymkncsWQmty2u4aKp44pcQkmSJEnqmcEaScPC0dOtPPnqAR7duI9ndjTRHnOnmVM5jjuWzOSOJTOpnT6x+IWUJEmSpDwYrJE0ZJ1ubeOpLQd5ZOM+frz1IGfPtedMM33SaG5bnARoFs+eTAihH0oqSZIkSfkzWCNpSGlrj6zf0cwjGxt48tUDHDtzLmeainGj+NAVNdyxZCZL506ltMQAjSRJkqTBy2CNpEEvxsjmvUd4eGMDj2/eT2MeS22PKy/l/ZdP544rZ3LTgmrKy0r6oaSSJEmSdOEM1kgatHY0HueRjft4dGMDu/JYantUaWDVwmncsWQm771sOmPLS/uhlJIkSZLUtwzWSBpUDhw5zWOb9vHIpgZebTia8/wQ4Lq5U7nzyll86IoZVIwr74dSSpIkSVLxGKyRNOCOnGrle6/s55GN+3j2jWZiHis5vWvmJO66cha3LamhZvLY4hdSkiRJkvqJwRpJA+LMuTae2tLIwy838OMtBznblnslpzmV47hzyUzuuHImC6a51LYkSZKk4clgjaR+094eeX7XIR7Z2MATm/dz9HTulZyqJozmtsU13HnlTK68qMKltiVJkiQNewZrJBXdlgNHefjlZKLgfUdO5zx/wugyPnjFDO68cibL5lVSVupKTpIkSZJGDoM1kopiX8spHt20j4dfbmDLgWM5zx9VGrh54TTuvHIW77lsGmNGuZKTJEmSpJHJYI2kPtMxUfDDGxt47o1DeU0UvHTuVO66cha3LHIlJ0mSJEkCgzWSLlBvJgqumz6Bu66axR1LZjJ7yrh+KKUkSZIkDR0GayQVLMbIi7sP89DLyUTBR0615kwzY9IY7rxyJndeOYvLaiY6UbAkSZIk9cBgjaS87Ww8zkMvN/Dwxgb2HDqV8/yJo8u4ZVENd141k+vmVlJaYoBGkiRJknIxWCMpq+bjZ3hs0z4e2riPTXtacp5fXlrCzZdWc9eVs7j5UicKliRJkqRCGayR9A6nW9v4wetv8fDLDaypb+Rce+6ZgjsmCr51UQ2Tx43qh1JKkiRJ0vBksEYSAO3tkWffaOahDQ1879UDHD9zLmea+dXjufvq2dyxZCYXTXWiYEmSJEnqCwZrpBGu/q1jPLihgUc2NrD/yOmc51dNKOf2JTO5+6rZXDFrkhMFS5IkSVIfM1gjjUCNx87w6KZ9PLhhL6/tO5rz/DGjSvjAu2Zw11WzWL6girLSkn4opSRJkiSNTAZrpBGiYx6ah9J5aNpyzEMTAtw4v4q7rprFB6+YwYTR/riQJEmSpP7gX1/SMNbeHnlx92Ee3LCXJzbv51ge89BcOmMid189izuWzGLG5DH9UEpJkiRJUiaDNdIw9EbTCR7asJeHNjaw59CpnOdPnzSau66cxV1XzeKymkn9UEJJkiRJUk8M1kjDRMvJszy+eT8PbtjLhjdbcp4/dlQpH7piBndfPZtl8yspLXGiYEmSJEkaDAzWSEPY2XPtrN56kAc3NPDjLQc529ae9fwQ4Ib5ldx91Ww+eMUMxjsPjSRJkiQNOv6lJg0xMUZeaTjCd17ay6Ob9nH4ZGvONAumTeCeq2dz11UzqZk8th9KKUmSJEnqLYM10hDx1tHTPPRyA995aS/bDh7Pef7U8eXcsWQm91w9mytmTSIEhzlJkiRJ0lBgsEYaxE63tvFvr7/Fd17ay7ptjeRYbZvy0hLed/l0PnzVLFYurGZUaUn/FFSSJEmS1GcM1kiDTIyRl3Yf5jsb9vL45v0cO517ue13z5nC3VfP5tZFNUweN6ofSilJkiRJKhaDNdIgsffwSR7c0MCDG/ayq/lkzvNnTxnL3VfP5p6rZzGncnw/lFCSJEmS1B8M1kgD6MSZc3z3lf18Z8Nent15KOf548tLuWVRDfdcM5ull0ylxOW2JUmSJGnYMVgj9bP29sizO5v59oa9fO+VA5xqbct6fsdy2x+5ZjYfeNcMxpXbbCVJkiRpOPOvPqkftba18/6/WMsbTSdynjuvajz3XDObD181i5kVLrctSZIkSSOFwRqpH40qLeHSGRN7DNZMGlPG7Utmcs81s7nqogqX25YkSZKkEchgjdTP7rl6Nt979UDnfmlJYGVdNfdcPZv3XDaNMaNKB7B0kiRJkqSBZrBG6mcrF1ZTOb6c6omj+cg1s7njyplMmzhmoIslSZIkSRokDNaIEMIk4BbgWuDdwCygGhgLtACvA98F/iHG2JwlnwVpHkvTz1VpHgC/EmO8v0jfwpAyqrSE7312OdUTRjvMSZIkSZL0DgZrBElg5Rs9HKsGVqafz4cQfiHG+P2uJ4UQVgKri1bCYcaeNJIkSZKknhisUYc9wFPAS+n2fqAEmA18BLgbqAIeDSFcG2Pc3CV9ZheRduCnwAmSQJAkSZIkScqTwRoBPBVjvDjL8W+FEO4CHgLKgT8E7ulyTgPweeAF4KUY4/EQwr0YrJEkSZIkqSAGa0SMsS2Pcx4OIWwBLgVWdHN8G/CFIhRPkiRJkqQRpWSgC6Ah5UT6rxOuSJIkSZJUJAZrlJcQwmXAlenuloEsiyRJkiRJw5nDoNSjEMI4kmW8bwd+GyhND/3VAJVndo5TZvRLQSRJkiRJKiKDNXqbdFLgf8xyyheAf+mf0rzDnnxP3L9/fzHLIUmSJElS1789S3s6r1AGa5SvjcCvxRifG+iC5GPpUhehkiRJkiT1q2pgd19kZLBGXT0MvJhujwXmAz8LfBj4lxDCZ2OMjw9Q2S7KcXwx8ER/FESSJEmSpGIxWKO3iTG2AC0ZX3oB+GYI4ReBB4BHQgifjDHePwBl25vteAihEbg23W0Eci5JPoBmkNxbSMp8YADLou5ZR0OD9TQ0WE+Dn3U0NFhPQ4P1NPhZR0PDUKmnUpIeNQCv9FWmBmuUlxjjP4cQbiPpZfOlEMIjMcbDA12uTDHGM5zvFTSohRAydw/kCkSp/1lHQ4P1NDRYT4OfdTQ0WE9Dg/U0+FlHQ8MQq6c+GfqUyaW7VYhH0n/HAx8ayIJIkiRJkjRcGaxRIRoztucMWCkkSZIkSRrGDNaoELMyto8PWCkkSZIkSRrGDNaoEB/N2O6ziZMkSZIkSdJ5BmtECOHeEMKYHOd8Drgl3d0FPF3sckmSJEmSNBK5GpQA7gO+GEL4DkkQZgfJMKeJwCLg48CN6blngU/FGM91zSSE8BFgQsaXbsrc7mY27yf76huQJEmSJGm4MFijDlOBT6WfnuwFPhFj/GEPx79AzxMPfzL9dFgDGKyRJEmSJKmLEGMc6DJogIUQ5gPvBW4GLgOmA5XAaeAtYCPwOPCtGOPJLPnsIv9VotbEGFf1vtSSJEmSJA1PBmskSZIkSZIGEScYliRJkiRJGkQM1kiSJEmSJA0iBmskSZIkSZIGEYM1kiRJkiRJg4jBGkmSJEmSpEHEYI0kSZIkSdIgYrBGkiRJkiRpEDFYI0mSJEmSNIgYrJEkSZIkSRpEDNZIPQghTAohfCyE8MUQwpoQwvYQwpEQwtkQwsEQwuoQwm+HECrzzG9ZCOGfQwi7QginQwj7QwhPhhA+VmC5PhZC+H6a/nSa3z+HEK7v3Xc6tPVFPYUQykII7wsh/HkIYV0IoTGE0BpCaAkhbAghfCGEMD+PstwfQoh5fi7py/sw2PVRPa0q4P7el0eZykIIvxpCWJvW+am0XH8fQri8T2/AENBHdZRv/XR+esjHttQLIYQ/63JvVuWR5oMhhAdDCHtDCGfSfx8MIXywgOvalgqQbz2FEMaEEO4MIfx1COG5EMKh9Nl0KISwPoRwXwihJo/rrb6Q9jhSFVBP9xbw8+rePK47LoTw+RDC82ldHw8h/DQkv4tc3Nff51CWTx2FEC7pxbNpVw/Xsy1lUcD9XZ1HXj6bAGKMfvz46eYDvBeIeXwagQ/kyOv/Btqy5PEoMCZHHmOAx7Lk0Qb814G+b0OtnoBqoCmP9GeA38pRlvvzLEsELhnoezeU6inNY1UB9/e+HOWpBJ7Nkv408ImBvm9DsI7yrZ+Oz9Ye8rEtFV5/S4DWLvdmVZbzA/DlHPf2y0DIcV3bUhHqCVgMHM3j//9R4GdzXHN1vu1poO/PYPkU0p6Aewv4eXVvjuvOB7ZkSd8C3DLQ92cwfApoS5cUUD8dn+/3cE3bUvY6yff+rs6Sh8+mjE8ZkrLZAzwFvJRu7yfpkTYb+AhwN1AFPBpCuDbGuLlrBiGEfwf8Ubq7A/hT4BVgJvBbwM3A7cDXgF/IUpZ/AG5Lt58C/grYBywCfp/kAf/fQgj7Y4xf6+X3O1RdSD2NJvmBDrAReAR4DngLmAx8CPgMSbDsL0MIp2KMX8lRnn3AB3Kc05DftzasXHB7yvAJ4IUsxw/2dCCEUAo8CFyXfulB4KvAofRrfwBMA74SQmiIMX4/97c2bFxoHS3K4xq/DPzndPuBHOfalvIQQigh+T9cRvJ/f1oeyf4E+HS6/TLwZyTPqPnAbwNXpccbSdpEd9e1LRWgwHqaBExMt38CPA68CDSTvGS4G/h36TlfDyEcizF+L0cRXgR+pdffwAjRy/bU4QMkP7d6sjfLdSeQ1PPC9EtfBb4JnCL5XfH3SH4v+T8hhGU5npHDWoF11EB+z6bfA34+3c71bLItZfd3wN9mOX4iyzGfTZkGOlrkx89g/QCleZxzF+cjtN/p5ngFcDg9vhuo6noNkl41HXms6OE6KzPOebRr2Uj+eNqdHj8EVAz0/Rsq9QTMAv4NuD5L+uuAk5x/qzWxh/PuT8/ZNdD3ZbB9+qg9rco4vuoCynJvRj5/083xBcCR9Hg9UDbQ92+o1FGe13kuTd8OXNzDObalwu7pZ9P79TrJC4FcPQEWcP6N9AvA2C7Hx6Vfj+l583vIx7ZUpHoCbgD+Fbg8S353pu0oAtvp4U0z53sDrB7oezAUPr1oT5nt4JILuO59Gfl8vpvjyzLa7Y8H+j4NpTrKI79SkqBOJOmtNq6H82xL2e9jRz3c18v0Ppu6fJyzRupBjLEtj3MeJumuCrCim1M+RRKwAfidGGNTN9f4DZIhTACf7+FSv53+2wb8Rteypfn+Tro7BfhkrrIPFxdaTzHGhhjj+2OMz2ZJ/xzn3xBMJhkuogL0UXvqKx3t7DDdtLkY43bgf6S7tSR/EA17/VFHIYSFwNJ0d3WM8c1C89DbhRAuAv443f114GweyT4Hnb2rPxNjPJV5MMZ4kqRHIel5n+0hH9tSngqtpxjjMzHGn4sxvp7lnEdI3hhD8tb5yr4o60jWy/bUF9cdRdLbGuCnwBe7nhNjXE/Syxrg5hDCNf1RtsGmSHX0XpIe7wDfTn8Gqv/5bOrCYI104Tq68o3p5thd6b9HOf8L1dvEGPcCP0x335d2g+2U7r8n3f1Ben53HkyvA0n3aL1dtnrKx1MZ2zknG1avXWg9ZRVCqAU6JpX71yy/kN2fsW17ersLqaNfytjO1c1c+flbYALwQIxxTa6TQwiB87+YbukpUJ1+fWu6e1eaLjMf21JhCqqnAvhs6lvFqqdcVnH+5d4DMcb2Hs67P2N7pLanYtSRz6YB5rOpewZrpAsQQriM82+ytnQ5Vs75N8jrY4zZIv8dD5vRwLVdji1Nv5553juk+Xf8YFuavqUR2eupAKMztnv6JUoXoI/qKZflGdvZ2tMBkq6xADcVqSxDzoXUUfoL1cfT3RPAd/qwaCNSCOFnSeYyO0TPPTO7mksy/BOytIEux2eTTNKZybaUp17WU758NvWRItdTLnm1J5K5UjoC5iOuPRWjjkIIEzn/cnU3sLYv8lXBfDZ1w2CNVKB0ScXaEMJ/JHmjVZoe+qsup9Zyvitfrj9qMo9f1uXYZT2cly2fsvT6I1YB9ZSvlRnbueqhMiRLgLekyw3uD8ly6/8hhDCul9cfli6gnv40XcbxbAjhcAjh5RDCX4QQ6nKk6017uiiEMD7HucNWH7alVcCcdPvBGOPxPNLYlnoQQqjgfB38ToyxMc+kvWkDXdP1Np8R15YuoJ7yVciz6dIQwgshhGMhhNPpz9BHQgi/NNJf8PRhPd0fQngrfTY1hRCeDSH8SQhhVo50ebWnGOM5kslWu6YZ9orYlj5CMhcKwD/FdFKTHGxL2X00hLA1XSr7WAhhWwjhgRDCzVnS+GzqhsEaKQ8hhHtDCDGEEEneaNSTjCeenp7yBeBfuiS7KGO7x9n/U3t6SNeX+Qx7vaynfPKt4fys/028vdt5dyaQROknA+XADOD9wF8D9SGEGwotw3DSR/W0jOQNzCiSruNXkoxd/mkI4b6u3WIz9KY9BZK3NyNGkdpSZjfzf8ozjW2pZ39Gcj+e4fw8FvkYyGfTiGtL9L6ecgohLAFuTXdfyza/TWo68G6SdjWa5GfoHSTDPjamPedGqr6qp5Ukq8yMIllp8jrgvwDbQwi/miVdR3s6EWNsyXGNjvZUHUIYnfXM4aVYbak3zybbUnaXA3Ukw6UnkEzo+0vAj0MID4UQJneTxmdTN1y6W7owG4FfSyeg7WpixnauN8iZS9hN6HKsr/IZybLVU1bpH/1/z/l6+OOuE55liCRD0R4DNpAs/z2GZMnIT5IMaZsF/FsIYXmM8eVCyzPM5VNP+0nmZ3oa2AmcAy4Gbgd+keQX5D8k+cP+97tJb3u6ML1qS2kvmHvS3b3Aj3MksS1lEUK4iWTZ5nMk9ZHPm+AOPpv6yQXWU668RwNf43xPt+5+3nVoB34EfBfYRLL890TgauBXSd5EXw48FUJYOtIm/u6jetpJ8mxaz/k/AOeR/Nz7CMnPr78PIcQY41e6Sd/RnvLpcdi1PZ3pRXmHlGK1pRDCxZzvnfZMOvFsNral7E6SrFr7I5JeK8eBapJ7/GskAcy7gEdCCO+LMbZmpPXZ1A2DNVJ+HiYZJwwwlmQSv58FPgz8SwjhszHGx7ukyZx8M9dM9ZkP2rFFymck6E095fL7JG9LIOlR86Us536uhzdi60MIXwX+JM1vPPC1EMK7+/KX9yGkt/X0AjCny8Mdkj/mHw4hfJlkGfbJwO+GEL4VY9zY5VzbU376ui19mPO/QP3vLJNndrAt9SCdD+0rJG8C/yLG+EqBWfhs6gd9UE+5fInkzT4kE60+muXcu3toT+tCCH8LfBX4ZZLeAn/JIJ5ss6/1UT09RFIHXX8GvQD8awjhNpJAzijgL0IIj6bzZWTqaE/5rGw0otpTkdvSL6T5Qn69amxL2c3q4f78IITw18D3gKtIgje/DvyvjHN8NnXDYVBSHmKMLTHGV9PPCzHGb8YY7ybp0jePJEJ8b5dkpzO2y3NcIrMba9deG32Vz7DXy3rqUQjh45xfHnIX8PPZ/sjM1nU5Jv4L51f+uhoYkUM4eltPMcYT3QRqMo8/D/z7dDdkbGeyPeWhr9sSSa+nDjl/IbYtZfX7JG9v3wT+qBfpfTb1jwutpx6FEH6PpJcBwEt0/7OuU4721Jrm1TF3w4fzmF9lOLngeooxHskWLE4D2x15jyPpHdhVR3vK1ZZg5LWnorUlzj+bzgD/mutk21J2Oe7PWyS9zDoCKJ/pcorPpm4YrJEuQIzxn4H/Q9KWvhRCmJJx+FjGdq6udZmTWnXtstdX+YxYOeqpWyGEW4F/JPmj/y3gfd28CeuNL2dsr+zxrBGoN/XUjX8FjqTb3d1f29MF6GVbqgHem+6+EGP8aR8VZ8S1pRDCpcDvpbufiTGeyHZ+D3w2FVkf1VNPef8q8Kfp7lbgQxeafzppbeYcILanvvdVkuGdkP3ZlM9QjBHTnorclpYCl6a7j+YxV1BOI7Ut5SvGuBP4Qbq7IIQwM+Owz6ZuOAxKunCPkAwPGA98CPh6+vXMSa1yTVqVORnWni7HuubzIj3Lls9I11M9vUMIYRXwbZIuy4eB9+cxjjlfmRNAjqg3LnnKu566E2M8F0KoB66l+/vbtT01Zcmuoz1Fck9SN5IUWkcf5/y8GvlO3piPkdiWPkfypnAnMC6E8LFuzrkiY/tnQggz0u3H0j90ivVssi2d1xf19A4hhP8L+Nt0dzfw3j5cEcf21Ef11J0Y48EQQhPJ/B09PZuuA8aHECpyBA462lNjjHG4z1dTzDrqzcTC+RiJbakQr3N+YvRZwL5022dTNwzWSBcu8xelORnb9UAbyR8pl5Jd5vGub51f7+G8bPmcA/oquDBc9FRPb5O+aXmMZMzrcZK3lpv7sBw9rVKkRF71lEO2e9y1PXWd04YuxwH2FPmN61BTaB11dDNvBb7Rh+UYiW2po8v2PPK7l/81Y3suyWSKvXmmQO5nk23pvL6op7cJIdxB8gdlCclE6++JMfblHxe2p9xy1lMOuZ5NHZOwX0oywfo7MwihjGQOMXhnmxyOilJH6fLaP5fuHgSe7G0Bu8u+D/Majnq6Pz6buuEwKOnCZUbNO7vQxRjPAs+nu8vSCdJ60tFN8gzv7DnzAufHd/bYnTLN//qONOn1dV639ZQphLCY5IE9gWTM6+29WUEqh8sztvf1eNbIlbOeskl/ka1Ld7u7v09nbGdrTzMy8vlJoeUY5vKuoxDClcDidPeJGGNzH5bDttQ7b3D+fuXqor8i/beBZN6uTLalfhJCeA/wLZKXrM0kw3J39PFlbE9FFEKYRrISDlzAs4lkUumOoRu2p967FahKt7+eDl/qK7al7Hq6Pz6bumGwRrpwH83Y7jpD/cPpv5PoYUb4EMJszs/n8KMYY+ZYS9L9H6W7703P787d6XUgWZlAb5etnggh1JGsJDSFpAfAPTHG1UUox69mbK8pQv5DXdZ6ysPHON8O3nF/Y4z1nH8L87PpktLduTdj2/b0doXUUWY38wf6uBwjri3FGO+NMYZsH94+AefNGcd2pXlEkqFsAJeGEK6nG+nXO946PtJ1AlXbUs/6op46hBBuIKmv0cBR4AMxxtf6srxpkPsTGV9a25f5D1Z9WU95+DTnexR09/NqNefnW/vlEEJPvQ/uzdge9u2piHVUlGfTSG1L+QohzAPel+7ujDE2dBzz2dSDGKMfP366+ZA04jE5zvkcyTjHSBIRLutyfCrQkh7fBVR2OV4KPJqRx809XOdnMs55BCjtcryKZPx6JJljZcpA378hVk8Xk6wyEEmGkH2kF+W4HqjJcjyQLDfcUY6NQBjo+zdU6okkiLYqR/ql6f//CLQD7+7hvE9kXOdL3RyfT/JLcyQZTliW7brD5dMXbanLuaUkwzUiyZjxUXmWw7Z0YfV4X8a9WdXDOXUkQelI0ntzbJfjY9Ovx/S82h7ysS0Vt56uzPiZdhy4sRfXuRmoyHJ8FHB/RlkeHeh7M5g+ueoJuAS4Kkcet5H0nI4kK87M6uG8/5Zxrc93c3xZRrtdPdD3ZrB88mlLXc6fmlEfmwu4jm0p+/25PcfvBNOBDRn35z92c47Ppi4f56yRenYf8MUQwndIutTtIPllaSKwiGTSzBvTc88Cn4pdulHGGA+FEH4H+HuSuR2eCyH8d5K30TOBz5L88Af4Rozxqe4KEmP8cQjhmyS9Bu4AfhBC+EuS7oKLgP9CEnAA+N0Y4+EL/N6Hkvu4gHoKIVSSLAHcMcnYF4EtIYTMCeu6Ohwz3gakPgj8bgjhSZKZ7l8nCdSNJhkG8kmSYALAybQckZHjPi6sPU0GngohbCbpsfYSSSCgjeT//u0kc6OMSs//Qoyxp8m4HyB5kN8I/Pu0K+xXSf4oWkoy5n0SScDnM13b9TB2Hxf4M6+LDwAdEz1+I2ZZdr0L21KRxRjrQwhfAH6XZFjFT0II/5OkzucDvwNclZ7+5zHGbT1kZVsqkhDCfOD7QEX6pT8AjuR4Nh2MMR7s8rVfBh4NITxK0ntjK0kPnQnANSQ91C7rSA/8Vp98AyPHJSTPpvUk891tJLmPgWSelY+kn46eMv+5m98fOvw5yTwqdcCfhRAWAN8kCfDcTLKEdVm6/9lifDMjxMc4v6RzIb1qbEvZ/TUwKv0dYj3JS+pTJC+UVwG/xvmhgE8Df9M1A59N3RjoaJEfP4P1Q/JDJubx2UMyfjxbXn9E8gOhpzyeIPcb7bHpeT3l0QbcN9D3bajVE8kDJJ/0mZ/7u8nnvjzT7qYXb0eH+qcP6umSPNOfA/6QHD0tSH55eD5LPmdIggADfu+GSh11k983M9JcW0A5bEsXVo+Z929VlvNKSJaYzXaPvwaU5LiebakI9UTS063QZ9N93eRzf55pNwOXD/R9GWyfPOppVZ739wTw6Tyut4BkgYqe8jkC3DbQ92UwffL9mZdx/rOc/31hRgHXsS1lvz+78rw/3yZ7DyWfTRkfe9ZIPXsPyVwyN5NEyqeTRIRPA2+RHeMjPQAAIABJREFUvD15HPhWjPFktoxijH8YQvg+8O+B5WleLcAm4B9jjDlnuI8xngJuDSH8PMkvcUtI3ri9Bawj6ea3vvBvc8jrs3q6QP+YXm8Zydv/jskEz5EMAdlA8tbt6zHG00Usx2B1ofW0j2SulGUkb0VmkTyIx5D88rqV5E3X12IecwnEGJvSuSA+Bfx8Wqbx6XV+BPxV7ON5IYaAPmtLIYRJJL0AAbbEGF8ooBy2pX4QY2wHPpm+Bf00yXL3VST3+AXgyzHG7+WRj21pcPufJG13GcnEntWcHwbyFsmiBt8GHooxtg1UIYewl4BfILm/7wZqSNpRGclb/NdI2sHX4jt7Pb1DjHF7COEqkt8XP0oSvCknCZJ/l6Q97S7C9zEihBBqSZZIB/hBjPFAAcltS9n9MsmEvstIepVVkfReOU7y//cZ4IFcf6v4bHq7kEaeJEmSJEmSNAi4GpQkSZIkSdIgYrBGkiRJkiRpEDFYI0mSJEmSNIgYrJEkSZIkSRpEDNZIkiRJkiQNIgZrJEmSJEmSBhGDNZIkSZIkSYOIwRpJkiRJkqRBpGygCyD1lRDCaGBRutsItA1gcSRJkiRJw18pUJ1uvxJjPNMXmRqs0XCyCHhhoAshSZIkSRqRrgVe7IuMHAYlSZIkSZI0iNizRsNJY8fG888/T01NzUCWRZIkSZI0zO3fv5+lS5d27DZmO7cQBms0nHTOUVNTU8Ps2bMHsiySJEmSpJGlz+ZNdRiUJEmSJEnSIGKwRpIkSZIkaRAxWCNJkiRJkjSIGKyRJEmSJEkaRAzWSJIkSZIkDSIGayRJkiRJkgYRgzVSP4sx8uimfRw8enqgiyJJkiRJGoTKBroA0kizo/EEv/mNlwFYOH0iN9VWcVNtFdfNncq4cpukJEmSJI10/mUo9bOntzV2bm996xhb3zrGPzz9BuWlJVw9p4LltdUsr63iXTMnU1oSBrCkkiRJkqSBYLBG6mdPb2/q9utn29p5duchnt15iD///lYqxo3ixvlJr5ubFlRx0dRx/VxSSZIkSdJAMFgj9bNJY0cxcXQZx86cy3pey8lWnnhlP0+8sh+AuVXjuWlBErxZNr+SSWNG9UdxJUmSJEn9LMQYB7oMUp8IIcwG9gDs2bOH2bNnD3CJenaurZ1Ne4+wblsjT29r4uU9LbS1598WS0sCS2ZP7hwyteSiCkaVOl+4JEmSJPWnvXv3ctFFF3XsXhRj3NsX+Rqs0bAxlII1XR073cqzOw/x9LZG1m1rYmfTiYLSTxhdxrL5lSxPh0zNrRpPCM53I0mSJEnFZLBGymEoB2u6amg51Rm4+cn2Jg6fbC0o/ayKsUngpraKG+dXMWV8eZFKKkmSJEkjl8EaKYfhFKzJ1N4eeX3/UdamQ6Ze3HWYs23teacPARbNmpz2uqnmmjlTKC9zyJQkSZIkXSiDNVIOwzVY09Wps208v+v8kKktB44VlH7sqFKunzeVm9L5bmqnTXDIlCRJkiT1gsEaKYeREqzp6uCx0/xkexPr6ptYt72JxmNnCko/fdJoblpQzYq6Km5cUEXVhNFFKqkkSZIkDS8Ga6QcRmqwJlOMka1vHePpbU2s29bEc280c7o1/yFTAJfXTGJ5XRXLF1Tz7kumMGZUaZFKK0mSJElDm8EaKQeDNe90urWNDbsPs3ZbE09vb+TVhqMFpR9dVsLSuVNZUVvN8roqFk6f6JApSZIkSUoZrJFyMFiTW/PxM/xkR3PnfDf7j5wuKH31xNEsX5CsMnVTbRXTJo4pUkklSZIkafAzWCPlYLCmMDFGdjSeYF26ytSzO5s5cbatoDwunTGR5bVVLK+tZuncqQ6ZkiRJkjSiGKyRcjBYc2HOnmvn5TcPs25bMlHx5r0tFPLjobyshKWXTO0M3lxW45ApSZIkScObwRopB4M1favl5Fme2dHMum2NrK1voqHlVEHpqyaMZnltFTctqGJ5bRXTJjlkSpIkSdLwYrBGysFgTfHEGNnVfJJ16Vw363c0c/zMuYLycMiUJEmSpOHGYI2Ug8Ga/tPa1s7GPS3JkKltjWza00K7Q6YkSZIkjTAGa6QcDNYMnCMnW1m/s4m1afBmzyGHTEmSJEka/gzWSDkYrBk8djefSAI39Y2s39HMsV4MmVpRV83y2iquvcQhU5IkSZIGJ4M1Ug4Gawanc23tbNrbwtr6pNfNxgKHTI0uK2Hp3KmsqK1meV0VC6c7ZEqSJEnS4GCwRsrBYM3QcORUK+t3NLFuWxNrezFkqnpiMmRqRW01Ny6oonri6CKVVJIkSZKyM1gj5WCwZmi60CFTl9dMYnldEry5Zs4Uh0xJkiRJ6jcGa9StEMIE4Gpgafq5FrgkPbw7xnhJ9ynflsclwBt5XvKBGOO9OfK7HPh1YBUwBxgDHAFeBR4FvhZjPJbn9fJmsGbou9AhU2NGlXDd3Mqk501dNbXTJjhkSpIkSVLRGKxRt0IIT5EERbrT78GaEMJ/Av4foCxLHruBO2KMm/O8Zl4M1gw/HUOm1m5rYm19I3sPFzZkavqk0Syvre5cInzq+PIilVSSJEnSSGSwRt0KIawGVqa7h4EXgWXABHoXrPkD4JEspx+OMTb0kM/PAv+a7p4F/gb4IdAEzAd+A7gpPb4fuCzGeCRX+fJlsGZ4izGyu/kk67Y1snZbE+t3NHO8gCFTIcAVMyd3Bm6umTOF8rKSIpZYkiRJ0nBnsEbdCiF8GjgOPB9j3J5+bRfJ8KPeBGt+JcZ4fy/L8gpwRbp7W4zxiW7O+Q5wd7r7n2KM/29vrtXD9Q3WjCCtbe1s3NPCuvokeLN5b2FDpsaVl3L9vEpW1FaxvK6aeVXjHTIlSZIkqSAGa5S3gQjWhBAmkcxLA7AhxnhND+ctBjalu9+JMX6k0GtlKYPBmhGs5eRZntnRnPS8qW+ioaWwIVOzKsZ29rq5cUElFeMcMiVJkiQpu2IFa7LNKyIVIvMv251ZztuRse2ay+ozFePKuWVRDbcsqiHGyBtNJ5LlwesbWb+zmZNn27Kmb2g5xTdf2MM3X9hDSYDFsys6e91ceVEFo0odMiVJkiSpfxisUZ+IMTaFEA4BU4F5WU6dn7FdX9xSaaQKITCvegLzqifwyzdcwtlz7Wx48zDrtjWyblsTrzQcIVunwvYIG/e0sHFPC//rx9uZOLqMZfMrWV5Xzcraai6uHNd/34wkSZKkEcdhUMPQBQ6D2kAScJkJnAb2AuuAr8QYN+TI538Av5vu3hJj/F435/wf4CNAG7AoxvjTnN/Q+bS5xjXNAF4Ah0Epu0MnzvL09ibW1SfBmwNHTxeUfk7luGR58Npqls2vZOKYUUUqqSRJkqTBzDlrlLcLDNZk82Xgt2KMZ3rIZwLwEPBe4AzwJeBHJKtBzQN+nWTlqjbgN2OMf5vHNTPzz/s/q8Ea5SvGyPaDx1mTBm6ee6OZ063teacvLQlcfXEFK2qrWV5XzaJZkyktcaJiSZIkaSQwWKO89TJY8zJJoGU1sI2kV00N8H7gkyRLgQN8Pcb48Sx5lQH3kvSwmd/NKQ8CfxZjfC6Pb6Vr3gZrVHSnW9t4cdfhziXCf7r/aEHpK8aN4sYFVcl8N7XVzKwYW6SSSpIkSRpoBmuUt14Ea8qBshjjyR6O1wI/BC5Ov3RnjPHRHs69HvjvwM1Ad90LjgL/AvxujLGgv4IdBqWBcPDYaZ7e1sS6bU2s29ZI0/GzBaVfMG1CMmSqrprr51Yytry0SCWVJEmS1N8M1gxhaW+T1j7IKq9ltQsN1uQjhHATydw1AD+MMb6vm3M+AvxvklWeNgN/CKwFjgEXAT8H/FdgLPAa8N4Y44G+KF96fZfuVlG1t0d+euAoa+uTwM2Luw5zti3/IVPlpSVcO3dKMmSqtprLaiYSgkOmJEmSpKHKYM0QNhyCNWm+rwLvIhkiNT7G2J5xbDrJstzjSQIx18UYT3STx3uAH5D0uvl2jPGjfVg+gzXqVyfPnuO5nYdYu62RtfWN7Gh8x3/5rKonju6cqPim2iqqJriavSRJkjSUFCtY49Ld/SDGeC6EcFkfZLW/D/K4EK+TBGvGAJVAY8axj5EEagD+tLtADUCM8UchhB+RTEJ8dwhhSozxcBHLLBXNuPIybr50GjdfOg2AhpZTnStMPb29iSOnssdoG4+d4cENDTy4oQGAd82cxIq6apbXVvHuOVMpLysp+vcgSZIkafAxWNNPYoxbBroMfSDbeI3MYFTWJb6Bl0iCNSVAHVDwZMPSYDSrYiwfW3oxH1t6MW3tkc17W1i3rYm19Y28vKeFtvbsPRlf23eU1/Yd5e9W72BceSnL5lV2znczt2q8Q6YkSZKkEcJgjQpxefrvGaC5y7FzGdu5/l+N6iGdNGyUlgSuungKV108hd98Ty1HTrWyfkdz55CpvYdPZU1/8mwbP9pykB9tOQjA7CljWV5bzcq6Km5YUMWkMaOyppckSZI0dBmsUV7SCYY7gjVPZ85Xk3ojY3s58GqW7Fak/0ZgV58UUBrkJo8dxQevmMEHr5hBjJFdzSeT5cHrG1m/o5kTZ9uypt97+BTfeP5NvvH8m0kg6KIKltdWs6KuisWzKygtsdeNJEmSNFw4wfAw1Iulu+8CHok9/GcIISwAfsT5pbvviTE+2OWcS0nmtAlAA8kEww3d5PVp4Mvp7voY4w35fE/5cIJhDVVnz7Wz4c3DafCmiVcajhSUvmLcKG5cUMXK2mqW11VRM3lskUoqSZIkKZOrQalbaSDlpi5f/gLJBMDNwH/ucuzJrstlhxAisB14EHge2Esy1Gkm8H7g33F+8uBvxRh/roey/APwiXS3EfhLkuW+O5bu/hjw8+nxNpKlu1fn+a3mZLBGw0Xz8TM8vb2pc76bg8fOFJS+dtqEzomKr59XyZhRpUUqqSRJkjSyGaxRt0II9wL/WECSm7sGSNJgTT7+DvhcjLHbvxxDCKOBB4BugzkZTgCfjjF+Pc/r5sVgjYajGCNb3zrG2nSVqefeOMTZc11HIfasvKyE6+ZOZUVtNSvqqqmbPsGJiiVJkqQ+YrBG3eqjYM3twDLgOpLhU1UkPWmOAjtJesf8fzHGbPPQZOZ3M3AvcD0wCxid5rUV+CHwlb76D9zlugZrNOydOtvGc280s7a+ibXbGtl+8HhB6WdMGtO5wtRNC6qYMr68SCWVJEmShj+DNVIOBms0Eu1rOdU5183T25s4cqo177QhwOLZFaxMgzdXXlRBWWlJEUsrSZIkDS8Ga6QcDNZopGtrj2za29I5ZOrlNw/TXsCP+IljyrhxfhK4WVFXxewp44pXWEmSJGkYMFgj5WCwRnq7I6daeWZ7MlxqbX0TDS2nCko/r3o8K2qrWVlXzXXzpjKuvKxIJZUkSZKGJoM1Ug4Ga6SexRjZ0Xgi7XXTyLM7D3GqtS3v9OWlJVw7d0rnRMWXzpjoRMWSJEka8QzWSDkYrJHyd+ZcGy/uOsza+kbW1Dey5cCxgtJPmzia5bXJcKnltdVMdaJiSZIkjUAGa6QcDNZIvXfw6GnWbmtibX0jT29v4tCJs3mnDQEWzZrMyrrqzomKRzlRsSRJkkYAgzVSDgZrpL7R3h55dd8R1tYnc91sePMw5wqYqXji6DJuWFCZTFRcW81FU52oWJIkScOTwRopB4M1UnEcO93KMzuak+DNtkb2HCpwouKq8Z0rTF0/r9KJiiVJkjRsGKyRcjBYIxVfjJFdzSfTXjeNPLOj2YmKJUmSNGIZrJFyMFgj9b8z59p4addh1qTLg/90/9GC0k+f1DFRcTXLF1QxxYmKJUmSNIQYrJFyMFgjDbyDR0+zblsTa3o5UfHi2RWsrK1i5cJqlsyuoMyJiiVJkjSIGayRcjBYIw0uXScqfunNw7QVMFHxpDFl3FRb1TlkambF2CKWVpIkSSqcwRopB4M10uB29HQrz2xvZu22ZL6bvYcLm6i4dtqEdKLiaq6bO5Uxo0qLVFJJkiQpPwZrpBwM1khDR4yRnU0nOicqXr+zmdOt7XmnH11WwnXzKllZV83KuirmV09womJJkiT1O4M1Ug4Ga6Sh63RrGy/uOtzZ62bLgWMFpZ9VMZYVdVWsrKvmhgVVTBozqkgllSRJks4zWCPlYLBGGj4OHDndGbh5ensTLSdb805bWhK4+uIKVtRWs3JhNVfMnExJib1uJEmS1PcM1kg5GKyRhqe29sjmvS2srW9i7bZGXn7zMAXMU8zU8eUsTycqXl5XxbSJY4pXWEmSJI0oBmukHAzWSCPDkZOt/GRHE2u2NrJ2WyP7j5wuKP3lNZNYubCaFbXVXDNnCuVlLg8uSZKk3jFYI+VgsEYaeWKMbDt4nLX1jaypb+S5Nw5x9lz+ExWPLy/lhgVVrKirZlVdNRdNHVfE0kqSJGm4MVgj5WCwRtKps208+0ZzZ/BmZ+OJgtLPqxrPirpqVtZVc/28SsaWuzy4JEmSemawRsrBYI2krvYcOsnabY2s2drIMzuaOX7mXN5py8tKuG7u1M6JimunuTy4JEmS3s5gjZSDwRpJ2bS2tbNhd7I8+Jr6Rl5tOFpQ+prJYzoDNzcuqGLyWJcHlyRJGukM1kg5GKyRVIjGY2d4envS62bdtiaaT5zNO21pSeDKiypYmQ6ZWjTL5cElSZJGIoM1Ug4GayT1Vnt75LV9R1lTf5A19Y1seLOFtgLWB+9YHnxlXTXLa6upnji6iKWVJEnSYGGwRsrBYI2kvnL0dCvPbG9iTX3S82ZfgcuDv2vmpM5eN1fPmcKoUpcHlyRJGo4M1kg5GKyRVAwxRnY0Hmf11t4tDz5hdBk3zK9k5cJqVtS6PLgkSdJwYrBGysFgjaT+cOpsG8+90cya+kbW1jeyo8DlwedXj2dl3TRW1FVx/bxKxoxyeXBJkqShymCNlIPBGkkD4UKWBx9dVsJ18yo7h0zNrx7v8uCSJElDiMEaKQeDNZIGWsfy4GvqkyFTr+0rbHnwWRVjWbkwCdzcML+SiWNcHlySJGkwM1gj5WCwRtJgc/DYadbVN7F2WzJk6vDJ1rzTlpUErpkzpTN4c3nNJHvdSJIkDTIGa6QcDNZIGsza2iOvNhzp7HXz8puHKWB1cKonjmZFbTUrF1azfEEVU8aXF6+wkiRJyovBGikHgzWShpIjJ1t5ensTa9PgzYGj+S8PHgIsmV2RzHWzsJolsysoLbHXjSRJUn8zWCPlYLBG0lAVY6T+reOsqT/ImvpGnn/jEK1t+T+fK8aN4qYFVaxamKwyNW3imCKWVpIkSR0M1kg5GKyRNFycOHOOZ3cmy4Ov3trIm4dOFpT+8ppJrFxYzaq6aq6eM4VRpSVFKqkkSdLIZrBGysFgjaThalfTic65bp7Z0cTp1va8004YXcaNCypZWTeNlQurmVUxtogllSRJGlkM1kg5GKyRNBKcbm3jhV2HWLM1Cd5sO3i8oPS10yZ0znVz7SVTGTOqtEgllSRJGv4M1kg5GKyRNBI1tJxizdZkafCfbG/i2JlzeacdO6qUZfMrk+BNXTWXVI0vYkklSZKGH4M1Ug4GaySNdK1t7WzYfbhzyNRr+44WlH5O5ThW1lWzamE118+rZFx5WZFKKkmSNDwYrJFyMFgjSW938Nhp1tY3saa+kXXbGmk52Zp32vLSEpbOncqqhUmvmwXTJhCCy4NLkiRlMlgj5WCwRpJ61tYe2by3pXOFqU17WyjkV4BZFWNZkQ6XunFBJRPHjCpeYSVJkoYIgzVSDgZrJCl/h0+cZd32JlZvPcja+iaajp/JO21ZSeCaOVPS5cGncVnNRHvdSJKkEclgjZSDwRpJ6p329sjr+48mc91sbeSlNw/T1p7/7wfTJo7uXGFq+YJqJo+z140kSRoZDNZIORiskaS+cfR0K89sb2J1ujz4/iOn805bEuCqi6d0TlR8xczJlJTY60aSJA1PBmukHAzWSFLfizGy7eBxVm89yJr6Rl544zBn29rzTl85vpwVaeBmeW01U8eXF7G0kiRJ/ctgjZSDwRpJKr4TZ86xfkdzMlFx/UH2HDqVd9oQYPHsis5eN0tmV1BqrxtJkjSEGayRcjBYI0n9K8bIG00nkrlu6htZv6OZM+fy73VTMW4Uy2urWVVXzYq6aqonji5iaSVJkvqewRopB4M1kjSwTre28dwbhzqHTO1sPFFQ+itmTUp73UzjqosqKCstKVJJJUmS+obBGikHgzWSNLi82XySNfVJ4OYn25s51dqWd9qJY8pYXlvFqrpprKirZsbkMUUsqSRJUu8YrJFyMFgjSYPXmXNtvLjrcGevm/q3jheU/tIZE1m1cBor66p59yVTGGWvG0mSNAgYrJFyMFgjSUNHQ8sp1mxtZE39QX6yvZnjZ87lnXbC6DJuXFDJyrpprFpYzcyKsUUsqSRJUs8M1kg5GKyRpKHp7Ll2Nrx5mNVbG1m99SBbDhwrKH3d9Amdc928+5IpjC4rLVJJJUmS3s5gjZSDwRpJGh7eOno67XXTyNptjRw7nX+vm3Hlpdwwv4qVC5NVpi6aOq6IJZUkSSOdwRq9QwhhAnA1sDT9XAtckh7eHWO8pPuUWfO8GPgkcCswB5gINAK7gKeAb8UYX82RxweBT6dlqk7TPw98Jcb4ZKFlKqDsBmskaZg519bOy3taWLO1kdX1B3m14WhB6edXj++c62bp3KmMGWWvG0mS1HcM1ugdQghPAat6OFxwsCaE8BngfwDjs5z2VzHGz/aQPgB/TxKo6clXgF+LRfiPZ7BGkoa/g8dOs66+idX1jazb1kjLyda8044dVcqy+ZWsWljNqrppXFxprxtJknRhihWsKeuLTDRgQsb2YeBFYBkwoeCMQvgD4I/T3Z0kQZXngGPALKAO+DDQniWbP+F8oOZl4M+AHcB84LeBq9LjjcAfFFpGSZKmTRzDPdfM5p5rZtPWHtm0t4XVWxtZs/UgmxuOkO1VwKnWNn685SA/3nIQeI15VeOT4VILp3GdvW4kSdIgYs+aISyE8GngOPB8jHF7+rVdJMOX8u5ZE0L4GeBH6e63gV+IMZ7p4dzyGOPZbr6+APgpSQDwRWBFjPFUxvFxwBrg3cA54NIY4458ypcve9ZI0sjWfPwM67Y1sXrrQdZua+LQiXc8rno0ZlQJy+ZVdk5UfElVtk6mkiRJCYdBKS+FBmtCCCXAFqAW2Aos6SlQkyOfvwF+I91dFmN8tptzrgfWp7tfijF+ptDr5CiDwRpJEgDt7ZHNDUdYvfUgq7c2smlvS9ZeN11dUjkumetmYTXL5lXa60aSJHXLYI3y0otgzQeB76W798YYH+jFNQNJkGQWsCXGeFmWc7cAC4G9wMV9OXeNwRpJUk8OnzjL2m2NnatMNRfQ62Z0WQnXz0vnulk4jbn2upEkSSnnrFGxfDT9tw14sOOLIYQqoAJojDEeyZHHXJJADSRDnbJZQxKsmU2yctUbBZZXkqSCTRlfzp1XzuLOK2fR3h55dd8RVm9tZPXWg2zc00J7llcHZ861s6Y+CfL80WOvM6dyHKvS4VLXz6tkbLm9biRJUt8yWKPr039fA06EEH4T+E2SSYEBCCG8DnwZ+LsYY3fLbmT2pNmS43qZxy+jgGBN2nMmmxn55iVJGrlKSgKLZ1eweHYFv/meWg6fOMu67elcN/WNNB3P3utmd/NJHli/mwfW72Z0WQnXzatMgzfVzK0aT9LhVJIkqfcM1oxg6Xw1l6a7b5L0rLmzm1MvB/4KuDuEcHuM8ViX4xdlbOfq8rWnh3T52JP7FEmSCjNlfDl3LJnJHUtm0t4eeW3fUdbUH+SprY28/ObhnL1u1tY3sra+kf/2OFw8dVw6XKqaZfOq7HUjSZJ6xWDNyDYZKEm33weMJgm2fB54EjgDLAX+J3AdsBL4KvCxLvlMzNg+nuOaJzK2C15iXJKkYiopCSyaPZlFsyfzH36mlpaTZ9MVppJhUE3Hs8/B/+ahk/zT+t380/rdlJeVcN3cqaxaOI2b7XUjSZIKYLBmZMucIXE0cAxYGWPcmfH1NSGEm0lWcVoC/FwI4YsxxhcyzhmTsZ1rxsbM33LHFljeXD1xZgAv5DhHkqS8VYwr5/YlM7k97XXz+v6jnStMbcjR6+bsuXbWbWti3bYm/theN5IkqQAGa4oshFAGdDfPS6F+Jf7/7d13eFzXfeD970Fh7wSGkkhJFCso2SpWL5YI0o7XcZGtlPUm2URJvI6zeZ04u8najlPkNL9xnE3yOs0lb+Rk4yRe24lkJ7Y3JkGqWFaXbEsEqEaqURyAvRPl7B/3AhiNgJk7wAwxAL6f55kHd+bec+bgHhzcmd89Jcbbq5BPoZNFz/+8KFADQIzxRAjho8DX0pfew6uDIoX5zCjznjMLtk9kLWhajpJDrLxbKUmqpYaGwOuWL+R1y5NeN4eO93L3091DvW66j1TW6+Ya57qRJEmjMFgzvRXPPfP1EY9KbAH6SP5mriyRT7mhTYW9ecoNmZIkqW4tnNPM2y8+h7dfPNzrZvvOZIWpR54/SH+JbjenR5jrpn29K0xJkqSEwZoaizH2hRA2lD+yrD1VyONVYoynQgjdQGv60qg9V2KMJ0MIPSRDjXJFuwvTlVuxqXAokxMGS5KmhMJeN7/QvoZDJ3q556lkhantO7vJZ+h1M7jCVGGvm/a2HBe0zC2ZVpIkTT0Ga86AGGO55awn0hPAxnS73G28wf19Ra8/WbDdRmmF+3eUOVaSpElp4exm3nbx2bzt4rOJcXCum7H0unmS85fOSYdL2etGkqTpwmCN7mI4WLMaeGqkg0IIC4CW9OlLRbufA14GziFZMaqUGwvy2FVZUSVJmnxCCFx0zkIuOue1vW62ZZjrZve+4V43Mwd73axvpX19jpX2upEkaUoyWKMvA7+Zbt9CsmT3SN4NDM58eHfhjhhjDCHcAfw80BZCuCbG+J3iDEII1zAbYQsQAAAgAElEQVTcs+aOGGOJNTQkSZqaCnvdVDrXzam+AbbvTCY0/thXn2Tl0jlsXJ9j4/pWrlm1lFnN9rqRJGkqCH5fnlpCCLuA84HdMcaVGdP8G/BWkuFN7THGe4r2nw08QDIfzWlgVYzxpaJj1pEMqWoCHgJujDGeKNg/m6QXzxXp+1wYYxyxF89YhRBWkM6D88ILL7BiRbnpcyRJqi+Hjvdyz9M9dKRz3ZTrdVNoVnMD165aOhS8OX+pvW4kSaq1F198kXPPHZqa9dxyqxhnZbBmEgshrAFuKHr5k8BSYB/wK0X7vhFjfGWEfNYB9wOLgOPAH5P0sDkFXAV8BFieHv6hGOMnRinPx4EPp08fBf4AeIZkeNWHgMvSfR+PMf5att8yO4M1kqSppLjXzcO7D1Ci081rrGqZy03pClNXX7DEXjeSJNWAwRq9RgjhVuBvKkjSHmPcNkpeNwBfApaNkjYCvxdj/I0S5WkAPgv8TIky/DXwvhjjQKYSV8BgjSRpKjt0vJe7n+5OJyrupudoZb1urlvdMjTXzblL5tSwpJIkTR8Ga/Qa1QzWpPktBT4AvAu4AJhBsmT4NuBTMcZHM5brB4H3AVeSTErcAzwIfDrG+PUKylsRgzWSpOlisNdNR2cySfGjz1fW62Z161w2rs/Rvj7HlRcsZmaTvW4kSRoLgzXjEEKYQzJXSiknYowPnonyqDYM1kiSpquDx09z91PJXDd37eym5+jpzGnnzGjkutXDc92sWGyvG0mSsjJYU0II4VpgcHjOX8cYv1y0/yLgeyRDeUq5fqRVjDQ5GKyRJCnpdfPEy4fp6MqzrSvPYy8crKjXzdrcvKHhUlesXMKMpobaFVaSpEnOYE0JIYQO4CaS1YgujzGeLto/GKwp5+4Y4001KKLOAIM1kiS91oFjp7nrqW62dyVLfu87lr3XzdwZjVy/pmWo1805i2bXsKSSJE0+BmtGEUJYC3SR9Jq5Ocb4tRGOKexZ89sjZLMY+MV0/0Uxxs7alVi1YrBGkqTSBgYi33vpENu6uunoyvP4iwep5KPg+mXz2diW9Lq5/PzFNDfa60aSNL0ZrBlFCOFDwMeBzhjjhaMcMxSsiTGOOINeCOE7JBPi3hZj/J1alVe1Y7BGkqTK7Dt66lVz3Rw43ps57fyZTdywtoX29TluWt/KsgWzalhSSZLqU62CNU3VyGSCXUvSI+Zfx5nPPwNXpQ9JkqQpb+m8mbzrsuW867Ll9A9EvvviQTq6utnelefxFw+VTHvkVB9f//4rfP37rwBw4dkLaE973Vx67iKa7HUjSdKYTYVgzevTn/eOM5/H058XjTMfSZKkSaexIXDZeYu57LzF/Lc3r6Pn6Cnu2tlNR1c3d+3s5tCJ0r1untxzmCf3HObPO55hwawmblzXOtTrpmXezDP0W0iSNDVMhWBNS/pzb4ljIjCQPkaTT38uqUahJEmSJrOWeTO55Q0ruOUNK+jrH+DxFw/S0dnNtp15vv/S4ZJpD5/s42vf3cPXvrsHgItXLGTj+hzt61u5eMUiGhvCmfgVJEmatKbCnDWnSIJOV8QYHx1HPpcBDwO9MUZv/0xCzlkjSdKZkT98km07kxWm7nqqmyMn+zKnXTynmZvWtdLeluPGta0snjujhiWVJKm2nLNmdAeAVmDpOPMZTH9gnPlIkiRNabkFs/jRK87lR684l97+AR7ZfYCOrm62deXpfOVIybQHjvfyL4+9zL889jINAS49d1Ha6ybHRecsoMFeN5IkTYlgzSskwZrLgG+NI5+LC/KTJElSBs2NDVy9ailXr1rKh9/axp5DJ9iWBm7ueaqHY6f7R007EOGR5w/yyPMH+Z//vpOWeTPZuL6VjetbeePaVhbObj6Dv4kkSfVjKgyD+gvg/cA9McYbx5HPNuCNwGdijD9fpeLpDHIYlCRJ9eV03wAP7dpPR1eebV3dPJU/mjltY0Pg8vMWs7GtlY3rcmw4ez4h2OtGklRfajUMaioEa24mWXY7Aj8QY9wyhjxuAjrSPG6JMd5R3VLqTDBYI0lSfXth//F0rps89z69jxO9o/e6KXbWgllpr5sc169ZyvxZ9rqRJE08gzWjCMktlieANqAbeGOMcWcF6VcB9wDLgKeADXGyn5RpymCNJEmTx8nefh54brjXzXM9xzKnbWoIXLlyCe1tyfLga3Lz7HUjSZoQBmtKCCH8IPDV9Okx4KPA/x9jHPWqH0KYDdwK/D6wkGRZ75tjjP9a29KqVgzWSJI0ee3qOca2rjwdXd3c9+w+TvcNZE67fNHsocDNtauXMmfGVJiWUZI0GRisKSOE8CHg4yRDmQCOAncDj5D0uDkKzCWZjPgNJPPTzAcGb8P8eozx989kmVVdBmskSZoaTpzu575ne9jW1c3WzjwvHjiROe2MpgauWbWU9vVJ8GZly9wallSSNN0ZrMkghPCTwF8Cs9OXSv1yg0GaE8AvxBhvr2HRdAYYrJEkaeqJMfJMd9LrZltXN/c/t4/e/uyfXy9omcvGNHBz1QVLmNXcWMPSSpKmG4M1GYUQzgH+O/CfgZYSh+4D/hb4nzHGl85E2VRbBmskSZr6jp7q496ne4aWB99z6GTmtLObG7l+zVI2rs/R3pZj+aLZ5RNJklSCwZoxCCFcBFxMErSZDxwhCdI8HmN8YiLLpuozWCNJ0vQSY6Rr7xE6Orvp6Mrz8O4D9A9k/2y7btk82tfn2Lg+xxUrF9Pc2FDD0kqSpiKDNVIZBmskSZreDp3o5Z6neoZWmOo5eipz2vkzm3jjuhY2rs+xcV0ruQWzalhSSdJUYbBGKsNgjSRJGjQwEHni5cN0dOXp6Mrz2AsHqeRj7+uWLxjqdXPpuYtobHBpcEnSaxmskcowWCNJkkaz/9hp7tqZDJfavrObg8d7M6ddPKeZm9a10t6W48a1rSyeO6OGJZUkTSYGa6QyDNZIkqQs+gcij71wkI7OPNt25vn+S4czp20IcOm5i2hPJym+8OwFNNjrRpKmLYM1UhkGayRJ0ljkD59k285uOjrz3P1UD0dP9WVO2zp/JhvTXjc3rG1hwazmGpZUklRvDNZIZRiskSRJ49XbP8BDuw6wLZ3rZufeo5nTNjUErli5mPb1OTa15ViTm0cI9rqRpKnMYI1UhsEaSZJUbS8eOM62rqTXzb3P9HCydyBz2uWLZtPe1kr7+hzXrW5h9ozGGpZUkjQRDNZIZRiskSRJtXSyt5/7n9tPR2fS62b3vuOZ085oauDaVUtpX9/KprZlnLd0Tg1LKkk6UwzWSGUYrJEkSWfScz3H2NqZZ1tXnvuf3c/p/uy9bla1zh0aLnXlyiXMaGqoYUklSbVisEYqw2CNJEmaKMdO9fHtZ/bR0ZWnozPPnkMnM6edO6OR69e00N6Wo319jrMWzqphSSVJ1WSwRirDYI0kSaoHMUa69h6hozOZ6+bh5w/QP5D9M/eGsxewKZ3r5rLzFtPo0uCSVLcM1khlGKyRJEn16NDxXu5+upuOzm6278zTc/R05rSL5jRz49pWNrXluHFdK0vmzqhhSSVJlTJYI5VhsEaSJNW7gYHI9146lAyX6urmuy8eJOvH8RDg0nMXsWl9jva2HBeds8ClwSVpghmskcowWCNJkiabnqOn2N7VTUdXnrt2dnP4ZF/mtLn5M9m4Pul1c/2aFubPaq5hSSVJIzFYI5VhsEaSJE1mff0DPPL8waEVpjpfOZI5bVND4MqVS9jUlqO9rZXVrfPsdSNJZ4DBGqkMgzWSJGkqefngiXR1qW7ufbqHE739mdOeu2Q27elwqWtXLWVWc2MNSypJ05fBGqkMgzWSJGmqOtnbzwPP7R9aGnzXvuOZ085qbuC61YNLg7eyYvGcGpZUkqYXgzVSGQZrJEnSdPFcz7Gh4VL3P7uf0/0DmdOuWzZvqNfN5ecvprmxoYYllaSpzWCNVIbBGkmSNB0dO9XHPU/3sK2rm47OPK8cPpk57fxZTdy4tpX2thw3rWuldf7MGpZUkqYegzVSGQZrJEnSdBdjZMeeI0PDpR55/gADFXzcv2TFQjauz7GpLcfrly+kocFJiiWpFIM1UhkGayRJkl7twLHT3PVU0uNm+85uDhzvzZy2ZV6yNHj7+hxvXNfCApcGl6TXMFgjlWGwRpIkaXT9A5HHXjjItq48WzvzPPHy4cxpmxoCV6xcTHva62ZNzqXBJQkM1khlGayRJEnKbu/hk0OBm3ue6uHY6exLg69YPHsocHPtapcGlzR9GayRyjBYI0mSNDan+wZ4cNd+tnbm6ejK82z3scxph5YGX59MVOzS4JKmE4M1UhkGayRJkqpjV88xOtJeNy4NLkmjM1gjlWGwRpIkqfqOn+7j3qf3sbUzz7auPHsOVbg0+LpWNq3PsXF9K0vnuTS4pKnFYI1UhsEaSZKk2oox0vnKkaHAzcO7sy8NHgJcsmIRm9pytK/PcdE5C1waXNKkZ7BGKsNgjSRJ0pl18Phptu8c29LgrfNn0r6+lU1tOW5Y28q8mU01LKkk1YbBGqkMgzWSJEkTZ3Bp8I7OZK6bJ/dkXxq8uTFw1QVLhlaYWtU6r4YllaTqMVgjlWGwRpIkqX68cugkHV15Ojrz3PN0D8crWBp85dI5bEwDN1evWsLMJpcGl1SfDNZIZRiskSRJqk+n+vp54Ll0afDOPLv2Hc+cds6MRq5f0zI0181ZC2fVsKSSVBmDNVIZBmskSZImh2e7j6aTFHdz/3P76O3P/p3kwrMXsHlDsjT4JSsW0egkxZImkMEaqQyDNZIkSZPP0VN93PNUDx2deTq68uSPnMqcdsncGWxc10p7W44b17WycHZzDUsqSa9lsEYjCiHMA94AXJU+rgRWprt3xxhXjpyyZJ7nAT8LvA04H5gPdAO7gA7gizHG74+QbhbwFuBNaVnWpmmPAF3AN4FPxxj3VFqmjOU2WCNJkjSJDQxEntxzmK3pJMWPv3iQrF9XGhsCl5+/mE1tyVw3a3PzCMFeN5Jqy2CNRhRC6AA2jrK74mBNCOEDwMeBuSUO+9MY4weL0l0M3EMSnCnlCPDeGOMXKylXFgZrJEmSppaeo6fY3tXN1q48d+3s5sjJvsxply+aPRS4uXb1UmY1O0mxpOqrVbCmqRqZaEIV3i44ADwEXAtUvN5hCOHXgd9Jnz4LfAa4nyTAshxYB7wbGBgh+QKGAzX3Al9Ly7IPaAVuAd6bHvOFEMKRGOPXKy2jJEmSpo+WeTP5octX8EOXr6C3f4CHdx8YWhr8qfzRkmlfOniCv/vObv7uO7uZ1dzAdatbaE+DN8sXzT5Dv4EkjY09aya5EML7gKPAAzHGp9PXdpEMX8rcsyaEsAnYkj79EvATMcYRBwyHEGbEGE8XvXYd8EvAx2KMT46S7mbgn0kCTM8Aa2MV/wDtWSNJkjR9vLD/OB1dSeDm28/s43TfSPcTR9Z21vyhwM1l5y6iqbGhhiWVNJU5DEqZVRqsCSE0AJ0kc8x0AZeMFqipQtm+BPxQ+vQNMcZHq5i3wRpJkqRp6MTpfr79TM/Q0uAvHzqZOe3C2c3ctK6VTW05blrXyuK5M2pYUklTjcOgVEs/QBKoAfh4rQI1qQ6GgzWrgaoFayRJkjQ9zZ7RyOYNy9i8YRkxRrr2HhkK3Dy8+wADJe5PHzrRy52Pv8ydj79MQ4DLzhuepLjtrPlOUixpQhisEcCPpD/7ga8MvhhCaAEWAd0xxkNVeq+ZBdvZ+6pKkiRJGYQQaDtrAW1nLeC/blzDweOn2b6zm62debbv7Obg8d5R0w5EeHj3AR7efYA//GYXZy+clQyXWp/j+jUtzJ7hJMWSzgyDNQK4Jv35BHAshPCLwC+S9HwBIITwJPBp4C9jjKNf4cq7qWC7cxz5SJIkSWUtmjODmy9dzs2XLqd/IPLo8weGlgbvfOVIybR7Dp3kC/c/zxfuf56ZTQ1cu3opm9pytK/Pce6SOWfoN5A0HTlnzRRUyZw16Xw1vUADyQpO/cDNJZJsB94RYyx9ZRv5vS4BHgYagSdijK+rMH25SWjOAh4E56yRJElSeS8dPEFHOlzq3md6ONmbveP3umXzaG/LsbltGW84z0mKpenKCYaVWYXBmsXA/vTpKZJhSi8Cvwp8I33tKuAPgKvT4/4pxvieCss0E7gHuCJ96eYY450V5pH5j9VgjSRJkipxsref+57dR0dnni078rx08ETmtAtnN3PjulY2O0mxNO0YrFFmFQZrhlZQSh0BLo0xPlt03GzgPuCS9KWrYowPVlCmzwLvTZ9+PsZ4a9a0BXkYrJEkSVLNxRh5Kn90aLjUw7sP0F9qluICTlIsTS8GayaxEEITyVCj8frpGOPtGd5vF9mDNS1Ad8FL/2+M8SOjHPs2kqFSAP8zxvjfM5SZEMJHgN9Pnz4M3BRjPJYlbVE+DoOSJEnSGXfoeC/bn+qmozPPtq48B0pMUlzsnMFJittyXLfaSYqlqcalu1UrxXPPfL3EsVuAPpK/myuzZB5C+DmGAzVdwFvHEqgBKPdH7x0LSZIk1cLCOc2885JzeOcl59A/EHnshcFJirvZsedwybQvHzrJ39//PH+fTlJ83eAkxW05Vix2kmJJI7NnzRkSQmirQjZ7siyhXUnPmvT4PNCaPl1dPASq6Ng9JD1YumKMJX+nEMJ/Av4XyeTFu4EbqhVlHOX9hoZ02bNGkiRJZ8LLB0/Q0ZVMUnzP05VNUrx+2fxkkuINOS4710mKpcnInjWTXIyxnpepfgLYmG6X65c5uL+v1EEhhHcCf0sSqNkDbK5loEaSJEmaCOcsms2PX30+P371+a+apHhrZ54XD5SepLhr7xG69h7hr7Y/w8LZzWxc38qmdJLiRXOcpFiazgzWCOAuhoM1q4GnRjoohLAAaEmfvjRaZiGEzcAXSf6+9gFvjjE+U63CSpIkSfVoVnMj7etztK/P8bF3Rp7OH2VLxkmKD53o5Y7HXuaOx16mIcDl5y8emutm/TInKZamG4M1Avgy8Jvp9i0kS3aP5N3A4FXi7pEOCCFcB9xBsgT4YeAtMcYnqldUSZIkqf6FEFi7bD5rl83n/TetrmiS4oEID+46wIO7DvCJb3SxfNFs2tta2dy2jGtXL2VWs5MUS1Odc9ZMQZXOWZOm+TfgrSTDm9pjjPcU7T8beABYAZwGVsUYXyo65lKgA1gEHCMJ1Nw7rl+mAs5ZI0mSpMmgcJLiLTvydL5SvObH6GY1N3D96pahXjfnLJpdw5JKKseluzWiEMIa4Iailz8JLCUZgvQrRfu+EWN8ZYR81gH3kwRajgN/TNLD5hRwFfARYHl6+IdijJ8oSr8a+DaQS1/6ZeBbZYqfjzHmyxyTmcEaSZIkTUaDkxRv3ZHn3mcqm6S47az5bN6QY1PbMi49dxGNDQ6Xks4kgzUaUQjhVuBvKkjSHmPcNkpeNwBfApaNkjYCvxdj/I0qlAPgYzHG2ypMMyqDNZIkSZrsTvb2c98z+9KlwfO8dLD0JMWFlsydwcZ1rbS35bhxXSsLZzfXsKSSwNWgdAbEGO8JIVwEfAB4F3ABMINkNadtwKdijI9OXAklSZKkqW1WcyPtbTna23L8dozs3Hs0Ddzs5eHdBygxRzH7j53mK4++xFcefYnGhsCVKxezqS3pdbO6da6TFEuTiD1rNGXYs0aSJElT2cHjp9m+s5utnXm2dXVz6MTokxQXO2/JnDRwk+PqVUuY2eQkxVI1OAxKKsNgjSRJkqaLvv4BHnn+4FCvm517j2ZOO2dGI29c28LmtmVsbGslN39WDUsqTW0Ga6QyDNZIkiRpunph//FkkuLOPN9+Zh+n+7JPUnzxioVsasuxuW0ZF52zgAYnKZYyM1gjlWGwRpIkSYLjp/u49+l9Q71u9h4+lTltbv5M2tfn2LQhxw1rWpg702lOpVIM1khlGKyRJEmSXi3GyJN7DrN1R54tnXkef/EgWb8Czmhs4OpVS9icTlJ83tI5tS2sNAkZrJHKMFgjSZIkldZz9BTburrZ2rmXu3b2cPRUX+a0a3PzhiYpvvz8xTQ1NtSwpNLkYLBGKsNgjSRJkpTd6b4BHtq1ny2dyVw3z/Ucy5x2wawmNq7PsXlDjpvWtbJozowallSqXwZrpDIM1kiSJElj92z30XSemzwPPLefvoFs3xUbAlx+/mI2tS1j84Yca3PzCMFJijU9GKyRyjBYI0mSJFXH4ZO93L2zh62deTq68uw/djpz2hWLZw8Nl7pm1VJmNTfWsKTSxDJYI5VhsEaSJEmqvv6ByOMvHmTrjqTXzZN7DmdOO7u5kRvWtrC5LUd7W45lC2bVsKTSmWewRirDYI0kSZJUe3sOnUiGS+3Ic+8zPZzsHcic9nXLFyTDpdpyvH75QhoaHC6lyc1gjVSGwRpJkiTpzDrZ2899z+xjS+detu7I8/Khk5nTtsybyaa2Vja1LeOGtS3Mm9lUw5JKtWGwRirDYI0kSZI0cWKMdL5yZGiS4keeP0DWr5szGhu4etUSNrfl2NS2jPOWzqltYaUqMVgjlWGwRpIkSaof+46eYvvObrZ05rmrq5sjp/oyp12bm8emDTk2ty3jDectoqmxoYYllcbOYI1UhsEaSZIkqT719g/w0K4DbO3cy5bOPM92H8ucduHsZjaub2VTW46N63IsnNNcw5JKlTFYI5VhsEaSJEmaHJ7rOZYOl9rL/c/up28g2/fSxobA5ecvZnNbjs0bcqxunUcITlKsiWOwRirDYI0kSZI0+Rw+2cs9T/WwZUeebV159h07nTnteUvmsCkN3Fx1wRJmNjXWsKTSaxmskcowWCNJkiRNbv0DkcdfPMjWHXm2dObZsedw5rRzZzRy47pkuFR7W46WeTNrWFIpYbBGKsNgjSRJkjS1vHzwxNDqUvc+3cOpvoFM6UKAS1YsSlaX2pDjwrMXOFxKNWGwRirDYI0kSZI0dZ043c+3n+lhS2eerTvyvHL4ZOa0Zy2Yla4uleO61S3MnuFwKVWHwRqpDIM1kiRJ0vQQY+TJPYeHhks9/uJBsn61ndnUwPVrWti8IcemthxnL5xd28JqSjNYI5VhsEaSJEmanrqPnGJbVzJc6q6d3Rw73Z857YVnLxgK3FyyYhENDQ6XUnYGa6QyDNZIkiRJOtXXz4PPHWBL51627Mjz/P7jmdO2zJtB+/pkdakb1rYyb2ZTDUuqqcBgjVSGwRpJkiRJhWKMPNN9lC3pcKmHdx+gfyDbd+AZjQ1cvWoJm9tybN6wjHOXzKlxaTUZGayRyjBYI0mSJKmUg8dPs31nN1s782zr6ubQid7Madfm5rF5wzI2b8hx2bmLaGpsqGFJNVkYrJHKMFgjSZIkKau+/gEe3n2ArV15tuzI83T+aOa0i+Y0s3FdK5s3LOPGda0snN1cw5KqnhmskcowWCNJkiRprHbvO8bWziRwc/9z++jtz/ZdubEhcOXKxWxuS3rdrGqdV+OSqp4YrJHKMFgjSZIkqRqOnOzlnqd62NKZp6Mzz75jpzOnvaBlLpvakkmKr1y5hGaHS01pBmukMgzWSJIkSaq2/oHI4y8eZOuOPN/asZfOV45kTjt/ZhM3rm/lTRtybFyXY/HcGTUsqSaCwRqpDIM1kiRJkmrtpYMn2NqZZ+uOvdz7zD5O9w1kStcQ4A3nLR6apHhtbh4hhBqXVrVmsEYqw2CNJEmSpDPp+Ok+7n16H1t27GVrZ578kVOZ0567ZDab25axqS3H1auWMLOpsYYlVa0YrJHKMFgjSZIkaaIMDESeePkwWzqTwM13XzyUOe2cGY28cW0Lmzcso319jtb5M2tYUlWTwRqpDIM1kiRJkurF3sMn6ejMs6Uzzz1P9XCitz9TuhDgkhWL2NyWY/OGZWw4e77DpeqYwRqpDIM1kiRJkurRyd5+7nt2H1t35NmyYy8vHzqZOe05C2exaUMSuLl21VJmNTtcqp4YrJHKMFgjSZIkqd7FGOl85QhbO5PVpR574SBZv5bPbm7khrUtbG7LsaktR27BrNoWVmUZrJHKMFgjSZIkabLpOXqKbV3dbNmxl7t2dnPsdLbhUgAXr1jI5rZkdamLzlngcKkJYLBGKsNgjSRJkqTJ7FRfPw88t58tO/Js6dzLC/tPZE571oJ0uFRbjuvXtDhc6gwxWCOVYbBGkiRJ0lQRY+Sp/NEkcLNjL488f4CBjF/fZzU3cP3qZHWpzRtyLHO4VM0YrJHKMFgjSZIkaaraf+w027qS1aXu6urmyKm+zGlft3wBm9uW8aYNy7jonAU0NDhcqloM1khlGKyRJEmSNB2c7hvgoV37+VY6XGr3vuOZ0+bmz2Tzhhyb2pZxw5oWZs9wuNR4GKyRyjBYI0mSJGm6iTHyTPcxtnbu5Vs78jy8+wD9GcdLzWxq4Po1LWxqy7F5Q46zF86ucWmnHoM1UhkGayRJkiRNdwePn2b7zm6+tSPPtq48R05mHy514dkLeNOGHJs3LOP1yxc6XCoDgzVSGQZrJEmSJGlYb/8AD+06wJYde9nSmee5nmOZ07bOn8mm9UmPmxvWtjBnRlMNSzp5GayRyjBYI0mSJEmje7Y7WV3qWzv28lAFw6VmNDVw3eqlyepSbTnOWeRwqUEGa6QyDNZIkiRJUjaHjveybWeeLelwqcNjGC61acMyLp7mw6UM1khlGKyRJEmSpMr19Q/w0O50uNSOPM86XCozgzVSGQZrJEmSJGn8nus5xpYde/nWjr08uMvhUqUYrJHKMFgjSZIkSdV16EQv23d2s2XHXrZ1dXPoRG/mtBeevYDN6epSU3W4lMEaqQyDNZIkSZJUO339Azy8+wBbOpNJip/tdriUwRqpDIM1kiRJknTmDA6X2rIjz4O79tNXwXCp6weHS23IcfbCyTtcymCNVIbBGkmSJEmaGIdO9HJXOlyqYwzDpd6UDpd6/SQbLmWwRguCLq4AAB4uSURBVCrDYI0kSZIkTbzB4VJb0+FSz1Q4XGpzWxK4uWFNC7NnNNawpONnsEYjCiHMA94AXJU+rgRWprt3xxhXjpyyZJ7nAT8LvA04H5gPdAO7gA7gizHG71eQ3xzg+8AF4ylXhvcxWCNJkiRJdWZXzzG+lQ6XemDX/syrS81sauD6NS1sasvx5guXsWzBrBqXtHK1CtZMjRl9prevAhurlVkI4QPAx4G5RbtWpI8bgAXAByvI9rcZDtRIkiRJkqaRlS1zee8bV/HeN66qaHWpU30DbO3Ms7Uzz9FTfbz/ptVnsNQTy2DN5Fc4mO8A8BBwLTCv4oxC+HXgd9KnzwKfAe4HjgDLgXXAu4GBCvK8jCSwcxLoJemlI0mSJEmahhbObuadl5zDOy85p6LVpd60IXcGSznxDNZMfl8gCao8EGN8GiCEsIsKgzUhhE0MB2q+BPxEjPFUwSEPpz8/GUKYkTHPRuCzQCPwMZKhVQZrJEmSJEk0NTZw9aqlXL1qKb/2gxuGVpf61o69PLjrwNBwqfOXzmF1a8X9ESY1gzWTXIzxM+PNI4TQAPxV+rSL1wZqit/zdMasfwm4PM3zD0iCNZIkSZIkvcYFhcOljveybWeeLTvyXNAylxAmzwpR1WCwRgA/AKxNtz9eKlCTVQjhfJK5agB+PsZ4ero1LkmSJEnS2Cyc08zNly7n5kuXT3RRJoTBGgH8SPqzH/jK4IshhBZgEdAdYzxUYZ5/QTJJ8d/FGDuqUkpJkiRJkqaBhokugOrCNenPJ4BjIYRfDCE8TbJc91PAwRDCE+nrzeUyCyG8B/hBkgmPf6VWhZYkSZIkaSqyZ800l85X05Y+fZ6kZ83NIxx6IfCnwC0hhHfEGI+Mkt9i4E/Spx+OMearWNYVZQ45q1rvJUmSJEnSRDFYo4UM97B6MzATeBH4VeAbwCngKpIJgq8GbiJZ4ek9o+T3h8Ay4L70uGp6ocr5SZIkSZJUdxwGpbkF2zOBI8BNMcZ/jDEejDGeiDFuB9qBx9Pj/mMI4crijEIINwI/A/QB748xxhqXXZIkSZKkKceeNWdACKEJ6K1CVj8dY7y9CvkUOln0/M9jjM8WHxRjPBFC+CjwtfSl9wAPDu4PIcwEPgME4E9jjN+tcjkBzi2z/6zCMkmSJEmSNBkZrFHx3DNfL3HsFpJeM01Acc+ajwLrSYYq3VatwhWKMb5Yan8IoXFwe8+ePbUogiRJkiRJQ4q+ezaOdlylDNacATHGvhDChipkVfUIRIzxVAihG2hNXxo1IBJjPBlC6CHpwZIr2v2h9Oe3gLeHEEbKYnDI1dx0xSiAfIxx65gK/1qDvwNXXXVVlbKUJEmSJCmTVmB3NTIyWHOGxBg7J7oMJTwBbEy3y0UCB/f3Fb0+I/350+mjlBbgH9Lt7UC1gjWSJEmSJE16BmsEcBfDwZrVwFMjHRRCWEASaAF4qfbFqtj3GB6e1Q30T2BZyimcX+dK4JUJLItGZh1NDtbT5GA91T/raHKwniYH66n+WUeTw2Spp0aGR3l8r1qZGqwRwJeB30y3byFZsnsk7yaZQBjg7sIdMcYRxz0VCiHsAs4HdscYV46loKXEGE8BD1U731ooGib2Srn5eHTmWUeTg/U0OVhP9c86mhysp8nBeqp/1tHkMMnqqSpDnwq5dLdIV24anFj4p0MINxQfE0I4G/jd9Olp4G/OUPEkSZIkSZpW7FkzyYUQ1gDFwZV5gz9DCLcW7ftGjHGk7mMfBK4FFgHfDCH8MUkPm1PAVcBHgOXpsb8RY6zHYVCSJEmSJE16BmsmvxsYvZfL0hH2tTPCWL8Y484QwjuALwHLSJbi/mjxYcDvxRg/Ma4SS5IkSZKkURms0ZAY4z0hhIuADwDvAi4gWeVpD7AN+FSM8dGJK6EkSZIkSVOfwZpJLsZ4O3B7FfPbB9yWPqqqFpMKS5IkSZI01TjBsCRJkiRJUh0xWCNJkiRJklRHQoxxossgSZIkSZKklD1rJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEYaRQhhQQjhPSGEPwohbA8hPB1COBRCOB1CyIcQtoUQ/kcIYWnG/K4NIfxdCGFXCOFkCGFPCOEbIYT3VFiu94QQvpmmP5nm93chhGvG9ptObtWopxBCUwjhzSGEPwwh3B1C6A4h9IYQDoYQHgkhfDKEsDpDWW4PIcSMj5XVPA/1rkr1tLGC83tbhjI1hRB+LoRwV1rnJ9Jy/VUI4cKqnoBJoEp1lLV+hh6j5GNbGoMQwieKzs3GDGn+QwjhKyGEF0MIp9KfXwkh/IcK3te2VIGs9RRCmBVCuDmE8KkQwv0hhP3ptWl/COG+EMJtIYSzM7zftvG0x+mqgnq6tYL/V7dmeN85IYRfDSE8kNb10RDCjpB8Fjmv2r/nZJaljkIIK8dwbdo1yvvZlkqo4Pxuy5CX1yaAGKMPHz5GeABvAmKGRzfwljJ5/SbQXyKPO4FZZfKYBXy1RB79wG9M9HmbbPUEtAI9GdKfAn6pTFluz1iWCKyc6HM3meopzWNjBef3tjLlWQp8p0T6k8DPTPR5m4R1lLV+Bh9do+RjW6q8/i4BeovOzcYSxwfg02XO7aeBUOZ9bUs1qCfgYuBwhr//w8CPlnnPbVnb00Sfn3p5VNKegFsr+H91a5n3XQ10lkh/EPjBiT4/9fCooC2trKB+Bh/fHOU9bUul6yTr+d1WIg+vTQWPJiSV8gLQATycbu8h6ZG2Avhh4BagBbgzhHBljPG7xRmEEN4LfCx9+gzw+8D3gHOAXwLagXcAnwN+okRZ/hp4e7rdAfwp8DLweuDXSC7wvx1C2BNj/NwYf9/Jajz1NJPkHzrAY8AdwP3AXmAh8FbgAyTBsj8JIZyIMX6mTHleBt5S5piXsv1qU8q421OBnwEeLLE/P9qOEEIj8BXg6vSlrwCfBfanr/06kAM+E0J4Kcb4zfK/2pQx3jp6fYb3+CngV9Ltz5c51raUQQihgeRvuInkbz+XIdnvAu9Ltx8FPkFyjVoN/A/gsnR/N0mbGOl9bUsVqLCeFgDz0+17ga8BDwH7SG4y3AK8Nz3mCyGEIzHGr5cpwkPAT4/5F5gmxtieBr2F5P/WaF4s8b7zSOp5ffrSZ4F/BE6QfFb8CMnnkv8dQri2zDVySquwjl4i27XpI8CPpdvlrk22pdL+EviLEvuPldjntanQREeLfPio1wfQmOGYdzEcof3yCPsXAQfS/buBluL3IOlVM5jHjaO8z00Fx9xZXDaSL0+70/37gUUTff4mSz0By4H/A1xTIv3VwHGG72rNH+W429Njdk30eam3R5Xa08aC/RvHUZZbC/L58xH2rwEOpft3Ak0Tff4mSx1lfJ/70/QDwHmjHGNbquycfjA9X0+S3BAo1xNgDcN3pB8EZhftn5O+HtPjVo+Sj22pRvUEXAf8E3BhifxuTttRBJ5mlDvNDPcG2DbR52AyPMbQngrbwcpxvO9tBfn86gj7ry1ot1sn+jxNpjrKkF8jSVAnkvRWmzPKcbal0udxsB5uG2N6r01FD+eskUYRY+zPcMy/kHRXBbhxhEP+C0nABuBDMcaeEd7jv5IMYQL41VHe6n+kP/uB/1pctjTfD6VPFwM/W67sU8V46ynG+FKM8QdijN8pkf5+hu8QLCQZLqIKVKk9VctgOzvACG0uxvg08PH06VqSL0RT3pmooxDCeuCq9Om2GOPzleahVwshnAv8Tvr054HTGZL9Mgz1rv5AjPFE4c4Y43GSHoWkx31wlHxsSxlVWk8xxm/HGP9jjPHJEsfcQXLHGJK7zpdWo6zT2RjbUzXet5mktzXADuCPio+JMd5H0ssaoD2EcPmZKFu9qVEdvYmkxzvAl9L/gTrzvDYVMVgjjd9gV75ZI+x7V/rzMMMfqF4lxvgi8K306ZvTbrBD0ueb06f/nh4/kq+k7wNJ92i9Wql6yqKjYLvsZMMas/HWU0khhLXA4KRy/1TiA9ntBdu2p1cbTx39ZMF2uW7myuYvgHnA52OM28sdHEIIDH8w7RwtUJ2+3pU+fVearjAf21JlKqqnCnhtqq5a1VM5Gxm+uff5GOPAKMfdXrA9XdtTLerIa9ME89o0MoM10jiEEDYwfCers2jfDIbvIN8XYywV+R+82MwErizad1X6euFxr5HmP/iP7ar0Lo0oXU8VmFmwPdqHKI1DleqpnDcWbJdqT6+QdI0FuKFGZZl0xlNH6QeqH0+fHgO+XMWiTUshhB8lmctsP6P3zCx2AcnwTyjRBor2ryCZpLOQbSmjMdZTVl6bqqTG9VROpvZEMlfKYMB82rWnWtRRCGE+wzdXdwN3VSNfVcxr0wgM1kgVSpdUXBtC+G8kd7Qa011/WnToWoa78pX7UlO4f0PRvg2jHFcqn6b0/aetCuopq5sKtsvVw9KQLAF+MF1ucE9Illv/f0IIc8b4/lPSOOrp99NlHE+HEA6EEB4NIfxxCGFdmXRjaU/nhhDmljl2yqpiW9oInJ9ufyXGeDRDGtvSKEIIixiugw/FGLszJh1LGyhON9Z8pl1bGkc9ZVXJtakthPBgCOFICOFk+j/0jhDCT073GzxVrKfbQwh702tTTwjhOyGE3w0hLC+TLlN7ijH2kUy2WpxmyqthW/phkrlQAP42ppOalGFbKu1HQghd6VLZR0IIT4UQPh9CaC+RxmvTCAzWSBmEEG4NIcQQQiS5o7GTZDzxsvSQTwJ/X5Ts3ILtUWf/T70wSrpq5jPljbGesuR7NsOz/vfw6m7nI5lHEqVfCMwAzgJ+APgUsDOEcF2lZZhKqlRP15LcgWkm6Tp+KcnY5R0hhNuKu8UWGEt7CiR3b6aNGrWlwm7mf5sxjW1pdJ8gOR/fZngeiywm8to07doSY6+nskIIlwBvS58+UWp+m9Qy4AqSdjWT5H/oO0mGfTyW9pybrqpVTzeRrDLTTLLS5NXAR4GnQwg/VyLdYHs6FmM8WOY9BttTawhhZskjp5ZataWxXJtsS6VdCKwjGS49j2RC358EtoYQ/jmEsHCENF6bRuDS3dL4PAa8P52Attj8gu1yd5ALl7CbV7SvWvlMZ6XqqaT0S/9fMVwPv1M84VmBSDIU7avAIyTLf88iWTLyZ0mGtC0H/k8I4Y0xxkcrLc8Ul6We9pDMz3QP8CzQB5wHvAP4zyQfkH+L5Iv9r42Q3vY0PmNqS2kvmB9Kn74IbC2TxLZUQgjhBpJlm/tI6iPLneBBXpvOkHHWU7m8ZwKfY7in20j/7wYNAFuAfwMeJ1n+ez7wBuDnSO5EXwh0hBCumm4Tf1epnp4luTbdx/AXwFUk//d+mOT/11+FEGKM8TMjpB9sT1l6HBa3p1NjKO+kUqu2FEI4j+Head9OJ54txbZU2nGSVWu3kPRaOQq0kpzj95MEMN8F3BFCeHOMsbcgrdemERiskbL5F5JxwgCzSSbx+1Hg3cDfhxA+GGP8WlGawsk3y81UX3ihnV2jfKaDsdRTOb9GcrcEkh41f1bi2F8e5Y7YfSGEzwK/m+Y3F/hcCOGKan54n0TGWk8PAucXXdwh+TL/LyGET5Msw74Q+HAI4YsxxseKjrU9ZVPttvRuhj9A/a8Sk2cOsi2NIp0P7TMkdwL/OMb4vQqz8Np0BlShnsr5M5I7+5BMtHpniWNvGaU93R1C+Avgs8BPkfQW+BPqeLLNaqtSPf0zSR0U/w96EPinEMLbSQI5zcAfhxDuTOfLKDTYnrKsbDSt2lON29JPpPlCtl41tqXSlo9yfv49hPAp4OvAZSTBm58H/r+CY7w2jcBhUFIGMcaDMcbvp48HY4z/GGO8haRL3yqSCPGtRclOFmzPKPMWhd1Yi3ttVCufKW+M9TSqEMKPM7w85C7gx0p9ySzVdTkmPsrwyl9vAKblEI6x1lOM8dgIgZrC/Q8Av5A+DQXbhWxPGVS7LZH0ehpU9gOxbamkXyO5e/s88LExpPfadGaMt55GFUL4CEkvA4CHGfl/3ZAy7ak3zWtw7oZ3Z5hfZSoZdz3FGA+VChange3BvOeQ9A4sNtieyrUlmH7tqWZtieFr0yngn8odbFsqrcz52UvSy2wwgPKBokO8No3AYI00DjHGvwP+N0lb+rMQwuKC3UcKtst1rSuc1Kq4y1618pm2ytTTiEIIbwP+huRL/17gzSPcCRuLTxds3zTqUdPQWOppBP8EHEq3Rzq/tqdxGGNbOht4U/r0wRjjjioVZ9q1pRBCG/CR9OkHYozHSh0/Cq9NNValehot758Dfj992gW8dbz5p5PWFs4BYnuqvs+SDO+E0temLEMxpk17qnFbugpoS5/emWGuoLKma1vKKsb4LPDv6dM1IYRzCnZ7bRqBw6Ck8buDZHjAXOCtwBfS1wsntSo3aVXhZFgvFO0rzuchRlcqn+lutHp6jRDCRuBLJF2WDwA/kGEcc1aFE0BOqzsuGWWup5HEGPtCCDuBKxn5/Ba3p54S2Q22p0j5Seqmk0rr6McZnlcj6+SNWUzHtvTLJHcKnwXmhBDeM8IxryvY3hRCOCvd/mr6RadW1ybb0rBq1NNrhBD+E/AX6dPdwJuquCKO7alK9TSSGGM+hNBDMn/HaNemq4G5IYRFZQIHg+2pO8Y41eerqWUdjWVi4SymY1uqxJMMT4y+HHg53fbaNAKDNdL4FX5QOr9geyfQT/IlpY3SCvcX33V+cpTjSuXTB1QruDBVjFZPr5LeafkqyZjXoyR3Lb9bxXKMtkqREpnqqYxS57i4PRXPaUPRfoAXanzHdbKptI4Gu5n3Av9QxXJMx7Y02GV7FdnO5W8UbF9AMpniWK4pUP7aZFsaVo16epUQwjtJvlA2kEy0vjnGWM0vF7an8srWUxnlrk2Dk7C3kUyw/toMQmgimUMMXtsmp6Ka1FG6vPZ/TJ/mgW+MtYAjZV/FvKai0c6P16YROAxKGr/CqPlQF7oY42nggfTptekEaaMZ7CZ5itf2nHmQ4fGdo3anTPO/ZjBN+v4aNmI9FQohXExywZ5HMub1HWNZQaqMCwu2Xx71qOmrbD2Vkn6QXZc+Hen83lOwXao9nVWQz72VlmOKy1xHIYRLgYvTp/8aY9xXxXLYlsbmOYbPV7ku+jemP18imberkG3pDAkhbAa+SHKTdR/JsNxnqvw2tqcaCiHkSFbCgXFcm0gmlR4cumF7Gru3AS3p9hfS4UvVYlsqbbTz47VpBAZrpPH7kYLt4hnq/yX9uYBRZoQPIaxgeD6HLTHGwrGWpM+3pE/flB4/klvS94FkZQK9Wql6IoSwjmQlocUkPQB+KMa4rQbl+LmC7e01yH+yK1lPGbyH4XbwmvMbY9zJ8F2YH02XlB7JrQXbtqdXq6SOCruZf77K5Zh2bSnGeGuMMZR68OoJONsL9u1K84gkQ9kA2kII1zCC9PXBu453FE+galsaXTXqaVAI4TqS+poJHAbeEmN8oprlTYPcP1Pw0l3VzL9eVbOeMngfwz0KRvp/tY3h+dZ+KoQwWu+DWwu2p3x7qmEd1eTaNF3bUlYhhFXAm9Onz8YYXxrc57VpFDFGHz58jPAgacSzyhzzyyTjHCNJRLipaP8S4GC6fxewtGh/I3BnQR7to7zPpoJj7gAai/a3kIxfjyRzrCye6PM3yerpPJJVBiLJELIfHkM5rgHOLrE/kCw3PFiOx4Aw0edvstQTSRBtY5n0V6V//xEYAK4Y5bifKXifPxth/2qSD82RZDhhU6n3nSqParSlomMbSYZrRJIx480Zy2FbGl893lZwbjaOcsw6kqB0JOm9Obto/+z09Zget3aUfGxLta2nSwv+px0Frh/D+7QDi0rsbwZuLyjLnRN9burpUa6egJXAZWXyeDtJz+lIsuLM8lGO++2C9/rVEfZfW9But030uamXR5a2VHT8koL6+G4F72NbKn1+3lHmM8Ey4JGC8/PfRjjGa1PRwzlrpNHdBvxRCOHLJF3qniH5sDQfeD3JpJnXp8eeBv5LLOpGGWPcH0L4EPBXJHM73B9C+D2Su9HnAB8k+ecP8A8xxo6RChJj3BpC+EeSXgPvBP49hPAnJN0FXw98lCTgAPDhGOOBcf7uk8ltjKOeQghLSZYAHpxk7I+AzhBC4YR1xQ7EgrsBqf8AfDiE8A2Sme6fJAnUzSQZBvKzJMEEgONpOSLTx22Mrz0tBDpCCN8l6bH2MEkgoJ/kb/8dJHOjNKfHfzLGONpk3J8nuZBfD/xC2hX2syRfiq4iGfO+gCTg84Hidj2F3cY4/+cVeQswONHjP8QSy64XsS3VWIxxZwjhk8CHSYZV3BtC+AOSOl8NfAi4LD38D2OMT42SlW2pRkIIq4FvAovSl34dOFTm2pSPMeaLXvsp4M4Qwp0kvTe6SHrozAMuJ+mhtmEwPfBLVfkFpo+VJNem+0jmu3uM5DwGknlWfjh9DPaU+ZURPj8M+kOSeVTWAZ8IIawB/pEkwNNOsoR1U/r8g7X4ZaaJ9zC8pHMlvWpsS6V9CmhOP0PcR3KT+gTJDeWNwPsZHgp4D/DnxRl4bRrBREeLfPio1wfJP5mY4fECyfjxUnl9jOQfwmh5/Cvl72jPTo8bLY9+4LaJPm+TrZ5ILiBZ0hc+bh8hn9sypt3NGO6OTvZHFeppZcb0fcBvUaanBcmHhwdK5HOKJAgw4edustTRCPn9Y0GaKysoh21pfPVYeP42ljiugWSJ2VLn+HNAQ5n3sy3VoJ5IerpVem26bYR8bs+Y9rvAhRN9XurtkaGeNmY8v8eA92V4vzUkC1SMls8h4O0TfV7q6ZH1f17B8d9h+PPCWRW8j22p9PnZlfH8fInSPZS8NhU87FkjjW4zyVwy7SSR8mUkEeGTwF6SuydfA74YYzxeKqMY42+FEL4J/ALwxjSvg8DjwN/EGMvOcB9jPAG8LYTwYyQf4i4hueO2F7ibpJvffZX/mpNe1eppnP4mfb9rSe7+D04m2EcyBOQRkrtuX4gxnqxhOerVeOvpZZK5Uq4luSuynORCPIvkw2sXyZ2uz8UMcwnEGHvSuSD+C/BjaZnmpu+zBfjTWOV5ISaBqrWlEMICkl6AAJ0xxgcrKIdt6QyIMQ4AP5veBX0fyXL3LSTn+EHg0zHGr2fIx7ZU3/6ApO1eSzKxZyvDw0D2kixq8CXgn2OM/RNVyEnsYeAnSM7vFcDZJO2oieQu/hMk7eBz8bW9nl4jxvh0COEyks+LP0ISvJlBEiT/N5L2tLsGv8e0EEJYS7JEOsC/xxhfqSC5bam0nyKZ0Pdakl5lLSS9V46S/P1+G/h8ue8qXpteLaSRJ0mSJEmSJNUBV4OSJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6ojBGkmSJEmSpDpisEaSJEmSJKmOGKyRJEmSJEmqIwZrJEmSJEmS6kjTRBdAkiRJZ0YIYSXw3HjziTGGcRdGkiSNyp41kiRJkiRJdcSeNZIkSdPHS8DrS+z/JnAO8DLwljNSIkmS9BoGayRJkqaJGGMv8P3R9ocQetPN3hjjqMdJkqTachiUJEmSJElSHTFYI0mSJEmSVEcM1kiSJEmSJNURgzWSJEmSJEl1xGCNJEmSJElSHTFYI0mSJEmSVEcM1kiSJEmSJNURgzWSJEmSJEl1xGCNJEmSJElSHTFYI0mSJEmSVEcM1kiSJEmSJNURgzWSJEmSJEl1xGCNJEmSJElSHTFYI0mSJEmSVEcM1kiSJEmSJNURgzWSJEmSJEl1xGCNJEmSJElSHQkxxokugyRJkiRJklL2rJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY4YrJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY4YrJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY4YrJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY4YrJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY4YrJEkSZIkSaojBmskSZIkSZLqiMEaSZIkSZKkOmKwRpIkSZIkqY78X+/4NUnKEjj5AAAAAElFTkSuQmCC\n",
"text/plain": [
"