{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "82qvdeZGidoF" }, "source": [ "Son değiştirilme tarihi:**24.12.2025**\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "JZilA3KC6ZQd" }, "source": [ "# Ön ayarlar ve kurulumlar" ] }, { "cell_type": "markdown", "metadata": { "id": "B18FxdGtpvkb" }, "source": [ "Şu uyarıyı durdurmak için ipython downgrade ediorum, umarım ilerde buna gerek kalmaz:\n", "\n", "> DeprecationWarning: should_run_async will not call transform_cell automatically in the future. Please pass the result to transformed_cell argument and any exception that happen during thetransform in preprocessing_exc_tuple in IPython 7.17 and above." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 6340, "status": "ok", "timestamp": 1729948638269, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "CHjhYaMLpN6o", "outputId": "97615570-1b1e-44ef-a424-8d246cc973be" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/785.1 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m368.6/785.1 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m785.1/785.1 kB\u001b[0m \u001b[31m12.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/1.6 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m48.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m23.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "bigquery-magics 0.4.0 requires ipython>=7.23.1, but you have ipython 7.16.1 which is incompatible.\n", "google-colab 1.0.0 requires ipython==7.34.0, but you have ipython 7.16.1 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0m" ] } ], "source": [ "!pip -q install ipython==7.16.1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "whfUA-zGyi08" }, "outputs": [], "source": [ "# Bir de içinde birsürü **frozen** geçen satır çıkıyor, bunlar çıkmasın diye uzaya gönderiyoruz\n", "import sys\n", "import os\n", "\n", "# Redirect stderr to /dev/null to suppress warnings\n", "sys.stderr = open(os.devnull, 'w')\n", "\n", "# sonra geri açmak için\n", "# sys.stderr = sys.__stderr__" ] }, { "cell_type": "markdown", "metadata": { "id": "DBfd2FPeejvD" }, "source": [ "Bu notebooktan tam verim almak için Uçtan Uca ML notebookuyla birlikte incelenmesini öneriyorum. Ve ayrıca kendi modüllerimden oluşan paketimi de indirmeniz gerekmektedir. Bunun sebebi, sizi gereksiz kod kalabalığı ile yormak istemeyip dikkatinizi sadece buradaki ana konuya toplamaktır. Kodları isterseniz ayrıca inceleyebilirsiniz. İndirmek için şu adresi kullanın: https://minhaskamal.github.io/DownGit/#/home.\n", "\n", "Ayrıca sık sık Lineer Regresyon notebookuma da referansta bulunacağım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 29485, "status": "ok", "timestamp": 1729948667743, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "q5XSmoMXl4X-", "outputId": "6b9938fd-edeb-4b4d-af08-61d823b530db" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mounted at /content/drive/\n" ] } ], "source": [ "#Önce bu\n", "from google.colab import drive\n", "drive.mount(\"/content/drive/\")\n", "\n", "#sonra da bu:benim custom paketin olduğu folder'ı nereye koyduysanız onu path'e ekliyoruz\n", "import sys\n", "sys.path.insert(0,'/content/drive/MyDrive/Programming/PythonRocks/')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2oa6OcuVmrPY" }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 4612, "status": "ok", "timestamp": 1729948672343, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "YpOXzMjZmrPb", "outputId": "1a471703-7cff-4326-bf69-f683477c0182" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 853 µs (started: 2024-10-26 13:17:50 +00:00)\n" ] } ], "source": [ "!pip -q install ipython-autotime\n", "%load_ext autotime" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 38, "status": "ok", "timestamp": 1729948672344, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Z7Yi2RJsmrPe", "outputId": "cc1ce0b9-5514-4e38-8484-c4a06bf6d9d2" }, "outputs": [], "source": [ "from IPython.core.interactiveshell import InteractiveShell\n", "InteractiveShell.ast_node_interactivity = \"all\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 31, "status": "ok", "timestamp": 1729948672345, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "QN909EU8-6-a", "outputId": "ebc2f9d0-0646-4515-b4da-01b055ccdd86" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 536 µs (started: 2024-10-26 13:17:50 +00:00)\n" ] } ], "source": [ "# prompt: i will work with pandas-flavor and forbiddenfruit librarries. which version of numpy and pandas should i install\n", "\n", "# !pip -q install numpy==1.21.6 --force-reinstall\n", "# !pip -q install pandas==1.5.0 --force-reinstall\n", "# !pip -q install pandas-flavor\n", "# !pip -q install forbiddenfruit" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 71 }, "executionInfo": { "elapsed": 24, "status": "ok", "timestamp": 1729948672345, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Og0zpGGa7cJB", "outputId": "9c946b05-a656-4cef-f199-260134d8902f" }, "outputs": [ { "data": { "text/plain": [ "'2.4.0'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "'2.3.3'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "np.__version__\n", "pd.__version__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 22, "status": "ok", "timestamp": 1729948672346, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "T-NU3Y1hmc4a", "outputId": "e57ee69c-65ed-4647-8998-5587ee1ed960" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 529 µs (started: 2024-10-26 13:17:51 +00:00)\n" ] } ], "source": [ "# !pip -q install -U numpy pandas matplotlib seaborn" ] }, { "cell_type": "markdown", "metadata": { "id": "L2YRfk95ejvG" }, "source": [ "# Gerekli kütüphanelerin import edilmesi" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 4026, "status": "ok", "timestamp": 1729948676357, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "uXNpYcCYejvH", "outputId": "4ba5a823-598a-455e-ef46-1d7e0e537edd" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "all warnings will be shown\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from mypyext import dataanalysis as da" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 3890, "status": "ok", "timestamp": 1729948680237, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "aEqc1TCzejvI", "outputId": "3907372c-efe7-42ef-b68b-b5c67c00d1a1" }, "outputs": [], "source": [ "#preprocessors, hepsini kullanmayabiliriz, ben nolur nolmaz diye hepsini topluca import ediyorum\n", "from mypyext import ml\n", "from sklearn.model_selection import train_test_split,cross_val_score,cross_val_predict,StratifiedKFold,RepeatedKFold,RepeatedStratifiedKFold\n", "from sklearn.experimental import enable_iterative_imputer\n", "from sklearn.impute import SimpleImputer,IterativeImputer,KNNImputer\n", "from sklearn.preprocessing import StandardScaler,MinMaxScaler,RobustScaler\n", "from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, LabelEncoder\n", "from sklearn.decomposition import PCA\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.base import TransformerMixin,BaseEstimator\n", "from sklearn.pipeline import Pipeline,make_pipeline\n", "from sklearn.preprocessing import FunctionTransformer\n", "from sklearn.model_selection import GridSearchCV,RandomizedSearchCV\n", "from sklearn.feature_selection import VarianceThreshold,SelectKBest, chi2, f_classif, mutual_info_classif,RFE,RFECV" ] }, { "cell_type": "markdown", "metadata": { "id": "T8ZMT8y8ejvJ" }, "source": [ "# Şablon" ] }, { "cell_type": "markdown", "metadata": { "id": "uYq7lPSPejvK" }, "source": [ "Algoritmaları anlatırken aşağıdaki şablona göre gitmeye çalışacağım:\n", "\n", "- **Teori**:\n", " - Algoritmanın kısa tanımı ve nasıl çalıştığı\n", " - Çözülmeye çalışılan problemin detayı\n", " - Manuel implementasyon: Hazır kütüphane olmadan kendimiz nasıl kodlardık(Bu her zaman bulunmayabilir) \n", " - Varsayımlar/Ön kontroller: Bu algoritmayı kullanmak için hangi şartların sağlanması gerekir\n", " - Önemli hususlar: bunun içinde algoritmanın nelere duyarlı olduğu, özellikle nelere dikkat edilmesi gerektiği ve (hyper)parametrelerde özellikle dikkat edilmesi gereken hususlar olacak. Ayrıca alogritmanın özellikle iyi olduğu alanlar varsa bunlara da bu başlıkta değineceğiz\n", " \n", "- **Kod pratiği/Örnekler**: Konuyu pekişitrmek adına bir veya birkaç örnek. Konular ilerledikçe örnek sayısı azalabilir. Sırayala okunacağını düşünerek konununu pekişmesi adına ilk başlarda daha fazla örnek olabilir.\n", "- **Kaynaklar**: En sonda toplu olarak bulunmakla birlikte, yer yer aralarda da gerektiği durumlarda linkler verilecektir." ] }, { "cell_type": "markdown", "metadata": { "id": "GikIMgSTejvK" }, "source": [ "# Teori" ] }, { "cell_type": "markdown", "metadata": { "id": "IbvriZ_ZejvL" }, "source": [ "## Nedir? Nasıl çalışıyor? Nerde/Niçin kullanılır?" ] }, { "cell_type": "markdown", "metadata": { "id": "o6m63yEbejvL" }, "source": [ "Logistic Regresion(LogReg), bir sampleın hangi sınıfa/labela ait olduğunu tahmin etmeye çalışan, en temel algoritmalardan bir tanesidir. Bunu, lineer regresyondaki(LinReg)'nin aksine lineer bir fonksiyonla değil de, **non-lineer** bir fonksiyon olan **logit** fonksiyonu kullanarak hesaplar." ] }, { "cell_type": "markdown", "metadata": { "id": "N5DitxPSejvM" }, "source": [ "LogReg tanıtılırken çoğunlukla şöyle anlatılır: *LogReg, adında Regression geçmesine rağmen bir regresyon algoritması değildir, classification algoritmasıdır*. Sonra başkaları bunu düzeltir ve der ki *Hayır, aslında bu lineer bir modeldir, zaten sklearn içinde de linear_model modülü içinde yer alır*. Evet, doğrudur, bu bir lineer modeldir, tıpkı LinReg'da olduğu gibi betalar yani katsayılar vardır ve lineer bir desicion boundary'si vardır. Devam edelim; Sonra başka bir kaynak der ki, *Evet her ne kadar arka planda bu bir lineer modelse de, sonuçta bir classification algoritmasıdır.*\n", "\n", "Hadi bu karmaşaya bi son verelim. **Bu algoritmanın yaptığı, bir veri setindeki kayıtları sınıflandırmak değil, bunların belirli bir sınıfa ait olma olasılığını bulmaktır**; sınıflandırma kısmı biz son kullanıcılara kalır. Belirlediğimiz thresholda göre sınıfı biz belirlemiş oluruz. Özetle LogReg, `classification(sınıflandırma) amaçlı kullanılan linear bir modeldir ve özünde bir regresyon algoritmasıdır.` Şuraya da bi bakın derim." ] }, { "cell_type": "markdown", "metadata": { "id": "0LWYW3gMejvN" }, "source": [ "Logistic kelimesi `logit` fonksiyonundan geliyor, bildiğimiz lojistikle(taşımacılık, mal temini v.s) bi alakası yok. Bu model de LinReg gibi inputların ağırlıklarını hesaplar, ancak bunları doğrudan çıktı olarak vermek yerine bunları bu logit fonksiyonuna göndererek 0-1 arasında bir olasılık hesaplatır. Olasılıkları doğrudan kullanmak yerine log'unun kullanılması bir olayın olma olasılığı ile olmama olasılığı arasında simetri yakalama amacıyladır. Aşağıdaki videolardan birinde bunu daha iyi anlayacaksınız. Ben de biraz aşağıda bu konulara değineceğim." ] }, { "cell_type": "markdown", "metadata": { "id": "dtWXkc6wejvN" }, "source": [ "LogReg, en temel algoritmalardan biri olup, aynı zamanda çoğu durumda ilk başta denenmesi gerekenlerdendir. Birçok kullanım alanı olmakla birlikte tipik olarak \"mail spam mi değil mi\", \"bu hücre kanser hücresi mi değil mi\", \"bu işlem fraud işlemi mi değil mi\" gibi binary classification(yani 1/0, True/False, Yes/No) problemlerinde kullanılır, bununla birlikte multi-class classification da yapılabilmektedir." ] }, { "cell_type": "markdown", "metadata": { "id": "3iDUIuW2ejvO" }, "source": [ "Evet şimdi tanımlarda biraz daha derine inmeden, aşağıdaki videoları izleyelim, ama mutlaka izleyelim." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-02-06T17:04:43.902564Z", "start_time": "2022-02-06T17:04:43.418594Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 338 }, "executionInfo": { "elapsed": 23, "status": "ok", "timestamp": 1729948680238, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "tPBpCjIUejvO", "outputId": "09774770-3aa6-4ba3-af25-e049b005dda4", "scrolled": true }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgICAoICAgICAgICAgICAgICAgICAgICAgICAgICAgIChALCAgOCQgIDRUNDhERExMTCAsWGBcSGBASExIBBQUFBwYHDwgIDx0VEhUYFxcXHR0VHRUeFRcaFRUdFRUaFh0fHR8VFRgVFRUWHxUYGhUVFR0eFRcVFRYVFRUVFf/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAEAAgIDAQEAAAAAAAAAAAAABwgFBgEECQMC/8QAVxAAAQQBAgMDBwYKBgYHBwUAAQACAwQFBhESEyEHCDEUGCJBVJTVCRUyNlFhFiNCVmJzlbS10zNydHWBkTVScYWysxdVdqGx0tQkJkOCkpOWJSc0N4P/xAAaAQEBAAMBAQAAAAAAAAAAAAAAAwECBAUG/8QALxEBAAIAAwQKAgIDAQAAAAAAAAECAwQREiEx0QUTM0FRUmFxobEUkYHBIvDxFf/aAAwDAQACEQMRAD8ApkiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgrMisz5lWqfb9P+9ZH4cnmVap9v0/71kfhyCsyKzPmVap9v0/71kfhyeZVqn2/T/vWR+HIKzIrM+ZVqn2/T/vWR+HJ5lWqfb9P+9ZH4cgv+iIgItf7QtUw4TF2srZjllgowmeWOAMMrmhzWkRiRzWk+l6yFHXYj3hsTqzIS42hTyNeaCnJde+3HWbGY4568Ba0w2Hu5nFZYeo22a7r4IJlREQEREBERAREQEUE9rHecwum8rPiLlHKTWKwgc+Ssyo6FwngjnbwmWy1/RsgB3aOoP+1TpG7cA/aN/8+qD9IiICLCaw1XjcPA2zlLtejXklEDJbEgjY6ZzJJGxhx/KLIpDt+gU0fqrHZiB1nF3a96vHK6B8taQSMbM1kcjoy4flBksZ2+x4QZtFB3a/3lcPpjKPxN2lk5544oZjJVZVdCWzM42gGWwx248D0U2VZhIxkg3AexrwD4gOAI3+/qg+qIiAiIgIq+9oXetwWEylrFWaGWknozcmWSCOmYnuDWu3jMlpriNnDxAWB89jTf8A1Zm//tUP/WILQIq96M73Wk8hYbWm8vxZkc1jJ8hBCKvE9wa0PmrTSclu5G75A1jR1LgASLBMcCAQQQRuCDuCD4EH1oP0iIgIiICIiAiIgIiICIiAiIgIiICLVO1fXFbTmJnzFyKeavVMAfHWEZmd5RYirs4BK9rTs6VpO5HQFa72E9suP1gy3Jj612s2g+uyTyxsDS82BK5vL5Ez/Dknffb6Q8eqCTUREBERAREQEREBERAREQEREBERBGfen+pua/u9/wDxxqpnycf1quf9n7X8RxStn3p/qbmv7vf/AMcaqZ8nH9arn/Z+1/EcUgv+iLQu8FqyTB6ZyeThcWT16hZXkA3Mdm1JHUrSbHoeGaeN3Xp6KDU+13vKab05YfSkfPkb8buGatQZHIKzx+RZnlkbGx4I2LGlz2nxaFqOme+XpqzMIrdbJY5jjt5TJFFZgj8esgrSOmA8B6DHeP8AioQ7jXZrQ1Hlb17Lxtuw4yOu/wAmn3kjsW7z5yyWwHH8cxra0xLHbhzpGk+GxmvvfdiWDOnLWTxmMp429i2tssdQrxU4564kY2zFYigYGSbROdI1xbxB0TQHBrnAhZHGXobUMditLHPXnY2WGaF7ZIpY3gOZJHIwlr2kEEEKL+2zt9wOlZG1rjp7d97Q/wAhpNjklijcCWSWXyPayBh2GwJLzxNIaR1UP/J1axmkx2UxM73Ogxr4btXckmOO3z/KYmgnZkYkgbIAOnFYlPr6wL2K4X8ONbM+d3PkivWbeSyDWyPa58UbHzirG8ekyIuEUPolpbHvwlpa3YLYdnPez05l7Ipyw3cbO8O5BtCAwTyNG7a7ZmS7MnfsQ0PDWk7Di3IB2HsZ7w+F1VkH43HVspDPHVluOfdgqRxcqKSGJwDoLcjuZvOzYcO2wPX7ev209g2nL2CuRU8NjqF2CrNPRs0q0NSVtmCJz4mzSQMBmheW8DhJxdHkjZwa4Vl+Tr+tlj+47f75jkEs94HXXZ5R1BarZ/Tl6/lGMqme3DBXkjla+rC6Hhc/IRu9GIsb1YOrT4+JsdrDVWPw1B+RyNhlSlA1pfK/cn0tgyNjGAvllcdgGNBJXnr35vrxkP1ON/h9ZWK+UDwN+3pylPVjkmrUbnlF5sTS/lsdWfHHakaP/hM3e0u9XOG/TcoPlke+rp9khbBjMtNG07CR7akPEB04ms57jsfVvsevUDwUldjHb9p/VMpq05J6t8Nc8UbzI4ppWMG7313RyPjmAG5LQ7jAa4loAJVWe7N256awWMOKzOD5jnzPdJkIKtW26yyVxIFyOctfwxtPCOEv3aB6IO+8i9lfZ5oLM6gZmdOZ+xXuQXmZGPEQtZSEfLe2aWCGrYhbK+mRxNc2IlgbI5o2HQBrnfs7XcbkoH6ZggvMv4vNRzWJZo4BUeyGpchcIZGWHSOJdajI4mN6B3hsAel3Le2/E4GiMBcr5GS5k87xwSVoqz6zBchx9KLmvlsskaRLC4nhY70SNtz0G8/KFaYxtfAwZCvjqMF+xnq7bF2GpBFbna+hknvbNZYwSSgujjJDidyxp9QX4+T+0jibmn7F25jMdbuQZ6YQW7NKtPZhEVLGSxCKeWMyRhsjnPHCRs5xI6lBkO8Zrfs/oZ2WvqLT13I5MV67pLMMMEkbonR7wtDpL8Tt2t6fRH+Ks1VljEDJBtHEImvHEQAyMMBHESdgA3xO/qXnd39/rnP/AGGh/wAlWF782rLGO0hWp1pDG7LTV6k7mkh5px13Tzxtc1wI43MgY7xDmPkaRs5B2tc97/TGPsvrVI72WMZLXWKjImUy5pLXNimnka+bYj6bWFhBBa5wKyfZf3p9NZy0yi7yrF2pnNjgF9kQrzyvJDYmWYZHtZIdgBzQwEuaAXEgKN+412NYe3h353K0a2SmtzzV6kVyKOzWr1q7hG94rytMbp3zNkBe4OLWxM4eHifxZvt27pdfL347mAfQwzHRcNurypG1nStd+LmrwwN4YCWHhc1uzfxbSBuXEhaZFgdA463TxdOpfsNt3a1WGvYstLyLEkLBGZiZPSLncIcSeu5KzyDy171f1zzX9vP/AColec92DQv/AFEP2jl//WKjHer+uea/t5/5USmE9sPa5/1Jkv8A8XtfyEGqd9TsnxWmL9F2IY+CtkYLDnVHyyTiCWq+IF0csznSFjxO3o4nYxu67HYWy7meTsW9E4p9l7nujZZqxvf4mvVuWK9do/RZFGyIfdEFRDVep7uez0TtaXb1cRvZWtOZQjE9GuHF3LjofihEAX7k7F+zi7hlI4XX81pmKWltDy28K6MU6OIYMVK0iWN7rQjipWS/wm45rEchP5ZeT60GP7Ye8dpzTVh1KaSe/kGHaapQYyQ1yQSPKZpXsijf0+gC543bu0AgrVNFd8LTV6yytbhvYsSODW2bLIpKrSTsOdJBIXxAkj0izhHUuLQN1Vnu3ZbScGStZHWLpLRa1rqkE1ea9FZszvkdZs22tB5zmgN2Em4cZ3EgloI3DvO6j7Pcrjo5NNwRUcrXnZsyrinUIbVZ+7Zo5Wxxsi5jSWPDyN/Qc38roHoDBK17WvYWvY8BzHtILXNcN2ua4dHAgg7j7VCXa/3nNPaduOx5FnJXYS5tiOi2IxVXjbeKaeWRred16tYH8Ja4O4SNlHPdb7S7cXZ3mJHScyzpyK8KLpAX8ETqnlFJkm53e1lkytA3GzGsaNg0KIO5X2eVNS5+xPl2eWVsfX8skhme5wtXJpg2LynfrNF/TSOBPpOawO4mlwIWW0j3stNX61qV0d+rYpVpLfkUrK/OtxQ+lKKL+eIppWs9Ixvcx3C1xAIa4jc+w3trxWrzcGMr5CD5vFYzeXRVo+Lyryjl8ryexLxbeTP3328W7b9doy74PYrgvwas5PG4yljb2Kaywx9CvFTjngMsbLMNiKBgZL+LcXtcRxB0TQHBrng6X8mb9LP/ANXDf+OVQTHi+8pgbGoHacbWyrLrL9rHunkhptpNlqPlZLIZRcMgg/EvIdwb7bbgLHRd6nT9jOVsJQhu3nWr9fHtvxthZT5liZkIkjMkgklha5/V3CNw0lvENiaWa8xk97W+SoVX8uxkNT5KhE7icxvFeyc9XZzm9eWRMWuHra5w67q7+j+7dpLAxwXjUntXsWWXhkJbltkhnqOFgS+TwzNrhodH0YWkbdDxdSQ2jtk7a8DpVrW5Kd8luVnMix9RomuPj4uHmua5zWQxb8WzpHN4uB/DxFpAinD99LTsszY7GPylWJzg3ygsrTNjBIHHJHHLx8I8TwBx6dAVVfR2psXl9VvzGsZpXUp5p7lpjGTzc5/DtVpjlHmMrM/FtA9UcAZ03BEzdtWseyzK4SzWxtSCjkooXzY6elhnUpDaiaXRQzSQxNEkMu3LdzdwOZxdHNDgF0NO5qpkasV2jYitVLLOZDPC7jje3cg7H1OBBaWnYtLSCAQQoj7XO8xpzTtt9CQ2shehJbPDQZE9laQbHlzzzSMYH9di1nGWkEOAKhj5ODV03lGSwUkjnwGuzKVoz9GF8csdW2Wnbcczn1NwTt+J3A6uJgilNY0rq0T6hxvzjLSvWJblW2wBl0y85otxmVhZIC94sRv2LXFjD96C1+A76GnJpmx2qOUpRudsZzHBYjjB/LlbFLzeH+o15+5WMw2Wq3asd2pPHPVsRiaGxG4OjfG4bhwd9n27+GxB22VRda6/7NNa14a918+nrbJmOZbdjoYp9g17TXdarMmi8mJfxfjCACxp6FS7h+zdmO0JksNgMhNl47tDJSYyV8tZ4f5ZWIFatNAGxGKSXmEOJ+lZdudvAMBrfvf6Yx9l9arHeypic5rrNSOFtNzmktcIpp5WulAI+m1hYQQWucCudDd77TGQssq2o72JMrg1tm4yF1MPc5rWtlmgkc6EEu+m9gY0AlzmgKpXd615S0nmpZszhfLhy31Xskij8tx0zJBxvhhtDh5voujc1xY4Bx9IbOa6cNVy9mGubdeb5xk05e4HMkYakGP8qLyzg8qsOjfUdMzYtDuZxEO23cGjYLIdv2Vw1PT1u1nqcuQxMbqnlFWBrHySl9yBkBa180bSGzOid9MdGnx8Dp/dT1NpPJRZB2lsRZxUcT6guizHFHz3vbYMBaIrc2/CGy778P0x4+rF96fBjGdmtjHNnlsspQYeqyebh5skcGRoxxmQtABdwNaNx9i0P5NM7VM4T4c/G9f/APO4gn3th7YsFpWNhylhxsSs44KFVgmuzMBLeMRlzWxR7hwD5XMaSxwBJBCh6n31sA6XhlxeXjiJ25jRUkcB9pj546f7Cf8AFVy0RCdfa9j+cXymDKXrFiVu5Do6FWCazFTDmf0TRBXjgDgdxxA7k9Td3V3YHpW/jpMezC46k50TmQ26lSGC5BIG7RTCzG0SSlrtiRIXB22zgdyg3HQGtMXnqbb+Ktx3KznFhczcPilaAXQzxPAfDKA5p4XgHZzSNw4Exr2od5TB6ey8mFuU8vNbiFcl1SCk+B/lMUcsYjdNdjfvtIAd2jqD4jqqu9xfUlrFavGKduIcmy1TtxcXotsUop7MEuw6OkY6KaMH7LL1iO/R9d7/AOox37hXQWh7SO9npzEXZKEMV3KS13OjnlqCFtVkrHFskTJpZA6V7S07lreDqNnHrtt/Yd274TVrpIKPlFW7AzmPpXGRsldCC0GeF0T3MliDntaeocCRu0AgnqaR7vWla+Hix8+Gp2pHVWMs3ZYgbssz4xzpo7X9LXJcXFojc0N6AbbKmndrgdi+0OlVjkLvJ8neoOd4cxgit1XEgdOo67fbt9iD0sREQEREBERAREQEREEZ96f6m5r+73/8caoz3Re0rHaWzdjIZMWDXmxU9NorRtlk50lujO3drntAZwV5Ou/jt9q9F9b6arZjH2cZc5nk12Lkzcp/BJwEhx4HkHhPoj1KFPM90f8AZlPfh/JQfPzxtI/6mX9yi/8AULJ5jVeP7R9KZunhmWi9sLY2NtRxwGS5EWXqjWlsjhwmWCMEnbbddDzPdH/ZlPfh/JUldj3ZTitKwzwYrynl25WTSizMJjxxsLBwEMbsNigpj3Je02jpnK3qOZcaUGSZBE6xM14FW7RkmbHHZZw8UUbhZnaXn6DmN4tgS5s097zt0wR07ZxWLyNXI3so1lceRSssxV65kY+xLNLGSxpMbXRhm/FvKDts0qQu1nu66a1JO+5arz070m3NuY+VsMkxb4GaKRj4JH+ovLOMjYF3QbarpXufaUpztmsPyWSDTuK9yxE2uSDuHPbUhje/w8C7hPrBQan8nTo2aHHZHMTsLYMm+CpUBBHMipmwLMwP5UZmm5YI/KrSKvWCsXOzvWgfZglkGMtTxvYTwG7jbDZIGzxHfhdxwSCVu/QPa0HYtIHplQqRV4mQQRxwwQsZFDDExscUUbGhrI442ANZG1oADQNgAFTvtY7csBezb8Dq/RzGw0r76UuRfemfaqQc3YW4W16cVk1nt5c3DFJ6THAt4/RBDYu1bvW4i3iJqWno79vLZKu+pBGarozVfZZyi925POnaHnhZGHguaNzt4xJ8nX9bLH9x2/3zHKYsnlOzLSmLuZDBHDz5GSpYjpsr3XZO86eeB8UcYdNNLLSiPHs93oAN4t9ydjHPycWmrD8vkMtwOFSvjzQEhaQ19q1Yrz8uNx6PLIqzi4Dq3nRb7cQ3DQO/N9eMh+pxv8PrK4HeT7YrejqtCzFiW5GtcdLBLM60a7a87I45IIztE/jMsflBHh//AB3L6dpXdy07qHJTZXIeX+V2GxNk5FoRRgQQsgZwsMZ29CNvrPXdSZqfTlHKUpcdkK0dunOzlywTDdrgNi0hw2cyRpAc17SHNIBBBAKCv2kZ+zjWmLbfyVHBY++4Pdfr+Uw467WlY5wMj54XQyTxEBrxKd2kOAPUOaKlZrH1qOsW1tJ25LkUOWqR4i1xcbpJ3PgAaJGNAmjbZc+MPA2e1oPUO3NuMr3MdLyyukht5iqxztxBHZqyRxjp0jdPVdJt/Wc49fFb52Q933TemZhbpQTWr7WvbHevyNnniEg2fyWxsZDC4tJbxtYH8JcOLZztw0H5RhhOlahAJDc/ULiB4D5vyjdz9g3IH+IWndw3tNweMw82Jv32VshazhlrwPjmJnbbrY+rAI3sjLS4zQvbtvuOhPQ7q12tdLUM1Rlx2SrttU7AAkicXN6tcHMe17CHxyNcAQ5pBGyhbDd0fTFPIV8hXsZhj6lqC1FAbVV1fmV5Wyxh3FUMpZxNG4499vWgrR39/rnP/YaH/JVhe/NpGxkdI1rlaMyuxEsNudjWlzxSkruhsSNa1pJ4Huge7wDWMlcTs1bv2od3jT2o8i/KZHy7yqSOKJ3IsiKPghbwM2YYz12+9SzDA1sbYtt2NYI9ndd2hvDsfUeiCoPce7acPSw78Flr0GOmqWJp6k1pwgrT1rDhI+PnvPA2dkxkJa4t3bKzh4uF+377xfepmqZCCnpOzUtsjY/yyyYPKYZp5HMEMNZ244+BrXEuZu0mYAElpUga47pOlMlYdZhbdxTnkukhx0sLKrnOO5La9iGQQ/c2MtaP9VZnsp7tWmdPWW3YYrGQuxPa+CxkpIpvJnjbZ0EMMUcTZAQHB7mue09Q4IJI7O5Mg/FUpMsGtyclSGW8xrGxtisyMD5IeFhLRyy7g6E/QPUrYERB5a96v655r+3n/lRL1KUI647semcxkLOTufOPlV2UzTGK2I2B5aG+gzlHhGzR9qm5BR35STCQxZHE5BjA2a5Vt1pnjpzBRlgfEXDwLgLrhxeOwaPBo2kzsqwc2pOyWPGjaSzNj71euHHYGehkbDsfGS76I3rVm7+rx9Slfti7JsRqqOtFlmTkUnyvgfXlEL285rGyNLi127Dy4zt9rGrJdlmgqWm6AxmPdZdVbNLMxtmUSujMvCXsa5rG/iy4F2x36vd18AAoV3T8rpmjk7lDV1GoWWGxRwT5KqJG0bdaSVssEokYTW5gkIc47AGu0O29U49r2sey/CVBJRw2ns7dke0RU6DKpj4OIcySxciikjrta3fZuznOcWgN24nNlHtc7uumtSTm5agnp35Nubcx8rYZJ+HfYzRSsfDI/r1fwcZAALtgNtW0n3QNKUrDbE7sjk+A7tr3bEIrFwILS9lWCN8mxH0XOLSCQWlBkOyLFVNR6OyBpaeqaXjz1a7VgigeJhMwwPrwX5eCvD0EzpNm7HdsYIOzgqld3XtCl0JqOduVqWGwujlx2TrNa3yiu9krHsmYxxDZHMfGRtxbFkryCfRXpE9nk9csqwRnkQ8Nes0iCL8WzaGFpa0thj6NbuBs0erpsqXzds2jtV5hlTWGlIsW5vMgdk5MhZ59eeLdrK101a1edsQdxt9NxbG7bdoHE5od7vN95HHZvCz4TTsdy2+5G19206vJFHXpwPE8wYx34xziIgHOLQxrHO6knpx8mb9LP/1cN/45VdztuzegNPaXv4/TBxUt/Lwim00LPzhY5L5o5J3WbrpZJI4WtaSI3P6v4Nm7AluR+Tg01Yr43J5SVjmQZGxVr1uJpHMbjxZ50rCfpxmS3y9x04oJB4g7BAmIH/7pj/tzL/G3r0mv1mzRSQv34JY3xO28eGRpY7b/AAJUQwd2/TjM38/t8v8AnAZM5bfyocnyp1k2z+L5X9FzCfR38Om6mVB5idmtbH6W1e6hq2jDYpVpLFG62xWNhkQe3evfjgLS6SI7RPBaCTHMS0OOwNoNd57snxmPkuRU9NZGYMca1KlFVmsWJuEmOJ4iY41mk+MkgAb18Ts0yt2vdjOA1S1pylZwtRx8uK/VcILsUe5IZzOEtljBc4hkrXtBc4gDc7xfiu5jpaKZsk1vMWo2u3MElmrHHIP9WR0FVsm39RzT96Dtd0rUWNzbb+TxOjsfp/yZgost17EcjrksgbYlqbx04iyNnBVe4kn+li6eO2n6W7yGG1Fk24bV2nsdj6/46Ln5N7LLK1yMhvKnbbrMFPq2RpkJHC5rQdupFp9MYGnjKkVDH14qlOu3ghghbwsYCS5x+1z3OLnOc7dznOcSSSSoz7We7rprUlh1y1BPTvSbc25j5WwyTcPgZopWPgkd6i/g4yNgXdBsFdO93oHQePxwuYO1Vgyz54uXQoXxbisQyuPMlkr8yQ1Y2ta4te0sYS3h2JcNtn7nWosritC5rJRVHX46FySxSqSyvibIyKGu/IiF4Y8tY2MueA1pBe146EuK3DD9zPS0MzZJ7OYuMa7c15bNaKKQbH0ZHV6zJdvD6D2norBadwtTHVYqNGvFVqV2cuGvCwMjY3cuOwHi4uLnFx3Li5xJJJKCsPZr2zaT1vYnraow+Ex9mNkXkMt+WGV1lr3OZLFFdmhjMErSINow/d/Gdh6BUH97zR2ksPbqM0zbZJJKyx5dTgueXwVAwxeTu57nvkjlfxy7xue7pG0+h047Sa77puksnO6zFHbxL3lznx4yWGKs5ziOorTwyMhA9TYuBo38F1tHd0TSlCdtif5wyhjc1zYb9iLybiaeJpdFVhjMo3A3Y9zmkdC0jcENC1Gbh7Eo/LuZzeTSEfM34/Ixn4hQ8f8A4fknI4f0OBfr5NMf+y5z+0Y3/l3FZntE0TRzuKlw90SNpT8jiZWcIXtFaaKeJsbuEhjQ6Jg228OiwvY72SYnSjLLMV5Vw3XQvmFmYTdYBIGcGzG8PSV2/wDggofpR7+z/XkZyEM3Ixt2xE535c+NtRTVo7jA3pLvXnbMGjbdzOH0SCBdXWHeI0pRxr78OYpXpBE59anVmElqeUtJiidAPxlfc7AukDQ3rv8AYth7WOybB6niYzLVOZLCCILcLzDbgB33DJmfTj3JPLeHM3O/Dv1URUe5fpdkofJdzU0bXb8l9mm1rx/qyPiqNft/VLT96CDO4rpa1lNWDLvDjBjGWbVmcgBj7dyKavFDuBtzHc6aXYdNoD4bgHCd+j673/1GO/cK69CdE6Sx2FpsoYupFTqRncRxAkueQA6SWR5Mk0pAaC95Ljwjr0CjrtL7uendQ5KXK5Dy/wAqnbEyTkWhFGBDEyFnCwxnb0WD1nrugl2r/Rs/qN/4QvODsh//ALQi/wC0mS/5txekMbeEBo8ANhv9w2UQYDu56epZpueg8v8AL2XJbwL7QMJnmdI5+8fKHo7yO6b/AGIMp3hO12HR9OtcnpS3W27JrBkUrYnMIidLxEvaQ4eiRt96+3d+7VYdX46bIwU5KTILz6RjllbK5zmV605fxMaAB/7QBt+j967/AGwdluL1VXgq5XynlVZzYjFaUQu5hjdH6RLHbjhcei+nZD2a43S1KWhi/KORPZdbeLMomfznwwwu2cGt2bwwM6fbugjft07ytXSmW+ap8VYuP8mhsiaKxHE3aYvAbwPYTuOA9d/Wpj0PnRlMZSyTYzC3IUat1sTnBzom2oGTiMuAAcWh+2+w32Ufdqnd90/qXIfOWT8uNnkRV/xFgRRiOIvLfR5Z6+meu6kfS2GhxtGrj6/H5PRq16cHMdxScmtE2GPjcAOJ/AwbnYIK/Y7vZU587Hghh7LZZsuzE+UG3EY2vkuinzuDl7loJ4uH/BWVUJUu7HpmHKx5lnzh5bFkWZNhNtpj8pZZFsbx8rrHzR9Hfw9am1AREQEREBERAREQEREBR72pdjmntSlsmVoNkssbwMuQvfBbawbkMMsRHNYNyQ2QOA4jsBupCRBXfD9zzSEEvMlOVut335Nm7G2Pbr6O9OCKTb/5t+nip00zgqeMqx0sfWhp1IRtHBXjEcbdyXOOzfF7nEuLjuXEkkkklZREBERAREQERD4IPy07+HVchR73ehtp6tt0/HZDw/vC0pBW+Lh9XeaeE6J4WJt0i3jGr9IiLRQREQEREBERAREQFFXal2A6Z1FM63dpOhuyDZ9yjKa08hA2DpWgGKaTbYcb2Ods0DfYbKVUQV/0v3R9H0pGySxX8kWu4wy/bHL3GxAcynFCHt3H0Xbg9Qdx0U746lDWijr14o4IIWNihhhYyKKKJgDWRxRsAayNoAAaAAAF2UQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQcLhy5Wi5aPVfPl8lkwIrcx/IE8d8zCLf0BKY38Jk2234ei2pTanjEJ4l9mOEy+Hd7+r9b9df/iFlSAoP7IGalOHgOOkwranMt8AuR3nWA7yyfm8RhcGbc3j22/JLd+u6mXFCcQReVGI2eVH5QYA4QmfhHNMIk9IRcfFtxddtt10Zyuzi23xxn7Qyl9rCrGk8Id1ERcrrEREBERBgNVaso4wNNubgc/6EbGukkeB4kMYDs39I7D71+dK6toZPi8kl4ns6vic0xytB6B3A8ek31cTdx123UIdtsUzc1MZd+B8dc1yfDkiJrSG/cJhN/iT9q/HYvHM7M1zFxbMEzpiPAQ8l7Tx/omR0YH6Rb9i8v8AOv8AkdXpu10fWR0Bgf8Anfk7c7WztenDXT+lk0RF6j5NgNVaro4xrTbm4XSb8uNrXPkft4kMYNw0f6x2H3r8aU1fRyXEKkvE9g3fE9pjlaN9uLgcPSbuQOJu4BIChPtwimbmZnS78D44DXJ8OS2JrXBv+yfnHb9L718OxuOZ2arGLi9AzOmI8BDyXtdxfol7mD+s5i8uc9f8jq9N2uj6uvQGBPR35O3O1s7Xpw10/pZJy1fU+vMbj5eRPMTNsOKOJjpXMBG44+EbMJBB2J32IO2y2lyqhq6OVmQtNn4ud5VMX8XieKRzmkb/AJJYWkfcW7K+czNsCsTWOLzug+jMPP41q4s6REfzKzWnc9UyEPPqSiWPfhd0LXMftuWvY4BzTsQeo6ggjcFYjUfaBjKExrzzOMzduNkUb5SzcbjjLRwtOxB4d99iOnUKOe7s2UW7Tx0rmBkcm/Rrpi/ihA9RcGc47eoO+9RBPqGOxZBZzbRs2bjH2YY3OgZNA93ONh7tnRB0m4adjxEj1EFRvnMTqa3rG+XoYPQeW/NvgXv/AI1008d/Lkt/gM1VvwixUlbNETw7jcFrhsS17HAOY7qDs4A7EHwIWD1B2iYqlMa807nSsO0jYY3yiI/Y9zRwh32tBJHrCiXu43cy+XjbjmQ05xKzIumtNc+nJCyY0uQ2NpbakkLmF4BHA2Qb79N4yjjy7ZIG3RTbM19puUa3ygvEwc8Q+Tl/i7i25nM9e/Cs4uaxK4cWiI1nX4TyvQ2XxM3iYUzM1rpppGk79OOvDTX/AHguNg8vXuwtsVZWywv8HDcbEeLXNcA5jx62uAIXf8VAXdtpZ3dsr7NQUmySjJRtglItTGKYV/Inud+IdHxVzIXB3EA0DZSbg8XqBnzabmVpzeTi/wDO7YqHKGQMvF83+TkyE0+Tu3i+lx8J8N124N5vSLS8TPZauXx7YdZ3R++Guk+scG5ItOwWIz8fzb5Xl6tnycX/AJ34McyH5yM3F838jaQ+RcjdvFtxczhPhuucFjdQRjHC5kqNnki988GOi6F14ycXzf5IBKRU5W7OPfi49j4bqrkbgi0vCQamY7GNuT4aZjRkPn2SGK3FJJuHHF/NcZJazhPAJeaeo34VuiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLh3guVw7wRieCP8Au9fV+t+uv/xCypAUf93v6v1v11/+IWVICvmu2t7z9o5bsq+0fTlERQXEREBERBiNQYCneYGW68czW7lvENnMJ23LHtIczfYb7Eb7BNPafp0GltSvHAHbcRaCXv23245HEvftudtydtyssi12K67Wm9TrsTY2Nqdnw13fpyiItk2J1Bgal5gZbrxzBp3bxj0mn1lj2kOYT9xC/OndPU6DS2pXjgD9uItBL37b7ccjiXv23O256blZdFrsV12tN6nXYmxsbU7Phru/QVHXad82yufDHj6+ZzcMENhmJhu16eQkpvtMrun5kkjC2swved3Hh3G3QuW1avzclGBssVK5kHusVYPJ6LI3ztbZsMgNhzZXtaIY+Pjc4nYBpJ2aHOHx0hp11OJht2jk8g1j4ZMpPWqw3Jq5sSzxV3mtG0CKPmbBo6bgu2BKWrFo0tDXDxLYdtqkzE+k6MNguzmtG4G49t1tTLyZXDt8njpnF8cHIZVBqFouNY10vpzBxfxgu4nNDlmM5o3GXHB9inE946cbd4nEbk7F0RaXDcnod/ErYSE4UmlZjZmNzeMfErbbraYnx13upjMdBWjEVeJkUbfosjaGtG/UnYeJJ6k+JWJzujcZdl51mnHJL03eC6NzthsOMxkczYAD0t+gWxELjZJrWY0mNzFcfEpbbraYnx13uvj6UVeNsUMbIomDZkcbQxjRvv0aOg6kn/ErslFyto3NJmZnWRERGBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFw7wXK4d4IxPBH/d7+r9b9df8A4hZUgKP+739X6366/wDxCypAV8121veftHLdjX2j6coiKC4iIgIiICIiAiIgLrZG7FWhlsWJGQwV43zTTSODI4oYml8kkj3dGsaxriSfAArsrS9f5PmWaWGrXale7ekdZkq26Mt6O7iarmNyUHokR13OZMwB8hIOzmgHcuaHz0bjBduvz9uDHvs8uxSxF7HXJ7UNnATyQ260jg7aETvc3clgPh0cWu2W8Lr0qsUETIYY2QwwsZFFFEwRxRRRtDI4442ANZG1gADQNgAAuwgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLh3guVw7wRieCP+739X6366/wDxCypAUf8Ad7+r9b9df/iFlSAr5rtre8/aOW7GvtH05REUFxERAREQEREBERAWm6IvSXb2TuNvWpacdluOhx1nH+SCjaotcy5NXsSNEl2Cxxwva/6A4XbE7kNzmrsmKVCzbMVuYV4JJOVQh8ouv4WnYVoPCSb7Aen29N18tD0n18dWhks27j2wM3s3+Hy2XiHGDZ4QBzQHBp/qoM2iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLh3guVw7wRieCP8Au9/V+t+uv/xCypAUf93v6v1v11/+IWVICvmu2t7z9o5bsa+0fTlERQXEREBERAREQEREGndphMkdOmPnuPyzI1YzZwgDX1RC42eO/Of6DHO5QjeR1cJA0fSK3FaZfhNjUdbdmbiZj8fYsMmhlEWAtyXHtruq3Iw7jtXY2MErGkcDQ5zvpBq3NAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFw7wXK4d4IxPBH/d7+r9b9df/AIhZUgKP+739X6366/8AxCypAV8121veftHLdjX2j6coiKC4iIgIiICIiAiLVe0ezIajqVepHkLF8eTuoOyIxsslCWSKvkbMc4PNaIYLHETF6YLmbekW7h8ez+m4y38hLXyVKe9c4JKt635REGUQa0FinCx7oq0U0Qa4hvV2zd99gtwWP0/ioaNSClXDmwVYIq8Ic90jxHCwRs45Hkue/Zo3cSSTuSsggIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC4d4LlcO8EYngj/u9/V+t+uv8A8QsqQFH/AHevq/W/XX/4hZUgK+a7a3vP2jluxr7R9OURFBcREQEREBEXUyl+GrBJZsyxwV4I3zTTSuDI4oo2lz3yPd0a0NBJJ+xBxlshFUry2p38EFaGWeZ/C53BFCwySO4WAudsxpOwBJ9S1LRdUZKwM9O3G24ZGNl05chqTxXYcTdq13vFh9rZzZZH8Z4WtGzT+mWN5pmzmbbLHFYp42hZq3cXcoZKGWtqGtZx7i/ymGNhIqMkn6Nc70yxrh0AK3do26DoPAAepByiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIOFw49EC0nKatycU8sUenr1iOOR7GTss1Gsma07CRrXvDgHDrsVvh4drzpH3EJ4l4pGs/Wrq93v6v1v11/9/sqQVCPY/qfIVsPBDBg7d2JslstsxWKrI3l9yd7gGyPDhwucWHf1sKmLGWJJa8cskT68kkLJHwPc1z4XvYHOic5volzSS0kdOivnKWrjWmfGe/1Qyd4thRWPCO58sll6lYtFizXrl/0RNNHEXf1eNw3/wAF3Y3hwDmkOaRuCDuCD1BBHQhU51LquOS5M67MRaNeS/M1zJTy60bi1x3DSOGPgLQzx2b0C3Tsw7SIYMfka0dvd8eHfm6bTHNvFTaXMsWhxM2bG1zo3cDtjvxHhO7l4uHnZvfSa7u59dmugK4ODF4xIm26Jj3n+tVg7GcqRzCvJarsmd9GJ00bZTv4bRl3Ef8AJZLf/JUpOoKjzubDXGSq7IlzxIXPq7kusvLhudzuST1PVTz2O9pNA40RW7zOZXo2cmwvErnvw1YjiudGkmNhLo9vpfivArfL5u2LbZmuiPSfQ9MnhRiUxIt3TzS27/wXQZm6Zm8nFuuZ/AwCaMyg/q+Li/7lG3ab2n1Pmt/zdLammt4mDMV3wVbLTJjLEzIWvhlkjaxtp/Hwthc5sg4wdm9FX1092cFsMZpMkpMlhsycJsV7bj0hkqOHQsHUknbfYDfrtnMZqcG0V0+WvRnREZzDtebTHdERGv8AxcXVGo6WMhZYvTivDJYr1WSFsjgZ7crYIGHltJaDI9o4js0eJIA3WDpY3IZKdljJiXHRVJ8rUOKis1rlDMUZtoK9q+HQb7Oia6RsO4LeMcXi5i6HY3iI3VfnaZsj8lkoasd+eSWZzLHzZx16krK0kjoq5LAZPQA3dK4kkndSECuqlotWLR3vHxcOcO80txiZj9PxBE2NrWMa1jGNDGMaA1rGtGzWtaOjWgAAAfYvqiLZo4XBRYPXV2Wvjbc8PSWKtK9jtt+BwafT2PQ8P0uv+qtbW2YmZbYdJxLxSO+dHcsZunFKIJLdZk7vowumjbKd/DaMu4j/AJLv7qn0hLiXOJc5xc57nElznOO7i5x6uJPUk+KsP2HZCaxihzy53Jmkgje4kufEwNc3qfENL3MH3RhcWWz3XX2ZjR7/AEr0D+DgRixfXfpO7T9N9REXe+eEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAXDvBcoUJR53fPq/W/XXv4hZUgqMMFoDOUIBVo6hjhqxvldFG7EQSuaJZXzO4pHzbuPE89f8th0WQ/BrU/5zRfsSt/NXZj0piYk3i8b5me/k48G98OkVmk7o9Ob86m7KqNyw+w2Sas6V3HK2LlmNz3Hd0gY9p4HuO5Ox2J67bk77FpfSlLHVjWhiDmPBEzpQ175+IcLub6IBBHThADdvUtf/BrU35zQ/sSt/NXH4M6n/OaL9i1v5q5q5LBrbai1df55O7E6UzWJhxh2i0xHdrHN0LfYvjXzF7JbEUR6chvKIa0+MbHvYXCP7jxf7Vl8XZip5eHBVq0EdVmHktNeGnnNLbbYTFxE7Ojdxued+pcSd+q6/wCDWp/zmh/Ylb+atQlwecGpGQnOR+WHDSyNufNkHC2sLsbXV/JuZwkmTZ/M336bKuBksGszMWrwnx5I5vpTNY1a1vtTETHhz+Uy5GjFPC+vLG18MjDG+M/RLCNiOnh/tHUepR3H2M48S8ZntOi4t+QXMG4334TI1gfw+rps7b179V3vwa1N+c0P7FrfzU/BrU/5zRfsWt/NUsTJYOJvtas/vktl+k81lomMKLRrx0mOfy3qnXZDGyKNrWRxtaxjGjZrGMHC1oHqAAAX3Uffg1qf85of2LW/mp+DWp/zmh/Ylb+aq9RXzx88nNOPed81n45s12i6glx1aKaFkb3S36VVwk4uEMszNie4cJB4gDuPUtmUJdqWDzkVWB1vOR24zksexkYxcEBZM6w0RTcTJCXBj9ncHg7bZbaNNam/OaL9i1v5ypbL06us7cd/j6eiVce/WTGzPCPD1SCvnLGHtLXAOa4FrmkAtc0jYgg9CCOmy0P8GdT/AJzRfsWt/NT8GtT/AJzQ/sWt/NUuor54+eSnX38k/HN0rnY3j3yl7J7MURdvyWujIb+ix72Fwb/W4j963qhRioVBDWjEccEbuWzqR0BcSSTu4l25JJ3JJPrWo/g1qb85ov2LW/mr5XNOalEby7UkLmhjyW/MtYcQDTuN+b03+1aYWSwaTrW1fnk6cz0pm8xSK4kWmI4azHNsXZvnJcliqt+ZjI5bMXMeyPi5bTxubs3jJO2zR4lbIVC3ZTgc7LhaclPPR1Kzod4qxxUE5ibxvHCZnyBz+oJ3I9a2j8GdTfnNF+xa385XxcvSMSYi8cZ8eTiwse80iZrM7o8OaQUUf/g1qf8AOaL9iVv5qfg1qf8AOaL9i1v5qn1FfPHzyU66/kn45pARR/8Ag1qf85ov2LW/mp+DWp/zmi/Ytb+anUV88fPI6+/kn45pARR/+DWp/wA5ov2LW/mp+DWp/wA5ov2LW/mp1FfPHzyOvv5J+OaQEWn6ewmdhsskuZyK7WHHx124uGu55LHBh5zJCW8LuF3h14dvWtvKlesVnSJifZWlptGsxo/SIi1biIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIi+U8rWNc95axjWlznuIDWtaN3OLj0AAG+5QfVFHF/t00hBJy36ixZdvtvFYE7P/uwBzP8AvW3aW1RjsrEZ8Zfp34mnhe+nYisNY4jcNk5bjy37deF2xQZlF1shdhrRPsWJY4IIWOlmmmkZFFFGwFz5JZHkNjja0ElxIAAWI05rTD5OR0WNy2MyEsbOY+Ojfq25GR8QbxvZBI4tZu5o3PTchBsCIiAiIgIiICIiAsFJpyI5NuV45eeyi+gI92ckxPnbYLyODj5vG0Dfi229XrXVznaBgqE7qt7N4ilZjAL69vJU607A9oewvimlD2gtc0jcdQQVsrXbjcdQeoI9YWYmY4NbVieL9IiLDYRF171uKvFJPPJHDBBG+WaaV7Y4ooo2l8kssjyGxxtY0uLiQAASUGL1bp6LJQxwzPljbFar2mmIsDjJWkErGnjY4cBI2PTfbwIWbAWm/wDSxpb85dP/ALZx389P+ljS35y6f/bOO/nrMzMxp3NYrETq3NFrentd4TIzeT4/M4q9Y4TJyKeRqWpuBuwc/lQSudwDiG522G4WyLDYXzsRh7HMO4Dmlp28dnDY7f5r6Igw2kMDFjKUNGF8kkVZnLY+UsMjhxOdu8sa1pO7j4ALMIiTMzMzPFitYiNIcoi1fOdoWAozvq3c3h6dqLh5la1kqVeePjY2RnMhllD2cUb2OG46hwPgUZbQiIgIixWpNRY/GRNnyN6nj4XyCJkt21DVidKWueI2STva10hax54Qd9mOPqKDKosVpvUNDJROnx16pkIGSGF01KzDaibK1rHujdJA9zWyBsjHcJO+z2n1hZVAREQEREBERARfl7gASdgANyT4ADxJK1vBa+wWQnbWoZrEXbLg5zK9TI07M7msHE8iKGVzyA0EkgdAEGzItc1FrnCY6YV8hmMVQnLBIILmQqVZjG4uDXiOeVruAlrgDtt6J+xZGxnKUdQZCS5VZQMTLAvPsRNpmCQNdHN5SXcrlODmkP32IcNj1QZJFgNN6yxGTe+PG5XG5B8TQ+RlG9VtvjYTwh8jYJHFjSem5XWznaFgKM76t3N4enai4eZWtZKlXnj42NkZzIZZQ9nFG9jhuOocD4FBtCL8scCAQQQRuCDuCD4EH1r9ICIiAiIgIiICIiAiIgLzo7zvbFkNXZg4bFySvxLLbaVGrXP+lLPOEUdqQNP4/mTcPKaejW8B2Di4q9fbFkZamncxahPDNXw2TmicPyZY6Uz43f4OAP8AgqF9xPFRWdZVnydfI6l23G07bGUQ+TtOx/1fKC4fewH1IJD033I7ktVkmQz0NO29u761egbkcLiQQw2HWouY4DoeFuwPgXAbmINZaa1F2b56J8djlTBvNp3qxf5Lfq8YD4pWOADhu1okgfvseA9QWPd6eLB6o0lisry/nPG0MjyOPkeXVK9rk83g5nK57Hcvi5ce+22/A3fwCCNNQ61i1F2c5DMQs5Yuadyhki3J5NiKtYgsxAkAua2eOQBxA4mhp9arx8m5/pzJ/wB1N/e4VaTthwlPH6NzlahUrUqzcLlXNr1II68LXPqTOeRFE0NBJ6k7dVVv5Nz/AE5k/wC6m/vcKC9FmZkbHSSPbHGxpc57yGsY1o3LnOd0aAPWVqFbtY0xJK2GPUWEfK5zWMY3KUiXvcdmtYRLs9xJAAHjuFTnvJa4yesdWDSuPsGLHQZAY2OIvMdea1DIWW79vh/pWRyNl4R1AZBu0cTzvuupe5pj48XI6hmbM+Wigc+MTNrMp2p2N4uU2Fg5lcSEcIJkfw8Q34tkFxgV1chehrROnsTRV4YxxPlmkZFExv2vkeQ1o+8lU6+T/wC1W3LYk0xemfPA2s6zi3SOLnwcgtE1NpO5MJidzGt8Gcl4H0ht9+872X661VqEsjpuGArywwUXG/jxBHGWsbYvyVTbEj5S58x+hx8DWNA6dQsf/wBMGlOLh/CTBb/b86UuH/6+bw/963KnZjmjbLDIyWJ7eKOSN4fG9p8C17SQ4feFUXtd7rOl8Np25ebkL8VyjTnsRT2rNURWrMUTnx1XQmFo/GyARtawh272dXno7Wfk5NSXBl72IMz3UJMY++K7nPcyO1BbqQCSJpPDEXR2nh/CPS4It/oBBc+zqbGxzGtJkKMdgPbGYH267Zg9+3AwxOfxcR4m7Dbc8Q+1dfUWs8RjZY4Mhk8fSnnLRDDat14ZpeJ3CDHFI8OcOLpuBtuV55d6PJyUu0LIXYgwy1L+PtRNeC5hkr1KUrA8AglvEwbgEdN1KOh+63qDMSRahzmXjr37U8GRfBLBJasvBcyVrbTw+NtaTYbctgcGANHTbhaEb9+v67Xf7Nj/ANyhXoRY1LjqvBFZv0q8ojY4xz2oIZA1zfRPBI8O2Ox6rz379f12u/2bH/uUKl75RDRXHUxmoImelDtjLha0k8qVrrFN7iOjI2SCyzc+Jsxj7AQuDWmbIxskbmvje1r2PY4OY9jgHNcxzejmkEEEeO6xmT1Njashis5CjXlaA50c9qCKQNcN2kskeHAEetRL3JNYfOukascjt58S9+Ml36fi4A2Sodv9QVZYWb/bE77FUulX/DztGcduZTvZV0sjmtdwnEY5oDeMj+jL6dWOPiP5crftAQekUT2uaHNIc1wDmuBBa5pG4II6EEetah27fVXPf3Bmf4dZW4tGwAHQAbADwAC07t2+que/uDM/w6yg81uw7s4l1VlhiYLUdR5rzWOdKx0jNoeHdvCwg7ni8fuU9eZBkf8Ar6j7pP8A+dV87IO0S9pjJDKY+KrNYEEsHBcjlkh4JuHiPDBLG7i9Ebelt9ymbz1dU+waf91yPxFBNPdu7tlzSmaOUnyda5GadiryooJY37zOicHcT3EbDlnp96nmvq7EyPbFHk8dJJI9sccbLtZ73yOPC2NjGybueSQAB1JKhrugdtWV1gcoMnXx8HzcMeYfIYrMXF5UbvM5vlFmXi28mZttt4u336bQt35OyF+KvDVGLY6OpcnabwgBaaWSc7iZba6PrHHO4b8X5Mu/XeVoAXiyF2GvG6axNFBCzbjlmkZFGzcho4nvIa3ckDqfEhdPE6goW3mOpdp2ntbxuZXswzPazcDiLY3khu5A3+8Lzu7Xe3bLatxmKwQil5zeU3Icn0n5fJB5gqlsUQ+iRwP5YGxlmOzdo4yrm92Lsli0nh2wSBj8pcDJ8nYYB1lAdy6rHeJhga4tB32c50r9hx7AJBx2p8bZkENbIUbEzgS2KG3BLI4NBc7Zkby47AEnp6lhrnahpqGc1ps/horDXcDopMlTa9jwduB4MvoP39R2K8yeyDGZO/mIMbiJjXt5Pm0DK07curPG4XHOd9JsYrtlLuD0i1rgN99jZ/XPcurQYqWXFZO5ZykELpRFYjrivdfGwudDC1gD6z3kbNLnvAJAPQ8QC4kUgc0OaQ5rgHNcCC1zSNwQR0II9a80O+v9e8v/ALt/g+PUpfJ+dp1pmQfpm3O+WpZglsY1kj+I1rVcGWeCDfq2GSDmyFm+zXVyQAXvJi3vr/XvL/7t/g+PQema1PPdpWnqErq93OYmrOw7PgmyFWOZh/TidJxs/wAQFp3eno6nuYQUdLQPfat2BHdljtVqksNEMe57YpbE0fC6STltJYSeHmD8rdQp2Jd0CvJRNjVflte86SVrKNW1U5UMDdgySWaESiSVxDnDheAAQCCfALW6Z1Zi8o1zsbkqGQEfSQ07cFnlk+AfyXngPUeO3io/70fZ7V1Jia9G3mK+EjiyMVptmxHHKyV7K1uIVw2SzCA4tmc/fiJ2iPT1ih+v4ho7V07NPZGSZuJswOq3BLG9z94YZpq1l1bhjmDZHyQSM2AdwPa5o3LRa35Ro76Xon7c7XP+ePySCR+7NoOrprCy0a+Yr5iE37Fp1yCOOGOMvgrMdC8R2Jm7tEQcSXDpIOg23Mg4rUmPtv5VW/Ssy8Bfy69qCZ/ACAX8EbyeEFzRv4ekPtVc+4r9Rcj/AHhk/wCH01UzsD0/kszmBhcbbdROXrTU71lrS7gxo4LVsODCHOY4VmN4A5ofxBhIa9yD0hm7VNMsnNZ+ocK2drzG6N2TphzZGnhMbt5dmyBwI4T136LcWPDgC0ggjcEHcEHqCCPEKhPeP7r8OmsKczj8lPaZWkhjuw2o42ngsSNgZNA+LbbaZ8bTG4HcSb8Q4dnSr8njrCa3hL2OszukbiLMLoHSO/oKlyORzYQ4+ETZa1hw38OYR4AABZjLZKvUhfYtzw1a8TeKWexLHDDG0euSWQhrB95K1zDdp2nLs7a1TPYixYkdwxwQ5GrJLK7bfaJjZOKQ7A9G7+BVGs/msp2oatGPZdNTFCSd1RkgJr0KFdpBturcbedclHDvud+KdreJrGjh3Tts7qGPxWEs5LE5SzYsUIH2rEFw1nMnrwtL7BhdCxhie2MPeAePfg26b7oLwLG6gzlPHQGzft1qVZrmtdPbnirwhzjs1pkmcG8RPQDfcquvcP7VrWZoWsRkp3T2sU2KStZleXSzUZS5nBK53V7oZGgcZO5bNGPydzXDWmcyXaRrKOnDY4a89qatio5OIQUsfE18sk/K6EzOggdM/wDKc4Bu4DWBoegWG1xhsrHMzGZXH33xwvc+OpbgnkY3hIDnxxvLmt36bkbKhXcM+ulb+x5D93cph1N3SjhqRyunM1kBnMax1qISNhZHZfDG4vhg5TQ6B7xxNAe6RruLgd0cXCHu4Z9dK39jyH7u5BlflDh/72xffhqf7zdVidbNI7JGAggjSOI3BHUbU6W+49W2yhT5R/EFubxdxocTaxj6oAHi6pbkkGwA3Lj5aB/g1Wu7U8BxaQyWNjAJZp+3Whb6i+Gg9sI/+pjEFWfk1v8ASeX/ALBV/eHqMO+z9e8v/uz+D49TX8mpjSI83cIHC9+NrRu9fFG25LMPDw2lg9f2/ctQ76mnBY7QKFbb/S1bDsdt4nnXZ6HiPA7Qgf4BBe/Hf0Mf6tn/AAhfdEQEREBERAXVyt6GrBLasSNhr14pJ55XnZkUMLDJLI8+prWNcSfsC7S13tJwkuTwuTx0BjZPkMZfpQvlLmxNltVZYI3SuY1zhGHSAkhpOwOwPgg6Ole07T+VsCpjcvRu2Sx0ghrzCSTgZtxu4R6huP8ANZTV+q8bh4G2cpcr0YJJWwMlsyCNjpnMfI2MOP5RZFIdv0Cq3d2Hu4ZzS+fblMhaxU1cVLFcspz25JuObg4TwzU428Ponf0v81Jnew7L8hqzDV8djpacM8GThuvfdfNHEYo6tyAhroIZHGTisMOxAGwd18AQkLRuscXmY3y4q/WvxwvEcr60gkax5bxBriPA7EHZdLV/aPgcRO2rlMrSo2HxNnZFYmEb3Qve9jZAD4sLopBv+gVH3dJ7JslpHH3KmRmozyWrjLEbqMk8rAxsLYyHmeCIh27fUCtL713d7zWrM1BksdZxcMEOMhpOZdmtxymWO1cnc4NgqyNMfDYYN+LfcO6eBIWDusp53EyxxTMsUMrRngE0R4mSV7cL4XOYfWC15Xmv2UZ6zojWEUuQhe0425NRyUTd9zXkD608kW4HNDWvEzPAP4I+oDt16M9j+nLGHwOOxdp0L7FGnFXlfA57oXPjGxMbpGMcW/7Wg/co/wC8V3eMdq0i5HL83ZdjGxi4yLmxWY2fQjuQ8TeYQN2tlaQ5oIB4w1rQEtabzlPJVo7lCzDbqzN4op4JBJG4esbt+i4eBadiCCCAQqj98nt/s1chWxemss6J9Ns7snYpvikjdPI5jYqnM2cDJCI5C8DwMzW78TXAR5d7n+sInlkZxk7D0MkV5zWFu4PVs0LH7bgHbb1KS+xbucmvaju6mtVrLIXB7MZT5kkMzm8LmeV2ZWsJjBDgYWMId6Pp7btIb3p+fLT9ll+5mrE1m9ewOYuF8/DxitPWnNQeiAA01xE8frVDPybn+nMn/dTf3uFXH7TsBLksHkcXVMUc17G26UDpS5kDHz13wxmQxsc5sYLhvwtJ2HQFQh3S+wTM6RyNy3krGMnitUhWjbRmtSSNkE8cu72z1YwGbMd1BJ326IKm5fSsM2ubOIys8lGGxn7dWazwDijFi1KK834wBvKeXwu4z04JOLwVlZO5NiWgudnL7WtG7iYKoAAG5JJ6AALcu8x3bq2qZfnOhPHj8yGBkj5GE1b7Y2cEItGMccUrQGNE7Q88DA0tds0thibu6dpU8Jx02ea6gWcowy53JyUTEOgZ5Nynfi9gPR4P8EG293Dsx0dV1JWuYTVMuWv0Y7coqCv6DopK0tKSR8jWANY3yoEHfYktHrUe9rnapqbU2r36dxmSnxdQZV+Jqx1p31Wu5U760lq3NARLOHcLpOXuQAGhrS4bus/3buw6no6tKRL5bk7gaLV0x8tojYS5latGXExwgncknd7gCdgGtbDnbn3VcpZzcub01crwus2nX3wTzz1bFW8+UTOmp2ImO3BmL5BuWGM7Bu422D8667q2LxmFyWYyWayWSu0sVesxvkdFBBJahqyuriQP5kzmc7gAaJASSBv12WhfJy/Wq5/cFv8AiGLUlRdguus7GKuq9T//AKawcXklaZ00s8rBvFztoGRFoeGu4380jhOzd+qyHdZ7vWe0pnH5K9ZxM9aWhYpvZUsXHztMsteZjgyanGxw4q4B3cPpb9dtkFfO8zC2TtGuxvaHMkyWMY9rhuHNdWotcCD4ggkL0pVRu1ruz57L6tnz9a1iGVJrtKy2OexdbZDK0VZjw5sdNzA8mF22ziOo6hW5Qebffr+u13+zY/8AcoVfHtV0g3Paeu4l/DxXKJZC530WWmNbLUlP6LbEcTj9oaVXrvI92fPal1DZy1G3iIa00VWNjLdi4ycGCtHE8vbDSewAua7bZx6beHgrWusxQMY2aWOMlrWt45Gs4i1o34eIjiQeZ3Yn2oTaZpahoP5sUuTxjq1dvC8SQ5NkvkrSQR+JcyC1beSdutZg6nYKePk49FcMWQ1DKz0pHNxdNxBH4tnLsXXjfo5rnmq0OHgYZB9qgHvS06X4ZZRmJkZZintsk2rkTN8tsxRPuQxujJEj/K3zAhvg4lvi1eiPYxo9mAwGPxLQOOpWYLBadw+3KTNbkBPi11iSUj7AQPUg3FaZ27fVXPf3Bmf4dZW5rXe0nCS5LC5PHQOjZPkMXkKUL5S8RNltVJYI3SuY1zhGHSAkhpOwOwPggoL3ELUMOrmPnkiij+bro45XtYzciPYcTyBuvQP5/wAX7dQ95rf+ZUZ8yrVPt+n/AHrI/Dk8yrVPt+n/AHrI/DkF7KWYoyvEcFqpJI4biOKeF7yGjc7NY7c7DdQP35O1GtiMI/CxiGfIZqF8RhkDZBWoOLmS3HxkHZ5c0siJ29Nr3g7wkHVe7d3bM/pnPxZa5Zw88MVa3Fy61i4ZS+aFzI/6Wi1obxEbnfcAnYHwWOzvdf1Nn9RnL6jyWJdVsW2yW4qVi9JNHSjPoUajZacbWNETWxB5duNy88btw4KzaBymQ0rlMVn30SW9btRllnDFdql01ScxPLTwEjmhr9iWnlvAI4d/UXRWpaeYx9fJ0JRNUuRCWJ/TcdS18cgBPBKyRr2Ob+S5jh6lH3eE7GKmpcFHjKrK1O3jmM+ZpTHwQVAxscZqERNLo6ckMbGENB4THE7hdyw06x3UuyzVGkzYpZG3ireIsfj446tm5JPVuDZpfE2anGwxSNAD2l3QxsI/K4gqH3R8vBR1pibFqRsUPPtV+Y4gNbJco2qkG58ADNPG3c9BxL0xzeTgpVprlqRsNetC+eeV52bHFE0ve4k/YAV5adgOjK+odR1MNZkkiiusyDebHtxxSRY25YgkAPR4bNFG4t6cQBG433U56m7tfaHYacdLn2ZDGBwETbWYyJq8uN34lz6czHCNzQGnhaHBpHQnYEhoHcqpyW9d0p4YwyOu3JW5WsHowwupWYGgfo82zCz/AOcLod9f695f/dv8Hx6uf3Z+wyro+tJI+VtzLXGtbattZwxxxtPEKtUO9JsPHsS47GQtYSBwta2I+8N3Yc/qLUt7M0reHiq3PJOXHasXWTt8noVar+Y2Kk9g3kgeRs49CPA9AG49+DtbyWnKdKniZPJrWUdadJcDWOkgr1eQHMhDwWtlkdYHp+LRG7bYkObG/Y53e7+rsTXzOotS5SWK8HyQ1RO+1KImSvjbJLZtyPaHuMZcGBh4QW7nfdrZ070fYu3WFGFsM7KuSoOnfSml4zXeJ2xiavYDAXNY8wwnmBriws6A8RBhDQ3Yf2n4uD5to56pj6HE/o29M+KIPJMjqzfJHSQlznOdszg3c4k7EkoK+d4nSVDBakuYjGvlkq0m1I2vnkZLK+V9KvNOZHxta3j5sjwQGtAII2Gytt8ov9VqH9+Vf4dklHes+5jmpLDZKOXo2+ZE2S3Yyc1uKxNee97rD2shqzfiju0gvkc8kvJU896DssymrMDTx1OWhBcr3q9uw61NZFfaOnagkZFJFXe955k7duJjdwCTseiDSO4t9Rch/eGT/h9NQd8n6P8A3wH3Yy7/AOMAVq+7d2WZLTWm7eHvy0pbNi3cnjkqSzyQcFipXhZzHTV43tcHxP3AaRtwnc7kCO+693cc3pfOjKZC1ipq/kdivwU57ck3HMYyw8M1ONvD6B39LfqOiCRe+19RMv8A7s/jGPUG/J01TPV1PCw7Omr4qJrt9tnSR5lgO/q6kKy/eG0Xa1Fpq9hqUleK1c8j5b7bpGQN8nv1bT+Y6GN7xvHA8DZp6keA6jQO6B2K5XR/zp852MfP84/N/I8hlsy8Pknl3M5vlFeLh38qj24d/B2+3TcKW9hGhKmc1BHg8pZnxpmFiNjhG0Si7A0vFaRs2wjcRHK3Y7HiDW+JAVlcz3NcHSry27WobsFavG+aeaSGs1kUUbS573H7AAVnu8R3WRmb0mZwFqHH5GeTnWq04fHVsWC4Odbinga59WyTxOd6Dg954t2HiLo5s93DtFyYbUymoGy0uNhe25msjehaGkenHWcxzXyNHVoPD1A6t8UEid1Ts30xSyF65p7UUuYlOMfRsRmDlsrsuTwyxymQMGzy6mQG+scR9Srv3Q8m3Da4qRZACu4vu4uUyuDPJ7UkckLGOPhxGwxsXj4yeKvP2EdldDSWMFCo5080r+dduyNDJLdjhDeLgBPJhaBsyIE8IJ3LnOc50N95XusnOXpMxgp61W7Zdx3alnjjrWJSPSsxSxMcYpnbek0tLXuJdu0l3EFkdWZqvjaFm/be2OtTry2Jnu8OCJheQB4ucdtg0dSSAOpXnt3DPrpW/seQ/d3KT9Md2jWWRlhran1DK7CwyRPlpjKX775WROBEUEEu0EG7QWiQklm4Ia7bZZvu1d2vPaa1DDlr1rES1o4LUTo6li5JNvPEWM4WzU2NIBI33d4fag2/vQYfTeUymIGV1LSw9nCTutuqWGNkfcr2ZaknASZmGEHyIgP9L6bunRTNltQ4wYp2SnuQMxU1ZkpuOeBXNa0Gtil4/DgeJWbH9IKufei7uWb1RnvnTH2sVDX8ir1uC5Pbjm44XSlx4YKkjeD0xt6W/Q9FKGquza/a0GzS8UtMZBuIxePM0kkwp86n5IJXiRsJl5Z5D+E8vc7t3A67BgO6Bh8FhqdrEYrUVPP2JLL8jK+tGIHxQmKtWa10Qnl3aHs34uIf0223Tc47tzo6Wt6qxWRyOp6GMuacmryT4+ZrTLOY5or9Zrpeew1wNw76L9xIun3TOwPM6Sydu5krGMnitUfJmNpTWpJGyeUQy7vbPVjaGcLHdQSd9unrGqd4LuvZ/UOo72YpXMPFWuGqY2WrF1k7eRSrVncxsVJ7Bu+FxGzj0I8PBBb2vM2RjZGEOY9rXscPBzXAFpH3EEL6rpYWu+GtDC/YvigijcWklpdHG1p2JAJG4PiAu6gIiICKgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+od70PZBPrClUq17kNJ1Oy+wXzRPlEgfEY+AcDgW+O+/VVi89XVPsGn/dcj8RTz1dU+waf91yPxFBLvYj3R62FyUGUymSGRkpyNnq1Ia/JrtsM6xTTSSPc+bgfs9rAGekxpJcN2m0SoB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoJS7Ce61kNOahpZqbK07MVM2i+GKGZsj/KKVmqOFz+g2dOD19TSrWqgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoL/oqAeerqn2DT/uuR+Ip56uqfYNP+65H4igv+ioB56uqfYNP+65H4innq6p9g0/7rkfiKC/6KgHnq6p9g0/7rkfiKeerqn2DT/uuR+IoKzIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg//Z", "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 64.3 ms (started: 2024-10-26 13:17:59 +00:00)\n" ] } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('yIYKR4sgzI8')\n", "# YouTubeVideo('ARfXDSkQf1Y')\n", "# YouTubeVideo('8nm0G-1uJzA')\n", "# YouTubeVideo('vN5cNN2-HWE')\n", "# YouTubeVideo('BfKanl1aSG0')\n", "# YouTubeVideo('xxFYro8QuXA')" ] }, { "cell_type": "markdown", "metadata": { "id": "9UlQRJ83ejvO" }, "source": [ "DİKKAT: Dedik ki, bu algoritma sadece bir olasılık hesaplar. Sklearn default olarak bu olasılık %50 üzerindeyse bir instanceı ilgili sınıfa sokar. Ama bu çok doğru bi yaklaşım değildir. Başka sık yapılan bir hata da threshold olarak prior probability kullanmak, yani bir sınıfın toplam küme içindeki oranını kullanmaktır, ki bu da çok doğru bi yaklaşım değildir. Burda thresholdu iş problemine göre kendimiz belirlemeliyiz. Bunla ilgili detay açıklamaları ve örneği Uçtan Uca ML projesi notebookunda bulabilirsiniz." ] }, { "cell_type": "markdown", "metadata": { "id": "doCY8-bKejvO" }, "source": [ "## Çözülecek problem" ] }, { "cell_type": "markdown", "metadata": { "id": "DHC6N2pUejvP" }, "source": [ "Burdaki soru şudur: Elimizdeki prediktörleri kullanarak bir instance'ın hangi sınıfta olma olasılığını modelleyebilir miyiz?\n", "\n", "Logistic Regression'da bu soruya vereceğimiz cevap bizi Deep Learning'i(DL) de anlamaya yaklaştırackatır. Göreceksiniz, LogReg'in mantığı DL'in mantığına ne kadar benziyor. Zira burada da elimizdeki feature değerlerini bir aktivasyon fonksiyonuna(sigmoid) sokma var, DL'de de; keza burda da optimizasyon yöntemi olarak Gradient Descent(veya daha performanslı alternatifleri) kullanılıyor, DL'de de. DL ile ilgilenmeyi düşünüyorsanız LogReg'i ve onun temelinde yer alan logit/sigmoid fonksiyonlarını, cost functionları ve gradient descent'i anlamak çok önemli." ] }, { "cell_type": "markdown", "metadata": { "id": "5VCLOpdSejvP" }, "source": [ "### Logit ve sigmoid fonksiyonları" ] }, { "cell_type": "markdown", "metadata": { "id": "n_vxcSq7ejvP" }, "source": [ "Şimdi, x'leri kullanarak bir Y olayı olur mu bunun olaslığını bulmak istiyoruz. İlk olarak klasik LinReg benzeri bir eşitlikle ilerlemeyi deneyelim." ] }, { "cell_type": "markdown", "metadata": { "id": "A7XozLsWejvP" }, "source": [ "Elimizdeki eşitlik Lineer Regresyondaki gibi olsun:\n", "\n", "$$z=\\beta_0 + \\beta_1x$$\n", "\n", "Şimdi bu eşitliği kullanarak olasılık hesaplaaybilir miyiz bakalım.\n", "\n", "$$P(Y=1|X)= p=\\beta_0 + \\beta_1x$$\n", "\n", "(Normalde $\\beta_0 + \\beta_1x_1 + \\beta_2x_2 + ... + \\beta_nx_n$ şeklinde daha genel olarak yazardık ama basitlik olması adına 1 değişken olsun)" ] }, { "cell_type": "markdown", "metadata": { "id": "DDI05BHSejvQ" }, "source": [ "Şimdi bu denklemde bir sıkıntı var, zira eşitliğin sağ tarafı herhangi bi değer($-\\infty$ ile $+\\infty$ arasında) alabilir, halbuki bize pozitif bi değer lazım, zira olasılık denen şey pozitif bir değerdir. Direkt bu denklemi kullansaydık, modelimiz \"%150 ihtimalle yağmur yağacak\" gibi anlamsız sonuçlar verebilirdi. Biz olasılık tahminlemek istiyoruz. Ama buna aşamalı olarak geçeceğiz.\n", "\n", "Sadece 0 ve 1 arasına sıkışmak yerine, önce gerçekleşme olasılığının ($p$), gerçekleşmeme olasılığına ($1-p$) oranına bakarız. Buna **Odds (Olasılıklar Oranı)** denir. Odds şöyle hesaplanır:

\n", "\n", "$$\\large odds=\\frac{\\text{bir olayın olma olasılığı}}{\\text{bir olayın olmama olasılığı}}=\\frac{P(Y=1)}{P(Y=0)}=\\frac{p}{1-p}$$\n", "\n", "Olasılık $0$ ile $1$ arasındayken, Odds $0$ ile $+\\infty$ arasına yayılır. Bu, bizi sınırsız bir ölçeğe bir adım daha yaklaştırır. Ancak bu sefer de asimetrik bir durumla karşı karşıyayızdır. Bu asimetriyi kırmak için odds değerinin doğal logaritmasını ($ln$) aldığımızda karşımıza Logit fonksiyonu çıkar:\n", "\n", "$$\\large odds=\\frac{p}{1-p} \\;\\;\\;\\;\\;\\text{-----log alalım---->}\\;\\;\\;\\;\\; ln(odds)=ln(\\frac{p}{1-p}) = ln(e^{\\beta_0+\\beta_1x})=\\beta_0+\\beta_1x$$\n", "\n", "Bu son durumda değer aralığı artık tam olarak $-\\infty$ ile $+\\infty$ arası olur. Artık elimizdeki sınırsız doğrusal denklemi ($z$), sınırsız olan Log-Odds değerine eşitleyebiliriz:\n", "\n", "$$\\ln\\left(\\frac{p}{1-p}\\right) = \\beta_0 + \\beta_1x$$\n", "\n", "Ancak bizim asıl amacımız Log-Odds'u değil, doğrudan olasılığı ($p$) bulmaktır. Yukarıdaki denklemde $p$'yi yalnız bırakmak için her iki tarafın üstelini ($e^x$) alıp matematiksel sadeleştirme yaparsak Sigmoid (Lojistik) Fonksiyonuna ulaşırız:\n", "\n", "$$\\large p=\\frac{e^{\\beta_0+\\beta_1.x}}{1+e^{\\beta_0+\\beta_1.x}}$$\n", "\n", "ya da daha sade haliyle:\n", "\n", "$$p\\large = \\frac{1}{1 + e^{-({\\beta_0+\\beta_1.x})}}$$\n", "\n", "Sigmoid fonksiyonu, her türlü girdi değerini ($z$) alır ve $0$ ile $1$ arasında pürüzsüz bir \"S\" eğrisine dönüştürür. Bu tam olarak bir olasılık değeridir.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "nY5_YGAHejvQ" }, "source": [ "Şimdi örnek probabilityler(p) üzerinden gidip, asimetriyi ve neden log aldığımıza görelim." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:05:19.989924Z", "start_time": "2022-02-04T18:05:19.260558Z" }, "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 19, "status": "ok", "timestamp": 1729948680238, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "nu5DaDUQejvR", "outputId": "a630a47d-ff86-4b90-8433-83207d39e66d" }, "outputs": [], "source": [ "p = np.array([0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.999, 0.9999]) #eventin olma olasılığı\n", "notp = 1 - p #eventin olmama olasılığı\n", "odds = p/notp" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:05:36.356393Z", "start_time": "2022-02-04T18:05:34.889517Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 476 }, "executionInfo": { "elapsed": 433, "status": "ok", "timestamp": 1729948680659, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "OdHREvrpejvR", "outputId": "10a1eb31-5b05-4eb4-a3ad-0f9eeccd51c2" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAG5CAYAAABWY5pbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4dElEQVR4nO3de3hU1d328XuSQBIOGQynJBAOCqgQMFhJJJyLUjygfZAgKh5RlCJgW4QXWoonRERRkSpgKQhoUUORyqU8okILAonUgIjYoAVNyAAKmkmaA0lmvX/QzJMhiUwmsydM8v1c11w6a6+99m8WIXOz9p49NmOMEQAAAPwupL4LAAAAaKgIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYJKy+C2jsXC6XcnNz1bJlS9lstvouBwAAeMEYo/z8fMXFxSkkpOZ1K4JWPcvNzVV8fHx9lwEAAHyQnZ2tjh071ridoFXPWrZsKenMH1RUVFQ9VwMAALzhdDoVHx/vfh+vCUGrnlWcLoyKiiJoAQAQZM512Q8XwwMAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWOS8C1oFBQWaO3euRo4cqejoaNlsNq1ataravgcPHtTIkSPVokULRUdH6/bbb9d3331XpZ/L5dLTTz+trl27KiIiQn369NFf/vKXgI0JAAACq9xltOvrk9q496h2fX1S5S5TL3Wcd1/B8/333+uxxx5Tp06ddNlll2nbtm3V9svJydHgwYNlt9v15JNPqqCgQM8884z279+vjIwMNW3a1N33d7/7nZ566indd9996tevnzZu3Khbb71VNptN48aNs3RMAAAQWJs/d+jRd76QI6/Y3RZrj9DcUT01MiE2sMWY80xxcbFxOBzGGGM++eQTI8msXLmySr9JkyaZyMhI880337jbtmzZYiSZZcuWudtycnJMkyZNzOTJk91tLpfLDBo0yHTs2NGUlZVZOua55OXlGUkmLy/P630AAED13tufa7rM3GQ6n/Xo8t/He/tz/XIcb9+/z7tTh+Hh4YqJiTlnv/Xr1+v6669Xp06d3G1XXXWVevTooTfffNPdtnHjRpWWlupXv/qVu81ms2nSpEnKycnRrl27LB0TAAAERrnL6NF3vlB1Jwkr2h5954uAnkY874KWN44ePaoTJ07oiiuuqLItKSlJmZmZ7ueZmZlq3ry5Lr300ir9KrZbNWZ1SkpK5HQ6PR4AAKDuMg6f8jhdeDYjyZFXrIzDpwJWU1AGLYfDIUmKja16njU2NlanTp1SSUmJu2/79u1ls9mq9JOk3Nxcy8aszvz582W3292P+Pj4c79gAABwTifyaw5ZvvTzh6AMWkVFRZLOnGY8W0REhEefoqIir/v5e8zqzJo1S3l5ee5HdnZ2jX0BAID32rWM8Gs/fzjvPnXojcjISElyrzBVVlxc7NEnMjLS637+HrM64eHh1YY0AABQN0ldoxVrj9CxvOJqr9OySYqxRyipa3TAagrKFa2KU3QVp/sqczgcio6OdoeZ2NhYHTt2TMaYKv0kKS4uzrIxAQBA4ISG2DR3VE9JZ0JVZRXP547qqdCQs7daJyiDVocOHdS2bVvt2bOnyraMjAwlJia6nycmJqqwsFAHDx706Jeenu7ebtWYAAAgsEYmxOrl8Zcrxu55ejDGHqGXx18e8PtoBWXQkqSbbrpJmzZt8rjG6cMPP1RWVpZSU1PdbTfeeKOaNGmil156yd1mjNHSpUvVoUMHpaSkWDomAAAIrJEJsdox8+f6WecLJEn3DeqqHTN/Hvibleo8vUZryZIl+vHHH92f3nvnnXeUk5MjSZoyZYrsdrtmz56tt956S8OGDdO0adNUUFCghQsXqnfv3rr77rvdY3Xs2FEPPfSQFi5cqNLSUvXr109vv/22tm/frtdee02hoaHuvlaMCQAAAi80xKbo5me+0eXCti0CerrQg19uj+pnnTt3Njpzu4sqj8OHD7v7ff7552bEiBGmWbNmplWrVua2224zx44dqzJeeXm5efLJJ03nzp1N06ZNTa9evczatWurPbYVY/4U7gwPAIA17n31E9N55ibzevo35+5cS96+f9uMMfXzLYuQJDmdTtntduXl5SkqKqq+ywEAoMG4b/UebfniuOaP7q1bkjqde4da8Pb9O2iv0QIAADjfEbQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAAA0SMbUdwUELQAAAMsQtAAAACxC0AIAAA2arR6PTdACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAADRQpr4LIGgBAABYhaAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAGjSbrf6OTdACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCJBHbQOHTqkcePGqWPHjmrWrJkuueQSPfbYYyosLPTot3PnTg0cOFDNmjVTTEyMpk6dqoKCgirjlZSUaObMmYqLi1NkZKSSk5O1ZcuWao/t7ZgAAKDxCqvvAnyVnZ2tpKQk2e12Pfjgg4qOjtauXbs0d+5c/fOf/9TGjRslSXv37tXw4cN16aWXatGiRcrJydEzzzyjQ4cO6b333vMY86677lJaWpoeeughde/eXatWrdK1116rrVu3auDAge5+tRkTAAA0XkEbtNasWaMff/xRO3bsUK9evSRJEydOlMvl0urVq/XDDz/oggsu0OzZs3XBBRdo27ZtioqKkiR16dJF9913n95//32NGDFCkpSRkaF169Zp4cKFmj59uiTpjjvuUEJCgmbMmKGdO3e6j+3tmAAAoHEL2lOHTqdTktS+fXuP9tjYWIWEhKhp06ZyOp3asmWLxo8f7w5E0pkA1aJFC7355pvutrS0NIWGhmrixInutoiICE2YMEG7du1Sdna2+7jejgkAABq3oA1aQ4cOlSRNmDBBe/fuVXZ2tt544w29/PLLmjp1qpo3b679+/errKxMV1xxhce+TZs2VWJiojIzM91tmZmZ6tGjh0d4kqSkpCRJZ04XSqrVmNUpKSmR0+n0eAAAgIYpaIPWyJEj9fjjj2vLli3q27evOnXqpHHjxmnKlCl67rnnJEkOh0PSmVWus8XGxio3N9f93OFw1NhPkrtvbcaszvz582W3292P+Ph4b14uAAAIQkEbtKQz10UNHjxYy5cv1/r163XPPffoySef1JIlSyRJRUVFkqTw8PAq+0ZERLi3V/StqV/lsWozZnVmzZqlvLw896PilCQAAGh4gvZi+HXr1mnixInKyspSx44dJUmjR4+Wy+XSzJkzdcsttygyMlLSmdN1ZysuLnZvl6TIyMga+1Vsr/xfb8asTnh4eLUhDQAANDxBu6L10ksvqW/fvu6QVeGGG25QYWGhMjMz3af3Kk73VeZwOBQXF+d+HhsbW2M/Se6+tRkTAAA0bkEbtI4fP67y8vIq7aWlpZKksrIyJSQkKCwsTHv27PHoc/r0ae3du1eJiYnutsTERGVlZVW5OD09Pd29XVKtxgQAAI1b0AatHj16KDMzU1lZWR7tf/nLXxQSEqI+ffrIbrfrqquu0tq1a5Wfn+/us2bNGhUUFCg1NdXdNmbMGJWXl2v58uXutpKSEq1cuVLJycnui9ZrMyYAAGjcgvYarYcffljvvfeeBg0apAcffFCtW7fWpk2b9N577+nee+91n8KbN2+eUlJSNGTIEE2cOFE5OTl69tlnNWLECI0cOdI9XnJyslJTUzVr1iydOHFC3bp106uvvqojR45oxYoVHsf2dkwAANDImSCWnp5urrnmGhMTE2OaNGlievToYebNm2dKS0s9+m3fvt2kpKSYiIgI07ZtWzN58mTjdDqrjFdUVGSmT59uYmJiTHh4uOnXr5/ZvHlztcf2dsxzycvLM5JMXl5erfcFAAA1u2dlhuk8c5NZl/GN38f29v3bZowx9R32GjOn0ym73a68vLwqN0sFAAC+m7DqE3345QktuKm3bu7Xya9je/v+HbTXaAEAAJzvCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQCABs0mW70dm6AFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAaJBMfRcgghYAAIBlCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAoGGz1d+hCVoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAAAaJGNMfZdA0AIAALAKQQsAAMAiBC0AAACLBH3Q+vTTT3XDDTcoOjpazZo1U0JCghYvXuzRZ+fOnRo4cKCaNWummJgYTZ06VQUFBVXGKikp0cyZMxUXF6fIyEglJydry5Yt1R7X2zEBAEDjFVbfBdTF+++/r1GjRqlv376aM2eOWrRooa+//lo5OTnuPnv37tXw4cN16aWXatGiRcrJydEzzzyjQ4cO6b333vMY76677lJaWpoeeughde/eXatWrdK1116rrVu3auDAgT6NCQAAGq+gDVpOp1N33HGHrrvuOqWlpSkkpPrFudmzZ+uCCy7Qtm3bFBUVJUnq0qWL7rvvPr3//vsaMWKEJCkjI0Pr1q3TwoULNX36dEnSHXfcoYSEBM2YMUM7d+6s9ZgAAKBxC9pTh6+//rqOHz+uefPmKSQkRP/5z3/kcrk8+jidTm3ZskXjx493ByLpTIBq0aKF3nzzTXdbWlqaQkNDNXHiRHdbRESEJkyYoF27dik7O7vWYwIAgMYtaIPWBx98oKioKB09elQXX3yxWrRooaioKE2aNEnFxcWSpP3796usrExXXHGFx75NmzZVYmKiMjMz3W2ZmZnq0aOHR3iSpKSkJElnThfWdszqlJSUyOl0ejwAAEDDFLRB69ChQyorK9ONN96oX/ziF1q/fr3uueceLV26VHfffbckyeFwSJJiY2Or7B8bG6vc3Fz3c4fDUWM/Se6+tRmzOvPnz5fdbnc/4uPjvXm5AAAgCAXtNVoFBQUqLCzUAw884P6U4ejRo3X69GktW7ZMjz32mIqKiiRJ4eHhVfaPiIhwb5ekoqKiGvtVbK/8X2/GrM6sWbP0m9/8xv3c6XQStgAAaKCCdkUrMjJSknTLLbd4tN96662SpF27drn7lJSUVNm/uLjYvb1ivJr6VT5ebcasTnh4uKKiojweAACgYQraoBUXFydJat++vUd7u3btJEk//PCD+/Rexem+yhwOh3sM6cxpv5r6VT5ebcYEAAD1z1aPxw7aoPWzn/1MknT06FGP9oprpNq2bauEhASFhYVpz549Hn1Onz6tvXv3KjEx0d2WmJiorKysKhenp6enu7dLqtWYAACgcQvaoDV27FhJ0ooVKzza//SnPyksLExDhw6V3W7XVVddpbVr1yo/P9/dZ82aNSooKFBqaqq7bcyYMSovL9fy5cvdbSUlJVq5cqWSk5Pd11HVZkwAANC4Be3F8H379tU999yjP//5zyorK9OQIUO0bds2vfXWW5o1a5b7FN68efOUkpKiIUOGaOLEicrJydGzzz6rESNGaOTIke7xkpOTlZqaqlmzZunEiRPq1q2bXn31VR05cqRKmPN2TAAA0MiZIHb69GnzyCOPmM6dO5smTZqYbt26meeee65Kv+3bt5uUlBQTERFh2rZtayZPnmycTmeVfkVFRWb69OkmJibGhIeHm379+pnNmzdXe2xvxzyXvLw8I8nk5eXVel8AAFCzu/6cbjrP3GTe/ORbv4/t7fu3zRhj6jvsNWZOp1N2u115eXl8AhEAAD+6e2WGtv7rOy0c00epV/j3Vkrevn8H7TVaAAAA5zuCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFfA5a+/fv15///GePr6wpKirSpEmT1KFDB3Xr1k1Lly71S5EAAADByOeg9cQTT2jOnDlq2bKlu2327NlatmyZ8vPzlZ2drcmTJ2vLli1+KRQAAKA2zocbhfoctDIyMjRs2DDZbGe+E7usrEwrV65UUlKSTpw4ocOHD6tt27Z64YUX/FYsAABAMPE5aH333XfuL1qWpE8++UROp1MPPPCAIiIiFBcXpxtvvFH79u3zS6EAAADBxuegFRYWppKSEvfzbdu2yWazadiwYe621q1b6/vvv69bhQAAAEHK56DVpUsXbd261f38rbfeUteuXdW5c2d329GjR9W6deu6VQgAABCkfA5at99+u/bt26fk5GQNHjxY+/bt06233urR57PPPlP37t3rXCQAAEAw8jloPfjgg0pNTdWePXu0Y8cOXXPNNZo9e7Z7+4EDB7Rv3z79/Oc/90uhAAAAwSbM1x3Dw8P1xhtvyOl0ymazedzmQZLat2+vzMxMdenSpa41AgAABCWfg1aFqKioatvbtGmjNm3a1HV4AACAoMVX8AAAAFjE6xWtkJAQ981Ja8Nms6msrKzW+wEAAAQ7r4PW4MGDqwStH374QZ999plCQ0MVHx+v9u3b6/jx48rOzlZ5ebn69OmjCy64wO9FAwAABAOvg9a2bds8nufk5GjAgAG69dZb9eSTT6pTp07ubd9++61mzZqljz/+WJs2bfJbsQAAAMHE52u0pk+frtjYWK1du9YjZElSp06d9NprrykmJkYPP/xwnYsEAAAIRj4HrQ8++EDDhw//yT4///nP9cEHH/h6CAAAgKDmc9AqLi6Ww+H4yT65ubkqKiry9RAAAAB15suH+fzF56D1s5/9TOvWrdOuXbuq3b5z50698cYb6tevn8/FAQAABDOfb1g6b948DR8+XIMGDdKoUaM0cOBAtWvXTidOnND27du1adMmhYWF6YknnvBnvQAAAEHD56A1cOBAvfvuu5o4caI2btyojRs3ymazyRgjSeratauWL1+uAQMG+K1YAACAYFKnr+AZPny4vvrqK+3YsUP79u1TXl6e7Ha7LrvsMg0cOLBez4kCAADUtzp/16HNZtOgQYM0aNAgf9QDAADQYPBdhwAAABbxekXrnnvu8ekANptNK1as8GlfAACAYOZ10Fq1alW17ZUvgK+unaAFAAAaK6+D1uHDhz2eu1wuTZs2Tbt379a0adM0aNAg95dK/+Mf/9DixYvVv39/Pffcc34vGgAAIBh4HbQ6d+7s8fypp55Senq69u3bp9jYWHf7xRdfrMGDB+vuu+9W3759lZaWphkzZvivYgAAAC9Uc8It4Hy+GH7FihUaO3asR8iqrEOHDho7dqxeeeUVn4sDAAAIZj4HrZycHEVERPxkn4iICOXk5Ph6CAAAgKDmc9Dq2LGjNmzYoOLi4mq3FxYWasOGDerYsaPPxQEAAAQzn4PWvffeq3//+98aMGCANm7cqJMnT0qSTp48qbffflsDBw7UkSNHdN999/mtWAAAgGDi853hH374YWVlZWnlypUaPXq0JCkkJEQul0uSZIzR3XffrYcfftg/lQIAAAQZn4NWSEiIVqxYodtvv12rV6/WZ5995vFdh7fffruGDh3qx1IBAACCS52/63Do0KEEKgAAgGrUOWh9/PHHWrVqlfbu3Sun06moqCj17dtXd955pwYMGOCPGgEAAIJSnYLWr3/9ay1evNj9FTwVX7vzz3/+UytWrNC0adO0aNEivxQKAAAQbHz+1OGrr76qF154Qd27d9drr72m3NxclZWVyeFw6PXXX1ePHj30wgsvaPXq1f6sFwAAIGj4HLRefvlldezYUenp6brlllsUExMjm82m9u3ba9y4cdq9e7c6dOigl156yZ/1AgAABA2fg9aBAwd00003yW63V7vdbrfrpptu0oEDB3wuDgAAIJj5HLS8YbPZrBweAADgvOZz0OrVq5fWr1+vgoKCarfn5+dr/fr16tWrl8/FAQAABDOfg9b999+vnJwc9e/fX+vXr9f3338vSfr++++VlpamlJQU5eTkaNKkSX4rFgAAIJj4fHuHu+++W5mZmVqyZInGjh0rqepX8EyZMkV33nmnfyoFAAAIMnW6j9bixYuVmppa4w1LBw0a5K86AQAAfFKfV4zX+c7wgwYNIlABAABUw9JPHQIAADRmBC0AAACLNKigNW/ePNlsNiUkJFTZtnPnTg0cOFDNmjVTTEyMpk6dWu2tKUpKSjRz5kzFxcUpMjJSycnJ2rJlS7XH83ZMAADQODWYoJWTk6Mnn3xSzZs3r7Jt7969Gj58uAoLC7Vo0SLde++9Wr58uVJTU6v0veuuu7Ro0SLddttteuGFFxQaGqprr71WO3bs8HlMAADQONX5YvjzxfTp03XllVeqvLzcfU+vCrNnz9YFF1ygbdu2KSoqSpLUpUsX3XfffXr//fc1YsQISVJGRobWrVunhQsXavr06ZKkO+64QwkJCZoxY4Z27txZ6zEBAEDj1SBWtP7xj38oLS1Nzz//fJVtTqdTW7Zs0fjx492BSDoToFq0aKE333zT3ZaWlqbQ0FBNnDjR3RYREaEJEyZo165dys7OrvWYAACg8Qr6oFVeXq4pU6bo3nvvVe/evats379/v8rKynTFFVd4tDdt2lSJiYnKzMx0t2VmZqpHjx4e4UmSkpKSJJ05XVjbMQEAQOMV9KcOly5dqm+++UYffPBBtdsdDockKTY2tsq22NhYbd++3aNvTf0kKTc3t9Zjnq2kpEQlJSXu506ns8a+AADAd6a+C1CQr2idPHlSf/jDHzRnzhy1bdu22j5FRUWSpPDw8CrbIiIi3Nsr+tbUr/JYtRnzbPPnz5fdbnc/4uPja+wLAACCW1AHrd///veKjo7WlClTauwTGRkpSR6rSBWKi4vd2yv61tSv8li1GfNss2bNUl5envtRcd0XAABoeIL21OGhQ4e0fPlyPf/88+5TetKZoFNaWqojR44oKirKfXqv4nRfZQ6HQ3Fxce7nsbGxOnr0aLX9JLn71mbMs4WHh1e7EgYAABqeoF3ROnr0qFwul6ZOnaquXbu6H+np6crKylLXrl312GOPKSEhQWFhYdqzZ4/H/qdPn9bevXuVmJjobktMTFRWVlaV66bS09Pd2yXVakwAANB4BW3QSkhI0IYNG6o8evXqpU6dOmnDhg2aMGGC7Ha7rrrqKq1du1b5+fnu/desWaOCggKPG4yOGTNG5eXlWr58ubutpKREK1euVHJysvt6qtqMCQAAGq+gPXXYpk0b/fKXv6zSXnEvrcrb5s2bp5SUFA0ZMkQTJ05UTk6Onn32WY0YMUIjR45090tOTlZqaqpmzZqlEydOqFu3bnr11Vd15MgRrVixwuM43o4JAAAar6Bd0aqNyy+/XB988IEiIyP161//WsuXL9eECROUlpZWpe/q1av10EMPac2aNZo6dapKS0u1adMmDR482OcxAQBA42QzxpwPt5lotJxOp+x2u/Ly8qrcKBUAAPjujj9n6B9Z3+nZ1Mt00886+nVsb9+/G8WKFgAAQH0gaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAGjSbrf6OTdACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAANEjGmPougaAFAABgFYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAGjQbLb6OzZBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACwStEHrk08+0YMPPqhevXqpefPm6tSpk8aOHausrKwqfQ8ePKiRI0eqRYsWio6O1u23367vvvuuSj+Xy6Wnn35aXbt2VUREhPr06aO//OUv1R7f2zEBAEDjFVbfBfhqwYIF+vjjj5Wamqo+ffro2LFjWrJkiS6//HLt3r1bCQkJkqScnBwNHjxYdrtdTz75pAoKCvTMM89o//79ysjIUNOmTd1j/u53v9NTTz2l++67T/369dPGjRt16623ymazady4ce5+tRkTAAA0YiZIffzxx6akpMSjLSsry4SHh5vbbrvN3TZp0iQTGRlpvvnmG3fbli1bjCSzbNkyd1tOTo5p0qSJmTx5srvN5XKZQYMGmY4dO5qysrJaj+mNvLw8I8nk5eXVaj8AAPDTxv9pt+k8c5P566fZfh/b2/fvoD11mJKSUmXlqHv37urVq5cOHjzoblu/fr2uv/56derUyd121VVXqUePHnrzzTfdbRs3blRpaal+9atfudtsNpsmTZqknJwc7dq1q9ZjAgCAxi1og1Z1jDE6fvy42rRpI0k6evSoTpw4oSuuuKJK36SkJGVmZrqfZ2Zmqnnz5rr00kur9KvYXtsxq1NSUiKn0+nxAAAADVODClqvvfaajh49qptvvlmS5HA4JEmxsbFV+sbGxurUqVMqKSlx923fvr1sNluVfpKUm5tb6zGrM3/+fNntdvcjPj6+ti8TAAAEiQYTtL788ktNnjxZ/fv315133ilJKioqkiSFh4dX6R8REeHRp6ioyOt+3o5ZnVmzZikvL8/9yM7O9u4FAgCAoBO0nzqs7NixY7ruuutkt9uVlpam0NBQSVJkZKQkVbvCVFxc7NEnMjLS637ejlmd8PDwakMaAABoeIJ+RSsvL0/XXHONfvzxR23evFlxcXHubRWn9ypO91XmcDgUHR3tDj2xsbE6duyYjDFV+klyj1ubMQEAQOMW1EGruLhYo0aNUlZWljZt2qSePXt6bO/QoYPatm2rPXv2VNk3IyNDiYmJ7ueJiYkqLCz0+MSiJKWnp7u313ZMAADQuAVt0CovL9fNN9+sXbt26a233lL//v2r7XfTTTdp06ZNHtdCffjhh8rKylJqaqq77cYbb1STJk300ksvuduMMVq6dKk6dOiglJSUWo8JAAAat6C9Ruu3v/2t/va3v2nUqFE6deqU1q5d67F9/PjxkqTZs2frrbfe0rBhwzRt2jQVFBRo4cKF6t27t+6++253/44dO+qhhx7SwoULVVpaqn79+untt9/W9u3b9dprr7mv+6rNmAAAoP7ZZDt3J6uObc6+KClIDB06VH//+99r3F75ZR04cEC/+c1vtGPHDjVt2lTXXXednn32WbVv395jH5fLpQULFmjZsmVyOBzq3r27Zs2apdtuu63K+N6OeS5Op1N2u115eXmKioqq1b4AAKBmt69I1/ZD3+v5mxP1y74d/Dq2t+/fQRu0GgqCFgAA1hj/p3Tt+Kp+g1bQXqMFAABwviNoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAGhwyl1GPxaeliQdOpGvcpeplzoIWgAAoEHZ/LlDAxd8pM9znZKkP279WgMXfKTNnzsCXgtBCwAANBibP3do0tpP5cgr9mg/llesSWs/DXjYImgBAIAGodxl9Og7X6i6k4QVbY++80VATyMStAAAQIOQcfhUlZWsyowkR16xMg6fClhNBC0AANAgnMivOWT50s8fCFoAAKBBaNcywq/9/IGgBQAAGoSkrtGKtUfIVsN2m6RYe4SSukYHrCaCFgAAaBBCQ2yaO6qnJFUJWxXP547qqdCQmqKY/xG0AABAgzEyIVYvj79cMXbP04Mx9gi9PP5yjUyIDWg9YQE9GgAAgMVGJsTq6p4xGv7sNh05WaiZIy/WxMEXBXQlqwIrWgAAoMEJDbEpokmoJKlXnL1eQpZE0AIAAA2Uy5y5MWlYPYUsiaAFAAAaqLL/3gE+hKAFAADgXy4XK1oAAACWYEULAADAIqxoAQAAWMS9omUjaAEAAPhVxacO6+vWDhJBCwAANFBlnDoEAACwRjkXwwMAAFiDi+EBAAAswsXwAAAAFnF/BU8oQQsAAMCvKla0QlnRAgAA8B+Xy+i/C1rc3gEAAMCfyitSlghaAAAAflVxaweJ2zsAAAD4VeWgxe0dAAAA/KjyqUNu7wAAAOBHLla0AAAArFFS5nL//ydHTnmcSgwkghYAAGhQNn/u0KgXd7if3/JKugYu+EibP3cEvBaCFgAAaDA2f+7QpLWf6kR+iUf7sbxiTVr7acDDVlhAj9bAlJSU6A9/+IPWrFmjH374QX369NETTzyhq6++ul7rKncZ7f76pHb9+3tJNvW/qLX6dYnWP7/5QSfyi9WuZYSSukbX631FzlbuMso4fOq8ra8mwVg3NQcGNQcGNQeGlTX7c+xyl9Ejfzug6k4SGkk2SY++84Wu7hkTsDknaNXBXXfdpbS0ND300EPq3r27Vq1apWuvvVZbt27VwIED66WmzZ879P/+ul8/Fpa625Zs/Uo2m1TpAxiKtUdo7qieGpkQWw9Vetr8uUOPvvOFHHnF7rbzqb6aBGPd1BwY1BwY1BwYVtbs69jO4lJ9e7JQ35ws1JGT/znz/6f+o0PH83XyP6U17mckOfKKlXH4lPpf1LpOtXvLZoypn6vDglxGRoaSk5O1cOFCTZ8+XZJUXFyshIQEtWvXTjt37vRqHKfTKbvdrry8PEVFRdWpps2fO/TA2k+96luR418ef3m9/uWuWOI9+4fwfKmvJsFYNzUHBjUHBjUHhpU1n2vsp0b31oXtWuibk4X69uR/9M2pQh357///UFhzmPLGC+MSdWNihzqN4e37NytaPkpLS1NoaKgmTpzobouIiNCECRM0e/ZsZWdnKz4+PmD1VCyXeqviB/sPGw/o0tioelm2LncZzdlY8xKvdKa+S2Lqp76aBLJuf/0zqNxlNOftc9fco33L82auva25e7tz11yXaazNv0XP1Pz5T9Y8Z+MBXdi2xblrrtOffe1q/v25an77gLq0bu6u2dvRvXkNxovRzh7Hm5p///YBxbWKrHaeazO3NfWtru6a+56p+Xcbfrrm3739uVq3CD/rnk//t0fl8SuP49Fe6UmNfVT9QGf3d7mMZp+j5ll/3S9jJJvNJmOMXEZyGSOXOfM9g65KbZW3l7uMnvnff/3k2DP/ur+arf+nTYum6hTdTJ1bN1fn1s3UuXUzOYvKNNeL98J2LSPO2cdfWNHy0dVXX62jR4/qiy++8Gj/8MMPddVVV+lvf/ubRo0aVWW/kpISlZT83wV6TqdT8fHxdV7R2vX1Sd3yym6f9wcA4HzTpkVTXRzTUp2i/xum/husOrVuphbhVdeKyl1GAxd8pGN5xdWGOJukGHuEdsz8eZ3/UcmKlsUcDodiY6sul1a05ebmVrvf/Pnz9eijj/q9nhP5xefuVIMmobZ6W9EqLT93zm8SalNYyPnzAdkyl8urupuG2hQWen7UXVbu0mkvag73U802P9yFubTc5XEfnJpEhIWoiT/m2Q9/BUrLXSouPXfNkU1qrrk2c1ebaa6p6+kyl/5zuvyc+zcPD1V4WGitxq62b63mufrOJaXlyi8pO+feLSPCFNmkhpqrGdpWw/Fqqrm65pr+/ApPl3l1uiu6eRO1CG9S7bErj1z5OLZqOpyzb6WxK7/uysdzFpUqN+/c7y1dWjdTm/+uxNlsZ+7CHhKi/z63KaSizXbmaCE26ZizWJ/l5J1z7DnX96zVKb7QEJvmjuqpSWs/lU2eq3QVL23uqJ4Bfc8jaPmoqKhI4eHhVdojIiLc26sza9Ys/eY3v3E/r1jRqqu6LIOuvic5YBcFVubtKlx91VcTb+t+9Tyq29uaVwVhzSvvTgq6mv98V/DV/Kc7+gVdzctvvyLoav7jrT8Luprnj+5T65q9HduX97aRCbF6efzlVS6yj6mnDx0QtHwUGRnpcQqwQnFxsXt7dcLDw6sNaHWV1DVaMVHhOuasWlNNKpZQk7pG+70ebyR1jVasPeKcS7z1VV9NgrFuag4Mag4Mag4MK2u2ej5GJsTq6p4x58VtNM6P8xpBKDY2Vg5H1ZueVbTFxcUFtJ7QEJseuaGX1/3rawm1sool3sr1VDgf6qtJMNZNzYFBzYFBzYFhZc2BmI/QkDP3kbwxsYP6X9S63uaWoOWjxMREZWVlyel0erSnp6e7twfayIRYLR1/uVo1a1Jl29mXDcTYI86LjxJXLPHG2D2Xh8+X+moSjHVTc2BQc2BQc2BYWXMwzocv+NShj9LT03XllVd63EerpKRECQkJat26tXbv9u4TgP68j1YF7gwfOMFYNzUHBjUHBjUHRrDcGT6QvH3/JmjVwdixY7Vhwwb9+te/Vrdu3fTqq68qIyNDH374oQYPHuzVGFYELQAAYC1u7xAAq1ev1pw5czy+63DTpk1ehywAANCwsaJVz1jRAgAg+Hj7/s3F8AAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEW5YWs8qbmN29ncmAgCA81fF+/a5bkdK0Kpn+fn5kqT4+Ph6rgQAANRWfn6+7HZ7jdu5M3w9c7lcys3NVcuWLWWz+e9LNJ1Op+Lj45Wdnc0d5y3GXAcG8xwYzHNgMM+BYeU8G2OUn5+vuLg4hYTUfCUWK1r1LCQkRB07drRs/KioKP4SBwhzHRjMc2Awz4HBPAeGVfP8UytZFbgYHgAAwCIELQAAAIsQtBqo8PBwzZ07V+Hh4fVdSoPHXAcG8xwYzHNgMM+BcT7MMxfDAwAAWIQVLQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBK0gU1JSopkzZyouLk6RkZFKTk7Wli1bvNr36NGjGjt2rFq1aqWoqCjdeOON+ve//21xxcHL17n+61//qptvvlkXXnihmjVrposvvli//e1v9eOPP1pfdBCqy890ZVdffbVsNpsefPBBC6oMfnWd5zfeeEP9+/dX8+bN1apVK6WkpOijjz6ysOLgVJd5/uCDDzRs2DC1adNGrVq1UlJSktasWWNxxcGpoKBAc+fO1ciRIxUdHS2bzaZVq1Z5vf+PP/6oiRMnqm3btmrevLmGDRumTz/91JpiDYLKuHHjTFhYmJk+fbpZtmyZ6d+/vwkLCzPbt2//yf3y8/NN9+7dTbt27cyCBQvMokWLTHx8vOnYsaP5/vvvA1R9cPF1rlu3bm169+5t5syZY1555RUzdepU07RpU3PJJZeYwsLCAFUfPHyd58rWr19vmjdvbiSZyZMnW1ht8KrLPM+dO9fYbDaTmppqli5dal588UVz//33m9WrVweg8uDi6zxv3LjR2Gw2k5KSYl588UWzZMkSM3jwYCPJLFq0KEDVB4/Dhw8bSaZTp05m6NChRpJZuXKlV/uWl5eblJQU07x5c/PII4+YJUuWmJ49e5qWLVuarKwsv9dK0Aoi6enpRpJZuHChu62oqMhcdNFFpn///j+574IFC4wkk5GR4W47ePCgCQ0NNbNmzbKs5mBVl7neunVrlbZXX33VSDKvvPKKv0sNanWZ58r9u3TpYh577DGCVg3qMs+7du0yNpuNN3sv1GWer776ahMXF2eKi4vdbaWlpeaiiy4yffr0sazmYFVcXGwcDocxxphPPvmkVkHrjTfeMJLMW2+95W47ceKEadWqlbnlllv8XiunDoNIWlqaQkNDNXHiRHdbRESEJkyYoF27dik7O/sn9+3Xr5/69evnbrvkkks0fPhwvfnmm5bWHYzqMtdDhw6t0vY///M/kqSDBw/6vdZgVpd5rvD000/L5XJp+vTpVpYa1Ooyz88//7xiYmI0bdo0GWNUUFAQiJKDUl3m2el06oILLvC4sWZYWJjatGmjyMhIS+sORuHh4YqJifFp37S0NLVv316jR492t7Vt21Zjx47Vxo0bVVJS4q8yJXGNVlDJzMxUjx49qnwxZlJSkiRp79691e7ncrn02Wef6YorrqiyLSkpSV9//bXy8/P9Xm8w83Wua3Ls2DFJUps2bfxSX0NR13n+9ttv9dRTT2nBggW8Gf2Euszzhx9+qH79+mnx4sVq27atWrZsqdjYWC1ZssTKkoNSXeZ56NChOnDggObMmaOvvvpKX3/9tR5//HHt2bNHM2bMsLLsRiczM1OXX365QkI8I1BSUpIKCwuVlZXl1+OF+XU0WMrhcCg2NrZKe0Vbbm5utfudOnVKJSUl59z34osv9mO1wc3Xua7JggULFBoaqjFjxvilvoairvP829/+Vn379tW4ceMsqa+h8HWef/jhB33//ff6+OOP9dFHH2nu3Lnq1KmTVq5cqSlTpqhJkya6//77La09mNTl53nOnDk6fPiw5s2bpyeeeEKS1KxZM61fv1433nijNQU3Ug6HQ4MHD67SXvnPqXfv3n47HkEriBQVFVX7fU0RERHu7TXtJ8mnfRsrX+e6Oq+//rpWrFihGTNmqHv37n6rsSGoyzxv3bpV69evV3p6umX1NRS+znPFacKTJ09q3bp1uvnmmyVJY8aMUe/evfXEE08QtCqpy89zeHi4evTooTFjxmj06NEqLy/X8uXLNX78eG3ZskVXXnmlZXU3Nv78/e4NglYQiYyMrPbccXFxsXt7TftJ8mnfxsrXuT7b9u3bNWHCBP3iF7/QvHnz/FpjQ+DrPJeVlWnq1Km6/fbbPa47RPXq+rujSZMmHquxISEhuvnmmzV37lx9++236tSpkwVVB5+6/N548MEHtXv3bn366afuU1pjx45Vr169NG3aNP5B4Uf++v3uLa7RCiKxsbFyOBxV2iva4uLiqt0vOjpa4eHhPu3bWPk615Xt27dPN9xwgxISEpSWlqawMP5dczZf53n16tX617/+pfvvv19HjhxxPyQpPz9fR44cUWFhoWV1B5u6/O6IiIhQ69atFRoa6rGtXbt2ks6cXsQZvs7z6dOntWLFCl133XUe1w01adJE11xzjfbs2aPTp09bU3Qj5I/f77VB0AoiiYmJysrKktPp9Giv+JdOYmJitfuFhISod+/e2rNnT5Vt6enpuvDCC9WyZUu/1xvMfJ3rCl9//bVGjhypdu3a6d1331WLFi2sKjWo+TrP3377rUpLSzVgwAB17drV/ZDOhLCuXbvq/ffft7T2YFKX3x2JiYn67rvvqrzRV1xv1LZtW/8XHKR8neeTJ0+qrKxM5eXlVbaVlpbK5XJVuw2+SUxM1KeffiqXy+XRnp6ermbNmqlHjx7+PaDfbxgBy+zevbvKPVqKi4tNt27dTHJysrvtm2++MQcPHvTY96mnnjKSzCeffOJu+/LLL01oaKiZOXOm9cUHmbrMtcPhMBdeeKGJi4szhw8fDlTJQcnXeT548KDZsGFDlYckc+2115oNGzaY3NzcgL6W81ldfp6fe+45I8ksX77c3VZUVGQuvPBC07NnT+uLDyK+znNZWZlp1aqV6dGjhykpKXG35+fnm44dO5pLLrkkMC8gSP3UfbRyc3PNwYMHzenTp91t69atq3Ifre+++860atXK3HzzzX6vj6AVZFJTU01YWJh5+OGHzbJly0xKSooJCwszf//73919hgwZYs7O0E6n01x00UWmXbt25umnnzbPPfeciY+PN3FxcebEiROBfhlBwde5vuyyy4wkM2PGDLNmzRqPx/vvvx/ol3He83WeqyNuWFojX+e5sLDQ9OrVyzRp0sRMnz7dLF682PTr18+Ehoaad999N9Av47zn6zw/8cQTRpLp27evee6558wzzzxjLr30UiPJrF27NtAvIyi8+OKL5vHHHzeTJk0ykszo0aPN448/bh5//HHz448/GmOMufPOO40kj3/0lpWVmSuvvNK0aNHCPProo+aPf/yj6dWrl2nZsqX58ssv/V4nQSvIFBUVmenTp5uYmBgTHh5u+vXrZzZv3uzRp6Y3pezsbDNmzBgTFRVlWrRoYa6//npz6NChQJUedHyda0k1PoYMGRLAVxAc6vIzfTaCVs3qMs/Hjx83d955p4mOjjbh4eEmOTm5yr44oy7z/Nprr5mkpCTTqlUrExkZaZKTk01aWlqgSg86nTt3rvF3bUWwqi5oGWPMqVOnzIQJE0zr1q1Ns2bNzJAhQzzO+PiTzRhj/HsyEgAAABIXwwMAAFiGoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAfrJt2zbZbDY98sgj2rFjh4YOHaqWLVuqVatWuummm/TVV1/Vd4kAAoygBQB+tnv3bg0fPlx2u11TpkzRkCFDtGHDBqWkpOjf//53fZcHIIDC6rsAAGho/vd//1dLly7V/fff725btmyZHnjgAU2bNk3vvPNOPVYHIJBsxhhT30UAQEOwbds2DRs2TD169NDBgwcVEvJ/Jw1cLpcuueQSffXVVzp+/Ljatm1bj5UCCBROHQKAnw0YMMAjZElSSEiIBgwYIGOM9u3bV0+VAQg0ghYA+Fn79u1/sj0vLy+Q5QCoRwQtAPCz48eP/2S73W4PZDkA6hFBCwD87OOPP5bL5fJoc7lc2rlzp2w2my677LJ6qgxAoBG0AMDPsrKy9Morr3i0vfLKK8rKytJ1113HhfBAI8LtHQDAz37xi19o6tSpevfdd9WrVy8dOHBA77zzjtq0aaMXXnihvssDEECsaAGAn1155ZX68MMPlZeXp8WLF2vbtm365S9/qV27dunCCy+s7/IABBArWgBggYEDB2rbtm31XQaAesaKFgAAgEUIWgAAABYhaAEAAFiE7zoEAACwCCtaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBF/j9yW6B/FwP7BgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 435 ms (started: 2024-10-26 13:17:59 +00:00)\n" ] } ], "source": [ "plt.plot(p,odds,\"o-\")\n", "plt.xlabel(\"p\")\n", "plt.ylabel(\"odds\");" ] }, { "cell_type": "markdown", "metadata": { "id": "KJH1pBL1ejvR" }, "source": [ "Burda olayın olma olasılığı arttıkça odds ratio'nun da astronomik seviyelere çıktığını görüyoruz. Yani bir asimetriklik var. Bunu düzeltmek lazım. Nasıl? İki tarafın da log'unu alarak. odds'un logunu aldığımızda karşımıza çıkan fonksiyon `logit fonksiyonu` oluyor işte. Bu sayede karşımızda çıkan katsayıların yorumlanması daha kolay olacaktır, zira artık elimizde lineer bir denklem vardır.\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:07:59.914810Z", "start_time": "2022-02-04T18:07:58.720341Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 481 }, "executionInfo": { "elapsed": 413, "status": "ok", "timestamp": 1729948681066, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "sD7DI9XmejvS", "outputId": "3b0896a8-9a31-4355-a472-8da50f2a47b5" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG+CAYAAACgURHgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUL5JREFUeJzt3Xl4U2X6PvA76ZK0NE3pHqBlhwItFoQCBYGKQMFBGWXRER1cEBm3nw6Dol8sBQTREWYUxWUUHJFxwXEURWTfRCgFiiwtO7aUlBZKm3RJ2ibn90eb2JC0TZs9uT/XlUt7znmTJ0elt+d9z3NEgiAIICIiIiK7Eru6ACIiIiJvxJBFRERE5AAMWUREREQOwJBFRERE5AAMWUREREQOwJBFRERE5AAMWUREREQOwJBFRERE5AAMWUREREQOwJBFRERE5ABeE7IqKiqQkZGB9PR0hIeHQyQSYe3atRaPzc3NRXp6OkJCQhAeHo4HH3wQJSUlVn/Wd999h4EDB0IqlSI+Ph4ZGRmoq6uz47chIiIiT+c1IevatWtYtGgRcnNzccsttzR53OXLlzFy5EicO3cOS5cuxdy5c/HDDz9g7NixqKmpafFzfvzxR0yePBlhYWF4++23MXnyZCxZsgRPP/20nb8REREReTJ/VxdgLwqFAkqlErGxscjOzsbgwYMtHrd06VJUVlbi8OHDiI+PBwCkpKRg7NixWLt2LR5//PFmP2fu3Lno378/tmzZAn//+tMXGhqKpUuX4tlnn0VCQoJV9er1ely5cgUymQwikajV35eIiIicTxAEqNVqdOjQAWJxC9eqBC906NAhAYCwZs0as33R0dHC1KlTzbb36tVLGDNmTLPve/LkSQGA8M4775hsLywsFAAIixcvtrrGgoICAQBffPHFF1988eWBr4KCghZ/13vNlSxrFBYWori4GIMGDTLbl5KSgk2bNjU7/ujRowBgNr5Dhw7o1KmTcb81ZDIZAKCgoAChoaFWjyMiIiLXUalUiIuLM/4eb45PhSylUgk0TC3eTKFQoLS0FFqtFhKJpE3jr1y50uRna7VaaLVa489qtRpomGpkyCIiIvIs1iz18ZqF79aorq4GAIshSiqVmhzTlvHNjV22bBnkcrnxFRcX16bvQERERJ7Bp0JWUFAQ0HBV6WYajcbkmLaMb27s/PnzUV5ebnwVFBS06TsQERGRZ/CpkGWY5jNM+zWmVCoRHh7e5FShNeM7dOjQ5FiJRGKcGuQUIRERkffzqZDVsWNHREVFITs722xfVlYWkpOTmx1v2H/z+CtXruDy5cstjiciIiLf4VMhCwDuvfdefP/99ybTddu3b8eZM2cwdepU47ba2lrk5eWZXLXq168fEhIS8MEHH0Cn0xm3r169GiKRCFOmTHHiNyEiIiJ35lV3F65atQplZWXGu/w2btyIy5cvAwCefvppyOVyvPTSS/jqq6+QlpaGZ599FhUVFXjjjTeQlJSEhx9+2PhehYWF6NOnD/785z+bPJ7njTfewF133YVx48bhvvvuw4kTJ7Bq1So89thj6NOnjwu+NREREbkjkSAIgquLsJcuXbrgt99+s7jv4sWL6NKlCwDg5MmTeP7557Fv3z4EBgbizjvvxJtvvomYmBjj8ZcuXULXrl3NQhYA/O9//0NmZiZyc3MRFRWFmTNn4pVXXkFAQIDVtapUKsjlcpSXl3N9FhERkYdoze9vrwpZnoQhi4iIyPO05ve3z63JIiIiInIGr1qTRURERL5NpxeQdbEUxWoNomVSpHQNh5+45e7sjsCQRURERF5h8wklMjeegrJcY9ymkEuRMakv0hPNH4nnaJwuJCIiIo+3+YQSc9YdMQlYAFBUrsGcdUew+YR5I3FHY8giIiIij6bTC8jceAqW7uQzbMvceAo6vXPv9WPIIiIiIo+WdbHU7ApWYwIAZbkGWRdLnVoXQxYRERF5tGJ10wGrLcfZC0MWERERebRomdSux9kLQxYRERF5tJSu4VDIpWiqUYOo4S7DlK7hTq2LIYuIiIg8mp9YhIxJfYGGQNWY4eeMSX2d3i+LIYuIiIg8XnqiAqtnDESs3HRKMFYuxeoZA9kni4iIiKit0hMV2PfC7RjVKxIAcN/gOOx74XaXBCwwZBEREZE38ROLEBEiAQB0iWznskfqgCGLiIiIvI3Q0HPUT+S6gAWGLCIiIvI2hs7uLs5YDFlERETkXfQNl7JcOVUIhiwiIiLyNobpQjGnC4mIiIjsxzBdKOaVLCIiIiL7MUwXujhjMWQRERGRdzGuyeJ0IREREZH96Lkmi4iIiMj+uCaLiIiIyAG4JouIiIjIAdgni4iIiMgB9Pr6v4q4JouIiIjIfnScLiQiIiKyP4EtHIiIiIjs7/cHRDNkEREREdmNoU8WF74TERER2RFbOBARERE5gDFk8UoWERERkf3oGlo48LE6TjZz5kyIRKImX4WFhU2OXbhwocUxUqnUqd+BiIiImuYudxf6u/TTXWD27Nm44447TLYJgoAnnngCXbp0QceOHVt8j9WrVyMkJMT4s5+fn0NqJSIiotZzlzVZPheyhg0bhmHDhpls27dvH6qqqvDAAw9Y9R5TpkxBZGSkgyokIiIiW/AB0W5k/fr1EIlE+NOf/mTV8YIgQKVSGS9HEhERkfsw/HrmmiwXq62txZdffonU1FR06dLFqjHdunWDXC6HTCbDjBkzcPXq1RbHaLVaqFQqkxcRERHZn874gGjX1uFz04U3++mnn3D9+nWrpgrbt2+Pp556CsOGDYNEIsHevXvxzjvvICsrC9nZ2QgNDW1y7LJly5CZmWnn6omIiOhmhjVZru74LhJ8fM7rT3/6EzZs2AClUomIiIhWj1+/fj0eeOABLFu2DC+++GKTx2m1Wmi1WuPPKpUKcXFxKC8vbzacERERUesMf20HCsuq8e2Tw3FLXJhd31ulUkEul1v1+9unpwsrKirw7bffYvz48W0KWGgIabGxsdi2bVuzx0kkEoSGhpq8iIiIyP5+v7uQa7Jc5n//+1+r7ipsSlxcHEpLS+1WFxEREbXd73cXurYOnw5Zn332GUJCQnDXXXe1+T0EQcClS5cQFRVl19qIiIiobfS8u9C1SkpKsG3bNvzxj39EcHCw2f78/Hzk5eWZjbnZ6tWrUVJSgvT0dIfWS0RERNbRG+8uZMd3l/jiiy9QV1fX5FThQw89hN27d5v0wurcuTOmT5+OpKQkSKVS7Nu3D59//jmSk5Mxe/ZsJ1ZPREREluj0ArR1OgDAr5fL0D0qxGVhy2fvLhw2bBguXLiAK1euWHwszujRo81C1qxZs7B//34UFBRAo9Ggc+fOuPfee/Hyyy9DJpO16vNbc3cCERERtWzzCSUyN56Cslxj3KaQS5ExqS/SExV2+YzW/P722ZDlagxZRERE9rP5hBJz1h3BzaHGcA1r9YyBdglabOFAREREPkOnF5C58ZRZwAJg3Ja58ZTxrkNnYcgiIiIij5Z1sdRkivBmAgBluQZZF53bbokhi4iIiDxasbrpgNWW4+yFIYuIiIg8WrRMatfj7IUhi4iIiDxaStdwKORSNNWoQdRwl2FK13Cn1sWQRURERB7NTyxCxqS+Fhe+G4JXxqS+Tu+XxZBFREREHi89UYH7UuLMtsfKpXZr39BaPtvxnYiIiLzLlbL6he33D47D0O4RiJbVTxG6quM7QxYRERF5PLWmFr+cvwYAePS2rugR3bonsTgCpwuJiIjI4+09ew21OgFdI9uhe1SIq8sBGLKIiIjIG2w7dRUAcEefaIhErpkevBlDFhEREXm0Op0eO04XAwDu6BPj6nKMGLKIiIjIo2X/dgNlVbUICw7ArZ3bu7ocI4YsIiIi8miGqcLbE6Lh7+c+0cZ9KiEiIiJqJUEQsDW3PmSNdaOpQjBkERERkSc7V1yB365XIdBPjNt6Rbm6HBMMWUREROSxDFexhnWPQIjEvdp/MmQRERGRxzKsxxrb172mCsGQRURERJ6qRK3F0YIyAMCYPtGuLscMQxYRERF5pB15VyEIQFJHORTyIFeXY4Yhi4iIiDzS1lP1DUjdcaoQDFlERETkiaprdNh3rgRwsy7vjTFkERERkcfZd+4aNLV6dAwLQh+FzNXlWMSQRURERB7HHR8IfTOGLCIiIvIoer2A7XmG1g2xri6nSQxZRERE5FFyLpfhWkUNZBJ/pHQNd3U5TWLIIiIiIo+ytWGqcFTvKAT6u2+Ucd/KiIiIiCxw5y7vjTFkERERkce4dK0SZ4sr4C8WYXQv9+vy3hhDFhEREXmMbQ0PhE7pGg55cICry2kWQxYRERF5jK3G1g3uPVUIXwxZu3btgkgksvg6cOBAi+MLCwsxbdo0hIWFITQ0FHfffTcuXLjglNqJiIh82Y3KGmT/dgPwgPVYAODv6gJc5ZlnnsHgwYNNtvXo0aPZMRUVFUhLS0N5eTleeuklBAQEYOXKlRg1ahRycnIQERHh4KqJiIh8164zxdDpBSTEyhAXHuzqclrksyHrtttuw5QpU1o15t1338XZs2eRlZVlDGgTJkxAYmIi3nzzTSxdutRB1RIREZEnTRXCF6cLG1Or1airq7P6+A0bNmDw4MEmV8ASEhIwZswYfPnllw6qkoiIiLR1Ouw+Xf9AaE+YKoQvh6yHH34YoaGhkEqlSEtLQ3Z2drPH6/V6/Prrrxg0aJDZvpSUFJw/fx5qtdqBFRMREfmuAxdKUVmjQ7RMgqSOcleXYxWfmy4MDAzEvffei4kTJyIyMhKnTp3C3//+d9x2223Yv38/BgwYYHFcaWkptFotFAqF2T7DtitXrqB3794Wx2u1Wmi1WuPPKpXKbt+JiIjI2xkakI7pEwOx2D0fCH0znwtZqampSE1NNf581113YcqUKejfvz/mz5+PzZs3WxxXXV0NAJBIJGb7pFKpyTGWLFu2DJmZmXb4BkRERL5FEARjf6yxfd27AWljPjtd2FiPHj1w9913Y+fOndDpdBaPCQoKAhquSN1Mo9GYHGPJ/PnzUV5ebnwVFBTYrX4iIiJvdvKKCspyDYIC/JDaPdLV5VjN565kNSUuLg41NTWorKxEaGio2f7w8HBIJBIolUqzfYZtHTp0aPL9JRKJxatgRERE1DzDXYUje0VCGuDn6nKsxitZDS5cuACpVIqQkBCL+8ViMZKSkiwukD948CC6desGmUzmhEqJiIh8i6e1bjDwuZBVUlJitu3YsWP47rvvMG7cOIjF9ackPz8feXl5JsdNmTIFhw4dMglap0+fxo4dOzB16lQnVE9ERORbCsuqcUqpglgE3J7gOeuxAEAkCILg6iKc6fbbb0dQUBBSU1MRHR2NU6dO4YMPPkBAQAB++eUX9OnTBwAwevRo7N69G41Pj1qtxoABA6BWqzF37lwEBARgxYoV0Ol0yMnJQVRUlNV1qFQqyOVylJeXW5yeJCIiIuDfv1zCK9+exOAu7fHVE6lWjHCs1vz+9rk1WZMnT8Znn32GFStWQKVSISoqCvfccw8yMjJafKyOTCbDrl278Nxzz2HJkiXQ6/UYPXo0Vq5c2aqARURERNbx1KlC+OKVLHfBK1lERETNU2lqcevirajVCdj+11HoHmV53bRTa2rF72+fW5NFREREnmHPmRLU6gR0i2rnFgGrtRiyiIiIyC0ZuryP9cCpQjBkERERkTuq1emxI68YAHCHhzwQ+mYMWUREROR2Dl0qhUpTh/B2gRgY397V5bQJQxYRERG5nW2n6q9i3Z4QDT8PeSD0zRiyiIiIyK0IgoCtuUWAh7ZuMGDIIiIiIrdy5moFCkqrEegvxm09PeeB0DdjyCIiIiK3si23/q7CET0i0U7iuX3TGbKIiIjIrXhyl/fGGLKIiIjIbRSrNcgpKAMAjOnjWQ+EvhlDFhEREbmN7bn1dxXe0kmOmFCpq8uxCUMWERERuQ1jl3cPbUDaGEMWERERuYWqmjrsO3cN8OAu740xZBEREZFb2Hf2GrR1enRqH4TeMTJXl2MzhiwiIiJyC1sbTRWKRJ7Z5b0xhiwiIiJyOZ1eMD4QeqyHt24wYMgiIiIil8spuIHrlTWQSf0xuGu4q8uxC4YsIiIicrktDVOFab2jEeDnHfHEO74FEREReTRvat1gwJBFRERELnWhpALnSyrhLxZhVO8oV5djNwxZRERE5FKGLu9Du0UgVBrg6nLshiGLiIiIXGqrF04VgiGLiIiIXKm0sgbZv5UCXvBA6JsxZBEREZHL7Mwrhl4A+ihC0al9sKvLsSt/VxdAREREvkenF5B1sRT//uUSAGBMgvcseDdgyCIiIiKn2nxCicyNp6As1xi3/edQARI7ypGeqHBpbfbE6UIiIiJyms0nlJiz7ohJwAKA0ooazFl3BJtPKF1Wm70xZBEREZFT6PQCMjeegmBhn2Fb5sZT0OktHeF5GLKIiIjIKbIulppdwWpMAKAs1yDrYqlT63IUhiwiIiJyimJ10wGrLce5O4YsIiIicoqC0iqrjouWSR1eizPw7kIiIiJyqILSKiz87iS25xU3e5wIQKxcipSu4U6rzZF87krWoUOH8NRTT6Ffv35o164d4uPjMW3aNJw5c6bFsWvXroVIJLL4Kioqckr9REREnkJTq8Nb28/ijhW7sT2vGP5iEcb1jYGoIVA1Zvg5Y1Jf+Ilv3uuZfO5K1vLly/Hzzz9j6tSp6N+/P4qKirBq1SoMHDgQBw4cQGJiYovvsWjRInTt2tVkW1hYmAOrJiIi8iy7Thdj4Xcncel6/RRhavcILLq7H3pEyyz2yYqVS5Exqa9X9cnyuZD1/PPPY/369QgMDDRumz59OpKSkvDaa69h3bp1Lb7HhAkTMGjQIAdXSkRE5HkKy6qxeOMpbD5ZP8MTLZPg//7QF5P6KyAS1V+hSk9UYGzfWGRdLEWxWoNoWf0UobdcwTLwuZCVmppqtq1nz57o168fcnNzrX4ftVqN4OBg+Pn52blCIiIiz1NTp8e/9l3A29vPobpWBz+xCDNTu+D/3dETMmmA2fF+YhGGdY9wSa3O4nMhyxJBEHD16lX069fPquPT0tJQUVGBwMBAjB8/Hm+++SZ69uzZ7BitVgutVmv8WaVS2Vw3ERGRO9h/7hoWfHsC50sqAQApXcKxaHI/JMSGuro0l2LIAvDZZ5+hsLAQixYtava44OBgzJw5E2lpaQgNDcXhw4exYsUKpKam4siRI4iLi2ty7LJly5CZmemA6omIiFyjqFyDVzflYuOxKwCAyJBAvDSxD/44oKNxatCXiQRB8I7e9W2Ul5eHIUOGoF+/fti7d2+rp//27duHkSNH4vHHH8d7773X5HGWrmTFxcWhvLwcoaG+nfSJiMg96fSCxXVTtTo9Ptl/CSu3nkFljQ5iEfDg0M54flxvyIPMpwa9iUqlglwut+r3t09fySoqKsKdd94JuVyODRs2tGl91YgRIzBkyBBs27at2eMkEgkkEokN1RIRETmPpTsAFXIp7k+Jxw+/KnH6qhoAMCA+DIvvTkRiR7kLq3VPPhuyysvLMWHCBJSVlWHv3r3o0KFDm98rLi4Op0+ftmt9RERErrL5hBJz1h0xe5CzslyDFVvr+0q2Dw7AixMSMPXWOIi97K5Ae/HJkKXRaDBp0iScOXMG27ZtQ9++fW16vwsXLiAqKspu9REREbmKTi8gc+Mps4DVWHCgH7Y+NwqRMs7QNMfnOr7rdDpMnz4dv/zyC7766isMGzbM4nFKpRJ5eXmora01bispKTE7btOmTTh8+DDS09MdWjcREZEzZF0sNZkitKSqRoezxRVOq8lT+dyVrL/+9a/47rvvMGnSJJSWlpo1H50xYwYAYP78+fjkk09w8eJFdOnSBWjosTVgwAAMGjQIcrkcR44cwccff4y4uDi89NJLLvk+RERE9qCp1WH3mRJ8uOe8VccXq5sPYuSDISsnJwcAsHHjRmzcuNFsvyFkWTJ9+nT88MMP2LJlC6qqqqBQKDBr1ixkZGQgJibGoXUTERHZW1VNHXadLsGm40rsyCtGVY3O6rHRMqlDa/MGPt/CwVVacwsoERGRvVRo67Ajrxg/Hldi5+liaGr1xn0dw4Iwvl8Mvs25gtLKGovrskQNzxnc98LtXvcYHGuwhQMREREZqTS12J57FZuOF2H3mRLU1P0erOLCgzAxSYGJiQr07ySHSCRCStdwzFl3BCLAJGgZIlXGpL4+GbBaiyGLiIjIC5VV1WDrqav48UQR9p4tQa3u97jUNbIdJibFYkKiAv06hJp1Z09PVGD1jIFmfbJi5VJkTOqL9ESFU7+Lp2LIIiIi8hKllTXYcrIIm04UYf+5a6jT/x6sekaHYEKSAhOTYtE7RtbiY2/SExUY2zfWYsd3sg5DFhERkQcrUWvx08ki/HhCiQMXSqFrFKwSYmWYmKTAhMRY9IyRtfq9/cQiDOseYeeKfQdDFhERkYe5qtJg84ki/HBciUOXStH4FrbEjqGYkFgfrLpFhbiyTJ/HkEVEROQBCsuq8eNxJX48UYTDv90w2XdLXBgmJtavsYqPCHZZjWSKIYuIiMhN5V+vwo8nlNh0ogjHCspM9t3auT0mJMYiPTEWndozWLkjhiwiIiIn0OkFqxaRX7xWiU3HlfjxhBInClXG7SIRMLhLOCYmxiI9UYFYOZuBujuGLCIiIgfbfEJp1g5B0agdwrliNTYdL8Km40rkFamNx4hFwNBuEZiQpMD4fjHssu5hGLKIiIgcaPMJJeasO2LWPV1ZrsET645AESqFUvV7+PIXi5DaIxITEmMxrm8MIkIkTq+Z7IMhi4iIyEF0egGZG09ZfDyNgVKlgb8YGNkrGhMSYzG2bwzCggOdWCU5CkMWERGRnen1As6XVGDD4csmU4RNee/BQbijT4xTaiPnYcgiIiKyUWllDXIKbiAnvwxHC8qQk18GtbbO6vGVrTiWPAdDFhERUSvU6vTIU6pxtOAGjuaX4Wj+DVy6XmV2XFCAH7pEBCO30UL2pnBBu3diyCIiImqGsrzaGKaO5pfheGE5tHV6s+O6R7VDclx7DIgPw4D4MOPzAUcs34Gico3FdVmihocup3QNd8p3IediyCIiImpQXaPD8cJyY6A6WnADV1Vas+PkQQFIjgtrCFTtkdwpDPLgAIvvmTGpL+asOwIRYBK0RI3286HL3okhi4iIPI61jT2bIwgCLl6rNIapo/llyCtSmzxgGQ0PSU6IldUHqoYrVV0j20Eksu7z0hMVWD1joFmfrNhGfbLIOzFkERGRR2mpsWdTyqtqkXP592m/Y5fLUFZVa3ZcTKjEGKYGxLdHUkc5ggL9bKo5PVGBsX1jbQ6G5FlEgiA0176DHESlUkEul6O8vByhoaGuLoeIyCM01djTEFVWzxiI9EQF6nR6nL6qblhLVYacghs4X1Jp9n4SfzGSOsqNgWpAfBgU8iCnfBfyTK35/W3TlaxFixZh9OjRGDlyZJPH7N27Fzt37sQrr7xiy0cREZGPa66xp2HbX786ho/3XcTxQhWqa3Vmx3WJCDaGqQFx7ZGgkCHAT+zw2sk32RSyFi5ciIULFzYbsvbs2YPMzEyGLCIisknWxdIWG3tWanXIunQDACCT+CM5PgwD4sKQHB+G5Lj2CG/HTurkPA5fk1VTUwM/P9vmsomIyPdU1dThdJEap4vUyCtSY+/ZEqvG3Z8Sh0eGd0X3qBCIueaJXMjmkNXc3RU1NTXYu3cvoqOjbf0YIiLyUnq9gPzSKuQVqZCrNIQqFX4rrUJbVg3fdUtH9IyROaJUolZpdcjq1q2byc8rV67EmjVrzI7T6XS4du0aNBoNZs2aZVuVRETkFcqqapBXpEaeUlX/14YrVZbWTwFAlEyChFgZEmJl6BUjw/LNebheUcPGnuQRWh2y9Hq98eqVSCSCIAiwdINiQEAA+vXrh9tvvx0LFiywT7VEROQRaur0uHCtAqeL1MhV1l+ZylOqUaSyvKZK4i9Gr5j6MNU7VoY+ilD0jpUhMkRicpxM6s/GnuQxWh2yLl26ZPx7sViM5557jovaiYg8mC2NPQVBQLFai9yGK1P1oUqF8yUVqNVZnuvr1D4ICbGh6KOQISG2Pkx1iQiGvxV3+bGxJ3kSm9ZkXbx4EWFhYfarhoiInKo1jT2raupw5moFTjesncorUuF0kRo3LDT0RMPdfb1jZUhoCFN9FPVTfjKp5cfPWIuNPclTsBmpi7AZKRG5WnONPQUAs0d2Q3Cgf/1UX5Eal65XWlyILhYB3aJCjGunEmJDkaCQoWNYkNWPniHyFA5rRrpo0SKIRCI8+eSTCA8Px6JFi6waJxKJuC6LiMiN6PQCFrbQ2PP9PRfM9kWGBNaHqFgZEhT1f+0RHQJpAFv1EN2sVVeyxGIxRCIRcnNz0atXL4jF1nXJFYlE0Oks3zniq3gli4icRRAEXCnX4OxVNc4VV+Ds1QocyS/F2WLzx8zcbGTPSIzsFWVcOxUlk7Q4hsibOexK1s6dOwEA8fHxJj8TEZHr6fUCLt+oxtliNc42hKlzxfXBqrKmbf+je++tnXB3cke710rkC1oVskaNGtXsz55Cq9XilVdewaeffoobN26gf//+WLJkCcaOHdvi2MLCQjz33HPYsmUL9Ho90tLSsHLlSrP+YUREjlKn0yO/tApniysarkzVh6rzJRXQ1OotjvEXi9A1sh16xoSgR7QMEAS8teNci58VLZM64BsQ+QaHP1bHHc2cORMbNmzA//t//w89e/bE2rVrMXHiROzcuRMjRoxoclxFRQXS0tJQXl6Ol156CQEBAVi5ciVGjRqFnJwcREREOPV7EJH7saUdws1q6vT47Xql8arU2YarUhdKKlGjsxymAv3E6BbVDj1jZOgZHVL/iglB54h2Jg9C1ukFfHX4MorKNWzsSeQgNt1dmJ+f3+IxYrEYoaGhbrPuKCsrC0OGDMEbb7yBuXPnAgA0Gg0SExMRHR2N/fv3Nzn29ddfxwsvvICsrCwMHjwYAJCXl4fExETMmzcPS5cutboOrski8j6taYfQmKZWh4vX6sPUuYarUmeLK3DpWiXq9Jb/iJYGiNEjOgQ9o2UNfw1BzxgZ4toHWdVvCo3uLkQTjT1XzxjIvlNEN2nN72+bQpZhIbw1oqOj8cc//hEZGRmIiYlp60fabN68eVixYgVKS0tNTs6yZcvw0ksvIT8/H3FxcRbHpqSkAA1BrbHx48fj/PnzOHeu5UvvBgxZRN6luXYIaAgso3pF43xJ/RWp+itT9dN9v12vRBNZCiES/0Yh6vdQ1TEsyC4PP25rMCTyVQ5b+H6zhx56CJcuXcKePXvQvn17JCcnIyYmBlevXsWxY8dQWlqKUaNGQSaT4fjx43jvvfewceNGZGVlQaFwzX+8R48eRa9evcxOjCFA5eTkWAxZer0ev/76Kx555BGzfSkpKdiyZQvUajVkMj6UlMjX6PQCMltoh/DkZ0fQRAN0AECo1B+9YmTGNVOGUBUbKnVoryk29iRyHJtC1t/+9jeMGDECr7zyCubNm4fg4GDjvurqarz++uv45z//iX379iEhIQHLli3DggULsGTJErzzzjv2qL/VlEqlxYBn2HblyhWL40pLS6HValsc27t3b4vjtVottFqt8WeVStXm70BE7qG8qhZni9X46WSRyZUgSwwBK6JdYP2VqYarUj2jQ9AjJgRRIRKXNe70E4swrDvXlBLZm00ha968eRgyZAgWLlxoti8oKAgZGRk4cOAAXnjhBWzcuBEvv/wyvvvuO2zatMmWj7VJdXU1JBLzPi9SqdS4v6lxANo0Fg3TkZmZmW2um4hc53qF1rhOqvGaqRK11orRv3t1ciIeGNrZYXUSkXuxKWT9/PPPeOqpp5o9ZuDAgSZXrYYMGYIPPvjAlo+1SVBQkMkVJQONRmPc39Q4NFyRau1YAJg/fz6ef/55488qlarJtV9E5HyCIKBE3RCmGgWpc8UVKK2saXJcx7AgRIQE4tfL5S1+RreoEDtXTUTuzKaQpdfrW1zsfe7cOTReWx8QEGC88uMKCoUChYWFZtuVSiUAoEOHDhbHhYeHQyKRGI9rzVg0XAGzdBWMiJpmz3YIBoIgQFmuMYapcw1h6uxVNVSaOotjRCIgrn2wcWrPMM3XPToEIRJ/6PQCRizfwXYIRGTCppA1YsQIfP311/jiiy8wffp0s/1fffUV/vvf/5o0+Txz5kyzYcTRkpOTsXPnTqhUKpPF7wcPHjTut0QsFiMpKQnZ2dlm+w4ePIhu3bpx0TuRHdl615teL6CwrNrkTr6zxRU4X1yBCq3lMCUWAV0i2pmsmeoRHYLuUSEICmz62Xx+YhEyJvXFnHVHjA9XNjBEwoxJfbmYnMjH2NTC4fjx4xg+fDgqKytxyy23YPjw4YiOjkZxcTH279+PnJwctGvXDvv27UP//v1x/fp1dOzYEY899hhWrVpl329ipYMHD2Lo0KEmfbK0Wi0SExMRERGBAwcOAA09wKqqqpCQkGAcu3z5crz44os4dOgQBg0aBAA4ffo0+vXrh7lz5+K1116zug62cCBqmjXtEAxBS6cX6rufN0zx1V+Zqr9CZW33c8OdfF0i2tn0oGO2QyDyfk7rkwUAx44dw1NPPYWff/7ZbN/w4cPx9ttvG68O6XQ6VFRUIDg4GAEBAbZ8rE2mTZuGb775Bs899xx69OiBTz75BFlZWdi+fTtGjhwJABg9ejR2795tMtWpVqsxYMAAqNVqzJ07FwEBAVixYgV0Oh1ycnIQFRVldQ0MWUSWGabemrtbTybxx6jeUfXdz69VoqbOtu7n9q6f7RCIvJdTQ5ZBfn4+jh07ZpyGu+WWW4wPknY3Go0GCxYswLp164zPLly8eDHGjx9vPMZSyAKAy5cvmzy7cPTo0Vi5ciV69OjRqhoYsogs23/uGv70r4OtGmOP7udERNZwScii1mHIIgJUmlqcLlIjT6lCbsNfT15RQdvElanG7rqlAyYP6ICe0TK7dT8nImqJ0zq+N1ZYWIicnBzjlazk5GR07NjRXm9PRB6sTqfHxWuVyC1S43SRCnlKNfKK1Cgsa7q3XEvuT4lnA00icms2h6xz585hzpw52LFjh9m+MWPG4N133231VBoRea4StRZ5DUEqt0iF00X1C9KbWjfVMSwICbEy9I6VIUERil7RIZi55hCuqtgOgYg8m00hq6CgACNGjEBxcTESEhIwcuRIKBQKFBUVYc+ePdi2bRtuu+02ZGVlsfEmkYvZe0G2plaHs1crjEHKEKyuN9G4s12gnzFI9YmVoXdsKHrHyiAPMr8JZuFdbIdARJ7PppCVmZmJ4uJivPvuu5g9e7bZc7fef/99zJkzB4sWLcKHH35oa61E1Ea2tBYQBAGXb1Qjr2HNVF5DoLp4rRJ6C5eaxCKgS2Q7JMTKkBAbioRYGfooQlu1bio9UYHVMwaa1RzLdghE5EFsWvgeFxeHgQMH4ttvv23ymLvvvhuHDx/G5cuX2/oxXokL38lZWtNzyrgQvVGgOl2kbrJ5Z/vgAPRRhBrDVIJChp7RsmYbd7YG2yEQkbtx2sL34uJiJCYmNntMYmIiNm/ebMvHEFEb6fQCMjeesri2ybBt7lfH8FV2AfKKKppciB7oJ0b36BD0aQhShlAVJZOYXcG2Jz+xiIvbichj2RSyoqKicOrUqWaPOXXqVKuadBKR/WRdLG22qScAVGh12J5XYvy5g1yKBEX9einDVF/XSMc17yQi8lY2hazx48dj7dq1+Oijj/Doo4+a7f/444+xceNGzJw505aPIaJWKFZrcDS/DEfzy7Att8iqMVNu7YSpt3ZCQmwo5MGuexoDEZE3sWlNVn5+PgYNGoTr16+jb9++GDVqFGJiYnD16lXs2bMHJ0+eRGRkJLKzs3l34U24JovsQVOrw8krKhzNv4Gcgvpg1ZbeU/+ZNZTTckREVnDamqz4+Hj8/PPPmD17Nnbt2oWTJ0+a7E9LS8Pq1asZsIjsQBAEFJRW42jBjforVQVlOHWlHLU60/9PEomA3jEyDIgPwy2dwvD3LadxvaKGPaeIiJzM5makPXv2xI4dO1BQUGDW8Z3hiqjtKrR1+LWgPkwdza8PVpZ6UEWGBCI5rj0GxIdhQFwY+seFIUTy+3/aYcEB7DlFROQCfHahi3C6kBrT6QWcK65AjuEqVX4ZzhSrcfN/nQF+IvTrIMeA+DAkx4VhYHx7dGof1OIdfrb0ySIiot85bLrwkUceaVNBIpEIH330UZvGErkjW/s3Xa/QGtdQHS24gWMF5RZ7UXVqH4QB8e2RHBeGAfFh6KsIhTSg9T2o0hMVGNs3lj2niIicqFVXssTitt3CLRKJoNPp2jTWW/FKludq7VWhmjo9cpX1i9OPNgSr/NIqs+OCA/3Qv5McA+LbY0BcGJLjwxAtkzr8+xARkfUcdiXr4sWLttZG5NGa6p5eVK7BnHVH8O4DA9E/Lsy4hiqnoAzHC8stPhy5R3QIBsSF1Yeq+DD0jA6BP3tRERF5jVaFrM6dOzuuEiI3Z0339CfXH7H4PL+w4ACTQNW/U5jFByMTEZH3sPnuQiJfYU33dL1Q/4Bkw+L0+jv+2qNzRLBDHz9DRETuhyGLqAWCIOD0VTXW7r9k1fGv39sfUwaxfQkRka9jyCKyQBAEnLyiwo8nlPjxeBEuXKu0emzH9sEOrY2IiDwDQxZRA0EQ8OvlcmxqCFaN7wAM9Bfjth6RyP7tBlTVteyeTkRELWLIIp+m1ws4WlCGH48r8eOJIpPn/kkDxEjrHY0JSQrcnhCNEIm/8e5Cdk8nIqKWMGSRz9HpBRz+7QY2HVdi84kiFKl+X8weHOiH2xOiMTFJgdG9oxAcaPqfSHqiAqtnDDTrkxXL7ulERHQThizyCXU6PbIuleLH40XYfLIIJWqtcV+IxB939Km/YjWqV1SLHdXZPZ2IiKzBkEVeq1anx4EL17HpeBG2nCwyebhyqNQfY/vGYmJSLEb0jITEv3WPqvETizCse4QDqiYiIm/BkEVepaZOj5/PXcOm40pszb2Ksqpa476w4ACM7xuLCUmxSO0eiUB/dlcnIiLHYcgij6ep1WHv2Wv4sSFYqTW/P2g5ol0gxifGYmKiAkO6hSOAj60hIiInYcgij1Rdo8PuM8XYdLwI23OvorLm9weQR8kkmJAYiwmJCq6VIiIil2HIIpfT6QWrFpFXauuw83QxfjxehB15xaiu/T1YKeRSTEhUYEJSLG6Nbw8xgxUREbkYQxa51OYTSrN2CIpG7RDUmlrsyCvGpuNK7DpdAm2d3nhcp/ZBmJikwITEWNzSKYzBioiI3ApDFrmMobHnzd3Ti8o1eGLdEfTvGIq8ogrU6H4PVp0jgjExSYGJiQokdgzlQ5eJiMhtMWSRS+j0AjI3nrL4eBrDtl8LVQCAblHtcGeSAhMSFeijkDFYERGRR2DIIpfIulhqMkXYlDem9MeUWzsxWBERkcfxufvZt2/fjkceeQS9evVCcHAwunXrhsceewxKpdKq8QsXLoRIJDJ7SaVSh9fuTYrVLQcsNDyYmQGLiIg8kc9dyXrhhRdQWlqKqVOnomfPnrhw4QJWrVqF77//Hjk5OYiNjbXqfVavXo2QkBDjz35+resY7uuiZdaFUmuPIyIicjc+F7JWrFiBESNGQCz+/SJeeno6Ro0ahVWrVmHJkiVWvc+UKVMQGRnpwEq9W4jEH6JG669uJmp46HJK13AnV0ZERGQfPjddOHLkSJOAZdgWHh6O3Nxcq99HEASoVCoIQlMxgZpy6VolHl57yBiwbp4MNPycMakvG4kSEZHH8rmQZUlFRQUqKipadWWqW7dukMvlkMlkmDFjBq5everQGr1FUbkGMz46iGsVWvRRhOLNabcgVm46JRgrl2L1jIFIT1S4rE4iIiJb+dx0oSX/+Mc/UFNTg+nTp7d4bPv27fHUU09h2LBhkEgk2Lt3L9555x1kZWUhOzsboaGhFsdptVpotVrjzyqVyq7fwRPcqKzBgx8dxOUb1egSEYx/P5KCKJkEk5M7WtXxnYiIyJOIBA+e79Lr9aipqbHqWIlEYvEutT179mDMmDG455578MUXX7SpjvXr1+OBBx7AsmXL8OKLL1o8ZuHChcjMzDTbXl5e3mQw8yaV2jo88K+DyCkoQ0yoBBueSEVceLCryyIiImoVlUoFuVxu1e9vjw5Zu3btQlpamlXH5ubmIiEhwWRbXl4ehg8fjvj4eOzZswcymazNtSgUCvTr1w/btm2zuN/Slay4uDifCFnaOh0eXZuNfeeuISw4AF/NHoaeMW0/10RERK7SmpDl0dOFCQkJWLNmjVXHKhSm63sKCgowbtw4yOVybNq0yaaABQBxcXEoLS1tcr9EIoFEIrHpMzxRnU6PZ/+Tg33nriE40A9rH05hwCIiIp/g0SErNjYWM2fObPW469evY9y4cdBqtdi+fbtZAGstQRBw6dIlDBgwwKb38TaCIODlb05g88kiBPqJ8eFDg5AcF+bqsoiIiJzC5+4urKysxMSJE1FYWIhNmzahZ8+eTR6bn5+PvLw8k20lJSVmx61evRolJSVIT093SM2eSBAELPsxD19kF0AsAt66fwCG92BfMSIi8h0efSWrLR544AFkZWXhkUceQW5urklvrJCQEEyePNn480MPPYTdu3eb9MLq3Lkzpk+fjqSkJEilUuzbtw+ff/45kpOTMXv2bKd/H3e1evd5fLDnAgDgtXv6Iz3Ruk76RERE3sKjF763RZcuXfDbb79Z3Ne5c2dcunTJ+PPo0aPNQtasWbOwf/9+FBQUQKPRoHPnzrj33nvx8ssvt2pdV2sWznma9Qfz8dI3xwEAL0/sg1kju7m6JCIiIrvwmbsLPZm3hqzvf72Cp/9zFIIAPJnWHX8bn2DFKCIiIs/Qmt/fPrcmixxn95kSPPdFDgQB+NOQeMwd19vVJREREbkMQxbZxeHfSvHEp4dRqxPwh/4KLL470WLzVyIiIl/BkEU2y1Wq8PCaQ6iu1WFUryismJbMx+IQEZHPY8gim/x2vRIPfZwFlaYOt3Zuj9UzBiLQn/9aERER8bchtdlVlQYzPjqIErUWCbEyfPznwQgO9LmuIERERBYxZFGblFXV4KGPslBQWo3OEcH496MpkAcHuLosIiIit8GQRa1WVVOHh9cewumrakTLJFj36BBEy6SuLouIiMitMGRRq2jrdJj96WEczS+DPCgAnz46BHHhwa4ui4iIyO0wZJHVdHoBz32Rg71nryE40A9rHh6M3rHWd7knIiLyJQxZZBVBEPDyN8ex6XgRAvxEeP/BWzEwvr2ryyIiInJbDFlkleWbT+PzQwUQi4B/3jcAt/WMcnVJREREbo0hi1r03u7zeG/3eQDA0j8mYWKSwtUlERERuT2GLGrWf7Ly8dqPeQCA+RMScF9KvKtLIiIi8ggMWdSkTceVePmb4wCAJ0Z1x+xR3V1dEhERkcdgyCKL9p4twbOfH4VeAO5PicML6b1dXRIREZFHYcgiM4d/u4HH/30YtToBdyYpsGRyEkQiPvCZiIioNRiyyMTpIjUeWXsI1bU63NYzEium3wI/MQMWERFRazFkkVH+9So8+NFBlFfXYmB8GN5/8FZI/P1cXRYREZFHYsgiAECxSoMZHx1EsVqL3jEyfDxzMIID/V1dFhERkcdiyCKUV9XioY+zkF9ahfjwYHz6aArCggNdXRYREZFHY8jycVU1dXh4bRbyitSIkkmw7tEhiA6VurosIiIij8eQ5cNq6vR4Yt0RHMkvQ6jUH58+moL4iGBXl0VEROQVGLJ8lE4v4Lkvc7DnTAmCAvyw5uEUJMSGurosIiIir8GQ5YMEQcD//e8EfvhViQA/Ed578Fbc2rm9q8siIiLyKgxZPuiNn07jP1n5EImAldOTMapXlKtLIiIi8jq8R9/L6fQCsi6WolitQbRMimOXb+DdXecBAK9OTsIf+ndwdYlEREReiSHLi20+oUTmxlNQlmvM9s1L740/DYl3SV1ERES+gCHLS20+ocScdUcgNLG/a0Q7J1dERETkW7gmywvp9AIyN55qMmCJACz6/hR0+qaOICIiIlsxZHmhrIulFqcIDQQAynINsi6WOrUuIiIiX8KQ5YWK1U0HrLYcR0RERK3HkOWFomXWPRbH2uOIiIio9XwuZK1duxYikcjiq6ioyKr3yM3NRXp6OkJCQhAeHo4HH3wQJSUlDq/dWildw6GQSyFqYr8IgEIuRUrXcCdXRkRE5Dt89u7CRYsWoWvXribbwsLCWhx3+fJljBw5EnK5HEuXLkVFRQX+/ve/4/jx48jKykJgYKADq7aOn1iEjEl9MWfdEbN9huCVMakv/MRNxTAiIiKylc+GrAkTJmDQoEGtHrd06VJUVlbi8OHDiI+v7zOVkpKCsWPHYu3atXj88ccdUG3rpScqsHrGQMz96ldUaOuM22PlUmRM6ov0RIVL6yMiIvJ2Pjdd2JharYZOp2vVmK+//hp/+MMfjAELAO644w706tULX375pQOqbLv0RAXuGdgRADCmTzT+M2so9r1wOwMWERGRE/hsyEpLS0NoaCiCg4Nx11134ezZsy2OKSwsRHFxscUrYCkpKTh69GiTY7VaLVQqlcnLGa5X1AAAhnePxLDuEZwiJCIichKfmy4MDg7GzJkzjSHr8OHDWLFiBVJTU3HkyBHExcU1OVapVAIAFArzK0EKhQKlpaXQarWQSCRm+5ctW4bMzEw7f5uWlai1AIAomXlNRERE5DgeHbL0ej1qamqsOlYikUAkEmHatGmYNm2acfvkyZMxfvx4jBw5Eq+++iree++9Jt+jurra+F43k0qlxmMs7Z8/fz6ef/55488qlarZQGcvhl5Y0QxZRERETuXRIWvPnj1IS0uz6tjc3FwkJCRY3DdixAgMGTIE27Zta/Y9goKCgIapv5tpNBqTY24mkUgshi9HK264khUdyp5YREREzuTRISshIQFr1qyx6lhLU3yNxcXF4fTp01a9h2HasDGlUonw8HCXBKmmVGrrUFVTv7Cf04VERETO5dEhKzY2FjNnzrTLe124cAFRUVHNHtOxY0dERUUhOzvbbF9WVhaSk5PtUou9GK5iBQf6IUTi0f+oiYiIPI7P3V1oqTP7pk2bcPjwYaSnp5tsP3/+PM6fP2+y7d5778X333+PgoIC47bt27fjzJkzmDp1qgMrb71iFddjERERuYrPXd5ITU3FgAEDMGjQIMjlchw5cgQff/wx4uLi8NJLL5kcO2bMGADApUuXjNteeuklfPXVV0hLS8Ozzz6LiooKvPHGG0hKSsLDDz/s9O/TnJIK3llIRETkKj4XsqZPn44ffvgBW7ZsQVVVFRQKBWbNmoWMjAzExMS0OD4uLg67d+/G888/jxdffBGBgYG488478eabb7rVeiwAKFY1LHrng6CJiIicTiQIguDqInyRSqWCXC5HeXk5QkNDHfIZr/2Yh/d2n8fM1C5YeFc/h3wGERGRL2nN72+fW5PlS9iIlIiIyHUYsrwYG5ESERG5DkOWFythI1IiIiKXYcjyYsbpwhBeySIiInI2hiwvVavT43pl/XMdo0MZsoiIiJyNIctLXa+oD1h+YhHCgwNdXQ4REZHPYcjyUoZF75EhgRCLRa4uh4iIyOcwZHkpNiIlIiJyLYYsL2V4pA7bNxAREbkGQ5aXMlzJYiNSIiIi12DI8lJsREpERORaDFleytgji41IiYiIXIIhy0sVsxEpERGRSzFkeanfH6nDkEVEROQKDFleSBCE30MW12QRERG5BEOWFyqvrkWNTg8AiOR0IRERkUswZHkhw1UseVAApAF+ri6HiIjIJzFkeaFiThUSERG5HEOWFzL0yGIjUiIiItdhyPJCXPRORETkegxZXsj4cGg2IiUiInIZhiwvo9MLOKVUAQCqtHXQ6QVXl0REROSTGLK8yOYTSoxYvgP7z18HAKw7mI8Ry3dg8wmlq0sjIiLyOQxZXmLzCSXmrDsCZbnGZHtRuQZz1h1h0CIiInIyhiwvoNMLyNx4CpYmBg3bMjee4tQhERGREzFkeYGsi6VmV7AaEwAoyzXIuljq1LqIiIh8GUOWFzD0xbLXcURERGQ7hiwvEC2zrlWDtccRERGR7RiyvEBK13Ao5FKImtgvAqCQS5HSNdzJlREREfkuhiwv4CcWIWNSX4v7DMErY1Jf+ImbimFERERkbwxZXiI9UYHVMwaaPUonVi7F6hkDkZ6ocFltREREvsjnQtbo0aMhEoksvgICAlocP3PmTItjExISnFJ/c9ITFfjqiWEAAH+xCP+ZNRT7XridAYuIiMgF/F1dgLO9/PLLeOyxx0y2VVZW4oknnsC4ceOseg+JRIJ//etfJtvkcrld62wrsah+SjDAT4xh3SNcXQ4REZHP8rmQNXbsWLNt69atAwA88MADVr2Hv78/ZsyYYffa7MHQcJTrr4iIiFzL56YLLVm/fj3atWuHu+++2+oxOp0OKpXKoXW1hV6oD1kiZiwiIiKX8vmQVVJSgq1bt2Ly5Mlo166dVWOqqqoQGhoKuVyO8PBwPPnkk6ioqHB4rdYwPDmHV7KIiIhcy+emC2/2xRdfoK6uzuqpQoVCgXnz5mHgwIHQ6/XYvHkz3n33XRw7dgy7du2Cv7/lU6rVaqHVao0/O+oqmOFKlpiXsoiIiFzKo0OWXq9HTU2NVcdKJBKILASP9evXIyoqyuJaLUuWLVtm8vN9992HXr164eWXX8aGDRtw3333NTkuMzPTqs+wBUMWERGRe/Do6cI9e/YgKCjIqtfp06fNxl+4cAG//PILpk+f3uQVKGs899xzEIvF2LZtW5PHzJ8/H+Xl5cZXQUFBmz+vOYaF75wtJCIici2PvpKVkJCANWvWWHWsQmHeK2r9+vVAK+4qbEpQUBAiIiJQWlra5DESiQQSiaTJ/fYicE0WERGRW/DokBUbG4uZM2e2efz69evRvXt3DB061KY61Go1rl27hqioKJvexx5+v5LFkEVERORKHj1daIujR48iNzcXf/rTn5o85vz58zh//rzxZ41GA7VabXbc4sWLIQgC0tPTHVavtYxrsnz2nywREZF78OgrWbb47LPPgBamCseMGQMAuHTpEgCgqKgIAwYMwP333298jM5PP/2ETZs2IT09vVV9thyFC9+JiIjcg0+GLL1ej88//xwDBw5E7969rR4XFhaGP/zhD9i6dSs++eQT6HQ69OjRA0uXLsXcuXMhdoPLR4Y+WQxZREREruWTIUssFuPy5cstHme4gmUQFhaGTz/91IGV2Y53FxIREbkH1196IbvidCEREZF7YMjyMnp9/V/ZwoGIiMi1GLK8zO8PiGbIIiIiciWGLC9jCFl+/CdLRETkUvxV7GW4JouIiMg9MGR5GcOaLIYsIiIi12LI8jI6gS0ciIiI3AFDlpcRjGuymLKIiIhciSHLy+gapgt5dyEREZFrMWR5GePdhQxZRERELsWQ5WWMdxfynywREZFL8Vexl2ELByIiIvfAkOVldGzhQERE5BYYsryMni0ciIiI3AJDlpdhCwciIiL3wJDlZdjCgYiIyD0wZHkZtnAgIiJyDwxZXoYtHIiIiNwDfxV7mbqG+UJlmQa/nL8OnV5wdUlEREQ+iSHLi2w+ocTKbWcBAEcLynD/hwcwYvkObD6hdHVpREREPochy0tsPqHEnHVHoNbUmWwvKtdgzrojDFpEREROxpDlBXR6AZkbT8HSxKBhW+bGU5w6JCIiciKGLC+QdbEUynJNk/sFAMpyDbIuljq1LiIiIl/GkOUFitVNB6y2HEdERES2Y8jyAtEyqV2PIyIiItsxZHmBlK7hUMilaKr9qAiAQi5FStdwJ1dGRETkuxiyvICfWISMSX2BhkDVmOHnjEl9+TxDIiIiJ2LI8hLpiQqsnjEQsXLTKcFYuRSrZwxEeqLCZbURERH5In9XF0D2k56owNi+sci6WIpitQbRsvopQl7BIiIicj6GLC/jJxZhWPcIV5dBRETk8zhdSEREROQADFlEREREDuAVIUupVOLFF19EWloaZDIZRCIRdu3a1eTx+/fvx4gRIxAcHIzY2Fg888wzqKiosPrzPvroI/Tp0wdSqRQ9e/bE22+/badvQkRERN7CK0LW6dOnsXz5chQWFiIpKanZY3NycjBmzBhUVVVhxYoVeOyxx/DBBx9g6tSpVn3W+++/j8ceewz9+vXD22+/jWHDhuGZZ57B8uXL7fRtiIiIyBuIBEHw+KcGq9Vq1NbWIjw8HBs2bMDUqVOxc+dOjB492uzYiRMnIicnB3l5eQgNDQUA/Otf/8KsWbPw008/Ydy4cU1+TnV1NeLi4jB06FB8//33xu0zZszA//73PxQUFKB9+/ZW1axSqSCXy1FeXm6sg4iIiNxba35/e8WVLJlMhvDwlruZq1QqbN26FTNmzDA5MQ899BBCQkLw5ZdfNjt+586duH79Ov7yl7+YbH/yySdRWVmJH374wYZvQURERN7EK0KWtY4fP466ujoMGjTIZHtgYCCSk5Nx9OjRZscb9t88/tZbb4VYLG52vFarhUqlMnkRERGR9/KpkKVUKgEACoV593OFQoErV660ON7Pzw/R0dEm2wMDAxEREdHs+GXLlkEulxtfcXFxbf4eRERE5P7cLmTp9XpoNBqrXq1dTlZdXQ0AkEgkZvukUqlxf3PjAwMDLe5rafz8+fNRXl5ufBUUFLSqdiIiIvIsbtfxfc+ePUhLS7Pq2NzcXCQkJFj93kFBQUDD1N3NNBqNcX9z42tqaizua2m8RCIxCXeGgMhpQyIiIs9h+L1tzYUetwtZCQkJWLNmjVXHWpr2s+Z4w7RhY0qlEh06dGhxvE6nQ3FxscmUYU1NDa5fv97i+MbUajUAcNqQiIjIA6nVasjl8maPcbuQFRsbi5kzZzrkvRMTE+Hv74/s7GxMmzbNuL2mpgY5OTkm2yxJTk4GAGRnZ2PixInG7dnZ2dDr9cb91ujQoQMKCgqMzVPtSaVSIS4uDgUFBWwP4UA8z87B8+wcPM/OwfPsPI4614IgQK1WW3Vhxe1CliPJ5XLccccdWLduHRYsWACZTAYA+PTTT1FRUWHSkLSqqgr5+fmIjIxEZGQkAOD2229HeHg4Vq9ebRKyVq9ejeDgYNx5551W1yIWi9GpUye7fr+bhYaG8j9iJ+B5dg6eZ+fgeXYOnmfnccS5bukKloHXhKwlS5YAAE6ePAk0BKd9+/YBAP7v//7PeNyrr76K1NRUjBo1Co8//jguX76MN998E+PGjUN6errxuKysLKSlpSEjIwMLFy4EGtZkLV68GE8++SSmTp2K8ePHY+/evVi3bh1effVVq3p1ERERkW/wmpC1YMECk58//vhj4983DlkDBw7Etm3b8MILL+C5556DTCbDo48+imXLlln1OX/5y18QEBCAN998E9999x3i4uKwcuVKPPvss3b8NkREROTpvCZktaadw4gRI/Dzzz83e8zo0aObfM9Zs2Zh1qxZra7RWSQSCTIyMiy2qiD74Xl2Dp5n5+B5dg6eZ+dxh3PtFc8uJCIiInI3bteMlIiIiMgbMGQREREROQBDFhEREZEDMGQREREROQBDlgfRarV44YUX0KFDBwQFBWHIkCHYunWrVWMLCwsxbdo0hIWFITQ0FHfffTcuXLjg8Jo9UVvP83//+19Mnz4d3bp1Q3BwMHr37o2//vWvKCsrc0rdnsaWf58bGzt2LEQiEZ566imH1OnpbD3PX3zxBYYNG4Z27dohLCwMqamp2LFjh0Nr9kS2nOdt27YhLS0NkZGRCAsLQ0pKCj799FOH1+yJKioqkJGRgfT0dISHh0MkEmHt2rVWjy8rK8Pjjz+OqKgotGvXDmlpaThy5IjjChbIY9x3332Cv7+/MHfuXOH9998Xhg0bJvj7+wt79+5tdpxarRZ69uwpREdHC8uXLxdWrFghxMXFCZ06dRKuXbvmtPo9RVvPc0REhJCUlCQsWLBA+PDDD4VnnnlGCAwMFBISEoSqqiqn1e8p2nqeG/v666+Fdu3aCQCEJ5980qH1eipbznNGRoYgEomEqVOnCu+9957w9ttvC7Nnzxb+/e9/O6V2T9LW8/ztt98KIpFISE1NFd5++21h1apVwsiRIwUAwooVK5xWv6e4ePGiAECIj48XRo8eLQAQ1qxZY9VYnU4npKamCu3atRMWLlworFq1Sujbt68gk8mEM2fOOKRehiwPcfDgQQGA8MYbbxi3VVdXC927dxeGDRvW7Njly5cLAISsrCzjttzcXMHPz0+YP3++Q+v2NLac5507d5pt++STTwQAwocffuiQej2VLee58fFdunQRFi1axJDVBFvO8y+//CKIRCL+oreCLed57NixQocOHQSNRmPcVltbK3Tv3l3o37+/Q+v2RBqNRlAqlYIgCMKhQ4daFbK++OILAYDw1VdfGbcVFxcLYWFhwv333++Qejld6CE2bNgAPz8/PP7448ZtUqkUjz76KH755RcUFBQ0O3bw4MEYPHiwcVtCQgLGjBmDL7/80uG1exJbzvPo0aPNtv3xj38EAOTm5jqoYs9ky3k2eP3116HX6zF37lwHV+u5bDnP//jHPxAbG4tnn30WgiCgoqLCSVV7HlvOs0qlQvv27U0aZvr7+yMyMhJBQUEOr93TSCQSxMbGtmnshg0bEBMTg3vuuce4LSoqCtOmTcO3334LrVZrx0rrMWR5iKNHj6JXr15mD7lMSUkBAOTk5Fgcp9fr8euvv2LQoEFm+1JSUnD+/Hmo1WoHVe152nqem1JUVAQAxoeMUz1bz3N+fj5ee+01LF++nL+ImmHLed6+fTsGDx6Mt956C1FRUZDJZFAoFFi1apXD6/Y0tpzn0aNH4+TJk1iwYAHOnTuH8+fPY/HixcjOzsa8efMcXrsvOXr0KAYOHAix2DT6pKSkoKqqCmfOnLH7Z3rNY3W8nVKphEKhMNtu2HblyhWL40pLS6HValsc27t3b7vX7Inaep6bsnz5cvj5+WHKlCl2q9Eb2Hqe//rXv2LAgAG47777HFajN2jreb5x4wauXbuGn3/+GTt27EBGRgbi4+OxZs0aPP300wgICMDs2bMdXr+nsOXf5wULFuDixYt49dVXsWTJEgBAcHAwvv76a9x9990OrNr3KJVKjBw50mx7439OSUlJdv1MhiwPUV1dbfH5S1Kp1Li/qXFouMTa2rG+qK3n2ZL169fjo48+wrx589CzZ0+71unpbDnPO3fuxNdff42DBw86tEZv0NbzbJgavH79Oj7//HNMnz4dADBlyhQkJSVhyZIlDFmN2PLvs0QiQa9evTBlyhTcc8890Ol0+OCDDzBjxgxs3boVQ4cOdWjtvsSef75biyHLQwQFBVmcL9ZoNMb9TY1Dw+3FrR3ri9p6nm+2d+9ePProoxg/fjxeffVVu9fp6dp6nuvq6vDMM8/gwQcfNFljSJbZ+udGQECAyVVYsViM6dOnIyMjA/n5+YiPj3dY7Z7Elj83nnrqKRw4cABHjhwxTmNNmzYN/fr1w7PPPsv/mbAje/353hpck+UhFAoFlEql2XbDtg4dOlgcFx4eDolE0qaxvqit57mxY8eO4a677kJiYiI2bNgAf3/+v8zN2nqe//3vf+P06dOYPXs2Ll26ZHwBgFqtxqVLl1BVVeXg6j2HLX9uSKVSREREwM/Pz2RfdHQ00DClSPXaep5ramrw0Ucf4c477zRZJxQQEIAJEyYgOzsbNTU1Dqzct9jjz/fWYsjyEMnJyThz5gxUKpXJdsP/5SQnJ1scJxaLkZSUhOzsbLN9Bw8eRLdu3SCTyRxUtedp63k2OH/+PNLT0xEdHY1NmzYhJCTEofV6qrae5/z8fNTW1mL48OHo2rWr8YWGANa1a1ds2bLFCd/AM9jy50ZycjJKSkrMfskb1hdFRUU5rG5P09bzfP36ddTV1UGn05ntq62thV6vt7iP2iY5ORlHjhyBXq832X7w4EEEBwejV69e9v9QhzSGILs7cOCAWR8WjUYj9OjRQxgyZIhx22+//Sbk5uaajH3ttdcEAMKhQ4eM2/Ly8gQ/Pz/hhRdecNI38Ay2nGelUil069ZN6NChg3Dx4kWn1u1p2nqec3NzhW+++cbsBUCYOHGi8M033whXrlxx+vdxV7b8+7xy5UoBgPDBBx8Yt1VXVwvdunUT+vbt66Rv4Bnaep7r6uqEsLAwoVevXoJWqzVuV6vVQqdOnYSEhAQnfgvP01yfrCtXrgi5ublCTU2Ncdvnn39u1ierpKRECAsLE6ZPn+6QGhmyPMjUqVMFf39/4W9/+5vw/vvvC6mpqYK/v7+we/du4zGjRo0Sbs7OKpVK6N69uxAdHS28/vrrwsqVK4W4uDihQ4cOQnFxsQu+iXtr63m+5ZZbBADCvHnzhE8//dTktWXLFhd8E/fW1vNsCZuRNq2t57mqqkro16+fEBAQIMydO1d46623hMGDBwt+fn7Cpk2bXPBN3Ftbz/OSJUsEAMKAAQOElStXCn//+9+FPn36CACEdevWueCbuL+3335bWLx4sTBnzhwBgHDPPfcIixcvFhYvXiyUlZUJgiAIf/7znwUAJv/DW1dXJwwdOlQICQkRMjMzhXfeeUfo16+fIJPJhLy8PIfUypDlQaqrq4W5c+cKsbGxgkQiEQYPHixs3rzZ5JimfikVFBQIU6ZMEUJDQ4WQkBDhD3/4g3D27FknVu852nqeATT5GjVqlJO/hfuz5d/nmzFkNc2W83z16lXhz3/+sxAeHi5IJBJhyJAhZmOpni3n+bPPPhNSUlKEsLAwISgoSBgyZIiwYcMGJ1bvWTp37tzkn7WGUGUpZAmCIJSWlgqPPvqoEBERIQQHBwujRo0ymeWxN5FQ/wcUEREREdkRF74TEREROQBDFhEREZEDMGQREREROQBDFhEREZEDMGQREREROQBDFhEREZEDMGQREREROQBDFhEREZEDMGQREREROQBDFhEREZEDMGQREREROQBDFhEREZEDMGQREdnBrl27IBKJsHDhQuzbtw+jR4+GTCZDWFgY7r33Xpw7d87VJRKRkzFkERHZ0YEDBzBmzBjI5XI8/fTTGDVqFL755hukpqbiwoULri6PiJzI39UFEBF5k59++gnvvfceZs+ebdz2/vvv44knnsCzzz6LjRs3urQ+InIekSAIgquLICLydLt27UJaWhp69eqF3NxciMW/TxTo9XokJCTg3LlzuHr1KqKiolxaKxE5B6cLiYjsaPjw4SYBCwDEYjGGDx8OQRBw7Ngxl9VGRM7FkEVEZEcxMTHNbi8vL3dyRUTkKgxZRER2dPXq1Wa3y+VyJ1dERK7CkEVEZEc///wz9Hq9yTa9Xo/9+/dDJBLhlltucVltRORcDFlERHZ05swZfPjhhybbPvzwQ5w5cwZ33nknF70T+RC2cCAisqPx48fjmWeewaZNm9CvXz+cPHkSGzduRGRkJP75z3+6ujwiciJeySIisqOhQ4di+/btKC8vx1tvvYVdu3Zh8uTJ+OWXX9CtWzdXl0dETsQrWUREdjZixAjs2rXL1WUQkYvxShYRERGRAzBkERERETkAQxYRERGRA/DZhUREREQOwCtZRERERA7AkEVERETkAAxZRERERA7AkEVERETkAAxZRERERA7AkEVERETkAAxZRERERA7AkEVERETkAAxZRERERA7w/wEFLlSOAds2kgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "logit=np.log(odds)\n", "plt.plot(p,logit,\"o-\")\n", "plt.xlabel(\"p\")\n", "plt.ylabel(\"logit\");" ] }, { "cell_type": "markdown", "metadata": { "id": "PIydD3boejvS" }, "source": [ "Artık elimizde lineer bir denklem var. X, 1 birim arttıkça Y'nin logiti $\\beta_1$ kadar değişir, başka bir değişle odds $e^{\\beta_1}$ kadar artar.\n", "\n", "Şimdi son olarak sınıf olasılıklarını bulmak için bu logit fonksiyonun da aşağıdaki gibi tersi(inverse) alınır, ki buna da `sigmoid function` denir. Burda x ve y arasındaki ilişki non-lineer olmuştur." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:10:58.320815Z", "start_time": "2022-02-04T18:10:57.129366Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 476 }, "executionInfo": { "elapsed": 473, "status": "ok", "timestamp": 1729948681531, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "KIWggkEWejvT", "outputId": "7f5d202b-7108-40d9-a0ab-11f062770018", "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAG5CAYAAACX5ND3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVeNJREFUeJzt3Xtc0/X+B/DXNmDjOkVBhoI3biIpWoKaeSvNS2rn5KXSY55jefLYr6wsj3U8ZJlmdixPnSxPlqZ5utAVK8r7JS+oiKWoeEFRmaKijNsGbJ/fH7AlssE2BtvY6/l48BA+3+9ne3/d2F58P599vhIhhAARERERWUXq7AKIiIiI3AnDExEREZENGJ6IiIiIbMDwRERERGQDhiciIiIiGzA8EREREdmA4YmIiIjIBl7OLsBVGQwG5OfnIzAwEBKJxNnlEBERkRWEECguLkZ4eDik0qY5R8TwZEF+fj4iIiKcXQYRERHZ4fz58+jQoUOT3DbDkwWBgYFAzX9+UFCQs8shIiIiK2g0GkRERJjex5sCw5MFxqG6oKAghiciIiI305RTbjhhnIiIiMgGDE9ERERENmB4IiIiIrIBwxMRERGRDRieiIiIiGzA8ERERERkA4YnIiIiIhswPBERERHZgOGJiIiIyAYuF55KSkqQkpKCESNGIDg4GBKJBKtXr7a6/40bNzBjxgyEhITA398fQ4YMQWZmZpPWTERE5Ch6g8Ce09fwbdZF7Dl9DXqDcHZJDtUSjs/lLs9y9epVvPzyy4iMjETPnj2xbds2q/saDAaMHj0ahw8fxnPPPYe2bdvi3XffxeDBg3Hw4EFER0c3ae1ERESNkX5EjQVp2VAXaU1tKqUCKWPiMSJB5dTaHKGlHJ/LnXlSqVRQq9U4d+4cli5dalPf1NRU7N69G6tXr0ZKSgpmzZqFbdu2QSaTISUlpclqJiIiaqz0I2rMXJdZK1gAwKUiLWauy0T6EbXTanOElnR8LnfmSS6XIywszK6+qampaNeuHf74xz+a2kJCQjBx4kSsW7cOOp0OcrncgdUSERE1nt4gsCAtG+YGsAQACYAFadkYFh8GmbTpLnhb576FgBDVNQghYBCAQE1bzfcGUbMfAGGo22YQAnq9wD+/Pepyx2cvlwtPjXHo0CH07t0bUmntE2pJSUlYuXIlcnJycNttt5ntq9PpoNPpTD9rNJomr5eIiEgIgR9+U9c5I1NrHwDqIi3ufG0LFN7SuiHmpqAiBFA9jcj4fU2wqfkeZtpqdjd9b7ydZvs/qDm+jNxC9Ovapvnu2E4tKjyp1WoMHDiwTrtKVT2Omp+fbzE8LV68GAsWLGjyGomIyDMJIXClWIcTl4uRc7kEOZeKkVNQjJOXS1Ciq7LqNi5pLAcsVyWRVKcja7JYQbF7HF+LCk/l5eVmh+UUCoVpuyXz5s3DM888Y/pZo9EgIiKiiSolIqKW7FqJDjmXS3CyoBgnLlUHpBOXi1FUXml2f6nEeLaofi+NiUdCeyUkEgkkEkAqkUBSE1CkkurhLlP7Ldslpu8lkEoACSQ17RbaUNNW009a3Vjrdo33A1i+TwDYc/oaHvrv3gaPLzRQYdP/s7O0qPDk6+tba+jNSKvVmrZbIpfLOR+KiIhsUlReiZOXi3Hick1AulSMkwXFuFpSYXZ/qQTo1NYfMaGBiAkLREy7AMS0C0REaz8M/dc2XCrSmj1DIwEQplTgT/06ucWcoFsldQ6GSqlo8PiSOgc7oTrbtajwZPyk3q2MbeHh4U6oioiI3F2prgonC2qG2m4KS/UNo0UG+5nCkfGrS4g/FN4ys/unjInHzHWZqBnlMpHctN0dgxMAyKSSFnV8LSo8JSYmYufOnTAYDLUmje/btw9+fn6IiYlxan1EROTatJV6nCooqRWQci4X48J1y9M+wpUKRLcLRGxYIKJDAxAbFoio0AD4+dj2FjsiQYUVU3rXWQcpzA3XQTKnJR2f24YntVqNoqIidO3aFd7e3gCA8ePHIzU1FV999RXGjx8P1Cy6+cUXX2DMmDEcliMiIgBARZUBZ66W/D5x+3L1V15hmcW5RyGBcsS2C0R0u4Caf6u/D1J4O6yuEQkqDIsPQ0ZuIQqKtQgNrB7KcpczMg1pKcfnkuHpnXfewY0bN5Cfnw8ASEtLw4ULFwAA//d//welUol58+ZhzZo1yM3NRadOnYCa8NS3b1/8+c9/RnZ2tmmFcb1ez0/SERF5oCq9AWevlZnCUU7NJ93OXi1FlYWU1NrP+/ehtrBAxIRWD7219vdplpplUolbfFzfXi3h+FwyPL3xxhs4d+6c6eevvvoKX331FQBgypQpUCqVZvvJZDL88MMPeO655/Dvf/8b5eXl6NOnD1avXo3Y2Nhmq5+IiJqX3iBwvrA6JJ0sqJ64nXO5GGeulKJCbzDbJ1DhddN8pN/nJrUN8DF9SozIHIkQzbkMlvvQaDRQKpUoKipCUFCQs8shIqKatZIu3ig3ffTfeDbpVEEJtJXmQ5KfjwzRoQG1zya1C0BYkIIhqQVqjvdvlzzzREREnk0IgYJinekMkjEsnSqwvKCkj5cUUSHVE7aN85Ji2gWifStfSN1sTg25NoYnIiJyqmslut/XSbpcXL1u0qViaLTmQ5K3TIIubQNqTdyODQtEZLCf2008JvfE8ERERM2iqKwSOQU1Q22Xai5RcrkY10qtX1Aytl0gOrX1h7dMarYPUXNgeCIiIhO9QTT6Y+QluiqcvOmTbcZ5SZc1da8AgZrLeES0tm1BSSJnYngiIiIAQPoRdZ0FDFX1LGBYXvH7gpI5Bb+fTbp4o/4FJavPIv3+KTd7FpQkciY+W4mICOlH1Ji5LrPOdccuFWkxc10mXhzdDSGB8lpnk/IKy2Dp89qhgXLENPGCkkTOwvBEROTh9AaBBWnZZi/Yamxb+P0xs32NC0pWf8ItsOYTbgFo5dc8C0oSOQPDExGRh8vILaw1VGdJTLsA3N4x2DRxO5oLSpKHYngiIvJwBcUNBycAmDUkCuMS2zd5PUSujp/1JCLycIFWzkMKDVQ0eS1E7oBnnoiIPNi1Eh3e3Hii3n0kAMKU1csWEBHPPBEReayLN8ox4f09+O2iBgHy6r+lb529ZPw5ZUw8V+8mqsHwRETkgU5eLsYD7+7GmSulCFcq8M2sO/HelN4IU9YemgtTKrBiSm+z6zwReSoO2xEReZhDedfx59X7caOsElGhAfj4L0kIb+WLqNAADIsPa/QK40QtHcMTEZEH2ZFzBY+vO4iyCj16RrTC6ml90Nr/9zWZZFIJ+nVt49QaiVwdwxMRkYdIO5yPZz7PQqVe4K7otnhvyu3wl/NtgMhW/K0hIvIAa/ecxT+/OwohgPt6qLBsYiJ8vDjtlcgeDE9ERC2YEALLN5/EW5tOAgCm9I3EgrEJnMdE1AgMT0RELZTBILAg7SjW7DkHAHjq7mjMvieal1MhaiSGJyIiN6c3iDqfkNMbBOZ8cRjfHc6HRAK8NKY7HunfydmlErUIDE9ERG4s/YgaC9Kya13Yt12QHG385chWa+AlleBfE3vymnREDsTwRETkptKPqDFzXSbELe2XNTpc1ujgI5Ni5dTbMTg21EkVErVM/KgFEZEb0hsEFqRl1wlONwv09cJd0SHNWBWRZ2B4IiJyQxm5hbWG6sy5VlKBjNzCZquJyFMwPBERuaGC4vqDk637EZH1GJ6IiNxQaKDCir2s34+IrMfwRETkhpI6B0OlVMDSik0SACpl9bIFRORYDE9ERG5IJpUgZUy82QnjxkCVMiaeK4kTNQGGJyIiNxUVGgBz2ShMqcCKKb0xIkHljLKIWjyu80RE5IaEEHjpu2wYBHB3XCgevatLrRXGecaJqOkwPBERuaGfjl7CrlNX4eMlRcqY7ohs4+fskog8BoftiIjcTHmFHq9sOAYA+OvALgxORM2M4YmIyM28t/00Lt4oR/tWvvjb4Chnl0PkcRieiIjcyPnCMqzYfhoA8OLobvD1kTm7JCKPw/BERORGXtmQjYoqA/p3bYORCWHOLofIIzE8ERG5iR05V/Bz9mXIpBK8NLY7JBJ+oo7IGRieiIjcQEWVAS+lHQUAPNKvE2LaBTq7JCKPxfBEROQGPvolF2eulKJtgA9mD4t2djlEHo3hiYjIxV3WaPHvzScBAHNHxCFI4e3skog8GsMTEZGLe+3H4yit0KNXZCs80LuDs8sh8ngMT0RELuzA2UJ8fegiJBJgwdjukPKyK0ROx/BEROSi9AaBf35bPUn8wT4R6NGhlbNLIiKGJyIi17U+Iw/Zag2CFF6YMzzW2eUQUQ2GJyIiF3S9tAL/+vkEAODZ4bFoEyB3dklEVIPhiYjIBb3x8wncKKtEXFggJidHOrscIroJwxMRkYs5crEI6zPyAAAvje0OLxlfqolcCX8jiYhciBACKd8dhRDA2J7h6NuljbNLIqJbMDwREbmQrw9dxMFz1+HnI8MLo7o5uxwiMoPhiYjIRRRrK7H4x+MAgCeGRiFMqXB2SURkBsMTEZGLeHvLKVwp1qFzW39MH9DZ2eUQkQUMT0RELuBUQQk+3JULAPjnmHjIvWTOLomILGB4IiJyMiEEFqQdRZVB4J5uoRgSG+rskoioHgxPRERO9tPRy9h58ip8vKSYf1+8s8shoga4ZHjS6XSYO3cuwsPD4evri+TkZGzcuNGqvps2bcKQIUPQtm1btGrVCklJSVi7dm2T10xEZAu9QWDP6WtIPXge//jmNwDAjLu6oGMbf2eXRkQN8HJ2AeZMmzYNqampmD17NqKjo7F69WqMGjUKW7duxYABAyz2++6773D//fejX79+eOmllyCRSPD5559j6tSpuHr1Kp5++ulmPQ4iInPSj6ixIC0b6iKtqU0qAaLbBTi1LiKyjkQIIZxdxM0yMjKQnJyMpUuXYs6cOQAArVaLhIQEhIaGYvfu3Rb7Dh8+HEePHsWZM2cgl1dfB6qqqgpxcXHw9/fH4cOHra5Do9FAqVSiqKgIQUFBDjgyIqLq4DRzXSbMvfBKAKyY0hsjElROqIyoZWiO92+XG7ZLTU2FTCbDjBkzTG0KhQLTp0/Hnj17cP78eYt9NRoNWrdubQpOAODl5YW2bdvC19e3yWsnIqqP3iCwIC3bbHAyWpCWDb3Bpf6mJaJbuFx4OnToEGJiYuqkxaSkJABAVlaWxb6DBw/G0aNHMX/+fJw6dQqnT5/GK6+8ggMHDuD555+v9351Oh00Gk2tLyIiR8rILaw1VHcrAUBdpEVGbmGz1kVEtnG5OU9qtRoqVd1T1sa2/Px8i33nz5+P3NxcvPrqq1i4cCEAwM/PD19++SXGjRtX7/0uXrwYCxYsaHT9RESWFBRbDk727EdEzuFyZ57Ky8trDbsZKRQK03ZL5HI5YmJiMH78ePzvf//DunXrcMcdd2DKlCnYu3dvvfc7b948FBUVmb7qGx4kIrJHaKB1l1uxdj8icg6XO/Pk6+sLnU5Xp12r1Zq2W/LEE09g7969yMzMhFRanQsnTpyI7t2746mnnsK+ffss9pXL5WZDGxGRoyR1DoZKqbA4dCcBEKZUIKlzcLPXRkTWc7kzTyqVCmq1uk67sS08PNxsv4qKCqxatQqjR482BScA8Pb2xsiRI3HgwAFUVFQ0YeVERPWTSSWYP9r8IpiSmn9TxsRDJpWY3YeIXIPLhafExETk5OTUmbBtPGuUmJhott+1a9dQVVUFvV5fZ1tlZSUMBoPZbUREzUnp5w3cFJaMwpQKLlNA5CZcbp2nffv2oW/fvrXWedLpdEhISECbNm1Mc5fy8vJQVlaGuLg4AIBer0fbtm0RGhqK3377DT4+PgCAkpISdOvWDQEBATh27JjVdXCdJyJqCv/3v0NIO5yPh5MjMKZHexQUaxEaWD1UxzNORI3XHO/fLjfnKTk5GRMmTMC8efNQUFCAqKgorFmzBmfPnsWqVatM+02dOhXbt2+HMfvJZDLMmTMH//jHP9C3b19MnToVer0eq1atwoULF7Bu3TonHhUREVBYWoGfjlwCADyc1BEJ7ZXOLomI7OBy4QkAPv74Y8yfPx9r167F9evX0aNHD2zYsAEDBw6st9+LL76Izp07Y/ny5ViwYAF0Oh169OiB1NRUPPDAA81WPxGROV8fuogKvQEJ7YMYnIjcmMsN27kKDtsRkSMJITD8zR04WVCCV+5PwJ/6dnR2SUQtkkdenoWIqCXKzLuOkwUlUHhLMS7R/KeGicg9MDwRETWDTzOqF94dfVs4ghTezi6HiBqB4YmIqIkVayux4dfqteoeSopwdjlE1EgMT0RETey7w/kor9QjKjQAt3ds7exyiKiRGJ6IiJqYccjuwT4RkEi4lhORu2N4IiJqQkcuFuG3i0Xwlknwh17tnV0OETkAwxMRURP6bH/1Wafh3cPQJoAXHydqCRieiIiaSHmFHt9kXQRqhuyIqGVgeCIiaiI//KZGsbYKHVr74s6ubZ1dDhE5CMMTEVETMQ7ZTbojAlJe9JeoxWB4IiJqAqcKSpBxthBSCTDhDg7ZEbUkDE9ERE3g8wPVZ52GxoUiTKlwdjlE5EAMT0REDlZRZcCXBy8AACb1iXR2OUTkYAxPREQOtunYZVwrrUBooBxDYkOcXQ4RORjDExGRg/0vIw8AMOGODvCS8WWWqKXhbzURkQOdLyzDrlNXAQCT7uCQHVFLxPBERORAXxw4DyGAO6PaILKNn7PLIaImwPBEROQgeoPA5weqJ4o/yIniRC0WwxMRkYNszynAJY0Wrf28Mbx7O2eXQ0RNhOGJiMhBPs2oXtvpj707QO4lc3Y5RNREvJxdABGRO9MbBDJyC3GqoBibjl0GeBFgohaP4YmIyE7pR9RYkJYNdZHW1OYtk+D0lRJEtwt0am1E1HQ4bEdEZIf0I2rMXJdZKzgBQKVeYOa6TKQfUTutNiJqWgxPREQ20hsEFqRlQ9Szz4K0bOgN9e1BRO6K4YmIyEYZuYV1zjjdTABQF2mRkVvYrHURUfNgeCIislFBseXgZM9+ROReGJ6IiGwUGqhw6H5E5F4YnoiIbJTUORgqpQISC9slAFRKBZI6BzdzZUTUHBieiIhsJJNKkDIm3uw2Y6BKGRMPmdRSvCIid8bwRERkhxEJKjw9LKZOe5hSgRVTemNEgsopdRFR0+MimUREdiosrQAADIxpiwd6d0BoYPVQHc84EbVsDE9ERHYwGATSj1wCAEzt2wn3xPNCwESegsN2RER2+PViES5ptPD3kWFAdFtnl0NEzYjhiYjIDj/WXH5lSFwoFN4yZ5dDRM2I4YmIyEZCCPxUM2Q3IiHM2eUQUTNjeCIistGJy8U4e60MPl5SDIkNdXY5RNTMGJ6IiGz042/VZ50GRofAX87P3RB5GoYnIiIb/XSUQ3ZEnozhiYjIBrlXS3H8UjG8pBLc041DdkSeiOGJiMgGxrWd+nVtg1Z+Ps4uh4icgOGJiMgG6TVDdvd255AdkadieCIislL+jXIcPn8DEgkwvDtXFCfyVAxPRERWMk4Uv6Nja4QGKpxdDhE5CcMTEZGVfjQtjKlydilE5EQMT0REVrhSrMP+s4UAgHs5ZEfk0RieiIissOnYZQgB3NZeiQ6t/ZxdDhE5EcMTEZEVfuS17IioBsMTEVEDisorsfvUVYDhiYgYnoiIGrbl+GVUGQSiQwPQNSTA2eUQkZMxPBERNcB4IeCRPOtERAxPRET1K6uowvacKwCAexmeiIjhiYiofttOXIGuyoDIYD/Eq4KcXQ4RuQCGJyKieqTf9Ck7iUTi7HKIyAW4ZHjS6XSYO3cuwsPD4evri+TkZGzcuNHq/p999hn69esHf39/tGrVCv3798eWLVuatGYialn0BoEdOQWmS7Lc040LYxJRNZcMT9OmTcOyZcswefJkLF++HDKZDKNGjcKuXbsa7PvSSy/hoYceQkREBJYtW4aFCxeiR48euHjxYrPUTkTuL/2IGgOWbMHUD/dDV2UAADz5v0NIP6J2dmlE5AIkQgjh7CJulpGRgeTkZCxduhRz5swBAGi1WiQkJCA0NBS7d++22Hfv3r3o378//vWvf+Hpp59uVB0ajQZKpRJFRUUICuI8ByJPkX5EjZnrMnHrC6NxwG7FlN68th2RC2uO92+XO/OUmpoKmUyGGTNmmNoUCgWmT5+OPXv24Pz58xb7vvXWWwgLC8NTTz0FIQRKSkqaqWoiagn0BoEFadl1ghMAU9uCtGzoDS71NycRNTOXC0+HDh1CTExMnbSYlJQEAMjKyrLYd/PmzejTpw/+/e9/IyQkBIGBgVCpVHjnnXcavF+dTgeNRlPri4g8S0ZuIdRFWovbBQB1kRYZuYXNWhcRuRYvZxdwK7VaDZWq7ilxY1t+fr7ZftevX8fVq1fxyy+/YMuWLUhJSUFkZCQ++ugj/N///R+8vb3x17/+1eL9Ll68GAsWLHDgkRCRuykothyc7NmPiFomq888SaVSyGQym7+8vGzLZ+Xl5ZDL5XXaFQqFabs5xiG6a9eu4YMPPsCcOXMwceJEfP/994iPj8fChQvrvd958+ahqKjI9FXf8CARtUyhgQqH7kdELZPVyWbgwIF11ji5fv06fv31V8hkMkRERKBdu3a4fPkyzp8/D71ejx49eqB169Y2FeTr6wudTlenXavVmrZb6gcA3t7eGD9+vKldKpVi0qRJSElJQV5eHiIjI832l8vlZkMbEXmOpM7BUCkVFofuJADClAokdQ5u9tqIyHVYHZ62bdtW6+cLFy7gzjvvxMMPP4xFixbVCiV5eXmYN28efvnlF2zYsMGmglQqldllBdTq6o8Ih4eHm+0XHBwMhUKBVq1aQSaT1doWGhoK1IQ9S+GJiEgmlSBlTDweX5dZZ5vxT8eUMfGQSblYJpEns3vC+Jw5c6BSqbBu3bo6gSQyMhKffPIJwsLC8Nxzz9l0u4mJicjJyakzYXvfvn2m7eZIpVIkJibiypUrqKioqLXNOE8qJCTEplqIyPOMSFAhpl1AnfYwpYLLFBAR0JjwtGnTJtx999317jN06FBs2rTJptsdP3489Ho9Vq5caWrT6XT46KOPkJycjIiICKDm7Nbx48dr9Z00aRL0ej3WrFljatNqtfjkk08QHx9v8awVEZFRUXklTl8pBQAsn5SI5Q8m4n+P9cWuuUMZnIgIaMyn7bRarWkozZL8/HyLE7wtSU5OxoQJEzBv3jwUFBQgKioKa9aswdmzZ7Fq1SrTflOnTsX27dtx8xqff/3rX/HBBx9g1qxZyMnJQWRkJNauXYtz584hLS3NjqMkIk+zI+cK9AaBqNAAjOvV3tnlEJELsvvM0+23345PP/0Ue/bsMbt99+7d+Oyzz9CnTx+bb/vjjz/G7NmzsXbtWjz55JOorKzEhg0bMHDgwHr7+fr6YsuWLXj44Yfx4Ycf4rnnnoNUKsX333+PkSNH2lwHEXmerccLAABD40KdXQoRuSi7L8+ya9cu3H333dDr9RgzZgwGDBiA0NBQFBQUYOfOndiwYQO8vLywefNm3HnnnY6vvInx8ixEnkdvELhj4UZcL6vEpzP6om+XNs4uiYhs1Bzv33YP2w0YMAA//PADZsyYgW+//RbffvstJBKJaRitc+fOWLlypVsGJyLyTFnnb+B6WSWCFF64vaNty6wQkedo1Arjd999N06dOoVdu3bh8OHDKCoqglKpRM+ePTFgwIA660IREbmyLccvAwAGxoTAW+ZyV68iIhfR6MuzSCQS3HXXXbjrrrscUxERkZNsPlY93+nubpzvRESW8U8rIiIA+TfKcfxSMSQSYFAMwxMRWWb1maeXX34ZEokEs2bNQnBwMF5++WWr+kkkEsyfP78xNRIRNbktNZ+y6x3ZGsH+Ps4uh4hcmNWftpNKpZBIJDh27BhiYmIglVp30koikUCv1ze2zmbHT9sReZbpq/dj8/ECPHdvLGYNiXJ2OURkJ5f6tN3WrVuBmkuv3PwzEZG7K6/QY9epqwDXdyIiK1gdngYNGlTvz0RE7mrPmavQVRkQrlQgLizQ2eUQkYvjhHEi8njG+U5D4kK5xAoRNajRSxWcPXsWn3zyCbKysqDRaBAUFITExERMnjwZnTp1ckyVRERNRAiBLVyigIhs0KjwtHz5cjz//POoqqqqdYHeL7/8Ei+//DJef/11PPXUU46ok4ioSZy4XIz8Ii0U3lL079rW2eUQkRuwe9huw4YNePrpp6FUKrFw4ULs3r0bubm52LNnDxYtWgSlUolnnnkG33//vWMrJiJyIOPCmP27toXCW+bscojIDdh95mnZsmUIDg5GZmYmOnToYGrv2LEjkpOTMXnyZPTq1QvLli3D6NGjHVUvEZFDGec78VN2RGQtu888ZWZmYtKkSbWC080iIiIwceJEHDx4sDH1ERE1mcLSChzKuw7UTBYnIrKG3eGpoqIC/v7+9e4TEBCAiooKe++CiKhJbc8pgEEAcWGBaN/K19nlEJGbsDs8xcTEIC0tDVVVVWa3V1VVYcOGDYiJiWlMfURETWbL8SsAP2VHRDayOzxNnToVJ06cwL333ltnaO7AgQMYOXIkTpw4gUceecQRdRIROVSl3oDtJzjfiYhsZ/eE8aeeego7duzAd999h6SkJPj5+SE0NBQFBQUoKyuDEALjxo3jUgVE5JIOnrsOjbYKrf28kRjR2tnlEJEbsfvMk0wmwzfffIPVq1dj8ODB8PHxQV5eHnx8fDBkyBCsWbMGX3/9tdUXECYiak5baz5lNzg2FDIpVxUnIus1eoXxqVOnYurUqY6phoiomWzmEgVEZKdGhyciIneiNwhsOJyPUwUlkEqAO6O4qjgR2abR4Umv1+PChQvIz89HZWWl2X0GDhzY2LshImq09CNqLEjLhrpICwAwCGD0v3ciZUw8RiSonF0eEbkJu8OTwWDAokWLsHz5chQWFta7r16vt/duiIgcIv2IGjPXZULc0n6pSIuZ6zKxYkpvBigisord4WnevHlYunQpQkND8ec//xkqlQpeXhwFJCLXozcILEjLrhOcAEAAkABYkJaNYfFhnDxORA2yO+2sWbMGsbGx2L9/PwICAhxbFRGRA2XkFpqG6swRANRFWmTkFqJf1zbNWhsRuR+71xEoKSnB6NGjGZyIyOUVFFsOTvbsR0Seze7w1KNHD+Tn5zu2GiKiJhAaqHDofkTk2ewOTy+++CK++eYbZGZmOrYiIiIHS+ocDJXScjCSAFApFUjqHNysdRGRe7J7ztPo0aOxevVqjBw5EmPHjkXPnj0RFBRkdl8uoklEziSTSpAyJh6Pr6v7x55xenjKmHhOFiciq9gdnnQ6HdLS0nD16lWsWrUKACCR1H7hEUJAIpEwPBGR041IUKFjGz+cu1ZWqz1MqeA6T0RkE7vD0zPPPINPPvkEPXr0wPjx47lUARG5tIJirSk4rZjcGxV6A0IDq4fqeMaJiGxhd9r54osvcPvtt2PPnj0MTUTk8raduAIAuK29EiNv41kmIrKf3RPGtVothgwZwuBERG5hyzFeCJiIHMPu8HT77bfj1KlTjq2GiKgJVFQZsPNk9Zmnu7sxPBFR49gdnhYtWoT09HRs2LDBsRURETlYRm4hSiv0aBsgR0K40tnlEJGbs3vMbePGjRg8eDDGjRuHoUOHWlyqQCKRYP78+Y2tk4jIbpuPXwYADI0LgZSTw4mokSRCCHPXymyQVGrdSSuJRAK9Xm/PXTiVRqOBUqlEUVGRxfWriMj1CSEw+I1tOHetDO9N6c0lCYhauOZ4/7b7zNPWrVsdWwkRURM4c7UU566VwVsmwYDoEGeXQ0QtgN3hadCgQY6thIioCWw9Xv0pu75d2iBAzk8HE1Hj2T1hnIjIHWyuWaJgSCw/ZUdEjmH3n2E7duxocB+pVIqgoCBERUXBz8/P3rsiIrKLRluJ/WcLAS5RQEQOZHd4Gjx4cJ1r2VkilUoxbNgwLF26FN27d7f3LomIbLIz5yqqDAJdQvzRsY2/s8shohbC7vD0z3/+ExkZGUhPT0dsbCz69++Pdu3a4fLly9izZw+OHz+OkSNHomvXrsjMzER6ejr27NmDffv2ISYmxrFHQURkhnGJgru5qjgROZDdc57uvvtubNmyBR9++CGOHTuGVatWYdGiRVi1ahWys7Px0UcfYevWrZg4cSJ27dqFjz/+GEVFRVi4cKFjj4CIyAy9QZiuZzc0rp2zyyGiFsTudZ4GDx6MkJAQfPHFFxb3mTBhAq5cuYJt27YBAIYOHYqcnBxcuHDB/oqbCdd5InJvmXnX8cd3dyNQ4YXM+cPgLePnY4g8QXO8f9v9anLw4EHExsbWu09sbCwOHjxo+jkxMRFXrlyx9y6JiKxmvBDwwJgQBicicii7X1F8fHyQlZVV7z6HDh2Ct7e36We9Xg9/f07aJKKmt6VmfSfOdyIiR7M7PN1zzz348ccfsWTJElRWVtbaVllZiaVLlyI9PR3Dhw83tWdnZyMyMrJxFRMRNUBdVI5stQYSCTAohquKE5Fj2f1pu9dffx07d+7ECy+8gLfeegt33HEHQkNDUVBQgIMHD+Ly5csIDQ3FkiVLAACXLl3CoUOHMHPmTEfWT0RUh/GsU6+IVmgTIHd2OUTUwtgdnjp27IgDBw5g7ty5SE1Nxffff2/aJpfL8fDDD2Px4sXo0KEDACAsLAxXr151TNVERPUwXpJlKIfsiKgJNOpCT+Hh4Vi7di1WrVqFEydOQKPRICgoCLGxsfDx8XFclUREVtJW6rHrVPUfalyigIiagkOukunj44PbbrvNETdFRNQoe85cg7bSAJVSgW6qQGeXQ0QtED+/S0QtinGJgiFxoVZfQoqIyBZWn3kaOnQoJBIJ1qxZgw4dOmDo0KFW9ZNIJNi8ebNNRel0Ovzzn//E2rVrcf36dfTo0QMLFy7EsGHDbLqdYcOGYdOmTZg1axbeeecdm/oSkfsRQnCJAiJqclaHp23btkEikaCsrMz0szXs+ctv2rRpSE1NxezZsxEdHY3Vq1dj1KhR2Lp1KwYMGGDVbXz11VfYs2ePzfdNRO5JbxD48uAFXLxRDm+pBMmd2zi7JCJqoawetjMYDNDr9aaL+hoMBqu+9Hq9TQVlZGTg008/xeLFi7F06VLMmDEDW7ZsQceOHfH8889bdRtarRbPPvss5s6da9N9E5F7Sj+ixoAlW/D8l78CACoNAsPe3I70I2pnl0ZELZDD5zwJIXDy5EmcP3/erv6pqamQyWSYMWOGqU2hUGD69OnYs2ePVbf7+uuvw2AwYM6cOXbVQETuI/2IGjPXZUJdpK3VfqlIi5nrMhmgiMjh7A5PX331FaZOnYrr16+b2s6ePYsePXogLi4OnTp1woMPPmjzmadDhw4hJiamzsX8kpKSAKDBS8Lk5eXhtddew5IlS+Dr62vTfRORe9EbBBakZcPc1c2NbQvSsqE32HX9cyIis+wOTytWrEBWVhZat25tanv66adx9OhRDBkyBD169MAXX3yBDz/80KbbVavVUKlUddqNbfn5+fX2f/bZZ9GrVy88+OCDNt2vTqeDRqOp9UVEri0jt7DOGaebCQDqIi0ycgubtS4iatnsDk/Z2dmms0EAUFxcjO+//x6TJk3Cpk2bkJGRgW7dutkcnsrLyyGX172cgkKhMG23ZOvWrfjyyy/x1ltv2XSfALB48WIolUrTV0REhM23QUTNq6DYcnCyZz8iImvYHZ4KCwsRFhZm+nnXrl2oqqrCQw89BADw9vbGsGHDcPr0aZtu19fXFzqdrk67Vqs1bTenqqoKTz75JP70pz+hT58+Nh4NMG/ePBQVFZm+7J2zRUTNJzRQ4dD9iIisYfcK40FBQbh27Zrp561bt0IqleKuu+4ytXl7e6O0tNSm21WpVLh48WKddrW6etJneHi42X4ff/wxTpw4gffffx9nz56tta24uBhnz55FaGgo/Pz8zPaXy+Vmz3gRketK6hwMlVJhcehOAiBMqUBS5+Bmr42IWi67zzzFxcUhLS0N165dw40bN7B+/XrcfvvtteZAnTt3Du3a2XZtqcTEROTk5NSZc7Rv3z7TdnPy8vJQWVmJO++8E507dzZ9oSZYde7cGT///LMdR0pErkomlSBlTLzZbcYV5lLGxEMm5UrjROQ4doenJ598Evn5+ejQoQMiIyOhVqsxc+bMWvvs3bsXPXv2tOl2x48fD71ej5UrV5radDodPvroIyQnJ5vmIuXl5eH48eOmfR588EF8/fXXdb4AYNSoUfj666+RnJxs7+ESkYsaEhcKhVfdl7IwpQIrpvTGiIS6H0AhImoMu4ftHnjgAfznP//BqlWrgJrwMm3aNNP27du3Q6PRYMSIETbdbnJyMiZMmIB58+ahoKAAUVFRWLNmDc6ePWu6LwCYOnUqtm/fDiGqP4IcFxeHuLg4s7fZuXNn3H///XYeKRG5sl9OXYW2yoDQQB+8NakXrpToEBpYPVTHM05E1BTsDk8AMHPmzDpnm4wGDRpUaw0oW3z88ceYP39+rWvbbdiwAQMHDmxMuUTUAqUfuQQAGJGgQv+ots4uh4g8gEQYT91QLRqNBkqlEkVFRXUW7CQi11ClN6DPq5twvawS6x9LRv+uDE9Enq453r8dfnkWIqLmkpFbiOtllWjt542kTvxEHRE1D4YnInJb6Uerh+yGxbeDl4wvZ0TUPPhqQ0RuyWAQpvlOI/mJOiJqRgxPROSWDp2/gYJiHQLlXugf1cbZ5RCRB2F4IiK3lH6k+qoDQ7uFQu4lc3Y5RORBGJ6IyO0IIUzznUZ0D2twfyIiR2J4IiK3k63W4HxhORTeUgyKDXF2OUTkYRieiMjtGCeKD4oJgZ9Po9b6JSKyGcMTEbmd31cV55AdETU/hiciciunCkpwsqAE3jIJhsa1c3Y5ROSBGJ6IyK38VDNRvH/XtlD6eju7HCLyQAxPRORWOGRHRM7G8EREbuN8YRl+u1gEqaT6kixERM7A8EREbsM4ZNenUzDaBsidXQ4ReSiGJyJyG8bwxCE7InImhicicgsFxVocOHcdAHAvVxUnIidieCIit/Dz0csQAugZ0QrhrXydXQ4ReTCGJyJyC8ZP2Y3kkB0RORnDExG5vBtlFdhz5hrAITsicgEMT0Tk8jYdK4DeIBAXFojObf2dXQ4ReTheUZOIXJbeIJCRW4jVv+QCAIZ359pOROR8DE9E5JLSj6ixIC0b6iKtqW39vjzEq4IwIkHl1NqIyLNx2I6IXE76ETVmrsusFZwA4FpJBWauy0T6EbXTaiMiYngiIpeiNwgsSMuGMLPN2LYgLRt6g7k9iIiaHsMTEbmUjNzCOmecbiYAqIu0yMgtbNa6iIiMGJ6IyKUUFFsOTvbsR0TkaAxPRORSQgMVDt2PiMjRGJ6IyKUkdQ6GSmk5GEkAqJQKJHUObta6iIiMGJ6IyKXIpBKkjIk3u01S82/KmHjIpBKz+xARNTWGJyJyOXd3a4dARd1l6MKUCqyY0pvrPBGRU3GRTCJyOZuPFaBYW4U2/j5Y/mAirpVWIDSweqiOZ5yIyNkYnojI5Xy6Pw8AMOGOCAyIDnF2OUREtXDYjohcSv6NcmzPuQIAmNQnwtnlEBHVwfBERC7l8wPnIQTQt0swOrf1d3Y5RER1MDwRkcvQGwS+OHABAPBgn0hnl0NEZBbDExG5jJ0nr+DijXIofb0xIiHM2eUQEZnF8ERELuOz/ecBAH/o1R4Kb5mzyyEiMovhiYhcwpViHTZmXwY4UZyIXBzDExG5hK8yL6DKINAzohW6qYKcXQ4RkUUMT0TkdEII05DdQzzrREQujuGJiJwuI7cQZ66Wws9Hhvt6hju7HCKiejE8EZHTfVpz1mlsz3AEyHnhAyJybQxPRORURWWV+OE3NcCJ4kTkJhieiMipvsm6CF2VAXFhgUiMaOXscoiIGsTwREROI4TA/zKqLwI8qU8EJBKJs0siImoQwxMROc2vF4pw/FIxfLyk+EOv9s4uh4jIKgxPROQ0xoniIxPC0MrPx9nlEBFZheGJiJyiVFeF77IuArwIMBG5GYYnInKK739Vo7RCj05t/NC3S7CzyyEishrDExE5xf/2GyeKR3KiOBG5FYYnImp2Jy4V41DeDXhJJXjgdk4UJyL3wvBERM3u05qzTnd3C0VooMLZ5RAR2YThiYialbZSj68PcaI4EbkvhicialY/Hb2EG2WVUCkVGBgT4uxyiIhs5pLhSafTYe7cuQgPD4evry+Sk5OxcePGBvt99dVXmDRpErp06QI/Pz/Exsbi2WefxY0bN5qlbiKyTG8Q2HP6Gt7ZcgoA8MDtHSCTcqI4EbkfiRBCOLuIWz300ENITU3F7NmzER0djdWrV2P//v3YunUrBgwYYLFf27ZtER4ejvvvvx+RkZH47bff8N5776FLly7IzMyEr6+v1TVoNBoolUoUFRUhKCjIQUdG5JnSj6ixIC0b6iKtqS0kUI5XxnXHiASVU2sjopalOd6/XS48ZWRkIDk5GUuXLsWcOXMAAFqtFgkJCQgNDcXu3bst9t22bRsGDx5cq+3jjz/GI488gv/+97949NFHra6D4YnIMdKPqDFzXSZufaExnnNaMaU3AxQROUxzvH+73LBdamoqZDIZZsyYYWpTKBSYPn069uzZg/Pnz1vse2twAoA//OEPAIBjx441UcVEZIneILAgLbtOcAJgaluQlg29waX+hiMiqpfLhadDhw4hJiamTlpMSkoCAGRlZdl0e5cuXQJqhvTqo9PpoNFoan0RUeNk5BbWGqq7lQCgLtIiI7ewWesiImoMlwtParUaKlXdU/jGtvz8fJtub8mSJZDJZBg/fny9+y1evBhKpdL0FRERYWPlRHSrgmLLwcme/YiIXIHLhafy8nLI5fI67QqFwrTdWuvXr8eqVavw7LPPIjo6ut59582bh6KiItNXfcODRGQdaxfA5EKZROROvJxdwK18fX2h0+nqtGu1WtN2a+zcuRPTp0/Hvffei1dffbXB/eVyudnQRkT2S+ocjJAAH1wpqTC7XQIgTKlAUmdeGJiI3IfLnXlSqVRQq9V12o1t4eHhDd7G4cOHMXbsWCQkJCA1NRVeXi6XEYk8glQChFg4q2T8tF3KmHiu90REbsXlwlNiYiJycnLqTNjet2+faXt9Tp8+jREjRiA0NBQ//PADAgICmrReIrJs07ECZKs18JJKEBJQ+8xumFLBZQqIyC253DpP+/btQ9++fWut86TT6ZCQkIA2bdpg7969AIC8vDyUlZUhLi7O1PfSpUu48847odVq8csvv6BTp05218F1nogaR1upx7A3t+N8YTlmDu6KOcNjkZFbiIJiLUIDq4fqeMaJiBytOd6/XW48Kzk5GRMmTMC8efNQUFCAqKgorFmzBmfPnsWqVatM+02dOhXbt2/HzdlvxIgROHPmDJ5//nns2rULu3btMm1r164dhg0b1uzHQ+SpVu44g/OF5QgLUuCJIVGQSSXo17WNs8siImo0lwtPqFkVfP78+Vi7di2uX7+OHj16YMOGDRg4cGC9/Q4fPgwAeP311+tsGzRoEMMTUTO5cL0M726rvobdC6O7wV/uki81RER2cblhO1fBYTsi+/3tk4P44bdLSO4cjE9n9IVEwuE5ImoeHnl5FiJyb7+cuooffrsEqQR4aWx3BicianEYnojIYSr1Brz03VEAwJ/6dkQ3Fc/aElHLw/BERA6zZvdZnCwoQbC/D54ZFuvscoiImgTDExE5xJViHZZvOgkAeP7eWCj9vJ1dEhFRk2B4IiKHWJJ+HMW6KvTooMTEO3hhbSJquRieiKjRMvOuI/XgBQDAgrHdIeXil0TUgjE8EVGj6A0CKd9WTxIff3sH9Ips7eySiIiaFMMTETXK5wfO47eLRQiUe2HuiDgrehARuTeGJyKyW1FZJZb+dAIAMHtYDEIC5Q32ISJydwxPRGS3ZRtPoLC0AtGhAZjar6OzyyEiahYMT0Rkl2NqDdbuPQfUTBL3lvHlhIg8A1/tiMhmQgikfHcUBgGMui0M/aPaOrskIqJmw/BERDZL+1WNjNxCKLyleHF0vLPLISJqVgxPRGSTUl0VXv0+GwAwa3AU2rfydXZJRETNiuGJiGzyztZTuKzRITLYD48N7OLscoiImh3DExFZLfdqKT7YeQYAMP++eCi8Zc4uiYio2TE8EZHVXk47ikq9wKCYENzTLdTZ5RAROQXDExFZZfOxy9h64gq8ZRKkjImHRMLr1xGRZ2J4IqIGaSv1WJBWPUl8+oAu6BIS4OySiIicxsvZBRCRa9IbBDJyC1FQrMUvp64ir7AM7YLk+L+hUc4ujYjIqRieiKiO9CNqLEjLhrpIW6t99G0q+Mv5skFEno3DdkRUS/oRNWauy6wTnADgo1/OIv2I2il1ERG5CoYnIjLRGwQWpGVD1LPPgrRs6A317UFE1LIxPBGRSUZuodkzTkYCgLpIi4zcwmati4jIlTA8EZFJQbHl4GTPfkRELRHDExEBAAo0Wvzwq3XzmUIDFU1eDxGRq+LHZog8XGFpBd7bfhprdp+FrspQ774SAGFKBZI6BzdbfURErobhichDFZVX4oOdZ/DhrlyUVugBALd3bI27otti+aaTQM0cJyPjeuIpY+Ihk3J1cSLyXAxPRB6mRFeF1b/kYuWOM9BoqwAAt7VX4tnhMRgUEwKJRIK4sMA66zyFKRVIGROPEQkqJ1ZPROR8DE9EHqK8Qo91e89hxfbTKCytAADEtgvEM8NjMDy+Xa1r1Y1IUGFYfJhphfHQwOqhOp5xIiJieCJq8XRVenyacR7vbD2FK8U6AECXtv6YPSwG992mgtRCIJJJJejXtU0zV0tE5PoYnohaqEq9AV8evIB/bz6J/Jrhtw6tffHU3dH4Q6/28JLxw7ZERPZgeCJqYfQGge8OX8Rbm07i3LUyAEBYkAJPDI3CxDsi4OPF0ERE1BgMT0QthMEg8OORS3hzUw5OFZQAANoG+OBvg6PwcHIkFN4yZ5dIRNQiMDwRuTkhBLYcL8C/fs5BtloDAFD6euPxQV3xSP+O8PPhrzkRkSPxVZXITQkhsOvUVfzr5xxknb8BAAiQe+HRuzrjLwM6I0jh7ewSiYhaJIYnIjeUkVuIN34+YbpAr6+3DNPu7IQZd3VBa38fZ5dHRNSiMTwRuZGs8zfwr59PYOfJqwAAHy8ppiR3xMzBXRESKHd2eUREHoHhicgNZOdrsGxjDjYduwwA8JJK8GBSBGYNiYJK6evs8oiIPArDE5ELO1VQjDc3nsT3v6kBAFIJ8EDvDnjy7mhEBPs5uzwiIo/E8ETkgs5dK8XyTSfxTdZFGAQgkQBjeoTjqXui0TUkwNnlERF5NIYnIhdy8UY53tlyEp8fuAC9QQAA7u3eDk8Pi0FcWJCzyyMiIoYnItdQoNHi3W2nsX5fHir0BgDA4NgQPDMsBj06tHJ2eUREdBOGJyInKiytwPvbT2PNnrPQVlaHpn5d2uDZ4TG4o1Ows8sjIiIzGJ6InKCovBKrdp7Bql25KK3QAwB6R7bCnOGx6B/V1tnlERFRPRieiJpRia4Kq3/JxcodZ6DRVgEAuocHYc7wWAyODYFEInF2iURE1ACGJ6JmoK3UY+2ec1ix/TQKSysAADHtAvDMsFjc270dQxMRkRtheCJqQroqPT7bfx7vbDmFgmIdAKBzW3/Mvica9/UIh0zK0ERE5G4YnoiaQKXegK8yL+Dfm0/h4o1yAED7Vr546p5o/LFXe3jJpM4ukYiI7MTwRORAeoNA2uF8vLUpB2evlQEA2gXJ8cTQaEy6IwI+XgxNRETujuGJyAZ6g0BGbiEKirUIDVQgqXMwZFIJDAaBn45ewrKNOThZUAIAaOPvg5mDu2JK345QeMucXToRETkIwxORldKPqLEgLRvqIq2pLUypwB97tce2E1eQrdYAAJS+3pgxsAum9e8Efzl/xYiIWhq+shNZIf2IGjPXZULc0n6pqHplcAAIkHth+oDOmH5XZwQpvJ1SJxERNT2XnICh0+kwd+5chIeHw9fXF8nJydi4caNVfS9evIiJEyeiVatWCAoKwrhx43DmzJkmr9kaeoPAntPX8G3WRew5fc107bKWpCUcoxACZRVVKCjW4syVEhzKu44Xvj5SJzjdzF8uw7Y5g/H0sBgGJyKiFs4lzzxNmzYNqampmD17NqKjo7F69WqMGjUKW7duxYABAyz2KykpwZAhQ1BUVIQXXngB3t7eePPNNzFo0CBkZWWhTZs2zXocNzM35KNSKpAyJh4jElROq8uRnH2Muio9SnV6lGirUKyrrP5eV4libZXp+xJtFUqM3+tqvtdWf1+q06O45ntbM1+pTo+TBSVoGyhvqsMjIiIXIRFCuNSpgYyMDCQnJ2Pp0qWYM2cOAECr1SIhIQGhoaHYvXu3xb6vv/465s6di4yMDPTp0wcAcPz4cSQkJOD555/HokWLrK5Do9FAqVSiqKgIQUGNu5q9pSEf4wo/K6b0dvsAZe8x6g2iJsRU1QSb378v1VWh2Ph9RRWKa7aX1rQVG7+v+dl4QV1HkUiAAB8vyKQS3CivbHD/5Q8mYlxie4fWQEREtnHk+7clLheenn/+eSxbtgyFhYW1Dnrx4sV44YUXkJeXh4iICLN9k5KSgJoAdrN7770Xp0+fxqlTp6yuw1H/+XqDwIAlW2qdjblVSKAcnzyaDKlEAkDAIAAhAAEBg6H6X3Fzm6geWhI1Q0xCoFaboXpH0/fV26u3QfzedvP232/v932FaT9jHbXbjPerFwYsTT9hutyIOXIvKXpFtEJphb5WKCqv1Nv9f2uJr7cMAQovBMq94C/3QoDcCwGKmn9v/b5mn0BF3e99vWWQSiXYc/oaHvrv3gbv93+P9UW/rs47u0lERM0Tnlxu2O7QoUOIiYmpc8DGYJSVlWU2PBkMBvz666/4y1/+UmdbUlISfv75ZxQXFyMwMNDs/ep0Ouh0OtPPGo3GAUcDZOQW1hucAOBKsQ7D39zhkPtzVboqA/bmFlrc7uMlrRVobg45dcJNzTZjMAq86Xt/H5nDF6BM6hwMlVKBS0Vas/OeJDWfukvqHOzQ+yUiItfkcuFJrVZDpao7vGNsy8/PN9uvsLAQOp2uwb6xsbFm+y9evBgLFixoZPV1FRTXH5yMfL2l8PGSQSoBJBIJJKj5V4LqNhi/rx4IM35v+hfV7+JSU9/f9zXuV3tfSc3t3rQdv+8ngQRS6c1tkpp969Z3WVOOXy80HDYf6dcRg2ND64Qef7kMci/XXQdJJpUgZUw8Zq7LRPW5wd8ZhyVTxsTzUitERB7C5cJTeXk55PK6k24VCoVpu6V+AOzqCwDz5s3DM888Y/pZo9FYHB60RWigwqr9PpyW5LZDPtYOa41IULntMY5IUGHFlN5m13lqSZP+iYioYS4Xnnx9fWsNnxlptVrTdkv9UDP8Zmtf1IQuc8GrsTxhyMcTjhE1AWpYfJjZFcaJiMhzuNw6TyqVCmq1uk67sS08PNxsv+DgYMjlcrv6NiXjkA9uGuIxailDPp5wjEYyqQT9urbBuMT26Ne1TYs4JiIiso3LhafExETk5OTUmbC9b98+03ZzpFIpbrvtNhw4cKDOtn379qFLly4WJ4s3NeOQT5iy9hBemFLRIpYpgIccIxEREVxxqYJ9+/ahb9++tdZ50ul0SEhIQJs2bbB3b/Xcmry8PJSVlSEuLs7Ud8mSJfj73/+O/fv344477gAAnDhxAt27d8ecOXPw2muvWV1HU3zU0dJFZVsSTzhGIiJyXR65zhMATJw4EV9//TWefvppREVFYc2aNcjIyMDmzZsxcOBAAMDgwYOxfft23Fx+cXExevXqheLiYsyZMwfe3t5YtmwZ9Ho9srKyEBISYnUNzfGfT0RERI7lkes8AcDHH3+M+fPnY+3atbh+/Tp69OiBDRs2mIKTJYGBgdi2bRuefvppLFy4EAaDAYMHD8abb75pU3AiIiIissQlzzy5Ap55IiIicj/N8f7tchPGiYiIiFwZwxMRERGRDRieiIiIiGzA8ERERERkA4YnIiIiIhswPBERERHZgOGJiIiIyAYuuUimKzAuf3XrNfaIiIjIdRnft5tyGUuGJwuKi4sBABEREc4uhYiIiGxUXFwMpVLZJLfNFcYtMBgMyM/PR2BgIIqLixEREYHz5897zGrjGo2Gx+wBPPGY4aHHzWPmMbdUtx6zEALFxcUIDw+HVNo0s5N45skCqVSKDh06AAAkEgkAICgoyGOejEY8Zs/giccMDz1uHrNn8PRjbqozTkacME5ERERkA4YnIiIiIhswPFlBLpcjJSUFcrnc2aU0Gx6zZ/DEY4aHHjeP2TPwmJsHJ4wTERER2YBnnoiIiIhswPBEREREZAOGJyIiIiIbMDwRERER2cCjw5Narcbf//53DBkyBIGBgZBIJNi2bZvF/Xfv3o0BAwbAz88PYWFhePLJJ1FSUmL1/a1atQrdunWDQqFAdHQ03n77bQcdSeMNHjwYEonE7Je3t3eD/adNm2a2b1xcXLPUb4/Vq1dbPOZLly5ZdRvHjh3DiBEjEBAQgODgYPzpT3/ClStXmrx2e23evBl/+ctfEBMTAz8/P3Tp0gWPPvoo1Gq1Vf1feukls/9fCoWiyWu3hk6nw9y5cxEeHg5fX18kJydj48aNVvW9ePEiJk6ciFatWiEoKAjjxo3DmTNnmrzmxti/fz+eeOIJdO/eHf7+/oiMjMTEiRORk5PTYF9HPP+dYdu2bRbr3rt3b4P93fFxtvT6avy6ePGixb6u/jtrVFJSgpSUFIwYMQLBwcGQSCRYvXq12X0b+7r73XffoXfv3lAoFIiMjERKSgqqqqpsqtejVxg/ceIElixZgujoaNx2223Ys2ePxX2zsrJw9913o1u3bli2bBkuXLiAN954AydPnsSPP/7Y4H29//77ePzxx/HAAw/gmWeewc6dO/Hkk0+irKwMc+fOdfCR2e7FF1/Eo48+WquttLQUjz/+OIYPH27VbcjlcnzwwQe12pp6lVdHePnll9G5c+daba1atWqw34ULFzBw4EAolUosWrQIJSUleOONN/Dbb78hIyMDPj4+TVi1febOnYvCwkJMmDAB0dHROHPmDN555x1s2LABWVlZCAsLs+p2VqxYgYCAANPPMpmsCau23rRp05CamorZs2cjOjoaq1evxqhRo7B161YMGDDAYr+SkhIMGTIERUVFeOGFF+Dt7Y0333wTgwYNQlZWFtq0adOsx2GtJUuW4JdffsGECRPQo0cPXLp0Ce+88w569+6NvXv3IiEhocHbsPf572xPPvkk+vTpU6stKiqq3j7u+jj/9a9/xT333FOrTQiBxx9/HJ06dUL79u0bvA1X/Z01unr1Kl5++WVERkaiZ8+eFk9kNPZ198cff8T999+PwYMH4+2338Zvv/2GhQsXoqCgACtWrLC+YOHBNBqNuHbtmhBCiC+++EIAEFu3bjW778iRI4VKpRJFRUWmtv/+978CgPjpp5/qvZ+ysjLRpk0bMXr06FrtkydPFv7+/qKwsNAhx+Noa9euFQDEJ5980uC+jzzyiPD392+Wuhzlo48+EgDE/v377eo/c+ZM4evrK86dO2dq27hxowAg3n//fQdW6jjbt28Xer2+ThsA8eKLLzbYPyUlRQAQV65cacIq7bNv3z4BQCxdutTUVl5eLrp27Sr69etXb98lS5YIACIjI8PUduzYMSGTycS8efOatO7G+OWXX4ROp6vVlpOTI+RyuZg8eXK9fRv7/HeWrVu3CgDiiy++sLmvuz7O5uzcuVMAEK+++mq9+7ny7+zNtFqtUKvVQggh9u/fLwCIjz76qM5+jX3djY+PFz179hSVlZWmthdffFFIJBJx7Ngxq+v16GG7wMBABAcHN7ifRqPBxo0bMWXKlFrXCpo6dSoCAgLw+eef19t/69atuHbtGv72t7/Vap81axZKS0vx/fffN+Ioms769evh7++PcePGWd1Hr9dDo9E0aV1Nobi4GHq93qY+X375Je677z5ERkaa2u655x7ExMQ0+JxwloEDB9a5UObAgQMRHByMY8eOWX07QghoNBq40jJxqampkMlkmDFjhqlNoVBg+vTp2LNnD86fP19v3z59+tQ6kxEXF4e7777bZR9LAOjfv3+dv7Sjo6PRvXt3mx5Pe57/rqC4uNim4RZ3fZzNWb9+PSQSCR5++GGr9nfF39mbyeVyq858N+Z1Nzs7G9nZ2ZgxYwa8vH4fePvb3/4GIQRSU1Otrtejw5O1fvvtN1RVVeGOO+6o1e7j44PExEQcOnSo3v7G7bf2v/322yGVShvs7wxXrlzBxo0bcf/998Pf39+qPmVlZQgKCoJSqURwcDBmzZpl05wwZxkyZAiCgoLg5+eHsWPH4uTJkw32uXjxIgoKCuo8pgCQlJTkko+pJSUlJSgpKUHbtm2t7tOlSxcolUoEBgZiypQpuHz5cpPWaI1Dhw4hJiamzsVQk5KSgJqhd3MMBgN+/fVXi4/l6dOnUVxc3ERVO54QApcvX7b68bTn+e8K/vznPyMoKAgKhQJDhgzBgQMH6t2/JT3OlZWV+Pzzz9G/f3906tTJqj6u+Dtrq8a+7lp6Lw4PD0eHDh1set326DlP1jJOplWpVHW2qVQq7Ny5s8H+MpkMoaGhtdp9fHzQpk0b5OfnO7jixvvss89QVVWFyZMnW7W/SqXC888/j969e8NgMCA9PR3vvvsuDh8+jG3bttVK+a7Cz88P06ZNM715HDx4EMuWLUP//v2RmZmJiIgIi30bek4UFhZCp9O5xSUS3nrrLVRUVGDSpEkN7tu6dWs88cQT6NevH+RyOXbu3In//Oc/yMjIwIEDB5x6FXe1Wm3x8QBg8ffM+Fg11Dc2NtbhNTeFTz75BBcvXsTLL79c736Nef47k4+PDx544AGMGjUKbdu2RXZ2Nt544w3cdddd2L17N3r16mW2X0t6nH/66Sdcu3bNqtdnV/6dtVVjX3cb6m/Le7HrvaPZyWAwoKKiwqp95XI5JBKJ1bddXl5u6ncrhUJh2l5ff0uT2KzpbytH/F+sX78eISEhGDZsmFW3s3jx4lo/P/jgg4iJicGLL76I1NRUPPjgg1ZWbx97jnnixImYOHGiqf3+++/Hvffei4EDB+LVV1/Fe++9Z/E2GnpOGPdpyvDkiMd5x44dWLBgASZOnIihQ4c2eDtPPfVUrZ8feOABJCUlYfLkyXj33Xfx97//3YYjcCxL/983Px6W+sGKx9IdHD9+HLNmzUK/fv3wyCOP1LtvY57/ztS/f3/079/f9PPYsWMxfvx49OjRA/PmzUN6errZfi3pcV6/fj28vb1rPX6WuPLvrK0a+7rbUH9bppy0mGG7HTt2wNfX16qvEydO2HTbvr6+QM3HoG+l1WpN2+vrb+lNzpr+tmrs/8WZM2ewZ88eTJo0qVFnjJ5++mlIpVJs2rSpkUfUMEc9/gMGDEBycnKDNTf0nLh5n6bS2GM+fvw4/vCHPyAhIaHOpyRt8fDDDyMsLKxZHuf6+Pr62vV4uMJj6QiXLl3C6NGjoVQqTfO/bGXt89/VREVFYdy4cdi6davFuVst5XEuKSnBt99+i3vvvdfuTwe6yu+srRr7GDb2vfxmLebMU1xcHD766COr9jV3ys6a/c2thaNWqxEeHt5gf71ej4KCglpDdxUVFbh27VqD/W3V2P+L9evXA4DVQ3aW+Pr6ok2bNigsLGzU7VjDkY9/REREgwG7oedEcHBwkw/ZNeaYz58/j+HDh0OpVOKHH35AYGBgo2qJiIholse5PiqVyux6N8bHyNLvmfGxsvRY1tfXVRQVFWHkyJG4ceMGdu7c2ah6rXn+u6KIiAhUVFSgtLTU7FBUS3icAeCbb75BWVlZo1+fXeF31laNfd29uf+tw9Jqtdo0P9IaLSY8hYWFYdq0aU1y2wkJCfDy8sKBAwdqnSatqKhAVlZWg6dOExMTAQAHDhzAqFGjTO0HDhyAwWAwbXeUxv5frF+/Hl27dkXfvn0bVUdxcTGuXr2KkJCQRt2ONRz5+J85c6bBmtu3b4+QkBCzk1QzMjIc/piaY+8xX7t2DcOHD4dOp8PmzZtt/mPiVkIInD171uJck+aSmJiIrVu3QqPR1Hrz3Ldvn2m7OVKpFLfddpvZx3Lfvn3o0qVLo8NlU9JqtRgzZgxycnKwadMmxMfHN+r2rHn+u6IzZ85AoVDUWsvoZu7+OBt98sknCAgIwNixY+2+DVf5nbVVY193b34vvjko5efn48KFC7U+qdsgqxc1aOEaWudpxIgRQqVSCY1GY2r74IMPBADx448/mtpKS0vFsWPHaq2pUVZWJoKDg8V9991X6zanTJki/Pz8TGtNuYLMzEwBQMyfP9/iPqdOnRKnTp0y/VxeXl7r/8XoueeeEwDEV1991WT1NkZBQUGdtu+//14AEE8++WSt9luPWQghHn/8ceHr6yvy8vJMbZs2bRIAxIoVK5qwcvuVlJSIpKQkERgYKA4cOFDvvufOnauz7om5/7P//Oc/AoBYtmyZw+u1xd69e+us86TVakVUVJRITk42tZk7rtdee63OmkfHjx8XMplMzJ07t5mOwHZVVVVi7NixwsvLS3z//fcW98vPzxfHjh0TFRUVpjZbnv+uxFzdWVlZwtvbW4wdO9bU1pIeZ6OCggLh5eUl/vSnP5nd7m6/s5bUt86Tta+7FRUV4tixYyI/P79W/7i4ONGzZ09RVVVlavvHP/4hJBKJyM7OtrpGjw9Pr7zyinjllVfEgw8+KACIv/zlL6a2mx08eFDI5XLRq1cvsWLFCvHiiy8KhUIhhg8fXms/4wJuKSkptdqNT9bx48eL//73v2Lq1KlWLXDW3J599lkBQBw/ftziPh07dhQdO3Y0/ZybmytatWolZs6cKZYvXy6WL18uRo0aJQCIESNG1FmU0VVERUWJCRMmiCVLloj33ntPzJgxQ3h5eYmIiAhx6dKlWvveesxCCJGXlyfatGkjunbtKv7973+LRYsWidatW4vbbrtNaLXaZj4a64wbN870PF+7dm2tr6+//rrWvoMGDRK3/n3l6+srpk2bJv71r3+J//znP+Khhx4SEolEJCYmitLS0mY+mromTJggvLy8xHPPPSfef/990b9/f+Hl5SW2b99u2sfccWk0GtG1a1cRGhoqXn/9dfHmm2+KiIgIER4ebvbNx1U89dRTAoAYM2ZMncdz7dq1pv0eeeQRAUDk5uaa2mx5/ruSIUOGiFGjRomFCxeKlStXitmzZws/Pz+hVCprvfm1pMfZ6O233xYARHp6utnt7vg7e7O3335bvPLKK2LmzJkCgPjjH/9oej++ceOGEDa87ubm5goA4pFHHql1H2lpaUIikYihQ4eKlStXiieffFJIpVLx2GOP2VSrx4cnABa/brVz507Rv39/oVAoREhIiJg1a1adMy6WwpMQQqxcuVLExsYKHx8f0bVrV/Hmm28Kg8HQpMdnC71eL9q3by969+5d7363Bonr16+LKVOmiKioKOHn5yfkcrno3r27WLRoUa2/dF3Niy++KBITE4VSqRTe3t4iMjJSzJw50+wbh7nwJIQQR44cEcOHDxd+fn6iVatWYvLkyS79xtOxY0eLz/dbj8/cC/Gjjz4q4uPjRWBgoPD29hZRUVFi7ty5Zs88OkN5ebmYM2eOCAsLE3K5XPTp06fOG4254xJCiPPnz4vx48eLoKAgERAQIO677z5x8uTJZqzedsZjaeg1zFx4suX570qWL18ukpKSRHBwsPDy8hIqlUpMmTKlzmPVkh5no759+4rQ0NBaZ01u5o6/szer7/Xp5ueuNa+7lsKTEEJ8/fXXIjExUcjlctGhQwfxj3/8w+b3Kolw1eVGiYiIiFxQi1mqgIiIiKg5MDwRERER2YDhiYiIiMgGDE9ERERENmB4IiIiIrIBwxMRERGRDRieiIiIiGzA8ERERERkA4YnIiIiIhswPBGRWzh79iwkEgmmTZvWbPe5bds2SCQSvPTSS812n0Tk+hieiIhs1KlTJ3Tq1MnZZRCRk3g5uwAiIleVlJSEY8eOoW3bts4uhYhcCMMTEZEFfn5+iIuLc3YZRORiOGxHRG7t3LlzmD59Otq3bw8fHx906NAB06dPR15entn9f/31V4waNQqBgYFQKpUYNWoUjhw5gmnTpkEikeDs2bOmfW+d82Scd3Xu3DmcO3cOEonE9MV5UUSeg2eeiMht5eTkYMCAAbhy5QrGjBmD7t2748iRI/jwww+RlpaGXbt2ISYmxrT/4cOHcdddd6G0tBR//OMfER0djQMHDmDAgAHo2bNng/fXqlUrpKSk4K233gIAzJ4927Rt8ODBTXSURORqGJ6IyG09/vjjuHLlCt5//33MmDHD1P7uu+9i1qxZmDlzJjZv3mxqf+KJJ1BcXIxPPvkEDz/8sKn9n//8J1555ZUG769Vq1Z46aWXsHr1agDg2SYiD8VhOyJyS3l5edi6dSvi4+Px2GOP1dr2+OOPIy4uDlu2bMH58+eBmuG9Xbt2oWfPnrWCEwDMnTsXrVu3btb6ich9MTwRkVvKysoCAAwaNAgSiaTWNqlUioEDB9ba7/DhwwCAO++8s85t+fv7IzExsRmqJqKWgOGJiNySRqMBALRr187sdpVKVWs/47+hoaFm97d0O0REt2J4IiK3FBQUBAC4fPmy2e2XLl2qtZ/x34KCArP7W7odIqJbMTwRkVsyDrPt2LEDQoha24QQ2LFjR639jJ+m2717d53bKisrMw3rWUMmk0Gv1zeqfiJyXwxPROSWIiMjMWTIEBw9ehQffvhhrW0rV67EsWPHMHToUERERAAAOnbsiDvvvBNZWVn47LPPau2/dOlSFBYWWn3fwcHBuHr1KrRarYOOhojcCZcqICK3tWLFCgwYMACPPfYY0tLSEB8fj6NHj+K7775DSEgIVqxYUWv/t99+GwMHDsTkyZPx5ZdfIioqCpmZmdi7dy8GDhyIHTt2QCpt+G/KoUOH4sCBAxg5ciTuuusu+Pj4YODAgaZJ6kTUsvHMExG5rdjYWBw4cADTpk1DRkYGli5div379+PPf/4z9u/fX2uBTADo1asXdu7ciXvuuQc//vgj3nnnHUilUuzatavO3Kj6zJ8/H4899hhOnDiBRYsWYf78+diyZUuTHScRuRaJuHWyABGRh9Hr9ejatSvKy8s5cZyIGsQzT0TkMaqqqnD16tU67a+99hrOnTuH+++/3yl1EZF74ZknIvIYN27cQLt27TBs2DDExMSgsrIS+/btw/79+6FSqXDw4EHT+lBERJYwPBGRx6ioqMDs2bOxZcsW5OfnQ6vVQqVSYeTIkZg/fz7at2/v7BKJyA0wPBERERHZgHOeiIiIiGzA8ERERERkA4YnIiIiIhswPBERERHZgOGJiIiIyAYMT0REREQ2YHgiIiIisgHDExEREZEN/h/lyezqZIIzvQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sigmoid=1/(1+np.exp(-logit))\n", "plt.plot(logit,sigmoid,\"o-\")\n", "plt.xlabel(\"logit\")\n", "plt.ylabel(\"sigmoid\");" ] }, { "cell_type": "markdown", "metadata": { "id": "J_F0XUIKejvT" }, "source": [ "Şimdi $\\beta_0+\\beta_1x$ denklemimizi düşündüğümüzde burdaki betaları nasıl bulacağız? Esas **çözülecek problem** budur. En küçük kareler yöntemini(OLS) kullanamayız, çünkü ilişki lineer değil. Bu sefer `Maximum Likelihood Estimation(MLE)` metodunu kullanacağız ve bunu maksimize eden katsayıları bulmaya çalışacağız. Yani karşımızda yine bir optimizasyon görevi var.\n", "\n", "Şimdi hesapları yapalım:\n", "\n", "$$\\large P(Y=1\\;|\\;x)= \\frac{1}{1+e^{-(\\beta_0+\\beta_1x)}} = F_\\beta(x)$$\n", "
\n", "\n", "$$\\large P(Y=0\\;|\\;x)= 1 - F_\\beta(x)$$\n", "\n", "

Tek bir instance(gözlem) için likelihood tahmini genelleştirilmiş haliyle şöyle olur


\n", "\n", "$$\\large P(Y=y\\;|\\;x)= [F_\\beta(x)]^y.[1-F_\\beta(x)]^{1-y}$$\n", "\n", "Burda y'ler gerçek değerler iken $F_\\beta$'lar tahmini değerlerdir. Tüm instanceler için bu olasılıklar aşağıdaki gibi çarpılır ve nihai Likelihood fonksiyonu elde edilir.
\n", "\n", "$$\\large L = \\prod_{i=1}^N[F_\\beta(x)]^{y_i}.[1-F_\\beta(x)]^{1-{y_i}}$$\n", "\n", "Bu çarpım işlemi, işleri karmaşıklaştırır, üstelik bilgisayar belleği için de yüktür. Biz yine her iki tarafın logunu alalım, o yüzden fonksiyonumuzun adı artık Likelihood değil `Log Likelihood` olur. Log aldığımızda neler olacağını bi hatırlayalım,\n", "\n", "$$log(a^b)=b.log(a)\\;\\; ve \\;\\;log(a.b)= log(a)+log(b)$$\n", "\n", "ve sonuç\n", "\n", "$$\\large log(L) = LL = \\sum_{i=1}^N[{y_i}.log(F_\\beta(x)^i) + (1-{y_i).log(1-F_\\beta(x)^i)]}$$\n", "\n", "veya\n", "\n", "$$\\large LL = \\sum_{i=1}^N[{y_i}.log(p_i) + (1-{y_i).log(1-p_i)]}$$\n", "\n", "\n", "Bu nihai fonksiyona **binary cross entropy loss** adı verildiğini de görebilirsiniz. Denklemden görüldüğü üzere, gerçek sınıf 1 iken eşitliğin ikinci kısmı uçuyor, 0 iken de ilk kısmı. Bu denklemin bir güzelliği de, yanlış tahmini ne kadar kendinden emin bi şekilde yaparsak(yani olasılığımız ile gerçeklik arasındaki fark ne kadar çok açıksa) bunun daha fazla cezalandırılmasıdır. Mesela aşağıdaki örneğe bakalım,\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 13, "status": "ok", "timestamp": 1729948681533, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "D_FDCV9NejvV", "outputId": "b37a671a-1989-4ae6-d421-8b55c4bc31f2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "actual:1, True olasılığı:0.99, logloss:0.01, normalloss:0.01\n", "actual:0, True olasılığı:0.99, logloss:4.61, normalloss:0.99\n", "actual:1, True olasılığı:0.01, logloss:4.61, normalloss:0.99\n", "actual:0, True olasılığı:0.01, logloss:0.01, normalloss:0.01\n", "time: 4.64 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "prd=[0.99, 0.99, 0.01, 0.01] #tahmin olasılıkları\n", "act=[1, 0, 1, 0] #gerçek değerler\n", "\n", "for i in range(len(act)):\n", " logloss=-(act[i]*np.log(prd[i])+(1-act[i])*np.log(1-prd[i]))\n", " normalloss=np.abs(act[i]-prd[i])\n", " print(f\"actual:{act[i]}, True olasılığı:{prd[i]:.2f}, logloss:{logloss:.2f}, normalloss:{normalloss:.2f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Bunun genelleşmiş hali olan **cross entropy loss** fonksiyonu da aşağıdaki gibidir.\n", "\n", "$$\\large LL = \\sum_{i=1}^N{y_i}.log(p_i)$$\n", "\n", "Bir adımımız daha kaldı o da, maximize edilmeye çalışılan bu fonksiyonu minimize etmeye çalışmak. Bunun için de başına bir \"-\" konur.\n", "\n", "$$\\large Negatif Log Likelihood = NLL = -\\sum_{i=1}^N{y_i}.log(p_i)$$\n", "\n", "Nihai fonksiyonumuz negatif işaretlidir, bu artık bir **cost function** olmuştur. **iterasyon** ile bu maliyet fonksiyonunu minimize etmeye çalışacağız. Bunun için de `Gradiend Descent(GD), Stokastik GD, Newton metodu` gibi metodlar var. Biz burada GD'ye bakacağız.\n", "\n", "Şimdi öncelikle GD öncesine kadarki olan kısmı, yani yukarıda anlattıklarımızı bir de şematik olarak görelim." ] }, { "cell_type": "markdown", "metadata": { "id": "FUNgF8bdejvT" }, "source": [ "![image.png]()\n", "

Görsel: H.S Ölmez - Sabanci University

" ] }, { "cell_type": "markdown", "metadata": { "id": "ldFYN2zJejvT" }, "source": [ "Veya Kaggle master Kaan hocamızın gösterdiği gibi beta yerine weight anlamında w'ler de kullanılabilir, ki bu şematik gösterim Neural Networks(Sinir Ağları/Derin Öğrenme) anlatımında da karşımıza çıkacak." ] }, { "cell_type": "markdown", "metadata": { "id": "B-G7vxiMejvU" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "Lg1wM2qzejvU" }, "source": [ "### Gradient Descent" ] }, { "cell_type": "markdown", "metadata": { "id": "6Air_6H-ejvU" }, "source": [ "Bunu LinReg notebookunda görmüştük, oraya tekrar bakabilirsiniz. Regresyon değil de classification bağlamında görmek için Kaan hocamızın yine yukarıdaki linkine bakabilirsiniz. Bunlara ek olarak aşağıdaki linklerden de gerek GD detayını gerek manuel implementasyonu görebilirsiniz.\n", "\n", "- https://towardsdatascience.com/logistic-regression-explained-and-implemented-in-python-880955306060\n", "- https://realpython.com/logistic-regression-python/" ] }, { "cell_type": "markdown", "metadata": { "id": "bNPeXu-vejvU" }, "source": [ "\"Bana kısaca sen anlat\" diyenler için şöyle özetleyeyim.\n", "\n", "- Öncelikle \"katsayıların ilk değerlerine ne verelim\" sorusuyla başlanır. Bunun için bazı teknikler var, diyelim ki 0.01 verdik ve $\\beta_0$(bias) için de 0 dedik.(Not: Neural Networklerdekinin aksine LogReg'de ağırlıklar 0 verilerek başlatılabilir)\n", "- x'ler ile betalar(weightler) çarpılır ve toplanır. Çıkan sonuç, bir aktivasyon fonksiyonu olan sigmoid fonksiyonuna sokulur. Diyelim ki eğitim setinde bir instance'ın classını 0(not-churn/not-spam v.s) tahminledik ve gerçekten de 0'mış(veya 1 dedik ve gerçekten 1 çıktı), o zaman kaybımız(`loss`) 0'dır. Bu işlemin, yani tahminle gerçek değer arasındaki farkın hesaplanma sürecinin, adı **forward propagation**'dır.\n", "- Tüm instancelar için bu loss'ların toplamına da `cost` deniyor. Nihai amaç, cost'un minimize olması.\n", "- Sonra başa dönüp betalar ve bias güncellenir, ki buna da **backward propagation** denir. Güncelleme işlemi de türev alarak gradient descent yöntemiyle yapıyoruz, ta ki eğim(yani türev) 0 olana kadar." ] }, { "cell_type": "markdown", "metadata": { "id": "B52TinbCejvV" }, "source": [ "### Cost function olarak LogLoss(binary cross entropi)" ] }, { "cell_type": "markdown", "metadata": { "id": "clnRnNF0ejvV" }, "source": [ "Cost functionımız yukarıdaki negatif log-likelihood veya diğer adıyla binary cross entropi fonksiyonudur. Buna negative log loss da denmektedir. Yukarıda bahsedilen tüm proses boyunca bu metrik minimize edilmeye çalışılır.\n", "\n", "$$\\large Negatif Log Likelihood = NLL = -\\sum_{i=1}^N{y_i}.log(p_i)$$" ] }, { "cell_type": "markdown", "metadata": { "id": "oDjm4FUbejvV" }, "source": [ "Aşağıda daha detaylı bilgiler edinebilrsiniz ancak özet olarak şunu söyleyebiliriz. Regresyon analizlerinden genelde SSE(Sum of Squared Errors), classficationda ise Log Loss/CrossEntropy Loss optimize edilmeye çalışılır. Tabi classficationda classlara farklı ağırlıklar vererek bu cost functionları modifiye etmek de mümkündür. Bunun nasıl yapıldığını Uçtan uca ML projesinde görebilirsiniz.\n", "\n", "Bu konu da önemli bir konu olup ilave okumalar yapmanızı öneririm\n", "\n", "- https://towardsdatascience.com/cross-entropy-negative-log-likelihood-and-all-that-jazz-47a95bd2e81\n", "- https://towardsdatascience.com/intuition-behind-log-loss-score-4e0c9979680a\n", "- https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931\n", "- https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23\n", "- https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3\n", "- https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/\n", "- https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-loss-the-cost-function-used-in-logistic-regression/\n", "- https://www.data4v.com/log-loss-as-a-performance-metric/\n", "- https://medium.com/konvergen/cross-entropy-and-maximum-likelihood-estimation-58942b52517a\n", "- https://medium.com/@phuctrt/loss-functions-why-what-where-or-when-189815343d3f\n", "- https://algorithmia.com/blog/introduction-to-loss-functions\n", "- https://towardsdatascience.com/understanding-sigmoid-logistic-softmax-functions-and-cross-entropy-loss-log-loss-dbbbe0a17efb\n", "- https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a\n", "- http://www.awebb.info/probability/2017/05/18/cross-entropy-and-log-likelihood.html" ] }, { "cell_type": "markdown", "metadata": { "id": "dd-ZrrKpejvW" }, "source": [ "Son olarak şunu da söylemekte fayda var. GridSearch içinde de scoring parametresine de accuracy/precision gibi metriclere ek olarak **neg_log_loss** da verebiliyoruz. Yani neg_log_loss hem Logistic Regresyonunu optimize etmeye çalıştığı bir **fonksiyondur** hem de bir **evaluation metriğidir**. Daha detay bilgi için Uçtan uca ML projesi(PartI) içinde GridSearch bölümündeki Önmeli Husulara bakabilirsiniz." ] }, { "cell_type": "markdown", "metadata": { "id": "0FPD8y31ejvW" }, "source": [ "## Manuel Implementasyon" ] }, { "cell_type": "markdown", "metadata": { "id": "xygORgcUejvW" }, "source": [ "Manuel implementasyonu Kaan hocamızın Kaggle sayfasında bulabilirsiniz." ] }, { "cell_type": "markdown", "metadata": { "id": "2hZjj5UmejvW" }, "source": [ "## Varsayımlar" ] }, { "cell_type": "markdown", "metadata": { "id": "qulgOFgkejvX" }, "source": [ "- LinReg'in aksine Residual'ların normal dağılımı ve homoscdedasticity gerekmez\n", "- LinReg'in aksine prediktör ve target arasında Lineer ilişki gerekmez\n", "- LinReg'de olduğu gibi featurelar arasında multicollinearity, featureların öneminin yorumlanmasında sorun teşkil edebilir\n", "- LinReg'de olduğu gibi instanceların birbirinden bağımsız olması beklenir\n", "- LinReg'de olduğu gibi featureler arasında collinearity olmaması gerekir(Tahmin sonucunu değiştirmez, ama featureların önemini yorumlamada önemlidir)--> bunla ilgili kaynaklara LinReg notebookundan bakabilirsiniz.\n", "- Instance sayısı feature sayısının en az 10-15 katı olmalıdır" ] }, { "cell_type": "markdown", "metadata": { "id": "74KGbw_kejvX" }, "source": [ "## Önemli husular" ] }, { "cell_type": "markdown", "metadata": { "id": "RGWBm1gIejvX" }, "source": [ "**Genel**\n", "- Çok kritik bi detay değil ama mülakatlarda çıkabilir diye tekrar belirtmekte fayda var: Sınıflandırma algoritması değildir, sınıflandırmada kullanılan lineer regresyon algoritma türüdür\n", "- fit çizgisi S şeklindedir, ama decision boundry lineerdir\n", "- Maximum Likelihood(MLE) maximize edilmeye çalışılır(veya negative log likelihood cost function minimize edilemesi)\n", "- Target'ı LabelEncode etmeye gerek yoktur\n", "- Data linearly separable durumdaysa, MLE fonksiyonu sınıflar arasındaki ayrımı ortaya koymak için katsayıların gittikçe büyümesine neden olur. Bunu önlemek için **Penalty** kullanmak gerekir. Bu regülarizasyon cezasının seviyesini belirlemek için de lambda(sklearn'de bunun tersi olan \"C\" var) değeri kullanılır. Daha yüksek lambda(yani daha düşük C), daha güçlü regülarizasyon demektir. Bu değer, deneme yanılmayla optimize edilir.\n", "- defaultu binary classfication içindir ama multi_class parametresi **multinomial** yapılarak multi-class tahminleme yapılabilir.\n", "- **SGDClassfication**: SGD, genel olarak bir optimizasyon yöntemidir. Bu anlamda, SGDClassifer da, regularizasyon içeren bir linear modelin SGD(Stochastic Gradient Descent) ile optimize edilmiş halidir. sklearn'de LogReg için böyle bir classifer var: SGDClassifier(alpha=k, penalty='l2', loss='log')\n", "\n", "\n", "**Avantajlar**\n", "- computation comlexity:O(nd), hızlı eğitilir.\n", "- online/realtime kullanımı vardır.\n", "- Interpretability'si yüksektir(katsayılar aracılığıyla)\n", "\n", "**Dezavantajlar**\n", "- İyi bir optimizasyon elde etmek için yüksek sayıda veriye ihtiyaç duyar, az veride başarılı olmayabilir\n", "- Outlierlara karşı duyarlıdır, dikkatlice ele alınması gerekir.\n", "- Scaling'e duyarlıdır(Tahmin sonucunu değiştirmez, yorumlamada önemli)\n", "- lineer decision boundry'si vardır. linearly sperable olmayan datalarda, ki çoğunlukla öyle olacaktır, performansı düşüktür. O yüzden de diğer algoritmalara göre genelde daha düşük bir accuracy vardır. Çoğunlukla ana model olmak yerine baseline/benchmark model olarak seçilir." ] }, { "cell_type": "markdown", "metadata": { "id": "QPqYJx88ejvY" }, "source": [ "# Kod Pratiği" ] }, { "cell_type": "markdown", "metadata": { "id": "f224eptHejvY" }, "source": [ "## Data temini, analizi(EDA) ve preprocessing" ] }, { "cell_type": "markdown", "metadata": { "id": "s2d_bWbMejvY" }, "source": [ "Titanic verisetini inceleyeceğiz, bu birçok eğitimde anlatılan bir veri setidir, ve Kaggle'da da bulunmaktadır.\n", "\n", "Çeşitli bilgileri verilen yolcuların hayatta kalıp kalmadığı bilgisi var. Bu bilgileri kullnarak bir model oluşturacağız ve yeni gelen veri setindeki bir kişinin hayatta kalıp kalmadığını tahmin etmeye çalışacağız.\n", "\n", "**Önemli not**: İki ayrı veri seti verilmiş durumda. train ve test diye. Böyle iki parça halinde verilen setlerde genelde test setinde label olmaz, ve bunu bizim tahmin etmemiz, sonra da sonuçları bir yere yüklememiz istenir. Gerçek değerleri biz bilmeyiz, onlar bu verisetini yaratanların elindedir. Bu örnekte de durum böyle. Bu durum biraz kafanızı karıştırabilir. Şöyle yapalım, burdaki test setini saha verisi olarak düşünün. Biz okuyacağımız train verisini ise elimizdeki ana veri gibi düşünüp, onu yine kendi içinde train ve teste ayıracağız." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:39:24.706251Z", "start_time": "2022-02-04T18:39:23.190631Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 224 }, "executionInfo": { "elapsed": 3497, "status": "ok", "timestamp": 1729948685023, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "w9f2MdUTejvY", "outputId": "07c3c43b-2af2-4604-f6fd-89644a1d22f2" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"df\",\n \"rows\": 891,\n \"fields\": [\n {\n \"column\": \"PassengerId\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 257,\n \"min\": 1,\n \"max\": 891,\n \"num_unique_values\": 891,\n \"samples\": [\n 710,\n 440,\n 841\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Survived\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 891,\n \"samples\": [\n \"Moubarek, Master. Halim Gonios (\\\"William George\\\")\",\n \"Kvillner, Mr. Johan Henrik Johannesson\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"female\",\n \"male\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14.526497332334044,\n \"min\": 0.42,\n \"max\": 80.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.75,\n 22.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SibSp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 8,\n \"num_unique_values\": 7,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Parch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 6,\n \"num_unique_values\": 7,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Ticket\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 681,\n \"samples\": [\n \"11774\",\n \"248740\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 49.693428597180905,\n \"min\": 0.0,\n \"max\": 512.3292,\n \"num_unique_values\": 248,\n \"samples\": [\n 11.2417,\n 51.8625\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cabin\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 147,\n \"samples\": [\n \"D45\",\n \"B49\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Embarked\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"S\",\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe", "variable_name": "df" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 279 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "df=pd.read_csv(\"https://raw.githubusercontent.com/VolkiTheDreamer/dataset/master/Classification/titanic_train.csv\")\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "phvCtU7OejvZ" }, "source": [ "Survived kolonu bizim target kolonumuz,binary classification olacak. Kolonlarda şunlar açıklamaya ihtiyaç duyuyor, diğerleri zaten aşikar:\n", "\n", "- pclass: Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)\n", "- SibSp: # of siblings / spouses aboard the Titanic\n", "- Parch: # of parents / children aboard the Titanic\n", "- embarked: Port of Embarkation(C = Cherbourg, Q = Queenstown, S = Southampton)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-02-04T18:39:46.401053Z", "start_time": "2022-02-04T18:39:45.604458Z" }, "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 36, "status": "ok", "timestamp": 1729948685023, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Om5HB5h5ejvZ", "outputId": "a69952ff-d573-4a8f-d538-0f3e6e0e5ad0" }, "outputs": [ { "data": { "text/plain": [ "(891, 12)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4.11 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "df.shape" ] }, { "cell_type": "markdown", "metadata": { "id": "uDM_de1dejvZ" }, "source": [ "## EDA" ] }, { "cell_type": "markdown", "metadata": { "id": "hG0Aq9tIejvZ" }, "source": [ "### Genel" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 444 }, "executionInfo": { "elapsed": 25, "status": "ok", "timestamp": 1729948685024, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "socYxBwo37rW", "outputId": "259aa031-6a46-4171-c233-7bf24700b5e0" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"super_info_(df)\",\n \"rows\": 12,\n \"fields\": [\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"int64\",\n \"object\",\n \"float64\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Nunique(Excl.Nulls)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 357,\n \"min\": 2,\n \"max\": 891,\n \"num_unique_values\": 9,\n \"samples\": [\n 148,\n 2,\n 681\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"#of Missing\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 200,\n \"min\": 0,\n \"max\": 687,\n \"num_unique_values\": 4,\n \"samples\": [\n 177,\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MostFreqItem\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"B96 B98\",\n \"0\",\n 24.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MostFreqCount\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 304,\n \"min\": 1,\n \"max\": 678,\n \"num_unique_values\": 11,\n \"samples\": [\n 608,\n 1,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"First\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 9,\n \"samples\": [\n 7.25,\n 0,\n 22.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TypeNunique(Excl.Nulls)#of MissingMostFreqItemMostFreqCountFirst
PassengerIdint648910111
Survivedint642005490
Pclassint643034913
Nameobject8910Braund, Mr. Owen Harris1Braund, Mr. Owen Harris
Sexobject20male577male
Agefloat648917724.03022.0
SibSpint647006081
Parchint647006780
Ticketobject68103470827A/5 21171
Farefloat6424808.05437.25
Cabinobject148687B96 B984NaN
Embarkedobject42S644S
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " Type Nunique(Excl.Nulls) #of Missing \\\n", "PassengerId int64 891 0 \n", "Survived int64 2 0 \n", "Pclass int64 3 0 \n", "Name object 891 0 \n", "Sex object 2 0 \n", "Age float64 89 177 \n", "SibSp int64 7 0 \n", "Parch int64 7 0 \n", "Ticket object 681 0 \n", "Fare float64 248 0 \n", "Cabin object 148 687 \n", "Embarked object 4 2 \n", "\n", " MostFreqItem MostFreqCount First \n", "PassengerId 1 1 1 \n", "Survived 0 549 0 \n", "Pclass 3 491 3 \n", "Name Braund, Mr. Owen Harris 1 Braund, Mr. Owen Harris \n", "Sex male 577 male \n", "Age 24.0 30 22.0 \n", "SibSp 0 608 1 \n", "Parch 0 678 0 \n", "Ticket 347082 7 A/5 21171 \n", "Fare 8.05 43 7.25 \n", "Cabin B96 B98 4 NaN \n", "Embarked S 644 S " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 45.1 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "#mypyext paketimideki extensions modülündeki fonksiyon versiyon sorunları yaşadaığı için buraya elle yazdım\n", "def super_info_(df, dropna=False):\n", " dt=pd.DataFrame(df.dtypes, columns=[\"Type\"])\n", " dn=pd.DataFrame(df.nunique(dropna=dropna), columns=[\"Nunique(Excl.Nulls)\"])\n", " nonnull=pd.DataFrame(df.isnull().sum(), columns=[\"#of Missing\"])\n", " firstT=df.head(1).T.rename(columns={0:\"First\"})\n", " MostFreqI=pd.DataFrame([df[x].value_counts().head(1).index[0] if not df[x].isnull().all() else None for x in df.columns], columns=[\"MostFreqItem\"],index=df.columns)\n", " MostFreqC=pd.DataFrame([df[x].value_counts().head(1).values[0] if not df[x].isnull().all() else None for x in df.columns], columns=[\"MostFreqCount\"],index=df.columns)\n", " return pd.concat([dt,dn,nonnull,MostFreqI,MostFreqC,firstT],axis=1)\n", "\n", "super_info_(df)" ] }, { "cell_type": "markdown", "metadata": { "id": "1GUQyxwQejva" }, "source": [ "ilk gözlemlerimiz:\n", "\n", "- null kolonlar var\n", "- düşük ve yüksek kardinalitesi olan kolonlar var\n", "- full cardinalitesi olan 2 kolon var(id ve name), bunları sileriz(Belki Name'den Mr/Mrs gibi ünvanları da alabiliriz ama şuan buna odaklanmayalım)\n", "- Ticket bilgisi anlamsız bi bilgi gibi duruyor, bunu da silebiliriz(Belki bundan bile bi anlam çıkartılabilir, ama yine bunu es geçelim)\n", "- ordinal, numerik ve kategorik türlerin hepsi var\n", "- Cabin bilgisinden anlamlı bir feature türetebilir miyiz(feature extraction) bi bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 21, "status": "ok", "timestamp": 1729948685024, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "0FRxSeCZejva", "outputId": "cf6eb045-88fa-40a3-85bf-d6bd5649b137" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 6.12 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "#silinecekleri silelim\n", "df.drop([\"PassengerId\",\"Name\",\"Ticket\"], axis=1, inplace=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "nMX-6DZ3ejva" }, "source": [ "Düşük kardinalitesi olanların değerlerine bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 384, "status": "ok", "timestamp": 1729948685392, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "4dKslFIEejva", "outputId": "512540f9-b061-4e16-dacd-fe8479642564" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Unique items in column Survived\n", "[0 1]\n", "\n", "Unique items in column Pclass\n", "[3 1 2]\n", "\n", "Unique items in column Sex\n", "['male' 'female']\n", "\n", "Unique items in column SibSp\n", "[1 0 3 4 2 5 8]\n", "\n", "Unique items in column Parch\n", "[0 1 2 5 3 4 6]\n", "\n", "Unique items in column Embarked\n", "['S' 'C' 'Q' nan]\n", "\n", "You may want to consider the numerics with low cardinality as categorical in the analysis\n" ] }, { "data": { "text/plain": [ "['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 12.2 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "da.getColumnsInLowCardinality(df)" ] }, { "cell_type": "markdown", "metadata": { "id": "eQXMjAeSejvb" }, "source": [ "Cabin bilgisine bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 447 }, "executionInfo": { "elapsed": 29, "status": "ok", "timestamp": 1729948685393, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "r2Qi72Ibejvb", "outputId": "b8232a7b-f02e-49c2-ceba-61abef6c8ad2" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
count
Cabin
B96 B984
G64
C23 C25 C274
C22 C263
F333
F23
E1013
D3
C782
C932
\n", "

" ], "text/plain": [ "Cabin\n", "B96 B98 4\n", "G6 4\n", "C23 C25 C27 4\n", "C22 C26 3\n", "F33 3\n", "F2 3\n", "E101 3\n", "D 3\n", "C78 2\n", "C93 2\n", "Name: count, dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 15.6 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "df.Cabin.value_counts().head(10)" ] }, { "cell_type": "markdown", "metadata": { "id": "jvAHrHB9ejvb" }, "source": [ "sanki ilk karakterlerini alıp gruplayabilriz gibi, belki de bunlar geminin belirli bir katını veya bloğunu gösteriyordur, ve belki atıyorum B ile başlayanların büyük çoğunluğu kurtulmuştur." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 24, "status": "ok", "timestamp": 1729948685393, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "yzzEZbphejvb", "outputId": "454c24a2-b011-4bdf-d788-6942705bd9f7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 3.13 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "df[\"CabinGrup\"]=df.Cabin.fillna(\"ZZZ\").apply(lambda x:x[0])\n", "del df[\"Cabin\"]" ] }, { "cell_type": "markdown", "metadata": { "id": "tAjqr3Skejvc" }, "source": [ "Şimdi veri türlerimizi belirleyelim." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 18, "status": "ok", "timestamp": 1729948685394, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "KNWcc7i4ejvc", "outputId": "1b48e154-7612-47f7-db8c-43ef22f928e1" }, "outputs": [ { "data": { "text/plain": [ "(['Age', 'SibSp', 'Parch', 'Fare'],\n", " {'CabinGrup', 'Embarked', 'Pclass', 'Sex'},\n", " ['Pclass'],\n", " {'CabinGrup', 'Embarked', 'Sex'})" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 3.35 ms (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "target=[\"Survived\"]\n", "nums=[\"Age\",\"SibSp\",\"Parch\",\"Fare\"]\n", "# cats=list(df.columns).removeItems_(nums+target,False) #extension metodum\n", "cats=set(df.columns).difference(nums+target)\n", "ords=[\"Pclass\"]\n", "noms=cats.difference(ords)\n", "\n", "nums,cats,ords,noms" ] }, { "cell_type": "markdown", "metadata": { "id": "gvmNYsYNejvc" }, "source": [ "### Visuals" ] }, { "cell_type": "markdown", "metadata": { "id": "GuNKB8Ziejvc" }, "source": [ "#### Korelasyonlar" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 433 }, "executionInfo": { "elapsed": 1826, "status": "ok", "timestamp": 1729948687212, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "j5E3kPtXejvc", "outputId": "09462541-f07b-4f45-d42d-670ac2578bfd" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGOCAYAAAA95bIJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC89klEQVR4nOydeXhU1fnHv7MvmUyWGRITSDAwQZYkEGXPBAvuFBBEtKhFCGp/VaTaWpV9kbWgbYXaVmVxRS0UBFSqCJQkbKJR9pqBQAIJCRmSmWT27ffH5A4zc+8sGSazJOfzPHlg7nruPfee955z3vf7shwOhwMEAoFAIBA6FHa0C0AgEAgEQleAGFwCgUAgECIAMbgEAoFAIEQAYnAJBAKBQIgAxOASCAQCgRABiMElEAgEAiECEINLIBAIBEIEIAaXQCAQCIQIQAxuO3A4HNBqtSBaIdGF1ENsQOohNiD1ED9wo12AeKKlpQVJSUnQaDSQSqXRLk6XhaqHc5euYtk3F1Fa2ehaNypXjlWTC5CZLIpiCbsGpB5iA3/tUm2zAa9sO0HqJkYgPVxC3LJw52mPhgQADlY24tVtJ6DRm6NUqq4HqYfYRKM304wtQOommhCDS4hbDp9XMy4/WNmIxlbSmEQKUg+xSWOrmWZsKUjdRAdicAmdkhajJdpFIIDUQzTRBrj3pG4iD5nDJcQtIj4bT49RoDArGSarHUIeBz9UN2FjWRUShbxoF6/LQOohttDozWhsNcNqd2Dj9CGuutCbbR7bkbqJPMTgEuKWtx67Axu/u4r1+1SuZUUKGTZOHwK5hB/FknUtSD3EDkxOUkUKGd6cWojZWypcRndUrpzUTRQgQ8qEuOXtgxdQrvKcPyxXqfG3/SofexA6AlIPsYEvJ6lylRqbyqtQoswBABTnyrFowgCodWbiOBVhSA+XELccvqAGWyCmLS9tcwhJEt/4gqeG2bRGC6QiHuQJfI/1hNBpTz24Q+okvKh1vp2kylVqzB3bDyN6yXD4ghqP/vMwfjU0GyN7ycDnspGSwCf3PwIQg0volDQbbny5k1jE6OFeD+6QOgk/Wh/3mqLVaMXT7x8HALw5tRCbyqs8pgHI/e94yJAyoVOSIHB+S5JYxOhC1YM7pE46BjHff//JanegRJmDEmUONpVX0aYByP3veIjBJcQtw3ulMi4vUsjAYzsfbRKL2PEEUw/ukDrpGNhsFooVcsZ1RQrnUHJhVjIKs5JpxpaC3P+OhRhcQtzy+PCeKFLIPJYVKWSYUZSD5ravdBKL2PEEUw/uxEOdaPRmnG9oRUV1E85fa42LXh+HzcL8cf181sXGsirwuGyYbXa/x+nI+x+P9zWckDlcQtzy8taf8PRdeSgpyoHJaoeAy0ZFTTNmb6nA9mdHAgCkAWINSSzizRNMPbgT63USr/PLqWI+Wu0OFGanMNaF3mwDh8VCjxT/19BR9z9e72s4IQaXELcMvTXF4zeLxQIAjOiVigQeBwAgEXKhVMhQxjCEplTIIBGSV+BmCaYe3InlOgk0v7xuamFMe/KeuqLBT9XNHs5QFMUKOYwWG6406VGskOH76maUKHM8BEvqNQaIeOEf+Iz3+xouSGtDiFtevr8f/vTtJY/GpVghw2sT82G0OwP8W4wWPFXcCyywUKpqdNtOjpnFOWgxWpAuFUa87J2JYOrBHZ3J6rdOdCZrRMrNRDDzy7FqGNQ6M5oMZiya0B+Ld57GD20G9fbsFAi4bMgSnOXukSrCsBwZ6rRGrNtX6VlvuXLkpiciQcAN63XG830NJ8TgEuKWZbvP4OgVo8eyUpUaCz4/hRUT8wA4DW5msggP5N+C6UW3uobZGrRGZCaL0BoD84XxTjD14I7O5L9O9Kbo1Uk8zC/7QmeyYEzfdKz48iyG5KRi4fgBeG3XaZoC2IyiHGgNZmz/4QrNeYoyissn5oXVAMbzfQ0nxOAS4pbDF677FFzQWZw9K1mCAHO2n2T0ylQqZFgxKb/Dy9nZCaYe3EkW8fGqnzpZ6adOOlosI9bnl/2RJOLDYLFh37lr6J+ZhKW7TtOG7al7/uLdfVDqw1O5tLIROrMNFdVNHvdYozejWW+BzmyFzmxDsoiHtERBUPc/nu9rOCEGl9ApaTE4hyV1ZpvPEIgylRo6M90gEMIHVQ/uhFonkXC6kUv4GJUrx0GG4c9Y1x82W+0w222QS/gYX5CBwqxkPDasp0cyCX3bvX9+tMPvsaoadXj2ox8AOK972cQ8XNUa8ddvKz3qrjhXjtVB3P94vq/hJGIGt6KiAlu2bMG5c+eg1+uxd+9eAMClS5dw9OhR3H333UhNZY7nIxCY8JelRixwOutoDWQoK5pQ9eCO1miBmM+hOexQdac10o10pJxuksR8rJpcgFe3nfAwDqPaDEsszzNqjBakJInw0VPDsWz3aY8erHcCA6pefNWD2M3Z7WBlI+ZtP4kH8jMYh6CDuf/xfF/DSUQM7ssvv4zXX38dDofzq4ryYgQAh8OBxx57DK+//jp+97vfRaI4hE7C36bejk3H62lzVBueHIzENoUjqYjnt3HvKkNZHcmIXqm0OVzAOTycyKA0JRXxGKUFKaMgFdH3uRmnm/YOQ2cmi7BuaiEaW81oMVqQKORBLol9neEEPgccNhtLd59GuUpNe+7FfA7WTS3E81sqAABj+nbDY8N60upBqZDh7n7pEPM5ruxCpSo1phflMJ43WKeneL2v4aTDDe6mTZuwdu1ajB8/HsuXL8eWLVuwatUq1/pbb70VQ4cOxc6dO9tlcA8cOIDRo0czrjt8+DCGDx/u+n3o0CG8/PLL+OGHHyCVSvHII49gxYoVkEgkoV8YIeq8U3qB1tCXq9Rgg4WlDw4AACSLeNjw5GCs369iNMzJohsGl4jph8Zjw3uC+1OjR++nSCHD9KIcGK304WExj8MoLViuUoMFMM6rh+p0E+owdJI4/upeIuDCwWK5jC3TR02xQo4NTw5Gmeoa/nhvXyz78gytHspUajhwDiXKHI99TVbfghnBjhTF430NJx1ucN966y3069cP27ZtA5fLBZ9Pv9l9+/Z1DTG3l9mzZ2PIkCEeyxQKhev/P/74I+666y7069cPb7zxBi5fvoy1a9eisrISX331VUjnJMQGPp11VI3QtznrOBwObCi94CEGQPVwN5RVYekEp2EmQfmhs/jzU1j7+Ai8+kBftBptSBRyUa814pVtJ/D3x++gba+3+J/D1TM4WoXidNPVYj9NNjssDudwfIkyBx8fvcT83JdW4d4B6WCx4bMeylVqzFT28lgm4PqOzyUjRcHR4Qb3zJkzePrpp8Hl+j5Veno6GhoaQjp+cXExHn74YZ/r586di5SUFBw4cABSqRSAs1f99NNP4+uvv8a9994b0nkJsQ01FKY1WfErhmEzV3iEyYoEvRkLPz+FgVnJmD7yVo/GadHnp7B2ysBO1TCHm8UP5mGjV4+1SCHDqskFkAjpc7itDHO0gdaH4nTT1WI/zRYrkpKdhm9wdgoGZSX7fO5lCTy0BKgHMZ8DuYTvSuPnALBx+hAPBywgOKcnMnrkpMMNLpfLhdnsXy+ztrb2poZ3W1paIBKJaEZdq9Xim2++wYsvvugytgAwbdo0vPjii/jss8+Iwe2kSNvUiliAz+FLAFg4rj/UOjN+NTTbZ+Ok1nWuhjncfHzkEuPQPgtgDPFJDKAkxbQ+FKebrhb7KRXyAYcDxQo5ksQ8rP36fz6f+7lj+8Gg93/9drsDnz4zAker1Hjq/eMuA+vugHVHz5SATk9k9OgGHW5w8/PzsW/fPthsNnA49K9dymP5jjvoQ0/BMGPGDLS2toLD4aC4uBhr1qzB4MGDAQAnT56E1Wp1/abg8/kYNGgQKioqQjonITYY3isVxxicdYoUMvA5zuEvu8P/sJnd4Uxb5s8oLx4/IMwl71z8eLkZs+7KY3RKYwrx4XPYKFLIGOvFve68yUwWYc2UgWjSmaE1WiEVcZEi5vtUCutqsZ86iw2pCWzMGdsXDgdQUd2MWT68+NksFg5dUKNYIfdQ+6IoUshwqC270Bcn6zw8nMtVarBZLHw5W4mUAHOyXW1YPxAdbnBLSkrw1FNP4f/+7/+wfv16j3VarRZPPfUUrl69ir/+9a/tOi6fz8fkyZMxduxYyOVynDlzBmvXrkVxcTEOHTqEwsJC1NXVAQAyMjJo+2dkZKC0tNTvOUwmE0wmk0d5CZHHVz28+kBf/PlAjUf4Q7FChgXjB0DTloy71Wj166XcarIiUcD1a5Rtdv8xi10FX/Xw+pRB0No8m5LMJCH+9tjt0Jnpw5bX9WbMVOaADdDqboYyB016M5j8YdvbU5JL+CjOlTMOKxfHceynr3qo15ggS2bh1BUNBnRPwsYnh8AOBw6dV2NjWRUAYP4v++HT3wxHi9GCoT1T8VBhdyz4/BRtOmBGUQ5mb6nA2ikDXevcnahKKxthsyOgsexqw/qBiIjB3bt3LzZs2IBPP/0UycnJAIChQ4fi7Nmz0Ol0mD59ut95WCZGjhyJkSNvZCKZMGECHn74YRQUFGDOnDnYs2cPDAYDAEAgEND2FwqFrvW+WLlyJZYsWdKuchHCj696aNaZ8UB+Bqa7ZUap1xrRpDMhLdHZ65GKuFj/WCE2lnl7a8qw/rFCSIXcgNq9eiKOAcB3PQi5bGz5sY7WaM8arUAqQ2OaIOCi1WjFWK+6a9AawWGxIA4hab2vntJzoxWwOxy0sj03WkHb1vt8sTrn6KseZBIe6rVGfP5TLV7edtK1vKjtWWeBhXfLLmDu9lOudXf3TcMr9/dFY6sZRouNll2IcpQqV6lRUpTj8fGq1pmBa61+701XG9YPRETicD/++GOMHj0a69evx6lTp+BwOHD8+HH069cPs2fPxm9+85uwnEehUODBBx/Ev//9b9hsNohEzq9e969BCqPR6Frvizlz5uD3v/+967dWq0VWVlZYykoIHl/18I+DF3wOKb/2oFPDV8zjYFNZFU3iztmzYmHFpDxwGZKku5Mk6lxDj6Hiqx7eLqXXA2XgqHpwR8Bl493SC4zSgsUKOZZOpA/hh9JTamw1o2TzdyhR5tDS1ZVs/g67ZikZDUWszzn6qgceh4039qsYp0bYAKNwxd5zDTBabRiUnULLMFSkkKGiptn122p3MIYa+bs3XW1YPxARU5p6+umn8fTTT8NgMKCpqQlSqbRD4mCzsrJgNpuh0+lcQ8nU0LI7dXV1yMzM9HssgUDA2DsmRBZf9XDER1hQuUoNQ1toic5s860Zq3JqxmYkCTvl0GO4uZl6cMdktfutE6Z4z1B6SlqjBXqzjTFVna99Ij3nGEpP2lc9mK12n1Mj/oQrylRq/PYXClq87pNFt2L2lht+LhlJQqzec452Dvd7A8B1PRIBFzwOC5unD4EdCMm7ubMRcS1lkUgUsGd5M1y4cAFCoRASiQR5eXngcrk4fvw4HnnkEdc2ZrMZP/74o8cyQueCeqkDhT60mKzIAPD8GAUeyLsF6VKha573qsYARRoRR7kZmIbjmfSVPdYz1FkoPaVQ9omkolW4e9JGi29hCsC/cIXN4cCGJwe7RgFSE/h4/N2jHp7J/gz6wcpGXNUaseyLsx7X4z4fXJid7HK+GhyEd3NnJG6TF1y7dg3dunXzWPbTTz9h586deOCBB8Bms5GUlIS7774bH374IRYsWIDExEQAwAcffIDW1lZMmTIlGkUnRAAqLIhJy9cdMZ8Dtc6MVpMVX56s8xh6ppx4SFhQ6EgZQnyCqRNvQnGACiV2N5DOc7gUrTqiJ80kiemOP+EKi9WOme8dd/3e8ORgl7GlHBGvt/oP77zcZKBdj7fDFZvFwlezi5Es5nXJd6rDDS6bzfbQTmaCxWJBKpXitttuw6RJk/D8888H7AU/+uijEIlEGDlyJNLS0nDmzBm8/fbbEIvFHtKRy5cvx8iRI3HnnXfimWeeweXLl/H666/j3nvvxf333x+WayREh1F9ZBjUuzutYTxTqwGvLbREyOX4DUERcjmw2h3YUEYPCypVqWEHCQsKhL/wLB5DiI+I579ORDxmg/zcL9rnABVK7G5SQJ1nZkWr9gqndIT3LpfDpn2UUB8P/oQrihUydEsU4K3Hb4eQx0G91ohe8gR8+sxwSARcXNUaMXPzd3jridvbVR4KyuEKcHo3W+2OLmlsgQgY3FGjRkGj0eCnn34Ch8NBdnY20tPTUV9fj+rqathsNhQUFMBms+HEiRM4duwYPvroI5SWlnqIVXgzceJEfPTRR3jjjTeg1WrRrVs3PPTQQ1i0aJGHtOPtt9+OvXv34pVXXsGLL76IxMREzJw5EytXruzoSyd0MC/efRve+G8NTXh9wbgBaNabAEjAYgGz2hpkuhdtLlgswG5zkLCgm+Dx4T3BY9BSnlGUgyadGfAciILNbsfzo3MB0Ovk+dG5sNnpQ58NLSaUvOfbAerz54oYG/H2CuYnCLh+dZ5ff2QQbZ9QhFM6wnu3SWfGovEDsGjnKb96yh7CFdkpeHa0Ar96+4ibAZYjXSrArI+dnspFChn+9vjtOHlZ4/NDqThX7uFg5U2CgItZYxR+Rwm6Ah1ucD/88EMolUpMmzYNy5YtQ48ePVzrrly5gvnz5+PAgQMoKytDUlISXnrpJbz99ttYsWKFR0/Vm9mzZ2P27NlBlUGpVKK8vPymr4UQW6zec47WsypTqbF092mXdyyXzQKbBfwyP8Ojoa7XGsFmOdc3M8SKukPCgvzz8taf8PRdeTRDOHtLBf71fyNo23PZbLBYDsY6YbHA6DXebLCgR7IIDw7KhNXmgNbgnCfNlonx9amr0PhJw9gewfxWo9WvznOr0Yp0r36AxWYPqGbmTUd470oEXBgtVpd+cmoCH2/4UJtis1jY8WwRvr90HTPf+87jGXcKYTjwyTPDcbnJACGPAy6bhTe++RmrJhd4XBvgNOBLHxyAX75Z5rNsOpMVFdVNPkcJYoFIhIJ1uMF96aWXkJmZic2bN9PWde/eHZs2bUJRURFeeuklbNmyBW+99RbKysqwfft2vwaXQPDnHWuxOXtJBosNejOzs4jebIPBYgvYuAWSIuzqDOyRzOgJXKSQeeRVpTBa7Zix+ThKlDkeKlG1GqfTzbbfjqTtkyTm4O1pgzFvx0mPxl6pkOHtaYNhtvv/aAqWUHqewaiZedMRCdl/utyMEX0TUVHdhPX7VNjw5GDf3uCVjbA6HJjjFpPrsV6lxvQWkysJfXGbNvar207gV0OzaR9XVpsDg3umMF4PFV7kb5Qg2tQ1G3Dgf9eQJhXAZLWjSW/Bsarr+EWfbsgIYyhYh7cke/fuDRhne+edd+Kdd94B4JzzLS4uZjTQBEKwUEnMW4xWPPfxDz4b9/dLhqKbRNAuqcFYFkWIBs/+ojd+nyBpE7RwZgtqNVnAZbPA5L6hM1n9huswCZGIOFy8uv0krY7KVGrM33GSUbM5FELpeYaSjKEjErK/W1qF+wfm4LUJeTBYbGgNIOjS6mdUAPD0aqb8GX41NJux3sYXZDBej7uXMuB7lCCaaPRmXFLrsftkLa3nniNPiC+DazQaGeNg3amrq/NQfUpMTPSbXYhAAAARn42nfWjFUr3SBAHXb+OeIOCi2eBfatApE5kAIPZFEaKBXMLHiQadK6TKYLGhXmPAyN5ysBz07l0Cg5JUoPWtZv8p/VrDNOwfSs9TEmAExNf6cCdkXzRuAIx2B45WqZEuFSKBz2V0kqJIEPhf7+3V7O785E6RQgY2i+W6nivNBlxU62mqVRSxNofbpDdj3f5Kn1MCw3vJwnauDrdqt99+Oz755BM8/fTTGDGCPp9z9OhRfPrppx45bS9cuID09PSOLhohzvnb1Nux6Xg9Y2J5SdtQppDLhlIhoylNAc7hSCGXDQGXjes6C6NMJAssSNp6NUSInZmrGhO+OFlP6x3cKk9Ad4aPEBYLfkcUmHrFgRrpcDXiofQ8E/gcv89YAkOYk/v5wvXM9EgVokFrxBcn6TKb7skHAOfHpN0Bl1e/93pvlSlfUD1YDpvlup7GVrNrKJqJWFOX0vn5mPO1PFQ63OC+9tpruOeee1BcXIwJEyagqKgIaWlpaGhoQHl5OXbt2gU2m42lS5cCAFpbW/Gf//yHiFIQAvJO6QXGtHBssLD0QWcoj9lux4JxA/Da7tMeDaJSIcPC8QNgttuRLOLj3bILjC+XUiFzzTk1tprx/aUmnxlYupoQO0V7pR05HGDZxDws2HGKVievTcyH1UHvrQaeZw9fI97enmeSiIfFE/KweCf9ehZPyIuYNKjNAaz3Ie0I3IiFLVLI8GRRDh59+zAKs5Mxo8iZrN59vfswsDsZSSIPgYyKmmZsOXoJS93quSPmpzsSvSlyTpEdbnDvvPNO7N69G8888wx27NiBHTt2gMViwdE21JSdnY1//OMfuPPOOwE453DLysrQvXv3ji4aIc457MNpqlTVCD0lKegA/rL3f5hRlINXHujrmmOs1xrx52/+hxfu7hO0Z2qryeI3zEJniq2hskjRXmlHIZuDFV+dZayTNXvOYs4D/ej7BDFS0RE4AGdSZT8kifkwmG2YNSbXdT0SIQc6kw2JfE7EPsKMAXpqc8f2wy/6dEOZqtEj1R4AFGan4N7+6fhFn274ub6FNgwMOO+z1mj2EMigjPPinaexdspAAM4P09l35eK3v+iN8rZMRXqz7abmpzuSxACCIeEkIme69957ceHCBZSVleGnn36CVquFVCrFwIEDoVQqwWazYTKZIBAIIBaLMXDgwEgUi9CJoRoLB4Apg7Ow0SuBATU/60DwnqnJIj7+9B/fSb1XTAyP405ngimkSmex+a0THYORDmakIlyEMk9/S7IIIj4Hja1m2GwOiHlcZKeII2pcAoWv6c02/P2ACo8N6+mxnJqbvdxkwEv/+glvTi1EYXayx3NOqU3tPXsVHz01DBw2C3qzDT9UN7l6wk16CxbsOOWRX7c4V45dzyvBAiCLUefCFDHfZ17gYoU8rOeKmGlns9kYNWoURo0a5bH8hx9+wIYNG/DJJ59ArQ7veDmh60JJCrIAv9mC5o/rB0mQTjxmm28t2XKVGmZb+Br9zgKTtCPLEbhOvBFw2PjTnnMevWKJkIMGrQl/+eZ/ePn+vmEp783M04dzPjYUAvXUxDwOZo3OxbmrWvzmzl748zeVrnXUELHebMPsLRWY/8t+ePHuPmhoMUHAZSNHlgC1zoTb0qU4fEFNc7J64e5cLNhxkhaGVFrZiMU7T2N9DPs3pEuFWD4pD/O2n6Q5TS6fRJ8SuRmi4grc3NyMDz/8EBs2bMCJEyfgcDg6NKEBoXMyopcMR6/QcxoXK+QueUAH4DczjQMAn8MOKiwoUJhFoLy6nZVg6sEdBwv4vrrZ51w4k64XywG8dF9fNLTcmCtmgYUEAQd/vK8vWH7EwJw5ks3QGq2QirhIEfM9QsTcieeE6WIex6fedJFChq9OX3XN0S4aNwD//O8Fl9FMEvFw+ILz+b89OxkDMpMw9Z0b6lOfPjMccokAWqMV/TOkWP/Y7R7ezUqFHH/ZW0k7L+A0uvVaE9Q6M6x2B+wOB/QmK5LE/JgJqcuWJWDtI4NuPCdCLlISfD8noRJRg0slov/8889hMpngcDgwYsQIzJgxA48++mgki0LoBDxdnAPucbp37LOjFS45xmAy0zj4ViyfmI/5O07ShiuXT8qH3uQMCyK5PZnxVw9WBtUHndEaYC6cXmcW2MFlcbBun6dTkFIhw7KJ+bAwOFoBQLVahznb6WIZKyblI1uWQNs+nhOm2+0OLJ0wAPM/P8Uos0kN/Zar1Hht92mXk5RSIUNWigiOXqkozBqMippmNOnMHj1YiYCLxTtPewy7uns/B5I/bdKb0WKy0hS5YimkLl0qDLuB9abDDW5NTQ02bdqETZs2obq6Gg6HA927d8eVK1cwffp0bNy4saOLQOikPLflB0ZJwZnvfeeSFAwmM41EwMWiXacxKDsFM7yOtXTXaVfyAomQ69dxJ1A8ZmclmHpwJ1nMxxt7f/Y5F750AkPSejan3cIX9VojzdhS+8zdfhKvPzKI1sDG80eV1QFcUutd0o4JAq5TUpEhFpbKj1uskOOl+25DY6sJz7z/vWubtx6/kaigWCHDmVoNBmYnY3qRZ3KGj49ewoJx/QM++wkCLt7cR491PVjZiFe2nYjpIedw0iEthMViwY4dO7BhwwZ8++23sNlsSEhIwOOPP45p06ZhzJgx4HK5RNyCcFMYzHafghaUq38wmWlazTYcuXAd/TOTXOuoDFeHL1x3iSq0GC2YXuR0tPLuQUwvykGL0dLhX8ixSDD14I7F7n8u3MLgANVqtqHCzzA0k/BFk87s1/u8SWem1Ve8hbS4Y7LaYHNwXHXx1uO3+42HlQp5GJidjKnvHMGnvxnhYZAp0YtihRwLJ/RHzXU9dvxUy5ic4VaZGDy2/2kZIY/tt/4aWkzE4IZKZmYmrl+/DhaLhdGjR2PatGl46KGHkJBAH8IhEDoC6ovbYvOfmcZqt6PVGFy4T5PegtlbKhgz1szeUoH3S4ZG8ArjA6aeTygJ6HUhhGRpA0guMq3vCMnFSKE32VBxtdll+PzlvwUAUZsgx/BeqbC6OfwV58pxS5IQG6cPQYqYB73Jxpi+kvq9ePwAJIt5eH4M83s2a3QuDGb/0wixPFQfTjrE4KrVarDZbLz44ot4+eWXaYniCYRwMKK3DEcvMzjr5Moh5DkbGwGHDbaPzDRsFsBnsyGTCPCXb31Lu1HiDQl8jl+ZSKbE6V2BYOrBnYBSiAxe46kJAvx5b+A6cofJQzqY9eGWXIwUiSIuNpadw5tTCwEAJ69ofIe75Mqx92w9fqxuwoJxA9CgcTqjFSlkWDphAHRmK4wWG3gcAdgsVsD0lUliPnqmijGuIBMlRTkw2+zoJhFAzOeg1WiFmM/D5nLfIXWvMUwjdEY6JFp8+vTpEIlEeOONN9CjRw9MmDAB//rXv2A2mzvidIQuytPKHBQpPHVOixQyPPsLhctr1WSzY/rm46jVeCoh1WqMmL75O5hsdlgChPtQmYfEfA7tfO7n9Ta4Gr0Z5xtaUVHdhPPXWqHRd87nP5h6cEfKd3rTMlGcK4eU4cMllJCslAQ+lD7qS6mQISXBtwFNEvPRO02CQdkp6J0miXljCzi9lO/ITsHsLRUozE7B3f3S8Nzo3ox189xoBUbf1g0lyl744dJ13JIixIYnB2NcfgYuqfWg1D4aWkxoCvDcUkPRGckijM27BTnyBPRJT8Rf9/6MsW+W4ZG3j+CiWsfo+wC01V8Y46hjmQ7p4W7cuBFvvvkmPvnkE2zYsAG7d+/GF198AalUikceeQS//vWvO+K0hC6GP2cdKsWb1ug/M02gYUf3bdhg+U1mz3aTJKprNuDAz9eQlhg43Ve8Zx8Kph7cccCZYcjucNA9m3+hYAwLYhpmDrQ+XSrEikn5mLud7n2+YlJ+p5tvN1htWDCuP5bsPo31+1QozErG8z6mQEo2f4f1j92Oks3foUghwx23puLjo5fwygP98Ng7R/DGo4Nc878fPTXM73m9pSs5LBbme8XkumceYiJQxqXOQod5LUkkEjz11FN46qmncPbsWbz77rv48MMP8c477+Ddd98Fi8XC//73P1y6dAk9e/YMfEACwQt/zjrUCxxI1CJRwGVs4N2hjtFkMMNosTMOTxstNjQbzMhGAjR6M2qa9C75UgqHw4GaJj3EbnJ/7THMsUow9eBOi9mGme8dZzQEvox0oJzEvtbzOWxGyUXvlIudAa3eirJLda7nU8z3nylLzOdAzOe0hQmdwR/vuw2PvXMEja1mpIhvGNHDF9Q+vfPdHckoha7pI2+lxb4Hmk8OlEGqsxCRq+zXrx9ef/11rF692uW9/M0336C0tBS9e/fGnXfeienTp5OeLyFsUPOE4gCZXER8Dlht/w+U7UUi4GHqO0d95tbdNUsJANDoLbDZHYxZW2aNVkCjtyBJzHfm4byux+4TzHk4xRHU4e0omOZrQ8mHywZ8ijoU58oZ58Y0ejP+yKAaBTgNRWfL7iQRcvHP/zrncDeWVzGm0nPHZne4YnFLKxsxfeStaGw1o0ghg9V242NxY1kV3pxaCBaLRZO7pBzJ3BW6pg7Npp2roqbZrxczO4BedWchop8VXC4XDz/8MB5++GFcvnwZmzZtwubNm7F//34cOHCAGFxCuxjRK5WWLQhoi4ltM5J6s9VvKI/ebAWbzfKr02uwOueo5BI+BvdMYTQU7l/6VrvDb9YWykGkWW/BOobYRHdt5ngwCMHUgzuh5MPlcth+h6G5DD3WeFaNCgU+l407spNdnvTdEgUoVsgYldaKFDIcvqBGYVaya5nJaneF+mj0N7yGKbnHf/92JMByekMniTwdydzvNVNvljLaAP09dE/v19mJWj++R48eWLBgARYsWIBvv/2WCGAQ2s28cf3wp2+rGVO8XdeZkCVLQIvR5jeU570ZQ8FmA7/54HusnlxA0+l97J0j+Oev7wDgdKRZPbnAYwhYyOOgXmvE6D7dXI2Pweo/awtlwHVm31mKylVq6MzxMa8VTD24w0KAfLgM5zDb7Hh56wn87fHbweWw0WJwzndbbHY899EPeOfJwbR94lk1KhQ0ejNmKHOAsotYv0/lMnIOwKNu3JWnqAw/AJCVKkJhdgq2fV+Dh+/IcqXho+Jl9WYrkkR83N5TSju3+71m6s360miuqGnGJ8eq8fqUrpGwJiYGzu+66y7cdddd0S4GIc74zfvf458zizG3rQFOFPFgtdkxbcNRvD3N2QBLGQTdWW4ZzhNFXPDYbDS2eqYdcydZdKMX5ADw5Yk6WkaUO/vcCH0LJmsL4Ex8Hcx2sY6/emAyhGABM9qGO5l6O0wW12C24t0nh2Dp7tM0mcZ3nxwCvZluPONZNSoUxAIupn1QgWdG9cLv7s6F1e6ARMDBogkDoDVYYLU50OqlPEX1RosUMvzndD3O1mrw8v39GO/zPf3SfaagdL/Xvnqzd/RMQa9uEkzbeMz1bMdDfHM4iQmDSyCEQnaqGBPWl9OWuw9lSngcbHhyMNbvV9EC7jc8ORgSHgeJIp7f+UFqqFijN+OVrSdocY2lXvJ0SUIexHwOSpQ5jKo6SW2NU1KABj+QwYgVslMTGOuhWCFHAkPyggQeB58crXZJELqPOnxytBqLxven7SNLEPiUaXxt92msYJB2jGfVqFBgw2nU/rK3kpZIoEghQ2F2Cu0dqKhpRnGuHPN/2Q9XNSZMHJSJxTtPM95nB875TEHpfq+p3iw1qgQ439W0RAEAYNcsZVzFN4eTzueqR+gyzB/XnxZnSSUcMNqdX9AWhwNv+ZhPfWv/eVjaPImfG63wGa9I0dBiYhQRAJxGt6HFBADgc1jYNH0wMpM8w04yk4TYNH0w+BxnF07EY/uNExUxiEbEIvPH9UOx13UUK2RYNinPVQ/ucAA8VZyDiuomzHzvOJ796AfMfO84Kqqb8NSoXmCSD9H5Sa5eplIzjhZQqlGjvGJ+O2uvisVm4eX7+tKeqWKFHLNG52JjWdWNZblyLB4/APf2S8dzo3tj0luH8OSmY6i+bvAfL+sjBaX3vaac4t47dBH9M6TITU90pS+Mt/jmcEJ6uDGCxWLBqVOnPJbl5eWBx4uPXk402Fh6AYsmFMBqc7iGMrkcFv6+X+Wcy4LzxfeXnk9vtsFuN2PWxz9g9eQCvNo2h5so5KJea8Ssj3/Ap8+MQJKYj2aD/zk/ar3ZbofDAUYv5edH57qC/FsDOHS1xskc7rul57FwwkBaPfxtfyVmKnvRtm+x2FDiIyyoZPN32P4sPSwo0Hyrr/XxqhoVCvIEAa7oLLQkHCevaHDsohrrpha6Ehp0TxbBAQdYLOCWRKGr12kJkPXHXwrKrnSvQ4UY3Bjh1KlTePZvOyG9xRmTrL16CW89BxQWFka5ZLHLtKJbsWQn3bN48YQB4LXN0+pNNr/Du3qTDVabHWseHog6jVOe0GS1w2CxoV5rxJqHB7rmrQJJN1LruWw23i694DFkSp3z7dLzmP9L55Bpq8m/Q1e8aDNPG5HDWA8Lxw8AU7irlkFL2X1enUmMRBpgmN7f8Hu0E8NHiiQxH/VGKzaWVXncp4IeyfihugnPb6nAxulDUFHTDDGfg7REIdStRpisdqSI+XAgmHhn/x2ArnKvQ6XLGFyTyYSFCxfigw8+QFNTEwoKCrBs2TLcc889USmPd4/23LlzSEzviZTs2wAAdpsV586d89gegEePt6v3gF//+n8Y1Ls7LaXeii/PYkGbUUsUcf2KpieKuBBznRrJvuJmKacpETdA5iGu0+CarDY8MbwnNpZ5nrNYIcMMZQ5MbV7KySKe33hUbwWfWOXPe5nrYfVXZ7HioQLa9hIhx2+dSBhSKgq5bL9z8cIAwgpdhUDPu9Fsw0/VzZhQkAmL3QaTzQ6+1Y673vgvAGDWGIVfkQsum4WK6qa4VESLBbqMwZ0+fTq2bt2KF154Abm5udi8eTPGjh2L/fv3Q6lURrw83j3aulNHkNTrhmt867Ur+NMXJqSdNrnWcySpSLu1DwCgufYCXrjnHPr27evap6sZ4O8uNmFQ7+6u31Qv6ciF69BbnEYtgcehJb0GnEO4LAArJ+XD5nDgHR890ndKL2DhOKfxFnBYWDIhD4t3nmLoVedB0DY3y2axsKmsitZoOYe2WZg/rh8AIC1R4NdZi3IyiXUO/qxG2SV68gLAqTSV7hVFIuZz/dbJcgYHKLPN7nMung0WFrTd066OkOP/eZ9RlINSVSNe230ayyblIztVhC9OXnVt5+5h7P78FufK8eoDfVHVqIPeYotLRbRYoEsY3GPHjuGTTz7BmjVr8NJLLwEApk2bhry8PLz88ss4dOhQVMolveVGj1Z79RJtvSQty2M9V5rm8ftPX5x0GeSuOAS9dspAfPpjI60Xuf4x55c8AOgsAZxtLDY4HA48NqwnY69gRlEODG3G2wZg1ZdnGBPVr/ryLBa2edc6AL/zxtQsWZKYj+UT8xi1fpdPzOsUvQemuVVjgDoxWugOUDaH/3tqC6TP2UXwF9tdplKjpG1OvVSlbsviw/FwpnL3MJ7/y/4wWmxIEHBhtTuw5j/nsO/cNde2nUkRLVJ0CYO7detWcDgcPPPMM65lQqEQM2fOxNy5c1FTU4OsrKwoljA03A1yV+TDw5doCkdUL3LpxAEAAouitxqtSBT67nEBcPVwdWYb9p67hr1ujY47f7jPWRfB5nvV6M1YupvZgL+2+wzWThkY9w0Z05xfKIkI/DnrBLO+qxAodtv9Y+aq1ohsmZi2DzXNcXffNAzKTsGlRh0W76KHZMWbIlos0CUMbkVFBfr06QOp1HNsa+hQp1PKjz/+GJLBjSXP4kBzvp1xDvjwhetgC8S05aWqRpjbspMEIyNod8Bnr6BcpQbluNkSwEuZ6s2JGeYg3aGcqxpbzdh7tgF7zzYwbhcv0oMje8twhCEfrq9Y11CkHUPZp6uh0ZsRyLHdW3bRbPGdxYf6WOosimixQJd4Suvq6pCRkUFbTi2rra1l3M9kMsFkMrl+a7Vaj/Xt8SxmcpJyhHEYLNCcbzzPAQeqByYoT9dgZAQD9bioXnJiACcmqoES8QI4V7WJQcSb9KCvelgyYQCWf3PRQ2DCX6xrKNKOoezTWfFVD2qdGYcutPjVT66oafb4/6jcbrTtAM+Ppc6iiBYLdAmDazAYIBDQHVCEQqFrPRMrV67EkiVL/B7bfR7WXy/z3LlzePPbn306SYWDQHO+/uaAY9kAB1MP3rhCeIKQEWTKaOMOtT5JxPObVYjyKuax/efN5bUJtceb9KCveshob/xlCNKOIe3TSfFVDy1GCzaWVWHHs0VY4iXN6K6fXKyQ48miWzF7SwXG5mXQHPe8P5aSA3xoxos3fSzQJQyuSCTy+CKkMBqNrvVMzJkzB7///e9dv7Vard+hZ3+9TMrA+nOSijTeBtqfAXb/eIj0cLWvehjeKxXHGLLUFClkELf1IsU8DrYcvcQoI7jl6CUsGj8AXA47KEOamSzC8kn5mMfk5DQpH5lt3ppSEQ9pdgfGeeXNbdAakSYVQNp2vHiTHvT3PrQn/lLAYfuVdpz3S7rHsUTA9VuPSx7MC89FxgG+6iFR6Awz++r0jZy4Zpsd3SQC8Lls1GmMeGfaYBgtNjy/pQJ3ZKfg3FUN1k4ZiFaj1efHUmfxpo8FuoTBzcjIwJUrV2jL6+rqAACZmZmM+wkEAo+eMZVQnBrCaW1tRXPtRdja5M5artWCk5Di+m13OMCy22Gz2WF3OKC9esl1vJZrteDoDbH1263sOnU9Fmw4j+RbTgAArledBluUiORbsj3+770OAPTXr+IPk5Xo06ePzzoZOJDeu09MTPQQQAhUD0/cngagAUcuXHetG94rFSVDbgHXZoRWawfLYsas4h5Y9eVZvPnVCdd2I3ql4tWx/cCyGCDh8fHq3T3xmkGHw27HGtErFa/e3RMStgVarfOjIoUHLLg3B9pRPdDS5nAlFfKQwrO5ngsWALvBgDShA2KWCQ6bHWIeG2lCBxwGHVgCO7RaI1gA5t1zK8wGHQ6dv2HAR/aWYf49t4JlNUKrpX9QdDTtrYdghvjdsZuMeKywG/558DytTn4zqjfsJj20Ws+5RSkHePEXWXht1xnaPgvG94eUY213OWKd9tYD327C8B4ivPX1Sfzp4YH4514V7d14fHhPvLz1JwzqkYwZQ9KRlcKHCGaIhEA3IQeAHfB67lgA5t9zKxYxPKcLovicRgpf9RASji7ASy+95OBwOA6NRuOxfPny5Q4Ajurq6qCOU1NT44Az6oP8dcCfd/2QeiD10JX/SD3Exl+w9RAMLIcjnK47scnRo0cxfPhwjzhck8mEvLw8yGQyHDlyJKjj2O121NbWIjExES0tLcjKykJNTQ3N+zmeoIajYuE6gv2SdK8HFosVU9cQKrF0DV25Hm6WcN4DUg+Rw989C2cPt0sMKQ8bNgxTpkzBnDlz0NDQAIVCgffeew8XL17Ehg0bgj4Om81Gjx49ANxQNZJKpZ3ioY6n63CvB3fi6Rp8EU/X0Jnr4WaJ5D0g9RA+OvqedQmDCwDvv/8+FixY4KGlvHv3bowaNSraRSMQCARCF6DLGFyhUIg1a9ZgzZo10S4KgUAgELogJMVGiAgEAixatIgxvjee6AzXQa4hNugM13CzxMI9iIUyxBuRumddwmmKQCAQCIRoQ3q4BAKBQCBEAGJwCQQCgUCIAMTgEggEAoEQAYjBJRAIBAIhAhCDSyAQCARCBCAGl0AgEAiECEAMLoFAIBAIEYAYXAKBQCAQIgAxuAQCgUAgRABicAkEAoFAiADE4LYDh8MBrVYLooYZXUg9xAakHmIDUg/xQ5fJFhQOWlpakJSUBI1GQ/JMRhFSD7FBpOvhklqHudtPolyldi1TKmRYPikfPWUJHX7+WCWUeiD3MjqQHi6BQIh5LjfpaQYCAMpUaszbfhKXm/RRKln8Qe5l9CAGl0AgxDwtRivNQFCUqdRoMVojXKL4hdzL6EEMLoFAiHm0Bovf9S1G/+sJNyD3MnoQg0sgEGIeqYjnd32i0P96wg3IvYwexOASCISYJ1HIhVIhY1ynVMiQKCT+n8FC7mX0IAaXQCDEPD1SxFg+KZ9mKCjP2h4p4iiVLP4g9zJ6kE8ZAoEQF/SUJWDV5AK0GK1oMVqQKOQhUcglBiIEyL2MDsTgEgiEuIEYhPBB7mXkIQaXEPfY7XbU19cDANLT08Fmk5kSAoEQe8Rky7R9+3Y8+OCDyM7ORlJSErKzszFx4kTs2LEj2kUjxCD19fWY/tbXmP7W1y7DSyAQCLFGTPVwrVYrHnvsMWzbtg0OhwNcLhcymQxXr17Fzp07sWvXLkyePBkff/wxuNyYKjohygilqdEuAoFAIPglpnq4K1euxNatW1FcXIzS0lIYjUbU1dXBaDTi4MGDUCqV2LZtG1atWhXtohIIBAKB0C5iyuBu2rQJffv2xd69e1FUVOSai2Oz2VAqldi7dy/69OmDjRs3RrmkBAKBQCC0j5gyuHV1dRg/frzP4WIej4fx48ejrq4uwiUjEAgEAuHmiCmDm5WVhdbWVr/b6HQ6ZGdnR6hEBAKBQCCEh5gyuE899RQ+++wznz3YK1eu4NNPP8VTTz0V4ZIRCAQCgXBzxJSr7yOPPILy8nIUFhbihRdegFKpRHp6Ourr61FaWoq//vWvUCqVmDJlCqqrqz32Jb1eAoFAIMQyMWVwe/XqBRaLBYfDgXnz5tHWOxwO7Nq1C7t27fJYzmKxYLWSHI4EAoFAiF1iyuBOmzYNLBYr2sUgEAgEAiHsxJTB3bx5c4cc98CBAxg9ejTjusOHD2P48OEdcl4CgUAgEChiyuB2NLNnz8aQIUM8likUiiiVhkAgEAhdiZg3uD/++CP2798PAFAqlTSD2R6Ki4vx8MMPh6VcGr0Zja1maI0WSEU8yBP4SBLzaes1BjPEAi44bBb4HDbMVjtajBaIBVywWSxw2SzIvPYlEAjMXG7So8VohdZgQZKIBwlJKRc05N5Fn6gb3IMHD+Ldd9/Fs88+SxvanT9/PlauXOmx7Nlnn8W6detCPl9LSwtEItFNaTHXNRuw7JuzKK1sdC0blSvHqskFyEwWobbZgFe2nXCtF/M52PDkYLy1X4VSldq1T5FChhlFOVj55VkseTAPmcmikMtEIHR2Lql1mLv9JMrd3iEqaXpPWUIUSxb7kHsXG0Q9DvfTTz/Fv/71L/Tv399j+f79+7FixQpwOBz8+te/xm9/+1vI5XK89dZbIWcNmjFjBqRSKYRCIUaPHo3jx4+HdJyFO097GFsAOFjZiFe3nUC91uhhbAGgRJmD9V7GFgDKVWpsKq/CbRlSvLrtBDR6c0jlIRA6O5eb9DSDAQBlKjXmbT+Jy036KJUs9iH3LnaIeg/38OHDGDlyJKRSqcfyf/7zn2CxWPjHP/6BkpISAMALL7yAvLw8bN68GRMnTgz6HHw+H5MnT8bYsWMhl8tx5swZrF27FsXFxTh06BAKCwsZ9zOZTDCZTK7fWq3WWebzarAF9KGYg5WNaNKZaca4MCsZ6/epGM9RrlKjpCgH6/ep0NhqJkPLDPiqB0JkiWY9tBitNINBUaZSo8XYdcIC21sP5N7FDlHv4dbW1mLgwIG05fv374dUKsX06dNdyxQKBcaOHdvununIkSOxdetWlJSUYMKECXj11Vdx5MgRsFgszJkzx+d+K1euRFJSkusvKysr4Lm0DA+vyWr3uw+1vsVoCXj8rkgo9UAIP9GsB63B/7vRld6d9tYDuXexQ9QNblNTE0Qiz7nL6upqXLt2DUql0pUxiEKhUKCx0bMHGQoKhQIPPvgg9u/fD5vNxrjNnDlzoNFoXH81NTUBjysV0gcNBFz/t5lanyjkBVHyrkco9UAIP9GsB6nI/7vRld6d9tYDuXexQ9QNbmJiIq5cueKx7LvvvgMA3HHHHbTtWSwWhEJhWM6dlZUFs9kMnU7HuF4gEEAqlXr8AcDI3jLG7UflypGSwMeoXLnH8oqaZhQpmPcpUshQUdOMUblyyCVkOJkJX/VAiCzRrIdEIRdKH++QUiFDIsOHbmelvfVA7l3sEHWDW1BQgN27d3sYve3bt4PFYmHUqFG07c+fP4/MzMywnPvChQsQCoWQSCTt2m/JhAE0ozoqV47VkwuQLhVi1eQCj/Uby6owa7QCxQrPfSgv5f/VabF6cgGZvyUQfNAjRYzlk/JphoPytCXhLb4h9y52YDkcDkc0C/Dhhx9i2rRpuP322zFt2jT8/PPP+Pvf/47s7GycP3/eY0jZZrMhIyMDo0ePxqeffhr0Oa5du4Zu3bp5LPvpp58wZMgQPPDAA/j888+DOo5Wq0VSUhI0Gg2M4ENnssJotYEFFhwAdCYrJEIuKHFKhwNgsQAeh41WoxnJYgH0Zhu0RgsShTwIuWyY7XaIuRxIRTxicIPEvR6kUinq6urwfx865/X/8cRgZGRkRLmEXQPvemgvocSFuu8jFfGQSGJJafXgrhGQIeLBymWj1WSF1mCFRMCBiMcBl80Ch81CZhe/d5Em6mMJTzzxBL799lu89957qKiogMPhgFQqxYYNG2jzt1988QUaGxtx3333tescjz76KEQiEUaOHIm0tDScOXMGb7/9NsRiMVatWtXuMl9tNqDJasE7B8/jV8N6YlN5lYcXINVz/fjoJTw2rCc+PnoJr9zfD4t3nca+c9cYt3tmVG/0TBUjg8TiEroAocSFkljSwLhrAPxqcCZ++4s+mL/tBC3+//kxuchMCs/UHCF4om5wAWDTpk2YOXMmDh8+DJlMhvvuuw/du3enbScQCPDnP/8ZDz74YLuOP3HiRHz00Ud44403oNVq0a1bNzz00ENYtGhRSNKOpapG7L/QgkHZKTRjC8D1u7BtfWF2Cl7bfRqDslM8DK77duv2VWJcQSbG5t1CerqETk2guNBVkwtovdZQ9ulqaPRmzP3ihiDPc6P7YO72k4zx/wAwLj8TbDary9+3SBL1OVwKpVKJP/7xjygpKWE0tgBw33334Xe/+x1kMmYHAF/Mnj0bR48ehVqthsViQW1tLT744IOQdZS7JQpQplKjMCvZZ3xbudv6wqxk1/b+tktLFKCxlYhfEDo3ocSFkljSwKi9NABazTaasaUoV6mRJhWQ+xZhYqKH64sLFy5Ao9EgKSkJvXr1inZxXJjb4maDja/1/tffdiQmjtDZCSUulMSSBsb7HgS6Z6S9iTwx08Ol0Gg0+N3vfoeUlBTk5uZi8ODByM3NRUpKCl544QVoNJpoFxH8trjZYONrvf/1tx2JiSN0dkKJCyWxpIHxvgeB7hlpbyJPTBnchoYGDB06FOvWrQOLxcKdd96JRx55BHfeeSdYLBbefPNNDB06FA0NDVEt57UWE4rb4mcDxddS/yrb/vW3XUOLicTiEjo9ocSFkljSwMi8NAAkfA6K/bRPDVoTuW8RJqYM7pw5c1BZWYlXX30VNTU12LdvH7Zs2YJ9+/ahpqYGr7zyCiorKzF37tyolrNYIcesMbk4V6vFjKIcmtGlvI/P1Gpc/y4cPwBnajU+t3t+TC5G9+lGHKYInZ5Q4kJJLGlgksR8Dw2Av+3/Gcsm5jPG/z8/JhdFChm5bxEm6nG47qSlpaGgoAB79+71uc2YMWNw6tSpqPRy3ePdHFwhNAYL9BYb4MCNOFwBFywWABbAZ7NhtNrRarIiUchFAo8Dk80OrcEKMZ8DFguwOxwQcjmwOhzgslhIEHBhMNugM1uhM9uQLOIhLVGAJDHfI75OIuCCz2Gj2WCGREjPx9uZIXG4sYF7PRjAR5PODK3RCqmIixQxH+lS/2EnVExti8GCxCBjakPZp7PDFIer1VvAYgE2hwN2AEaLHa1GK8QCDsQ8DoRcNjKicN9qmw3QGCyu2GupiNel0pLG1HiCTqej5cT1ZsSIETh27FiESuQbjcGCeV4u90UKGWaPyUW3RD4atCas26/y8KwsblOjUqQlAvCMmRPzOfjbY7dDyGNjvdd+d/dLw8Jx/TFvxykPL0Sqhzz1naMY3DPFlY+XQIgkNdd1WLH3DC0+dsWkfGSHMaaWxOEGh8Fsg9XhQL3GSG+DFHIsm5QXFWNL6i/GhpTz8vJw8eJFv9tcvHgReXl5kSmQDxq0RpqxBZyu9uv3VaKhhW5sAaC0LWeuRm+GRm/2yJtbosxBncZAM7YA0DdDijnbT9LS/lH5dEuUOa58vCSnLiHSLNl1hjE+du72k6jXGmnbh5KfleR0DQ6N3oyL1/U4ckHN3AapGjE/Cverttngt/5qmw0RLU+0iCmDO3fuXGzdutXnkPLXX3+NrVu3Yt68eREumSfNerPP+LZSlRoJAq7PmMGDlY1obHUODbsb0MKsZKRLhYz7BRPv635sAiGSHLlwnXF5mUqNJh39eSRxuB1HY6sZCQIO0ny0JYCzjYr0/dIYLH7rTxMghKmzENUh5ffff5+27N5778V9992He+65B0qlEunp6aivr0dpaSn27t2LcePGoampKQqlvQFTzlt3Wo3M6f4oWowWeE+c+4vpDTbelzo2gRArML0rJA6349AaLTBa7AHbjEjfL1J/TqJqcKdPnw4Wi+WxjPLh+vrrr/H111/T9tm1axd2796NadOmRaSMTDDlvHVHIuT4Xc8U++YvpjfYeF9fxyYQogXTu0LicDsOqZAHLscKvdl/mxHp+0Xqz0lUDe6mTZuiefqQSRbzUayQMQ4rFytk0JmsKFLIGIdQ3PPejsqV42DbsHJFTTMyk4SM+1FxvGUMxytyi+8lOXUJ0WBEr1QcvUKfq1UqZEhJoD+PVEwt0/McKA63Pft0ReQSPs5eNaGhxeSzDSqOwv1KEvH81l9SAIPcWYipsKBYx939XmPhoKbJgGaDBUIeBz9UN+FcrRbzftkPHBYLtVoj1u2rpHkp/2lyAcR8DhpbzWjSm5Eg4ILNAkQ8DnRmG1pNVkiFXPA4bKhbTZAIeZDwObA5HFjw+WmPed9ihQwLxg/AN2euIi1RiIIeSdCbbUgS8ZAg4KLVaPUbQhSvYUYkLCg2oOrhdFUtfmqwIC1RAJPVDiGPg3qtEcW9Zejhw/v0iloHk90Bk9XuSrUn4LIhYLPQ3Y+X8nwvZ8VihQzLAni5uj/nUlFsP9uhQHsfruthdTigNVpxVWsEi8XCD9VN2FhWhTuyU7BsUh7sdhs4bGebQ4XoiPkcaAxmiAWe9yhc969arUO5qhFpUuGN50RjQJFC7tObvbNBPgtDoPq6Dqv2XvL4WitWyPGH+27DlH8eRkGPJLx8321YOiEPOrMVerMNQh4HaW29z1lbKlyGUy7h45NnhmPu9pMex6NCfp7c9B1uz07G8on5uLtvGl6+/zY0aE0AnD3fiX8rxx09U/DcLxSY9NYhAMCbUwt9pgyc+s5RFPWWYQEJMyKECTuAL0/U0gzhyN6+k4xYASz4/BRjiIgvWADG5mdgelEOTFY7BFw2GrQmsHzu4Rl6RzEqV95pn+0atQ5mmwOLd57yqg85dj2vBJcF/PFfP2LFQwWYzxCis2DcADz6z8PonyHF6skFcABhvX9fnqyjPSdFXsIcnRnSw20H1JfklDf34hjDEFqRQobC7BSs36dCkUKGX+ZnoFZjxPp9KgDAyofy8eWJOpSqbjy8G54cjI0MKf68j6dUyLBsYh7m7Tjld1sAqKhuuult1u9TYVSuHOumFsZcb6C9PVy73Y76+noAQHp6Oi3PMiE0Ar0PSoXMZ6q9V7adYHz+fO1zpUmPl/3ss3pyAbp77aPRmz0+bt2J1Wc7FKh6OHfpKpqsHPxtn4pxuotqk/K6J2H1nnM+7+WMohzMfO84Y3tF0d77V6814vef/ejznK8/MiigUEpnIKotD5vNBpfLxc8//+z6zeFwAv5xudHtmPsKg3AP0SlXqZEuFXqk5EtLFNAe3jSpIKiQnzKVGgaLPeC2wYQQdbUwo/r6ekx/62tMf+trl+ElhA9/YUHhCvHRBtiHyRvaO/TOnc7ybLujNVqQIOD6TcmXLhWCy2H7vZdpUgEA5vaKor33r0ln9ntOpvCxzkhULdeoUaPAYrEgFos9fscz7u743q75TK76gUKI3PcJJt1We8oXzDadxV1fKE2NdhG6JOEK8QlpnwDPbmd5tilaDFZYOYHbk5YA95Jqk8IZWhQolDLQ+s5CVA3ugQMH/P6OR9xDdLzDeZjCewKFELnvE0y6rfaUL5htuoq7PqFjCFeIT0j7BHh2O9uznSjiQhhEe5IY4F5SbVKgtqI99y9QKGWg9Z2FmJ/MslqtqKioQEVFBSyW2PgiHdGLubfkHqJTpJChXmv0SMnX0GLySJ8FAA1ak8+0Y+7HUypkEPHYAdMBBpMykAozCnROEmZECAZf70M4U+1JA+zD1GDLJXza+0bRGZ9tqZAHncnqNyVfvdYIq83u915STplM7RVFe+9fSgLf7zmZwsc6I1E3uBcuXMDGjRtd87ju7N69G927d8fgwYMxeLDTGeazzz6LQik9WTC+P+3hoTx8N5ZVoUghw6zRuchIEmFjWRUA5wM6uk83j/RZgNMDcPGEAX6Pp2wLfZi9pQIzinJo2xbnyvH8mFxsLKvCxrIqxm3cj/e/Oi1WTMqnvUzu24xqS7TQGZxKCB0L0/sQ7lR73QPs4+0wBdDT1VF01mc7I1mE7kkiLJ6Qh2KGd5tqk5776AfGNkepkGHh+AF4ZdsJn+0VENr9S5cKscJH/a2YlN8lHKaAGPBSnjt3LlavXo0LFy6gZ8+eruUqlQoFBQUwGo3o2bMnEhIScPbsWbDZbBw7dgyFhYURL6u7d6zWxkWL0YpWowVyiQBmmx0agwWJQh4S2+JmW8026M02JLal7GOxASGHA31bvG1C23I2C+BRqfza0pvxOWw0681Ibnuo9RYb9Caba911nRnithheFgvgstlo1pmQkiCAxW6H3e6WMlDIhYjLgcFqBRws13IxnwOJgAu73eE8vtkGiYALtJVJwueCxWKh2S2dVgKfA53Fihaj79SBHR3r2F4vZRKn2zEwvQ9UTG17Uu119D5XmvTQtu2T1LYPk4F2J5Q0cqHsE473xvt9uNakh9HugN5qc6UIbTFaIBU631+91Qat3tkuJPA5YAMw2x0wuLUxCTwOdFYbNDpnucR8DtQ6E0R8LgQc5zF1JitSEvg+y8x0bTqzDRqDBS1GZ1uZRNLzRZaysjIMGjTIw9gCwF//+lcYjUY899xzWLduHQBgx44deOihh7B+/Xps2LAhGsUF4IzDXbn3Eiqqm/Hm1EL85VsvgQuFHM+N7o2S945Db3Y6IBQpZFg4bgAWf3ka+85dc207pm83vHJ/Pyz4/JRHHO6Yvt3w6gP9cFVrpGUQKlbIMUN5K3698RgKs5MxoygH276vwQt334b5brGNYj4Hm6YPRrPOjD+VXsBjw3rS4nOLFXI8O7o3ZnqVdUZRDj45Vo2ZyhyPdVSs3m8/PIbGVrPP1IGdOdaR4An1PnR0qr3Otk9HxAjXqXUwOYDVe87S2gOqTAvGDcBvP/oeja1mFOfKsWh8f6z48qxHu1SskGPB+P549uMf0NhqhlIhw9IH81B9XY93Si94HJOpzEzXVpwrx3OjFSjZ/J2rPelq7UTUh5SrqqowdOhQ2vI9e/aAz+djxYoVrmUTJ05EcXExSktLI1lEGkvb0pGVKHNoBgxwpsBat1+FEmWOa1m5So3Xdp9G/8wkj237ZyZh6e7TNMmz/plJOH7xOmO6vlJVIzaVOdPyUSn6Hr4jC0t3n/bYtkSZg/PXdFi3X4X+mUk+y7qeoaybyqvQN0NKW1fWdh2rJxcA8J06kKQL7Dos9ZGeL5yp9kLZJ5SUcJHaxzs9J8XNvDdXmvSwApi34yRje0CVyf39La1sxOKd9HapVNWI13bd2K5MpcbRC2ps8DK2TGX2dW2llY1Yt6/Soz3pau1E1A3utWvXIJd7zhFcv34d58+fx7Bhw5CYmOixrrCwEFeuXIlkEWlQcYfBxrNSlDEs83UMf+n6AGeKLfeYX6Z4XvdjtLes7vswXQcVq+fvuJ0x1pFAJxJxuKHsE0pKuEjt0xExwq0mK1rNNp/tgXuZqPeX+u39jgPONsZ9uzSp0GeMr3uZ/V0bU3vSldqJqA8p83g8qNWelfj9998DAAYPHkzbPiEhdjQ325M2z9cyX8dob7wsUzyvv5jgYM5HLfMXPxxracAIsUVU43BjeZ8OiBFuMVhh5zr3CxTf773e13vsvl2w73qga2M6TldpJ6JucPv06YNvv/3WY9nXX38NFouFkSNH0ravra2NGaeX9qTN87XM1zHaGy/LFM/rLyY4mPNRy/zFD4czVo/Q+YhqHG4s79MBMcKJIi4kbWUJFN/vvd7Xe+y+XbDveqBrYzpOV2knoj6kPHnyZFRWVuL//u//cOLECWzduhVvv/02JBIJ7r//ftr25eXlUCgU7T6PyWTCK6+8gszMTIhEIgwbNgzffPNNSGWm4g6DiXl1R8mwzFdMbEVNMxq0Rp/HL/aK+WWK562oaUZ92zHaW1b3fZiuwz2Bgq/4us4Y60igE4k43FD2oVLC+dqHKSVcpPbpiBhhiYALCZ/jej+DibWlfnu/44CzjXHfrkFrRLGPRAPuZfZ3bUztSVdqJ6JucF944QXk5+fj7bffRmFhIR599FG0tLRgyZIltOHj48ePQ6VS4Z577mn3eaZPn4433ngDjz/+OP7617+Cw+Fg7NixKCsra/exqLhDKubV25AVK+R4fnSuKwYXaPNSHj8AZ2s1HtueqdVgwTh6TNyZWg3uuDUVs0YrGI8/Q3kj5ndGUQ62fl+DBeMGeGy7sawKvbsl4PnRuThTq/FZ1lkMZZ1RlINzdVraOvdYPQA45yOmt7PGOhLoRCION5R9MpNFfvdh8oyN1D4dESPcPUUMLoBlE/Oxra098BdrCzg9hxdPyMMZr3bJ6aV8YzulQoZhvWSYWUxvQ7zL7Ova3PUCwnG98UjU43ABoLW1FX/+859x5MgRyGQyTJkyBePHj6dt9/bbb+Orr77Cn/70J+Tm5gZ9/GPHjmHYsGFYs2YNXnrpJQCA0WhEXl4e0tLScOjQoaCOwxR3qDNakCoRwGKzQ2t0xraKeBzw2CzoLDa0Gt3ibdmAiMOB3mKD1mBFktgZH9tqtqHF6Izd43PY0BjMSBbx4WABRou97RgcCLkccFgAu+3YLYa25TxnLJ0VdgjY9ONd15td+W7RdkwqDi6Bz4HD7kCjzgxRW9nhdt5EERdiHgdGqw02uzN+N1HIhYjHgclmA5fNhpDFgoPDdsXXSUU8JPA4rthe9/jCjog7JHG40SGacbgtBgsSQ4jDlYp4kAYRhxvKPqFcD/U+UO+jXHJz74PJxoXZ7kBLW/tAvb86szN2Pqntt1pnhIDnzLXNAtDa1iZJBM42gM9modVqg0bvLJeUz4HV4YDRZofDLcY/UchFspjvEq7wjnkW8TlobDFCLHCey2S3wWIF9GYrkkX8kK63owgljrq9RH0OFwAkEgkWLFgQcLtnnnkGzzzzTLuPv3XrVnA4HI99hUIhZs6ciblz56KmpgZZWVlBH89X3OGCcQPw+LtH0NhqRpFChudH54LLdqBOY8CHRy5h+sgcvHPwPEpVasglfHz89HC86hVOUKSQYdH4AWhoNWHdt5UeXoFj+nbD3LH9sGS7Z67LIoUMs8fkIl0qwBwfeXV/88H3WDe1EG/tV9H2nTVaAaPFjt98+D3WP3Y7/ravkpZL0zuuuFghx9KJA/DPA+fx1KjeWLL9J5Sq1BDzOYz5eEflyrFsYh6W7j6DvWcbPJZ3pTi8zkgsx+HWNhvw6r9PtivWNZR9qtU6zGEo24pJ+X6TqyeJw2dwGq/rwJFIMX/HSY/3V6mQYXpRDmZvqYDebINSIcNrE/Pwm/e/x5IHB9DahOJcORaO64/H3zmKxlYz7urbDfPH9cfCHfR2Z9ZoBbgcNtjNBuhtdsb6odrFvrck4rWJeZjx/jH0lImxYlJ+zBjbUJ6tUIj6kHIkqKioQJ8+fSCVSj2WU/G/P/74Y7uO5yvu0D2+rVylxrr9lbA6nEO7/TOTXMYWAFZPLsCSXfQ4uXKVGt9fvE4ztoAzNnfRztO05eUqNdbvq8Sh82paPC8VU7t6cgHW76fnySxXqbF+vwp1GgNWTy7Aun308zLFFZeqGrFwxynMHNULi9ySXfuKTT5Y2Yi520+ib4aUtrwrxeF1RmI1DjeUWNdQ9qnXGmnGlirb3O0nUa+l5wruCIwAzdhS5dhUXuV6f8tUaizYcQp/e+J2xjahtLIRS3edcbVl/TKTMN/L2AI32o5jF9QwMhhb6lxUu+g67+O3R/ze+CNQHHU46RIGt66ujnEYkVpWW1vLuJ/JZIJWq/X4A/zHHbrHrZWr1EgQcF1xbu4PrL84OV/xbv5iXktVap96pIHi8qg8mcHm5nU/p9Xm8NjHXxl9xfsFisPzVQ/hxm63o66uDnV1dbDbA4dldTVCeR+iGYcbSqxrKPtEOterr3rQmW1+c+G6v3tlDO+uO6WqxqBi7Z1ti9AV/8uEe7tYplKDy2G7/h8LeXADxVGHky5hcA0GAwQCAW25UCh0rWdi5cqVSEpKcv0FM+zsHd/mK17VX5xcqLG5/tYHk3e3Pbl5Kbxza4ZaRn9xeKHUQygEm6g+WMPc2Qx4KPUQb7Guoe0T2VyvvuqhxeD/PN7vXrjy4pqs9oD14962uJ83FvLgBip7OOkSBlckEsFkMtGWG41G13om5syZA41G4/qrqakJeC7v+DZf8ar+4uRCjc31tz6YvLvtyc1L4Z1bM9Qy+ovDC6UeQkUoTQ2YrD5YwxxuAx4uQj1fKPUQb7Guoe0T2VyvvuohUeT/PN7vXrjy4gq47ID14962uJ83FvLgBip7OIn+1UaAjIwMRjnIuro6AEBmZibjfgKBwKNnTDl0D84Q4Hgdfc5oRK9UVNU2wm5yrhveKxUNjU0Y1l2Iw+cuY1gPEQ6fdw5RVNU2OpczDMddrLuGYd1FOHzBczjj8LnLPvcZ0SsVF+uuuc7tzvC2cg3tLmQc/hveKxVVddegaxX63ebwucsexx/RKxVGfYtHmQ6fu+zzGCMYjgEAI3vLwLcb4XAkgMVi0fbzVQ/UUFpLSwv0153DgOfPn0dLS4vH/g0NDX7Xh7Kdve2rP1zbzfnkKABg5a+GIS0tjXG7cOF+vg2zx+OWW27xWJ+YmNiuevD3PsCsB20GwKz3+xyHax++3YzhPUQ4dJ4+LEg9c1qt/ab34dqMfsvGtRnp1xME7a0Hh8n3PfJ+f6l31/e7KnO1Zf7aneFt7U6GSOb3HlDHGtErFc3Nza7/h3pvwgnbYvBbdofDwVgPIeHoArz00ksODofj0Gg0HsuXL1/uAOCorq4O6jg1NTUOOD3iyV8H/HnXD6kHUg9d+Y/UQ2z8BVsPwRATcbgdzdGjRzF8+HCPOFyTyYS8vDzIZDIcOXIkqOPY7XbU1tYiMTERLS0tyMrKQk1NDc37OZ7QarUxcx2+vui9ca8HFosVU9cQKrF0DV25Hm6WcN4DUg+Rw989C7YegqFLDCkPGzYMU6ZMwZw5c9DQ0ACFQoH33nsPFy9ebFdeXTabjR49egCAqwKkUmmneKjj6Trc68GdeLoGX8TTNXTmerhZInkPSD2Ej46+Z13C4ALA+++/jwULFuCDDz5AU1MTCgoKsHv3bowaNSraRSMQCARCF6DLGFyhUIg1a9ZgzZo10S4KgUAgELogXSIsqCMQCARYtGgRY3xvPNEZroNcQ2zQGa7hZomFexALZYg3InXPuoTTFIFAIBAI0Yb0cAkEAoFAiADE4BIIBAKBEAGIwSUQCAQCIQIQg0sgEAgEQgQgBpdAIBAIhAhADC6BQCAQCBGAGFwCgUAgECIAMbgEAoFAIEQAYnAJBAKBQIgAxOASCAQCgRABiMFtBw6HA1qtFkQNM7qQeogNSD3EBqQe4ocuky0oHLS0tCApKQkajSYu8kzWNhvwyrYTKK1sdC0blSvHqskFyEwWRbFkN0d766Gz3odoE2/vQ2clmHog70BsQHq4nRSN3kx7wQDgYGUjXt12Ahq9OUoliyzkPhC6OuQdiB2Iwe2kNLaaaS8YxcHKRjS2do2XjNwHQleHvAOxAxlS7qRojRa/61sCrO8skPsQWcZPfhR1164zrsvolopd2z6NcIkI5B2IHYjB7aRIhTy/6xMDrO8skPsQWequXYfiiaWM61QfLoxwaQgAeQdiCTKk3EmRS/gYlStnXDcqVw65hB/hEkUHch8IXR3yDsQOxOB2UpLEfKyaXEB70UblyrF6cgGSxF3jJSP3gdDVIe9A7NAlhpQPHDiA0aNHM647fPgwhg8fHuESRYbMZBHWTS1EY6sZLUYLEoU8yCX8LveCkftA6OqQdyA26BIGl2L27NkYMmSIxzKFQhGl0kSGJDF5qQByHwgE8g5Eny5lcIuLi/Hwww9HuxgdhkZvhsZggc5sQ6vRComQCzYL4HHYkCV0zpetXmtEk84MrdEKqYiLFDEf6VIhbbvaZgM0Bgu0BguSRDxIRTwS8E/oElxp0qPFZIXWYIVEwIGIx0FqJ20PYp0uZXABpyqLSCQCl9u5Lv1qswGtZhsW7zyFMpXatbxIIcOMohys/PIsljyY16mMTM11HVbsPYNyt+tVKmRYMSkf2bIE17JLah3mbj9J2275pHz0dNuOQOhsXFLrMH/7SZR6tQnPj8lFz1QxMjpRexAPdCmnqRkzZkAqlUIoFGL06NE4fvx4tIsUFjR6My5e12ORl7EFgHKVGpvKq3BbhrTTqcos2eVpbAGgTKXG3O0nUa81AnD2bL2NLbXdvO0nUdtsiFh5CYRIcqVJTzO2gLNNWLevEgd+vtap2oN4ICa7edeuXcOmTZvw3Xffobm5GTabjbYNi8XCt99+G9Tx+Hw+Jk+ejLFjx0Iul+PMmTNYu3YtiouLcejQIRQWFjLuZzKZYDKZXL+1Wm1oF9TBNLaakSDg0IwKRblKjZKiHKzfp0JjqznuhpJ81cORC9fBFohp25ep1GjSmZEuFUJjsPi8L2UqNTQGS6fq9Xck8fI+dHaCrQet0UozthRUmxCP7UE8E3MG98SJExgzZgyampr8Zr9gsVhBH3PkyJEYOXKk6/eECRPw8MMPo6CgAHPmzMGePXsY91u5ciWWLFkSfOGjhNZogdFi97uNyepcH4+qMqHUg9Zodf5rICo74SJe3ofOTrD1EOjZN1nt5PmPMDE3pPyHP/wB169fx7x581BVVQWLxQK73U77Y+r1tgeFQoEHH3wQ+/fv93msOXPmQKPRuP5qampu6pwdhVTIg0TI8buNgOus6nhUlQmlHqRC57ekVERUdsJFvLwPnZ1g6yHQsy/gssnzH2Firod7+PBhTJw4EUuXMsvDhZOsrCyYzWbodDrGtFYCgQACgaDDy3GzyCV8nL1qglIho83hAk4niYqa5rhVlfFVDyN6peLoFSNtuVIhQ0qC8zqTRDyf90WpkCEpQKNEuEG8vA+dnWDrQSrkolghYxxWLlLI0NBiwuCeKR1RRIIPYq6Hy+fz0bt374ic68KFCxAKhZBIJBE5X0eRJObj1lQxFk/Ig1Ih81hHeSn/r07b6VRlFo7vT7teykuZCg3KTBZh+aR8xu2WT8on87eETkv3FDGWTcpHscJTYYryUh7dp1unag/igZjr4d55551h9x6+du0aunXr5rHsp59+ws6dO/HAAw+AzY657452c0uyCBq9GSsm5TPG4a6dMrDTvVxZqQl4/ZFBN+JwhVykJNDjcHvKEvCnhwdCY7C4VHaSSBwuoQvQU5aAVZPz0WKyosVghVjAgZjE4UaNmDO4a9euxfDhw7F27Vq89NJLYTnmo48+CpFIhJEjRyItLQ1nzpzB22+/DbFYjFWrVoXlHLFAV1SSSZcKGYUuvMlMFhEDS+iSdE+he/ITokPUDW5JSQltWV5eHl555RX84x//wKBBgxjnV1ksFjZs2BDUOSZOnIiPPvoIb7zxBrRaLbp164aHHnoIixYt6vTSjgQCgUCIDaJucDdv3uxz3YULF3DhwgXGde0xuLNnz8bs2bNDKV7MoNGb0dhqhtZogVTEg9zPkBDTtgCC3j9c5YgEwZaHSDsSuhoavRn1WhM0BgsS2iQdEwRcpAUxItSRZYql9iPSRN3gVlVVRbsIMU9tswGvbDuB0spG17JRuXKsmlxAMxpM2xbnyvHcaAVKNn8Hvdnmd/9wlSMS1DUbsOybswHLQ6QdCV2N2mYDXtn6E03ScdZoBUwWG7Ki8NzHWvsRDVgOf+oSBA+0Wi2SkpKg0WgYh7k7Ao3ejFlbKjweUopRuXKsm1ro+kL0t22RQobC7BSs36fyuX+4ytHRUPXwyLpvcfQyXZrRvTy1zQb8cetPjGpTSoUMf3p4YJd52cMN0/sweNQ9UDzBHNKn+nAhjh/8JpJF7BJ414NGb8asjytQqmJuB8blZ2BMv/SgfB/CRSy1H9Ek/t1zOzmNrWbGhxQADlY2orHVHNS25So1CrOS/e4frnJEisPnmWXr3MsTjLQjgdCZaGw1MxpbwNkOpEmFaNJF9n2NxfYjGsScwX399dchl8tRW1vLuL62thbdunXDm2++GeGSRQdtAOk1d2m2QNtS8o6+9g9XOWIBqjxE2pHQ1QimHaCkTyNFvLUfHUXMGdx//etfGDhwIDIzMxnXZ2ZmYtCgQfjkk08iXLLoIA0gveYuzRZoW0re0df+4SpHLECVh0g7EroawbQDlPRppIi39qOjiDmDW1lZiQEDBvjdZsCAAaisrIxQiaKLXMLHqFw54zpvqUZ/21Lyjv72D1c5IsXI3jLG5e7loaQdmSDSjoTOiFzCR7GfdqBBa3RJn0ayTLHWfkSDmDO4BoMBCQn+PeiEQiFaW1sjVKLokiTmY9XkAtrDOipXTpNq9LVtca4cz4/JxcayKr/7h6sckWLJhAEBy0OkHQldjSQxH6snF9CMrtNLORdKhTyiDlNUmWKt/YgGMeel3LdvX6Snp+O///2vz23uvPNO1NbWRryXGw0vZQoqfo2SJpRLAsfhum8LIOj9w1WOjsK9HhxcYVDloeJwibRj+CBeyrGBr3bJPQ6XknSMlTjcaLYf0STqcbje/PKXv8Rf/vIXbNy4kVGF6t1330VZWRl+97vfRaF00aM9so2+tg3Hgx1r8pHBlodIOxK6GrH2rgKxWaZIEnMG99VXX8WWLVvw9NNP48MPP8Q999yD7t2748qVK/j6669x8OBBZGZmYs6cOdEuasgEUlup1xpvCPKLuEgR0wX5O+L88agCE06lqXi8fgLBF/VaI5r0ZrQYrEgQcCDkcsBmAeIo93K7MjFncLt164b9+/fjiSeewIEDB3DgwAGwWCxQI99DhgzBRx99RMv+Ey8EUlupVuswh0EVacWkfGSHQR2G6fz39EvDgnH9MW/HqbhSgQmn0hRRwSF0JqrVOszbfpJRaYrNQtTUpro6Mec0BQC33XYbvvvuOxw9ehTr1q3Da6+9hvXr1+PYsWM4evRo3CYc0OjNtEYdcAZ+v7rtBGqbDTRjCzgFGuZuP4l6LT3ZejjOf1uGFHO2n/RZLo0+NoPSF+48HbDMtc0GmrEFnPd03vaTzp5vgHqJ1esnEJio1xppxhZwil6s36/C+Ws6lKkab7o9IbSfmOvhlpSUID8/Hy+++CKGDBmCIUOGRLtIYSOQ2kogVaQmnfmmhpZ9nb8wK9lD8tG7XI2t5pgcWj18Xg22gJ56zL3MwShNGcy2gCo4sXj9BAITTTozzdhSlKvUKCnKcW0XaW/lrk7M9XA//vhjNDQ0RLsYHUIgtZVAqkg3qw7j6/xMClTuxKMKTHuUpogKDqEzEaidMFntUVGbIsRgD7d3796oq6uLdjE6hEBqK4FUkW5WHcbX+ZkUqNyJRxWY9ihN8Tmd7/oJXZdA7QT1vkdabYoQgz3ckpISfPHFF7hy5Uq0ixJ2AqmtBFJFull1GF/nr6hp9nneWFaBCZfSFFHBIXQmUhL4KPbxzBcpZKjXGqOiNkWIQYM7efJkDBs2DCNHjsTf/vY3HDt2DJcuXUJ1dTXtL94IpLaSmSzCCh+qSCsm5d/0fIuv8/+vTosVk/LjTgUmXEpTRAWH0JlIlwqxfFI+ihXMSlO9u0miojZFiEGlKTab7QoDYrFYPrdjsViwWiOc8SJMSlOB1FY84nCFXKQkdEwcrvf540UFpqOUpuLl+mMFojQVG/hql9zjcMVtcbgcEocbVWJuEH/atGl+DW1nIJDaSrpU2KFfn/6UqOLNwIRTaSoer59A8EVHtyOE9hNzBnfz5s3RLkJQXG7So8VoRavRAplEAIvNjhajFRIBF2ABHDYg4HCgM9vQanQqvYh4HLAANOpMSBTyIOJxoDNboTfZkCrhw2y1Q2uwIlHIhYjPgd5sRavRBqmICwGXDbPdDh6LDSvs4IINo9UOg9kCuUQIndnmUlGSCLlg2RzQmK3QmW1IFvGQlihwGZNgFJXiRXWJqgf3a++RQg8VCma7K016aN22SRRy0T3EY3XEduEkGuckRIZ6rREagxkcNsBjc6C32GhqUwI2C1YArW7tRgKfAw4ANocNs80OndmGFoPz/U8UcsFlsXDdYEGr0QqJkAs2C+Bx2JC5tQ2B2o2u/tzFnMGNB6qv67By7yVUVDfjzamF+Mu3lR6xnkUKGRaOG4DFX57GvnPXPJbPGq2A0WLHtI3f4fbsZMxU9gKLBfxl788esXNKhQzTi3Iwe0sF9GYbihVyLBzfH/84qML//UKB+TtO4X9XW/DRU8MZlamWTczHC5/8iJ8bnFmVinPl+NPkAjiAgIpK8aK6RNWDPwUpIDilqWC2ieZ24SQa5yREhmq1Dkt3nUaJMgdpUhGj2tTsMbm4RSrEvB0nUcbQbtgtViz4/DTt+Vg8IQ+/3nAUja1m17FmFOVg5ZdnsfTBvIBtC3nuYtBpKh5YuuuMM4BcmYNN5VU0YYVylRqv7T6N/plJtOXr96tQpzGgRJmDMpUadRoDNpReoAWql6nU2FRehRKlM0i9VNWIpbtO46lRvTF/xymUq9RYPbkAS3efZlRRmr/jJP72xO2uZaWVjTjw8zW8stW/olI8qS5R9eAOpSB1uUkPwPlF7U9p6nKTHlcCbHOlHcfqiO3CSTTOSYgMDW0KU30zk8Bms7Bk5ylmtal9lSg/3+hhbIEb7UZDi4nx+Vi88xRWTy7wONam8ircliEN2LaQ585JTBrclpYWrFy5EnfddRf69euHXr160f569+4dtfIduXAdgFOhyZ+KUWFWMm15uUqNdKnQtS5dKvSrCuN+jFKVGlabw3XONKnA7/mtNk9/uLREAUpV/hWVAqlhUV+3sQBVD96UqdRoaQvqbzFa/d6jFqMV2gDbaNtxrI7YLpxE45yEyNCsdypMFWYlI0HA9dmulLa1QUyUqdRIEDAPfJap1EiTCjyWUW1UoLaFPHdOYm5I+dq1axg5ciTOnz8PqVTq8sAzm80wGAwAgMzMTPB40RcjCKTQ5Gu9+/L2HqPFTTmp1Wjzu2+Ll8pSMIpSgVzW40V1qT1KU4H89NtzrI7YLpxE45yEyEB9GJqs9oBtg7+2wN++TOsCtSsAee4oYq6Hu3jxYpw/fx7vv/8+mpqaAAAvvvgidDodjh49iqFDh+LWW2/F6dOno1zSwApNvtYLuGzXuvYeI9FNOUki5PjdN9FLZSkYRalAaljxorrUHqWpYLYJ9lgdsV04icY5CZGBUo4ScNkB2wZ/bYG/fZnWubdnPstGnjsAMWhwv/zyS9x111144oknaOFBQ4YMwVdffYWLFy9iyZIlUSohMKJXKgCnQlORHxWjippm2nJK6YVaV6810gLU3bd1P0axQgYuh+UScWjQmvyqKHE5nvevocUUUFEpnlSXqHrwRqmQIbGt8UkUcv3eo0QhF9IA20jbcayO2C6cROOchMiQLOajOFeOippm6Ew2n2pTxQoZGnxkClIqZNCZmId3lQoZGrQmj2VUGxWobSHPnZOYM7h1dXUoLCx0/eZwOK6hZABISUnBAw88gM8++ywaxQMALBjfH0qFDBvLqjCjKIdmdIsUMiwcPwBnazW05bNG5yIjSYSNZVVQKmTISBJhZnEOzegq2zwAN5ZVAUCbl/IAvHvwPF6bmAelQoZXtp3AgnEDfKooPffhD65lxblyjO7TLaCiUjypLlH14A517VSoQY8UsV+lqR4pYnQPsE33dhyrI7YLJ9E4JyEypEmFWD4xD+fqtLDb7Vg0IY9ZbWpMLkb2lvt8BtIShYzrFk/IwyvbTngca0ZRDv5Xpw3YtpDnzknMKU2lp6fjsccew5///GcAQFpaGu677z588MEHrm3+8Ic/4O9//zv0+sh6trkrumhtXLQYrdCZLEhNuBGHmyDggsUC2GxA6BaHKxZwIHbF4ZohEXIhZorDbYvlFbvF4SaKuBBy2TDZ7OCz2bA67OCyqDhcK2QSAfRmm0shKdEtDldvtiHJRxyuP0WlWFZdYqoH92v3F+vqbzsqDpfaRhogDjcc52zPduEkHOckSlOxgXc9+IrDdVebco/DpZ4BCVMcrtu70J44XF/tRjSe9Vgi5vrxvXr1wsWLF12/CwsL8c0330CtVkMmk8FgMGDXrl3Izs6OXiGBm3pIbu0WxoL4obuP5cEoKsWL6lKw9RDMdt1TxD7vWUedsz3bhZOu1Mh1NTpSYSr9JtXauvpzF3MG995778Wf//xn6PV6iMVi/OY3v8HDDz+MgQMHYsSIEfjhhx9w8eJFLF++PKrlvNykR6vJilajFaliPsx2u+vLT9CW7k1vsUFvcipFSYU8WG122OxOjWiD1QY4AAcAncnq6vGa7Tbw2RzY7A7oLTYYzDanygubjWa9s2fM57ChbjVBIuRBzOfAYXdAb7VDb7IiNYEPs82pWJUg4EAi4MJks8Hm5kjocNw4JwsAn+PsPbcYrZCKuBBxOTBYbC4tZx6Hjes65/lSxHwIuWyamgyAqChThVPNqTMoSBEIdU16GK12GK02sMC60cYInIp1JpuzrUoUOn87ABgtdrQYLEhsU5xy2B241jYSJxXyYLLYoDVakCziwe640bYliXlIdxs989CBF3GRInbqwPtaHktEQl0v5gzub3/7W/Tv399lcB966CGsWbMGy5Ytw7Zt2yASifD73/8ef/zjH6NWxurrOqzeewnftylN/Xnvzx4xZsUKOZ4d3Rsz3zsOvdnpRl+cK8eSCf1hdwArvjiDx4b1pIlmOJVe8lDfYsKbXspT1HzJrzcewx3ZKZihvBXTNjnVqhZPyMMz7x/HogkD8IZXWe7q2w0v398Pf9pzlvGc7mUFgDenFtK2oc5NqWMtnpCHX719GI2tZoj5HGycPgR/26fyiMOLhDJVZ1CaIhDCSbVah9pmA94uveCzjaEU7ABg45ND8Lf9lTSVu8UTBkBvsmHaxmO4PTsZC8cPQIvBOUW1fr/Ksw1pm6e12ex41cczv+qrs/jqVL3H8hWT8pEdI+9CpNT1YmYO9/Dhw5g3bx6+++47sFgsDBs2DMuXL8fQoUMBADabDY2NjUhLS4tacgNqruSRN/fi6BUjZo1RoKK6iTGgu0ghQ2F2CtbvU7mWrZyUjy9P1mJgdorP/VZOysOXJ+sYg9bdj1mskGFg2/+VChlevr8vVu85RzsmVcZCP+ekjgsgqOuhHLpmvnfc7z0YlSvHuqmFYf9KpOphypt7cewK3dtSqZBhVZujxuUmPV7ZdoKxfNR2AAJuE+yx2rNdvEPmcGMDqh7OXKzDj1dN2H2y7qbfd6VChlljFChTqV3v/Lxf9sOyL84ybl+cK8cDebdg7vZTjMei2gvv5a8/MijqPV2N3oxZWyoYBX9G5crx/sxhYTtXTHgpnzx5EnfddRcOHDgAnU6H1tZWfPvttxg9erQr3pbD4SA9PT0mMgkdDkJpylslCnAqQ1FKML72SwtSearU7f9lKjW4HDbjMalzBVPWYK/HXXHG3z4drUwVLqWpzqAgRSC0mqxIkwrD8r5TilPu77wDLJ/bl1Y2+lWv8laoopY36aKvXBdIXS+cxITBXbVqFYxGI+bNm4erV6/i6tWrWLBgAQwGA1avXh3t4vmkvSpR1G9/+7XnmO7/91aVas85qfXtOTelOBOMelU0aI+aU2dQkCIQWgzWsL7vrUZbUG2M+zH9HYsJbQx8fGoj+D7GxBxuaWkplEolXnvtNdeyJUuW4MCBA/jvf/8bxZL5p70qUcGoS7XnmO7/91aVas85g1nvvQ2lOBOMelU0CKeaUzwoSBEIiSIuHLbwve8SIQd6c+A2Jphj+lKvksaA4EUgdb1wEhM93Pr6egwfPpy2fNiwYaivr2fYI7oEozTlrRIFOJWhituW+9qvQWtEsQ/FFvdjFrv9X6mQwWqzMx6zoqbZpXoVqKzBXo+74oy/fTpamSpcSlOdQUEqHrigUmHwqHsY/8ZPfjTaxYt7JAIuGrQm17t6M+87pTjl/s6z4PC5fXGu3K96lbdCFbU8JSH6oYeB1PXCSUwYXIvFAolEQluekJAAiyX2ht8WjO+PYoXcp9JUsUKOWaNzXSpRgPOBHNYrFYsmOBWomPZTKmQY0VuO2XflMirEUMpTxQo5ZihzXGpViyfk4bmPfmA85tlaDRaMG4AzPs7pXlbqeryNhfu5vRVnNpZV4fkxubSPhEgoU4VLaaozKEjFA1YHC4onljL+1V1jno8nBE/3FDGKFDI8PybX5/vurmC3sawKz4+mtzXUO262OFzv/MLxA6BuMWPWaAW9DWnLta1U+Fav2vZ9DW35ikn5UXeYAhBQXS+cxISXMpvNxuLFi7Fw4UKP5UuWLMHSpUths/nPfBEpvBWOWk1W6IxWJIv5sLTF4SYIuBDy2ICjfXG4CQIuEvgcmOw2CLzicCVCLnhsNpoNZkgEbXG4OhMSBDdi5vRWO/TmtpjgtjhcsYCDRK84XBbgjKMz3VDF4rUpy7S0xd2KeM443Ja2uGI+h43rOue5UxJuxOG6q8kAiJgyVUcpTXUGBalI0l4v5S8XPY6xSz5iXEc8mEPHux58xeEmCG4o1jHG4bY9px5xuAIupCJnHG6L0RlP7hGHK+IhXeojDlfobC9ocbhuy2OJSKjrxczY1ocffogjR454LFOpnCE1Y8eOpW3PYrHwxRdfBH18k8mEhQsX4oMPPkBTUxMKCgqwbNky3HPPPSGVN9oNZ043+ohAR9LLSx2L6UGMhjJVONWcOoOCFIGQEabnrmcIini+VK46Uv0qXERCXS9mDK5KpXIZWG/27NlDW9be8KDp06dj69ateOGFF5Cbm4vNmzdj7Nix2L9/P5RKZUhlJhAIHc/4yY/6HHLO6JaKXds+jXCJCITQiAmDW1VVFXijm+DYsWP45JNPsGbNGrz00ksAgGnTpiEvLw8vv/wyDh06dNPn8CULptGbca3VBKvdARYLEHCcSQfcZRQpkfAkEQ98DhsagxnJIj4cLOdQj3Oo+obwOJvNgq5NkDxBwIGQxwEbgMVhd0pA6sxIbvtScx/WpsTGjVa7a18Rz+k9eF1nRkJb0gQOAK1bmQRt0o92hzPWjxp2Ntls4LLY4LNZ4PI4aNaboTVYIRFykMDnwmCxQW+20e5HOOXToiHtGA8ydZ2JumvX/YppEG5wrUkPs92BFovN+S62TSvpLDZoDRZI2+Rg1ToTBFzn+88GYGx7v3Umq8upzwEggccBm81Ci8nqMQUm5nMg4nOQ6tUrpN5vjcHZnvDaZGipKRWmZCCxQiTe65gwuD179uzQ42/duhUcDgfPPPOMa5lQKMTMmTMxd+5c1NTUICsrK+Tj+5IFWzYxD6u/OodJd/TAtu9r8Pt7bsOCHadQqlJDLuHj46eHY46XFFqRQoZF4wegodWEdd96Sq6N6dsNc8f2w5Ltp2iyj7NGKyCTCLBubyV+O0aBeq0R69wk2MR8DqOMG7Wv0WJ3yUY+N7o3StpkKcV8DjY8ORhv7Vd57FeskGPpxAH454HzeGpUbyzZ/iNKVWqI+RxGeUjqfizdfQZ7zzZ4LA9VPi0a0o7Vah2tzmJNpo7QNWm8rgNHIsX8HSdpUo2UnKPebHM5QT32zhHcdksilkwYgDV7zmHvuWuufYpz5ZipzIGIx8Y7By/gVwwykZSDVs9UMTKSRYztIOVw+WSbDG2sSptG6r2OCS/ljqaiogJ9+vRxOXZQULKRP/74Y8jH1ujNtIcMcCqUzN1+Eg/d0QObyqvw8B1ZWLrrtOtFWD25AEt2naYpt5Sr1Pj+4nWasQWA/plJWLTzNG15uUqN9ftV+P7idUxX5uC7qusexhYASpQ5WLeffkxq3zqNASXKHJSqGrFuvwolyhzXfuu9jC0AlKoasXDHKcwc1QuLdt74AChR5tBeTPf70TdDSlv+6rYT0OjbrzizdNcZ2nnKVGrM234Sl5ucqRsvN+lphtR7u2C2AZxfwN4vJbXd3O0nUe8jLIJAiARGgGZsAefzuam8yvVOl6nUWLrrNFZPLkC5So3FO0+jb2aSxz6llY3YUFqF89d06JuZxPhOl6vUWLevEgd+voZ6rZGxHSx3Ozf1Pl1pimxa1UAEeq/DSZcwuHV1dcjIyKAtp5bV1tYy7mcymaDVaj3+vPEnC0ZJmpW3/ev+IlDLmfAl7xhIri1NKgSXw0Z6m7xbe/ZNlwpdMm7uMo7+9itVqWG1OTzWB5KL85a7BAJLQPqqh0hLOzbpzH63iwWZuo4kmPeB0PH4qged2RaULCzgKbfo670sVTW62gW/7U6iAE063+2gtyxsLKhLuRPovQ4nXcLgGgwGCAR0LU+hUOhaz8TKlSuRlJTk+mMadg4kC0ZJmnlLm/mSOgN8S6QFI9fWYrAwbtdeqbdgJeK85d7aK3fpOo6f+xhMPfg6XlilHQM0FLHWkISbUOqBEH581UOLwf/z5/3uubdB/tqcYN7pQM++h0RkjEmbRvK97RIGVyQSwWSiK50YjUbXeibmzJkDjUbj+qupqaFtE0gWjJI085Y28yV1BviWSAtGri1RxGPcLph9mWQjA0o3esm9hSop50/uMJh68HW8YGQWg5ZsDKAQFQsydR1JKPVACD++6iFR5P/583733Nsgf21OMO90oGffQ4Y2xqRNI/nedu4Woo2MjAxcuXKFtryurg4AkJmZybifQCDw6BlTGiHuQ2l8uxnDe4hw6Dx96GFEr1RU1TZiaHchqmobMay70JVpyPu3OxfrrmFYdxEOX/A85uFzl33uM7xXKi7WXYMIUlys02Jod6HHkOvhc5dpy9z3raq7hqsaE+wmPYb3SsXhc5dhN+n97jeiVyqM+haPMgXanjquOyN7y8C3G+FwJDCGe/mqh8EZAhyvo88HjeiVCpj10GoBmPU+7xm1HYCA22i1ANdm9Lsd12ZEZxhlTUxMbFc9uL8PdrsdNivz6I0DDp/r7Ha7zyFqf8f0tx8APPrrGahXNzOuS5cl49MPNsXEfky0tx4cJt/P+nCvd49qm+wmvc/3ckQvmatd8Nd2XKxrRM/Ebj7bQfdzj+iVChb1bsYIgd5rh8MRvix1ji7ASy+95OBwOA6NRuOxfPny5Q4Ajurq6qCOU1NT44DTM578dcCfd/2QeiD10JX/SD3Exl+w9RAMMSHt2NEcPXoUw4cP94jDNZlMyMvLg0wmoylc+cJut6O2thaJiYloaWlBVlYWampqaN7P8YRWq42Z6/D1Re+Nez2wWKyYuoZQiaVr6Mr1cLOE8x6Qeogc/u5ZsPUQDF1iSHnYsGGYMmUK5syZg4aGBigUCrz33nu4ePEiNmzYEPRx2Gw2evToAeCG0pVUKu0UD3U8XYd7PbgTT9fgi3i6hs5cDzdLJO8BqYfw0dH3rEsYXAB4//33sWDBAg8t5d27d2PUqFHRLhqBQCAQugBdxuAKhUKsWbMGa9asiXZRCAQCgdAF6RJhQR2BQCDAokWLGON744nOcB3kGmKDznANN0ss3INYKEO8Eal71iWcpggEAoFAiDakh0sgEAgEQgQgBpdAIBAIhAhADC6BQCAQCBGAGFwCgUAgECIAMbgEAoFAIEQAYnAJBAKBQIgAxOASCAQCgRABiMElEAgEAiECEINLIBAIBEIEiDmDe+DAAbBYLMY/7zR6hw4dglKphFgsxi233ILZs2ejtbWVdkyTyYRXXnkFmZmZEIlEGDZsGL755ptIXRKBQCAQCLGbvGD27NkYMmSIxzKFQuH6/48//oi77roL/fr1wxtvvIHLly9j7dq1qKysxFdffeWx3/Tp07F161a88MILyM3NxebNmzF27Fjs378fSqUy6DI5HA60tLSENT8iof2QeogNSD3EBqQe4oeY01I+cOAARo8ejX/96194+OGHfW43duxY/Pjjjzh37pwrf+G7776Lp59+Gv/5z39w7733AgCOHTuGYcOGeSSfNxqNyMvLQ1paGg4dOhR02bRaLZKSkqDRaGIiz2S1Wod520+iVKV2LStSyPD8mFz0TBUjI1kUxdJ1HFQ9nKyqxcq9l1Dudv1KhQzLJ+WjpywhiiXsGlD1cKqqFisY6mHFpHxk+6iH2mYDXtl2AqWVja5lo3LlWDW5AJmd9LntKGKtXSL4JuaGlN1paWmB1WqlLddqtfjmm2/wxBNPeDxg06ZNg0QiwWeffeZatnXrVnA4HDzzzDOuZUKhEDNnzsThw4dRU1PTsRfRQdRrjTRjCwDlKjXW7avEgZ+vQaM3R6l0kWHprjMejTwAlKnUmLf9JGqbDVEqVddjiY96mLv9JOq1Rtr2Gr2ZZmwB4GBlI17ddqLTP7eErkvMGtwZM2ZAKpVCKBRi9OjROH78uGvdyZMnYbVaMXjwYI99+Hw+Bg0ahIqKCteyiooK9OnTh/blN3ToUADOoel4pElnphlbinKVGmmJAjS2du6G68iF64zLy1RqaAyWCJem6+KvHpp09GewsdVMM7YUBysbO/1zS+i6xNwcLp/Px+TJkzF27FjI5XKcOXMGa9euRXFxMQ4dOoTCwkLU1dUBADIyMmj7Z2RkoLS01PW7rq7O53YAUFtb67MsJpMJJpPJ9Vur1YZ8XeFGa6T3/N0xWe1oMXYOoxNKPXSWa48lQqkHpudUG6BuSN35J5bbJYJ/Yq6HO3LkSGzduhUlJSWYMGECXn31VRw5cgQsFgtz5swBABgMzuFCpmTBQqHQtZ7a1td27sdiYuXKlUhKSnL9ZWVl3dS1hROp0P+3koDLRqKQF6HSdCyh1ENnufZYIpR6YHpOpQHqhtSdf2K5XSL4J+YMLhMKhQIPPvgg9u/fD5vNBpHI6VTh/pVHYTQaXesBQCQS+dyOWu+LOXPmQKPRuP5iab43JYGPYoWMcV2RQoaGFhPkEn6ES9Ux+KqHEb1SGbdXKmRIEpFGO9yEUg8pCfRnUC7hY1SunHGfUbnyTvPcdhSx3C4R/BMXBhcAsrKyYDabodPpXMPB1NCyO3V1dcjMzHT9zsjI8LkdAI9tvREIBJBKpR5/sUK6VIjlk/JRrPBsuCgv5dF9uiFJ3DkaLl/1sGB8fyi9PjooL2Xi6Rp+fNXDQh/1sGJSPtKlQtpxksR8rJpcQDO6o3LlWD25oNM8tx1FLLdLBP/E3ByuLy5cuAChUAiJRIK8vDxwuVwcP34cjzzyiGsbs9mMH3/80WPZoEGDsH//fmi1Wo8H8+jRo6718Uq2LAFrHxmIJr0ZLQYrxAIOEvgcpIj5XaLRyk5NwJ8eHgiNwYIWowWJQh6SRDxibCNMVmoCXn9kEJp0ZmiNVkiFXKQk8BmNLUVmsgjrphaisdXsqju5pGs8t4QujCPGaGhooC378ccfHTwezzFhwgTXsvvvv9+RkZHh0Gq1rmXvvvuuA4Djq6++ci07cuSIA4BjzZo1rmVGo9GhUCgcw4YNa1fZNBqNA4BDo9G0az9CeCH1EBuQeogNSD3EDzHXw3300UchEokwcuRIpKWl4cyZM3j77bchFouxatUq13bLly/HyJEjceedd+KZZ57B5cuX8frrr+Pee+/F/fff79pu2LBhmDJlCubMmYOGhgYoFAq89957uHjxIjZs2BCNSyQQCARCVyTaFt+bv/71r46hQ4c6UlNTHVwu15GRkeF44oknHJWVlbRtS0tLHSNHjnQIhUJHt27dHM8995xHj5fCYDA4XnrpJcctt9ziEAgEjiFDhjj27NnT7rKRL8nYgNRDbEDqITYg9RA/xJy0YyxDJNRiA1IPsQGph9iA1EP8EDdeygQCgUAgxDPE4BIIBAKBEAGIwSUQCAQCIQIQg0sgEAgEQgQIq8G9fv06kRkjEAgEAoGBmza4Go0Gv/vd75Ceno5u3bohJyfHte7o0aMYO3Ysvv/++5s9DYFAIBAIcc1NGdzr169j2LBhWLduHbKystCvXz+4RxkVFBSgvLwcH3300U0XlEAgEAiEeOamDO7ixYvx888/45NPPsHx48cxZcoUj/UikQh33nkn9u3bd1OFJBAIBAIh3rkpg7tz506MGzfOI1mAN7feeisuX758M6chEAgEAiHuuSmDW1dXh/79+/vdRiAQQKfT3cxpCAQCgUCIe27K4MpksoBeyefOnXPlryUQCAQCoatyUwZ31KhR+Pzzz30OGZ85cwZ79uzB3XfffTOnIRAIBAIh7rkpgztv3jzYbDYUFRXho48+QmNjIwDg7Nmz2LBhA8aMGQOBQIA//vGPYSksgUAgEAjxyk3lw83Pz8enn36KX//615g2bRoAwOFwIC8vDw6HA4mJifjss8+Qm5sblsISCAQCgRCv3HQC+gkTJqCqqgrvvfcejh49iuvXr0MqlWLYsGGYMWMG5HJ5OMpJIBAIBEJcc1MG9/3330d6ejruu+8+vPjii+EqE4FAIBAInY6bmsOdOXMm9uzZE66yEAgEAoHQabmpHm5GRgasVmu4ytLl0OjNaGgxQWu0IEXEh9luh85khUTABY/NRpPBDKmQh7REAZLE/GgXF4CzzI2tZmiNFkhFPMgT+DFTNn8EU+56rRFNOjO0RiukIi5SxHykS4W0Y9U2G6AxWKA1WJAk4kEq4iEzWRSpS+nSXG7So8Vodd17iZCLHinisJ8nXp9zQmxzUwZ3woQJ+Oabb2AymSAQCMJVpi5BbbMBr2w9ge+rm/Dm1EK88c3PKFepXeuLFDLMKMrBrzccwx09U7B6ckHUG/XaZgNe2XYCpZWNrmWjcuVYFQNl80cw5a5W6zBn+0mPOlAqZFgxKR/ZsgTXsktqHeYybLd8Uj56um1HCD+Ruvfx+pwTYp+bGlJevnw5EhIS8NBDD+H06dPhKlOnR6M345WtJ1CqakSJMgebyqs8GhEAKFepsam8CiXKHJRWNuLVbSeg0ZvDXo7zDa2oqG7C+Wutfo+v0ZtpjRAAHOygsgVLvdaIc3VaHKu6jnNXtajXGj3WB1Pueq2RZmwBoEylxtztJ13HrG020Bp8art520+ittnQAVfYeQlUd+5cbtL7vfeXm/RhKVOsPueEzsFN9XALCwthMpnw448/Ys+ePRAKhUhLSwOLxfLYjsVi4fz58zdV0M5EY6sZpSrnC12YlYz1+1SM25Wr1CgpcqY7PFjZiMZWc9iGtdr7Fd/YaqY1QhThLluw1FzXYcXeM357pcGU22Kz0xpyijKVGk06M9KlQmgMFr/baQwW0gMKkmBHFChajFa/977FGJ6prVh8zgmdh5syuHa7HXw+H9nZ2R7L3VP0Mf3u6miNFoj5HJQoc5DA918FJqvd9X+NweJ3W+95J4mAC53JCo3Bcx4q0Ff8uqmFtEZFa/R/7pYA6zuC9fsq8cr9BeBy2Ghpu0aLzY4/f/M/vDq2P9KlQo97XZiVDJPVDiGPgx+qm7CxrAotRgvMNv/Pp7atMdcGuP/RuAexwpUmPbRuc6uJQi66+5hbDTSi8Pojg2hz55G697H4nBM6DzdlcC9evBimYnQtkkQ8vDm1EJvKq1CYlex3WwH3xqi/mM/xuR1Tj1WpkGF6UQ5mb6mA3mxz9WCNFlu7v+KlQp7fciYGWN8R/Ha0Aqv3nKP1kl6bmAet0dkrdb/X7iMJRQoZ3pxaCKmIB7PbRw0TUqHzNZGKYu8exALV13VYufdS0HOrTTpzUCMK7kTq3sfic07oPNy08AWhfWj0ZrBZwHtt87aF2SkoUsgYG6AihQwAsHn6EKRK+HAA+OHSdSSJ+R5ek756rD9UN2NsvhHvlwxFQ4sJQh4H//35GgbfmuK3jExf8XIJH6Ny5TjIYKhH5cohl0R+mO3NvT+jRNkPrz7QF61GGxKFXNRrjViz5xxefaAfACBBwPU5R84C8Pojg5AgcBqIMoY6UCpkSElwXluSiOd3u6QARqGzsuqrsyjs3R0lRTkeIwhLd53G0gfzaD1drdEKuYSP1ZMLkCYVeNTdK9tOuEYU3EkUcv3e+0RheJqyWHzOCZ0HYnAjCNULnT7yVpS2NRwby6rw5tRCAKB5KS8aPwB//uZ/mHxHFq0n5z7fyjTvJOZzXD27udtPeRx3eE4qxHwO9GYbYzmZvuKTxHysmlyAV7ed8GiMRuXKsXpyQVTmtX77i1y88d8qWs9qwbgBMFid19YaYO6v1WhF7zQJVkzKx9ztJz0adGpOkeptZSaLsHxSPuYxbLd8Un6Xnb+dMjgbn/3USBtBmFGUgxYT3Xgmi7n46KnhWLr7NK3uPnpqOFgs+hB/jxSx33sfrtCgWHzOCZ0HliMME6yHDx/G3r17UVtbC5PJRD8Ji4UNGzbc7GmijlarRVJSEjQaDaRSabv21ejNmLWlAqWVjXjr8dvx7Ec/uNZ5zzFmp4oh4LGx+suz6JuZhIrqJkajMSpXjnVTC3GhUYdJbx3yWDdrjMLnfsW5cozNz8Ccf5/0eUxfDQs1T9xitCBRyINcEvn4RKoepry5F8eu0D1blQoZXnswDzndJKiobqLdG3d2PDsSg7KdPX6POFwhFykJ/uNwqXuQ1EXjcAPVQ5FChgW/7I++GZ7vypUmPV7edoLx2VQqZFg9uYDWK9bozfjDv35C3wyp6z0RcNmoqGnG/+q0WDtlYFifw1h4zoOFqV1yOBwwGo0QCoU0J1ZC9LipHq7VasXUqVPx73//Gw6HAywWy8NBivrdWQzuzeDeC3WflwUAvdnm0Tv4+KlhMGht2HvuGqYO6+nTi5mab2Wad/Ln/Vxa2Yj5v+xHGzoL5is+SRw7Dc+RC9fBFtB7NmUqNYxt87LtmZNLlwoZDaw3mcmiLmlgfeGrHspVajB9zYficdzYasbesw3Ye7aBcb9wew/H0nMeCkajEY+++Q0+nX0PRCLyrMYKNxWH+/rrr2Pbtm2YMWMGjh8/DofDgRdeeAGHDx/G6tWrkZycjClTppCQIHh6P1bUNLvmZ70ZlStH7zSJy0nEFMChp8Vocc07uRNoP4PZhnVTC/Ht7+/EjmdH4tvf34l1UwuR0UkMCTUPzXRvKMicXMejYxhSZpqjDbSeeA+3Hw6fiBHFGjdlcD/66CPk5eXh3Xffxe233w4ASE5OxrBhw/DHP/4RBw8exO7du/Gf//wnLIWNZ9x7WhvLqjCjKIdmdKkeZrpUiNS2r2vv3rA3iUKea97J3bAEu1/vNAkGZaegd5okrr/ovaF6rkz3BiBzcpGCyZFMGsDBiWk98R4mdAZuakhZpVLhqaeecv1msViwWG58aQ4YMADjx4/H3//+d/zmN7+5mVPFPe7ej3qzDbO3VKBEmeMStshOFXtoJlPbU71hX3OxkrbGKTNZhHVTC13zTiliPopz5SitbKTNEaeIea794pkRvVJx1MccrnujnZkswpopA4PSSSa0nxG9ZTh6ma6yVZwrR1oivZeVksDHXX27oV9mEi02+mytxuUV7g7xHiZ0Bm6q1eXz+RCLb8zdSCQSNDR4zrH07NkTu3btupnTxCRU4oFmgwUJfA4SBFwki3g+e0ze3o/UvC3V08pIFrmkFrVGCyQCLpZMGIDL1w2YMDATr+067fJsBpwOKU+OvBXzt5/EkgfzXHOKLBYgFnBhtNmwePwArPzqLH41NJsWhxpIGzYexNsXjO+PVXsvMXqtujvdULrVlLoX4DQGsaBP3RlYOmEAln1z0cNTvjhXjj/5GEFIlwqxcPwAzN1+0uOZpOqO6UMoSczH8ol5KFM1Ik0qdBnpeo0BSoU85p5NAoGJmzK4WVlZqKmpcf3u27cvDh486HKUAoAjR44gNTX15koZY9Q1G7Ds67MeDXiRQobnx+SiZ6rY5zyody/U3fuRSbiCCq147J0j+MO9t2HeL/vjWqsJFpsDP1Q3uQQtgFNYNH4AFu867TKu5So1xHwO1k0txGaGOFR/qlJMBioWxdtZDqc39ittcbgSIQc6kxUsh/ODwaWqtfUnj48VwOk49sq2E1jvxyObEBw2ux0P5N2C6SNvdXkPN2iNsNqY/Qg0ejPm+1Camr/jFGOdaPRm1GqM+OJknccHVrFChl7dnD4PpB4Jsc5NGdw777wTn3/+ucvAPvroo3jppZcwbtw4jB07FmVlZSgrK0NJSUm4yhsTLPz8NI5e8RxCoxqPcQWZGJt3i9+eLlNjwiRcQR3zV0OzMeffJ1GkkKEwO8WjVyDmc9rWn8DA7BQPkQcqztbb2FAwqUq5J1bw3jbWDNSS3Wd8hgWtnJSPJDEfV7VGn9dfWtmIq1pjzFxPvLJ4l+96YJJprNea/NZJvdZEq5PrOjPe3FdJM9KlKjXsAJY9mEfqkRDztNtpSqvVwmx2ZswoKSnBuHHjcOXKFQDA888/j3HjxuGrr77C888/j08//RRDhgzBqlWrwlvqKHP4AnNjUa5SIy1RgMbW9mUU8SeYXq5Su+Qf3f8P3BC3EPI4KG1b590gBfJWbtKbPbIFXWs10YwtRWllIxpa6HHW0eLIheuMy8tUarS2fWxoDQE8Yt3Wtyd7EuEG/uqhSUe/hwE1wRk8jvUWm89QonKVGnoLs4gLgRBLtLuHm5KSgsWLF2PBggW4/fbb8fe//x1Hjx7Fv//9b8yePRs7d+7E8ePHcf78efTs2RNDhw4Fm31TztBxhclq9whRcJ8LlQi44HPYaDaYIRG6JRMw+G/Y3Y2m+/9LlDnY9n0NXrznNux6vgh6kw0bpw9xCfPrzbaA3soagwUz3zsOwDlsvHD8AL8qVIEay1iBqgOxwLf+tPt6kgO1Y2AK5wlYJwya4TqTza8cpN5EDC4h9mm3wXU4HLTsP3v27MHSpUsxe/ZsAMDgwYMxePDg8JQwzhBw2a4QBV/zsjOVOTjw8zUM6ZkKPpeNBIH/anA3mu7/H9YzFeMLMrFk12maLOSbUwsxe0uFfy9nhRypCXwPI71k12k8M6oXrHYHY3YdfwkUYgmqDsR8jstb25viXDnEfE5I2ZMIwcGUdEDE4/jVDxfx6M9YcgIXHz89nPasKxUyfPz0cOeEPoEQ43SdrmcYGdmbWbSiSCFDQ4sJconvFHjlKjU2lV1EN4kAj717FA//4zC+OFkHpQ8hjCKFDBU1zRDzOVj5UD5kCQK89fjt2Dh9CHrIRHjNS4/WdY625PVUzK/38ZUKGZ4suhWPv3sUJZu/Q0V1E96cWojvLzXhnn7pqKhuwsz3juPZj35wrd/w5GBIAqQTjCQjejHfs2KFHEKe89Hms1h49he9aTHPRQoZnv2FAnwWK6gcqATfDO/F7BRZpJCBz6E3MQ7YsXxiHuMzuXxiPhwM+lRiHpdmbAHnsPXSXach5sXOc0kg+II8pSGwhCEMgvJSvjVVjCQxH+cbWn024qWqRkwvutX12z2BQZlXT3VGUQ5e3XYCm6YPwfp9lR76xx8/NYwxewpwI3m93mzDlqOXsGj8ANQ0GSAVcmG22nHoghqzt1QAcHr6UnPDH8wcBpvDgYrqZtrx2GBh7SMDg75PHc0zxTngHq+n9e6fG60At81LXmu24fktFVg9ucCVVUgi5KJBa8TzW37ABzOHwRhg/o+oGPnn8eE9wfupkVYPM4py0MwwD85nc7Diq7OYUZTj5mHurJM/7TmLOW2ZntyJVAJ6AqEjIQY3BDKSRVg/tRANLSZoDM4E5wl8LpLFN0ITAknRuc/FugthzHmgH5r0ZiSJeRDxOFC3mvHpMyOweOcpl2cnJWTBDiBKLuZzseHJwaioacaVJgM2lVdh3i/74f6/lLqOw5Qrtlghdw1Ju8/llqoa0Wq0Ir19eRs6jJe2/oS1j4+gpeeb1WZIAUBntGDNwwNRp3F6lZusdhgsNmcav4cHQmeyIEXsXwKPqBj5Z9WXZ/HPmcXgcthoMTjjti02O5776Ae8+yR9aklvsWHyHVnY6BWuRhlpJgeolggloCcQOhJicEPEPbyHcoy60KiDVGSGPIEfUIpOyOO4epZWuwOZSSKYrDa0GK2QSQSoqG7CG9/8jF8NzcYDebdg6rCemKHshZNXmpHfPQkbyujJ670VpRKFXJSfb8TGsioMfiwFL993GyxWO956/HYIeRwADmws82z0xHwOBmYnQ8Tj4B9P3AGr3YETl5vBYgF5mUlQ60ww19kg5vsX+ogETuEKIRxggc2ygcNmITNZiL8+Ogg6k7MBlkkEsDlM+JIhfnPWmFzIEgRITeD7neclKkb++fuv78CaPec8Qn2Kc+XYXDIUTDP+Dgew7fsalBTl0D6Wtn5fg9/d1Ye2T2KEEtATCB1JSAb3ww8/xJEjR1y/VSpn72js2LGM27NYLHzxxRehnCrm8eXduvKhfJ9SdEUKGeQSPiraHJHenFqIVXvOolyldnliFmYl45NnRmDJzlMevc8Vk/KwqYyevN5Xb7VIIcP6xwqRLRNjweenPIyr95C0vx7vs6N7Y+Z7x109Xm+hj2goU2UkC7Hsi7M0J5plE/PBphz7WMD6fZW0oXencWBh6cQBAIDZYxQYm3cLTcVIkSbp0GuIFpeb9GgxWqE1WJAkckp9hppTduUXZ2kSm6WVjVi88zRWtN1fd1hs4IW7b2PMh7tg3ABGB6gEPgdj89Ix+Y4smpfytu9rkBAnznyErk1IBlelUrmMrDt79uxh3L6z5mP05926eOdpV1Jzd6NbrJBhzth+WPv1/1CuUmPWGIVLrEIu4bsScxdmpzDms02XChmT1xd6iV5QOOdegbH5GbR1zV7DdCXKHMZjlKoaYYcDJcoclyGmtpk4qDuG9ZJh3vaTEQ+peW33WZrgglOt6CRWTsoHABgtdt8iC6pGGC12XNc5xT++PFnn2UtTyLBg/ADX+s7CJbUOc72UnihZxZ6yhHYf77CP9HyllY3QW+hx4Hw2G/O9Pv4AZ929tvs0Xnswj7aPkM3Cy/f3w7wd9HIvm5gPIbtztjGEzkW7DW5VVVVHlCMu8efd+s3ZBswZ289DypHPZePrM/Vgs1non5mEJ4bfComAi/sH3AKLzSmJ9/2l66iobkZJkdPDmBp2NlntEPE4SOBz8MLduVAq5LDaHEgQcrBw3ADYHQ7f+W9VakwvymFMdD9rjMIVs+svhy7lhOW97MW7+2Dev0/QjFokQmr85cOlhC9ajVbadbuHObUarRBK+IwesKVtHrBMBiBeudykpxlbwHnP5m0/iVWTC0Lu6TLBJDxitNr9OkAZGcRaTHYHzdhS27t/YBEIsUy7DW7Pnj07ohxxh0ZvxnUfSkRUA2+02HD+WivEAi4ShFxwWSwM6pEMLpuNn6qbaEO/M4pysPdsPT5+ejj4HGD7syOxbPcZ13ZyCR9b/28Eht6aioYWE4Q8DsrON+JMrQav3t/Pr2CF1e5gHC5WusXsBlKlYlpvtTvaJR0ZKSgnGonQ91D7m1MLIRFyQjIA4SScw7uB6AhvXxGfjafdPgw94rYZRC4COTgxrW81+1aacv/AijfiIUkIIXwQp6kQuNpswE/1GgzonoRPnhmORAEXQh4HrSYLtAYrbkkWorHFhItqfZvsYiNG9pJB1dCK/B5J+K7K2eOcOqynR+MEVKEwOwVr/3MOM4pyPLw4xXwONjw5BPN2nGL07PzTnnMeQ77eZCQJsXrPOcYeAuAcTg6kSsW0PpAQRnMAFa2OghJcSOBzfQ61swCsmJSPq1q6DrA7oXrABmNIwz28GwhtB3j7/m3q7dh0vJ72QbPhycGQMoi6BHIoZFp/M+Wu1xojkpqxvcaTqJt1PYjBDYHLTQbs/Okq/rjthKs3O6KXDFw2C2lSAex2B1IlfNwiFcJotUMqdCoacdgs8Lkc7D5Z53J0ovZV9pbDYLFBJuFjY1kV5owVoDA7BTOVvcDjsNCtzXOZKT4WcM7hFrUJcnj3NM7VaWG3w28PYc4D/SDgsX1661ICHO4UK2RICCCEYbLYXZl7gPB+0Y/LT8f/3VtAC0fZVHYB4ja1In8avGVtGryBPFy9119p0kPrZkgThVyPdIAAUK3WodwtlZzObEN9tRFFChmy2wxppId3AWblJ3dC8fb99LtLKFH2o3kcf3j4El66/zba9gIu26/SFNOHXajlrlbrMIfhg2bFpHxXPTDRXiNd12zAgf9dQ5pUAJPVjia9BceqruMXfboxZg+LhLqZzWyCwWCASESMd6xADG4IbDp0AQN7d8dMZS+np6zbsC/gNETzxw3Aa1+cwb5z11zLV07Kx2ttc4W+PYJl+PQ3w5HA59GGnYsVMux4rghfnarDP/97wTV8XK5S42llL3RLFKLCax+lQoalD+bhOoOIvDvVTXr84bOfsPHJIQDgmdtUIcezoxWY+d53N5blyvHag3moVutQrJAzJjwoUshw6IIa3RIFPlMQ3swX/W9H52KVV6+dcqIx2533psVg9avB22K0Ij1RAKVCxigiolTIPDxgL6l1mL/9JM25aplbj7SuSY/aZoPrw8r9fuR0SwCPzUJGijgqYg6JQq7fa00Utr9J+O3oXLx+oIpWDwvHD4DJSh/qbdKb8ZSyF36Zn4F0N6/wqxoDMpJEjGIZiXwO7u6bhr6ZUvoHZa0WiQwjLfVaI1Z9dZYx/GjVV2exaEIeoxGtUetQqmp0la3VZEXFpSYoFXJkMRhpjd6MS2oddp+spde3PAFiPodmPINRNyNDy52PLmNwTSYTFi5ciA8++ABNTU0oKCjAsmXLcM8997T7WA8PzsZnPzlfljNHNBiYnYLpRTmuRuDE5WacqGnCs79Q4OE7slwNQ0byDQ9j3x7Baoy9osWXJ2rpOVxVary2+wyeH6NAQfdkPPfxDy6jmyTmYclOZs/PRZ+fxuIJ9PAMd3qkOA1eyXvfYf4v++F3d+VCY7Cge7II9Vojfqi+jnVTC2Gy2pEk4iFDKsQPl67Dandg6cQBWLjjFM0IzVDmYNbHFfhFn24d8kX/GkN6PsqJZkWbE41UzHV5fnsbhI+ecmrwmuw2LJuYh8Pn1bSwoBG95TC1Ge8rTXqasQWc9TJ/+ymsmuxMfG+02rFuv4pxGBtwppIDOmZ4NxA9UsRYPikf87af9DC61DB2KD3qVV+dY6wHXw5nYgEXzQYLY2z0DGUORAzD0DaHA6+O7YtFO0/TPigXT8iDzUEPJdIYzfidn/AjjdFMM7gNWiMuNxvwBcPH0q3yBAh4HKR57XNdZw5Y397PdiBhnHDWvcHgFH0hPd3o02UM7vTp07F161a88MILyM3NxebNmzF27Fjs378fyv9v78zjmjzyP/7JnXCEIxwF5JKgtYKiVUAEvGjtetBD1K7rKkJrt/XYtrLdum1Xa1u1Wrp1f1pdLRVdu7bWHmq7Sn1RpCiXB3gh9QAFlRVRjhBCYmB+f0DShDwJAWIIMO/XKy9lnmfm+c58kvnOzDNHdHSX0voi/wYKbzXjxejBCPN1Zly3GjEpCAs+L9RbtzppqLt21rG7o8Do+1YPR4HRiUinb9RCYi+Ao7AVuxaFw07AgZDLgZqYXv5S26TClEfdMczbyaCHUHK7Hudv1mvfAf/tuwtIWzgGybtOYbxUgumhXhj6iBjLdHaeOrh0PIIfcURd4wPcbVBiWqiXttFhx+NAyGfDQcBD6pyRsBdwUdf0AKdv1DLa190W/dmbdVg6JYRxso683U47LgdvGhm2fe+Hi1j3bCiaHrSgWqFkWBbkhiAPBzjZtQ1XypRqk2UsU7b1SM09Su5hDO+ag7/EHutnjYCsWQ1Z8wM4CtuGxbs7fG1KB6YJZwIOG2nHmRubBGB00upWYNVB5r2UVx28gDXxhnF4LDbe/qFry4/kSjU2m9FY0qU7Rwd29h7bEtoTQqBQKCAUCvvt0sy+xoBwuIWFhfjyyy+xceNGpKSkAAAWLFiAkJAQvPHGG8jNze1SeprlKE52PO16Wl2Y1q0WVdTBScjTDvlunT/aaPrGZgtrhqF1t3kE2pz5qhmmj9WraVThjaeGYc0Phj2Ed2YMxx8+y8eHs0YY2KBZDvR5+2EImrhNqhbIlWr4utrpLanR2Ph/P+tXWjHBzNtFauhOi35DwkjsO1vDOPtYs9OUObNbBVw2NmUyHW7epuN72h6p6SFeWft1eSdHxWmOknsYw7vmYsl3w+booIuyxfSscGWL4fe/WW3aqTUzDF13Z/Z5d5ynuXrr4ubAN7oxTqyFdjdrVauwOL0A/355Iu3d2ggD4rSg/fv3g8PhYPHixdowoVCI5ORk5OXlobKyslvpcjkskz9O3a0Xk6IDsVrHMbk7GN+/19hsYc0wdMde1on2oeak6EDGeEDbD7zj0BrQPvT3w0U8H+6n5+h1bVC2V1y6+eG2bzSgbiV6aRodKr9Soz3BiInutOi/yL9h9KQkV/u28jVnD15FJ5Wsor2StTfzbF2xyLSjdGy/rhneZTw1p5vDu72BOTroIuus4cLw7rqz824ZG3HdGLLv9DkM183VWxcnOz7WzxqB2GA3vfDYYDd8OGuExd7fcngCbU+347GqFOszIHq4RUVFGDJkCMRi/V33w8PDAQDFxcXw9fXtcrq1cvMPKOi4qQTfxEzNOw3NjLOFTW1MkXO1Bn+aGMR4fbxUAj6XbdKp6G5q0XFGssb5avITI3VD2d1GVNQq4NDhfVtXN88Aut+iN7bxxYmr96Bq7yWZswdvYyeTkzSVuV0n57hqZkY78DhGJ5LFSN3goHPeq6WHd3sDc3TQpTsH0Hfm1MQMowHd2X/ZqZM4TNcdBVyTejsaOe/a21mktzGOo5AHNwfLrsMlhKC2thavfX0B+16dSnu6vcyA6OFWVVXBy8vLIFwTdvv2bcZ4SqUSDQ0Neh/gt/M/1a2mW4wde4l6NtU3Y9H4QINzWmOkEng5ifDOjMcMrnUGh81CjFS/xaxZp1tVb3qtKQAUVda1TVxp3+VKE1/jfAVcdvum/1K4OwrbNzbQr0w62zyjI+a06I3pYApNL8mOzzF61nC0VAI7PsfsypzPZmHZ5GDGs3WXTQ4Gv73Xr2pV4f1nQhDDoO37z4ZA1ao/C3eQix2GeYkRHijBMC+xzTrbnuigi5DLMfrdHi+VQMg1dLh2PA5iOvQGNcQEu2kbO7o4iXgmtWdynp5igcnneIoNe+w+LnZ4/1njendcMqZnox0fQR4OCPNzaZ8v0Lmz7YoOrWoVluzOA4tDD3ewBQZED1ehUEAgMPyhCIVC7XUm1q1bh3fffdcgXHP+55mKWpM9HqZeogYum4Vl7UfyvRY3BPXtw1/ujgI8vz0fL01oWzaR1D4RScBld9r6blK1YHX8cMia1bgnVwJoc6LL9xbh/9r3XDaGj7MI3k5CcNks7XtWjbNevrcIMVI3BErs8ZenHkXWr9X4V3YZRvk5Q658oNcb72zzDD9XO2S+PqFLLXpjOphC8/6TB2B1/HCsPnjRYFbu6vgQ8ACw2ytzY6cFaXuuIh68CTAj1FtPl+oGJbydhHBo14cQHrZmX8baZ0PRqGqBTPEAjiIeHPgcbMm6jBdjg7uUF1uhJzrowmEBSydJAeivDR8vlWDppGBwGOb3KFtb8N7Tw/HOgYv6S9bal6dpZpLr4u0sMjkjm2kpmpNd2xKyjjPqY4LdsMFEw1AzUtGgM1IhZlifbQk600EzhKyBw+ODEIKmpia0trY1iFksFkQiEVgsFgghaG5uppOrrACLDICB/ZCQEHh6eiIzM1MvvKSkBMOHD8e2bdvw0ksvGcRTKpVQKpXavxsaGuDr64s/bv0ZIwZ7Y4yfS/s63Et6w0m661Y1w5Frnw3B4Qv/0/6Il06Wag8n0F2Tqzm0oKiiThumqZSWTpaiuKKWcZLNeKkEM0K94OkkhAOfi1ZC9JYqmIobE+yGP09pqwDtBTzcrmv7sRZV1uHz4+UY7eeM1fEheH57HmoaVe15lGBV/HCo1C2olqnwWU4Zjl+9p5evjsQGu3Vr+Y8xHeb8MxMFtwwbSzFSN6x/NgQ+EnvcrW1CcwvBrQYF7AXc9sPOOZAr1fBxEkHIZqGFxYL8QQtWH7hooOO7Tw+HHY+DR9or57t1CjS3tBo4UiGHDff2e+qbVFi2t8johJiHub/0w6QnOuhSVduEyjoFrlY3ate6Crhs3GlohtTDAb7OInh1cFR3Gprx4eFLSBwfqN3oxFHEg7qlFeknyvHX3w0zujHF7ToF6hUPtI7QScTrdN23ZoOWhzXU2xOM6VBfXw+xWAyFQoGE1B9ASCtYbB5I6wPtvxrYXD52LY6FUChEc3MzEnccR/qL0RCJRNowQoieYwZglnPuqw7cGnYPCIf7xBNP4NatWygpKdELz8zMRFxcHA4ePIiZM2d2mk59fT2cnZ1x6sIVbMiqQN61exDx2fhjZAAiAlzB47Ig4nMg5HHAY7OgeNCCBoUajiIuLt5qgJujALtzryOv7D5EfDY2JIzEf/JvaP/+Y2QAxgW6QuIowLrDpSiurMUfIwMwYpATAMDHWQg+l4P3f7yEvGu/ObTIwa5YHBMEiSMPn/58FbMe94WLHQ8sVtuwt0LVCh6n7Qze1KNXDOK+FBMEDyc+lA9aARDY8bmQq1oga7dd1qzG+Vu1GDnIBS2tgJ2ADSGPg8xL1diRU4aIQFe8+dSjuF3XjAalGgGudvjwSCnyyu5rnxMVJMGa+OFax8WEo6OjWV90jQ55Z3/FP7Ir9Z4zbrAr3pn5GOxYLLi1V9p37svxANDLkz2fAx4AT9f2XZ/uy1FV3ww7AQfy5lbYC9loUrbAy0mIQa76DqO+SYV7chUamx/AQciDhGG3rKo6BVYdvIhcnbI2pwxsgYelgy6V9+XIL7sPd0cBVOpW8Lls3JUpETnYFb6uzDtAVd6XY80P+t/9cUESrJoxzECj/kBXdaisrNQ63MRtWVApm8HicEFa1GBxuGCz2Wh5oNL+X9UkB5vLAYvVdjY2Ia3g8kVtqwn2nERLays4PD62Lxqn97zFn+Xgn/PHwsXFhdEehUKBl3cVYOvCCG2Y7rtjW10XrLE7/U/6s7rN1cEsyAAgJSWFcDgcUl9frxf+wQcfEACkoqLCrHQqKysJAPp5SJ+O+lAdqA4D+UN1sI2PuTqYw4Do4RYUFCAyMlJvHa5SqURISAgkEgny8/PNSqe1tRW3b9+Go6MjZDIZfH19ta3KvopmOMoW8mFuS1JXBxaLZVN56C62lIeBrENPsWQZUB2sh6kys2QPd0BMmoqIiMDs2bOxcuVKVFdXQyqVYteuXbh+/TrS0tLMTofNZmPQoEEAoBVALBb3iy91X8qHrg669KU8GKMv5aE/69BTrFkGVAfL8bDLbEA4XADYvXs33nnnHb29lH/44QfExsb2tmkUCoVCGQAMGIcrFAqxceNGbNy4sbdNoVAoFMoAZEBsfPEwEAgEWLVqFeP63r5Ef8gHzYNt0B/y0FNsoQxswYa+hrXKbEBMmqJQKBQKpbehPVwKhUKhUKwAdbgUCoVCoVgB6nApFAqFQrEC1OFSKBQKhWIFqMPtIkqlEn/961/h7e0NkUiEiIgIHD16tLfNYuTYsWNgsViMn467a+Xm5iI6Ohp2dnZ45JFHsHz5cjQ2NvaS5ebRl7Rgoiv62DJ9XYeeYis6DnQdgIdT51myXAfMOlxLkZiYiP379+PVV19FcHAw0tPTMW3aNGRlZSE6Orq3zWNk+fLlGDt2rF6YVCrV/r+4uBhTpkzBsGHD8PHHH+PmzZv46KOPcOXKFRw+fNja5ppNX9SCic70sXX6iw49pbd1pDr8hiXrPIuWq8V2ZR4AFBQUEABk48aN2jCFQkGCgoLIuHHjetEyZrKysggA8vXXX5u873e/+x3x8vLS26R7x44dBADJyMh42GZ2i76mBRPm6mPL9Acdeoot6Eh1aMPSdZ6ly5UOKXeB/fv3g8PhYPHixdowoVCI5ORk5OXlobKyshetM41MJoNarTYIb2howNGjRzF//ny9PUQXLFgABwcH7Nu3z5pmmk1f1oIJY/rYOv1Nh57SWzpSHQyxRJ1n6XKlDrcLFBUVYciQIQabW4eHhwNoG6awRRYtWgSxWAyhUIhJkybh1KlT2mvnz5+HWq3GmDFj9OLw+XyEhYWhqKjI2uaaRV/VgglT+tg6/UmHntKbOlId9LFUnWfpcqXvcLtAVVUVvLy8DMI1Ybdv37a2SSbh8/mYNWsWpk2bBjc3N5SUlOCjjz5CTEwMcnNzMWrUKFRVVQGA0Xzl5ORY22yz6GtaMGGOPrZOf9Chp9iCjlSHNixd51m6XKnD7QIKhYJxr02hUKi9bktERUUhKipK+3d8fDwSEhIwYsQIrFy5EkeOHNHabCxftpYnDX1NCybM0cfW6Q869BRb0JHq0Ial6zxLlysdUu4CIpEISqXSILy5uVl73daRSqV4+umnkZWVhZaWFq3NxvJlq3nqD1ow0VEfW6e/6tBTrK0j1cE4PanzLF2u1OF2AS8vL+1whC6aMG9vb2ub1C18fX2hUqkgl8u1QyPG8mWreeovWjChq4+t05916CnW1JHqYJru1nmWLlfqcLtAWFgYLl++jIaGBr3wgoIC7fW+QFlZGYRCIRwcHBASEgIul2swwUOlUqG4uNhm89RftGBCVx9bpz/r0FOsqSPVwTTdrfMsXq5dXkg0gMnPzzdYk9Xc3EykUimJiIjoRcuYqa6uNggrLi4mPB6PxMfHa8Oeeuop4uXlRRoaGrRhn332GQFADh8+bBVbu0pf04IJc/WxZfqDDj3FFnSkOrRh6TrP0uVKz8PtInPmzMF3332H1157DVKpFLt27UJhYSEyMzMRGxvb2+bpMXnyZIhEIkRFRcHDwwMlJSXYvn07eDwe8vLyMGzYMADAmTNnEBUVhcceewyLFy/GzZs3kZqaitjYWGRkZPRyLozTl7Rgwlx9bJ2+rkNPsRUdB7oOwMOp8yxarl120QMchUJBUlJSyCOPPEIEAgEZO3YsOXLkSG+bxcimTZtIeHg4cXV1JVwul3h5eZH58+eTK1euGNybk5NDoqKiiFAoJO7u7mTJkiV6rT9bpC9pwURX9LFl+roOPcVWdBzoOhDycOo8S5Yr7eFSKBQKhWIF6KQpCoVCoVCsAHW4FAqFQqFYAepwKRQKhUKxAtThUigUCoViBajDpVAoFArFClCHS6FQKBSKFaAOl0KhUCgUK0AdLoVCoVAoVoA6XArFTCZOnAgWi6UXlp6eDhaLhfT09N4ximIVrl+/DhaLhcTExN42hdKHoQ63D5CUlAQWiwWJRMJ4NiOl+8jlcqxduxajR4+Gg4MDBAIBBg0ahJiYGKxcuRLXrl2z+DMJIdizZw8mT54MiUQCPp8PT09PjBo1Cq+88gqys7Mt/kxbR+PQdD98Ph++vr6YN28ezp0719smDniYNOr4qaur620zbRpubxtAMY1MJsO+ffvAYrFw//59fP/995g7d25vm9UvkMlkiI6Oxrlz5yCVSjF//nxIJBLU1NSgsLAQ69evR1BQEIKCggAAu3fvRlNTU4+fm5SUhPT0dLi4uGDGjBnw8fGBQqHA2bNnkZaWhoaGBkyYMKHHz+mLBAUFYf78+QCAxsZG5OfnY+/evfj222+RmZmJ8ePH97KFFF2NOiIUCq1sTd+COlwb56uvvoJcLsfrr7+OTz75BGlpadThWohPPvkE586dwwsvvIDt27cbDBeXl5frjSj4+fn1+Jk5OTlIT09HWFgYsrOzIRaL9a7X1dWhpKSkx8/pq0ilUqxevVov7O2338YHH3yAt956C8eOHesVuyi/waQRxTzokLKNk5aWBi6XizfeeAOTJk1CZmYmbty4wXhvdnY2YmNjYW9vD4lEgrlz56KyspLx3SPQNrT5+eefY/z48RCLxbCzs8OYMWPw+eefP+xs2QR5eXkAgCVLljCWT2BgIB599FHt38bKUcOBAwcQHh4OOzs7uLu7IykpCXfu3GF85sKFCw2cLQA4OzsjKipKLywxMREsFgtlZWXYsGEDgoODIRQKERgYiDVr1uDBgwfmZ7oPsmzZMgDAyZMncfv2baxatQqRkZHw8PCAQCBAQEAAXnnlFVRXVxvE1S271NRUPPbYYxAIBHrvYqurq7FixQoMHToUIpEIrq6uiIiIwEcffcRoz9WrV/Hss8/CxcUF9vb2iIuLw9mzZx9K3vsap0+fxtKlSxESEgInJyeIRCKEhoZi/fr1jN/TgIAABAQEoK6uDkuXLoWvry+4XK7enIhz587h+eefh5eXF/h8Pvz9/bFs2TLcu3fPijmzDLSHa8OUlJQgPz8f06ZNg6enJxYsWIDMzEzs3LnToIX5008/Yfr06eBwOJg7dy68vb2RlZWF6OhouLi4GKRNCMEf/vAH7N27F8HBwZg3bx74fD6OHj2K5ORklJSUGK1w+gsSiQQAcPnyZYSFhfUorW+++QYZGRlISEhAXFwc8vPzsXPnTuTk5KCwsFCrge4zu8qrr76KEydOYM6cOXBwcMChQ4ewatUqnDt3Dvv37++R/X0BFouFX375BampqZgyZQoiIiLA4/FQVFSErVu3IiMjA2fOnIGTk5NB3GXLliE/Px/Tp0/HzJkz4eHhAQD49ddfMWnSJFRVVSE6OhrPPPMM5HI5Ll68iLVr1yIlJUUvnevXryMyMhLDhw9HUlISrl27hgMHDmDSpEm4dOkSPD09rVIWtsqOHTtw6NAhxMbGYtq0aWhqasKxY8ewcuVKnDx5Et98841BHKVSicmTJ6OxsRHx8fHgcrnacjx48CDmzJkDNpuNp59+Gr6+vigpKcHmzZuRkZGBgoICxvrNZunWoX4Uq/D6668TAGTv3r2EEEJkMhmxt7cnfn5+pKWlRXufWq0m/v7+hMVikZycHL00FixYQACQjlJv376dACCLFi0iKpVKG65UKsnMmTMJAHLq1KmHmLve58CBAwQAcXR0JCtWrCAZGRmkpqbG6P0TJkwwKMedO3dqy7fjGZlvvvkmAUCWLl2qDausrCRisZiwWCwyb9488vXXX5Pr16+btHPhwoUEAHF3dyeVlZXacKVSSWJjYwkAsn///q5k3eYoLy8nAMjUqVMNrv39738nAMikSZPInTt3iEwmM7hn165dBAB5//339cI1ZTdo0CBy48YNg3hjxowhAMj27dsNrumWtcY+AGT9+vV697399tsEAFm3bp3Z+e2LaMogKCiIrFq1yuCTl5dHbty4QdRqtV681tZWkpSURACQ48eP613z9/fX6t7U1KR3raamhojFYuLj42PwG9m7d6/Bb6svQB2ujaJSqYi7uzsRi8VEoVBow+fPn08AkIyMDG3YsWPHCAASHx9vkE5FRQXhcDgGjmLEiBHE3t7e4EtOCCHnzp0jAMiKFSssmCPbJDU1lTg4OGgrU02FsmTJEnL58mW9e0053Li4OIO0ZTIZcXZ2JmKxWK+BdPToUeLn56f3THd3dzJnzhySmZlpkI7GaXR0JoS0HaINgMyYMaO7RWATMFXmKSkpJCYmhgAgQqGQ5ObmGo3f2tpKxGIxmThxol64puw2bdpkEKegoIAAILGxsWbbFxgYqKel7rXnnnvOzNz2TXQbHUyff/zjH0bjnj59mgAgq1ev1gvXONyzZ88axPn4448JALJ7927GNEePHk3c3Nx6lCdrQ4eUbZQDBw7g7t27SE5O1pv5t2DBAuzZswdpaWl48sknAUD7/ig6OtogHV9fX/j5+aG8vFwb1tTUhPPnz8Pb2xsffvihQRzNu5bS0lKL5skWef311/Hiiy/iyJEjyM3NxalTp1BQUIAtW7YgLS0NX331FeLj4ztNJyYmxiDMwcEBYWFhOHbsGMrKyiCVSgEAcXFxuHbtGo4dO4ZffvkFp0+fxvHjx7Fv3z7s27cPK1euxNq1a816xrhx48DlclFUVNSN3Nse165dw7vvvgsA4PF48PT0xLx58/Dmm28iNDQUAPDtt9/iX//6F86cOYPa2lq0tLRo49++fZsx3fDwcIOwwsJCAND+jswhLCwMbLb+1JdBgwYBwIBZEjN16lQcOXKE8ZpKpcLmzZvx5ZdforS0FI2NjSCEaK8z6SMUCrXa6pKfnw8AKCgoYFye19zcjJqaGtTU1MDNza272bEq1OHaKGlpaQDaHKwuU6ZMgY+PDw4cOID79+/D1dUVDQ0NAKB9L9URT09PPYdbW1sLQghu3bqlrdyYkMvlPc1Gn8DR0RGzZ8/G7NmzAQD19fX429/+hk8//RTJycm4desW+Hy+yTSMvbvThNfX1+uFc7lcxMXFIS4uDgCgVquRnp6Ol19+GevWrUNCQgJGjx7d6TM4HA4kEolB+n0VU5U5AKSmpiIlJQXu7u548sknMWjQIIhEIgBts86NrVNnKjtNmfn4+JhtH9NENy63rRrVdfwDlYSEBBw6dAhDhgzB3Llz4eHhAR6Ph7q6OmzatIlRHw8PD8bJiPfv3wcAbNmyxeQz5XI5dbiU7lNZWYmffvoJAEyux9yzZw+WL1+urQSYZmkCMJgpq7n/8ccfx6lTpyxhcr/CyckJmzdvxo8//ogbN27g/PnzePzxx03G6VjGHcOZJvLowuVy8cILLyAnJwe7d+9GVlaWgcO9c+cOhg4dqhfW0tKCe/fuDYjJOmq1Gu+99x68vLxQXFys18AkhGDDhg1G4zJV6M7OzgCAW7duWdzWgcjJkydx6NAhTJ06FT/++CM4HI72Wn5+PjZt2sQYz9jMf009df78eYSEhFje4F6ALguyQdLT09Ha2oro6GgkJycbfBYuXAjgt17wyJEjAQAnTpwwSOvmzZuoqKjQC3N0dMSwYcNw6dKlATMM1lVYLBbs7e3Nvj8nJ8cgrLGxEcXFxRCLxRg8eLBZ6Tg4OHTpGXl5eVCr1Rg1apTZtvZVampqUF9fj3HjxhmM5pw6dQoKhaJL6WmGmTWNW0rP0Az7alZL6ML03e2MiIgIAL8tpesX9PI7ZEoHWltbSWBgIGGxWOTatWtG7xs3bhwBQE6ePEnUajXx8/MjbDbbYGJJYmIi4yzlrVu3EgAkISGBNDY2GqRfVlZGysvLLZInW2Xbtm2ksLCQ8dp3331HWCwWcXZ2Js3NzYQQy8xSPnz4MPn+++/JgwcPDJ555coV4u7uTgCQ/Px8bfhAn6WsoaWlhYhEIhIQEEDkcrk2/P79+yQiIoIAIP7+/npxNGVn7Ls8duxYo7OUb968aWDfwoULGdMBQCZMmGDU9v5AZxrl5uYSAGTOnDl64RcuXCAuLi6M5efv72+gmYbq6mri6OhI3N3dyYULFwyuy+VykpeX16289BZ0SNnG+Pnnn1FeXo4JEyaY7BUtWrQIeXl5SEtLw9atW7Ft2zbEx8dj8uTJmDt3Lry8vJCdnY1bt25h5MiRBnvRvvTSS8jPz8euXbtw4sQJxMXFwdvbG3fu3EFpaSkKCgrwn//8BwEBAQ85x73H4cOH8ac//QlSqRTjx4+Ht7c35HI5ioqKkJOTAzabjU8//RQCgaDTtGbMmIGZM2ciISEBAQEByM/PR1ZWFoKCgrBmzRrtfaWlpXjttdfg5uaG2NhYBAUFgRCCq1ev4r///S9UKhVefvllbetel8jISIwcORJz586Fvb09Dh06hF9//RXPPfccZs2aZdGysUXYbDZeeeUVpKamYuTIkZg5cyYaGhpw+PBh+Pv7w9vbu8tpfvHFF5g4cSIWL16Mf//73xg3bhyam5tx8eJFFBUV9cnNFXqL8PBwhIeHY9++faiqqkJkZCQqKipw8OBBTJ8+vctrxd3d3bF3717Mnj0bI0eOxFNPPYVHH30USqUS169fR3Z2NqKioky+87c5etvjU/T5/e9/TwCQnTt3mryvvr6eiEQi4uTkpF3a8/PPP5Po6GgiEomIq6srmT17NqmoqCAhISHEycmJMZ2vvvqKxMXFERcXF8Lj8YiPjw+ZOHEiSU1NJXfv3rVw7myL0tJSsmHDBvLEE0+QwMBAIhQKiVAoJEFBQWThwoUG65BN9XB37txJvv/+ezJ27FgiEomIRCIhiYmJpKqqSu/+6upqsmPHDpKQkECGDh1KHB0dCY/HI15eXmTGjBmMPVVNL+3atWtk/fr1RCqVEj6fT/z9/cnq1auJUqm0fOFYGXN6uIS0LZf74IMPSHBwMBEIBMTPz4+sWLGCyGQyxt5SZz1cQgj53//+R/785z+TwYMHEz6fT1xdXUlERAT5+OOPDeyjPVzTGlVXV5OkpCTi7e1NhEIhCQ0NJVu2bCFlZWVd7uFqKC0tJcnJycTf35/w+Xzi4uJCQkNDyfLly42OUNkqLEJ05mxT+h0ymQyenp4IDQ1FQUFBb5tD6QaJiYnYtWsXysvL+/WIA4XS36GTpvoJcrkcMplML6ylpQV/+ctfoFAo8Mwzz/SOYRQKhUIBQJcF9RuuXLmC6OhoTJ06FYMHD4ZMJkNOTg5KSkowfPhwLF++vLdNpFAolAENdbj9BB8fH8yePRvZ2dk4cuQI1Go1/Pz8kJKSgrfeeqtLS1woFAqFYnnoO1wKhUKhUKwAfYdLoVAoFIoVoA6XQqFQKBQrQB0uhUKhUChWgDpcCoVCoVCsAHW4FAqFQqFYAepwKRQKhUKxAtThUigUCoViBajDpVAoFArFClCHS6FQKBSKFfh/gHL93ehy9dUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4.55 s (started: 2024-10-26 13:18:01 +00:00)\n" ] } ], "source": [ "sns.pairplot(df[nums],height=1, aspect=1.2);" ] }, { "cell_type": "markdown", "metadata": { "id": "aN7h-LS-ejvd" }, "source": [ "- Diagonala bakıldığında Age dışındakiler skewed görünüyor, bunlardan SiSp ve Parch zaten küçük sayılar bi log transformasyona gerek yok ama Fare'de gerekli gibi\n", "- Yine diagonaldakilerin kimisinde outlier da var gibi, boxplotla ayrıca bakarız\n", "- kolonlar arası collinearity yok görünüyor" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 236 }, "executionInfo": { "elapsed": 13, "status": "ok", "timestamp": 1729948687212, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "rYivF2qMejvd", "outputId": "99ffee9b-b35e-4ef9-d926-9b8c587d8750" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAADJCAYAAAC0XeIPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdWElEQVR4nO3de1SUZeIH8C8wMMNFSNJwMDA2czPQ0FVYOaSZSqRpnQRtvVWLcnJNUsMMy7ytlw21rHYTqtXyepT9sa6mBnbEJTHQFk5WdsbThnHzkrcBgWFgnt8f7bzH8R2E4TbA8/2cw/HM8z7z8rxfcb6+78wwLkIIASIiIsm4OnsBREREzsACJCIiKbEAiYhISixAIiKSEguQiIikxAIkIiIpsQCJiEhKGmcvoK1YLBaUl5ejR48ecHFxcfZyiIjISYQQqKysRGBgIFxdGz/P6zYFWF5ejqCgIGcvg4iIOomSkhLce++9jW7vNgXYo0cPAL8esK+vb4v3YzabkZWVhZiYGLi7u7fV8ro0ZmKLeagxEzVmotZRmRiNRgQFBSm90JhuU4DWy56+vr6tLkAvLy/4+vryh/Z/mIkt5qHGTNSYiVpHZ9LU02F8EQwREUmJBUhERFJiARIRkZRYgEREJCUWIBERSanbvAq0rYWt+BymBue/ob54/QRnL4GIqFviGSAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkpRYV4H/+8x9MmjQJ/v7+8PLyQlhYGN59912bOXl5eYiOjoaXlxf69OmDpKQkVFVVqfZlMpmwZMkSBAYGwtPTE5GRkcjOzm7Z0RARETWTxtE7ZGVlYeLEiRgyZAiWLVsGHx8f/PjjjygtLVXmFBUVYcyYMRg4cCA2bdqE0tJSbNiwAefOncPhw4dt9vf8888jIyMDCxYswAMPPIBt27Zh/PjxOHbsGKKjo1t/hERERHY4VIBGoxGzZs3ChAkTkJGRAVdX+yeQS5cuRc+ePZGTkwNfX18AwH333Yc5c+YgKysLMTExAICCggLs2bMHqampSE5OBgDMmjULYWFhePXVV5GXl9eaYyMiImqUQ5dAd+3ahYsXL2LNmjVwdXXFzZs3YbFYbOYYjUZkZ2djxowZSvkBvxabj48P9u7dq4xlZGTAzc0NiYmJyphOp0NCQgJOnjyJkpKSlh4XERHRHTl0Bnj06FH4+vqirKwMTz/9NAwGA7y9vTFz5ky8/fbb0Ol0OHPmDOrr6zFs2DCb+3p4eCA8PByFhYXKWGFhIQYMGGBTlAAQEREB4NdLqUFBQXbXYjKZYDKZlNtGoxEAYDabYTabHTksG9b7al1Fi/fRllpzLG29hs6wls6AeagxEzVmotZRmTR3/w4V4Llz51BfX4+nnnoKCQkJWLduHXJycvDee+/h+vXr2L17NyoqKgAAer1edX+9Xo/c3FzldkVFRaPzAKC8vLzRtaxbtw4rV65UjWdlZcHLy8uRw7Jr9TBL05M6wKFDh5y9BAVfnGSLeagxEzVmotbemVRXVzdrnkMFWFVVherqarz44ovKqz6feeYZ1NXVIS0tDatWrUJNTQ0AQKvVqu6v0+mU7QBQU1PT6Dzr9sakpKRg0aJFym2j0YigoCDExMSozigdYTabkZ2djWWnXWGyuLR4P23l2xWPO3sJSibjxo2Du7u7s5fjdMxDjZmoMRO1jsrEekWwKQ4VoKenJwDgD3/4g834tGnTkJaWhpMnTypnX7denrSqra1V9mHdX2Pzbv1+9mi1Wrvl6e7u3ibBmiwuMDU4vwA70z+ctsq2u2AeasxEjZmotXcmzd23Qy+CCQwMBAAEBATYjN9zzz0AgGvXrimXL62XQm9VUVGh7AP49VJnY/Nu/X5ERERtzaEC/N3vfgcAKCsrsxm3PlfXu3dvhIWFQaPR4PTp0zZz6urqUFRUhPDwcGUsPDwcBoNBdbqan5+vbCciImoPDhXglClTAAAff/yxzfhHH30EjUaDRx99FH5+fhg7dix27NiByspKZc727dtRVVWF+Ph4ZSwuLg4NDQ1IT09XxkwmE7Zu3YrIyMhGXwFKRETUWg49BzhkyBD88Y9/xN///nfU19dj1KhRyMnJwb59+5CSkqJcslyzZg2ioqIwatQoJCYmorS0FBs3bkRMTAxiY2OV/UVGRiI+Ph4pKSm4dOkS+vfvj08++QTFxcWqkiUiImpLDv8qtC1btiA4OBhbt25FZmYm+vXrh7fffhsLFixQ5gwdOhRHjx7FkiVLsHDhQvTo0UN528TtPv30Uyxbtgzbt2/HtWvXMHjwYBw8eBAjR45s1YERERHdicMF6O7ujuXLl2P58uV3nBcdHY0TJ040uT+dTofU1FSkpqY6uhQiIqIW48chERGRlFiAREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkpVYX4Jo1a+Di4oKwsDDVtry8PERHR8PLywt9+vRBUlISqqqqVPNMJhOWLFmCwMBAeHp6IjIyEtnZ2a1dGhERUaNaVYClpaVYu3YtvL29VduKioowZswYVFdXY9OmTZg9ezbS09MRHx+vmvv8889j06ZNmD59OjZv3gw3NzeMHz8eX375ZWuWR0RE1ChNa+6cnJyM3//+92hoaMAvv/xis23p0qXo2bMncnJy4OvrCwC47777MGfOHGRlZSEmJgYAUFBQgD179iA1NRXJyckAgFmzZiEsLAyvvvoq8vLyWrNEIiIiu1p8Bvjvf/8bGRkZeOedd1TbjEYjsrOzMWPGDKX8gF+LzcfHB3v37lXGMjIy4ObmhsTERGVMp9MhISEBJ0+eRElJSUuXSERE1KgWnQE2NDRg/vz5mD17NgYNGqTafubMGdTX12PYsGE24x4eHggPD0dhYaEyVlhYiAEDBtgUJQBEREQA+PVSalBQkOp7mEwmmEwm5bbRaAQAmM1mmM3mlhyWcn8A0LqKFu+jLbXmWNp6DZ1hLZ0B81BjJmrMRK2jMmnu/ltUgFu2bMH58+dx9OhRu9srKioAAHq9XrVNr9cjNzfXZm5j8wCgvLzc7vdYt24dVq5cqRrPysqCl5dX0wfRhNXDLK3eR1s4dOiQs5eg4AuTbDEPNWaixkzU2juT6urqZs1zuACvXLmCN998E8uWLUPv3r3tzqmpqQEAaLVa1TadTqdst85tbN6t+7pdSkoKFi1apNw2Go0ICgpCTEyM6mzSEWazGdnZ2Vh22hUmi0uL99NWvl3xuLOXoGQybtw4uLu7O3s5Tsc81JiJGjNR66hMrFcEm+JwAb7xxhvw9/fH/PnzG53j6ekJADaXKK1qa2uV7da5jc27dV+302q1dovT3d29TYI1WVxganB+AXamfzhtlW13wTzUmIkaM1Fr70yau2+HCvDcuXNIT0/HO++8Y3Npsra2FmazGcXFxfD19VUuX1ovhd6qoqICgYGBym29Xo+ysjK78wDYzCUiImorDr0KtKysDBaLBUlJSQgJCVG+8vPzYTAYEBISglWrViEsLAwajQanT5+2uX9dXR2KiooQHh6ujIWHh8NgMKhOWfPz85XtREREbc2hAgwLC0NmZqbqKzQ0FMHBwcjMzERCQgL8/PwwduxY7NixA5WVlcr9t2/fjqqqKps3w8fFxaGhoQHp6enKmMlkwtatWxEZGWn3FaBERESt5dAl0F69euHpp59WjVvfC3jrtjVr1iAqKgqjRo1CYmIiSktLsXHjRsTExCA2NlaZFxkZifj4eKSkpODSpUvo378/PvnkExQXF+Pjjz9u0UERERE1pd1+GfbQoUNx9OhReHp6YuHChUhPT0dCQgIyMjJUcz/99FMsWLAA27dvR1JSEsxmMw4ePIiRI0e21/KIiEhyrfpVaFY5OTl2x6Ojo3HixIkm76/T6ZCamorU1NS2WA4REVGT+HFIREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJyaECPHXqFF566SWEhobC29sbwcHBmDJlCgwGg2ru2bNnERsbCx8fH/j7+2PmzJm4fPmyap7FYsFbb72FkJAQ6HQ6DB48GLt37275ERERETWDxpHJf/nLX3DixAnEx8dj8ODBuHDhAt5//30MHToUX331FcLCwgAApaWlGDlyJPz8/LB27VpUVVVhw4YNOHPmDAoKCuDh4aHs8/XXX8f69esxZ84cDB8+HPv378e0adPg4uKCZ599tm2PloiI6H8cKsBFixZh165dNgU2depUDBo0COvXr8eOHTsAAGvXrsXNmzfx9ddfIzg4GAAQERGBcePGYdu2bUhMTAQAlJWVYePGjZg3bx7ef/99AMDs2bMxatQoLF68GPHx8XBzc2uTAyUiIrqVQ5dAo6KibMoPAB544AGEhobi7Nmzytg//vEPPPnkk0r5AcDYsWMxYMAA7N27Vxnbv38/zGYz/vSnPyljLi4umDt3LkpLS3Hy5EmHD4iIiKg5HDoDtEcIgYsXLyI0NBTAr2d1ly5dwrBhw1RzIyIicOjQIeV2YWEhvL29MXDgQNU86/bo6Gi739dkMsFkMim3jUYjAMBsNsNsNrf4eKz31bqKFu+jLbXmWNp6DZ1hLZ0B81BjJmrMRK2jMmnu/ltdgDt37kRZWRlWrVoFAKioqAAA6PV61Vy9Xo+rV6/CZDJBq9WioqICAQEBcHFxUc0DgPLy8ka/77p167By5UrVeFZWFry8vFp8PFarh1lavY+2cOt/GJwtOzvb2UvoVJiHGjNRYyZq7Z1JdXV1s+a1qgB/+OEHzJs3DyNGjMBzzz0HAKipqQEAaLVa1XydTqfM0Wq1yp93mteYlJQULFq0SLltNBoRFBSEmJgY+Pr6tviYzGYzsrOzsey0K0wWl6bv0M6+XfG4s5egZDJu3Di4u7s7ezlOxzzUmIkaM1HrqEysVwSb0uICvHDhAiZMmAA/Pz9kZGQoL1bx9PQEAJvLk1a1tbU2czw9PZs1zx6tVmu3PN3d3dskWJPFBaYG5xdgZ/qH01bZdhfMQ42ZqDETtfbOpLn7btEb4W/cuIEnnngC169fx5EjRxAYGKhss16+tF4KvVVFRQX8/f2V4tLr9bhw4QKEEKp5AGz2S0RE1JYcLsDa2lpMnDgRBoMBBw8exEMPPWSzvW/fvujduzdOnz6tum9BQQHCw8OV2+Hh4aiurrZ5BSkA5OfnK9uJiIjag0MF2NDQgKlTp+LkyZPYt28fRowYYXfe5MmTcfDgQZSUlChjX3zxBQwGA+Lj45Wxp556Cu7u7vjb3/6mjAkhsGXLFvTt2xdRUVGOHg8REVGzOPQc4CuvvIJ//etfmDhxIq5evaq88d1qxowZAIClS5di3759GD16NF5++WVUVVUhNTUVgwYNwgsvvKDMv/fee7FgwQKkpqbCbDZj+PDh+Oc//4nc3Fzs3LmTb4InIqJ241ABFhUVAQAOHDiAAwcOqLZbCzAoKAjHjx/HokWL8Nprr8HDwwMTJkzAxo0bVS9cWb9+PXr27Im0tDRs27YNDzzwAHbs2IFp06a18JCIiIia5lAB5uTkNHtuaGgoPv/88ybnubq6IiUlBSkpKY4shYiIqFX4cUhERCQlFiAREUmJBUhERFJiARIRkZRYgEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJqVWfCE/t777XPnP2EqB1E3grwtmrICJqWzwDJCIiKbEAiYhISixAIiKSEguQiIikxAIkIiIpsQCJiEhKLEAiIpISC5CIiKTEAiQiIimxAImISEosQCIikhILkIiIpMQCJCIiKbEAiYhISvw4JGq2sBWfw9Tg4uxlKIrXT3D2EoioC+sUZ4AmkwlLlixBYGAgPD09ERkZiezsbGcvi4iIurFOUYDPP/88Nm3ahOnTp2Pz5s1wc3PD+PHj8eWXXzp7aURE1E05/RJoQUEB9uzZg9TUVCQnJwMAZs2ahbCwMLz66qvIy8tz8gqJiKg7cnoBZmRkwM3NDYmJicqYTqdDQkICli5dipKSEgQFBTlxhURNu++1z5y9BAWfGyVqHqcXYGFhIQYMGABfX1+b8YiICABAUVGR3QI0mUwwmUzK7Rs3bgAArl69CrPZ3OL1mM1mVFdXQ2N2RYOl87zgw5k0FoHqakuny+TKlStO+b7Wn5ErV67A3d0dAKCpv+mUtdjTP3lvh39PravAG0MsCH/9/2C65WckP2VMh6+ls7D3cyK7jsqksrISACCEuOM8pxdgRUUF9Hq9atw6Vl5ebvd+69atw8qVK1XjISEhbbtAAgBMc/YC7Oi10dkroFvZ+xnh3xE5U2VlJfz8/Brd7vQCrKmpgVarVY3rdDpluz0pKSlYtGiRcttiseDq1au4++674eLS8rMUo9GIoKAglJSUqM5KZcVMbDEPNWaixkzUOioTIQQqKysRGBh4x3lOL0BPT0+bS5lWtbW1ynZ7tFqtqjjvuuuuNluXr68vf2hvw0xsMQ81ZqLGTNQ6IpM7nflZOf1tEHq9HhUVFapx61hTDU5ERNQSTi/A8PBwGAwGGI1Gm/H8/HxlOxERUVtzegHGxcWhoaEB6enpypjJZMLWrVsRGRnZ4W+B0Gq1WL58ud3nJWXFTGwxDzVmosZM1DpbJi6iqdeJdoApU6YgMzMTCxcuRP/+/fHJJ5+goKAAX3zxBUaOHOns5RERUTfUKQqwtrYWy5Ytw44dO3Dt2jUMHjwYq1evxuOPP+7spRERUTfVKQqQiIioozn9OUAiIiJnYAESEZGUWIBERCQlFuD/yPKhvFVVVVi+fDliY2Ph7+8PFxcXbNu2ze7cs2fPIjY2Fj4+PvD398fMmTNx+fJl1TyLxYK33noLISEh0Ol0GDx4MHbv3t3OR9I2Tp06hZdeegmhoaHw9vZGcHAwpkyZAoPBoJorQx4A8N133yE+Ph6/+c1v4OXlhV69emHkyJE4cOCAaq4smdxuzZo1cHFxQVhYmGpbXl4eoqOj4eXlhT59+iApKQlVVVWqeV35MScnJwcuLi52v7766iubuZ06D0FCCCGeffZZodFoRHJyskhLSxMjRowQGo1G5ObmOntpbeqnn34SAERwcLB49NFHBQCxdetW1bySkhLRq1cvcf/994vNmzeLNWvWiJ49e4qHH35YmEwmm7mvvfaaACDmzJkj0tPTxYQJEwQAsXv37g46qpabPHmy6NOnj5g/f7748MMPxerVq0VAQIDw9vYWZ86cUebJkocQQnz22Wfi8ccfFytWrBDp6eninXfeEY888ogAINLS0pR5MmVyq5KSEuHl5SW8vb1FaGiozbbCwkKh0+nEkCFDxAcffCBef/11odVqRWxsrGo/Xfkx59ixYwKASEpKEtu3b7f5unz5sjKvs+fBAhRC5OfnCwAiNTVVGaupqRH333+/GDFihBNX1vZqa2tFRUWFEEKIU6dONVqAc+fOFZ6enuL8+fPKWHZ2tupBsLS0VLi7u4t58+YpYxaLRTzyyCPi3nvvFfX19e13MG3gxIkTqgdrg8EgtFqtmD59ujImSx6Nqa+vFw8//LD47W9/q4zJmsnUqVPFY489JkaNGqUqwCeeeELo9Xpx48YNZezDDz8UAMTnn3+ujHX1xxxrAe7bt++O8zp7HixAIcTixYuFm5ubzV+SEEKsXbtWABA///yzk1bWvu5UgPfcc4+Ij49XjQ8YMECMGTNGuf3Xv/5VABDfffedzbxdu3YJAF3if7P2DB06VAwdOlS5LXseQgjx5JNPioCAAOW2jJkcP35cuLm5iW+++UZVgDdu3BAajUYsXrzY5j4mk0n4+PiIhIQEZayrP+bcWoBGo1GYzWbVnK6QB58DRPM+lFcmZWVluHTpEoYNG6baFhERgcLCQuV2YWEhvL29MXDgQNU86/auRgiBixcvolevXgDkzePmzZv45Zdf8OOPP+Ltt9/G4cOHMWbMrx9wK2MmDQ0NmD9/PmbPno1Bgwaptp85cwb19fWqTDw8PBAeHq7KpDs85rzwwgvw9fWFTqfD6NGjcfr0aWVbV8jD6R+H1Bm09EN5uyvrJ3E0lsnVq1dhMpmg1WpRUVGBgIAA1WcwduXsdu7cibKyMqxatQqAvHm88sorSEtLAwC4urrimWeewfvvvw9Azky2bNmC8+fP4+jRo3a3N5VJbm6uzdyu/Jjj4eGByZMnY/z48ejVqxe+//57bNiwAY888gjy8vIwZMiQLpEHCxAt/1De7sp6vE1lotVqu112P/zwA+bNm4cRI0bgueeeAyBvHgsWLEBcXBzKy8uxd+9eNDQ0oK6uDoB8mVy5cgVvvvkmli1bht69e9ud01Qmtx5nV88kKioKUVFRyu1JkyYhLi4OgwcPRkpKCo4cOdIl8uAlULT8Q3m7K+vxNieT7pTdhQsXMGHCBPj5+SEjIwNubm4A5M3jwQcfxNixYzFr1iwcPHgQVVVVmDhxIoQQ0mXyxhtvwN/fH/Pnz290TlOZ3Hqc3SGT2/Xv3x9PPfUUjh07hoaGhi6RBwsQ/FDe21kvOzSWib+/v/K/Nb1ejwsXLkDc9itlu1p2N27cwBNPPIHr16/jyJEjNuuWMQ974uLicOrUKRgMBqkyOXfuHNLT05GUlITy8nIUFxejuLgYtbW1MJvNKC4uxtWrV5vM5Pafqe74mBMUFIS6ujrcvHmzS+TBAgQ/lPd2ffv2Re/evW2e0LYqKCiwySM8PBzV1dU4e/aszbyulF1tbS0mTpwIg8GAgwcP4qGHHrLZLlsejbFehrpx44ZUmZSVlcFisSApKQkhISHKV35+PgwGA0JCQrBq1SqEhYVBo9GoMqmrq0NRUZEqk+74mPPf//4XOp0OPj4+XSOPdnltaRfz1Vdfqd6DUltbK/r37y8iIyOduLL2dae3Qbz44ovC09PT5uXHR48eFQDEBx98oIyVlJQ0+h6vvn37dvr3eNXX14tJkyYJjUYjPvvss0bnyZKHEEJcvHhRNVZXVyeGDh0qPD09RWVlpRBCnkwuX74sMjMzVV+hoaEiODhYZGZmim+++UYIIURsbKzQ6/XCaDQq9//oo48EAHH48GFlrKs/5ly6dEk1VlRUJNzd3cWkSZOUsc6eBwvwf+Lj45X3rKSlpYmoqCih0WjE8ePHnb20Nvfee++J1atXi7lz5woA4plnnhGrV68Wq1evFtevXxdCCPHzzz+Lu+++W9x///3i3XffFWvXrhU9e/YUgwYNErW1tTb7W7x4sQAgEhMTxYcffqj8lo+dO3c64/Ac8vLLLwsAYuLEiarfaLF9+3Zlnix5CCHE008/LR577DGxYsUK5bfjPPjggwKA2LhxozJPpkzssfdG+K+//lpotVqb33yi0+lETEyM6v5d+TFn9OjRYvz48eLPf/6zSE9PFwsWLBBeXl7Cz89PfP/998q8zp4HC/B/ampqRHJysujTp4/QarVi+PDh4siRI85eVrvo16+fAGD366efflLmffvttyImJkZ4eXmJu+66S0yfPl1cuHBBtb+Ghgaxdu1a0a9fP+Hh4SFCQ0PFjh07OvCIWm7UqFGNZnH7BRIZ8hBCiN27d4uxY8eKgIAAodFoRM+ePcXYsWPF/v37VXNlycQeewUohBC5ubkiKipK6HQ60bt3bzFv3jybMyCrrvyYs3nzZhERESH8/f2FRqMRer1ezJgxQ5w7d041tzPnwQ/EJSIiKfFFMEREJCUWIBERSYkFSEREUmIBEhGRlFiAREQkJRYgERFJiQVIRERSYgESEZGUWIBERCQlFiAREUmJBUhERFJiARIRkZT+H6Ts0HUeEfmQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 262 ms (started: 2024-10-26 13:18:06 +00:00)\n" ] } ], "source": [ "#transformasyon öncesi\n", "df.Fare.hist(figsize=(5,2));" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 236 }, "executionInfo": { "elapsed": 328, "status": "ok", "timestamp": 1729948687530, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "kizrv3urejvd", "outputId": "49ca84d1-dc00-4be7-f9d1-938e266c3986" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAADJCAYAAAC0XeIPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY+klEQVR4nO3dfVBU190H8O9KYXndNSiDC0LFBhpfQDSAI2NBJjrBINpRgdSXqBNDRzQjMSaKTsfGTlUkJE+mVKUzrdiR0Qg20pDWZ6JtHTUEULFNHCg20YSXRbGUXQiwYdj7/JHufdzsYvbVhT3fz8z+seeeu/7O8cRv7t279yokSZJAREQkmAmeLoCIiMgTGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCel7ni7AVYxGIzo7OxESEgKFQuHpcoiIyEMkSUJfXx8iIiIwYcLox3leE4CdnZ2IiorydBlERDRGtLW1YerUqaNu95oADAkJAfDNgFUqlYerISIiT9Hr9YiKipJzYTReE4Cm054qlYoBSERE3/l1GC+CISIiITEAiYhISAxAIiISEgOQiIiExAAkIiIhec1VoCSeabs/8HQJsruHsjxdAhHZiUeAREQkJAYgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJya4AvHXrFnJycjB9+nQEBgZi8uTJSEtLw/vvv2/Rt7m5GZmZmQgODkZoaCjWr1+P7u5ui35GoxGHDx9GTEwM/P39kZCQgFOnTjk+IiIiIhvY9TzAL774An19fdiwYQMiIiIwMDCAs2fPYvny5SgvL0d+fj4AoL29HWlpaVCr1Thw4AD6+/vx5ptv4pNPPkFDQwP8/Pzkz9y7dy8OHTqEl156CcnJyaipqcGaNWugUCjw/PPPu3a0RERE/6WQJEly5gNGRkbw9NNPY2hoCC0tLQCAgoICVFRUoKWlBdHR0QCACxcuYMmSJWZB2dHRgZiYGOTn56OsrAwAIEkS0tPTcefOHdy9exc+Pj421aHX66FWq6HT6aBSqZwZEo0TfCAuEVljax44/R2gj48PoqKi0NvbK7edPXsWy5Ytk8MPABYvXoy4uDicOXNGbqupqcHw8DAKCgrkNoVCgS1btqC9vR11dXXOlkdERGSVQwH41Vdf4cGDB/jss8/w9ttv489//jOeeeYZAN8c1d2/fx9JSUkW+6WkpKCpqUl+39TUhKCgIMyYMcOin2k7ERGRO9j1HaDJq6++ivLycgDAhAkTsHLlSvkUplarBQBoNBqL/TQaDXp6emAwGKBUKqHVahEeHg6FQmHRDwA6OztHrcFgMMBgMMjv9Xq9I0MhIiJBOXQEWFhYiA8//BAnTpzA0qVLMTIygq+//hoAMDg4CABQKpUW+/n7+5v1GRwctKmfNQcPHoRarZZfUVFRjgyFiIgE5VAAPvXUU1i8eDFeeOEF1NbWor+/H9nZ2ZAkCQEBAQBgdnRmMjQ0BAByn4CAAJv6WVNUVASdTie/2traHBkKEREJyiU/hF+9ejUaGxvR2toqn740nQp9mFarRWhoqHzUp9Fo0NXVhW9fiGraNyIiYtQ/U6lUQqVSmb2IiIhs5ZIANJ2q1Ol0iIyMRFhYGK5du2bRr6GhAYmJifL7xMREDAwMoLm52axffX29vJ2IiMgd7ArA+/fvW7QNDw/j97//PQICAjBz5kwAwKpVq1BbW2t2WvLixYtobW1FTk6O3LZixQr4+vriyJEjcpskSTh27BgiIyORmppq94CIiIhsYddVoD/96U+h1+uRlpaGyMhIdHV1obKyEi0tLSgtLUVwcDAAYM+ePaiqqkJGRga2b9+O/v5+lJSUID4+Hps2bZI/b+rUqSgsLERJSQmGh4eRnJyMc+fO4fLly6isrLT5R/BERET2sisA8/Ly8Nvf/hZHjx7Fv//9b4SEhODpp59GcXExli9fLveLiorCpUuXsGPHDuzevRt+fn7IyspCaWmpxVWfhw4dwhNPPIHy8nJUVFQgNjYWJ0+exJo1a1wzQiIiIiucvhXaWMFboYmHt0IjImse263QiIiIxiMGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkOwKwMbGRmzbtg2zZs1CUFAQoqOjkZubi9bWVou+zc3NyMzMRHBwMEJDQ7F+/Xp0d3db9DMajTh8+DBiYmLg7++PhIQEnDp1yvERERER2eB79nQuLi7G1atXkZOTg4SEBHR1daGsrAzz5s3Dxx9/jNmzZwMA2tvbkZaWBrVajQMHDqC/vx9vvvkmPvnkEzQ0NMDPz0/+zL179+LQoUN46aWXkJycjJqaGqxZswYKhQLPP/+8a0dLRET0XwpJkiRbO3/00UdISkoyC7Dbt28jPj4eq1evxsmTJwEABQUFqKioQEtLC6KjowEAFy5cwJIlS1BeXo78/HwAQEdHB2JiYpCfn4+ysjIAgCRJSE9Px507d3D37l34+PjYVJter4darYZOp4NKpbJ1SDSOTdv9gadLkN09lOXpEojov2zNA7tOgaamppqFHwDExsZi1qxZaG5ultvOnj2LZcuWyeEHAIsXL0ZcXBzOnDkjt9XU1GB4eBgFBQVym0KhwJYtW9De3o66ujp7yiMiIrKZ0xfBSJKEe/fuYfLkyQC+Oaq7f/8+kpKSLPqmpKSgqalJft/U1ISgoCDMmDHDop9p+2gMBgP0er3Zi4iIyFZOB2BlZSU6OjqQl5cHANBqtQAAjUZj0Vej0aCnpwcGg0HuGx4eDoVCYdEPADo7O0f9cw8ePAi1Wi2/oqKinB0KEREJxKkAbGlpwdatW7FgwQJs2LABADA4OAgAUCqVFv39/f3N+gwODtrUz5qioiLodDr51dbW5sxQiIhIMHZdBfqwrq4uZGVlQa1Wo7q6Wr5YJSAgAADko7yHDQ0NmfUJCAiwqZ81SqXSangSERHZwqEjQJ1Oh6VLl6K3txfnz59HRESEvM10+tJ0KvRhWq0WoaGhcnBpNBp0dXXh2xeimvZ9+HOJiIhcye4AHBoaQnZ2NlpbW1FbW4uZM2eabY+MjERYWBiuXbtmsW9DQwMSExPl94mJiRgYGDC7ghQA6uvr5e1ERETuYFcAjoyMIC8vD3V1daiqqsKCBQus9lu1ahVqa2vNvpe7ePEiWltbkZOTI7etWLECvr6+OHLkiNwmSRKOHTuGyMhIpKam2jseIiIim9j1HeCrr76KP/7xj8jOzkZPT4/8w3eTdevWAQD27NmDqqoqZGRkYPv27ejv70dJSQni4+OxadMmuf/UqVNRWFiIkpISDA8PIzk5GefOncPly5dRWVlp84/giYiI7GXXnWAWLVqES5cujbr94Y+6desWduzYgStXrsDPzw9ZWVkoLS1FeHi42T5GoxHFxcUoLy+HVqtFbGwsioqKsHbtWrsGwjvBiId3giEia2zNA7sCcCxjAIqHAWgd54VE55ZboREREXkLBiAREQmJAUhEREJiABIRkZAYgEREJCSH7wVKRP9vLF15SUS24REgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQrI7APv7+7Fv3z5kZmYiNDQUCoUCFRUVVvs2NzcjMzMTwcHBCA0Nxfr169Hd3W3Rz2g04vDhw4iJiYG/vz8SEhJw6tQpuwdDRERkK7sD8MGDB9i/fz+am5sxZ86cUfu1t7cjLS0N//rXv3DgwAHs3LkTH3zwAZYsWYKvv/7arO/evXuxa9cuLFmyBL/61a8QHR2NNWvW4PTp0/aPiIiIyAbfs3cHjUYDrVaLKVOm4Nq1a0hOTrba78CBA/jqq69w/fp1REdHAwBSUlKwZMkSVFRUID8/HwDQ0dGB0tJSbN26FWVlZQCAzZs3Iz09Ha+99hpycnLg4+Pj6PiIiIissvsIUKlUYsqUKd/Z7+zZs1i2bJkcfgCwePFixMXF4cyZM3JbTU0NhoeHUVBQILcpFAps2bIF7e3tqKurs7dEIiKi7+SWi2A6Ojpw//59JCUlWWxLSUlBU1OT/L6pqQlBQUGYMWOGRT/TdmsMBgP0er3Zi4iIyFZuCUCtVgvgm9Ol36bRaNDT0wODwSD3DQ8Ph0KhsOgHAJ2dnVb/jIMHD0KtVsuvqKgoVw6BiIi8nFsCcHBwEMA3p0u/zd/f36zP4OCgTf2+raioCDqdTn61tbW5pHYiIhKD3RfB2CIgIAAA5KO8hw0NDZn1CQgIsKnftymVSqvBSUREZAu3HAGaTl+aToU+TKvVIjQ0VA4vjUaDrq4uSJJk0Q8AIiIi3FEiEREJzi0BGBkZibCwMFy7ds1iW0NDAxITE+X3iYmJGBgYQHNzs1m/+vp6eTsREZGrue1WaKtWrUJtba3Zd3MXL15Ea2srcnJy5LYVK1bA19cXR44ckdskScKxY8cQGRmJ1NRUd5VIREQCc+g7wLKyMvT29spXaL7//vtob28HALz88stQq9XYs2cPqqqqkJGRge3bt6O/vx8lJSWIj4/Hpk2b5M+aOnUqCgsLUVJSguHhYSQnJ+PcuXO4fPkyKisr+SN4IiJyC4X07S/fbDBt2jR88cUXVrfduXMH06ZNAwDcunULO3bswJUrV+Dn54esrCyUlpYiPDzcbB+j0Yji4mKUl5dDq9UiNjYWRUVFWLt2rc016fV6qNVq6HQ6qFQqe4dE49C03R94ugQaZ+4eyvJ0CfQY2JoHDgXgWMQAFA8DkOzFABSDrXnAxyEREZGQGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkNzyPEAiorFoLN09iHel8TweARIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJiQFIRERCYgASEZGQGIBERCQkBiAREQmJAUhERELizbCJiDyAN+b2PB4BEhGRkBiAREQkJAYgEREJiQFIRERC4kUwVvDLaSIi7zcmjgANBgN27dqFiIgIBAQEYP78+fjwww89XRYREXmxMRGAGzduxFtvvYW1a9finXfegY+PD5577jlcuXLF06UREZGX8vgp0IaGBpw+fRolJSXYuXMnAOCFF17A7Nmz8frrr+Ojjz7ycIVEROSNPH4EWF1dDR8fH+Tn58tt/v7+ePHFF1FXV4e2tjYPVkdERN7K40eATU1NiIuLg0qlMmtPSUkBANy8eRNRUVEW+xkMBhgMBvm9TqcDAOj1eqdrMhoGnP4MV3HFeFxl9r7/9XQJROQG0a9UeboE2advPOv0Z5j+3ZQk6ZH9PB6AWq0WGo3Got3U1tnZaXW/gwcP4o033rBotxaW45n6fzxdARHR4+PKf/P6+vqgVqtH3e7xABwcHIRSqbRo9/f3l7dbU1RUhB07dsjvjUYjenp6MGnSJCgUCofr0ev1iIqKQltbm8VRqSg4B5wDgHMAcA6A8TkHkiShr68PERERj+zn8QAMCAgwO5VpMjQ0JG+3RqlUWgTnxIkTXVaXSqUaN3/Z7sI54BwAnAOAcwCMvzl41JGficcvgtFoNNBqtRbtprbvSnAiIiJHeDwAExMT0draanGxR319vbydiIjI1TwegKtXr8bIyAh+85vfyG0GgwHHjx/H/PnzH/tFLUqlEvv27bP6vaQoOAecA4BzAHAOAO+eA4X0XdeJPga5ubl477338Morr+DJJ5/EiRMn0NDQgIsXLyItLc3T5RERkRcaEwE4NDSEn/3sZzh58iT+85//ICEhAb/4xS/w7LPO/x6EiIjImjERgERERI+bx78DJCIi8gQGIBERCYkBSEREQhImAJ156G5HRwdyc3MxceJEqFQqrFixAp9//rmbK3Y9R+fg5z//ORQKhcXLdLu68aS/vx/79u1DZmYmQkNDoVAoUFFRYfP+vb29yM/PR1hYGIKCgpCRkYEbN264r2A3cGYOKioqrK4FhUKBrq4u9xbuIo2Njdi2bRtmzZqFoKAgREdHIzc3F62trTbt7w1rwJk58IY1YOLxW6E9Lhs3bkR1dTUKCwsRGxuLiooKPPfcc/jrX/+KhQsXjrpff38/MjIyoNPpsGfPHvj6+uLtt99Geno6bt68iUmTJj3GUTjH0TkwOXr0KIKDg+X3Pj4+7izXLR48eID9+/cjOjoac+bMwd/+9jeb9zUajcjKysLf//53vPbaa5g8eTKOHDmCRYsW4fr164iNjXVf4S7kzByY7N+/HzExMWZtrrwVoTsVFxfj6tWryMnJQUJCArq6ulBWVoZ58+bh448/xuzZs0fd11vWgDNzYDKe14BMEkB9fb0EQCopKZHbBgcHpR/84AfSggULHrlvcXGxBEBqaGiQ25qbmyUfHx+pqKjIbTW7mjNzsG/fPgmA1N3d7e4y3W5oaEjSarWSJElSY2OjBEA6fvy4Tfu+++67EgCpqqpKbrt//740ceJE6Sc/+Yk7ynULZ+bg+PHjEgCpsbHRjRW619WrVyWDwWDW1traKimVSmnt2rWP3Ndb1oAzc+ANa8BEiFOgzjx0t7q6GsnJyUhOTpbbnnrqKTzzzDM4c+aMW+t2JVc8eFiSJOj1+u98xtZYplQqMWXKFIf2ra6uRnh4OFauXCm3hYWFITc3FzU1NVZv6j4WOTMHD+vr68PIyIgLKnq8UlNT4efnZ9YWGxuLWbNmobm5+ZH7essacGYOHjZe14CJEAFoy0N3rTEajfjHP/6BpKQki20pKSn47LPP0NfX5/J63cHROXjY9OnToVarERISgnXr1uHevXvuKHXMampqwrx58zBhgvl/NikpKRgYGLD5OyRvkJGRAZVKhcDAQCxfvhy3b9/2dElOkSQJ9+7dw+TJkx/Zz5vXgK1zYOINa0CIAHT0obs9PT0wGAwO7TvWODoHAPDEE09g27ZtKC8vR3V1NTZv3ox3330XP/rRj8bUE+vdzZk59BaBgYHYuHEjfv3rX+O9997D66+/josXLyI1NdWmswhjVWVlJTo6OpCXl/fIft68BmydA29aA0JcBOPoQ3dN7Y7sO9Y4OgcAsH37drP3q1atQkpKCtauXYsjR45g9+7dri12jHJmDr1Fbm4ucnNz5fc//vGP8eyzzyItLQ2//OUvcezYMQ9W55iWlhZs3boVCxYswIYNGx7Z11vXgD1z4E1rQIgjQEcfumtqd2TfscbRORjNmjVrMGXKFFy4cMEl9Y0Hrp5Db7Fw4ULMnz9/XK6Frq4uZGVlQa1Wy9+TP4o3rgF758Ca8boGhAhARx+6GxoaCqVS6RUP7HXHg4ejoqLQ09PjdG3jBR/ePLrxuBZ0Oh2WLl2K3t5enD9/3qa/P29bA47MwWjG4xoQIgAdfejuhAkTEB8fj2vXrllsq6+vx/Tp0xESEuLyet3B1Q8eliQJd+/eRVhYmKtKHPMSExNx48YNGI1Gs/b6+noEBgYiLi7OQ5V53ueffz6u1sLQ0BCys7PR2tqK2tpazJw506b9vGkNODoHoxlvawAQJABtfejul19+iZaWFot9GxsbzULwn//8J/7yl78gJyfn8QzABZyZg+7ubovPO3r0KLq7u5GZmenewj1Eq9WipaUFw8PDctvq1atx7949/OEPf5DbHjx4gKqqKmRnZ3vdA0OtzYG1tfCnP/0J169fHzdrYWRkBHl5eairq0NVVRUWLFhgtZ83rwFn5sAb1oCJMI9DsuWhu4sWLcKlS5fMfufW19eHuXPnoq+vDzt37oSvry/eeustjIyM4ObNm+Pq/3gcnYPAwEDk5eUhPj4e/v7+uHLlCk6fPo05c+bg6tWrCAwM9NSQHFJWVobe3l50dnbi6NGjWLlyJebOnQsAePnll6FWq7Fx40acOHECd+7cwbRp0wB884/GwoUL8emnn5rdBeTLL79EY2MjfvjDH3pwVPZxdA5iY2Mxd+5cJCUlQa1W48aNG/jd734HjUaDxsZGhIeHe3BUtiksLMQ777yD7Oxss4s5TNatWwcAXr0GnJkDb1gDMo/9BP8xGxwclHbu3ClNmTJFUiqVUnJysnT+/HmzPunp6ZK1KWlra5NWr14tqVQqKTg4WFq2bJl0+/btx1W6yzg6B5s3b5ZmzpwphYSESL6+vtKTTz4p7dq1S9Lr9Y+zfJf5/ve/LwGw+rpz544kSZK0YcMGs/cmPT090osvvihNmjRJCgwMlNLT08flHTEcnYO9e/dKiYmJklqtlnx9faXo6Ghpy5YtUldXl2cG4gDTGh/tZeLNa8CZOfCGNWAizBEgERHRw4T4DpCIiOjbGIBERCQkBiAREQmJAUhEREJiABIRkZAYgEREJCQGIBERCYkBSEREQmIAEhGRkBiAREQkJAYgEREJiQFIRERC+j9g5jiFciY8/wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 207 ms (started: 2024-10-26 13:18:06 +00:00)\n" ] } ], "source": [ "#transformasyon sonrası\n", "plt.figure(figsize=(5,2))\n", "plt.hist(np.log10(df.Fare+1));" ] }, { "cell_type": "markdown", "metadata": { "id": "vndiSg7vejve" }, "source": [ "Tam normal dağılım olmadı ama yine de scaling için yeterli gibi." ] }, { "cell_type": "markdown", "metadata": { "id": "6RWhWln0ejve" }, "source": [ "Şimdi de korelasyonlara bakalım, bunun için **dython** kütüphanesinden faydalanacağız. Zira bu kütüphane ile hem numeric-numeric, hem numeric-kategorik, hem de kategorik-kategorik korelasyonlar tek bi fonksiyonla elde edilebilmektedir." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 3424, "status": "ok", "timestamp": 1729948690947, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "hev6HtevoY2e", "outputId": "8a7483fe-c6e3-4f97-b52d-e0b95c38e150" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 3.22 s (started: 2024-10-26 13:18:07 +00:00)\n" ] } ], "source": [ "!pip -q install dython" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 836 }, "executionInfo": { "elapsed": 3355, "status": "ok", "timestamp": 1729948694297, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "iuh3pIV2ejve", "outputId": "48a8c19e-dcb8-4227-ad76-5a3d6a161ecc" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAMzCAYAAAA4aIoKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUaRsG8HtgSEUaAQERFRNzFXvXLmxsRVDE7lprjc9W7FhrMdfC7i7EDhQFCUEQUFpRGub7Ax0ZGUzizHL/rutcK2eec+Z9z56JZ97nvEckkUgkICIiIiIiIkFRKuwGEBERERERUU5M1oiIiIiIiASIyRoREREREZEAMVkjIiIiIiISICZrREREREREAsRkjYiIiIiISICYrBEREREREQkQkzUiIiIiIiIBYrJGREREREQkQEzWiIiIiIiIBIjJGhERERERKZT3799j1qxZaNOmDfT09CASibBt27bv3j4+Ph4uLi4wNDREsWLF0LRpUzx48EBu7LFjx1CrVi2oq6vDwsICs2bNQnp6eh715OuYrBERERERkUKJjo7G3Llz4ePjg+rVq//QtpmZmWjfvj3+/fdfjBw5EkuWLEFkZCT++OMP+Pv7y8SePn0anTt3ho6ODtasWYPOnTtj3rx5GDVqVF52J1ciiUQiKZBnIiIiIiIiygMpKSmIi4uDsbEx7t27hzp16sDNzQ2Ojo7f3Hb//v3o2bMnDhw4AHt7ewBAVFQUrK2t0bZtW/z777/S2CpVqkBFRQX37t2DWCwGAMyYMQMLFizAs2fPULFixXzp3yccWSMiIiIiIoWipqYGY2Pjn9rW3d0dJUuWRNeuXaXrDA0N0aNHDxw9ehQpKSkAgGfPnuHZs2dwcXGRJmoAMHz4cEgkEri7u/9aJ74DkzUiIiIiIipUKSkpePfunczyKWnKaw8fPkStWrWgpCSbCtWtWxeJiYnw8/OTxgHAb7/9JhNnamoKMzMz6eP5SfztECIiIiIiUnhPDxZ2C3K18MATzJkzR2bdrFmzMHv27Dx/roiICDRp0iTHehMTEwBAeHg4bGxsEBERIbP+y9jw8PA8b9uXmKwREREREVGhmjp1KsaPHy+zTk1NLV+eKykpSe6+1dXVpY9n/29use/evcuX9mXHZI2IiIiIiAqVmppaviVnX9LQ0JBbYpmcnCx9PPt/c4v99Hh+YrJGRERERFQESDIyCrsJuRIV4HOZmJhISxyz+7TO1NRUGvdpvbm5eY7YunXr5nNLOcEIEREREREVITVq1MCDBw+QmZkps/727dvQ1NSEtbW1NA4A7t27JxMXHh6OV69eSR/PT0zWiIiIiIjoPykiIgK+vr5IS0uTrrO3t8ebN29w6NAh6bro6GgcOHAAHTp0kJZjVqlSBRUrVsSmTZuQkW1UcsOGDRCJRNJ7tOUnlkESERERERUFGemF3YI8tXbtWsTHx0tnZTx+/DhevXoFABg1ahS0tbUxdepUbN++HUFBQbC0tASQlazVq1cPTk5OePbsGQwMDLB+/XpkZGTkmJFy6dKl6NixI1q1aoVevXrB29sba9euhbOzMypVqpTvfRRJJBJJvj8LEREREREVKsnDfwu7CbkS1ezzw9tYWlri5cuXch/7lJw5OjrmSNYAIC4uDpMmTcKRI0eQlJSEOnXqYNmyZTnuqQYAR44cwZw5c+Dj4wNDQ0M4Ojrir7/+goqKyg+3+UcxWSMiIiIiKgL+a8laUcAySCIiIiKiIkCSKdwyyIKcDVKRcIIRIiIiIiIiAWKyRkREREREJEAsgyQiIiIiKgoEfFNsko8ja0RERERERALEZI2IiIiIiEiAWAZJRERERFQESP5jN8UuCjiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUByyAVDkfWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqAiQZLIMUtFwZI2IiIiIiEiAmKwREREREREJEMsgiYiIiIiKgoyMwm4B/SCOrBEREREREQkQkzUiIiIiIiIBYhkkEREREVERIOFNsRUOR9aIiIiIiIgEiMkaERERERGRALEMkoiIiIioKGAZpMLhyBoREREREZEAMVkjIiIiIiISIJZBEhEREREVAZJM3hRb0XBkjYiIiIiISICYrBEREREREQkQyyCJiIiIiIoA3hRb8XBkjYiIiIiISICYrBEREREREQkQyyCJiIiIiIoClkEqHI6sERERERERCRCTNSIiIiIiIgFiGSQRERERURHAm2IrHo6sERERERERCRCTNSIiIiIiIgFiGSQRERERUVHA2SAVDkfWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqAiQsAxS4XBkjYiIiIiISICYrBEREREREQkQyyCJiIiIiIoClkEqHI6sERERERERCRCTNSIiIiIiIgFiGSQRERERUREgycwo7CbQD+LIGhERERERkQAxWSMiIiIiIhIglkESERERERUFnA1S4XBkjYiIiIiISICYrBEREREREQkQyyCJiIiIiIoASQZng1Q0HFkjIiIiIiISICZrREREREREAsQySCIiIiKiIkDC2SAVDkfWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqCjIZBmkouHIGhERERERkQAxWSMiIiIiIhIglkESERERERUBvCm24uHIGhERERERkQAxWSMiIiIiIhIglkESERERERUFLINUOBxZIyIiIiIiEiAma0RERERERALEMkhF8/RgYbdAcGb0XlvYTRCcdtq86WV2fUNCCrsJgqNc2A0QIA0elRxqFDMo7CYITkTqh8JuguBU19Av7CYIjuuTa4XdBLkkGfx+oGg4skZERERERCRATNaIiIiIiIgEiGWQRERERERFAWeDVDgcWSMiIiIiIhIgJmtEREREREQCxDJIIiIiIqIiQMIySIXDkTUiIiIiIiIBYrJGREREREQkQCyDJCIiIiIqAiSZLINUNBxZIyIiIiIiEiAma0RERERERALEZI2IiIiIiEiAeM0aEREREVFRwKn7FQ5H1oiIiIiIiASIyRoREREREZEAMVkjIiIiIioCJBkZgl1+VEpKCqZMmQJTU1NoaGjA1tYW58+f/+Z2lpaWEIlEcpfy5cvLxOYWt2jRoh9u78/iNWtERERERKRQHB0d4e7ujrFjx6J8+fLYtm0b2rVrh8uXL6NRo0a5brdy5Uq8f/9eZt3Lly8xY8YMtGrVKkd8y5Yt4eDgILOuZs2aedOJ78BkjYiIiIiIFMadO3ewd+9eLF26FBMnTgQAODg4oGrVqpg8eTI8PT1z3bZz58451s2bNw8A0Ldv3xyPWVtbo1+/fnnT8J/AMkgiIiIioiJAkpEp2OVHuLu7Q1lZGS4uLtJ16urqGDRoEG7evInQ0NAf2t+///6LMmXKoEGDBnIfT0pKQnJy8g/tM68wWSMiIiIiIoXx8OFDWFtbo0SJEjLr69atCwB49OjRD+3Lx8cHffr0kfv4tm3bUKxYMWhoaKBy5cr4999/f7rdP4NlkEREREREVKhSUlKQkpIis05NTQ1qamo5YiMiImBiYpJj/ad14eHh3/28u3fvBiC/BLJBgwbo0aMHypQpg/DwcKxbtw59+/bF27dvMWzYsO9+jl/BZI2IiIiIqCj4wXLDgrRw4ULMmTNHZt2sWbMwe/bsHLFJSUlykzh1dXXp498jMzMTe/fuRc2aNVGpUqUcj9+4cUPm74EDB6J27dqYNm0aHB0doaGh8V3P8ytYBklERERERIVq6tSpePv2rcwydepUubEaGho5RuEASK8r+94k6urVqwgLC5M7qiaPqqoqRo4cifj4eNy/f/+7tvlVHFkjIiIiIqJClVvJozwmJiYICwvLsT4iIgIAYGpq+l372b17N5SUlNC7d+/vbqe5uTkAIDY29ru3+RVM1oiIiIiIioCfufm0ENWoUQOXL1/Gu3fvZCYZuX37tvTxb0lJScHBgwfxxx9/fHdyBwAvXrwAABgaGv5Yo39SkS6DdHR0hKWlZaE8t0gkkluDS0REREREubO3t0dGRgY2bdokXZeSkgI3NzfY2tpKR79CQkLg6+srdx+nTp1CfHx8riWQUVFROdYlJCRg5cqVMDAwQO3atfOgJ99WoCNrT548wZw5c3D37l28efMG+vr6qFy5Mjp27IhRo0YVZFOIiIiIiEgB2draonv37pg6dSoiIyNRrlw5bN++HcHBwdi6das0zsHBAVevXoVEIsmxj927d0NNTQ3dunWT+xzr1q3DkSNH0KFDB1hYWCAiIgL//PMPQkJCsHPnTqiqquZb/7IrsGTN09MTTZs2hYWFBQYPHgxjY2OEhobi1q1bWLVqVaEka5s3b0ZmpnBnxSEiIiIiyiuSjJxJi6LasWMHZs6ciZ07dyIuLg7VqlXDiRMn0KRJk29u++7dO5w8eRLt27eHtra23JiGDRvC09MTW7ZsQUxMDIoVK4a6devin3/+QbNmzfK6O7kqsGRt/vz50NbWxt27d6GjoyPzWGRkZJ48x4cPH1CsWLHvjldRUcmT51Vkd58GYevR6/AODENUXALWTemHFraVv7rNbe8XWOR2Cv6hb2BioI1h9k3RtZnsUPDu0zex9ch1RMW/R0VLY8x07oBq5c3zsyt5zrZnZzRy7IniBnp47ReIEwtXI8xb/lB65eaN8btzX+iZl4KyijJiXobhxo79eHTivNz4jjPGoW6Pjji5ZC1u7jqYn93IU8ZdusC0d2+o6unhQ2AgglauxHsfH7mxhm3bovy0aTLrMlNScKtFC7nxVhMmwLhzZwStXo2IAwfyvO35ob+DA1xcXGBoaAgfHx/MnjULXl5euca3a9cO4ydMgJmZGYKCg7F40SJcuXxZ+njrNm3Qt29fVLWxga6uLtq1bQufZ88Koit5pp+DA5yzHZO5s2bh8VeOSdt27TD24zEJDg7GkkWLcDXbMclu7vz56NOvH+bNmYNt//yTX13Ic70c+sPRZTAMDA3x3McHC2fNhrfX41zjW7Vri5ETxsPUzAwhwcFYsWgxrl++In1cQ1MT4/6cjGatWkJbVxdhoaHY7bYdB3YX7I1af0WL3vZoN7AftA30EfrcHzvmL8OLJ/LP9T/sO6FRp/YwK2cFAAh65osDK9fniDe1skTP8SNRsU4tKCsrIywwCKvHTkFMxJt8709e6NivN3o4O0HP0ACBPs+xdu4CPH/8RG5s6fJl4ThmFMpXrQxjs1JYP28RDm3bKROz68o5GJuVyrHt0V17sGb2vHzpQ15r2KsL/nDsBS0DPYQ/D8ThhasQ6i3/M8emeRM0H9wPBualoCQWIzrkFa5u34f7J84BAJTEymg7ajAqNa4HvVImSH7/Af637uHkyo14FxVTkN2iPKKuro6lS5di6dKlucZcuXJF7voSJUp8c3r/li1bomXLlr/SxDxRYNesBQYGokqVKjkSNQAwMjICAAQHB0MkEmHbtm05Yr68xmv27NkQiUR49uwZ+vTpA11dXTRq1AjLli2DSCTCy5cvc+xj6tSpUFVVRVxcHADZa9bS0tKgp6cHJyenHNu9e/cO6urqmDhxonRdSkoKZs2ahXLlykFNTQ3m5uaYPHlyjmlEU1JSMG7cOBgaGkJLSwsdO3bEq1evvnW4CkxiSioqWBpj1uCO3xUf+iYWQ+Zvh21VKxxdPgoD7BpixvrDuP7QTxpzyuMxFrqdwogezXF42QhUtDTBoLluiIl/n1/dyHNVWzdF20nDcPnv7Vjf0wWvnwfC8e8lKKanIzc+6e07XNm8C5v6j8Dabs54cPQMusydgnIN6uSIrdSsEcyrVca7NzlroYVMv1kzWI4ciVfbtsHL2RkfAgJQ2dUVKnJe05+kv3+Pu506SZf73bvLjdNr3BhaVaogRU59uFC1t7PD9BkzsGrVKtjZ2cHHxwfbd+6Evr6+3PhatWtj1Zo12L9/P9q3b4/z585h46ZNsLa2lsZoamjg7t27WLxoUUF1I0+1s7PDtBkzsGbVKnSys4Ovjw/cdu6EXi7HpGbt2lixZg0O7N+Pjh+PyYZNm1A+2zH5pGXr1qhRsyZev36d393IU63t2mPSjGn4e9Vq9LDrAD8fH2zcuT3XY1K9di0sXrMKh/bvR/f2drh07hxWbfob5bIdk8kzp6Ph703w59jx6NS8JXZtdcO0ubPxR4vmBdSrX2PbpgX6TBmLw+u3YKa9A0J8/TF502qU0NOVG1+pbm3cPHkWC5yGYU6fQYh9/QaTN6+BrtHni/uNzEthxq7NiAh6iQWOQzGtSx8c+Xsr0lJSC6pbv+SPdm0wdNpk7FyzHkM7dccL3+dY5LYROnp6cuPV1TUQERqKLUtXICZS/vvmiK490b3e79JlssMgAMC102fzrR95qUbrZug4aQTO/b0NK3o4I9wvAC4bl6F4Lp/DiW/f4cKmnVjdbzhcuznh7pHT6Pm/P1Hh4+ewqro6zCqVx/mN27GipzO2jZsBQ0sLDFyzsAB7RfTjCixZK126NO7fvw9vb+883W/37t2RmJiIBQsWYPDgwejRowdEIhH279+fI3b//v1o1aoVdHVzfiCoqKigS5cuOHLkCFJTZd/cjxw5gpSUFPTq1QtA1g30OnbsiGXLlqFDhw5Ys2YNOnfujBUrVqBnz54y2zo7O2PlypVo1aoVFi1aBBUVFbRv3z4Pj8Cv+b1WBYzr0wot61X5rvi9Z+/AzEgXfzq1Q1kzI/RrVx+t61fBtuOfbxrodtwDPVrWQbfmtVHOvCTmDOkEdTVVHLxUMPejyAsNHbrj3sGTeHD0DKJevMSx/y1HWlIyanduKzc+6J4XfC55ICooBLGvwnFz90G88Q9E6ZpVZeK0jAxgN3U0Dkydj4x0xZqRybRnT7w5fhyRp04hKTgYL5YtQ0ZyMoy+dj5LJEiLjf28fPyhJDtVAwOUGTsWfnPnQpKeno89yFvOzs7Yt3cv3A8cQIC/P6ZPm4akpCR079FDbryTkxOuXr2KTRs3IjAgAMtdXfHU2xsOAwZIYw4fPow1q1fDw8OjoLqRpwZ+PCYHPx6Tmd84Jo5OTrh29Sq2fDwmK11d8czbG/2zHRMAKFmyJGbNmYMJY8YgPS2tILqSZxycB+Hg3n04csAdL/wDMHfaDCQlJaFLD/k/XPRzcsSNq9ewbeNmBAUEYq3rCjzzforeAxykMdVr18Kxg4dw79ZthL8Kg/uevfDz8YFNjeoF1a1f0taxD64cOILrh08gPDAIbnMWISU5GU26dpAbv2HyX7i49yBCfP0REfQSW2bOh5KSCJXrff4xrPuYYfC6dgN7XdfgpY8fIkPD8PDydbyLzfmeI0TdBg7AqX3uOHvwCEICArFy5hykJCWjTfeucuOfP/HGpsWuuHLyNNJS5Sekb2PjEBcdLV1sm/6BsJch8Lp9Nx97kneaOPTArYMncPfIabx58RIH57oiLSkZdbvI/8wJvPcI3peuIzLoJWJeheP6bndE+L1AmVrVAADJ7z9go8sEeJ29jKjgUIQ8fobDC1bCvEpF6BgbFWTXCpUkI1OwC8lXYMnaxIkTkZiYiBo1aqBBgwaYMmUKzp07h7Rf/OCtXr06jhw5gmHDhmH48OGwsLBAvXr1sG/fPpm4u3fv4sWLFzmSqex69uyJ+Ph4nDt3Tmb9vn37YGVlhd9++w0A8O+//+LChQs4e/YsVqxYARcXF6xZswZr167F0aNH4enpCQDw8vLCrl27MHz4cOzevRsjRozAwYMHUbVq1RzPrSge+YWgfrVyMusa1bDGI78QAEBqWjqeBoajQbYYJSUlNKhWFg+fhxRoW3+WslgM00rWCLz1ObmUSCQIvP0A5tW/L6m1sq0FA0tzBN//XOokEonQfcFUeGzbh8jA4Lxudr4SicUobm2Nt9lvACmR4O29e9CqkvsxUdbQQO0DB1Db3R0VFyyAxpezr4pEKD9jBsL37EFScHC+tD0/qKiooKqNjUxSJZFIcMPDA7Vq1ZK7Tc1atXDjiyTs2rVrucYrmk/H5MYXx8TTwwM1v3JMPL84JtevXZOJF4lEWLZyJTZv3Ah/f//8aXw+EauooLJNVdzy+PxjlkQiwS2PG6heq6bcbarXqiUTDwCe167LxHvdf4A/WrSAUcmSAIA69euhdJky8Lx2PR96kbeUVcSwrFwRT299ThgkEgme3ryLcjVsvmsfaurqUBaL8eHtOwBZ50j13xvidXAIJm1ajXXXz2D23n9Qu/nv+dKHvCZWUYF11cp4cOOmdJ1EIsEDz1uoXDNvEnCxigpadLLDGfdDebK//KYsFsOssjX8b92TrpNIJPC7dR+lv/NzuLxtLRhamuPF/dzLsNW1iiEzMxNJCYpT+UNFT4Elay1btsTNmzfRsWNHeHl5YcmSJWjdujVKlSqFY8eO/fR+hw4dmmNdz549cf/+fQQGBkrX7du3D2pqaujUqVOu+2rWrBkMDAxkEr24uDicP39eJsk7cOAAKlWqhIoVKyI6Olq6fLrY8PLH6y1OnToFABg9erTM84wdO/bHOyoQ0XEJMNApLrPOQKc43iemIDklDXEJicjIzIT+FzH6OsURHZ9QkE39aZq62lAWK+N9jOwvsu9j4lDcQH5JCgCoFS+GmbdOYc798+i/diFOLFwjk/A1HtgbmekZuLlbca5R+0SsrQ2RWIzUL24AmRYXB5VcyrmSQkIQsGgRfKZOhf+8eYCSEmw2bIBqtvuSlOrbF5KMDES4u+dr+/Oarq4uxGIxoqOjZdZHR0fnet8VQ0PDH4pXNJ+OSYycPhrk0keD7zgmQ4YNQ0Z6Ora7ueV9o/NZbsckJjoa+rkeEwO58dmP4YJZcxDo74+Ld27iQcBz/L3dDfNnzsL9O8IfMdHS0YGyWIy30bLvJe9iYqFjIP+95Es9J4xEXGQ0nt68AwAooa8HjWLF0MF5AJ543MTiwaNw78IVjF61GBV/k58UC4m2btYxiYuRvW4qLjoGugYGefIcDVs2Q/ESWjh38Eie7C+/FdPVhrJYjIQcn8Ox0NLP/XNYvXgxLLh9BkseXMKgdYtxZOEq+N28JzdWrKqK9uOG4tHpi0j5kJin7SfKSwU6dX+dOnVw6NAhpKamwsvLC4cPH8aKFStgb2+PR48eQVNT84f3WaZMmRzrunfvjvHjx2Pfvn2YNm0aJBIJDhw4gLZt28rcOO9LYrEY3bp1w7///ouUlBSoqanh0KFDSEtLk0nW/P394ePjk+uXrE8Tprx8+RJKSkooW7aszOMVKlT4rr6lpKTkuAZOLTUNaqqcGEWIUj8kYl13Z6hqaqCsbS20nTgcca/CEXTPC6aVrFG/bzes7+lS2M0sMO+fPsX7p0+lfyc8eYIau3ahZMeOCN26FcWsrWFibw+vQYMKsZUkZFWqVsUAJyd0ElDpuBD0cXRAtZo1MXKgMyLCwlHbtg6m/28Oot5E4taNG9/egQKzc3ZAvXYtsWDAMGn5n0gkAgDcv3QNZ3bsAQCE+PqjfI1qaNazK3zvPSy09gpF2+7dcOeaR67Xt/1XpHxIhKv9IKhpaqC8bW10nDQCMa/CEXjvkUycklgZDsvmQAQR3P/nWjiNLSQsN1Q8BZqsfaKqqoo6deqgTp06sLa2hpOTEw4cOABHR0e58Rlfudu6hoZGjnWmpqZo3Lgx9u/fj2nTpuHWrVsICQnB4sWLv9m2Xr16YePGjTh9+jQ6d+6M/fv3o2LFiqhe/XMpQmZmJmxsbLB8+XK5+/h0I75ftXDhQsyZM0dm3axh3TF7RO6lnPnNQFcL0V9MFBId/x7FNdWgrqYCJSURlJWUckwmEhP/HgY6WgXZ1J+WGPcWGekZKK4ve21jcX1dvP/i1+DsJBIJYkPDAQCvnwfC0Ko0mgzqi6B7Xihd2wbF9HQw8eznUVtlsTLaThiGBn3t4dq2d/50Jo+kv30LSXo6VL+42F1FVxdpMd83i5YkIwMf/P2hbmYGAChRvTpUdHXxW7ZRNZFYDMsRI2DSvTse5HKdkxDExcUhPT0dBl/86m1gYCD3JppA1s01fyRe0Xw6Jvpy+hidSx+jv3FM6tStC30DA1y7+bk8TCwWY+qMGXAcOBB/NGqUx73IW7kdE30DA8Tkekyi5cZ/OoZqamoYM2kixgwZhuuXsqo4/Hx9UaFyZQxwcRZ8spYQH4+M9HRof1GlUEJfD/HRX38vaefUF3bOA7B40EiE+gXI7DM9LR3hgUEy8eEvgmFdS/jX8b2Nyzomul9UKega6CPui1HWn2FkaoKaDephzogxv7yvgvIh7i0y0tOhleNzWA8JMV//HI4JDQMAhD8PQEmr0mju3E8mWfuUqOmalsSGQWM5qkaCV2BlkLn5dB1YRESEdOKP+Ph4mRh5Mzt+S8+ePeHl5YXnz59j37590NTURIcO8i9ezq5JkyYwMTHBvn37EB0djUuXLuW4zq1s2bKIjY1F8+bN0aJFixzLp5Gz0qVLIzMzU6YcEwCeP3/+XX2YOnUq3r59K7NMHSz/YuOCUsPaAreeyPbH87E/alhbAABUVcSoUtYUNx9//iDNzMzEzceBqFnBokDb+rMy0tMR7uMHK1vZ62asbGsh1OvpV7aUJRIpQfxxFPTR8fNYaz8I63o4S5d3b6LgsW0ftg+bnOd9yGuS9HS89/ODdu1st2gQiaBduzYSnn7nMVFSgqaVlTS5izp7Fl6OjvAaOFC6pERFIWzPHjybMCEfepF30tLS4P3kCRo2bChdJxKJ0KBhQzx48EDuNg8fPJCJB4BGjRvnGq9oPh2TBnKOycOvHJMGXxyTho0bS+OPHDqE9q1bo0PbttLl9evX2LJxI5wcHOTtUlDS09Lw7Ik3bBs2kK4TiUSo17ABvB7IH+3xevBAJh4A6jduKI0Xq6hARVUVki/uEZqZkQElpUL/SP+mjLR0BD/zlZkcRCQSoUq93xDwSP409QDQfmB/dBo6CEtdxiDoqezU7Rlp6QjyfgbjMrKfMcaWFogOF/7soelpafDzfoZaDepJ14lEItRsYItnD3O/3up7tbHvgviYWNy6fO2X91VQMtLT8eqZH8rbfv7MEYlEKF+vFl7+yOewkgjK2aqRPiVqBhZm+HvwOCR+vO6RSMgK7J398uXLcu8e/um6rgoVKqBEiRIwMDDAtWuybyjr16//4efr1q0blJWVsWfPHhw4cAB2dnbfdQ82JSUl2Nvb4/jx49i5cyfS09NzJGs9evRAWFgYNm/enGP7pKQkfPjwAQDQtm3WzIGrV6+WiVm5cuV39UFNTQ0lSpSQWfK6BPJDUgp8gsLhE5Q1IvQqMhY+QeEIj4oHALjuOovJqz7f86pX67oIfROLJTtOI/BVJHafvoXTN7zh2OHzFy6nDo2w/8I9HL78AIGvIjF741EkpaSiazPFmUjhxo4D+K2bHWp2bA3DMhboOGMcVDXUcf/IGQBAt/lT0XK0szS+yaA+KFuvNnRLmcCwjAUaOnRHDbuWeHQy6z5rSW/fITIgWGbJSM9AQkwsooNDC6WPPyp83z6UtLODYZs20ChdGlYTJkBZQwORH1/D5aZPh8WQIdJ4M0dHaNepAzUTExSztkb5mTOhZmyMNydOAADS371DYlCQzCJJT0dabCySQ4V/TLZs2YJevXqha7duKFuuHObNnw9NTU24f7xHnOvy5Zg0+XMi7ubmhia//w7nwYNhVbYsxowdCxsbG+zYvl0ao62tjUqVK6N8+fIAACsrK1SqXDnXa76E5p8tW9CzVy90+XhM5s6fD41sx2Tp8uWYmO2YbHNzQ+Pff8egj8dk9NixqGpjg50fj0l8fDz8/fxklvS0NERFRSHoxYtC6eOP2rFlK7r16oWO3bqiTLmymDn/f9DQ1MSRA1kjyvOXL8OYyZOk8bvctqHh703gMHgQypS1wrCxY1DFxgZ7tu8AAHx4/x53b97C+Gl/4rd6tihlboZO9t3QoVtXXDx7Tm4bhOb0tn+l904ztbKE46wpUNPQwLXDWe8NQxbORo9xw6Xx7Qc5oNvoIdg843+IDo+AtoE+tA30oab5ubLm5D+7UK9tS/xh3wlGFmZo0ac7av7RCBf3Ksb1sAf/2Y52Pe3RsksnWJS1wpi5f0FdQwNn3A8DAKYsXYBBE8dK48UqKihbqSLKVqoIsYoKDEoaoWylijAtLZuwikQitO7WBecPH0XmV6qUhOjajv2w7WaH3zq2gVGZ0ug2cwJUNTRw50jWZ07v+dPQbsznSwuaDeoL6/q/Qc/MBEZlSuN3h56obdcaD7LdZ23A8v/BvEpF7P7zf1BSUoaWvh609PWgLC6UQrNCIcmUCHYh+Qrs7Bw1ahQSExPRpUsXVKxYEampqfD09MS+fftgaWkpvb+Zs7MzFi1aBGdnZ/z222+4du0a/Pz8vrH3nIyMjNC0aVMsX74cCQkJX50F8ks9e/bEmjVrMGvWLNjY2KBSpUoyj/fv3x/79+/H0KFDcfnyZTRs2BAZGRnw9fXF/v37cfbsWfz222+oUaMGevfujfXr1+Pt27do0KABLl68iICAgFyeueB5B4bB4a8t0r8XumW9CXZpWguLRtkjKi4BEdHx0sfNS+ph4/QBWOh2EjtOeMJYXxvzhndB45qf7wHUrlE1xL77gNV7LiAqPgGVyphgy0wnhSmDBADvs5dRTFcbzYc7oriBHiKeB2L7sCn48HEaaB1jI5lftlU11NFh+lholzREWkoKooNCcGDaAniflX9zX0UUc+kSVHR0YDFoEFT09PAhIADPJk6UTsevVrIkkO0HGbGWFspNngwVPT2kJyTgg58fvIcNU6hZH7/m5IkT0NfXx/jx42FgaAifZ8/g6OAgnTDD1NQUmdnOkQf372Ps6NGYMHEiJk6ahODgYAxxcZF5f2vRsiWWuX6+fmLtunUAgJUrVmDVd/7IU5hOfTwmY8ePh6GhIZ49e4aBDg7SCTO+PCYP79/H+NGjMW7iREz4eEyGubjA/yfe84Xq7ImT0NPXw4jx42BgaADfZz4Y6uAoPSYmpqYy7yVe9x/gz9FjMXLiBIyZNBEvg4MxxmUoArIdk0mjRmPs5MlYtGoFtHV0EPEqDGuWumL/rt0F3r+fcfvMBWjp6aLbKBdoG+gjxNcPS4eMwbuP5W36JiVljknzXl2hoqqKMatkL2U4tG4zDq/L+tH0/sUrcJuzCB0GD0D/aRMQERyC1WP/hN+DXx+ZKghXTp2Btr4eHMeOhK6hAQKf+WLqwCGI/1iJYGRqgsxsX2b1jQyx8fjnyap6DB6IHoMHwuv2HUzo+/l+sbUa1kfJUqY4fUAxZoHM7tHZSyimp4PWIwaihIEewnwDsHnoROnkXzomJWUGAVQ1NdB1+njofPwcjgwKwb9T5+HR2UsAAG0jQ1RtmlU6PfGg7IRF651G57iujUgoRBJ5w1354MyZMzhw4AA8PT3x6tUrpKamwsLCAm3btsWMGTOkN8ZOSkrCqFGj4O7ujszMTLRt2xZr166FkZERZs2aJb0x9uzZszFnzhy514F8smXLFgwePBhaWlqIjIyEurq6zOOOjo64cuUKgr/48iiRSFC6dGmEhoZi3rx5mD59eo59p6WlYcWKFdixYwcCAgKgqakJKysrdOzYEWPHjpVOZJKcnIwpU6Zg9+7dSE5ORrNmzbB+/XqYm5vL9Oe7PVW8mQTz24zeawu7CYLTTltx7ldWEPqGKMZtIwqScmE3QIA0eFRyqFEsb2Yj/C+JSP1Q2E0QnOoa3zeTZ1Hi+kSYZadvRtct7CbkquTqO4XdBEEqsGSN8giTtRyYrOXEZE0Wk7WcmJbkxGQtJyZrOTFZy4nJWk5CTdZej6jz7aBCYrxO+LcfKQzCvxqZiIiIiIioCGKyRkREREREJEBFZ/obIiIiIqIiTKJYk4ISOLJGREREREQkSEzWiIiIiIiIBIhlkERERERERYAkg5PAKxqOrBEREREREQkQkzUiIiIiIiIBYhkkEREREVERkJlZ2C2gH8WRNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCeFNsxcORNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCWAapeDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAb4qteDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAZ4NUPBxZIyIiIiIiEiAma0RERERERALEMkgiIiIioiIgM1NU2E2gH8SRNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCeFNsxcORNSIiIiIiIgHiyJqCmdF7bWE3QXDm7RlZ2E0QnHp2Uwu7CYLirF2usJsgOPveBRV2EwTnPW9AlMMUS05G8KVlwcULuwmC42SeUthNIPrPYrJGRERERFQE8DcpxcMySCIiIiIiIgFiskZERERERCRALIMkIiIiIioCeFNsxcORNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCMjkbpMLhyBoREREREZEAMVkjIiIiIiISIJZBEhEREREVAZwNUvFwZI2IiIiIiEiAmKwREREREREJEMsgiYiIiIiKAAnLIBUOR9aIiIiIiIgEiMkaERERERGRALEMkoiIiIioCMjMLOwW0I/iyBoREREREZEAMVkjIiIiIiISIJZBEhEREREVAbwptuLhyBoREREREZEAMVkjIiIiIiISIJZBEhEREREVASyDVDwcWSMiIiIiIhIgJmtEREREREQCxDJIIiIiIqIiIINlkAqHI2sfBQcHQyQSYdu2bYXdFCIiIiIiIsVP1rZt2waRSCRd1NXVYW1tjZEjR+LNmzeF3TwiIiIiIqKf8p8pg5w7dy7KlCmD5ORkeHh4YMOGDTh16hS8vb2hqalZ2M0jIiIiIipUnA1S8fxnkrW2bdvit99+AwA4OztDX18fy5cvx9GjR9G7d+9Cbp3w2fbsjEaOPVHcQA+v/QJxYuFqhHn7yo2t3LwxfnfuCz3zUlBWUUbMyzDc2LEfj06clxvfccY41O3RESeXrMXNXQfzsxt54u7TIGw9eh3egWGIikvAuin90MK28le3ue39AovcTsE/9A1MDLQxzL4pujarLROz+/RNbD1yHVHx71HR0hgznTugWnnz/OxKnurWvy/6uQyCnqEhAnx84Tr7f3jm9VhubJny5eAybgwq2lSBiZkZVsydj31u22Viuvbtja79esOklBkA4IW/P/5ZvQ43r17L977kldo9O6GeYw8UN9DDG79AnFu4BuHez+XGVmjeCA2d+0DXvBSUVJQR9zIMt3YcgPeJC9KY6Y8vyt324vKNuLVtf770Ia/17N8fjkMGw8DQEH4+Plg4aza8czlPAKBlu7YYOWE8TM3MEBIUjBWLFsPjyhXp43oGBhj352TUb9wYWiVK4MGdO1g4aw5CgoPzvzN5pL+DAwa7uMDQ0BA+Pj6YPWsWHnt55Rrftl07jJ8wAWZmZggODsbiRYtw5fJlAIBYLMaEiRPxR9OmMLewQEJCAm54eGDJokWIjIwsqC79Mj07exh06wuxrj6Sg/wRscEVSX7P5MbqtGgPs/F/yazLTE3Bs85NpH8r6+jB2GkEiteyhXIxLXzwfoiIv12RGh6ar/3IS81726PtwL7QNtBHyHN/7JrviqAn8o/J7/ad0KBTO5iVswIABD/zhfvKDTniTaws0WP8CFSoUwvKysoICwzC2rF/IjZCMSqPfuQ8AQClYsVRcsAwlGjwB5S1SiAt8jUiNq7A+3ueP71PosKm8GWQuWnWrBkAICgoCAAQHx+PcePGwdLSEmpqajAzM4ODgwOio6Nz3cfjx4/h6OgIKysrqKurw9jYGAMHDkRMTIxMXEJCAsaOHSvdt5GREVq2bIkHDx5IY/z9/dGtWzcYGxtDXV0dZmZm6NWrF96+fZsPvf8xVVs3RdtJw3D57+1Y39MFr58HwvHvJSimpyM3PuntO1zZvAub+o/A2m7OeHD0DLrMnYJyDerkiK3UrBHMq1XGuzdR+dyLvJOYkooKlsaYNbjjd8WHvonFkPnbYVvVCkeXj8IAu4aYsf4wrj/0k8ac8niMhW6nMKJHcxxeNgIVLU0waK4bYuLf51c38lSL9u0wZvpUbFm1FgPsOsPfxxcrt2+Frr6e3Hh1DQ2EhYZi3WJXROfyBTLy9WusW+wKx45d4NipK+7fvIUlm9ajTPly+dmVPFOp9R9oMWkorv+9A1t7DkXk80D0+nsxNHN93STgxubd2NZ/FDZ3Gwyvo2fRYe5kWDX4TRqzsqm9zHJ85hJIMjPhe/56AfXq17S2a49JM6bh71Wr0bN9Bzx/5oO/d2yHnr6+3PjqtWph8epVOLxvP3q0s8Olc+ewatPfKGdtLY1ZtelvmJlbYMzgIejZ3g7hYWHYtGsnNDQ0Cqpbv6S9nR2mzZiB1atWoYOdHXx8fLB9507o53JMatWujVVr1mD//v2wa98e586dw9+bNsH64zHR0NBAlapVsWb1anRo3x7DhgyBlZUVNm/dWpDd+iUlmrSA8eAxiPx3KwJHDUDyiwBY/m8VlLV1c90m48N7+PZtK12eO3aWebz0zCVQNSmFkLmTEDCqP9IiX8NywRqI1NTzuTd5o26bFug1ZQyOrN+KWfYDEOobgImbVkFLT/4xqVi3Fm6fPIfFTsMxr48zYl9HYtLm1dAxMpTGGJqXwvRdmxAR9BKLHIdhRpe+OPb3P0hLSS2obv2SHz1PRGIxLOevgaqRCUIXTIX/4B4IW7UA6TFRP71PIiH4zyZrgYGBAAB9fX28f/8ejRs3xpo1a9CqVSusWrUKQ4cOha+vL169epXrPs6fP48XL17AyckJa9asQa9evbB37160a9cOEolEGjd06FBs2LAB3bp1w/r16zFx4kRoaGjAx8cHAJCamorWrVvj1q1bGDVqFNatWwcXFxe8ePEC8fHx+XocvkdDh+64d/AkHhw9g6gXL3Hsf8uRlpSM2p3byo0PuucFn0seiAoKQeyrcNzcfRBv/ANRumZVmTgtIwPYTR2NA1PnIyM9oyC6kid+r1UB4/q0Qst6Vb4rfu/ZOzAz0sWfTu1Q1swI/drVR+v6VbDt+A1pjNtxD/RoWQfdmtdGOfOSmDOkE9TVVHHw0v386kae6u3shKP79uOk+yEEBwRi8fS/kJyUDLvu9nLjfR4/wdqFS3DhxEmkpcr/YuBx8TJuXrmK0OCXCA0Kxt/LViAxMRFVa9bIx57kHVsHezw6eAqPj55F9IuXOPW/lUhPSkH1zm3kxofc88LzSzcQExSC+FcRuLv7ECL9X8A82+vmQ0yczGLdtCGC7z5CfFhEQXXrlzg4D8LBvftw9IA7XgQE4H/TZyApKQmde3SXG993oCNuXL2GbZs2IygwEOuWr4DP06foNcABAFC6TBlUr1UL82bMxNPHjxH8Igjzps+Euroa2nbsUJBd+2mDnJ2xb+9euB84gAB/f8yYNg1JSUno3qOH3HhHJydcu3oVmzduRGBAAFa4uuKptzccBgwAkPXjoEO/fjh18iSCXrzAo4cPMfuvv2BTrRpMTU0Lsms/zaBLb8SdOYr48yeQEhqE8LWLkJmSDN1WX/l/KpEgPS5WumTEx0ofUi1lDs1KNghfuxhJ/j5IDQtB+LrFUFJVg84frQqgR7+utWNvXD1wFB6HTyA8MAjb5yxCanIymnSVf0w2Tp6FS3sPIsTXHxFBL/HPzPkQKSmhcr3PP/7YjxmGx9c8sd91LUJ8/BAVGoZHl68jITauoLr1S370PNFp1QFirRJ4+b9JSHz2GGmREUj0fojkIP+f3ud/UaZEJNiF5PvPlEG+ffsW0dHRSE5Oxo0bNzB37lxoaGjAzs4OS5cuhbe3Nw4dOoQuXbpIt5kxY4ZM0vWl4cOHY8KECTLr6tWrh969e8PDwwONGzcGAJw8eRKDBw+Gq6urNG7y5MnSfz979gxBQUE4cOAA7O0/f7n96y/Zso7CoCwWw7SSNa5t2S1dJ5FIEHj7Acyrf1+yYmVbCwaW5ji7YpN0nUgkQvcFU+GxbR8iA4PzutmC8sgvBPWryY4GNaphjQVuJwAAqWnpeBoYjiFd/5A+rqSkhAbVyuLh85CCbOpPEauooELVKti+fqN0nUQiwd0bnrCpVSNPnkNJSQnN2rWFhoYmnjx4mCf7zE9KYjFMKlnDc8uezyslEgTdfgCz6l8vmf3E0rYm9CzNELLiidzHi+npolxjWxyfuTgvmpzvxCoqqFS1Kras3yBdJ5FIcPvGDVSvVVPuNtVr1sLOL0aEPK9dR9NWLQEAqqqqAICUlBSZfaampqJmnd9waJ+wS0NVVFRQ1cYGG9avl66TSCS44eGBmrVqyd2mVq1a2Lpli8y669euoWWr3JMOLS0tZGZm4t27d3nT8HwkEouhUa4iovZnK4uWSPD+0V1oVrTJdTslDQ1YbzsCkUgJSQHP8Wb7eqSEZFXOiFSyzhNJ9h+GJBJI0tKgWbk64s4ey5e+5BVlFTEsK1fEyc2fj4lEIsHTm3dRtkbuxyQ7NXV1KIuV8eFt1jkgEolQ7fcGOL11FyZsWoXSlawRFRaOk5u348FF4Zea/8x5UsK2CRJ9nsB0+GSUqNcE6W/j8PbKWUS57wQyM3/63CMqbP+ZkbUWLVrA0NAQ5ubm6NWrF4oXL47Dhw+jVKlSOHjwIKpXry6TqH0iEuWeyWcvs0lOTkZ0dDTq1asHADIljjo6Orh9+zbCw8Pl7kdbWxsAcPbsWSQmJv5U//KLpq42lMXKeB8j+0vb+5g4FDeQX+IGAGrFi2HmrVOYc/88+q9diBML1yDw1udRosYDeyMzPQM3dwv/GrVfFR2XAAOd4jLrDHSK431iCpJT0hCXkIiMzEzofxGjr1Mc0fEJBdnUn6KjqwuxWIzYL0qG46KjoW9omMtW36dsBWtc8n6Ia8+9MWX+HEwZOgLBAYG/tM+CoKmrDSWxMj588br5EBOHYt943Uy6dQJ/3j+LnmsX4NzCtQi6JX901aZTK6QmJsL3gmKUQOp+PE9ivjhPYqKiYZDLeWJgaCA/3iArPigwEOGvwjBm8iRolSgBsYoKnIYOgbGpKQyMjPKnI3no0zH5stw+OjoahrkeE8MfildVU8PkqVNx/NgxvH8v/LJq5RI6ECmLkR4XK7M+PT4WYj35r52UVy8RtmIeQuZOQujSWYCSCFauWyDWzzoHUkKDkRoZgZJOw6FUXAsisRgG9v2hYlgSYj2DfO/Tr9LS0YGyWIy30bLH5F1MLLS/8n6SXfcJIxAfGY1nN+8CAEro60KjWDG0d3bAE4+bWDZ4NB5cuIqRqxajwm/yfzwRkp85T1SNTVGiUTOIlJQQPGscIvf+A/2ufWHYy+mn90kkBP+ZkbV169bB2toaYrEYJUuWRIUKFaCklJWLBgYGolu3bj+8z9jYWMyZMwd79+7NceF29mvNlixZggEDBsDc3By1a9dGu3bt4ODgACurrAt/y5Qpg/Hjx2P58uXYvXs3GjdujI4dO6Jfv37SRE6elJQUmV+UASA9MxNipcLPsVM/JGJdd2eoamqgrG0ttJ04HHGvwhF0zwumlaxRv283rO/pUtjNJIF7+SIIDu07oZiWFpq1bYO/li3GsF59FSJh+xkpHxKxpbsLVDU1YGlbCy0mDkPcqwiE3Ms52UT1zm3gffIiMlLTCqGlwpCeno5xQ4dhzpJFuPH4EdLT03H7xg1cv3wFX/mdrcgQi8VYu24dRCIRZk6fXtjNyTdJvt5I8vWW/h3i8xjlN+6DXrsuiNy5EcjIQMi8P1FqzHRU3n8Bkox0vH94Fwl3PYEicJ60d3aAbbuWWDRguLTsXCTK+p7w4NI1nNuxFwAQ4uuPcjVs0LRnVzy/J/wKhh+mpIT0+DiErVkIZGYiOcAXKvqGMOjWD1H/Ks41nfktM7OwW0A/6j+TrNWtW1c6G2Re6dGjBzw9PTFp0iTUqFEDxYsXR2ZmJtq0aYPMbGd7jx490LhxYxw+fBjnzp3D0qVLsXjxYhw6dAht22Zd9+Xq6gpHR0ccPXoU586dw+jRo7Fw4ULcunULZmZmcp9/4cKFmDNnjsy6xkal0aRkmTzrY2LcW2SkZ6C4vuzFtcX1dfH+i1/5spNIJIgNzRpJfP08EIZWpdFkUF8E3fNC6do2KKang4ln90njlcXKaDthGBr0tYdr2//W7JwGulqI/mKikOj49yiuqQZ1NRUoKYmgrKSUYzKRmPj3MNDRKsim/pT4uDikp6dDz0D2F2pdAwPERP3axDHpaWl49TKrFPS591NUrmaDnk4DsHh64ZcIf01i3Ftkpmeg2Bevm2L6uvjwldcNJBLEfXzdvHkeCAMrCzQY1DtHsmZeywYGZSxweNL/8rzt+SXu43mi/8V5om9ogOhczpPoqGj58dGf4328vdGjnR2Ka2lBRUUFcbGx2H3kEJ4+ll8+KiSfjonBF300MDBAVK7HJOq74sViMdasW4dSpUqhb+/eCjGqBgAZ7+IhyUiHWFd2JEOso4f02K+8dmR2koHkQD+omnz+7EwO8EXgqP5Q0iwGkVgFGe/iYbViK5L85c9qLCQJ8fHISE/PMYpWQl8vx2jbl9o49UV7ZwcsGTQSr/wCZPaZnpaO8MAgmfjwF8GwrlU97xqfT37mPEmPjYYkPV0mG0kJDYaKngFEYnHenHtEhaDwh2gKQNmyZeHt7f3twGzi4uJw8eJF/Pnnn5gzZw66dOmCli1bSkfLvmRiYoLhw4fjyJEjCAoKgr6+PubPny8TY2NjgxkzZuDatWu4fv06wsLC8Pfff+fahqlTp+Lt27cySwPD0j/Uj2/JSE9HuI8frGw/Xz8hEolgZVsLoV5Pv3s/IpESxKoqAIBHx89jrf0grOvhLF3evYmCx7Z92D5s8jf2pHhqWFvg1hPZkSDPx/6oYW0BAFBVEaNKWVPcfPz5gzQzMxM3HweiZgWLAm3rz0hPS8Nz76eo07C+dJ1IJEKdBvXx5MGjPH0ukZJIep2SkGWmpyPCxw+WttnKiUQiWNrWxCuv758CWiQSSV832VXv0hYRT58j0u9FXjS3QKSnpcHH2xu2DRpI14lEItg2aACvXK5D9Hr4QCYeAOo1aig3/n1CAuJiY2FhaYnKNja4fF7+rUKEJC0tDd5PnqBBw4bSdSKRCA0aNsTDbKX02T148EAmHgAaNm4sE/8pUbMsUwb9+/YVxERV30uSno6kAF8Ur55t9mCRCMVr1EGi73cm4EpKULcsi/S4nLM5ZyZ+QMa7eKiamkOjXCUk3BT+9VkZaekIfuaLyvU+HxORSITK9eog8FHux6TtwH7oOHQgXF3GIvipbFKakZaOIO9nMCkj+53B2NIC0eGv87YD+eBnzpPEZ4+hamqG7MPuaqUskBYTBUl6et6ce0SFoEgka926dYOXlxcOHz6c47HcJhhRVlaW+/jKlStl/s7IyMgx/b6RkRFMTU2lJYzv3r1Denq6TIyNjQ2UlJRylDlmp6amhhIlSsgs+VECeWPHAfzWzQ41O7aGYRkLdJwxDqoa6rh/5AwAoNv8qWg52lka32RQH5StVxu6pUxgWMYCDR26o4ZdSzw6mfXlKentO0QGBMssGekZSIiJRXSw8O958yEpBT5B4fAJyhoBeRUZC5+gcIRHxQMAXHedxeRVB6TxvVrXReibWCzZcRqBryKx+/QtnL7hDccOn79wOXVohP0X7uHw5QcIfBWJ2RuPIiklFV2byZ9kQGj2bHFDx1490K5rF1iWLYvJ8+ZAXVMDJ92zrkn8y3UJhk36PBmPWEUF5StVQvlKlSBWUYGhcUmUr1QJZqU/J6fDJk1Ajbq/waRUKZStYI1hkyagVj1bnD0q7MkAPrm9wx01u7WHTcdW0C9jgbYzxkJFQx2Pj5wFAHSYPwV/jB4kjW8wqDfK1KsNnVIm0C9jAVuH7qhq1xLeJ2XvraZaTBOVWjXBo0OnCrQ/eWHHlq3o1rsXOnbrijJly2LG/P9BQ1MTRw64AwDmuy7D6MmTpPG7/9mGBr83gYPzIFiWtcKwsWNQxcYGe7fvkMa0bNcWv9WzRSlzc/zRsgU27tqBy+fO4+Z1jwLv38/YumULevXqha7duqFsuXL43/z50NTUhPuBrPeQZcuXY1K2Cam2ubmhye+/Y9DgwbAqWxZjxo6FjY0NdmzPmhRBLBZj3YYNsKlWDePGjIGSsjIMDA1hYGgIFZWcib8QRR/eA902naDTvB3UzC1hOmIKlNTUEXc+a1KmUhNmoaTjcGm8Ye9BKF7TFirGplAvWwFmE+dAxcgYcWc+v1eUaNQMxWxqQcXYFFr1msBy/mq8u3UN7x/eLvD+/Yyz2/bgd/tOaNipHUysLOEwawrUNNRx/XDWMRm8cBbsx30+Ju0G9UfX0UPwz4x5iA4Ph7aBHrQN9KCm+fla+9P/7ELdti3wu30nGFmYoXkfe9T4oxEu7VWMa8l/9DyJPXkQylraMBkyHqqlzFG8TkMY9nBE7An3795nUZAhEQl2Ifn+M2WQXzNp0iS4u7uje/fuGDhwIGrXro3Y2FgcO3YMf//9N6pXz1kSUKJECTRp0gRLlixBWloaSpUqhXPnzknv2/ZJQkICzMzMYG9vj+rVq6N48eK4cOEC7t69K50d8tKlSxg5ciS6d+8Oa2trpKenY+fOnVBWVv6pa+nymvfZyyimq43mwx1R3EAPEc8DsX3YFHz4OL2vjrERJNnKClQ11NFh+lholzREWkoKooNCcGDaAnifvVxYXchT3oFhcPjr82xsC92yvjR3aVoLi0bZIyouARHR8dLHzUvqYeP0AVjodhI7TnjCWF8b84Z3QeOan+8V1a5RNcS++4DVey4gKj4BlcqYYMtMJ4UogwSACydPQUdfD4PHj4a+gSH8fXwwznEQYqOz7jlobGoic44YGhlh56mj0r/7uTijn4szHty6jeG9+wMAdPX1MMt1CfQNjfA+IQGBvs8xdsBA3PHwhCLwOXsFxXS18ftwRxQz0MWb54HYO+xP6etG29gIkszPP/aoaKijzfTR0CppiPSUFMQEheLotIXwOXtFZr9V2jSFCCI8Pa14r6ezJ05CV08Pw8eNg4GhAZ77+GDYAEfp5DTGpUyRKfl8nng9eIA/x4zFqAkTMHrSRIQEB2OMy1AE+H2+R6GhkREmzZgOfQMDREVG4fihQ9i4Zm2B9+1nnTxxAnr6+hg3fjwMDA3h8+wZHLPd49PU1FSmrP7B/fsYO3o0JkyciImTJiE4OBhDXVzg9/GYlDQ2ls4MeerMGZnn6t2zJ27fulVAPft5765dwOsSOjDq75J1Y+IXfgj+a6x0On5Vw5IypWzKxbVgOmYqxLr6yEhIQHKAL15MGIyU0M+fx2I9A5gMHgtlHT2kx0Uj/uJpRO1RnOuU7py5AC09HXQZ5ZJ1U2xfP7gOGYt3MVnHRN+kpMx7bLNeXaGiqoqRqxbJ7OfIus04si7r8+vBxavYPmcx2g8egL7TxuN1cAjWjp0K/we535BdSH70PEmLjkTwjNEwcRmHcut2Iz0mCjFH92bNBvmd+yQSIpHka3PXK4Bt27bByckJd+/e/eo1a7GxsZg1axYOHz6MqKgoGBkZoXnz5nB1dYW+vj6Cg4NRpkwZuLm5wdHREQAQFhaGUaNG4fLly5BIJNJ7tJmammLWrFmYPXs2UlNTMWPGDJw7dw4vXrxAZmYmypUrhyFDhmDYsGEAsm7MPW/ePFy9ehVhYWHQ1NRE9erVMX36dDRv3vyH+jujWtOfPlb/VfP2jCzsJghOPbuphd0EQemgZV7YTRCcfe+Cvh1UxLyXKM79IAvKsSrGhd0EwVkWXNgtEJ6JloXdAuGpekqYo7pXGzQp7Cbk6ndP4ZctFwaFT9aKGiZrOTFZy4nJmiwmazkxWcuJyVpOTNZyYrKWE5O1nISarF2u93thNyFXTW9dLewmCFKRuGaNiIiIiIhI0TBZIyIiIiIiEiAma0RERERERUBhz/iYl7NBpqSkYMqUKTA1NYWGhgZsbW1x/jtu6zJ79myIRKIci7q6utz4rVu3olKlSlBXV0f58uWxZs2aH27rrygSs0ESEREREdF/h6OjI9zd3TF27FiUL18e27ZtQ7t27XD58mU0atTom9tv2LABxYsXl/796bZd2W3cuBFDhw5Ft27dMH78eFy/fh2jR49GYmIipkyZkqf9yQ2TNSIiIiIiUhh37tzB3r17sXTpUkycOBEA4ODggKpVq2Ly5Mnw9Pz2bYDs7e1hYGCQ6+NJSUmYPn062rdvD3f3rPv1DR48GJmZmfjf//4HFxcX6Orq5k2HvoJlkERERERERUCmRCTY5Ue4u7tDWVkZLi4u0nXq6uoYNGgQbt68idDQ0G/uQyKR4N27d8htYvzLly8jJiYGw4cPl1k/YsQIfPjwASdPnvyhNv8sJmtERERERKQwHj58CGtra5QoUUJmfd26dQEAjx49+uY+rKysoK2tDS0tLfTr1w9v3rzJ8RwActzHuXbt2lBSUpI+nt9YBklERERERIUqJSUFKSkpMuvU1NSgpqaWIzYiIgImJiY51n9aFx4enuvz6OrqYuTIkahfvz7U1NRw/fp1rFu3Dnfu3MG9e/ekCWBERASUlZVhZGQks72qqir09fW/+hx5ickaEREREVER8DOzLhaUhQsXYs6cOTLrZs2ahdmzZ+eITUpKkpvEfZrRMSkpKdfnGTNmjMzf3bp1Q926ddG3b1+sX78ef/75p3Qfqqqqcvehrq7+1efISyyDJCIiIiKiQjV16lS8fftWZpk6darcWA0NjRyjcACQnJwsffxH9OnTB8bGxrhw4YLMc6SmpsqNT05O/uHn+FkcWSMiIiIiokKVW8mjPCYmJggLC8uxPiIiAgBgamr6w89vbm6O2NhYmefIyMhAZGSkTClkamoqYmJifuo5fgZH1oiIiIiIioAMiXCXH1GjRg34+fnh3bt3Mutv374tffxHSCQSBAcHw9DQUOY5AODevXsysffu3UNmZuYPP8fPYrJGREREREQKw97eHhkZGdi0aZN0XUpKCtzc3GBrawtzc3MAQEhICHx9fWW2jYqKyrG/DRs2ICoqCm3atJGua9asGfT09LBhw4YcsZqammjfvn1edilXLIMkIiIiIiKFYWtri+7du2Pq1KmIjIxEuXLlsH37dgQHB2Pr1q3SOAcHB1y9elXmXmqlS5dGz549YWNjA3V1dXh4eGDv3r2oUaMGhgwZIo3T0NDA//73P4wYMQLdu3dH69atcf36dezatQvz58+Hnp5egfSVyRoRERERURHwozefFrIdO3Zg5syZ2LlzJ+Li4lCtWjWcOHECTZo0+ep2ffv2haenJw4ePIjk5GSULl0akydPxvTp06GpqSkTO3z4cKioqMDV1RXHjh2Dubk5VqxYkWNGyfzEZI2IiIiIiBSKuro6li5diqVLl+Yac+XKlRzrNm/e/EPPM3jwYAwePPhHm5dneM0aERERERGRAHFkjYiIiIioCBDyTbFJPo6sERERERERCRCTNSIiIiIiIgFiGSQRERERURHwozefpsLHkTUiIiIiIiIBYrJGREREREQkQCyDJCIiIiIqAjLA2SAVDUfWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqAjgbJCKhyNrREREREREAsSRNQXTTju9sJsgOPXsphZ2EwTn1omFhd0EQSnbbnxhN0FwdJVUCrsJglNfQ7+wmyA4E/w/FHYTBOdtemphN0FwJvirFnYTBOdsYTeA/jOYrBERERERFQEZhd0A+mEsgyQiIiIiIhIgJmtEREREREQCxDJIIiIiIqIigGWQiocja0RERERERALEZI2IiIiIiEiAWAZJRERERFQEZEBU2E2gH8SRNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCMiSSwm4C/SCOrBEREREREQkQkzUiIiIiIiIBYhkkEREREVERwJtiKx6OrBEREREREQkQkzUiIiIiIiIBYhkkEREREVERwDJIxcORNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCWAapeDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREVABiSF3QT6QRxZIyIiIiIiEiAma0RERERERALEMkgiIiIioiKAs0EqHo6sERERERERCRCTtVw8efIE9vb2KF26NNTV1VGqVCm0bNkSa9asKeymERERERFREcAySDk8PT3RtGlTWFhYYPDgwTA2NkZoaChu3bqFVatWYdSoUYXdRCIiIiKiH5Ih4WyQiobJmhzz58+HtrY27t69Cx0dHZnHIiMjC6dR+cy4SxeY9u4NVT09fAgMRNDKlXjv4yM31rBtW5SfNk1mXWZKCm61aCE33mrCBBh37oyg1asRceBAnrc9v3Tr3xf9XAZBz9AQAT6+cJ39Pzzzeiw3tkz5cnAZNwYVbarAxMwMK+bOxz637TIxXfv2Rtd+vWFSygwA8MLfH/+sXoebV6/le19+1d2nQdh69Dq8A8MQFZeAdVP6oYVt5a9uc9v7BRa5nYJ/6BuYGGhjmH1TdG1WWyZm9+mb2HrkOqLi36OipTFmOndAtfLm+dmVPNXPwQGDXVxgaGgIHx8fzJk1C4+9vHKNb9uuHcZNmAAzMzMEBwdjyaJFuHL5MgBALBZj/MSJ+KNpU5hbWCAhIQGeHh5YsmiRQr3vdO/fD/1dnKFvaAh/Hx8snT0XT3N53ViVL4+h48agok1VmJqZwXXuPOxx2yYTU7NuHfR3GYxKVavAsGRJTHAZiqvnLxRAT/JOyz7d0X5gP2gb6CPE1x/b5y/FiyfP5MY27d4ZjTq2g3n5sgCAoGe+2LdinUz8kAWz0KSLncx2XtdvYonL6PzrRB7r0LcX7J2doGdogBe+z7F+7gI8f+wtN7Z0ubJwGDsS5apUhrFZKfw9fxEOb9slE6OkpIR+o4ejeUc76BoaICYyCucPHcG/6zYWRHfyBD9zcuJ5QsQySLkCAwNRpUqVHIkaABgZGcn8vWvXLtSuXRsaGhrQ09NDr169EBoaKn3czc0NIpEI//zzj8x2CxYsgEgkwqlTp/KlDz9Cv1kzWI4ciVfbtsHL2RkfAgJQ2dUVKnL6/0n6+/e426mTdLnfvbvcOL3GjaFVpQpSoqLyqfX5o0X7dhgzfSq2rFqLAXad4e/ji5Xbt0JXX09uvLqGBsJCQ7FusSuic/liHfn6NdYtdoVjxy5w7NQV92/ewpJN61GmfLn87EqeSExJRQVLY8wa3PG74kPfxGLI/O2wrWqFo8tHYYBdQ8xYfxjXH/pJY055PMZCt1MY0aM5Di8bgYqWJhg01w0x8e/zqxt5qr2dHabNmIHVq1aho50dfH18sG3nTujr68uNr1W7NlauWYMD+/ejQ/v2OH/uHDZs2gRra2sAWedQlapVsXb1anRs3x7DhwxBGSsrbNq6tSC79Utatm+HcdOnYfOqNehn1wl+Pr5Ys93tK68bdbwKDcXaxUtzfd1oaGjA38cHi/+anY8tzz/12rZE3yljcWjdFszo1h8hz/3x5+Y1KKGnKze+Up3auHnqHOY7DsOs3gMRE/EGf25ZC10jQ5k4r2ueGN64jXRZO3F6QXQnT/zerg1cpk3G7rUbMKJzd7zweY75/2yEtp7880RNQwMRoa/wz7KViImU/1nSw2UQ7Hr3xLq5CzC4TUdsXboc3Z0HopND3/zsSp7hZ05OPE+IsjBZk6N06dK4f/8+vL3l/3rzyfz58+Hg4IDy5ctj+fLlGDt2LC5evIgmTZogPj4eAODk5AQ7OzuMHz9emsQ9efIEc+bMwaBBg9CuXbv87s43mfbsiTfHjyPy1CkkBQfjxbJlyEhOhlH79rlvJJEgLTb28xIXlyNE1cAAZcaOhd/cuZCkp+djD/Jeb2cnHN23HyfdDyE4IBCLp/+F5KRk2HW3lxvv8/gJ1i5cggsnTiItNVVujMfFy7h55SpCg18iNCgYfy9bgcTERFStWSMfe5I3fq9VAeP6tELLelW+K37v2TswM9LFn07tUNbMCP3a1Ufr+lWw7fgNaYzbcQ/0aFkH3ZrXRjnzkpgzpBPU1VRx8NL9/OpGnhro7Ix9e/fi4IEDCPD3x4xp05CUlAT7Hj3kxjs6OeHa1avYvHEjAgMCsMLVFU+9vdF/wAAAwPuEBAzo1w+nTp5E0IsXePTwIWb/9RdsqlWDialpQXbtp/V1Hogj+/bhuPtBBAUEYOH0mUhOSkLHXH7Mefb4CVYvXIxzJ04iNZfXjefVa9jgugJXzp3Pz6bnm7YD+uDygSO4dvg4wgKD8M/shUhJTsbvXeX/8LF+8kxc2OOOl75+iAh6ic0z50FJSYQq9evIxKWlpuJtdIx0SXyXUBDdyRNdBzrgzD53nDt4BCEBL7D6r7lISUpGa/sucuP9nnhjy2JXXD15Otf318q1auDmxcu4c+Ua3oSFw+PMeTy44YkK1Wzysyt5hp85OfE8yR8ZAl5IPiZrckycOBGJiYmoUaMGGjRogClTpuDcuXNIS0uTxrx8+RKzZs3CvHnzsHfvXgwbNgx//fUXLl++jFevXmH9+vXS2M2bN0NZWRmDBg1CamoqBgwYAGNjYyxfvrwwuidDJBajuLU13t7P9gVZIsHbe/egVSX3L+bKGhqofeAAaru7o+KCBdCwtPxixyKUnzED4Xv2ICk4OF/anl/EKiqoULUK7np4StdJJBLcveEJm1o18uQ5lJSU0MKuPTQ0NPHkwcM82aeQPPILQf1qsr/eNqphjUd+IQCA1LR0PA0MR4NsMUpKSmhQrSwePg8p0Lb+DBUVFVS1sYGnh4d0nUQigaeHB2rWqiV3m5q1auFGtngAuH7tWq7xAKClpYXMzEwkvHuXNw3PR2IVFVSsWhW3PT4n5BKJBHdueKJarZqF2LLCo6wiRpkqFeF98450nUQigffNOyhf4/u+HKqpq0NZLMaHt7LnQKW6tbHe4yyWnnKH06wpKK6jnadtzy9iFTHKV6mMB563pOskEgkeet5C5ZrVf3q/zx48Qo36tihlWRoAYFWxAqrUroW7167/cpvzGz9zcuJ5QvQZr1mTo2XLlrh58yYWLlyIs2fP4ubNm1iyZAkMDQ2xZcsWdOzYEYcOHUJmZiZ69OiB6Oho6bbGxsYoX748Ll++jGkfr+syNjbGunXr0Lt3bzRu3BiPHj3C+fPnUaJEicLqopRYWxsisRipsbEy69Pi4qBRurTcbZJCQhCwaBE+BAZCXLw4THv1gs2GDXjk4IDUj+WOpfr2hSQjAxHu7vneh7ymo6sLsViM2Gz/XwEgLjoalmWtfmnfZStYY/PBfVBVU0NSYiKmDB2B4IDAX9qnEEXHJcCgZnGZdQY6xfE+MQXJKWl4+yEJGZmZ0NeRjdHXKY4XYcIvmdX9eI5Ef3GOREdHw6psWbnbGBgaIkZOvKGhodx4VTU1TJk6FcePHcP798IvDf38uomRWR+bB68bRaWlowNlsRhvY2TfX9/FxMK0jOV37aPXxFGIi4yGt+fnhM/LwxN3z19G1KswGFmYoefY4Zi8cRVm9R4ISWZmXnYhz5XQ1YWyWIz4L86TuJgYmJct89P73bdxCzSLF8OWs8eRmZEBJWVlbFu+GpePnfzVJuc7fubkxPOE6DMma7moU6cODh06hNTUVHh5eeHw4cNYsWIF7O3t8ejRI/j7+0MikaB8+fJyt1dRUZH5u1evXti1axdOnjwJFxcXNG/e/JttSElJQUpKisy61MxMqCoV7oDo+6dP8f7pU+nfCU+eoMauXSjZsSNCt25FMWtrmNjbw2vQoEJspTC9fBEEh/adUExLC83atsFfyxZjWK++CvHhSQVHLBZjzbp1gEiEv6YrzrVIlLc6OA9A/bYtMW/AUJmyrlunPpeEhvoHIuR5AFaeP4LKdWvj6a27hdHUQtekXRs062iHReOn4KV/AMpWqoih06cgJjISFw4fK+zmFRp+5sjieQJkgLNBKhoma9+gqqqKOnXqoE6dOrC2toaTkxMOHDiAzMxMiEQinD59GsrKyjm2K15cdsQgJiYG9+7dAwA8e/YMmZmZUPpG0rVw4ULMmTNHZt1Ac3MMymXE62ekv30LSXo6VL+4YFdFVxdpMTG5bCVLkpGBD/7+UDfLmnGqRPXqUNHVxW/ZRtVEYjEsR4yASffueJDLNT1CER8Xh/T0dOgZGMis1zUwQMwvTpSSnpaGVy+zyvyeez9F5Wo26Ok0AIun//VL+xUaA10tRH8xUUh0/HsU11SDupoKlJREUFZSyjGZSEz8exjoaBVkU39K3MdzxOCLc8TAwABRuZwj0VFR0P+O+E+JWqlSpdCvd2+FGFUDsr9uZCdY0TMwQExUdC5b/bclxMcjIz0d2l9MElFCXw9vo7/+/trOqR86DB6AhQNHINQv4KuxUa/C8C42DiUtzASfrL2Li0NGejp0vjhPdPX1EfcL58ngKROwb+MWXD15GgAQ7OcPo1Im6DXEWfBfwvmZkxPPE6LPeM3aD/jtt98AABEREShbtiwkEgnKlCmDFi1a5Fjq1asns+2IESOQkJCAhQsXwsPDAytXrvzm802dOhVv376VWfqb5+205pL0dLz384N27WxTqotE0K5dGwnZRs++SkkJmlZW0uQu6uxZeDk6wmvgQOmSEhWFsD178GzChDxtf35IT0vDc++nqNOwvnSdSCRCnQb18eTBozx9LpGSCKqqqnm6TyGoYW2BW09kf7n1fOyPGtYWAABVFTGqlDXFzcefv4RmZmbi5uNA1KxgUaBt/RlpaWnwfvIEDRo2lK4TiUSo37AhHj54IHebhw8eyMQDQKPGjWXiPyVqlmXKwKFvX+lERYogPS0Nvt7eqNuwgXRd1uumAR4rwDUy+SEjLR1BT31Rpd7nyUFEIhGq1qsD/0dPct3OblB/dBk2CEtcRiPoqfxbqGSnV9IIxXW0ER/1fT+wFab0tHT4P32GmvVtpetEIhFqNLDFs4e53/biW9TU1SH54v5RmRmZEBVyJcr34GdOTjxPiD7jyJocly9fxh9//AGRSCSz/tM0+xUqVEDHjh0xdepUzJkzB7t27ZKJlUgkiI2NlU7h7e7ujn379mH16tUYNWoUvLy8MGPGDNjZ2Umn7ZZHTU0NampqMuvyowQyfN8+lJ82De99ffHexwcm3btDWUMDkR/7W276dKRGRyNkY9Z9SMwcHZHw9CmSX72CWEsLpr17Q83YGG9OnAAApL97h/QvJkSQpKcjLTYWydluayBke7a4YabrYvg89sYzr8foOXAA1DU1cNL9IADgL9cliHr9BhuWugLIukC8TLly0n8bGpdE+UqVkJT4Qfqr5rBJE3Dz6lW8CYuAZvFiaNWxA2rVs8XYAQMLp5M/4ENSCkJef/4i+CoyFj5B4dAurglTQx247jqLNzHvsGRM1qx/vVrXxe7TN7Fkx2l0a1Ybt568wOkb3tg43UG6D6cOjTBljTuqljNDtfJm2H78BpJSUtG1We4TbgjJP1u2YKmrK548fgwvLy84DRwITU1NuH+8l+Cy5cvx+vVrLFuyBACwzc0N/+7bh0GDB+PypUuw69ABVW1sMP3PPwFkJWprN2xA1apV4TxwIJSUlWHw8Xq2t/HxMhMcCdXuLf9gtutSPHv8BE+9HqPPQEdoaGrg+MdR9jmuSxH5+g3WLV0GIOu1YvXxdaPy8XVjXakSEhMT8erlSwCAhqYmzLNVE5QyN4d1pUp4+zYeb8IjCriHP+709n8xZOEsBHn7IPDJU7Rx6A01DQ1cPXwcADB00WzEvYnCvhXrAAB2zg6wHzUE6ybOQFRYBLQ/jiwkJyYiJTEJapoa6Dp8MO6ev4T4qBiUtDBD74mj8CYkFI89bhZaP3/EoX92YOKS+fDzfornj73RxbEf1DU0cO7gEQDApCULEP0mEm6uKwFkTTZhUS7rWlAVFRXolywJq0oVkPwhEeEhWZ8pty5fQa9hgxEZHpFV3la5EroOdMA598OF0cUfxs+cnHie5A+WQSoeJmtyjBo1ComJiejSpQsqVqyI1NRUeHp6Yt++fbC0tISTkxN0dHQwb948TJ06FcHBwejcuTO0tLQQFBSEw4cPw8XFBRMnTkRkZCSGDRuGpk2bYuTIkQCAtWvX4vLly3B0dISHh8c3yyHzW8ylS1DR0YHFoEFQ0dPDh4AAPJs4UTodv1rJkkC2X6LEWlooN3kyVPT0kJ6QgA9+fvAeNkzhZn38mgsnT0FHXw+Dx4+GvkHWzX3HOQ6STp5gbGoicyG/oZERdp46Kv27n4sz+rk448Gt2xjeuz8AQFdfD7Ncl0Df0AjvExIQ6PscYwcMxJ1sM4AJlXdgGBz+2iL9e6FbViLfpWktLBplj6i4BEREx0sfNy+ph43TB2Ch20nsOOEJY31tzBveBY1rfv5xol2jaoh99wGr91xAVHwCKpUxwZaZTgpRBgkAJ0+cgJ6+PsaOHw8DQ0P4PHsGJwcH6SQiJqamyMx2jjy4fx/jRo/G+IkTMWHSJLwMDsYwFxf4+WXde66ksTFatmqVte8zZ2Seq0/Pnrh96xaE7vzJU9DV18fQ8WOhb2AIP59nGOU4MNvrRvaYGBoZ4d9Tx6V/O7gMhoPLYNy/dRtDemfd96iyjQ027t0tjRk/M+savuPuBzFn0pSC6NYvuXX6PLR0dWA/egi0DfTx0scPi11G493HSUf0TYwhyfz8/tqiVzeoqKpi7OolMvs5uHYTDq3bjMyMTFhUKIfGndujmJYW4qKi8OTGbRxY/TfSFSChB4Crp85AW08XDmNGQtfQAC98fDF90FDEf6zOMDQ1Qabk83mib2SEDccOSv/u7uyE7s5O8Lp9F5P7OQEA1s9dgAFjR2Hk7BnQ0ddDTGQUTu09gN1rNxRs534SP3Ny4nlClEUk+XI8mHDmzBkcOHAAnp6eePXqFVJTU2FhYYG2bdtixowZMjfGPnToEFasWIGHD7PKfMzNzdG8eXOMHj0a1tbW6NatG86fP48nT56gdLZfh48dO4ZOnTph8eLFmDx58ne3zbNx47zr6H/E+FdvCrsJgnPrxMLCboKglG03vrCbIDi6SirfDipiKqjLv1F1URadnlTYTRCct+ny7+FVlGmLhV9aWdDO+n/9Xr2FZVa1poXdhFzNeXy5sJsgSBxZk6NNmzZo06bNd8V27doVXbt2zfXxgwcPyl3fsWPHHHXTRERERET5hTefVjy8opKIiIiIiEiAmKwREREREREJEMsgiYiIiIiKgAxegqNwOLJGREREREQkQEzWiIiIiIiIBIhlkERERERERQBviq14OLJGREREREQkQEzWiIiIiIiIBIhlkERERERERQDLIBUPR9aIiIiIiIgEiMkaERERERGRALEMkoiIiIioCMjkTbEVDkfWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqAjgbJCKhyNrREREREREAsRkjYiIiIiISIBYBklEREREVASwDFLxcGSNiIiIiIhIgJisERERERERCRDLIImIiIiIioAM3hRb4XBkjYiIiIiISICYrBEREREREQkQyyCJiIiIiIoAzgapeDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREVAJmeDVDgcWSMiIiIiIhIgjqwpmL4hIYXdBMFx1i5X2E0QnLLtxhd2EwQl8NTywm6C4FTrtbGwmyA4nglBhd0EwTFR4m+6Xyqrrl3YTRAcI2X1wm4C0X8WkzUiIiIioiKAs0EqHv5kRkRERERECiUlJQVTpkyBqakpNDQ0YGtri/Pnz39zu0OHDqFnz56wsrKCpqYmKlSogAkTJiA+Pj5HrKWlJUQiUY5l6NCh+dAj+TiyRkRERERECsXR0RHu7u4YO3Ysypcvj23btqFdu3a4fPkyGjVqlOt2Li4uMDU1Rb9+/WBhYYEnT55g7dq1OHXqFB48eAANDQ2Z+Bo1amDChAky66ytrfOlT/IwWSMiIiIiKgL+K2WQd+7cwd69e7F06VJMnDgRAODg4ICqVati8uTJ8PT0zHVbd3d3/PHHHzLrateujQEDBmD37t1wdnaWeaxUqVLo169fnvfhe7EMkoiIiIiIFIa7uzuUlZXh4uIiXaeuro5Bgwbh5s2bCA0NzXXbLxM1AOjSpQsAwMfHR+42qamp+PDhw681+icxWSMiIiIiokKVkpKCd+/eySwpKSlyYx8+fAhra2uUKFFCZn3dunUBAI8ePfqh5379+jUAwMDAIMdjly5dgqamJooXLw5LS0usWrXqh/b9q5isEREREREVAZkSiWCXhQsXQltbW2ZZuHCh3H5ERETAxMQkx/pP68LDw3/ouCxevBjKysqwt7eXWV+tWjXMnj0bBw8exNatW2FhYYGxY8diypQpP7T/X8Fr1oiIiIiIqFBNnToV48fL3idWTU1NbmxSUpLcx9TV1aWPf69///0XW7duxeTJk1G+fHmZx44dOybzt5OTE9q2bYvly5dj1KhRMDMz++7n+VkcWSMiIiIiokKlpqaGEiVKyCy5JWsaGhpySySTk5Olj3+P69evY9CgQWjdujXmz5//zXiRSIRx48YhPT0dV65c+a7n+FUcWSMiIiIiKgL+K7NBmpiYICwsLMf6iIgIAICpqek39+Hl5YWOHTuiatWqcHd3h1j8fWmRubk5ACA2NvYHWvzzOLJGREREREQKo0aNGvDz88O7d+9k1t++fVv6+NcEBgaiTZs2MDIywqlTp1C8ePHvfu4XL14AAAwNDX+s0T+JyRoRERERESkMe3t7ZGRkYNOmTdJ1KSkpcHNzg62trXT0KyQkBL6+vjLbvn79Gq1atYKSkhLOnj2ba9IVGxuLjIwMmXVpaWlYtGgRVFVV0bRp0zzulXwsgyQiIiIiKgIyJP+NMkhbW1t0794dU6dORWRkJMqVK4ft27cjODgYW7dulcY5ODjg6tWrkGTrd5s2bfDixQtMnjwZHh4e8PDwkD5WsmRJtGzZEkDW5CLz5s2Dvb09ypQpg9jYWPz777/w9vbGggULYGxsXCB9ZbJGREREREQKZceOHZg5cyZ27tyJuLg4VKtWDSdOnECTJk2+up2XlxcAYMmSJTke+/3336XJmo2NDSpXroxdu3YhKioKqqqqqFGjBvbv34/u3bvnfYdywWSNiIiIiIgUirq6OpYuXYqlS5fmGiNvxkbJd44u1q5dO8fU/YWByRoRERERURGQ+R+ZDbIo4QQjREREREREAsRkjYiIiIiISIBYBklEREREVAT8V2aDLEo4skZERERERCRATNaIiIiIiIgEiGWQRERERERFQCbLIBUOR9aIiIiIiIgEiMkaERERERGRALEMkoiIiIioCMjgTbEVDkfWiIiIiIiIBIjJWi7Wr18PkUgEW1vbwm4KEREREREVQSyDzMXu3bthaWmJO3fuICAgAOXKlSvsJhERERER/bRMSWZhN4F+EEfW5AgKCoKnpyeWL18OQ0ND7N69u7CblO/6OzjguocHfJ8/x+EjR1C9evWvxrdr1w4XLl6E7/PnOH32LP5o2lTm8dZt2mDHzp148OgRgl6+RKXKlfOz+fmids9OGHF6N6bcPQ3H3WthWrVCrrEVmjfCwD3rMcHjKCbdPgHn/RtR1a6FTMz0xxflLvUce+R3V/JMPwcHXPXwwLPnz3HwyBFU+8Z50rZdO5y7eBHPnj/HqS/OE7FYjMl//olTZ8/iiY8PPO/cwbLly2FkZJTf3cgTd58GYeiCHWg0aCEqdJ2GC7effXOb294v0GXCWlTtMRMthy/DoUv3c8TsPn0TzYYsgU3Pv9B9yno89g/Nj+bnq+EjHHDx0h7cuXscmzYvgoWF6Vfja9e2wZo1c3Hh4h48fnIOTZs1yBGjoaGOqdNG4PyF3bhz9zgOH9mM7t3b51cX8ty4cWNw+84N+Pg+wc5d22BpWfqb2/Tv3xfXPS7D97k3Dh9xR/Xq1WQe37N3F4KC/WWWefPn5lcX8lTX/n1w8NpFXPZ5jM2H9qNSNZtcY8uUL4f561fj4LWL8HzxHD2cBnx13/2HDobni+cYM3NaXjc7X7Xs0x0rLxyF2yMPzNnrBiub3D83m3bvjJk7N2HTrYvYdOsipv6zLkf8kAWzsNvnrswyedPq/O5GnmrYqwtmnt2PJfcvYOy/G2FRtVKusTYtmmD8vs1Y4HkKi+6cw0T3f/Bbh9Y5YoZucsU8jxNY4X0dphX4QzwJH5M1OXbv3g1dXV20b98e9vb2cpO1mJgY9O/fHyVKlICOjg4GDBgALy8viEQibNu2TSbW19cX9vb20NPTg7q6On777TccO3asgHrzbe3t7DB9xgysWrUKdnZ28PHxwfadO6Gvry83vlbt2li1Zg3279+P9u3b4/y5c9i4aROsra2lMZoaGrh79y4WL1pUUN3IU5Va/4EWk4bi+t87sLXnUEQ+D0SvvxdDU09HbnzS2wTc2Lwb2/qPwuZug+F19Cw6zJ0Mqwa/SWNWNrWXWY7PXAJJZiZ8z18voF79mvZ2dpg2YwZWr1qFjnZ28PXxwbZvnCcr16zBgf370eHjebIh23mirqGBKlWrYu3q1ejYvj2GDxmCMlZW2LR1a0F266clpqSigqUxZg3u+F3xoW9iMWT+dthWtcLR5aMwwK4hZqw/jOsP/aQxpzweY6HbKYzo0RyHl41ARUsTDJrrhpj49/nVjTznNLAH+vTpjP/9bzX69h2NpKRk/L1xIVRVVXLdRkNDHc/9XmDB/LW5xkyaPBQNG/6GqX8uRudOzti16zCmThuJP/6olx/dyFNDhrrA0ckBM6b/hS6d7ZGUlITtO9ygqqaa6zbt7dph+oxpWLVqLezad4bPMx9s3/EP9PX1ZOL2/LsXderUly6LFi7J7+78subt22L0tKn4Z/U6OHXoggAfX6zYvhW6X/TtE3UNDYSHvMKGJa6Ijoz86r4rVbNBp9694O/jmx9Nzzf12rZE3yljcWjdFszo1h8hz/3x5+Y1KKGnKze+Up3auHnqHOY7DsOs3gMRE/EGf25ZC10jQ5k4r2ueGN64jXRZO3F6QXQnT9Ro0wydJ4/E2Q3b4NrdGeHPAzBkoyuK5/I5nPj2Hc5v2oGV/YZhaTdH3DlyCr3+9ycqNKgrjVHT0MCLB09wfMXfBdQLol/HZE2O3bt3o2vXrlBVVUXv3r3h7++Pu3fvSh/PzMxEhw4dsGfPHgwYMADz589HREQEBgzI+Wvf06dPUa9ePfj4+ODPP/+Eq6srihUrhs6dO+Pw4cMF2a1cOTs7Y9/evXA/cAAB/v6YPm0akpKS0L2H/BEfJycnXL16FZs2bkRgQACWu7riqbc3HLL1//Dhw1izejU8PDwKqht5ytbBHo8OnsLjo2cR/eIlTv1vJdKTUlC9cxu58SH3vPD80g3EBIUg/lUE7u4+hEj/FzCvWVUa8yEmTmaxbtoQwXcfIT4soqC69UsGfjxPDn48T2Z8PE/sczlPHJ2ccO3qVWz+eJ6s+Hie9P94nrxPSMCAfv1w6uRJBL14gUcPH2L2X3/Bplo1mJh+fSRGCH6vVQHj+rRCy3pVvit+79k7MDPSxZ9O7VDWzAj92tVH6/pVsO34DWmM23EP9GhZB92a10Y585KYM6QT1NVUcVDOCJxQ9evXBZs3/Ysrl2/C3y8I06ctgaGhPpo1a5jrNh4ed7F2zTZcunQj15ga1Svj2LELuHfvMcLD3+Cg+yn4+b1AVZuK+dGNPDVw4ACsXbMe589fhK/vc0wYPwklSxqhVauWuW7j7DwQ+/bug/uBgwgICMD06X99fF+2l4lLSk5GdFS0dHn/XviJfa9BTji2bz9Ouh9CcEAglsyYhZSkZNh17yY33ufxE6xbtAQXTpxCWmpqrvvV0NTErBVLsWjaDCS8fZtfzc8XbQf0weUDR3Dt8HGEBQbhn9kLkZKcjN+7yv8xaP3kmbiwxx0vff0QEfQSm2fOg5KSCFXq15GJS0tNxdvoGOmS+C6hILqTJ/5w6Imb7sdx58gpvHkRjANzlyE1ORm2XeSPqAfefYQnF68j8sVLxISG49oud0T4vYBVrc+jtveOn8W5v7fB7+a9guqG4GRCItiF5GOy9oX79+/D19cXvXr1AgA0atQIZmZmMqNrR44cwc2bN+Hq6oo1a9ZgxIgROHPmjNwRhjFjxsDCwgIPHjzA5MmTMWLECFy5cgX169fHlClTCqxfuVFRUUFVGxuZpEoikeCGhwdq1aold5uatWrhxhdJ2LVr13KNVzRKYjFMKlkj6NaDzyslEgTdfgCz6t9XzmlpWxN6lmYIuf9E7uPF9HRRrrEtvA6fzosm57tP54nnF+eJp4cHav7AeXL92rVc4wFAS0sLmZmZSHj3Lm8aLiCP/EJQv5psyU2jGtZ45BcCAEhNS8fTwHA0yBajpKSEBtXK4uHzkAJt688qZWYMQ0N93Mr22nn/PhFPnviievXcy5e+xyOvZ/jjj3owMsp6n61TpzpKly6Fm57CTmTNzc1hZGQEjxue0nUJCe/x6JEXatWqKXcbFRUVVK1aRWYbiUSCGzc8c2zTqVNH3H9wG2fOnsSkyROgrq6ePx3JI2IVFVSoWgX3vujb3RueqFpT/vH4XhPm/AXPy1dx78bNX21mgVJWEaNMlYrwvnlHuk4ikcD75h2Ur5F7eWh2aurqUBaL8eGt7Htnpbq1sd7jLJaecofTrCkorqOdp23PL8piMcwqW8Pv1ufXt0Qigf+teyhd/ft+ICtvWxuGluYIvO+VX80kKhCcYOQLu3fvRsmSJdH047U1IpEIPXv2xK5du+Dq6gplZWWcOXMGKioqGDx4sHQ7JSUljBgxApcuXZKui42NxaVLlzB37lwkJCQgIeHzL1qtW7fGrFmzEBYWhlKlSsltS0pKClJSUmTWSSQSiESiPOuvrq4uxGIxoqOjZdZHR0ejbNmycrcxNDSUG29oaCg3XtFo6mpDSayMDzFxMus/xMRBv4x5rtupFS+G0Rf2QVlFBZLMTJyZvwpBt+R/kbTp1AqpiYnwvaAYJZBfO0+scjlPDAwNEfMD54mqmhqmTJ2K48eOKcTowI+KjkuAQc3iMusMdIrjfWIKklPS8PZDEjIyM6GvIxujr1McL8KiCrKpP83gYxlbTEy8zPqYmDjoG8gv5/peCxesw6xZY3Hh4h6kpaVDIsnEnNkrcT+XH0SEwtDQAAAQHfXFayEqWvrYl3J9vUXFyLwvHzt6HGFhYXjzJhIVK1bElD8nwcrKCsOGjsjjXuQdnY99i42OkVkfGx2D0mWtfnq/LezaoULVyhjUyf7bwQKjpaMDZbEYb2NiZda/i4mFaRnL79pHr4mjEBcZDW/Pzwmfl4cn7p6/jKhXYTCyMEPPscMxeeMqzOo9EJJMYU8yUUxXG8piMRK+OCYJMXEwKpP79Z7qxYth9qVDEKuoIjMzA+7zlhfpUTT6b2Cylk1GRgb27t2Lpk2bIigoSLre1tYWrq6uuHjxIlq1aoWXL1/CxMQEmpqaMtt/OWNkQEAAJBIJZs6ciZkzZ8p9zsjIyFyTtYULF2LOnDky67RLlICujs5P9I7yW8qHRGzp7gJVTQ1Y2tZCi4nDEPcqAiH3cv6qV71zG3ifvIiM1LRCaKnwiMVirFm3DhCJ8Nd0xbmmoqhr174Z/vprjPTvESNm5Ntz9enTCdWqVcSokX8hPOINate2wbTpIxEZFYPbtx7m2/P+qE6dOmL+gs+TfAwa6JJvz7Vnzz7pv58/90NkZCT+3bMTFhYWCAlRjNHYvGBkYoyxf03HGIeBSP1KmeR/VQfnAajftiXmDRgqUyZ669R56b9D/QMR8jwAK88fQeW6tfH01l15u1J4KR8SsazbQKhqasC6Xm10njQSMa/CEXj3UWE3TTAyJCw3VDRM1rK5dOkSIiIisHfvXuzduzfH47t370arVq2+e3+ZH3+5mjhxIlq3bi035mu3BJg6dSrGjx8vs65a1aq5RP+cuLg4pKenw8BA9hdeAwMDREXJ/zU/Kirqh+IVTWLcW2SmZ6CYvuxIQDF9XXyIjs1lKwASCeJCwwEAb54HwsDKAg0G9c6RrJnXsoFBGQscnvS/PG97fvmZ8yQ6Kgr63xH/KVErVaoU+vXu/Z8cVQMAA10tRH8xUUh0/HsU11SDupoKlJREUFZSyjGZSEz8exjoaBVkU7/blcs38eTx54kcPk0ioq+vg+hsrxV9fV089w386edRU1PF6DFOGDtmDq5fzxo58PcLQsUKZeE4wF5QydqFCxfx6NEj6d+qqlmTiBgYyp77BoYGePbMR+4+cn29Gep/9X320aOs9xpLS+Ema/Ef+6ZnIHvZgJ6BPmK/GH38XhWrVoGegQHcjh2SrhOLxahRtw669e+LPyraSD+PhSghPh4Z6enQ/mKClRL6enj7xQjkl9o59UOHwQOwcOAIhPoFfDU26lUY3sXGoaSFmeCTtQ9xb5GRng6tL46Jlr4u3n3lmEgkEkSHhgEAwp8HoKSVJVo492eyRgqN16xls3v3bhgZGeHAgQM5lt69e+Pw4cNISkpC6dKlERERgcTERJntAwJk3yitrLJKOlRUVNCiRQu5i5ZW7l/C1NTUUKJECZklL0sgASAtLQ3eT56gYcPPF/+LRCI0aNgQDx48kLvNwwcPZOIBoFHjxrnGK5rM9HRE+PjB0jbb9RMiESxta+KV17enZ/+8iQhiOTPgVe/SFhFPnyPS70VeNLdAfDpPGnxxntRv2BAPv3KeNJBznmSP/5SoWZYpA4e+fREfH58v7ReCGtYWuPVENmHxfOyPGtYWAABVFTGqlDXFzcef30cyMzNx83EgalawKNC2fq/ExCSEhoZLl8DAl4iKioFtttdOsWKasLGpCC8v+YnJ9xCLxVBRUYHki1+EMzIzIVIS1sfYhw8f8PJliHTx9w9AZGQkGjaoL40pXrw4atSojgcP5CeZaWlp8PZ+KrONSCRCgwYNct0GACpXzrouMDJSuD+cpael4bn3U9T+om+/NagP74c/l3Tf87yFfm3s4GjXWbr4PH6Cc0ePw9Gus6ATNQDISEtH0FNfVKn3eXIQkUiEqvXqwP9R7mW+doP6o8uwQVjiMhpBT7/9+tIraYTiOtqIj/p6AigEGenpePXMD9a2taXrRCIRytvWxkuvp9+9H5GS/M9hIkXCkbWPkpKScOjQIXTv3h329jlr3k1NTbFnzx4cO3YMrVu3xubNm7F582aMGZNVApSZmYl169bJbGNkZIQ//vgDGzduxKhRo2BiYiLzeFRUlCCu89qyZQtcXV3x+PFjeHl5YeDAgdDU1IT7gQMAANfly/H69WssXZI1JbSbmxv27tsH58GDcenSJXTo0AE2NjaY9uef0n1qa2vDtFQplCxZEsDnxDUqKgrRCjACd3uHOzrOm4KIZ34If+KLuv26QUVDHY+PnAUAdJg/BQlvonFlddY08w0G9UbEUz/EhYZDWVUF5RrboqpdS5yZv0pmv6rFNFGpVRNcXKZ40wb/s2ULlrq64snH88Tpi/Nk2cfzZNnH82Sbmxv+3bcPgwYPxuVLl2DXoQOq2thg+sfzRCwWY+2GDahatSqcBw6EkrIyDD6+Ht7GxyMtTdgloh+SUhDy+vOXnleRsfAJCod2cU2YGurAdddZvIl5hyVjugMAerWui92nb2LJjtPo1qw2bj15gdM3vLFxuoN0H04dGmHKGndULWeGauXNsP34DSSlpKJrM8WZvGfXrsNwGdIHISFhCAt7jREjHREVFSMz0+PmzYtx8dIN7N2TdQsTDQ11mXuxlSpljAoVrPD2bQJev47Chw+JuHvXC+PHD0ZycgoiIiJR+zcbdOjQAsuWbizwPv6of/7ZjpGjhiM4OBihoa8wfsJYvHkTiXPnPpep7dq9HefOnseOHbsAAFu2/ANX1yV4/MQbXo8eY+AgR2hqasD9wEEAgIWFBTp16oDLl68gLj4elSpWwIyZ03H79h34+j4vlH5+r71b3TBj2WL4PvHGM6/H6Ok0AOqaGjjhnjUyNnPZYkS9eYO/ly4HkDUpSZlyZT/+WxWGJUuifKWKSExMRNjLECR++IAXfv4yz5GUmIi38fE51gvV6e3/YsjCWQjy9kHgk6do49AbahoauHr4OABg6KLZiHsThX0rsr5n2Dk7wH7UEKybOANRYRHQ/jhSmZyYiJTEJKhpaqDr8MG4e/4S4qNiUNLCDL0njsKbkFA89lCMCViu7NiHPvOnIfSpL156++D3ft2hqqGB20dOAQD6LJiOt5HROLky6z2guXM/hD71RUxoGJRVVVG5cT38ZtcaB+a5SvepWUILOiYloW2UNWptVCbrh7CE6Ngc18f9V3HWRcXDZO2jY8eOISEhAR07yp8mt169etIbZB8+fBh169bFhAkTEBAQgIoVK+LYsWOIjc16oWcf/Vq3bh0aNWoEGxsbDB48GFZWVnjz5g1u3ryJV69ewcur8GcpOnniBPT19TF+/HgYGBrC59kzODo4SC9uNzU1lfll8sH9+xg7ejQmTJyIiZMmITg4GENcXODn9/l+US1atsQy189vkGs/JrIrV6zAqpUrC6Zjv8Dn7BUU09XG78MdUcxAF2+eB2LvsD/xITZr0hFtYyNIMj+/4aloqKPN9NHQKmmI9JQUxASF4ui0hfA5e0Vmv1XaNIUIIjw9fbkgu5MnTp44AT19fYzNdp44OThIJxExkXOejBs9GuMnTsSESZPwMjgYw7KdJyWNjdHyY1nxyTNnZJ6rT8+euH3rVgH17Od4B4bB4a8t0r8XumV9gejStBYWjbJHVFwCIqLjpY+bl9TDxukDsNDtJHac8ISxvjbmDe+CxjU/35+wXaNqiH33Aav3XEBUfAIqlTHBlplOgi2DlMftn/3Q0FDHX7PGQkurOB4+9MawodOQmu36TDNzE+hmm5WuShVr/OO2TPr35MlDAQBHj57DzBlZ6ydPWoAxYwdi4aI/oa2thYiISKxZsw37958ooJ79vI1/b4KmhgYWLJyHEiVK4O7de3AcMBCpKZ+vLypd2gK62e6pdfLEKejr6WH8uDFZrzcfHzgOGITojyVgaWmpaNioAZwGDoCmpibCwyNw5vRZrF27vsD796MunjwNHT09DB43GnoGhvD38cF4R2fEfexbSVMTmfcSAyMjbD95VPp3X5dB6OsyCA9u3cbIPg459q+Ibp0+Dy1dHdiPHgJtA3289PHDYpfRePcxgdA3MZb5zGnRqxtUVFUxdrXsffUOrt2EQ+s2IzMjExYVyqFx5/YopqWFuKgoPLlxGwdW/410gf8Q9smjM5dQXFcHbUYOQgkDPYT5BmDj0Il4/3HyL12TkjLHRFVDHfYzxkO7pBHSUlIQGfQSu6b+D4/OfJ74rUrTRugz//PN0gcsy5oX4Mz6f3B2vVsB9Yzox4gkX9aVFFEdO3bE+fPnERMTk2PikE+cnJywe/duREREQCKRYMyYMTh+/DiUlJTQpUsXDB48GA0bNsTevXvRs2dP6XYvXrzAnDlzcO7cOcTExMDIyAg1a9aEo6MjunWTf1+Z3JQpnfssSEWVs3bu1/0VVf+8/fq1C0VN4Knlhd0EwanWS/gjUgUtISHo20FFjInAykyFoIxaicJuguAYKQv7lhGFYYW3MGd7blbu+25BVBguBXz/pSZFCUfWPjp27Ng3Y9zc3ODm9vmXl+z3XgOy7r8GAGZmZjLrrayssH379l9vJBERERHRT8rkGI3C4U9mPykpKUnm74yMDKxZswYlSpT4z9wcmoiIiIiICg9H1n7SqFGjkJSUhPr16yMlJQWHDh2Cp6cnFixYAA0NjcJuHhERERERKTgmaz+pWbNmcHV1xYkTJ5CcnIxy5cphzZo1GDlyZGE3jYiIiIgoB2HfyILkYbL2k/r06YM+ffoUdjOIiIiIiOg/itesERERERERCRBH1oiIiIiIigDOBql4OLJGREREREQkQEzWiIiIiIiIBIhlkERERERERUAmWAapaDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAZ4NUPBxZIyIiIiIiEiAma0RERERERALEMkgiIiIioiKAs0EqHo6sERERERERCRCTNSIiIiIiIgFiGSQRERERURHAMkjFw5E1IiIiIiIiAWKyRkREREREJEAsgyQiIiIiKgIyWQWpcDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAZ4NUPBxZIyIiIiIiEiAma0RERERERALEMkgiIiIioiKAZZCKhyNrREREREREAsSRNQWjXNgNEKB974IKuwmCo6ukUthNEJRqvTYWdhME5/HeIYXdBMHZ1Ofvwm6C4Pz7/lVhN0FwHiVGF3YTBEcJosJuAtF/FpM1IiIiIqIiQMIqSIXDMkgiIiIiIiIBYrJGREREREQkQCyDJCIiIiIqAjgbpOLhyBoREREREZEAMVkjIiIiIiISIJZBEhEREREVASyCVDwcWSMiIiIiIhIgJmtEREREREQCxDJIIiIiIqIigLNBKh6OrBEREREREQkQkzUiIiIiIiIBYhkkEREREVERwCJIxcORNSIiIiIiIgFiskZERERERCRALIMkIiIiIioCWAapeDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAb4qteDiyRkREREREJEBM1oiIiIiIiASIZZBEREREREUAiyAVD0fWiIiIiIiIBIjJGhERERERkQCxDJKIiIiIqAhgGaTiKbIja5aWlnB0dJT+vW3bNohEIty7d6/wGkVERERERPTRfzJZe/LkCezt7VG6dGmoq6ujVKlSaNmyJdasWZMn+8/MzMSOHTtga2sLPT09aGlpwdraGg4ODrh161aePAcRERERERVt/2fvrsOiyt4Ajn+HxqBRMbELe21/a6+rYHehINjduXbX2i3mroq51trdrSgtFqiEYBFSvz/Q0ZHBNYhB3s/zzPPomffeOefMMHfee84996ebBnn+/Hlq165N3rx5cXZ2JkeOHDx+/JiLFy+yYMEC+vXrB4CnpydaWt+Xq/bv358lS5bQtGlTOnbsiI6ODp6enhw8eJACBQpQpUqV5GySEEIIIYQQP0ymQaY/P93I2tSpUzE2NubKlSuMHTsWJycnJk6cyKFDhzh//rwyTl9fH11d3W/e//Pnz1m6dCnOzs7s3r2b/v3707t3bxYsWICnpye9e/dOzuakmk729pw8e5a7np5s372b0mXKfDG+YaNGHDp2jLuenuw/dIiatWsnGTtp6lR8Hj6kq6Njclc7RbXt3JmDZ09zxdOdzbt3YlOm9Bfj6zdqyJ5jR7ji6c6Ofw9So1YtlefNLCyYPGcWRy9d4JL7XZatdyGvtXXKNSCZte7ciX/OnOScx13W7dpOyS/0R4HChZm1dDH/nDnJVT8f2jt0TRRTrlJF5q1eycGL57jq50PN+vVSrO4prXcfe44d/5vLV/ayctUM8ubN+cX4ChVKsWjRJI4e+5vbdw5Tu061RDGGhgaMGt2HI0c3c/nKXnbtXkXr1rYp1YRkceWuHz2nbaBGt+kUbTGao5fu/ec2l9zu03zIYmzajKN+7znsPH4tUczmgxeo02MWpdr+QesRS7nt/Tglqp9iSrRtQvsDG3G8vJ9mmxZiaVP0q7Yr+Hstut86wm/zJ6iUW9etQaPlM7A/tYPut45gXrRgCtQ6ZTXr1IEtp45y+N5Nlu7YQrHSpZKMtS5ciIlLFrDl1FFO+rrTqqu92jiL7NkYM3cme65e4NDdG6w9sIeipUqmVBOSXXv7zhw+e4brnh78vXsXpf7jOPxbo0bsPXaU654e7Dp0kP/VrqXy/N2HfmofDj26p1wjklk7+878e/Y0V7/yOPxbo4b8c+wIVz3d2ammTwwzZWL0pAkcvXiOK5732H30EK07dkix+ouUFRUVxYgRI8iZMyeGhoZUrlyZI0eOfNW2/v7+tGnTBhMTE4yMjGjatCn3799XG7tmzRqKFy+OgYEBhQsXTraZel/rp0vWfH19KVmyJCYmJomey5Ytm/Lfn1+z9kF4eDg9evTA3NwcIyMj7O3tCQ0NVT7v5+dHfHw81atXT7StQqFQeY0P18GdPn36i/tMa43s7Bg9diyLFiygqZ0dHu7uuGzciJm5udr4chUqMH/RIly3baOJrS1HDh9m2cqVFC5SJFFs/QYNKFuuHM+ePUvpZiSrBna2DBs7muULFtLWtjGe99xZvmF9kn1Spnx5Zi5cwK6t22jTyI7jhw+zYOVyCn3SJwtWLid3nrwMcO5BW1s7Avz9WblpI4aGhqnVrO9W37YRg8aMZtWCRXSya4qXuweL1rtgam6mNt7A0IAnjx+zeOZsggMD1cYYGhri7e7OzD8mpGDNU56DYxs6dGjG5MkL6dixPxERkSxfMR09vaRPBhkaGuDpdZ9pUxcnGTNseE+qV/+FUSNn0qypE5s27WLU6L7UqqW5I/fhUe8oap2D8c5Nvir+8fMX9Ji6nso2Bdgzrx9d7KozdukuztzwUsYcOHub6S4H6NOmLrvm9KGYtRXdJrkQEvYmpZqRrAo0qEnVoT24tmITO9v1IsTzPo2WTcfAzOSL22XJmZ3Kg7vz9NrtRM/pGhrw7IYbl/5cnUK1Tlm1bRvSe/QI1i1cgnOTlvh6eDJ73SpMkvg+0Tcw4Onjx6ycPY+QwCC1MVmMjFi87S9iYmIY4didLg3sWDptJq9fvkrJpiSb3+1sGT52DEsXLKC1nR2e7u6s2Jj0MadshfLMXrSAndu20crWluOHj7Bo5QqVY07NXyqqPMYMHUZcXBxHDhxMrWb9kE+Pw23sGuP1H31SpkJ5Zr7vk9a26o/Dw8eNoXrNXxk5cDBN69Zn0xoXRk+aQK16dVOpVSI5de3alXnz5tGxY0cWLFiAtrY2jRo14uzZs1/c7s2bN9SuXZtTp04xevRoJk6cyI0bN6hZsyYhISEqsStWrMDJyYmSJUuyaNEiqlatSv/+/Zk5c2ZKNk3FT5es5cuXj2vXruHm5vZd2/ft2xd3d3cmTJiAvb09mzdvplmzZsTHxyv3D+Dq6kp4eHiy7DOtOTo5sXXLFna4uuLj7c240aOJiIigdZs2auO7Ojhw+tQpVq9Yga+PD3/Oncs9Nzc6d+miEpc9e3bGT5zIkAEDiImOTo2mJBt7p27s2LKVPa7bue/jw+QxY4mIiKBZm9Zq4zs6duXcqdOsW7kKP19flsybj/vdu7TrknAGOF/+/JQpX54pY8dx9/ZtHtz3Y8qYcRgY6NOwSePUbNp36ejkyO6tW9m7fQd+Pj5MHzOOyIgImrRW3x/3bt9h4fSZHN63n3fv3qmNOX/qNMvmzufk4a87C6apOnVqzqqVf3HyxAW8vfwYM3oWlpbm1KmT+ITOB2fPXmHxonUcP34uyZiyZUrwzz9HuXr1NgEBz9mx/QBeXvexKVUsJZqRLGqWL8qgDr9Rv8rXjWZsOXSZ3NlMGenQiIK5s9GpUVUaVC3Jur0f+8Vl71na1K9Iy7oVKJQnOxN7NMVAX48dakbgNFHpzi3x2HkQrz2HCLv/iDNTFhATGUXRZg2S3EahpUWdaaO4tmwDr54kPtHlve8o11dswv/S9ZSseopp7diF/Vtd+XfHLh76+DJv7AQiIyJp1KqF2njPO24snzGH4/sOEJ3E90mHHk4EPn3KzBFj8Lh9h2dP/Ll69jwBj9LHKGwXJye2b9nKbtft+Hr7MHH0GCIjImiRxDGnk4MDZ0+dwmXFSu77+LJo7jzuud2lQ5ePo47BQcEqjzr163P5wgWePE4fffLhOLzbdTv3vX2YNDrhONw8yT55fxxesQo/H18Wz53PPbe7tP+kT8pUKM8/O3Zy9eIlAp74s/3vLXi5u1Oq7JdHMX8m8Rr8+BaXL19my5YtTJ8+ndmzZ9O9e3eOHz9Ovnz5GD58+Be3Xbp0Kd7e3uzbt4/hw4czaNAgDh8+zNOnT5k7d64yLiIigjFjxmBra8v27dtxdnZmw4YNdOzYkcmTJ6fawMtPl6wNHTqU8PBwypYtS7Vq1RgxYgSHDx8m+iuTBT09PY4dO0a/fv1YvHgxM2bM4PTp0+zduxcAKysr7O3t2b9/P7lz56ZFixbMnTsXDw+P795nWtLV1cWmVCnOfXIWIj4+nvNnz1KufHm125QrX57zn521OHP6tEq8QqFgzp9/smrFCry9vVOm8ilER1eX4jY2XDz38QdjfHw8l86do0z5cmq3KVOuPJfOqf7wPn/6jDJeT08PSBiy/3Sf7969o1zFX5K7CclKR1eXYjY2XDqr2h+Xz52ndBL9kVHkyp0DS0tzLl78+KP5zZtw7tzxoEyZ4j+075u37lGrVhWyZUs4i1yxYhny5cvFhfPpI0n5Gje9HlG1dCGVshpli3DT6xEA76JjuOsbQLVPYrS0tKhWuiA3PB+lal2/h5aODhbFi/Dkk88H8fH4X7xO9tIlktyufI9ORISG4rnr31SoZerS0dWlqE1Jrp2/oCyLj4/n2vkLlChX9rv3W61ubTzv3GXCovnsunyWVf/swLat+h/1mkZXV5cSpWy48Nlx+OLZc5RJ4jhctnw5Lp5VPeacO32asknEm1tY8Gud2uzcui35Kp6CdN73ycXPjjsJfZLEcbh8+UR98ulxGODWtevUqlePbNmzA1CxahXy5c/P+dNnUqAVIiVt374dbW1tunf/OK3XwMCAbt26ceHCBR5/4aTE9u3bqVixIhUrVlSWFStWjLp167Jt28e/kRMnThASEpLoEqc+ffrw9u1b9u/fn4wtStpPl6zVr1+fCxcu0KRJE27dusWsWbNo0KABuXLl4p9//vnP7bt3765yLVuvXr3Q0dHhwIEDyjIXFxcWL15M/vz52bVrF0OHDqV48eLUrVsXf3//79qnOlFRUbx69Urlkdyjcaampujo6BASHKxSHhwcjIWlpdptLCwtCVYTb/lJfI9evYiNiWG9i0uy1jc1JNUnIUFf6hML9fEWCfF+vr4EPPFnwPBhZDUyQkdXF4eePciRMycWn0yd1UQm7/vjRbDq1IAXwcGYW1qkUa00g8X7aVshIWEq5SEhoZhbmP7QvqdPW8J930ccPfY3164fYNnyqUybuphr1+780H41SXDoayxMsqiUWZhk4U14FJFR0YS+Dic2Lg7zz2LMTbIQHPY6Nav6XQxMjdHS0SYiRPXsa0RIKJmS+HxkL1eSos1/5/TE+alRxVRnbGqCtprvk9DgEMx+4PskZ948NO3YjicPHjKsqzN7/tpC/z9G06BF0x+tcoozSeqY8x/HYXXx5knEN23ZkvC3bznyb/o4AZDkcfgLbVR7HP6sD6eNn4ivtzfHLl/guo8ny9e7MHXceK5dvpL8jRDfTN3v3k9Pcn/qxo0bFClSBCMjI5XySpUqAXDz5k2128XFxXH79m1++SXxifJKlSrh6+vL69evla8BJIqtUKECWlpayudT2k+XrAFUrFiRnTt3EhoayuXLlxk1ahSvX7+mVatW3Lv35QveCxcurPL/LFmyYGVlxYMHD5RlWlpa9OnTh2vXrhEcHMyePXto2LAhx48fp127dt+1T3WmT5+OsbGxyiP05csvN14DlLSxoYuDA8OHDEnrqmiMmJgYBvXsRb4C+Tl3+yaX3e9SqWoVzpw4SXxcXFpXT3ylRrZ1uHhpj/Kho6udYq/VoUNTSpcuRr++f9CuXR/mzFnJ6DF9qVwlY49m/sx0MxlSe+oIzkycT1RY+rjWSlMoFAq87t5j9dw/8bnnzr4truzb6kqT9omPyRlR8zat2bd7D++i1E8jzSg6dLWndLly9HV0op1dU+ZMncaYyROpomYdApH61P3unT59utrYp0+fYmVllaj8Q1lAQIDa7V68eEFUVNRXbfv06VO0tbVV1qOAhNlS5ubmSb5Gcvvplu7/lJ6ennKYs0iRIjg4OODq6sr48eOT7TXMzc1p0qQJTZo0oVatWpw6dYqHDx8qr237EaNGjWLw4MEqZeVsbH54v58KDQ0lJiYGcwvVM5oWFhYEB6m/kDs4KAgLNfFB7+MrVqqEuYUFpy98nOaio6PDqLFj6eroSK0aNZK1DcktqT4xt/xSnwSrjw/+GO/u5kabRnZkyZoVXV1dQl+8YPPundy9rdkjJWHv+8PMQvWibjMLC0KCgpPY6ud08sQF7tz+OOX5wyIi5uYmBAe/UJabm5vi6eH73a+jr69H/wEODBwwkTNnLgPg7eVHsaIF6dqlFZcups7ZvJRmYZqV4M8WCgkOe0OWTPoY6OuipaVAW0sr0WIiIWFvsDDJmppV/S6RoS+Ji4nF0Fx1FM3Q3JTw4MTXOhjlyYlRLisaLJysLFNoKQBwuvYvW5s68PrJ05StdAp7GRpGrJrvE1MLc178wPdJSFAwD71V/+Ye+tzn1wa/ffc+U0tYUsec/zgOq4sPURNfvmJFChQqyNC+/ZKv0iksyeNwEm2EJI7Dn/Shvr4+A4YNZUCPXpw5fgIALw8PipYoQZfuTiqXPoi0oe53r76+vtrYiIgItc8ZGBgon09qu6T2+/m2ERERystY1MUm9RrJ7accWVPnwxDm06dfPtB9fn3VmzdvePr0KdZfscR6Uq/xvfvU19fHyMhI5aFQKP6zHt8iOjoatzt3qPbJWSWFQkG16tW5cV39xes3rl9XiQeo/r//KeN379yJbYMGNG7YUPl49uwZq1eswMFe/ZLLmiQmOhp3NzcqV/u4nLpCoaBytWrcuq7+R/KtG9dV4gGq1KiuNv7N69eEvnhBXmtrSpQqxYmvXGY2rcRER+Ph5kal6qr9UbFaNW4n0R8/q/DwCB4/DlA+fH0fEhQUQuXKH0e7MmfORKlSxbh1y/27X0dHRwddXd1E055j4+JQfOf9ITVR2SJ5uXhH9Qf2+dvelC2SFwA9XR1KFszJhds+yufj4uK4cNuXckXzpmpdv0dcTAzB7l7k+uTzgUJBzsrleH478SyPML9HuLZ0ZkfbnsrHw5MXCLhyix1te/L2mfofqelJTHQ0nm53KV/t46qmCoWCClWrcO/Gze/er9u16+QpYK1Slie/Nc9T6cz3j4iOjubeHTeV0R2FQkHl6tW4lcRx+Ob1G4lGg6r+rwY31cS3bNsGt9u38XT//u+k1Bbzvk8qf3bcqVL9C8fh69dV4gGq/u/jcVhHVxddPb1Es1niYmO/+767Inmp+92bVLJmaGiodopkZGSk8vmktgO+altDQ8MkF0mLjIxMtdW8f7pP54kTJ9Re1/Xh+rCiRb98f5uVK1eqLEaybNkyYmJiaNiwIQDPnj1TO5Xy3bt3HDt2DC0tLQoVUr1g/r/2mdbWrl5N23btaN6yJQULFWLS1KkYZsrEdldXAGbPm8fQT1bWWefiwv9q1qSbszMFChak/8CB2JQqxcb16wEICwvD28tL5RETHU1QUBB+SdzDQtNsWL2Glu3b0aRlC/IXLMjYqZMxzJSJ3a7bAZg6dw79hw9Txm9eu45qNX/F3qkb1gUL0GvgAEqWKsWW9RuUMfUbNeSXKpXJlScPterXY8WmDZw4fIQLZ768xKwm2Lx6Lc3atcW2RXOsCxZk1JRJGGYyZO/2hP6YOHc2fYYNVcbr6OpSpHhxihQvjq6uLpY5slOkeHFyfzLibJgpkzIGIFeePBQpXpzsORNPTdBkmzbtonuPDtSqVYXCha2ZOm04QUEhKis9rlo1k3btPy5nb2hoQNGiBShatAAAuXLloGjRAuTIkXBtxdu34Vy5covBg5355ZfS5MqVgyZN69O4cT2OH9Pcs79vI6Jw9wvA3S/hB/KTwBe4+wUQEBQGwNxNhxi+wFUZ365BJR4/f8GsDQfxfRLI5oMXOXjOja6NP/4IdWhcg21Hr7LrxHV8nwQyYcUeIqLe0aKO+oUUNM3tjTso1qIRhRvXxyR/Xv43tj+6hgZ47T4EQK0pw6nYP+EelLHvogn1eaDyiHr9lui34YT6PCAuJgYAfaOsmBctiGmBhL8nY+vcmBctmGgET1O5rl2PXdvWNGjRlLwFCzBo8ngMMhlycPsuAEbNmYHz0EHKeB1dXQoVL0ah4sXQ0dXFIkc2ChUvRq58eVX2WaJsGTr26k6ufHmp29gWu3at2b3xr1Rv3/dYv3o1rdq1o2nLFhQoVJA/pk7BMFMmdr0/5kybN5eBnxxzNrm4UL3mr3RxdiJ/wQL0HjgAm1Kl+OuTYw5A5ixZ+M22ETu2bE3V9iSHDavX0LLd++NwoYKM+/w4PG8OA1T6ZB3Va/6KvXM38n9yHP77fZ+8ffOGKxcuMnj0yPfH4tw0bdWSxi1bcOzQ4TRpY9pQaPDj61lZWakdgPlQljOn+vudmpmZoa+v/1XbWllZERsbS+BntyB69+4dISEhSb5GcvvppkH269eP8PBwmjdvTrFixXj37h3nz59n69atWFtb4+Dg8MXt3717R926dWnTpg2enp4sXbqUGjVq0KRJwg+tJ0+eUKlSJerUqUPdunXJkSMHgYGB/P3339y6dYuBAwcmmiL4X/tMawf27cPc3JyBgwdjaWnJvXv3cLS3V16omzNnTuI+ORN149o1Bvfvz6ChQxkybBgPHjygV/fueHt5JfUS6c6hffsxNTOj96BBWFha4OnuTq8uXXnxvk9y5MpJXPzHPrl1/TojBwyk35Ah9B82lEcPHjCge098PukTy2zZGDZ2DOYWFgQFBrF3505WLEr6Plua5Mj+A5iam9Nz8EDMLSzxcr9Hv66OykUCcnz2GbHMlo2/Dnxc7dS+uzP23Z25dvESPdp3BKBEqVKs2LJZGTN43BgA9m7fwcRhI1KjWcnCZe02DA0N+GP8QLJmzcKNG2706jmad+8+nqDJnccKUxNj5f9LlizCWpc5yv8PH94TgD17DjNubEL58GHTGDDQkekzRmJsnJWnTwNZtGgd27btS6WWfTs3X3/s//h476/pLgknyZrXLs+Mfq0ICn3N0+Aw5fN5spuxYkwXprvsZ8O+8+QwN2ZK7+b8r9zH+yI1qlGaF6/esvDvowSFvaZ4fitWj3NIF9MgAe4fOoWhqQm/9O5CJgtTQjx9OdB7NBEvwgDIkiMb8XHftnBUvlpVqTX544/UerPGAnBt2QauLd+YbHVPKSf2H8TEzBSHgf0xs7DAx92d4Q7dCX1/f6PsVlYqox8W2SxZvW+X8v/tnLvRzrkbNy9eZmDHhFvGeN5xY1yv/jgPG0SXfr15+vgJi6fM4Og/mvv38ql/9+3HzNycvoMHY2Fpgcc9d3rYd1Ueh61y5lTpk5vXrjO8/0D6Dx3CwGFDefjgAf2691A55gA0atwYhULBgX/SfvXpb3Vo337MzM3oM3iQsk96fqFPbl27zsj+A+k7dAgD3vfJ58fhYf36M3D4cGYsmI+xiQlPn/izaPZctm3anOj1hWYrW7YsJ06c4NWrVyqLjFy6dEn5vDpaWlqUKlWKq1evJnru0qVLFChQgKxZs6rs4+rVqzRq1EgZd/XqVeLi4pJ8jeSmiNeUm30lk3///RdXV1fOnz/PkydPePfuHXnz5qVhw4aMHTtWeZGgtbU1tWrVYt26dUDCDawdHBw4deoUmzdvxtXVlejoaJo2bcrChQsxM0tY9e3169e4uLhw4MAB7t69y/PnzzEwMMDGxgZHR0e6deumnKr4tfv8FoWS4Vq4n00mRcot8pBe6Sl+ukHzH/IuS4G0roLGub2lR1pXQeOs7LA8raugcf568yStq6BxgmIi07oKGkfrG0dFMoI7DzVzJpF1Puu0rkKSHjx88NWxly5dokqVKsyePZuhQxNm9kRFRWFjY4O5uTkXL14E4NGjR4SHh1Os2Md7lM6cOZORI0dy5coV5SVMnp6elCxZkqFDhzJjxgwg4Zq13LlzU61aNZXbbXXu3JmdO3fy+PHj7/ot/61+umRNk3xI1j79MPwoSdYSk2QtMUnWVEmylpgka4lJspaYJGuJSbKWmCRriWluspY/rauQpAcP/b4pvk2bNuzatYtBgwZRqFAh1q9fz+XLlzl27Bi//vorgHLxv0/TndevX1OuXDlev37N0KFD0dXVZd68ecTGxnLz5k2VW1EtXbqUPn360KpVKxo0aMCZM2fYsGEDU6dOZfTo0cnT8P/w002DFEIIIYQQQvzcNmzYwLhx49i4cSOhoaGULl2affv2KRO1pGTNmpWTJ08yaNAgpkyZQlxcHLVq1WL+/PkqiRpA79690dXVZe7cufzzzz/kyZOH+fPnM2DAgJRsmgpJ1oQQQgghhBDpioGBAbNnz2b27NlJxpw8eVJtee7cuXF1dVX73OecnZ1xdnb+niomC0nWhBBCCCGEyBBkymp6Ixe2pKCuXbsSHx+fbNerCSGEEEIIITIOSdaEEEIIIYQQQgPJNEghhBBCCCEyApkFme7IyJoQQgghhBBCaCBJ1oQQQgghhBBCA8k0SCGEEEIIITIEGadJb+QdE0IIIYQQQggNJMmaEEIIIYQQQmggmQYphBBCCCFEBqCQ5SDTHRlZE0IIIYQQQggNJMmaEEIIIYQQQmggmQYphBBCCCFERqCQaZDpjYysCSGEEEIIIYQGkmRNCCGEEEIIITSQTIMUQgghhBAiA5DVINMfGVkTQgghhBBCCA0kyZoQQgghhBBCaCCZBimEEEIIIUSGIOM06Y28Y0IIIYQQQgihgSRZE0IIIYQQQggNJNMghRBCCCGEyAAUclPsdEdG1oQQQgghhBBCA0myJoQQQgghhBAaSKZBCiGEEEIIkREoZJwmvZF3TAghhBBCCCE0kIyspTOGaKd1FTTOm/jYtK6CxqlqaJ7WVdAo51/7pXUVNM7KDsvTugoap/tfPdO6ChrnQIspaV0FjfMiNiqtq6Bx9GS0RogUI8maEEIIIYQQGYBCJtWlO/KOCSGEEEIIIYQGkmRNCCGEEEIIITSQTIMUQgghhBAiA5CbYqc/MrImhBBCCCGEEBpIkjUhhBBCCCGE0EAyDVIIIYQQQoiMQG6zkO7IOyaEEEIIIYQQGkiSNSGEEEIIIYTQQDINUgghhBBCiAxAIdMg0x15x4QQQgghhBBCA0myJoQQQgghhBAaSKZBCiGEEEIIkQEoZJwm3ZF3TAghhBBCCCE0kCRrQgghhBBCCKGBZBqkEEIIIYQQGYCsBpn+yDsmhBBCCCGEEBpIkjUhhBBCCCGE0EAyDVIIIYQQQogMQKHQTusqiG8kI2tCCCGEEEIIoYEkWRNCCCGEEEIIDSTTIIUQQgghhMgAZDXI9EfeMSGEEEIIIYTQQJKsCSGEEEIIIYQGkmmQQgghhBBCZAAyDTL9kXcsha1btw6FQsHVq1fTuipCCCGEEEKIdOSnTdY+JEkfHgYGBhQpUoS+ffvy/PnztK6eEEIIIYQQQnzRTz8NctKkSeTPn5/IyEjOnj3LsmXLOHDgAG5ubmTKlCmtqyeEEEIIIUSqkJtipz8/7cjaBw0bNqRTp044OTmxbt06Bg4ciJ+fH3v27PnufcbFxREZGZmMtUx77ew78+/Z01z1dGfz7p3YlCn9xfjfGjXkn2NHuOrpzs5DB/lf7VoqzxtmysToSRM4evEcVzzvsfvoIVp37JBi9U8Jne3tOX32LO6enuzcvZvSZcp8Mb5ho0YcOXYMd09PDh46RK3atZXP6ejoMGLkSA4eOoSbuzsXLl9mzrx5ZMuWLaWbkazqd2jNn0f34HLzLBO3uFCgVIkkY2u3bsa4jStZefEYKy8eY9TaJYnie0wbz2b3KyqP4SsXpnQzkt2gQQO4dPkc7h532LhpHdbW+f5zm86dO3Lm7Ak8PN3YtXs7ZT77m/t7yyb8HnirPKZMnZRSTUg2Jdo2of2BjThe3k+zTQuxtCn6VdsV/L0W3W8d4bf5E1TKrevWoNHyGdif2kH3W0cwL1owBWqdcq7c9aPntA3U6Dadoi1Gc/TSvf/c5pLbfZoPWYxNm3HU7z2HncevJYrZfPACdXrMolTbP2g9Yim3vR+nRPVTTMMObVh5bD/bbl9k1rYNFC5VMsnY+q2bM23zGjZdPsWmy6eY6LJcJV5bRwf7of1Z8M82ttw4z9ozhxkwczKm2SxToynJpm3nzhw8e5orX3kcrt+oIXuOHeGKpzs7/j1IjVq1VJ43s7Bg8pxZHL10gUvud1m23oW81tYp14AU0LpzJ/45c5JzHndZt2s7Jb/QJwUKF2bW0sX8c+YkV/18aO/QNVFMuUoVmbd6JQcvnuOqnw8169dLsboLkVx++mTtc3Xq1AHAz8+POXPmUK1aNczNzTE0NKRChQps37490TYKhYK+ffuyefNmSpYsib6+Pv/++y8A/v7+dOvWjZw5c6Kvr0/+/Pnp1asX7969U9lHVFQUgwcPxtLSksyZM9O8eXOCgoJSvsFfoYGdLcPGjmb5goW0sWuMl7s7Kzaux8zcXG18mQrlmbloATu3baO1rR3HDx9mwcrlFCpSRBkzfNwYqtf8lZEDB9O0bn02rXFh9KQJ1KpXN5Va9WNs7ewYPXYsCxcsoLGdHe7u7qzfuBHzJPqkfIUKLFi0iG3btmFna8vhw4dZvnIlRd73iaGhISVtbFi0cCGNbW3p1aMHBQoUYNWaNanZrB9SpWF9Oo4YyM4lqxnbsjOPPL0ZuWoRRmamauOLV6zAhQOHmdq1F+PbOxLy9DkjVy9O9APq1unz9P7f78rH4qFjUqM5yaZHz+50dbBn7Jg/aN6sFREREazf4IKevl6S29jaNWLM2NEsWLAYO9tmuN9zZ/2GtZibm6nE/f3XFipWrKp8zJg+K6Wb80MKNKhJ1aE9uLZiEzvb9SLE8z6Nlk3HwMzki9tlyZmdyoO78/Ta7UTP6Roa8OyGG5f+XJ1CtU5Z4VHvKGqdg/HOTb4q/vHzF/SYup7KNgXYM68fXeyqM3bpLs7c8FLGHDh7m+kuB+jTpi675vShmLUV3Sa5EBL2JqWakayqN/wNx1FD2LJkBYObd+CBhxfj1yzFOInvEpvKv3Bm/7+Ms3dmRLsuBD99xoS1yzB7/12ib2BAgRLF2bZsFYNbtGdG3yHkyp+PMcv+TMVW/ZhPj8NtbRvjec+d5Ru+cBwuX56ZCxewa+s22jRSfxxesHI5ufPkZYBzD9ra2hHg78/KTRsxNDRMrWb9kPq2jRg0ZjSrFiyik11TvNw9WLTeBdPPvic/MDA04MnjxyyeOZvgwEC1MYaGhni7uzPzjwkpWHMhkleGS9Z8fX0BMDc3Z8GCBZQrV45JkyYxbdo0dHR0aN26Nfv370+03fHjxxk0aBBt27ZlwYIFWFtbExAQQKVKldiyZQtt27Zl4cKFdO7cmVOnThEeHq6yfb9+/bh16xbjx4+nV69e7N27l759+6ZKm/+LvVM3dmzZym7X7dz39mHS6LFERETQvE1rtfGdHLpy7tRp1q1YhZ+PL4vnzuee213ad7FXxpSpUJ5/duzk6sVLBDzxZ/vfW/Byd6dU2S+PTmmKbk5ObN2yhe2urvh4ezN29GgiIiJo3aaN2viuDg6cPnWKVStW4Ovjw/y5c7nr5oZ9ly4AvH79GvtOnTiwfz9+9+9z88YNJvzxB6VKlyZnzpyp2bTv1rBLB0647ub0rr34+/qxdsJ0oiIjqdlC/Y/QpcPHcfTv7Tz08OKp30NWjZuClpaCklUrqsRFv3vHy+AQ5SP81evUaE6ycXTswuJFSzly5BgeHp4MGTyM7Nmz8dtv9ZPcxsnJka1btrLddQc+Pj6MGfPH+89XK5W4iMhIgoOClY83bzT7x3jpzi3x2HkQrz2HCLv/iDNTFhATGUXRZg2S3EahpUWdaaO4tmwDr548S/S8976jXF+xCf9L11Oy6immZvmiDOrwG/WrJD1y9Kkthy6TO5spIx0aUTB3Njo1qkqDqiVZt/ecMsZl71na1K9Iy7oVKJQnOxN7NMVAX48dakbgNFFTh04c3raT4zv/4YnvfZaNn0pUZCR1WzZTGz9/6BgO/uWKn4cX/vcfsGTsJBRaCkpXrQxA+Js3THDsxbmDRwjwe4jXrTusnDyDQjYlsLDKkYot+34fjsN7XLdz38eHyWMSjsPNkjgOd3R8fxxeuQo/X1+WzJuP+927tHt/HM6XPz9lypdnythx3L19mwf3/ZgyZhwGBvo0bNI4NZv23To6ObJ761b2bt+Bn48P08eMIzIigiat1ffJvdt3WDh9Jof37U90wvyD86dOs2zufE4ePpKSVddoCoWWxj6Eej/9NWsvX74kODiYyMhIzp07x6RJkzA0NMTOzg57e3uVM0x9+/alfPnyzJs3D1tbW5X9eHp6cufOHUqU+DiNq0uXLjx79oxLly7xyy+/KMsnTZpEfHy8yvbm5uYcPnwYhUIBJEylXLhwIS9fvsTY2Dglmv5VdHR1KVHKhjVLlynL4uPjuXj2HGXKl1O7TZny5dmwWnVE6PzpM9T55MfprWvXqVWvHru2uhL4/DkVq1YhX/78zJo0JWUakox0dXWxKVWKZUuXKsvi4+M5d/Ys5cqXV7tN+fLlWbNa9cz/mdOnqf/bb0m+TtasWYmLi+PVq1fJU/EUpK2rQ/6Sxfhn1TplWXx8PG4XLlO4bKmv2oe+gQHaOjq8fana3uKVKrD07CHevnrNvUtXcF2wnDdhL5Oz+ikmT548ZMuWjbPnzivLXr9+w82btyhfvhz79iY+8aOrq4uNTUmWLl2uLIuPj+fcufOU/+xvrmnTJjRr1oSgoGCOHTvOooVLNHYKtpaODhbFi3BjzZaPhfHx+F+8TvbSSU+XLd+jExGhoXju+pcc5b7us/Qzu+n1iKqlC6mU1ShbhGku+wB4Fx3DXd8AerSopXxeS0uLaqULcsPzUWpW9bvo6OpQsGRxdqxYqyyLj4/n1vlLFC335Wl/H+gZJnyXvHmZ9PdEpiwJ369v08HJHx1dXYrb2LD6s+PwpXNfOA6XK8/GNYmPw7XfH4f19BJG9qOiolT2+e7dO8pV/IWdW7cldzOSlY6uLsVsbHD57Hvy8rnzlE6iT4T4Wf30yVq9eqrzkfPly8fmzZvJlSuXSnloaCixsbH873//4++//060n5o1a6okanFxcezevZvGjRurJGoffEjKPujevbtK2f/+9z/mz5/Pw4cPKV1a/QEqKipK5YsWIC4+Hq3P9v0jTE1N0dHRISQ4WKU8JDiY/AXVXxtiYWmhNt7C8uP0tmnjJzJ++lSOXb5AdHQ08XFxTBg5mmuXryRb3VPKhz4J/qyNwcHBFEyyTyzVxltaqr9mQk9fn+GjRrH3n380frQEIKuJCdo6OrwMeaFS/irkBTnzW3/VPtoN7UdoYDBu5y8ry26dPc+VIycIeuJPtry5aTuwN8NXLGB8e0fi4+KSswkpwtLSAoDgoM/e+6Bg5XOfS/LzFRSi8vn6Z89e/P39ef48kGLFijFi5DAKFChAr559krkVycPA1BgtHW0iQkJVyiNCQjHJn0ftNtnLlaRo89/Z0aZnalQxXQgOfY1FuSwqZRYmWXgTHkVkVDQv30YQGxeHuYlqjLlJFu77a8bU+i/JamqKto4OYZ99l7wMCSF3Aeuv2keXoQMIDQzi1vlLap/X1dOjy9D+nNn/LxFv3/5olVNcksfhoG88DgcFY2GRcMzx8/Ul4Ik/A4YPY9LoMURERNC5myM5cubEIh1cK23yvk9eBIeolL8IDsa6YIE0qpUQaeOnT9aWLFlCkSJF0NHRIXv27BQtWhQtrYSh1n379jFlyhRu3rypkhR9nmgB5M+fX+X/QUFBvHr1Chsbm6+qR968eVX+b2qaMDc/NDRUXTgA06dPZ+LEiSpllkYmZDdRP69fk3Toak/pcuXo6+jEU/8AKlSuyJjJEwl6HsjFc+f+ewc/MR0dHRYvWYJCoWDcmPR1fdb3auzUhaoN6zOlS0+iP5mecvHAx6koj719eeTpw59HdlOiUgXuXtS8xL5p0yZMnfZxkY9ujt1T7LX+/nur8t+enl4EBgby198byZs3L48eaf4Iyn/RzWRI7akjODNxPlFhmj+6LDRDC2cHajRqwFh7Z5Xvkg+0dXQYtmAWKBQsHz8tDWqoGWJiYhjUsxcTZ83g3O2bxMTEcOncOc6cOEkynu8V6ZCsBpn+/PTJWqVKldSOfJ05c4YmTZrw66+/snTpUqysrNDV1cXFxYW//vorUfyPXpCrra3+j+Pz6ZKfGjVqFIMHD1Ypq2qTvNd8hYaGEhMTg7mF6iiAuYUFIUksgBIcFKw2Pvh9vL6+PgOGDWVAj16cOX4CAC8PD4qWKEGX7k4an6x96BOLz9poYWGR5KIwwUFBXxWvo6PDoiVLyJUrFx3bt08Xo2oAr8PCiI2JwfizC7uNzM14+dmZz881cuhEY+cuTHfsw2Mvny/GBj3x59WLULLnza2RydrRo8e4efOm8v8fphpZWKq+1xaWFty75652H0l+vizNv7jo0M2btwCwttbMZC0y9CVxMbEYmqueTDI0NyU8OPFJKaM8OTHKZUWDhZOVZQqthF+RTtf+ZWtTB14/eZqyldZAFqZZCf5soZDgsDdkyaSPgb4uWloKtLW0Ei0mEhL2BguTrKlZ1e/yOjSU2JgYTD77LjE2Nyf0P75Lmjp2pmV3B/5w6MlDT+9Ez2vr6DDsz5lY5rTijy7d08WoGnzhOGz58bj6ObXHYUsLgoM/xru7udGmkR1ZsmZFV1eX0Bcv2Lx7J3dv30n+RiSzsPd9YmahusCKmYUFIZ/NZBDiZ5dhr+bbsWMHBgYGHDp0CEdHRxo2bJhoyuSXWFpaYmRkhJubW4rVUV9fHyMjI5VHck6BBIiJjubeHTcqV6+mLFMoFFSpXo1b12+o3ebW9esq8QBV/1ddGa+jq4uunl6iaWxxsbHKUU1NFh0djdudO1SrXl1ZplAoqFa9Ojeuq1/k4Pr16yrxANX/9z+V+A+JmnX+/HTu2JGwsLAUqX9KiI2Owe+uByWrfFwcRKFQYFOlIt43kz7w23XrTPNe3ZjVvT9+d9UnL58yy56NLCbGhAV9+UdbWnn79i0PHz5SPry9fQgMDKR6tarKmCxZslC2bBmuJ/H3Ex0djZvbXZVtFAoF1apVS3IbgBIligMQGKiZU93iYmIIdvciV+VPridRKMhZuRzPbyderj7M7xGuLZ3Z0ban8vHw5AUCrtxiR9uevH2mme1MaWWL5OXiHV+VsvO3vSlbJGF2hp6uDiUL5uTC7Y8nPuLi4rhw25dyRVVncGiimOgYfO+6KxcHgYTPf+mqlfC8kXg10A+aO3WhTW9nJjr1wdct8efpQ6JmlS8v47v25HU6ue4VEo7D7m5uVK6mehyuXO0Lx+Eb11XiAarUqK42/s3r14S+eEFea2tKlCrFiSOav7hGTHQ0Hm5uVPrst0nFatW4/YXvSSF+Rj/9yFpStLW1USgUxMbGKssePHjA7t27v2p7LS0tmjVrxqZNm7h69Wqi0bv4+Hi10yk10YbVa5g6dw53b9/hzq1bdHZ0wDBTJna7JtzGYOq8OQQ+e86CWbMB2OSyDpetf2Pv3I0zx0/we+PGlCxViokjE6b0vX3zhisXLjJ49EgiIyN56u/PL5Ur07hlC2ZPnppm7fwWa1avZs7cudy5fZtbt27h4OhIpkyZ2O7qCsCcefN4/uwZs2clLKW+zsWFv7dupZuzMyeOH6dx48aUKlWKMSNHAgmJ2pJlyyhpY4OToyNa2trKa/xehoURHR2dNg39BgfX/0WP6ePxc3PH985dfrdvj76hIad27QWg54wJhD4PYuv8JQDYOdnTql8PlgwdS5D/U4zfnyGNDA8nKjwC/UyGtOjtzJUjxwkLCiF73ty0H9qP548ec/vshTRr57dau3Y9ffv15sGDBzx+/ITBQwby/Hkghz9ZbWzT5vUcPnSEDRs2AbB69Vrmzp3F7Ttu3Lp5G8duXcmUyZDtrjuAhGnTTZs25sSJk4SGhVG8WFHGjhvDpUuX8fDwTJN2fo3bG3dQa/Jwgu56EeTmSalOzdE1NMBr9yEAak0ZztvAYK4sXEvsu2hCfR6obB/1OmEk5NNyfaOsZLHKRibLhM+PsXVuAMKDXyS6Pk4TvY2I4tGzjycfngS+wN0vAOMsmchpacLcTYd4HvKKWQMSVrhr16ASmw9eYNaGg7SsU4GLd+5z8JwbK8Z8XG3XoXENRizajk2h3JQunJv1e88REfWOFnXUL4Ckafa4bGLAzEn4uN3D+7Ybjbt0wMDQkGM7E+5/OmDmZEKeB7Jp3iIAmjt3pUP/XswbMppA/wBMPvkuiQyPQFtHh+ELZ1OwRDGm9BiAlraWMubNy5fERMekTUO/wYbVa5gydw737tzhzs1bdOr22XF47hyeP3/OwvfH4c1r17F269/YO3Xj9IkTNHx/HJ406uPU+vqNGhL64gVP/QMoXKwoI8b/wYnDR7hw5myatPFbbV69lglzZ3Pv9h3u3rpNB8euGGYyZO/7WyxNnDubwGfPWTJ7DpBworhAoYTFeXR1dbHMkZ0ixYsTHh7Ok4cPgYR7wObJ9/E+mLny5KFI8eK8fBnG84CMMZIv0yDTnwybrNna2jJv3jx+//13OnToQGBgIEuWLKFQoULcvp302b1PTZs2jcOHD1OzZk26d+9O8eLFefr0Ka6urpw9exYTE5OUbUQyObRvP2bmZvQZPAgLSws87rnT076r8uJlq5w5VUbJbl27zsj+A+k7dAgDhg3l4YMHDOjeEx+vj/cBGtavPwOHD2fGgvkYm5jw9Ik/i2bPZdumzanevu+xf98+zMzNGTR4MBaWlrjfu0dXe3vlohA5c+Yk7pM+uX7tGgP792fI0KEMHTaMBw8e0LN7d7ze90n2HDmUK0MeeH+Pvg/at23LpYsXU6ll3+/iwSNkNTWhVf8eGFuY89Ddi5nd+/Pq/UIB5lY5iI/7OK23XruW6OrpMXCh6r3Bdixeyc4lq4iLjSNv0UL8r5ktmbNmJTQoiDvnLuG6cDkx6SB5/WDF8pVkMjRk2vQpGBkZceXKVbp2ceRd1MfrafLly4vpJ/eQ2r/vAOZmZgweNCDh8+XuTtcu3Qh+Pw0sOvod1WtUw8GxC5kyZSIg4Cn/HjzE4sVLE72+Jrl/6BSGpib80rsLmSxMCfH05UDv0US8CAMgS45sKp+Rr5GvVlVqTR6m/H+9WWMBuLZsA9eWb0y2uqcUN19/7P/4uFLsdJcDADSvXZ4Z/VoRFPqap8FhyufzZDdjxZguTHfZz4Z958lhbsyU3s35X7mP989qVKM0L169ZeHfRwkKe03x/FasHueQLqZBApw7eBhjM1Pa9++FqaU5fu6eTHTqo1zAyNIqh8oxp2G71ujq6TFi0RyV/WxZtJwti1dgnt2SynVrAfDnP1tVYsZ2dsLtsubf0uDQvv2YmpnRe1DCcdjT3Z1eXbry4v0xJ0eunMTFf3Icvn6dkQMG0m/IEPoPG8ojNcdhy2zZGDZ2DOYWFgQFBrF3505WLFqc6m37Xkf2H8DU3JyegwdibmGJl/s9+nV1VC46kuOz47Bltmz8dWCv8v/23Z2x7+7MtYuX6NG+IwAlSpVixZaPv0MGj0tIbvdu38HEYSNSo1lCfDNF/JcumkrH1q1bh4ODA1euXFF7zRrA2rVrmTFjBo8ePSJ//vyMGDGCBw8eMHHiRJVryRQKBX369GHx4sRfco8ePWLcuHEcPHiQV69ekStXLho2bMi8efPQ09NLsh4nT56kdu3anDhxglq1an11u0rlk1WQPveW2P8OymCqZtL81b5S0/mIsLSugsYZZWyd1lXQON3/klUpP9eshebfbiW13Y9KP1MsU4ue3CMrkat+X75GO62UKd0wrauQpFu3D6Z1FTTST5us/awkWUtMkrXEJFlTJclaYpKsJSbJWmKSrCUmyVpikqwlpqnJWrkytv8dlEZu3Ep8b1KRgRcYEUIIIYQQQghNJsmaEEIIIYQQQmigDLvAiBBCCCGEEBmJrAaZ/sjImhBCCCGEEEJoIEnWhBBCCCGEEEIDyTRIIYQQQgghMgCZBpn+yMiaEEIIIYQQQmggSdaEEEIIIYQQQgPJNEghhBBCCCEyAJkGmf7IyJoQQgghhBBCaCBJ1oQQQgghhBBCA0myJoQQQgghhBAaSK5ZE0IIIYQQIgNQaMk1a+mNjKwJIYQQQgghhAaSZE0IIYQQQgghNJAka0IIIYQQQmQAWgptjX2khrCwMLp3746lpSWZM2emdu3aXL9+/T+3i4uLY926dTRp0oQ8efKQOXNmbGxsmDJlCpGRkYniFQqF2seMGTO+uc5yzZoQQgghhBDipxYXF4etrS23bt1i2LBhWFhYsHTpUmrVqsW1a9coXLhwktuGh4fj4OBAlSpV6NmzJ9myZePChQuMHz+eY8eOcfz4cRQKhco29evXx97eXqWsXLly31xvSdaEEEIIIYQQP7Xt27dz/vx5XF1dadWqFQBt2rShSJEijB8/nr/++ivJbfX09Dh37hzVqlVTljk7O2Ntba1M2OrVq6eyTZEiRejUqdMP11umQQohhBBCCJEBKBTaGvtIadu3byd79uy0aNFCWWZpaUmbNm3Ys2cPUVFRSW6rp6enkqh90Lx5cwDc3d3VbhcREaF2muS3kGRNCCGEEEII8VO7ceMG5cuXR0tLNf2pVKkS4eHheHl5ffM+nz17BoCFhUWi59atW0fmzJkxNDSkRIkSXxy5+xKZBimEEEIIIYRIU1FRUYlGt/T19dHX10+W/T99+pRff/01UbmVlRUAAQEBlCpV6pv2OWvWLIyMjGjYsKFKebVq1WjTpg358+cnICCAJUuW0LFjR16+fEmvXr2+6TUkWRNCCCGEECIDSI3pht9r+vTpTJw4UaVs/PjxTJgwIVFsXFwc7969+6r96uvro1AoiIiIUJv4GRgYAAlTFr/FtGnTOHr0KEuXLsXExETluXPnzqn839HRkQoVKjB69Gi6du2KoaHhV7+OTIMUQgghhBBCpKlRo0bx8uVLlceoUaPUxp4+fRpDQ8Ovenh6egJgaGio9rq0D9eUfUsCtXXrVsaOHUu3bt2+aqRMT0+Pvn37EhYWxrVr1776dUBG1oQQQgghhBBp7FumPBYrVgwXF5eviv0wzdHKyoqnT58mev5DWc6cOb9qf0eOHMHe3h5bW1uWL1/+VdsA5MmTB4AXL1589TYgyZoQQgghhBAZgkLxc/z0z5EjB127dv2mbcqWLcuZM2eIi4tTWWTk0qVLZMqUiSJFivznPi5dukTz5s355Zdf2LZtGzo6X9+f9+/fBxJWoPwWMg1SCCGEEEII8VNr1aoVz58/Z+fOncqy4OBgXF1dady4scqonq+vL76+virbu7u7Y2tri7W1Nfv27Uty2mRQUFCistevX/Pnn39iYWFBhQoVvqneP0d6LYQQQgghhBBJaNWqFVWqVMHBwYF79+5hYWHB0qVLiY2NTbSwSd26dQF48OABkJBsNWjQgNDQUIYNG8b+/ftV4gsWLEjVqlUBWLJkCbt376Zx48bkzZuXp0+fsnbtWh49esTGjRvR09P7pnpLsiaEEEIIIUQGoKXBq0GmNG1tbQ4cOMCwYcNYuHAhERERVKxYkXXr1lG0aNEvbhsSEsLjx48BGDlyZKLnu3TpokzWqlevzvnz51m9ejUhISFkzpyZSpUqsXbtWurUqfPN9VbEx8fHf/NWIs10LlEpraugcUZYK9K6ChpniPfbtK6CRnkdG53WVdA4egqZBf85Ex2DtK6Cxtm9c2xaV0Hj9GwzN62roHF6WMlPyc+VO3ohraugVo2qPdK6Ckk6e2FFWldBI8nRWgghhBBCCCE0kEyDFEIIIYQQIgNQaGXcaZDplYysCSGEEEIIIYQGkmRNCCGEEEIIITSQTIMUQgghhBAiA/hZboqdkcjImhBCCCGEEEJoIEnWhBBCCCGEEEIDyVioEEIIIYQQGYAiA98UO72SkTUhhBBCCCGE0ECSrAkhhBBCCCGEBpJpkEIIIYQQQmQAshpk+iMja0IIIYQQQgihgSRZE0IIIYQQQggNJGOhQgghhBBCZABashpkuiMja0IIIYQQQgihgSRZE0IIIYQQQggNJNMghRBCCCGEyAAUWvLTP72RkTUhhBBCCCGE0ECSrAkhhBBCCCGEBpKxUCGEEEIIITIAuSl2+iMja0IIIYQQQgihgSRZE0IIIYQQQggNJGOhQgghhBBCZAAKuSl2uiMja0IIIYQQQgihgSRZE0IIIYQQQggNJNMghRBCCCGEyABkNcj0R0bWgHXr1qFQKNQ+Ro4cmdbVE0IIIYQQQmRAkl5/YtKkSeTPn1+lzMbGJo1qI4QQQgghhMjIJFn7RMOGDfnll1+SbX9v374lc+bMyba/lFSvfSsaOXbC2MKcx57ebJg6h/t37qmNrdWqKTWa2pK7UAEA/O554Prn0kTxOQtY03ZwX4pVLI+2tjb+vn4sHDiCkKfPU7w9ycHMrhUWLTuiY2pOpJ83T5fNJcJLfZ+Y1LMl9+A/VMri3kVxr9mvyv9rm5iRw6EPWcpXRjtzVt663eDp8rm8C3icou1ILo07tqOVkwNmlhbc9/Bk6aRpeN52Uxubr1BB7Af2pVDJEuTInYvlU2ewa90mlRgtLS069e9N3SZ2mFpaEBIYxJGdu/lryYrUaE6yaNG5Ax2du2FmaYmPuwfzJkzG/fYdtbH5CxfCaVB/itmUxCp3bv6cPI1tLuuT3Hfnns70Gj6UrS7rWTB5Wko1Idk169SBds6OmFla4OPuwcKJU/FIok+sCxfCYWA/itqUJEfuXCyePJ3t6zYkirPIno0ew4dQqeavGBga4P/wETNHjMbzzt2Ubk6yaNihDc27dcHE0pwHHl6smjwT7yTqXr91c2o3syNv4UIA+N51Z9O8Rcp4bR0dOg7sTYVfa5A9T27C37zh1vlLbJi7kNDAoFRr04+4ctePNXvO4ObrT1Doa5aM6ES9yiW+uM0lt/vMcDmA9+PnWFkY06tVbVrUqaASs/ngBdbsPkNQ2BuKWedgnFNjShfOk5JNSVY127fgN4eOGFmY8cTTh63T5vHgjrva2BqtmlC5ye/kfH8cfnTPkz0LlqvE62cypPmgXpSp8yuZTYwJ8Q/g+CZXzmzbnRrNSRYWTVqSrU1HdM3MiPD14cnieYR7qj8Om/3WiHzDx6mUxb2L4lajWsr/axkYktOpN8bVf0XHyJioZwEE7XIlZN+ulGyGRlFoyU//9EamQf6Hhw8f0rt3b4oWLYqhoSHm5ua0bt2aBw8eqMR9mEp56tQpevfuTbZs2cidO7fy+YMHD/K///2PzJkzkzVrVmxtbbl7VzN+aFT+vR4dRgxk19LVjGtlzyMPb4avXIiRmana+OKVKnBh/yGmOfRiYoduvHj2nOGrFmGazVIZky1PLsZuWsVTv4dM69qT0c07sHv5GqKj3qVWs36I0a/1yOE8gMC/1uDbrwuR932wnrwAbWP1fQIQ+/YNHh0bKh+eXZupPJ9v3Cz0rHLxaNIwfPp1JjrwGdbTFqHQN0jh1vy4mo1+p/vo4WxevIw+zVpz392TqWtXYGxmpjZe39CQp4+fsHbOn4Qk8QOyTfdu2LVvy5JJ03D+vQlrZs+jtZMjTe07pmRTkk1d24b0Hz2KtQuX4NC4OT7uHsxfvwZTc/V9YmBoSMCjJyybNZfgwMAv7rt46VI0bd8Ob3ePlKh6iqlt25Deo0ewbuESnJu0xNfDk9nrVmGSRJ/oGxjw9PFjVs6el+TnJIuREYu3/UVMTAwjHLvTpYEdS6fN5PXLVynZlGRTveFvOI4awpYlKxjcvAMPPLwYv2Ypxkl8v9pU/oUz+/9lnL0zI9p1IfjpMyasXYbZ++9XfQMDCpQozrZlqxjcoj0z+g4hV/58jFn2Zyq26seER72jqHUOxjs3+ar4x89f0GPqeirbFGDPvH50savO2KW7OHPDSxlz4OxtprscoE+buuya04di1lZ0m+RCSNiblGpGsqrwe11aDe/PvqVrmdbagSeePvRbMZ+sSXxOilQsx9UDR5nv2I9ZHXsQ+iyQ/iv/xCSbhTKm1fD+lKhRBZeRE5nYuD3HNm6j3ZjBlK5dI7Wa9UNMatUlV8/+PNu4Bs+eXYm4703BGfPRMfnycfhOa1vl426H5irP5+rVH6OKVXg4YwLuju0I2rmVPP0GY1Q1ffSJyJgkWfvEy5cvCQ4OVnlcuXKF8+fP065dOxYuXEjPnj05duwYtWrVIjw8PNE+evfuzb179/jjjz+U17tt3LgRW1tbsmTJwsyZMxk3bhz37t2jRo0aiZK+tNCwawdOuu7mzK59BPj64TJxBlGRkfzaorHa+GXD/+DYlh088vDmqd9DVo+bipaWghJVKipjWg/oxa3T59gydxEP3b0IfOzPjRNnePUiNLWa9UMsmrcn9N89hB3ZR9RjPwIWzyAuKhLT39T3CQDx8cSEvlA+YsNeKJ/Sy5WHTMVLEbB4JhHe7rzzf0TAkplo6eljUuu3VGjRj2nhaM+/W7dzeMduHvncZ+Efk4iKiKRBq+Zq473uuLF65lxO7T9I9Dv1CXqJ8mW5cOwEl0+e5rl/AGf/PcL1c+cpWrpUSjYl2bTr5sA/W7exf/tOHvj4MmvseKIiIrFr3VJtvPvtOyyZMYuj+w4k2ScAhpkyMX7+bGaMHsvrly9TqvoporVjF/ZvdeXfHbt46OPLvLETiIyIpFGrFmrjPe+4sXzGHI5/oU869HAi8OlTZo4Yg8ftOzx74s/Vs+cJeJQ+RqSbOnTi8LadHN/5D09877Ns/FSiIiOp27KZ2vj5Q8dw8C9X/Dy88L//gCVjJ6HQUlC6amUAwt+8YYJjL84dPEKA30O8bt1h5eQZFLIpgYVVjlRs2ferWb4ogzr8Rv0qJb8qfsuhy+TOZspIh0YUzJ2NTo2q0qBqSdbtPaeMcdl7ljb1K9KybgUK5cnOxB5NMdDXY8fxaynVjGRVr0s7zm3/hwu79/PU9wF/TZxFdGQU1VrYqY1fO2Iip7bs5ImHN8/9HrLxj+kotLQoWuXj7KACZUtxcc8BvK7cICTgGWdd9/DE0wfrUl8exdQU2Vq2J+TAP7w4tJ/IRw94/Ocs4qKiMP9dfZ8AxH92HI4JU/3NkblEKUIOH+DNrRu8e/6MkP17iPD1IXOx9NEnImOSZO0T9erVw9LSUuVha2vLzZs3mThxIs7OzkydOpUDBw7w8OFDduzYkWgfZmZmHDt2jL59+zJixAjevHlD//79cXJy4uDBg/Tt25fhw4dz8eJF4uPjmTYtbac3aevqYF2iGHcvXlGWxcfHc/fCFQqV/bofzfoGBmjr6PD2/ZluhUJBmZrVefbgEcNWLmTJmX+ZsGUtFerWTJE2JDeFjg6GhYrx5ublj4Xx8by5eYVMxZLuEy1DQ4qs203R9f+Qd9xs9PN+vP5RoauXsJtPf5DGxxMfHU2mEmWSvQ3JSUdXh8IlS3D9/EVlWXx8PDfOX6REue+v+73rNylbtTK5rPMBUKBYUUpWKM+V02d+uM4pTUdXl6I2Jbl67ryyLD4+nivnzmNTrtwP7XvIxD84f+IUV89d+NFqpqoPfXLt/Md6x8fHc+38BUqUK/vd+61Wtzaed+4yYdF8dl0+y6p/dmDbtnUy1Djl6ejqULBkcW6fv6Qsi4+P59b5SxQtV/qr9qFnmPD9+uYLiXumLFmJi4vj7avXP1xnTXTT6xFVSxdSKatRtgg3vR4B8C46hru+AVT7JEZLS4tqpQtyw/NRqtb1e2jr6pC3RFHcL1xVlsXHx+N+8QoFynzddfN674/D4Z+MON+/eYfStf+nHG0rUqk82a3zcO/c5aR2ozEUOjpkKlKU19c//jYhPp7X16+QqUTSfaJtaEjJzTsp+ddu8k+aiUE+1XUI3t67g3G1GuiaJ4xUZylTHv3ceXh1VfP7JLkoFDoa+xDqSc98YsmSJRQpUkSlzNDQUPnv6OhoXr16RaFChTAxMeH69et07txZJd7Z2Rlt7Y93hz9y5AhhYWG0b9+e4OBgZbm2tjaVK1fmxIkTSdYnKiqKqKgolbLYuDi0tZIvx85qYoK2jg4vg1+olL8KeUHOAvm+ah9th/QlNDCYuxcSvuyMzM0wzJyZxk5d2L5wOVvnLaJ0jar0XzCT6V174XH1RrLVPyVoG5mg0NYhJlS1T2LCXqCfR32fRD15iP/8KUQ+8EErUxYsWnakwNzVePdsT0xIIFGPH/Au8CnZHXrjv2gG8ZERmDdrj65ldnTMLNTuU1MYmZqiraNDWHCISnloSAh5CuZPYqv/tnXFajJlyczqQ3uJi41FS1ubdfMWcuKf/T9a5RRnYmqKjo4OLz7rkxfBIeQrWOC791vPrhFFbUrQrWmrH61iqjM2Tfgu+bxPQoNDyFvg+z8nOfPmoWnHdmxbs45Ny1ZSrLQN/f8YTUz0Ow7t3POj1U5RWT/87YSofpe8DAkhdwHrr9pHl6EDCA0M4tYnCd+ndPX06DK0P2f2/0vE27c/WmWNFBz6GotyWVTKLEyy8CY8isioaF6+jSA2Lg5zE9UYc5Ms3PfX/Ov4srw/Dr/67HPyOuQFOfJ/3XG4xZDevAwMVkn4tk6dR8eJI5hx4h9io2OIi49j0/gZ+Fy7mZzVTxHaxgnH4ejPj8OhLzBI4jgc+fgRj+ZMI+K+D9qZs5CtdQeKLFyJe7cORAcnfA6eLJ5HnkEjsdn6D/ExMcTHxfF4/gze3rmZ0k0S4rtJsvaJSpUqJVpgJCIigunTp+Pi4oK/vz/x8fHK516qOdP5+WqS3t7eANSpU0ftaxoZGSVZn+nTpzNx4kSVslIWOSljmevLDUlFdk72VGlUn2ldeimnMSkUCgCuHT/Nvxv+BuCRhzeFy5amTtsWGp+sfY8IDzciPD4utvHI/TaFV2zFrFFzAjeugNhYHk0ZSa4BYyix7SjxsTG8uXGF11fOgyINK56Gfm30O3Wa2DFj8AgeevtQsHgxeo4ZQUhgIEd3/ZPW1Ut12axyMPCPMQywd+TdF6ZJZjQKhQJPt7usnvsnAD733MlfpDBN2rfT+GTtR7VwdqBGowaMtXdWO01UW0eHYQtmgULB8vHpZxEakbwaOHXml4b1mNe1DzGffE5qd2xF/tIlWdJnGC8CnlH4l7K0HzuEl4HBeFy8+oU9pk/h7m6Eu388Dr+5e5sSa7dgYdecp+tWAmDZrDWZi5fEd+ww3j1/SpbS5cjdbwjRIcGqo3hCaBBJ1v5Dv379cHFxYeDAgVStWhVjY2MUCgXt2rUjLi4uUfynI3GAMmbjxo3kyJH4egIdnaTfglGjRjF48GCVsp6V1Cd93+t1WBixMTEYW6guAGBkbpZoJOVzjRw6YufUhZnd+vLYy0dlnzHRMQT4+qnEB9x/QJHymj3lDyD2VRjxsTHomKr2iY6JGTEvXiSx1ec7iSXS1ws9q4+LzET6eODbrzNamTKj0NEl9lUYBeavIcJbsxeReBUaSmxMDCYW5irlpubmhAYFJ7HVf3MeMYStK1Zzav9BAB54eZMtlxXtejhpfLIWFhpKTEwMZp/1iZmFOS++s0+K2ZTEzMICl392Kst0dHQoW6kiLTt3pFaxUmq/czTFy9CE75LP+8T0B/oEICQomIfeviplD33u82sDzb/W8/WHv53PFlgxNjcn9D++X5s6dqZldwf+cOjJQ0/vRM9r6+gw7M+ZWOa04o8u3X/aUTUAC9OsBH+2UEhw2BuyZNLHQF8XLS0F2lpaiRYTCQl7g4VJ1tSs6nd58/44bPTZ5ySruRmvgr98zKnftT0NunXiT6cB+Ht9/DvR1dej6cCeLO8/CrfTCdO1/b18yV20MPUdOmh8shb7MuE4rPv5cdjUjOjQL//tfNxJLOE+XujnTDjBrdDTx8qxJ34TRvLqUkKfRPr5YliwMNlad8g4yZpMN0x35Jq1/7B9+3a6dOnC3LlzadWqFfXr16dGjRqEhYV91fYFCxYEIFu2bNSrVy/Ro1atWkluq6+vj5GRkcojOadAAsRGx/DgnofK4iAKhYKSVX7B56b65bYBbB0707RnN2Z3H4DfXdWlhWOjY/Bzu0eO/HlVynNY5yU44Fmy1j8lxMfEEOHjQZYyH/sEhYIsZSsS7pF0n6jQ0sLAuiAxoYl/pMaFvyX2VRh6OfNgWKg4ry+cTqaap4yY6Bi8796j3PsFDiDhM1K2WmXu3bj13fvVNzBQGakGiIuNQ5HMn/GUEBMdjafbXSpUq6osUygU/FKtKm43vm/k+Or5i3T63Y6uds2UD/fbdzi8Zy9d7ZppdKIGH/ukfLUqyjKFQkGFqlW4d+Pmd+/X7dp18nw2ZTBPfmueBwR89z5TS0x0DL533ZWLg0BCn5SuWgnPG7eT3K65Uxfa9HZmolMffN0SL1P+IVGzypeX8V178josfS1E863KFsnLxTuqCfv5296ULZJwjNHT1aFkwZxcuP3xpGFcXBwXbvtSrqjqcUgTxUbH8OieJ8WqfLwVgUKhoFjlX7h/S/3tUQB+c+xIo54OLOoxmEd3VU/6aevooKOrS/xn3xtxcXEoFJr/HRsfE0O4lydZy38y20mhIGu5Xwi/l3SfqNDSwjB/QaJfJCR3Ch1ttHR14fPv0rg4UGTQKS4iXZD0+j9oa2sn+kG5aNEiYmNjv2r7Bg0aYGRkxLRp06hduza6uroqzwcFBWFpaZnE1qnj4Lq/6D59PH5u7ty/c5cG9u3QNzTk9K59APSYPoHQwEC2zV8KgG03e1r2687SYeMIDniK8fsz6ZHh4USFRwCwf+0m+s6biufVG9y7fI3SNapSrlYNpnXtlTaN/EbBu/4m9+A/iPB2J8LrHuZN26Glb0DokYQ+yTVkPDEhQTxfl9Anlu27EeHhRtTTx2hnzopFy07oZstB6L8fR4iMatQh9mUY74KeYWBdCKseg3h18TRvbqi/FkWT7Fy7gaGzpuLldhfP224079oJA0NDDu/YDcCwWdMIfh6Iy/upajq6OuQtlHCiQldXF/Ps2SlQvCiRb8OVq/hdPHGSdr2cCQx4mjANskRxWjjac3h7+rjfzZY1LoydMxOPO27cu3Wbtg5dMMhkyL7tCSNj4+bMJOj5c5bPngckLMCR/32f6OjqYZk9O4WLFyM8PBz/h48If/uW+16qIygR4eG8DAtLVK6pXNeuZ9Ts6XjeccP91h1aOdhjkMmQg+/f01FzZhD87Dmr5swHEvrEWtknuljkyEah4sWIeN8nH/a5xPUvOvbqzskD/1KsdCns2rVm7pjxadPIb7THZRMDZk7Cx+0e3rfdaNylAwaGhhx7P4VzwMzJhDwPZNO8RQA0d+5Kh/69mDdkNIH+AcoR7cjwcCLDI9DW0WH4wtkULFGMKT0GoKWtpYx58/IlMdExadPQb/A2IopHzz6OjjwJfIG7XwDGWTKR09KEuZsO8TzkFbMGJCwk065BJTYfvMCsDQdpWacCF+/c5+A5N1aMsVfuw6FxDUYs2o5NodyULpyb9XvPERH1jhZ1yqd6+77H0fVb6DptLA/vevDgzj3qdG6LnqEB598fh7tOG0dYYBC7/1wOwG/dOtG4rxNrh08gJOApRu9nx0SFRxAVHkHk23C8Ll+nxdC+REdFERLwjCIVy1GlSUO2z1qYZu38FoE7/ibf8HGEe3rw1vMu2Vq0Q8vAgJB/E/ok34g/eBccxNM1ywDI0cmRt+5uRAU8QTtzFrK36Yhe9hyEHEg4DseFh/P61nVydu9L3Lso3j1/RpbS5TCr3xD/5QvSrJ1C/BdJ1v6DnZ0dGzduxNjYmBIlSnDhwgWOHj2Kubn5f29MwjVpy5Yto3PnzpQvX5527dphaWnJo0eP2L9/P9WrV2fx4sUp3Iovu/TvUbKamdKyX3eMLcx55OHF7B4DlBc7m1tlVzk7V7ddC3T19BiwYKbKfnYuWcWuJasAuHbsJC4TZ9DYuQudRw/h6YNHLBw4Eq/r3z8Sk5penT7KMyMTsnXunnBT7PtePPhjoHI5fj3L7Cpn57SzZCXngFHomJoT+/o1kT4e3B/iTNTjj1NBdcwssHIeiLaJGTGhwYQdO0jQ32tSvW3f49SBfzE2M8V+QF9MLS247+7BmG49CQtJ+MFlmdOKuPiP/WGeLRvL/vm4WmprJwdaOzlw69IVhndyAGDppGl0GdiPvhPGYmJuRkhgEAe2uLJ58bLUbdx3Orb/ICZmZjgP6o+ZhSXe7u4M7uqknN6WPaeVymiYRbZsrN//8Rqrjt270bF7N65fvETfDvaJ9p8endh/EBMzUxwG9sfMwgIfd3eGO3Qn9P3nJLuVlcp3iUU2S1Z/cjPads7daOfcjZsXLzOwYxcgYXn/cb364zxsEF369ebp4ycsnjKDo//sS93GfadzBw9jbGZK+/69MLU0x8/dk4lOfXj5/vvV0iqHSp80bNcaXT09Riyao7KfLYuWs2XxCsyzW1K5bi0A/vxnq0rM2M5OuF3W/KXq3Xz9sf9jtfL/010OANC8dnlm9GtFUOhrngaHKZ/Pk92MFWO6MN1lPxv2nSeHuTFTejfnf+U+LgjWqEZpXrx6y8K/jxIU9pri+a1YPc4hXUyDBLj27zGympnQuK9zwk2xPbxZ1GMwr0MSlp43s8pO/CffsTXbNkdXT48ef6peq7hvyRr2LU04rqwe9gfNBvbCceYEMhkb8SLgGXsWruD01vRxQizs5DF0jE2x6uqEjqk5Eb7e+I4apFyOXzeb6m8T7axZyTt4ZMJx+M1rwr098BrQnchHD5QxD6aMI2e3XuQbNRGdrEa8e/6MgLXLCd6bPvokOchNsdMfRfznw0YZ0Lp163BwcODKlSuJFhgJCwtj8ODB7N27l8jISKpXr86CBQto0KABtWrVYt26df+5D4CTJ08yY8YMLl68SFRUFLly5eJ///sfffv2pUKFConik9K5RKUfauvPaIS1TF/43BDvn/f6le/xOjY6raugcfTSwVSo1Gaio/k3qE9tu3eOTesqaJyebeamdRU0Tg+rDP9TMpFyRzXz9isNG2nuCdGDB9LH7KvUJslaOiPJWmKSrCUmyZoqSdYSk2QtMUnWEpNkLTFJ1hKTZC0xSda+nSRr6slYqBBCCCGEEBmA3Hw6/ZFTq0IIIYQQQgihgSRZE0IIIYQQQggNJGOhQgghhBBCZASyGmS6IyNrQgghhBBCCKGBJFkTQgghhBBCCA0kY6FCCCGEEEJkBArttK6B+EYysiaEEEIIIYQQGkiSNSGEEEIIIYTQQDINUgghhBBCiAxAIatBpjsysiaEEEIIIYQQGkiSNSGEEEIIIYTQQDIWKoQQQgghREagkJ/+6Y2MrAkhhBBCCCGEBpJkTQghhBBCCCE0kIyFCiGEEEIIkQHEy2qQ6Y6MrAkhhBBCCCGEBpJkTQghhBBCCCE0kIyFCiGEEEIIkRFoaad1DcQ3kpE1IYQQQgghhNBAkqwJIYQQQgghhAaSaZBCCCGEEEJkBDINMt2RkTUhhBBCCCGE0ECSrAkhhBBCCCGEBpJpkEIIIYQQQmQA8TINMt2RkTUhhBBCCCGE0ECSrAkhhBBCCCGEBpJpkEIIIYQQQmQAMg0y/ZFkLZ15+u5tWldB48x5kCWtq6BxXsa8S+sqaJSCBsZpXQWNczM8OK2roHFexEaldRU0Ts82c9O6Chpn+bYhaV0FjVOv6R9pXQWNczStKyB+GjINUgghhBBCCCE0kIysCSGEEEIIkRHINMh0R0bWhBBCCCGEEEIDSbImhBBCCCGEEBpIpkEKIYQQQgiRAcRryThNeiPvmBBCCCGEEEJoIEnWhBBCCCGEEEIDyTRIIYQQQgghMgC5KXb6IyNrQgghhBBCCKGBJFkTQgghhBBCCA0k0yCFEEIIIYTIAOK0ZZwmvZF3TAghhBBCCCE0kCRrQgghhBBCCKGBZBqkEEIIIYQQGYDcFDv9kXdMCCGEEEII8dMLCwuje/fuWFpakjlzZmrXrs3169e/atuuXbuiUCgSPYoVK5YoNi4ujlmzZpE/f34MDAwoXbo0f//993fVWUbWhBBCCCGEED+1uLg4bG1tuXXrFsOGDcPCwoKlS5dSq1Ytrl27RuHChf9zH/r6+qxevVqlzNjYOFHcmDFjmDFjBs7OzlSsWJE9e/bQoUMHFAoF7dq1+6Z6S7ImhBBCCCFEBpCRp0Fu376d8+fP4+rqSqtWrQBo06YNRYoUYfz48fz111//uQ8dHR06der0xRh/f3/mzp1Lnz59WLx4MQBOTk7UrFmTYcOG0bp1a7S1v/7m5Bn3HRNCCCGEEEJkCNu3byd79uy0aNFCWWZpaUmbNm3Ys2cPUVFRX7Wf2NhYXr16leTze/bsITo6mt69eyvLFAoFvXr14smTJ1y4cOGb6i3JmhBCCCGEECJNRUVF8erVK5XH1yZQX+PGjRuUL18erc9GFytVqkR4eDheXl7/uY/w8HCMjIwwNjbGzMyMPn368ObNm0SvkzlzZooXL57odT48/y0kWRNCCCGEECIDiNPS0tjH9OnTMTY2VnlMnz492dr+9OlTrKysEpV/KAsICPji9lZWVgwfPhwXFxf+/vtvmjRpwtKlS/n999+JiYlReZ3s2bOjUCi+63U+J9esCSGEEEIIIdLUqFGjGDx4sEqZvr6+2ti4uDjevXv3VfvV19dHoVAQERGhdn8GBgYAREREfHE/nyeO7dq1o0iRIowZM4bt27crFw750df5nIysCSGEEEIIIdKUvr4+RkZGKo+kkrXTp09jaGj4VQ9PT08ADA0N1U6rjIyMVD7/rQYNGoSWlhZHjx5VliX368jImhBCCCGEEBlAvPbPMU5TrFgxXFxcvir2w/RDKysrnj59muj5D2U5c+b85noYGhpibm7OixcvVF7vxIkTxMfHq0yF/N7XkWRNCCGEEEIIkW7kyJGDrl27ftM2ZcuW5cyZM8TFxaksMnLp0iUyZcpEkSJFvrker1+/Jjg4GEtLS5XXWb16Ne7u7pQoUULldT48/y1+jvRaCCGEEEIIIZLQqlUrnj9/zs6dO5VlwcHBuLq60rhxY5Upl76+vvj6+ir/HxkZyevXrxPtc/LkycTHx/P7778ry5o2bYquri5Lly5VlsXHx7N8+XJy5cpFtWrVvqne6WZkzdraGhsbG/bt25fir7Vu3TocHBy4cuUKv/zyS4q9jkKhYPz48UyYMCHFXkMIIYQQQgiAeC3Ffwf9pFq1akWVKlVwcHDg3r17WFhYsHTpUmJjY5k4caJKbN26dQF48OABAM+ePaNcuXK0b9+eYsWKAXDo0CEOHDjA77//TtOmTZXb5s6dm4EDBzJ79myio6OpWLEiu3fv5syZM2zevPmbbogNyZCsfUhsknLhwgWqVKnyoy8jhBBCCCGEEN9FW1ubAwcOMGzYMBYuXEhERAQVK1Zk3bp1FC1a9IvbmpiYYGdnx5EjR1i/fj2xsbEUKlSIadOmMXTo0ET3bpsxYwampqasWLGCdevWUbhwYTZt2kSHDh2+ud7JNrI2adIk8ufPn6i8UKFCyfUSQgghhBBCCPFdTE1NWb16NatXr/5i3IcRtQ9MTEzYuHHjV7+OlpYWo0aNYtSoUd9TTRXJlqw1bNgwRacMpobIyEj09PTSuhppokmn9rRxcsDM0gJfd08WT5qG5+07amPzFS5I1wH9KGxTghy5c7F0ygx2rlP9AG86eZgcuXMl2nbPpr9ZNGFKirQhudVt34qGjh0xtjDnkac3m6bOxe/OPbWxNVs1pVrTRuQuVACAB/c82P7nskTxVgWsaTO4D0UrlkdbWxt/Xz8WDxzJi6fPU7w9P6pl54506t4NM0tLfNw9mDthMvdu3VYbm79wIboPGkCxUiWxyp2b+ZOmstVlvUpMi47tadGpPVa5cgNw39ubtQuXcOHU6RRvS3Kp36E1to6dEj4jHt6snzqb+0l8Rmq3bkaNJo3IU7ggAH73PNg6f4lKfI9p4/m1uZ3KdrfOXGBW9/4p14hk1t6+Mw7du2NhaYmnuzvTxk/gzq1bScb/1qgR/YYMJlfu3Dx84Me8GTM5c+Kk8vm7D/3Ubjdn2nRcVqxM7uqniLadO9O1hzMWlpZ4ubszffwE3JL42wGo36ghfYcMJmfu3Dzye8D8GTM5e/Kk8nkzCwsGjRxO1f/9j6xGRly/fJnp4yfy6LMfF5qsZvsW/ObQESMLM554+rB12jwe3HFXG1ujVRMqN/mdnO+/Xx/d82TPguUq8fqZDGk+qBdl6vxKZhNjQvwDOL7JlTPbdqdGc37Ylbt+rNlzBjdff4JCX7NkRCfqVS7xxW0uud1nhssBvB8/x8rCmF6tatOiTgWVmM0HL7Bm9xmCwt5QzDoH45waU7pwnpRsSrJK7t8mWlpa2PfvQ92mdphZWhASGMihHXvYvGR5ajRHI8RpZ9xpkOlVqiww8uDBAxQKBXPmzGHJkiUUKFCATJky8dtvv/H48WPi4+OZPHkyuXPnxtDQkKZNm6osgfmpw4cPU7ZsWQwMDChRooTKRYIAL168YOjQoZQqVYosWbJgZGREw4YNufXZj4WTJ0+iUCjYsmULY8eOJVeuXGTKlIlXr16pfd3Q0FAqVapE7ty5lfdriIqKYvz48RQqVAh9fX3y5MnD8OHDE91bISoqikGDBmFpaUnWrFlp0qQJT548+d7uTHa1Gv1Oz9HD2bhoKT2btua+hyczXFZgYmamNt7AwJCnjx+zevZ8QgKD1Mb0adGW1lVqKh/D7bsBcPrgoRRrR3Kq9Hs92o0YwO6laxjfqguPPXwYunIBWc1M1cYXq1SeS/sPM9OhN1M6OPHiWSDDVi3EJNvH1YEs8+RizKaVPPV7yIyuvRjbvCP/LF9LdNTX3dQxLdWzbcSAMaNYvWAxXeya4e3uwZ/r12BqnsRnxNAQ/8ePWTJzLsGBgWpjAp89Y8nMuXRt0pyuTVtw7cJFZq1cSv7C6WM0vkrD+nQcMZCdS1YztmVnHnl6M3LVIoyS+IwUr1iBCwcOM7VrL8a3dyTk6XNGrl6M6SefEYBbp8/T+3+/Kx+Lh45JjeYki9/tbBk+dgxLFyygtZ0dnu7urNi4HjNzc7XxZSuUZ/aiBezcto1WtrYcP3yERStXUOiTFblq/lJR5TFm6DDi4uI4cuBgajXrhzSws2XY2NEsX7CQtraN8bznzvINSfdJmfLlmblwAbu2bqNNIzuOHz7MgpXLVfpkwcrl5M6TlwHOPWhra0eAvz8rN238rnsEpYUKv9el1fD+7Fu6lmmtHXji6UO/FfOT/H4tUrEcVw8cZb5jP2Z17EHos0D6r/wTk2wWyphWw/tTokYVXEZOZGLj9hzbuI12YwZTunaN1GrWDwmPekdR6xyMd27yVfGPn7+gx9T1VLYpwJ55/ehiV52xS3dx5oaXMubA2dtMdzlAnzZ12TWnD8Wsreg2yYWQsDcp1YxklRK/Tdr26EbjDm1ZPHEqjg0as2rWfNo6O9LMvmNKNkWIH5JsydrLly8JDg5WeYSEhKjEbN68maVLl9KvXz+GDBnCqVOnaNOmDWPHjuXff/9lxIgRdO/enb179zJ06NBEr+Ht7U3btm1p2LAh06dPR0dHh9atW3PkyBFlzP3799m9ezd2dnbMmzePYcOGcefOHWrWrElAQECifU6ePJn9+/czdOhQpk2bpnZkLTg4mDp16vD8+XNOnTpF0aJFiYuLo0mTJsyZM4fGjRuzaNEimjVrxvz582nbtq3K9k5OTvz555/89ttvzJgxA11dXWxtbb+3q5NdS8cuHNi6nUM7dvPIx5c/x00kKiKS31u3UBvveceNlTPncnL/QaKTuHv8yxehhAYHKx+Va9fC/+Ejbl26koItST4NurbnlOsezu7aR4CvH+snzuBdZCS/tmisNn7F8PEc37KDRx7ePPV7yNpxU1FoaVGiysfR5lYDenH79Hm2zV3MI3cvgh77c/PEGV6/CE2tZn239k4O7Nm6jf3bd/LAx5eZY/4gMiISu9at1Ma7377D4umzOLpvf5KfkbPHTnDh5CkeP3jIY78HLJ8zn/DwcGzKlU3BliSfhl06cMJ1N6d37cXf14+1E6YTFRlJzRbqf2wtHT6Oo39v56GHF0/9HrJq3BS0tBSUrFpRJS763TteBocoH+GvEq8+pam6ODmxfctWdrtux9fbh4mjxxAZEUGLNq3VxndycODsqVO4rFjJfR9fFs2dxz23u3ToYq+MCQ4KVnnUqV+fyxcu8OTx49Rq1g+xd+rGji1b2eO6nfs+PkweM5aIiAiaJdEnHR27cu7UadatXIWfry9L5s3H/e5d2r3vk3z581OmfHmmjB3H3du3eXDfjyljxmFgoE/DJuq/nzRNvS7tOLf9Hy7s3s9T3wf8NXEW0ZFRVGthpzZ+7YiJnNqykyce3jz3e8jGP6aj0NKi6CffrwXKluLingN4XblBSMAzzrru4YmnD9alvjw6pSlqli/KoA6/Ub9Kya+K33LoMrmzmTLSoREFc2ejU6OqNKhaknV7zyljXPaepU39irSsW4FCebIzsUdTDPT12HH8Wko1I1mlxG+TkuXKcv7YcS6dPM1z/wDO/HuYa2fPU6xMqZRsihA/JNmmQdarVy9Rmb6+vvJu3QD+/v54e3tjbGwMQGxsLNOnTyciIoKrV6+io5NQnaCgIDZv3syyZctUltH08vJix44dtGiR8IfarVs3ihUrxogRI6hfvz4ApUqVwsvLS+VCv86dO1OsWDHWrFnDuHHjVOoYGRnJ1atXkzwj+ezZM+rVq0dERASnT58mX758APz1118cPXqUU6dOUaPGxzN3NjY29OzZk/Pnz1OtWjVu3brFpk2b6N27N0uWLAGgT58+dOzYkdu3k54Gk1p0dHUpYlOCv5evUpbFx8dz/fxFSpQrk2yvUa+pHds/mwanqbR1dbAuUYz9qz7WNz4+nrsXrlCw7Nd9oesbGKCto83blwkjtQqFgtI1q3FwzSaGrFxAvuJFCPIPYP+q9Vw/ptnT/nR0dSlqU5L1S1coy+Lj47ly7jylypdNltfQ0tKiTqOGGBpm4s71G8myz5SkratD/pLF+GfVOmVZfHw8bhcuU/ibPiM6ys/IB8UrVWDp2UO8ffWae5eu4LpgOW/CXiZn9VOErq4uJUrZsOqzpYovnj1HmfLl1W5Ttnw51q9eo1J27vRp6v72m9p4cwsLfq1TmzFDEp/M00Q6uroUt7Fh9dJlyrL4+HgunTtHmfLl1G5Tplx5Nq5R7ZPzp89Q+7eEY9yHE4qfzuCIj4/n3bt3lKv4Czu3bkvuZiQrbV0d8pYoyr+rPk5Pi4+Px/3iFQqUsfmqfei9/9sJ/+Rv5/7NO5Su/T/O79xHWGAwRSqVJ7t1HlxnLkz2NmiCm16PqFpadRZCjbJFmOaSsGL2u+gY7voG0KNFLeXzWlpaVCtdkBuej1Kzqt8lpX6b3L1xE9u2rcllnQ//Bw8pUKwoNr+UY9m0WclR7XQhI68GmV4lW7K2ZMmSRDeT+3xpytatWysTNYDKlSsD0KlTJ2Wi9qH877//xt/fnwIFCijLc+bMSfPmzZX/NzIywt7enpkzZ/Ls2TNy5MihktzFxsYSFhZGlixZKFq0KNevX09U7y5duiSZqD158oSOHROGxk+fPk2uXB+vwXJ1daV48eIUK1aM4OBgZXmdOnUAOHHiBNWqVePAgQMA9O+ves3JwIED+euvv9S+7gdRUVGJplTGxcehpUi+2avGpiZo6+gQ+tkoaGhwCHkKJF4w5ntUr1+HLEZZObxjd7LsL6VlNUnok5fBqlNxX4W8wKpAvq/aR+shfQgLDObehYSRRCNzUwwzZ8bWyZ4dC5fjOm8xpWpUpe+Cmczs2hvPq5qboJiYmqKjo8OLTz7nAKHBwVgXLJDEVl+nYNEirNqxFT19fSLCwxnRsw8PfHz/e8M0pvyMhCT+jOTMb/1V+2g3tB+hgcG4nb+sLLt19jxXjpwg6Ik/2fLmpu3A3gxfsYDx7R2Jj4tLziYkuw+fk5DPPichwcHkL1hQ7TYWlpZq480tLdXGN23ZkvC3bzny77/JU+kUZppUnwR9qU8s1MZbWCT0iZ+vLwFP/BkwfBiTRo8hIiKCzt0cyZEzJxbZsqVMQ5JRlvd/O68++9t5HfKCHPm/7vu1xZDevAwMxv3CVWXZ1qnz6DhxBDNO/ENsdAxx8XFsGj8Dn2s3k7P6GiM49DUW5bKolFmYZOFNeBSRUdG8fBtBbFwc5iaqMeYmWbjvr36KoCZJqd8mW5avJnOWLLgc3kdcbCxa2tq4zFvA8X/2/2iVhUgxyZasVapU6T8XGMmbN6/K/z8kbnny5FFbHhqqOj2sUKFCKBSqZwQ+JIgPHjwgR44cxMXFsWDBApYuXYqfnx+xsbHKWHM11wioW8Hyg86dO6Ojo4O7uzs5cuRQec7b2xt3d3eVO5Z/KvD9dToPHz5ES0uLgp8dmP9riVCA6dOnJ7rvQ35TCwqYaf4B+VMNW7fk8umzSc4h/9nYOtlTuVF9ZnTprZyKoXifYF8/fprDG7YA8MjDm0JlS1G7bQuNTtZS0sP7ftjbNiVz1qzUafg7f8yZSa92HdNFwvYjGjt1oWrD+kzp0lNlus7FAx+ndD/29uWRpw9/HtlNiUoVuHsxfUwhTknN27Rm3+49vEsH13mmlJiYGAb17MXEWTM4d/smMTExXDp3jjMnTqLIACfMGzh15peG9ZjXtQ8xn/zt1O7YivylS7KkzzBeBDyj8C9laT92CC8Dg/G4ePULexQZSc1Gv1OniS3TBg3nobcPBUsUo/eYkQQ/D+LIrj1pXT0h1ErVm2IndRO4pMrj4+O/+TWmTZvGuHHjcHR0ZPLkyZiZmaGlpcXAgQOJU3Nm+ksXZLdo0YINGzawYMECpk+frvJcXFwcpUqVYt68eWq3/TwB/R6jRo1i8ODBKmXNylX+4f1+6mVoGLExMZh+lsiaWpgT+tnZ3e+RLacV5apVYWKfAT+8r9TyOiyhT4wtVC9iNjI3SzTa9rnfHTpi62TPrG59eeLlo7LPmOgYAnxVV7YLuP+AIuWTZ7ppSgkLDSUmJgYzCwuVclMLC0KCfiwBj4mO5snDhCk5nm53KVG6FG0dujBzzB8/tN+UpvyMmKv7jIQksVWCRg6daOzchemOfXj8yWdEnaAn/rx6EUr2vLk1Pln78Dkx/+xzYm5hQXASn5PgoCC18eo+V+UrVqRAoYIM7dsv+SqdwkKT6hPLL/VJsPr44I/x7m5utGlkR5asWdHV1SX0xQs2797J3SRWydMkb97/7Rh99reT1dyMV//x/Vq/a3sadOvEn04D8Pf6eEJHV1+PpgN7srz/KNxOnwfA38uX3EULU9+hw0+ZrFmYZiX4s4VCgsPekCWTPgb6umhpKdDW0kq0mEhI2BssTLKmZlW/S0r9Nuk+cghbVqzh5P6EBYr8vLzJnjMn7Xs6ZZhkTaZBpj+pshpkcvHx8UmUwHl5Jax8ZG1tDcD27dupXbs2a9asoV27dvz222/Uq1ePsLCwb369fv36MWnSJGbMmMGMGTNUnitYsCAvXrygbt261KtXL9Hjw8hZvnz5iIuLw9dXdaTgw4qSX6Kvr4+RkZHKIzmnQELCj2Uvt3uUr/bxxuUKhYJy1Spz70bSy21/rd9bNScs5AUXT2j2dVmfio2O4cE9D0pU+bjwg0KhoESVivjeTPrHUEPHTjTp6cjc7gN5cNcj0T793O5h9dk0nxzWeQkOeJa8DUhmMdHReLrdpWL1qsoyhUJBxWpVuXP9ZrK+lkJLkS5unxEbHYPfXQ9KfvYZsalSEe8vfEbsunWmea9uzOreH7+76pcp/5RZ9mxkMTEmLOjLCaAmiI6O5t4dN6pUr64sUygUVK5ejVtqpqAD3Lx+QyUeoOr/anBTTXzLtm1wu30bT/f/7jdNERMdjbubG5WrVVOWKRQKKlerxq0krs28deO6SjxAlRrV1ca/ef2a0BcvyGttTYlSpTjxyWJbmio2OoZH9zwpVuXjEvMKhYJilX/h/i23JLf7zbEjjXo6sKjHYB599v2qraODjq5uoqnCcXFxylkNP5uyRfJy8Y7q74rzt70pWyRhBpOerg4lC+bkwu2PJ4Ti4uK4cNuXckVVZzlpopT6bWJgYKjmcxKb6IbGQmiSdPXpDAgIYNeuXcr/v3r1ig0bNlC2bFnlNEVtbe1ECZ2rqyv+/v7f9Zrjxo1j6NChjBo1imXLPl4k3qZNG/z9/Vm1alWibSIiInj79i2QcP85gIULVS9y/vPPP7+rPilhx9r1NGrbivrNm5K3YAEGTPoDA0ND/t2e0NcjZk+j29CByngdXV0KFi9GweLF0NHVxSJ7NgoWL0bOfKoHAIVCQYOWzTmyaw9xn0xHTQ8Orfubmq2aUr1pI6wKWGM/fgT6hgac2ZVw8bbz9PG0GtRbGd+oW2da9O/B2rFTCA4IwNjCDGMLM/QzfRy5Pbh2E5Ua1qNmq6Zky5ubuh1aUbZWDY5v2ZHq7ftWf692oUm7NjRq0RzrggUZPmUiBpkM2b89oe5/zJ1Fr2FDlPE6uroULl6cwsWLo6Ori2WO7BQuXpzcn3xGeg0bQtlKv2CVKxcFixah17AhlK9SmUN7/kn19n2Pg+v/onbrZvyvqS05C1jjMH4k+oaGnNq1F4CeMybQdlAfZbydkz2t+vdk5ZhJBPk/xdjCHGMLc+VnRD+TIe2H9qdQGRssclpRskpFBi+Zw/NHj7l99kKatPFbrV+9mlbt2tG0ZQsKFCrIH1OnYJgpE7tctwMwbd5cBg4fpozf5OJC9Zq/0sXZifwFC9B74ABsSpXir/UbVPabOUsWfrNtxI4tW1O1Pclhw+o1tGzfjiYtW5C/YEHGTp2MYaZM7H7fJ1PnzqH/J32yee06qtX8FXunblgXLECvgQMoWaoUWz7pk/qNGvJLlcrkypOHWvXrsWLTBk4cPsKFM2dTvX3f4+j6LdRo1YQqTRuSo0A+2v8xDD1DA86//37tOm0czQb2VMb/1q0Tjfs5s2HcNEICnmJkYYbRJ9+vkW/D8bp8nRZD+1KkYjnMc1lRtVkjqjRpyM1jp9Kkjd/qbUQU7n4BuPslrFr9JPAF7n4BBASFATB30yGGL3BVxrdrUInHz18wa8NBfJ8EsvngRQ6ec6Nr448nPxwa12Db0avsOnEd3yeBTFixh4iod7Soo37BH02TEr9NLhw/SYfe3alc61ey58pJ9fp1aenYhbOHj6V284T4ask2DfLgwYN4eHgkKq9WrVqynbEoUqQI3bp148qVK2TPnp21a9fy/PlzXFxclDF2dnZMmjQJBwcHqlWrxp07d9i8ebPKQiXfavbs2bx8+ZI+ffqQNWtWOnXqROfOndm2bRs9e/bkxIkTVK9endjYWDw8PNi2bRuHDh3il19+oWzZsrRv356lS5fy8uVLqlWrxrFjx/Dx+fL0p9R08sC/GJub0XVgX0wtLfC958Eoxx6Evb+wN1tOK+LiPibA5tksWbH3Y4LRxtmRNs6O3Lp0mSEdHZTl5atXJXuunBx0Vb0XXnpw+d+jZDUzoXm/7u9veOzF3B4DlRfFm1tlVzk7V6ddC3T19Oi7QHUEdveSVexeshqA68dOsX7iTGydu9Bx9GCePXjE4oGj8L7+4yOYKe3o/gOYmJvhPLg/5haWeLu7M6hrN168n/KXI6eVSn9YZsvGxgMfp5R06u5Ep+5OXL94id7tOwNgam7G+LmzMLfMxpvXr/H18GRgF0cunz2fuo37ThcPHiGrqQmt+vfA2MKch+5ezOze/5PPSA7iP/m7qdeuJbp6egxcqLrq2I7FK9m5ZBVxsXHkLVqI/zWzJXPWrIQGBXHn3CVcFy4nJjo6Vdv2vf7dtx8zc3P6Dh6MhaUFHvfc6WHfVblghlXOnCqfk5vXrjO8/0D6Dx3CwGFDefjgAf2698DHy0tlv40aN0ahUHDgn72p2p7kcGjffkzNzOg9aBAWlhZ4urvTq0tX5YI9OXLlJC7+Y5/cun6dkQMG0m/IEPoPG8qjBw8Y0L2nSp9YZsvGsLFjMLewICgwiL07d7Ji0eJUb9v3uvbvMbKamdC4r3PCTbE9vFnUYzCvQxKuUzezyk78J31Ss21zdPX06PHnNJX97Fuyhn1LE1bOXD3sD5oN7IXjzAlkMjbiRcAz9ixcwemtu0gP3Hz9sf9jtfL/010SFidrXrs8M/q1Iij0NU+Dw5TP58luxooxXZjusp8N+86Tw9yYKb2b879yHxd6a1SjNC9evWXh30cJCntN8fxWrB7nkC6mQULK/DZZPGkqXQf2p//EcZiYmxESGMj+v13ZuHgZGUW8+iuPhAZTxH/PhWGfWLduHQ4ODkk+7+LiQq1atcifPz+zZ89WuX/ayZMnqV27Nq6urrRq9fF+TR/2eeXKFeWiJdbW1tjY2NC/f3+GDRuGp6cn+fPnZ/LkySrbRkVFMWbMGP766y/CwsIoX748c+bMYeTIkcrX/NJrJ/X6cXFxdOrUCVdXV7Zv307Tpk2Jjo5m/vz5bNiwAR8fHzJlykSBAgVo0qQJAwcOxMjICEi4PcCIESPYvHkzkZGR1KlTh6VLl5InTx7Gjx/PhAkTvrq/6xX6unuwZCS59bL8d1AG4xGh+fduS00FDYz/OyiDuRn+49ek/my0M8IKHd+oWuYc/x2UwSzfNuS/gzKYek01+zrjtHDU525aV0GtqqNupnUVknRhetm0roJG+uFkTaQuSdYSk2QtMUnWVEmylpgka4lJspaYJGuJSbKWmCRriUmy9u0kWVMvVVeDFEIIIYQQQqQNWQ0y/UlXC4wIIYQQQgghREYhyZoQQgghhBBCaCCZBimEEEIIIURGIMM06Y68ZUIIIYQQQgihgSRZE0IIIYQQQggNJNMghRBCCCGEyAjkptjpjoysCSGEEEIIIYQGkmRNCCGEEEIIITSQTIMUQgghhBAiI5BhmnRH3jIhhBBCCCGE0ECSrAkhhBBCCCGEBpJpkEIIIYQQQmQEMkyT7shbJoQQQgghhBAaSJI1IYQQQgghhNBAMg1SCCGEEEKIDEAhwzTpjrxlQgghhBBCCKGBJFkTQgghhBBCCA0k0yCFEEIIIYTIABRa8WldBfGNZGRNCCGEEEIIITSQJGtCCCGEEEIIoYFkGqQQQgghhBAZgKwGmf7IWyaEEEIIIYQQGkiSNSGEEEIIIYTQQDINUgghhBBCiAxASzutayC+lYysCSGEEEIIIYQGkmRNCCGEEEIIITSQTINMZ8oYmqd1FTSOQ56otK6CxhnirZfWVdAo2bQN0roKGkcLRVpXQePoyTJpifSwkhvofq5e0z/Sugoa5+ieSWldBfGVtORrLt2Rt0wIIYQQQgghNJAka0IIIYQQQgihgWQapBBCCCGEEBmAQkumNqc3MrImhBBCCCGEEBpIkjUhhBBCCCGE0EAyDVIIIYQQQogMQFaDTH/kLRNCCCGEEEIIDSTJmhBCCCGEEEJoIJkGKYQQQgghRAYg0yDTH3nLhBBCCCGEEEIDSbImhBBCCCGEEBpIpkEKIYQQQgiRAcg0yPRH3jIhhBBCCCGE0ECSrAkhhBBCCCGEBpJpkEIIIYQQQmQAMg0y/ZG3ZwenoQAAU+BJREFUTAghhBBCCCE0kCRrQgghhBBCCKGBZBqkEEIIIYQQGYBMg0x/5C0TQgghhBBCCA0kyZoQQgghhBBCaCCZBimEEEIIIUQGoK0Vn9ZVEN9IRtaEEEIIIYQQQgNJsiaEEEIIIYQQGkimQQohhBBCCJEByGqQ6Y+8ZUIIIYQQQgihgSRZE0IIIYQQQggNpBHJmrW1NXZ2dv8Zd/LkSRQKBSdPnkz5SgkhhBBCCPET0dLS3IdQ77u7xtfXlx49elCgQAEMDAwwMjKievXqLFiwgIiIiOSsY7J69eoVU6dO5ZdffsHY2Bh9fX3y5ctH27Zt2b9/f1pXTwghhBBCCCGA71xgZP/+/bRu3Rp9fX3s7e2xsbHh3bt3nD17lmHDhnH37l1WrlyZ3HXl119/JSIiAj09ve/a3sfHhwYNGvDw4UOaN2+Ovb09WbJk4fHjxxw4cAA7Ozs2bNhA586dk7nmQgghhBBCCPFtvjlZ8/Pzo127duTLl4/jx49jZWWlfK5Pnz74+Pik2AiVlpYWBgYG37VtTEwMzZs35/nz55w6dYrq1aurPD9+/HgOHz5MbGzsF/fz9u1bMmfO/F110GTV2zWnVtd2ZLUwI8DTl13TF/DYzV1tbKm6v1LXuRMWeXKhpaND8KMnnFq/lWv7DgOgpaNNw37OFP9fFcxyWRH55i3eF6+y/88VvAoKSc1m/RAzu1ZYtOyIjqk5kX7ePF02lwive0nGa2XOQvYuvTCqVgvtrEZEBz7j6Yr5vLl6/rv3qUkad2xHKycHzCwtuO/hydJJ0/C87aY2Nl+hgtgP7EuhkiXIkTsXy6fOYNe6TSoxWlpadOrfm7pN7DC1tCAkMIgjO3fz15IVqdGcZFG9XXPqOLRX/t3snPYnj5L6u6n3K/WdO6v83Zxcv5Wrew+pxFRv05TcJYqS2cSY2S0dCPD0Sa3mJIt29p3p2t0ZC0tLPN3dmT5+Am63bicZ/1ujhvQdMpicuXPz6MED5s+YyZkTJ5XPG2bKxKCRw6nzW32MTU3xf/yYzS7rcd38Vyq0Jnm07tyJzt2dMLe0xNvdndkTJnE3iT4pULgwPQcNoFgpG3Lmzs3cSVP422WdSky5ShXp3N2Z4jYlscyenSHde3LqyNFUaEnysWjSkmxtOqJrZkaErw9PFs8j3FP9d6HZb43IN3ycSlncuyhuNaql/L+WgSE5nXpjXP1XdIyMiXoWQNAuV0L27UrJZiSrJp3a0+b9d6yvuyeLJ03D8/YdtbH5Chek64B+FLZJ+I5dOmUGO9dtVInR0tLCvn8f6ja1w8zSgpDAQA7t2MPmJctTozk/5MpdP9bsOYObrz9Boa9ZMqIT9SqX+OI2l9zuM8PlAN6Pn2NlYUyvVrVpUaeCSszmgxdYs/sMQWFvKGadg3FOjSldOE9KNkXjaMt0w3Tnm9+yWbNm8ebNG9asWaOSqH1QqFAhBgwYAICLiwt16tQhW7Zs6OvrU6JECZYtW5bkvg8fPkzZsmUxMDCgRIkS7Ny5U+V5ddes1apVCxsbG+7du0ft2rXJlCkTuXLlYtasWSrburq64ubmxrhx4xIlah/89ttvNGzYUPn/devWoVAoOHXqFL179yZbtmzkzp0bgK5du2JtbZ1oHxMmTEChUKiUKRQK+vbty+bNmylatCgGBgZUqFCB06dPJ9kXqalsgzo0GdaHw8vXMb+NEwFePnRfMYcsZiZq48NfvuLoyo0s7NSbuS0duLL7IG0nj6RotYoA6BkYkLt4YY6sWM/8tk6sGzQWS+u8OC6anoqt+jFGv9Yjh/MAAv9ag2+/LkTe98F68gK0jU3Vxit0dLCeugi9bFY8njYKb+c2+C+YRkxI0HfvU5PUbPQ73UcPZ/PiZfRp1pr77p5MXbsCYzMztfH6hoY8ffyEtXP+JCQwSG1Mm+7dsGvfliWTpuH8exPWzJ5HaydHmtp3TMmmJJuyv9eh2fC+HFq2jrmtnQjw9KHHirlf/Ls5snIDf3bqxeyWXbm8+wDtJo+kaLVKyhh9Q0PuX7/D3vma/2NKnQZ2tgwbO5rlCxbSxq4xXu7urNi4HjNzc7XxZSqUZ+aiBezcto3WtnYcP3yYBSuXU6hIEWXM8HFjqF7zV0YOHEzTuvXZtMaF0ZMmUKte3VRq1Y+pb9uIQWNGs2rBIjrZNcXL3YNF610wNVf/t2NgaMCTx49ZPHM2wYGBamMMDQ3xdndn5h8TUrDmKcekVl1y9ezPs41r8OzZlYj73hScMR8dk6S/C2PfvuFOa1vl426H5irP5+rVH6OKVXg4YwLuju0I2rmVPP0GY1S1Rko3J1nUavQ7PUcPZ+OipfRs2pr7Hp7McFmBSRLfsQYGhjx9/JjVs+cn+R3btkc3Gndoy+KJU3Fs0JhVs+bT1tmRZungOzY86h1FrXMw3rnJV8U/fv6CHlPXU9mmAHvm9aOLXXXGLt3FmRteypgDZ28z3eUAfdrUZdecPhSztqLbJBdCwt6kVDOESBbfnKzt3buXAgUKUK1atf+MXbZsGfny5WP06NHMnTuXPHny0Lt3b5YsWZIo1tvbm7Zt29KwYUOmT5+Ojo4OrVu35siRI//5OqGhofz++++UKVOGuXPnUqzY/9u776gmsjYM4E8SepOOIIiAIopYEOtaAF10wbIqCJZF7IK9YcW61rWsZVHWurr4WUBAbKigggr2jihSLICidOmQfH+wRGOCgCUTyPs7h3PMzE14MjKTeTN37rXAvHnzcObMGYHcADBy5MhavNsKXl5eiI2NxZIlSzB//vxaPx8ALl++jBkzZmDkyJFYsWIFMjIy0LdvXzx6JPrKhDj1cB+KmMCTuBl8Bm8TXyBwxUaUFhah4yAnke0Tbt3Do4gopCe9QMbrVET5ByDtWSJMrFsDAIo+5MNvwmzcD7uId8mv8PJBLIJW/wkjSwuoN9QV51v7atqDhiHrbAiyz59E8askpG5fC25xETQc+otsr+7QHzKqanixci4KYh+gND0NBY/uoigp/qtfU5IMHuOOs0cCcC4wGC+fJ2LrkhUoLixCH+dBIts/e/gIu9dtxOVTZ1BaUiKyTUvrtogOv4gblyLxNiUVV86ex52r19C8tdWPfCvfja27K6IDQnEj+DTeJibj2IoNKCkqQqeq9pub9/AwPArpiS+Q8SoVkf9W7Dem1h/f763QMJzbuR/Pom+J6218V+7jxiLw8BEEHwtAYvxzrFi4GIWFhRg01EVk+5GjPXD1ciT2++1C0vMEbN+4GbGPHmPYKHd+mzbtrXEi8DhuxVxH6usUBPzvMJ49eQKrtm3E9ba+yYhxYxB85AhCAwKR9Pw51izyQVFhIQa4iN4msQ8eYuuadTh38hRKqth3rl2OxI6Nm3HpXPWfj5JId8gwZJw+gcywUyh6mYxXf64Ht7gYWn2rHmiMx+OhLCvz4092lsB65ZZWyDh3Gh/u30XJ2zfIOBWCwoTnULb48tUYSTFkzCicPhKAsMBgvHyegD99lqO4sAh9XQaLbP/04SP8vW4jLn3hGGvZri2uhUfg+n/H2Kiz53D7yjVYtJH8Y2xP6+aYOdwBP3e2rFH7w2E3YKirgfmjHWFmqIuRjl3Qp4sl9ode5bfZF3oFQ3/ugCG92qOpkR6WTxwIBXk5BEbc/lFvg5DvolbFWm5uLlJSUmBlVbMd/fLly9i3bx9mzJiBKVOmICwsDH369MGmTZuE2j579gx79uzBmjVrMHPmTFy5cgV6enqYN29etb8nNTUVq1atwp9//glPT0+cOXMGDRs2xJ49e/ht4uLioK6ujkaNGgk8Nz8/H+/fv+f/5ObmCr2+pqYmwsPDMWXKlBrlEeXRo0c4e/YsfHx84O3tjcjISPB4PCxZsuSrXu974cjIwLClOeJjPp4c8ng8PIu5DeM2NTtINutkDZ0mRki8fb/KNgqqyuByuSjMk/xvsFgyMlBsaoEP9258XMjj4cO9m1CyEP23r9apBwqePISBlzcs/M+gqe8h6AwdxR/e6GteU1LIyMqgmWVL3LkWw1/G4/Fw91oMWrb7+hPm2Dv30LZLJzRqYgwAMLVoDsv21rgZGfXNmX+0yv3mWczHD3kej4f4mFu12G/aQ6eJERK+sN/UJTKysmhp1QoxVz6eHPF4PMRcuYo21u1EPqeNtbVAewC4Fhkl0P7+7Tuw7d0bunp6AIAOXTrD2MQE1+rA34mMrCwsWrXC9c+2yY2r19C6im1S37FkZKBk3hx5d25+XMjjIe/OTSi1bFXl8ziKirD0Pw7LQ8EwWbEOCsYmAuvzYx+iQddukNXSAQCotLGGvKERcm/dEPVyEkVGVhbmrVriztVo/jIej4c733iMfXz3Htp16SxwjG1l0w43Lkv+vlNb9569RJfWTQWWdWtrjnvPXgIASkrL8DghFV0/acNms9G1tRnuPn0p1qxMY7Mk94eIVqt71ioLGVVV1Rq1V1RU5P87JycHpaWl6NmzJ8LCwpCTk4MGDRrw1xsYGGDQoI/f0qupqcHd3R3r1q3Dmzdv0LBhwyp/j4qKisAVMzk5OXTs2BGJiYkC2VVUVISeu2jRImzZsoX/2MnJCSdPnhRoM378eHA4nBq956p06dIF7dt/7DvduHFjDBw4EKGhoSgvLxf5+sXFxSguLhZYVsblQuY7jm+qrNEAHBkZ5GUIfkv5ISMTuiaNq3yegooyloQHQkZWDlxuOY7/vrnKqwEycnJwmjkJ986Eozi/4Ltl/1E4aupgcWRQlpUpsLwsOxPyRsYinyPX0ACybdoj52IYkpfOhJyBIQy8vAEZGbw7tOerXlNSqGlogCMjg+z3gvcbZmVkwMjMpIpnVe+I324oqShjd1gouOXlYHM42L9pKy6ekPxRWT/uN4L/n3kZWdA1qfr/U0FFGcsijvP3m4DfN9XZq2if09DQgIyMDDLevxdYnvH+PUzMzEQ+R1tHW2R7bR0d/uPVS5dj6ZpVCL8RjdLSUvC4XCybvxC3b9z8/OUkjvp/2yTzs30n8/17NDEzZSgVszgNKo6FpZ8fC7MyoVDFsbDo1Uu83LAahYnPwVFWga7LcJhv/RtPxg5H6fuKLoCvt2+C0cz5aHXkBHhlZeBxuXi1eS3yH9770W/pmzXQUAdHRgZZGZ8dY99nwMj064+xh3fuhrKKCvadO8k/xu7btAURdeAYW1vvs/Kg3U7wHE9bXQUfCopRVFyKnPxClHO50FIXbKOlroLEFNHdSAmRFLUq1tTU1AAAeXl5NWp/9epVLF26FNHR0SgoEDxJ/7xYa9q0qdC9Xub/3beQnJz8xWLN0NBQ6LkaGhp48ODjDdyqqqrIyBAe3MLLy4s/x1tVXSRNTL7+YFmpWbNmQsvMzc1RUFCAd+/eiXx/a9aswfLlywWWddZpjK56zJ/cF+cXYKPzWMgrKaJZp/YYMHcyMl6nIuHWPYF2bBkO3DcsBwssBKzcyExYcWCzUZadhZRtawAuF0XP4yCrpQPtISPx7tCe6p8vhXo49oX9gH5YO2seXsQ/h1kLC0xaNA8Z6em4EHSC6Xg/RHF+ATYMGQM5JUWYd26PX+dOqdhvbt5jOprEGu7hjtbt2mHKmHFIS0lF+04dsGjlcrx7m46Yq1erfwFS5xU8eYSCJx9vGfjw+AFa7j0M7X6DkLa/YuRpnV9doNzCEgmL56LkbRpUWreD4dTZKM14L3gVT4r0dOwL+wFOWD3Tu+IY29ICXovm4/3bdzgfFMJ0PEJIDdW6WDMwMKjRfVYJCQno1asXLCwssGnTJhgZGUFOTg6nT5/G5s2bweVyvzr056q66sXj8fj/trCwwL1795CSkiLQFdLc3JxfFFY10uSnVwgrfV4cVqpuNMnaWLBgAWbNmiWwzKeL43d7fQDIz8pBeVkZVLUEb+xW0dIUumrwKR6Ph4xXKQCA1KfPoWdqjF7jRgoUa5WFmoaBHnaMnVEnrqoBQHluNnjlZZDRELyxW0ZdE2WZordJWeZ78MrKgE/+rotfJUNWUxssGZmvek1JkZuVhfKyMqhrCw4SoaGlhax376t4VvXGz5uNI367cflUxb2lyc/iodtIH24Tx0l8sfZxvxH8/1TV0kDu+6pHPOXxeHgvsN80Qe9xv9WLYi0rKwtlZWXQ0tYWWK6lrY2Md6K/uX7/7r3I9u//ay8vL4/pc+dg+kRPREVcBAA8i4tD85YtMWrCOIkv1rL/2yaan+07mtrayPiGfacuK8+pOBbKfn4s1NBEaVYNRwsuL0fB82eQN6j4LGfJyUN/zCQkLZuP3OsVo+8WJSVA0awZdF2GS3yxlpOVjfKyMmh8NhCPhrYWst5//d/JhPmzcdhvDy79d4xNehYPPQMDDJs0rt4Va9oaqnj/2UAh77M/QEVJHgrysmCzWeCw2UKDiWRkf4C2es16i9UXNBpk3VPr/7J+/fohISEB0dHRX2wXGhqK4uJinDhxAhMnToSjoyN69+4tsvABKuZA+7S4AiruYwMgctTFr8kNAP7+/t/8WkDFlbvs7Gyh5S9evBDZPj4+XmjZs2fPoKSkBJ1Puvx8Sl5eHmpqagI/37MLJACUl5XhdewzNOv0sYsmi8VCs87WeHH/cY1fh8VmgSMny39cWahpNzbEzvEzUZAjfC+gpOKVlaHweRxU2nT4uJDFgkrbDiiIEz2MckHsA8gZGAKfFPHyjRqjNONdRZecr3hNSVFWWob4x7Fo16UTfxmLxULbrp0Qe/fr77eSV1AQ2ue55VywvvPf+I9Qud+Yf77fdGpf6/1G5pP9pi4rKy1F7MNH6PTTx8GnWCwWOv/UFffv3BX5nPt37gi0B4Au3X/it5eRlYWsnBx4n325xy0vB7sO/J2UlZYi7tEjdPxsm3To2hUPqtgm9R2vrAwFz55C1drm40IWC6rtbFAQW8MBt9hsKJqYoTSzorhjyXDAlpUV+LIMQMXjKr5YlSRlpaV49igW1l0785exWCy0+8ZjrIKCovC+w60b+05ttTVvjJiHCQLLrj2IR1vzits55GRlYGlmgOgHH6dC4XK5iH6QgHbNq77lgxBJUOs91tvbG8rKyhg3bhzevn0rtD4hIQFbtmzhX+369GQsJycH+/btE/m6qampCAr6OB9Kbm4uDhw4gLZt236xC2RNDR06FC1btsTKlSsRExMjss3nJ45fYmZmhpycHIGulmlpaQLv4VPR0dG4c+cO//GrV68QEhICBweHb74f7ltFHjiKTkP6wWZAX+iaGGOIz2zIKSriRvBpAMCwVQvhOH0Cv7392BEw72IDTUN96JoYo6e7K9r364M7n8yzNmrTShhZWsB//kqw2RyoamlCVUsTHJmvmodd7N4H/Q8afQdCvZcj5I2awGDyPLDlFZB1vuJ+xkazl0LPw4vfPvNUIDiqDaA/cRbkGhlBpcNP0BnqgcyTATV+TUl2fO8B/OLqjN6DBsDIzBRTV/hAQVER5wKDAQBz16/G6Nkz+O1lZGVg2qI5TFs0h6ysLLT09GDaojkMGn+czybm4iW4eY5HR9se0GtkgK4/98LgMe64dj5czO/u61w6cASdnfuhw4C+0DU1hvN/+831//ab4asXwWnGRH77XuNGwryLDbQM9aFragzbUa6w6dcHt/7bbwBASU0VBs2boqFZEwCArkljGDRvKnQFT1Id2L0HQ9zcMGDIYJg0NYPPqpVQVFJC8LGK/WDVpg2Y7j2X3/7fffvxU88ecB8/FiZmpvCcMR2WVlb43z8HAAD5Hz7gZnQMZi2cD5vOndDIyBADnYeg/5DBCA87JzKDpPHfvRe/urnCafAgNDEzw4LfV0BRSRGhARXbZPnGPzB57hx+exlZWZi3aAHzFi0gKysLnYZ6MG/RAobGH7u/Kyop8dsAQCMjI5i3aAE9A+HpdCRReuD/oOU4AJo/O0K+sTGMpnuDraCAjLMVx0LjeUugP9aT377hyDFQbd8RcvoGUGxqjibzl0JOryEyTldcgecWFCDv/h0YTJgClTbtINdQH5oOjtD8+RfkXL3MyHusrcC9/8DR1Rk/DxqIxmammL5iCRQUFXE2oOKcYt4fqzF2zgx+exlZWZi1sIBZCwvIyMpCW08XZi0sYGD8sfCIjriE4V4T0Om/Y+xPP/fCkDGjcOWc5B9j8wuL8SQpFU+SUgEAr9Mz8SQpFanvsgEAG/8Ng/eWY/z2bn064tXbTKw/cAYJr9PhfyYGZ64+gkf/j1M1je7fDUcv3ELQxTtIeJ2OZX4hKCwuwWB7a7G+N0Jqq9ZnzmZmZjh06BBcXV3RokULuLu7o1WrVigpKcG1a9dw7NgxeHh4YNasWZCTk0P//v0xceJEfPjwAbt27YKuri7S0tKEXtfc3Bxjx47FzZs3oaenh7179+Lt27dVFne1JSsri6CgIPTp0wfdunXD4MGD0b17dygrKyMlJQUnTpzAy5cv4eQketjtz7m5uWHevHkYNGgQpk2bhoKCAuzYsQPm5uYCRVmlVq1aoU+fPpg2bRrk5eXh6+sLAEL3pDHhXlgElDXV0WfyGKhpayIl7jl2TZqDD/8NOqKurydQyMopKWLwollQ19NBaXEx0pNe4tCC33EvLAIA0EBXB63sKua2mRMo+P/nO3qa0H1tkig38gLeqKlD97cJFRNYJz5D8pIZKM+u6LIop6Mn8C1u6ft0JC+eBv0JM9H0L3+UZbxDRshhvAs4WOPXlGSXT59FA00NuE+fAg0dbSQ+icOisZOQ/d99oDoG+uDyPm4PLV1d7DgRyH/sMm40XMaNxv3rN+E9cjQAwHfFaoyaMRVTli2GupYmMtLf4fThY/DfXvVcjJLk3tkIqGioo++Usfz9xu+T/UZDXw887if7jaICnBfPQgM93f/2mxf4d8FK3DsbwW9jadcNw1ct5D8etaHi+HDWdy/CfL/PsfBHCjt5Cppampg8aya0dbQRF/sEk9w9+IOI6BsYCHzTf//2HcyfNgNT5szG9Llz8CI5GdMnTMLzZx/nRpo7dRpmeHtj7ZbNaKCujrTXKdj2x0Yc/ff79JL40c6fOg0NLS1MmjUDWto6ePYkFlM9xvAHHWloYCBwW4COri4OnQ7lP3afMB7uE8bjdsx1TBxWMT9WSysr+B3++P5n+SwCAIQGBGL53K8bsVicsi+FQ6aBBvQ9xkFGQwuFCfFIWDCTPxy/rK6ewN8JR1UVjWfNh4yGFso/5KEgPg7Ppk9A0ctkfpvk331gMNYTxguWQ0ZVDSVv3yB17068D60bk2JfOn0WDbQ04TGj4hibEBuHBWMm8o+xugb64H5yPNHS1YFf6Mdj7NDxYzB0/Bjcv34Ds0dUHGO3r1gFjxnTMG25z3/H2HSc+t8xHKwDx9hHCSlwX7Kb/3jNvoovwQbZWWPtVGe8y8pD2vts/nojPU34LRqFNftO4cDJa2io1QC/ew1C93Yf52x07NYambn52Pq/C3iXnYcWJvrY7TNa6rpB1sMLq/Uei1eby0mfiI+Pxx9//IHz588jNTUV8vLyaN26Ndzc3DB+/HjIy8sjNDQUixcvxrNnz9CwYUN4enpCR0cHY8aMQVJSEr97Y5MmTdCqVStMmzYNc+fOxdOnT2FiYoKVK1fC2dmZ/zsvXboEOzs7XLx4Eba2tgAqJsV+//690H10Hh4euHTpEpKTkwWW5+TkYOvWrQgKCkJ8fDxKSkqgp6eHTp06YdSoUfzukkDFpNijR4/GzZs3YWNjg8+dP38es2bNwrNnz2BiYgIfHx/Ex8dj+fLlAsUNi8XC5MmT0aVLFyxfvhwvX75Ey5YtsWnTJv77qKnZVj1q1V4ajDYqrr6RlJkdn890BInSUl7yJx4Xtwt5KUxHkDjydBYjZJeZ6G760mxuct3p1i8uF0JWMB1B8lgOYTqBSCMOC19QkBT+bnSVU5SvLtZIzVUWa9u3b//m16JiTRgVa8KoWBNExZowKtaEUbEmjIo1YVSsCaNiTQQq1mqNijXR6sYNRIQQQgghhJBvQqNB1j30X0YIIYQQQgip97KzszFhwgTo6OhAWVkZdnZ2IseaEIXFYlX58/PPP/PbJScnV9nu8OHDtc5MV9YIIYQQQggh9RqXy4WTkxPu37+PuXPnQltbG76+vrC1tcXt27fRrFmzLz7/4MGDQstu3bqFLVu2wMHBQWjdsGHD4OgoOD9yly5dap2bijUxoNsCCSGEEEII06S5G2RAQAB/5PrKAQyHDh0Kc3NzLF26FIcOHfri80eOHCm07NKlS2CxWBg2bJjQOmtra5HPqS0p/i8jhBBCCCGESIOAgADo6elh8ODB/GU6OjoYOnQoQkJCUFxcuwHriouLERgYiJ49e8LQ0FBkm/z8fJSUlHxTbirWCCGEEEIIIYwqLi5Gbm6uwE9tC6gvuXv3LqytrcH+bOTfjh07oqCgAM8+meOzJk6fPo3s7GyMGDFC5Prly5dDRUUFCgoK6NChA86dO/dVualYI4QQQgghRApw2JL7s2bNGjRo0EDgZ82aNd/tvaelpUFfX19oeeWy1NTUWr2ev78/5OXlBeaEBgA2mw0HBwf88ccfOHHiBDZv3oz09HT88ssvOHXqVK1z0z1rhBBCCCGEEEYtWLAAs2bNElgmLy8vsi2Xy61x90J5eXmwWCwUFhaKfD0FBQUAQGFhYY2z5ubm4tSpU3B0dIS6urrAusaNGyMsLExg2W+//YaWLVti9uzZcHJyqvHvAejKGiGEEEIIIYRh8vLyUFNTE/ipqliLjIyEoqJijX6ePn0KAFBUVBTZrbKoqIi/vqYCAwNRVFRUZRfIz2lqamL06NF4+vQpXr9+XePfA9CVNUIIIYQQQqQCu55cprGwsMC+fftq1Laym6O+vj7S0tKE1lcuMzAwqPHv9/f3R4MGDdCvX78aP8fIyAgAkJmZWeWAJKJQsUYIIYQQQgipMxo2bAgPD49aPadt27aIiooCl8sVGGTk+vXrUFJSgrm5eY1eJy0tDRcvXoSHh0eVV/5ESUxMBFAxAmVt1JP6mhBCCCGEEEJEc3Z2xtu3b3H8+HH+svfv3+PYsWPo37+/QOGVkJCAhIQEka9z+PBhcLncKrtAvnv3TmhZSkoK9u7di9atW4sc5ORL6MoaIYQQQgghUoDDYjoBc5ydndG5c2eMHj0asbGx0NbWhq+vL8rLy7F8+XKBtr169QIAJCcnC72Ov78/DAwMYGtrK/L3eHt7IyEhAb169YKBgQGSk5Ph5+eH/Px8bNmypda5qVgjhBBCCCGE1GscDgenT5/G3LlzsXXrVhQWFqJDhw7Yv38/mjdvXqPXePr0KW7fvo1Zs2YJzddWycHBATt37sRff/2FrKwsqKuro0ePHli8eDGsra1rnZuKNUIIIYQQQki9p6Ghgd27d2P37t1fbCfqihoANG/eHDwe74vPHTZsGIYNG/a1EYVQsUYIIYQQQogU4NBoFXUO/ZcRQgghhBBCiASiYo0QQgghhBBCJBB1gySEEEIIIUQKUDfIuof+ywghhBBCCCFEAlGxRgghhBBCCCESiLpBEkIIIYQQIgVk2FI8K3YdRVfWCCGEEEIIIUQCUbFGCCGEEEIIIRKIukESQgghhBAiBWg0yLqH/ssIIYQQQgghRAJRsUYIIYQQQgghEoi6QdYxGx9GMh0BxcXFWLNmDRYsWAB5eXmm40gESdsmYUwHgORtE0lA20QYbRNhtE2ESdI2ucDob68gSdtDUtA2qRkODQZZ57B4PB6P6RCkbsnNzUWDBg2Qk5MDNTU1puNIBNomwmibCKNtIoy2iTDaJsJomwii7SGMtknNLDh3l+kIVVrj0I7pCBKJukESQgghhBBCiASibpCEEEIIIYRIARoNsu6h/zJCCCGEEEIIkUBUrJFak5eXx9KlS+kG3k/QNhFG20QYbRNhtE2E0TYRRttEEG0PYbRNSH1FA4wQQgghhBAiBZZGSO4AI8vtaYARUejKGiGEEEIIIYRIICrWCCGEEEIIIUQC0WiQhBBCCCGESAEOm2bFrmvoyhohhBBCCCGESCAq1gghhBBCCCFEAlE3SEIIIYQQQqQATYpd99B/GSGE/GBpaWm4f/8+8vPzmY5CCCH1Do/HQ3p6OtLT00EzUpH6hoo1Qr5SXl4eXr16JbAsNTUVS5Yswbx583Djxg2GkjHj7Nmz1bbZsGGDGJJIjpCQEFhYWMDQ0BDW1ta4fv06AOD9+/do164dgoODmQ3IoJMnT8LLywuOjo5wdHSEl5cXTp48yXQsRuXl5eHRo0eIiopCZGSk0A8hRFBsbCycnZ2hpqYGfX196OvrQ01NDc7Oznj06BHT8Qj5LmhSbCJkxYoVtX4Oi8WCj4/PD0gjuYYNG4akpCTExMQAAHJzc9GqVSu8fv0abDYbMjIyOHv2LGxtbZkNKiZsNhvjx4/Hxo0boaKiIrDu+fPnGDVqFGJiYlBeXs5QQvEKDQ3Fr7/+ii5dusDBwQHLli3DhQsXYG9vDwDo168fOBwOQkJCGE4qXtnZ2Rg0aBAiIyPB4XCgr68PoOLqY3l5Obp3747g4GCoq6szG1SMMjIyMGXKFAQGBorcP3g8HlgsltTsO5VevnyJ1atX4+LFi3j37h2Cg4PRo0cPvH//HitWrMDo0aPRrl39nUSXPou/LCoqCr/88gu4XC4GDhwIc3NzAMDTp09x4sQJsFgsnD17Ft27d2c4qWRZG3WP6QhVmt+9LdMRJBIVa0QImy18wZXFqhjq9fM/FxaLJbUnEkZGRpg4cSIWL14MAPD19cW0adNw5coVWFpaolevXlBTU8OFCxcYTioeq1evxooVK2BgYIC9e/fyi9Q///wTixcvhqqqKv7++2/079+f2aBi0qFDB6ioqODixYvIyMiAjo6OQLG2atUq+Pn54eXLlwwnFa9Ro0bB398fa9euhaenJ5SVlQEA+fn58PX1xYIFCzBixAj8888/DCcVn8GDByM0NBTTpk1D9+7doaGhIbJdz549xZyMObGxsejevTu4XC46deqE8+fP4/z58/z9x9raGu3atcOePXsYTvrj0Gfxl9nY2CAzMxOXL1+GkZGRwLpXr16hR48e0NbWxs2bNxlKKJmoWKt7aIARIoTL5Qo8TklJgZOTE1q1aoUZM2agefPmAIC4uDj8+eefiI2NxalTp5iIyqj379+jUaNG/McnTpxAt27d0LlzZwCAu7s7li9fzlQ8sVu4cCH69++PUaNGoXfv3hg/fjxiY2MRFRUFNzc3bN++HZqamkzHFJtHjx5h06ZNVa7X09NDenq6GBNJhuDgYHh5eWHOnDkCy5WVlTF37ly8fPkSBw4cYCgdM86dO4eZM2di/fr1TEeRGN7e3lBXV0dMTAxYLBZ0dXUF1js5OeHIkSMMpRMP+iz+ssePH2PlypVChRpQ8WWqp6cnli1bJv5ghHxndM8aqdbkyZPRrFkz/Pvvv7CxsYGqqipUVVXRoUMH+Pv7w8zMDJMnT2Y6ptipq6vjzZs3AIDCwkJERUXBwcGBv15GRgYFBQVMxWOElZUVrl+/DhsbG/j5+eHKlStYu3YtDh06JFWFGgAoKSl9cUCRxMREaGlpiTGRZJCVleWfZIpiYWEBWVlZMSZinpKSEpo0acJ0DIkSGRkJT09P6Ojo8K8mfapx48ZISUlhIBlz6LNYkLGxMYqLi6tcX1JSIrKQk3YcNktif4hoVKyRakVERPC7nojSq1cvhIeHizGRZOjatSt8fX0RFBSEGTNmoKioCAMHDuSvf/bsmcCVN2mQkpKC/v3748aNG3BycoKuri5WrlwJX19fpqOJnZ2dHf755x+UlZUJrXvz5g127dolUNxLiyFDhuDYsWMiu2qVlZXh6NGjcHFxYSAZc0aOHImgoCCmY0gULpcLJSWlKte/e/cO8vLyYkzEPPosFrRkyRJs3boV9+7dE1p39+5dbNu2ja6skXqBukGSaikoKCA6Ohqenp4i11+7dg0KCgpiTsW8devWwcHBAUOGDAEAzJ49G5aWlgCA8vJyHDt2DH379mUyoljt378fs2bNApvNxv/+9z+4uroiMzMTXl5emDJlCoKCgrBv3z4YGhoyHVUsVq1ahc6dO6NDhw5wcXEBi8VCWFgYIiIi4OfnBx6Ph6VLlzIdU+xGjhyJKVOmoGvXrpgwYQKaNm0KAIiPj8fff/+NkpISjBgxAnfu3BF4nrW1NRNxf4jP35uLiwsuX76Mvn37YsKECTAyMgKHwxF6Xn3aBtWxtrbGqVOn4OXlJbSurKwMhw8f5nc5lxb0WSwoJiYGenp6aN++Pbp27SpwLImOjkarVq0QHR2N6Oho/nNYLBa2bNnCVGRCvgoNMEKqNXPmTGzduhWTJ0/G1KlTYWZmBgBISEjA1q1b+QNrbN68meGk4ldaWorY2Fg0aNBAoBtTXl4eIiIi0KZNG6np3sRms9GvXz/s2rULenp6AusCAgLg6emJsrIyZGVlMZRQ/B4/fozp06fj4sWLAgMC2Nra4q+//kKLFi0YTMeMzwdNEDVgwqfd3urjoAlsNluoa1/l+xfV5a8+boPqnDlzBv369cOECRPg5uYGOzs7+Pv7Q0dHB6tXr0ZUVBTCw8PRo0cPpqOKDX0WCxI1AEt1pG0/EmVT9H2mI1RpVpc2TEeQSFSskWqVlJRg7Nix8Pf3B4vF4h8guVwueDwehg0bhn379kFOTo7hpIRJ+/fvh4eHR5Xr09PT4eXlhYCAAPGFkhBZWVl4/vw5uFwuTE1NoaOjw3QkxnztKI+jRo36zkmYQ9ugZg4ePIjp06cjJyeHX7DyeDyoqalhx44dGDZsGNMRxYo+i8n3QMVa3UPFGqmxBw8e4NSpU/yhxo2NjfHLL7+gTRvp3Lnu3buHJ0+eCJwwhIWFYdWqVSguLsbw4cMxffp0BhMSQkjdlp+fj/PnzyM+Ph5cLhdmZmbo06cPVFVVmY7GGPosJt+CirW6h4o1Qr6Sg4MDlJSUEBwcDABISkqCpaUltLS0YGBggFu3bmHHjh2YMGECs0HFKDc3F76+vrh48SLS09Ph5+eHjh07IjMzE/v378eAAQP49xXUd9UNP89isaCgoABDQ0NYW1tL3WAJn3r16hXS0tLQtGlTqRs1FKi4B6ugoABqamoi1+fm5kJJSQkyMtJxm3lBQQGMjIwwf/58zJ07l+k4hNQrW64/YDpClaZ3as10BIkkHUd+8l3ExMTwT8K9vLzQrFkzFBQUIC4uDubm5lBRUWE6oljdv39f4ETiwIED4HA4uHv3LrS1teHq6oqdO3dKTbH2+vVr9OzZE69evUKzZs0QFxeHDx8+AAA0NTXh5+eHFy9eSM3N3R4eHl+cwLZyOYvFgpqaGhYsWABvb2+x5xSH69evIywsDF5eXtDW1uYvT01NxbBhw3DlyhUAFfegTJ8+HRs2bGAqKiOmTZuGyMhIPHr0SOT6n376Cfb29lKz71QWppUTphNB9FlcQdS9n6JI+z1qpO6jYo1Uq6SkBG5ubggJCeGfXPbv3x/NmjUDm82Gg4MDZs6ciUWLFjEdVaxycnIE5sk6ffo0fv75Z/7J6M8//4wzZ84wFU/s5s6di7y8PNy7dw+6urpCk9j++uuvOHnyJEPpxO/evXsYNWoUtLS0MHnyZIGRyv766y9kZ2dj+/btePv2LbZt24YFCxZAVVW1ypHe6jJfX19cv34dS5YsEVju7u6OqKgo9OzZEzY2Nrhw4QI2b94MS0tLjB49mqG04nf27Fm4u7tXud7Z2Rn//vuv1BRrQMUUD5UDE9XkhFwa0GexoCVLlgj9bZSXlyM5ORnBwcFo3rw5+vXrx1A6Qr4fKtZItXx8fHDy5Ens2LEDdnZ2AhPaKigowMXFBSEhIVLzAVFJX18fT548AQCkpaXh9u3bAieYHz58+KrRquqqc+fOYebMmWjZsiUyMjKE1puamuLVq1cMJGPG5s2boaenh7Nnzwost7KywqBBg/DLL79gz5492L17NwYMGIDu3bvD19e3XhZrMTExcHR0FFj29OlTREREwNHRkV/El5aWomPHjtizZ49UFWupqalfnJPRwMBA6iaAdnNzg5eXF+zs7DB+/Hg0adIEioqKQu2kaToD+iwW9KU51NLS0tC5c2eYm5uLL1AdwZGe05J6g4o1Uq3//e9/8PT0xIQJE0SehLdo0QLHjh1jIBmzBg4ciG3btqGoqAjXr1+HvLw8Bg0axF9///59mJqaMphQvAoLC784ymFeXp4Y0zAvODgYq1evFrmOxWJhwIABWLx4MXbv3g02m40hQ4bU25OstLQ0gRNLADh16hRYLBYmTZrEXyYrK4thw4ZVud3qKy0tLTx9+rTK9U+ePKnyfrb6ytbWlv/vqKgoofXSOJ0BfRbXnL6+PiZNmoSVK1dK3aihpP6hYo1UKz09HVZWVlWu53A4KCgoEGMiyfD777/j3bt3OHjwINTV1bF//37+/GK5ubkICAjA5MmTGU4pPi1btkRkZCQmTpwocn1wcDDatWsn5lTM4XK5XzwBj4uLA5fL5T+Wl5evtxPaysrKoqysTGDZ1atXAVTcj/UpXV1dFBUViS2bJOjbty/8/PwwYsQIoX3kzp07+Pvvv+Hi4sJQOmbs27eP6QgShz6La0dZWRlJSUlMxyDkm1GxRqplZGSEuLi4KtdfvXpVakb4+5SKigr8/f2rXPf69WsoKSmJORVzZsyYgVGjRqF169b8E0sul4vnz59j+fLliI6ORmBgIMMpxWfAgAHw9fVF06ZNMW7cOH4hVlRUhF27dmHnzp1wdXXlt4+Ojq63+1GzZs0QERGBKVOmAKi4Cnvp0iVYW1tDQ0NDoO2bN2+EJlWv71auXImzZ8+iY8eOGDBgACwtLQEAjx49QmhoKHR1dbFy5UqGU4qXtM0pVxP0WVxzjx49wtatW6kbpAhsuge0zqFijVRr+PDh2LRpE4YMGcI/8FXe1Ltr1y4cPXoUa9euZTKixGGz2WjQoAHTMcRq5MiRePHiBRYvXszvzte3b1/weDyw2WysXr0av/76K7MhxWjLli1ISEjAtGnTMGfOHOjr6wOo6BJYUlKCjh078geMKCoqgqKiImbNmsVk5B/Gy8sLHh4e8PT0RNeuXXHs2DFkZ2djzJgxQm3Dw8P5xYq0qJzqY/78+QgJCUFQUBAAQE1NDSNGjMDq1athYGDAcErCNPosFmRiYiJy8Jns7Gzk5OQITK1DSF1G86yRapWUlKB///6IiIhAixYt8PjxY1hZWSEzMxOvX7+Go6MjQkJCwOFwmI7KiKtXr+LOnTvIyckR6NYGVHyQ+vj4MJSMGS9fvkRgYCCeP3/On8R28ODBUnX/XiUej4egoCCEhYXhxYsXAComsO3Tpw8GDRqE7OxsoStL9RGPx8PUqVOxY8cO/jQG7u7u2L9/v0C7J0+eoFWrVtiyZQv/Klx9V1xcjLCwMDRp0gStW7cGj8fDu3fvAAA6OjpSPRJiUVERAgMDv3h83bNnD0PpxI8+iwV9Oj1KJRaLBQ0NDZiZmcHNzU0q522sju+th0xHqJKXTdXdfKUZFWukRng8Hvz9/REQEID4+Hj+SfjQoUPx22+/SeUJRWZmJpycnHDjxg3+ze6Vu1Plv6XtBvhPxcXF4dixY0hLS4OFhQU8PDykbpAEUYqLi3HixAn4+/vj7NmzUnV/Vnp6OpKSkmBsbIyGDRsKrX/79i1ev36N5s2bS81cUTweDwoKCtiyZYvAYCvS7sWLF7Czs0NycjLU1dWRk5MDTU1NZGdno7y8HNra2lBRUUFiYiLTUcWKPovJt/K7I7nF2kRrKtZEoWKNkK80duxYHD58GHv37kWnTp1gamqKsLAwmJiYYPPmzYiOjsaZM2fq9f0327dvx9atW3Ht2jWByY5PnjwJZ2dnlJaW8gtYU1NTxMTECLSTFjweD+Hh4fD390dQUBByc3Oho6MDJycn7N27l+l4hGGtWrWCm5sbFi9ezHQUiTF06FCEh4fjzJkzMDU1ha6uLi5cuICffvoJW7duxfbt23HhwgU0a9aM6ahiEx8fX+37DQ0NRf/+/cWUiDkFBQUwMjLCggULMGfOHKbj1ClUrNU9NNsCqZa3tzfu3r3LdAyJc/r0aUycOBGurq5QVVUFUHGvWtOmTfHXX3+hSZMmmDFjBrMhf7ATJ07AzMxMoAArKyvD2LFjweFwsHfvXjx8+BBr167FixcvsGrVKgbTit/t27cxa9YsNGrUCA4ODjhw4ACcnJxw9epVvHnzRqoLtZMnT8LLywuOjo5wdHSEl5eXVE2a/qmFCxdi+/btXxw9VNpERETAy8sLHTt25M9XyePxIC8vj7lz56JXr171/vj6uV69eiE5ObnK9f7+/nB2dhZfIAYpKSlBRkZGqgbxItKLBhgh1dq2bRs2btwIU1NTuLm5YejQoV8cPlhaZGdn8wdCqOyy9eHDB/56BwcHLFy4kJFs4hIbG4vx48cLLLt48SLevXuHhQsX8kd0s7S0xP3793H69Gls3ryZiahik5iYCH9/f/j7+yM+Ph6NGjXCiBEj0LFjR7i6umLIkCHo0qUL0zEZk52djUGDBiEyMhIcDoc/8MqFCxfg5+eH7t27Izg4GOrq6swGFaOYmBhoaWmhVatWsLW1FTkBNIvF4g9IIw0KCgrQpEkTABUDrbBYLOTk5PDXd+nSRequqDRs2BD29vaIjIyEoaGhwDo/Pz94eXnBzc2NoXTiN2TIEAQEBMDT05O6f9YCh03bqq6hYo1UKz09HUFBQThy5AjWr1+P1atXw8LCgl+4fT7ZrbQwMDDAmzdvAFTMkaWrq4v79+9j4MCBAICUlJR6/wGSkZEBIyMjgWXh4eFgsVgCE4QDFfNpHT9+XJzxxK5Lly64ceMGtLW14ezsjN27d6Nbt24AgISEBIbTSYbp06cjKioK69atg6enJ5SVlQEA+fn58PX1xYIFCzB9+nT8888/DCcVn+3bt/P/HR4eLrKNtBVrjRs3xuvXrwEAMjIyaNSoEWJiYjB48GAAFV8U1dd5Caty7tw52NnZ8Qu2yvs+169fj/nz52P8+PHYuXMnwynFx83NDV5eXrCzs8P48eNFfskBANbW1gykI+T7oWKNVEtVVRXu7u5wd3dHdnY2AgMDcfToUaxcuRLLli2DlZUV3NzcMH/+fKajilWPHj1w/vx5/jD1rq6uWL9+PTgcDrhcLv7880/06dOH4ZQ/lp6eHr9grRQVFQUlJSW0adNGYLmcnBzk5OTEGU/srl+/DhMTE2zatAlOTk6QkaFD7OeCg4Ph5eUldFVEWVkZc+fOxcuXL3HgwAGG0jHj81EOCWBvb4+QkBAsXboUQMXIf2vWrEFWVha4XC4OHjwId3d3hlOKl7q6Os6fPw9bW1vY29vj0qVL+PPPP7F27VrMmTMH69evZzqiWNna2vL/HRUVJbRe2gf5IvUHnUmQWlFXV8fYsWMxduxYZGRk4ODBg1i6dCkWLVokdcXarFmzcP78eRQXF0NeXh7Lli3D48eP+UP19+jRA9u2bWM45Y9lY2ODf/75B1OnToWqqioeP36MGzduYODAgUKFSlxcnFDXnfpm+/btOHToEAYNGgRNTU0MGTIEbm5uAicV0k5WVvaLV+MtLCwgKysrxkREUixcuBBubm5o3bo15s+fj5s3b/KPrwsXLkRqaioCAgLA4XD4c45JG21tbVy4cAE9e/ZEixYtkJ2djRUrVkjl4DT79u1jOkKdxKHRKuocGg2S1FppaSnOnDmDI0eOIDQ0FB8+fICRkRF/Hilpl52dDQ6Hwx90pD57+PAhOnToAHV1dVhaWuL27dsoKChAdHQ02rdvL9DWzMwM9vb22LVrF0NpxScpKQn+/v44dOgQ4uLi0LBhQ9jZ2eHw4cMICAgQ6iIqTSZOnIinT58iPDxcaD6osrIy9OrVCy1btsSOHTsYSkiYwmaz8e+//2L48OEAKrpZ6+rq4vz587C3t2c4nfjduXOnynWvXr3Cb7/9hiFDhmDq1KkC66jbH/mSfQ8eMR2hSqNbt2I6gkSiYo3USFlZGc6dO4cjR44gJCQEubm50NfXh7OzM1xdXdG1a1emIxKGXLt2DatWrUJiYiKMjY0xZ84c9O7dW6DNpUuXMHXqVGzcuBEODg4MJWXG7du34e/vjyNHjiAtLQ16enro378/BgwYgN69e9f7+24+P+HMz8/HlClToKCggAkTJqBp06YAKoYl//vvv1FSUoLt27fz7/WTFmfOnMGmTZv4E0CL+miu7925RBVrOjo6uHDhglQWa2w2+4v3PX86r2flY+r2R6pDxVrdQ8UaqdbYsWMRHByMrKwsaGtr87t29ejRo94PoPGpr72PRtruqyCicblcRERE4N9//0VQUBDy8vKgpKQkMIJofSTqhPPTj51PTzQ/XSZNJ5yBgYEYOnQoLC0t0b17d+zYsQPDhw8Hj8dDSEgImjVrhl9//ZV//1Z9RcWaoK8dZKdyFN76yt/fH9ra2vx7wvPy8jBixAihdsbGxvX+VoSvceDRY6YjVMm9lSXTESQSFWukWlpaWhg0aBBcXV1hb28v1HVJWlTO9VMb0nbSSWqmqKgIISEhOHToEEJCQpiO80PRCWf1bGxsICsriytXriArK4s/AbS9vT2Sk5PRuXNnrF+/vt5/8UPFWtV4PB7y8vIgJydX76/Gf8np06fRv39/hIWF8XtwVP6d6Onp8bcNj8fDq1evcPLkSfzyyy9MRpY4VKzVPTTACKnW27dvaVQ7VNyHRMj3oKCgAFdXV7i6ujId5YeTpqLra8XGxmLNmjXgcDj8Y21paSkAoEmTJvDy8sK6devqfbEGAMnJyfyus5XzqsXHx1c575603J9VUlICTU1NrF69Gt7e3kzHYcyBAwfQsWNHoa72QMUVt0+L+o4dO2L//v1UrJE6j87ASbWoUKtgbGzMdARCSD2kpKTEn9ZCXV0d8vLySEtL46/X09OTmi+LfHx8+CPqVvLy8hJqJ233Z8nLy6Nhw4aQl5dnOgqjYmJiMHbs2Bq1HTBgAHbv3v2DE9U9NCl23UNn4USIiYkJ2Gw24uLiICsrCxMTk2rvTWOxWFI36W9mZiZev36N1q1bi1z/8OFDGBoaQkNDQ8zJCJEcY8aMAYvFwt9//w0Oh4MxY8ZU+xwWi4U9e/aIIZ1kaN68OWJjY/mP27Zti4MHD2LkyJEoKyvDoUOH0LhxYwYTigcNxf5lHh4eOHDgADw9Pev9nJVVefPmDYyMjASWKSoqYvr06UL7SKNGjfD27VtxxiPkh6BijQjp2bMnWCwW/x6tysdE0MyZM/H06VPExMSIXD9x4kS0aNFCqk46CflcREQE2Gw2uFwuOBwOIiIiavTljzQZPHgwtm7dig0bNkBeXh6LFi3CwIEDoa6uDhaLhfz8fOzdu5fpmD8cdZn9MisrKwQHB8PS0hIeHh5o0qQJFBUVhdoNHjyYgXTioaCgIDQok5KSEjZv3izUNj8/X2qLWlK/0AAjhHwlIyMjeHp6YuHChSLXr1mzBjt37qT55wghIlUONJOUlAQtLS3069cP+vr6AICoqCgcP34cHA4HTk5OsLOzYzgtYVpNBrmq711DO3ToAFNTUxw5cqTatq6urkhISMCtW7fEkKzuOBwXW30jhrhZtGQ6gkSiK2ukWjk5OWjQoAHTMSTOu3fvoK2tXeV6LS0tpKenizERIXVPXFwcjh07hrS0NFhYWMDDwwNqampMx/rh0tPT0bVrVyQlJfHvv1JUVERwcDB69+6N7t27o3v37kzHJBLk4sWLTEdg3K+//orly5cjJiYGnTt3rrLd9evXcfz4cSxbtkx84Qj5QejKGqmWvLw8+vbtC1dXVwwYMAAqKipMR5IIJiYm6Nu3L3bs2CFy/cSJE3HmzBm8fPlSzMkIkSzbt2/H1q1bce3aNYEvOEJDQ+Hi4oKSkhL+MlNTU8TExHzxi5D6YOrUqdixYwdmzJgBe3t7PH/+HCtXroSamprU3f9LSE3l5eWhbdu2ePfuHZYsWYIRI0bwr0YDQFpaGvz9/bFy5Upoa2vj3r17UFVVZTCx5KEra3VP7SeOIlJn1qxZePz4MUaOHAldXV04Ozvj2LFjKCwsZDoao3799Vfs2bMHJ06cEFoXEhKCffv2YdCgQQwkI0SynDhxAmZmZgIFWFlZGcaNGwcOh4N9+/bh4cOHWLt2LV68eIFVq1YxmFY8zp07B3d3d2zYsAGOjo6YNm0atm/fjuTkZDx9+pTpeIRIJFVVVYSFhcHY2Bje3t4wNDSElpYWjI2NoaWlBUNDQ3h7e8PIyAhnz56lQk0ENpslsT9ENLqyRmrs5s2bOHLkCAICAvDy5UsoKyujX79+cHV1haOjo9TdyJuTk4Nu3bohNjYWbdq0QatWrQAAjx49wv3799GiRQtcuXKlyvmBCJEWhoaGGD9+PJYuXcpfdv78efTp0wcLFy7E77//zl8+YsQI3Lp1q94XLIqKivjrr78ERsdMSUmBkZERLl26hB49ejCYjkiqN2/eYM+ePbhz5w5ycnLA5XIF1rNYLISHhzOUTnzKy8tx9OhRnDx5EnFxccjNzYWqqiosLCzQr18/DB06lKYdqsLRZ0+YjlCloeYtmI4gkegvmdRYhw4d0KFDB2zYsAHR0dH8wu3o0aNQU1NDVlYW0xHFqkGDBoiJicH69etx/PhxBAQEAADMzMzg4+ODuXPnQllZmeGUhDAvIyNDaLjt8PBwsFgsoavPP/30E44fPy7OeIwoLi6GgoKCwLLKx2VlZUxEIhLuwYMHsLW1RWFhIZo3b46HDx+iZcuWyM7ORkpKCszMzIT2s/qKw+Fg2LBhGDZsGNNRCPnhqFgjX6VLly7Q1taGhoYGNm3ahNzcXKYjic2nI7hpa2tj0qRJWL58OdOxCJFYenp6ePPmjcCyqKgoKCkpoU2bNgLL5eTkpOYqfXJyMu7cucN/nJOTAwCIj48XeUXe2tpaXNGIBJo/fz5UVFRw7949KCkpQVdXF1u2bIG9vT2OHTsGT09P+Pv7Mx2TSDiaFLvuoWKN1EpSUhKOHDmCo0eP4v79+2Cz2bCzs4OrqyvT0cTi8xHcAEBZWRlBQUHo3bs3w+kIkUw2Njb4559/MHXqVKiqquLx48e4ceMGBg4cKNRVKS4uDoaGhgwlFS8fHx/4+PgILffy8hJ4XDlaZH0ekp1U7+rVq/D29kbjxo2RmZkJAPxukC4uLrhy5Qrmzp2Ly5cvMxlTrMLCwrBnzx4kJiYiKysLn9/Zw2KxaMAeUudRsUaq9erVKxw9ehRHjhzB7du3wWKx0L17d/z1118YMmQIdHR0mI4oNitXrkRycjJmzpwpMILbxIkT6QOBkCosXboUHTp0QLNmzWBpack/jixYsECobVBQEOzt7RlIKV779u1jOgKpY7hcLvT09AAA6urq4HA4/KINqJg0e8+ePUzFE7s//vgD8+fPh56eHjp27AgrKyumIxHyQ1CxRqplbGwMFouFzp07Y/PmzXBxcREYKleafDqCWyU9PT0MHz4cT58+RfPmzRlMR4hksrKyQkREBFatWoXExER07twZc+bMQfv27QXaXbp0CUpKSnBxcWEoqfiMGjWK6QikjjExMUFSUhKAigmyTUxMcOHCBQwdOhQAcO3aNaka0KqyC+jp06chKyvLdJw6g0PjwNc5VKyRav3xxx8YOnSo1Ny4/CUvX77EvHnzBJZ169YNPB4Pb9++pWKNkCp07doVp06d+mIbW1tbPHz4UEyJCKlbHBwccOzYMf7UFp6enpg9ezYSExPB4/Fw6dIlzJ49m+GU4pOVlQVnZ2cq1Ei9R8Ua+aKCggIcOnQIysrKmDRpEtNxGEcjuBFCCGHCokWLMGzYMJSWlkJWVhYzZsxAfn4+AgMDweFw4OPjg4ULFzIdU2w6duxY76f4IASgYo1UQ0lJCUlJSWCxaPSgSjSCGyGEEHHT0NAQ6DrMYrGwePFiLF68mMFUzPH19cUvv/wCGxsbDB8+nOk4dQaNBln30KTYpFrDhw9HUVGRVMx9VB02my2ycK0crU3UMhrBjRBCyPeUnp6O5ORkAECTJk2gq6vLbCAGtG7dGpmZmUhLS4OKigoMDQ3B4XAE2rBYLNy/f5+hhJIpNFlyr0b2b0K3kohCV9ZItXx8fODi4oLffvsNEydOhImJCRQVFYXaaWpqMpBOvGgEN0IIIUwJDw/HvHnzcPfuXYHl7dq1w9q1a6VqChlNTU1oaWmhWbNmTEch5IeiK2ukWmz2x6GDvtQdkq4gEUIIIT9GUFAQXFxcoKenB3d3d5ibmwMAnj59ioMHDyI9PR1Hjx7FoEGDGE5KJNmpl8+YjlAlp8bmTEeQSFSskWotW7asRvesLV26VAxpCCGEEOljaWkJWVlZREVFQVVVVWBdbm4uunXrhvLycjx+/JihhKQuoGKt7qFukKRay5YtYzoCIYQQItUSExOxdu1aoUINANTU1DB27FiRE83XF5GRkQCAHj16CDyuTmV7QuoqKtYIIYQQQiSchYUF0tPTq1z/9u1bftfI+sjW1hYsFguFhYWQk5PjP64KDfIlGk2KXfdQsUaqtWLFimrbsFgs+Pj4iCENIYQQIn3Wr18PNzc3dOzYEQMHDhRYFxQUBD8/Pxw5coShdD/exYsXAQBycnICjwmp7+ieNVKtTwcY+RyLxaJvrwghhJDvbMCAAULLnj17hvj4eBgYGKBp06YAgOfPnyM1NRXm5uYwNzdHSEiIuKOSOuTsa8m9Z62vYf29MvwtqFgjX4XL5eLFixf466+/EBkZiTNnzkBLS4vpWIQQQki90KRJkxoN7vUpFouFxMTEH5RIctG8czV3PjWe6QhV+tmApmEQhXqukq/CZrNhYmKCDRs2oFmzZpg6dSrTkQghhJB6Izk5GUlJSbX6kbZCLTw8HDY2NtDX10eXLl3QpUsX6Ovrw8bGBhcuXGA6HpEwaWlpmD9/Puzs7KCqqgoWi4VLly7V6jVSUlIwdOhQqKurQ01NDQMHDqxyv9uzZw9atGgBBQUFNGvWDNu2bfuq3FSskW/Wo0cPnD59mukYhBBCCJESQUFB6NOnD9LS0uDt7Y3du3dj9+7dmDt3LtLS0vDLL78gKCiI6ZhEgjx9+hTr1q1DSkoKrKysav38Dx8+wM7ODpcvX8bChQuxfPly3L17Fz179kRGRoZAWz8/P4wbNw6WlpbYtm0bunTpgmnTpmHdunW1/r3UDZJ8s/HjxyMwMBCZmZlMRyGEEELqtdLSUqSkpCArKwuiTuGsra0ZSCV+NO/c14l485zpCFWyb9j0h75+Xl4eSktLoampiYCAALi4uODixYuwtbWt0fPXr1+PefPm4caNG+jQoQMAIC4uDq1atYK3tzdWr14NACgsLISRkRE6d+6MkydP8p8/cuRIBAcH49WrV9DQ0KhxbhoNklTrwIEDIpdnZ2cjMjISx48fx7hx48ScihBCCJEe2dnZmDNnDvz9/VFSUiK0XtoG+5L2eedI7Yn6W6mNgIAAdOjQgV+oARVTavTq1QtHjx7lF2sXL15ERkYGvLy8BJ4/efJk+Pv749SpUxg5cmSNfy8Va6RaHh4eVa7T1tbG/PnzsWTJEvEFIoQQQqSMh4cHQkND4ebmhk6dOqFBgwZMR2KUtM87Vx8VFxejuLhYYJm8vDzk5eUZSvQRl8vFgwcPMGbMGKF1HTt2xLlz55CXlwdVVVXcvXsXAGBjYyPQrn379mCz2bh79y4Va+T7SkpKElrGYrGgoaHxzd9SEEIIIaR6586dw7Rp07B582amo0gEaZ937mv96K6G32LZsmVYvny5wLKlS5di2bJlzAT6RGZmJoqLi6Gvry+0rnJZamoqmjdvjrS0NHA4HKFRSeXk5KClpYXU1NRa/W4q1ki1jI2NBR7HxcXh2LFjSEtLg4WFBTw8PKCmpsZQOkIIIaT+09LS4s+tJo1EzTuno6ODwYMHVznv3LZt29C7d29xRyVfacGCBZg1a5bAsqquqnG5XJHdgUWRl5ev9TQYnyssLKwyj4KCgkCbwsJC/uTtotpWtqspKtaISNu3b8fWrVtx7do1aGtr85eHhobCxcVFYAfZunUrYmJiBNoRQggh5PuZMGECDh8+DE9PT7DZ0jeY94MHD0SecDdu3BgA+POsycjIoHHjxigqKsLDhw/FGZF8o9p0eYyMjISdnV2N2j558gQWFhbfEg2KiooAINRNEwCKiooE2igqKlZZSBYVFfHb1RQVa0SkEydOwMzMTKAAKysrw7hx48DhcLBv3z7Y2Njg1KlTWLRoEVatWkVdMwghhJAfxMfHB8XFxbCxscFvv/0GQ0NDcDgcoXaDBw9mIN2PV1mMEQJU3LO4b9++GrUV1XWxtjQ1NSEvL4+0tDShdZXLDAwM+L+vvLwc6enpAl0hS0pKkJGRwW9XU1SsEZFiY2Mxfvx4gWUXL17Eu3fvsHDhQowaNQpAxdC59+/fx+nTp6lYI4QQQn6QlJQURERE4N69e7h3757INtI0GiSRbg0bNvziAHjfG5vNhpWVFW7duiW07vr16zA1NeWP49C2bVsAwK1bt+Do6Mhvd+vWLXC5XP76mqJijYiUkZEBIyMjgWXh4eFgsVgYNGiQwPKffvoJx48fF2c8QgghRKqMGTMGd+7cwYIFC2g0yM/k5eUhJycHXC5XaF1lN0lCauPly5coKCgQ6D7p7OyM+fPn49atW/yRHp8+fYqIiAjMmTOH387e3h6amprYsWOHQLG2Y8cOKCkpwcnJqVZZqFgjIunp6eHNmzcCy6KioqCkpIQ2bdoILJeTk6vyRkpCCCGEfLsrV65g3rx5QqPlSbMdO3Zg06ZNSExMrLINXWkkn/r9998BgD9Z+sGDB3HlyhUAwOLFi/nt3N3dcfnyZYGJ5728vLBr1y44OTlhzpw5kJWVxaZNm6Cnp4fZs2fz2ykqKmLlypWYPHkyXFxc0KdPH0RFReHff//FqlWroKmpWavMVKwRkWxsbPDPP/9g6tSpUFVVxePHj3Hjxg0MHDgQMjKCfzZxcXEwNDRkKCkhhBBS/zVs2LDWJ3n12c6dOzF58mT06dMHY8aMwaJFizBz5kwoKChg//790NPTw7Rp05iOSSSMj4+PwOO9e/fy//1psSaKqqoqLl26hJkzZ+L3338Hl8uFra0tNm/eDB0dHYG2Xl5ekJWVxcaNG3HixAkYGRlh8+bNmD59eq0zs3ifloyE/Ofhw4fo0KED1NXVYWlpidu3b6OgoADR0dFo3769QFszMzPY29tj165dDKUlhBBC6jdfX1/s2LED0dHRUFFRYToO4ywtLdG4cWOcOXMGGRkZ0NHRwYULF2Bvb4+cnBzY2Nhg0qRJAlc8CKmL6MoaEcnKygoRERFYtWoVEhMT0blzZ8yZM0eoULt06RKUlJTg4uLCUFJCCCGk/isqKoKsrCyaNm2KoUOHwsjISGg0SBaLhZkzZzKUULwSEhIwefJkAICsrCwA8IdLb9CgAcaNGwdfX18q1kidR8UaqVLXrl1x6tSpL7axtbWleUwIIYSQH+zTAQy2b98uso00FWsNGjRAWVkZAEBNTQ1KSkp49eoVf72qqqrQvfeE1EVUrBFCCCGESLikpCSmI0iUVq1a4f79+/zHnTt35o++x+Vy4efnB3NzcwYTEvJ9ULFGCCGEECKBbty4gaZNm0JTUxPGxsZfbJucnIzIyEi4u7uLKR2zRo4ciZ07d6K4uBjy8vJYvnw5evfuzR+qX1ZWFoGBgQynJOTb0QAjhBBCCCESiMPh4ODBgxg+fDgAIDMzE4aGhjhz5gx69uwp0Nbf3x/u7u5SPVR9YmIiQkNDweFw4ODgQFfWSL3AZjoAIYQQQggR9vn36TweD0VFRVJbkBUVFWHSpEnYtm2byPWmpqaYPn06uFwu/vzzT5SWloo5ISHfHxVrhBBCCCFE4v3999/Yv38/nJycvtiuX79+2Lt3L3bv3i2mZIT8OFSsEUIIIYQQiXf06FEMGTIEpqamX2xnamoKZ2dn/O9//xNTMkJ+HCrWCCGEEEKIxHv48CG6detWo7Y//fQTHjx48IMTEfLj0WiQhBBCCCESKjk5GXfu3AEA5OTkAADi4+Ohrq4u0E4ahvYvKSmBnJxcjdrKycmhuLj4Byci5Mej0SAJIYQQQiQQm80Gi8USWMbj8YSWfbq8Pg8+YmZmhgEDBmDz5s3Vtp05cyZOnDiBhIQEMSQj5MehK2uEEEIIIRJo3759TEeQKL1798aBAwewYMEC6OrqVtkuPT0dBw4cgIuLixjTEfJj0JU1QgghhBAi8RITE2FlZQUTExPs2bMHnTp1Empz/fp1jBs3DomJiXjw4AHMzMwYSErI90PFGiGEEEIIqRNOnTqFYcOGIT8/H6amprCysoKqqiry8vLw6NEjJCQkQElJCYcOHUL//v2ZjkvIN6NijRBCCCGE1BnJyclYt24dTp48iZSUFP5yAwMD9OvXD97e3tUO709IXUHFGiGEEEIIqZPy8vKQm5sLNTU1qKqqMh2HkO+OijVCCCGEEEIIkUA0KTYhhBBCCCGESCAq1gghhBBCCCFEAlGxRgghhBBCCCESiIo1QgghhBBCCJFAVKwRQgghhBBCiASiYo0QQgghhBBCJBAVa4QQQgghhBAigf4PO/5ZX/HQbK8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from dython.nominal import associations\n", "corrdict=associations(df,nominal_columns=cats,numerical_columns=nums,figsize=(10,10))" ] }, { "cell_type": "markdown", "metadata": { "id": "aJv94ScEejve" }, "source": [ "Targetla en yüksek korelasyonu olan kolonlara bakalım. Gözle de görülüyor ama kodla da bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 277 }, "executionInfo": { "elapsed": 23, "status": "ok", "timestamp": 1729948694298, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "dIqB_FuBejve", "outputId": "0ff800f0-fd9b-4ae7-827a-cad357263761" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 953 ms (started: 2024-10-26 13:18:10 +00:00)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Survived
Sex0.540200
Pclass0.336684
CabinGrup0.320034
Fare0.257307
Embarked0.173099
\n", "

" ], "text/plain": [ "Sex 0.540200\n", "Pclass 0.336684\n", "CabinGrup 0.320034\n", "Fare 0.257307\n", "Embarked 0.173099\n", "Name: Survived, dtype: float64" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 5.87 ms (started: 2024-10-26 13:18:11 +00:00)\n" ] } ], "source": [ "corr_results=corrdict[\"corr\"] #dataframe\n", "da.getHighestPairsOfCorrelation(corr_results,\"Survived\",5)" ] }, { "cell_type": "markdown", "metadata": { "id": "gpn01j6jejve" }, "source": [ "Bu korelasyon değerlerinden feature selection aşamasında yararlanabiliriz." ] }, { "cell_type": "markdown", "metadata": { "id": "zuasiK-Cejvf" }, "source": [ "#### Outliers" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 524 }, "executionInfo": { "elapsed": 685, "status": "ok", "timestamp": 1729948694968, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "28NF6JqLejvf", "outputId": "df5247a5-0502-47ce-80d3-786ec71633bf" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHpCAYAAACfnwg9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuMElEQVR4nO3deVxU9f4/8NcAAsM2iqIiohJommCkgkoueTWXVETTNBPT3K4LKiYqlvmt61LiWqZFt6+mYqa4FaWpXSlLFC3xh2WX5YoBorjOMCzDdn5/eDlfxhlwBmYYZub1fDzOI+Z83mfmfcZPc97zOWc+RyIIggAiIiIiqpWNqRMgIiIiMgcsmoiIiIh0wKKJiIiISAcsmoiIiIh0wKKJiIiISAcsmoiIiIh0wKKJiIiISAd2pk7gSSorK3Hz5k24urpCIpGYOh2LJwgCCgoK0KZNG9jYWGZNzT7VsNinyNAsvU+xPzU8XftUoy+abt68CW9vb1OnYXWys7PRtm1bU6dhFOxTpsE+RYZmqX2K/cl0ntSnGn3R5OrqCuDRjri5uZk4G8unUCjg7e0tvu+WiH2qYbFPkaFZep9if2p4uvapRl80VQ1Nurm5sfM0IEseEmafMg32KTI0S+1T7E+m86Q+ZXkng4mIiIiMgEUTERERkQ5YNBERERHpgEUTERERkQ5YNBERERHpgEUTERERkQ5YNBERERHpgEUTERERkQ5YNBERERHpgEUTERERkQ5YNBERERHpgEUTERERkQ70LprS09MxceJEtG3bFk5OTujcuTPee+89FBUVqcWdO3cOffv2hZOTE1q3bo0FCxZAqVQaLPHGrKKiAomJifjyyy+RmJiIiooKU6dkMXTtf5bmzp078PHxgYuLC3x8fHDnzh1Tp2QxfvvtN4SGhsLd3R1OTk7w9/fHhx9+aOq0jI6fU2RoxcXFmD9/PoYOHYr58+ejuLjY1CkZnJ0+wdnZ2QgODoZMJsP8+fPh7u6OpKQkrFq1Cr/++iuOHTsGAEhJScGgQYPQpUsXbNq0CTk5OdiwYQPS09Nx/Phxo+xIY3H48GG8+eabyMrKEtd16NABGzduxNixY02XmAXQtf9ZmqZNm0Iul4uPCwsL0bJlS8hkMjx8+NB0iVmAkydPYtSoUXjuueewcuVKuLi4IDMzEzk5OaZOzaj4OUWGFhYWpvYZfPLkSXz88ccYPXo0jh49arrEDE3Qw5o1awQAwtWrV9XWT5kyRQAg3L9/XxAEQRg+fLjg6ekpyOVyMeazzz4TAAjff/+9Pi8pyOVyAYDaczVWhw4dEiQSiTBq1CghKSlJKCgoEJKSkoRRo0YJEolEOHTokKlTfKLG/H7r2v+epDHv4+NkMpkAQAAgdO3aVUhISBC6du0qrpPJZKZO8Yka6/stl8uFVq1aCWPGjBEqKirq/VyNcR+14edU42du+zd69GgBgGBvby8sX75cyMjIEJYvXy7Y29sLAITRo0ebOsUn0vU916toWrZsmQBAuHPnjsZ6GxsbQalUCnK5XLCzsxOioqLUYlQqleDi4iJMnz5dn5c0m85TXl4udOjQQRg1apTGB3BFRYUwatQowcfHRygvLzdRhrppzO+3Lv1PF415H6vLz88Xi6PHc63aBwBCfn6+iTLUTWN9v3fs2CEAEP744w9BEARBqVTWuXhqrPv4OH5OmQdz2r+ioiKxYFKpVGptKpVKLJyKiopMlKFudH3P9bqm6YUXXgAATJ8+HSkpKcjOzsZXX32FHTt2YMGCBXB2dkZqairKy8vRs2dPtW3t7e0RGBiIy5cv1/oaKpUKCoVCbTEHZ8+eRVZWFlasWAEbG/W31cbGBtHR0bh+/TrOnj1rogzNny79Txtz7VPBwcEAgK5du8LNzU2tzc3NDV26dFGLI/2cPn0abm5uyM3NxdNPPw0XFxe4ublhzpw5KCkpqXVbc+1T/JwiQ4uKigIALF68GPb29mpt9vb2WLRokVqc2dO3GvvHP/4hSKVS8VsuAOGtt94S2w8ePCgAEH766SeNbcePHy+0bt261udftWqV2nOjhm/ajc2+ffsEAEJBQYHWdoVCIQAQ9u3b18CZ6aexf8N5Uv/Txlz7lLOzswBASEhI0Np++PBhAYDg7OzcwJnpp7H2qW7duglOTk6Ck5OTEBERIRw6dEiIiIgQAAgTJ06sdVtz7VP8nDIP5rR/Q4YMEQAIGRkZWtv//e9/CwCEIUOGNHBm+jHKSBPw6GLB/v37IzY2FocOHcIbb7yBtWvXYtu2bQAgXi3v4OCgsa2jo+MTr6aPjo6GXC4Xl+zsbH1TNAlPT08AwNWrV7W2V62viqO6eVL/08Zc+5SHhwcAYNmyZVrb33rrLbU40o9SqURRURGmTJmCDz/8EGPHjsWHH36I2bNnY//+/UhPT69xW3PtU/ycIkPr2LEjAOCf//yn1vbPP/9cLc7s6VOJffnll4JUKhWys7PV1k+dOlVwcnIS7t69W++RpseZS8XNawWMT5f+p4vGvI/V8Zom46q6oP7HH39UW//jjz8KAIQvvvhC5+dqrPv4OH5OmQdz2j9e01SL7du347nnnkPbtm3V1oeGhqKoqAiXL18Wv6Hk5eVpbJ+Xl4c2bdro85Jmw9bWFhs3bkRCQgLCwsKQlJSEgoICJCUlISwsDAkJCdiwYQNsbW1NnarZ0qX/WRIPDw/IZDIAgEwmwzPPPIMjR47gmWeeUVvPkaa6qfosatWqldr6li1bAgAePHjQ4DkZGz+nyNCkUilGjx6N0tJSuLq6YtmyZUhLS8OyZcvg6uqK0tJSjB49GlKp1NSpGoReRdPt27e1ToBWVlYGACgvL4e/vz/s7Oxw6dIltZjS0lKkpKQgMDCw7tk2cmPHjkV8fDxSU1MREhICNzc3hISE4OrVq4iPj+f8J/WkS/+zNA8fPhQLpGvXrmHs2LG4du0aAHCepnrq0aMHACA3N1dt/c2bNwFY7mlPfk6RoR09elQsnNavX4+nn34a69evFwsmS5qnSa+iqVOnTrh8+TLS0tLU1n/55ZewsbFBt27dIJPJMHjwYOzduxcFBQVizJ49e6BUKjF+/HjDZN5IjR07FhkZGThz5gz27duHM2fOID09nR9EBqBL/7NEDx8+RH5+Pjp06ABnZ2d06NAB+fn5LJjq6ZVXXgHwf9dcVPnnP/8JOzs78dealoifU0BiYiIkEonW5fz582qxut7hQqVSYdmyZWjTpg2kUil69eqFU6dONdQumdTRo0dRVFSEefPmYciQIZg3bx6KioosqmAC9JwRPCoqCsePH0e/fv0wf/58NG/eHAkJCTh+/DhmzJghDnevWbMGISEhGDBgAGbNmoWcnBxs3LgRQ4YMwbBhw4yyI42Jra2tRX/gmoqu/c8SeXh44Pr166ZOw6I899xzeOONN/C///u/KC8vx4ABA5CYmIiDBw8iOjraovsTwM+pKgsWLEBQUJDaOj8/P/Fvfe5wMXXqVMTHx2PRokXo2LEjdu3ahZdeeglnzpxB3759G2R/TEkqldb6oxyLoO/FUhcuXBCGDx8utG7dWmjSpInQqVMnYc2aNUJZWZla3NmzZ4WQkBDB0dFR8PDwEObNmycoFAp9X86sLoizBI39/da1/9Wmse+jpWnM73dpaanwP//zP0L79u2FJk2aCH5+fsLmzZv1fp7GvI+WyBDv95kzZwQAwsGDB2uN0/UOFxcuXBAACDExMeK64uJiwdfXV+jTp49eubE/NTyjzAhuCuw8Dcsa3m9r2MfGxBreb2vYx8bE0EWTQqHQ+sVLnztcREVFCba2tho5rV27VgAg/PXXXzrnxv7U8Iw2TxMREZGlmDZtGtzc3ODo6IiBAweq/YhJnztcXL58GZ06ddKYvb9qxv6UlJQaczDXGeatEYsmIiKyOvb29nj55ZexdetWHDt2DKtXr0Zqair69esnFkNVU+dom+zT09NT/KVlVWxNcQDUYh+3bt06yGQycfH29q7XvpHx6HUhOBERkSUICQlBSEiI+Dg0NBTjxo1Dt27dEB0djRMnTuh1h4vi4uIa46raaxIdHY3FixeLjxUKBQunRopFExERER79am706NE4fPgwKioqxAkZVSqVRmxJSYnahI1SqbTGuKr2mjg4OGgtuKjx4ek5IiKi//L29kZpaSkKCwv1usOFp6dnjXEALH4KC2vBoomIiOi//vOf/8DR0REuLi563eEiMDAQaWlpGhdxX7hwQWwn88eiiYiIrM6dO3c01l25cgVff/01hgwZAhsbG73ucDFu3DhUVFQgNjZWXKdSqbBz50706tWL1yhZCF7TREREVmfChAmQSqUICQlBy5Yt8ccffyA2NhZOTk54//33xThd73DRq1cvjB8/HtHR0cjPz4efnx+++OILZGVladyqh8wXR5qIiMjqhIWF4e7du9i0aRPmzp2Lr776CmPHjsWlS5fQpUsXMa579+44ffo0pFIpIiMjERsbi+nTpyM+Pl7jOXfv3o1FixZhz549WLBgAcrKypCQkID+/fs35K6REUkEQRBMnURtFAoFZDIZ5HK5xqRhZHjW8H5bwz42JtbwflvDPjYmlv5+W/r+NUa6vuccaSIiIiLSAYsmIiIiIh2waCIiIiLSAYsmIiIiIh2waCIiIiLSAYsmIiIiIh1wcksjqKiowNmzZ5GXlwdPT0/069cPtra2pk6LiIiI6oEjTQZ2+PBh+Pn5YeDAgZg0aRIGDhwIPz8/HD582NSpERERUT2waDKgw4cPY9y4cQgICEBSUhIKCgqQlJSEgIAAjBs3joUTERGRGWPRZCAVFRV48803MXLkSBw9ehS9e/eGi4sLevfujaNHj2LkyJFYsmQJKioqTJ0qERER1QGLJgM5e/YssrKysGLFCtjYqL+tNjY2iI6OxvXr13H27FkTZUhERET1waLJQPLy8gAA/v7+Wtur1lfFERERkXlh0WQgnp6eAICrV69qba9aXxVHRERE5oVFk4H069cPHTp0wNq1a1FZWanWVllZiXXr1sHHxwf9+vUzUYZERERUHyyaDMTW1hYbN25EQkICwsLC1H49FxYWhoSEBGzYsIHzNREREZkpTm5pQGPHjkV8fDzefPNNhISEiOt9fHwQHx+PsWPHmjA7IiIiqg8WTQY2duxYjB49mjOCExERWRgWTUZga2uLF154wdRpEBERkQHxmiYiIiIiHbBoIiIiItIBiyYiIiIiHbBoIiIiItIBLwQ3gtLSUmzfvh2ZmZnw9fXF3LlzYW9vb+q0iIiIqB5YNBnY0qVLsXnzZpSXl4vroqKiEBkZifXr15swMyIiIqoPFk0GtHTpUsTExKBVq1YIDw/HU089hf/85z/Ys2cPYmJiAICFExERkZli0WQgpaWl2Lx5M2QyGRwdHbFhwwaxrX379pDJZNi8eTNWr17NU3VERERmiBeCG8j27dtRXl4OuVyObt26qd17rlu3bpDL5SgvL8f27dtNnarZmjp1KiQSSY1Lbm6uqVMkIiILpnfRpM+B69y5c+jbty+cnJzQunVrLFiwAEql0qA70Fikp6cDAF588UUcOHAA58+fR3R0NM6fP48DBw7gxRdfVIsj/c2ePRt79uxRW3bv3g0nJyc888wz8PLyMnWKRERkwfQ+PTd79mwMHjxYbZ0gCPj73/+ODh06iAeulJQUDBo0CF26dMGmTZuQk5ODDRs2ID09HcePHzdM9o2IRCIBAMjlcri6umpcCN69e3e1ONJfnz590KdPH7V1P//8M4qKivDaa6+ZKCsiIrIWehdNuh64VqxYgWbNmiExMRFubm4AgA4dOmDmzJk4efIkhgwZUs/UG5devXrh448/RnJyMlq1aoXVq1dj5MiRSEhIwNtvv43k5GQxjgxn3759kEgkmDRpkqlTISIiC2eQa5oeP3ApFAqcOnUKkydPFgsmAJgyZQpcXFxw4MABQ7xso9KqVSvx78rKSo1FWxzVT1lZGQ4cOICQkBB06NChxjiVSgWFQqG2EBER6avev57TduBKTU1FeXk5evbsqRZrb2+PwMBAXL58ucbnU6lUUKlU4mNzOcClpqYCADw8PHD//n3Mnj1bbLOzs0OLFi1w9+5dpKamWtwom6l8//33uHfv3hNPza1btw7vvvtuA2VFRESWqt5Fk7YDV15eHgDA09NTI97T0xNnz56t8fnM9QCXlZUFALhz5w5GjBgBX19flJSUwNHREZmZmfj222/V4qj+9u3bhyZNmuCVV16pNS46OhqLFy8WHysUCnh7exs7PSIisjD1Lpq0HbiKi4sBAA4ODhrxjo6OYrs25nqA8/X1BQDMmTMHx48fF4skAPDx8cHf//53fPLJJ2Ic1Y9SqcSxY8cwdOhQNG/evNZYBwcHrX2RiIhIH/Uqmmo6cEmlUgBQO81WpaSkRGzXxlwPcHPnzkVUVBQOHz6MGzduICkpCXl5efD09ESfPn3Qvn172NnZYe7cuaZO1SIcPXqUv5ojIqIGVa8LwWs6cFWdlqs6TVddXl4e2rRpU5+XbZTs7e0RGRmJ27dvo3379khLS8OAAQOQlpaG9u3b4/bt24iMjORs4AYSFxcHFxcXhIaGmjoVIiKyEvUaaarpwOXv7w87OztcunRJ7bRdaWkpUlJSnngNirmquq/c5s2bNS4Ej4qK4n3nDOTOnTs4ffo0Xn31VTg5OZk6HSIishJ1HmmqOnCNGTNG48Alk8kwePBg7N27FwUFBeL6PXv2QKlUYvz48XXPuJFbv349CgsLsXnzZsyfPx+bN29GYWEhCyYD+uqrr1BeXs5Tc0RE1KDqPNL0pAPXmjVrEBISggEDBmDWrFnIycnBxo0bMWTIEAwbNqzOCZsDe3t7LFq0yNRpWKy4uDi0bNlSY2Z6IiIiY6rzSNOTDlzdu3fH6dOnIZVKERkZidjYWEyfPh3x8fF1TpYIAJKSknD79m3Y2tqaOhUiIrIidR5pSkpKemJM37598csvv9T1JYiIiIgaDYPcRoWIiIjI0rFoIiIiItIBiyYislqJiYmQSCRal/Pnz5s6PaOSy+Xo27cv2rVrh759+0Iul5s6JaJGr963USEiMncLFixAUFCQ2jo/Pz8TZWN8fn5+yMzMFB9nZ2ejadOm8PX1RUZGhgkzI2rcWDQRkdXr168fxo0bZ+o0GkT1gmnYsGFYtWoV3n33XZw4cQKZmZnw8/Nj4URUAxZNREQACgoKIJVKYWdnuR+LcrlcLJgKCwvFiYmPHz+OoqIiODs7IzMzE3K5HDKZzJSpEjVKvKbJCCoqKpCYmIgvv/wSiYmJqKioMHVKRFSLadOmwc3NDY6Ojhg4cCAuXbpUa7xKpYJCoVBbzMGIESMAPBphevxODk5OThgyZIhaHBGpY9FkYIcPH4afnx8GDhyISZMmYeDAgfDz88Phw4dNnRoRPcbe3h4vv/wytm7dimPHjmH16tVITU1Fv379cPny5Rq3W7duHWQymbh4e3s3YNZ199dffwEAVq1apbX97bffVosjInUsmgzo8OHDGDduHAICApCUlISCggIkJSUhICAA48aNY+FE1MiEhIQgPj4eb7zxBkJDQ7F8+XKcP38eEokE0dHRNW4XHR0NuVwuLtnZ2Q2Ydd21a9cOAPDuu+9qbV+9erVaHBGpkwiCIJg6idooFArIZDLI5XK4ubmZOp0aVVRUwM/PDwEBATh69ChsbP6vHq2srERYWBiuXr2K9PT0Rn37D3N5v+vDGvaxMTHH9/vVV1/F4cOHUVRUpNP/r+ayj3K5HE2bNgWgfk0TAPGaJgB4+PBho76myVze77qy9P1rjHR9zznSZCBnz55FVlYWVqxYoVYwAYCNjQ2io6Nx/fp1nD171kQZEpGuvL29UVpaisLCQlOnYlAymQy+vr4AAGdnZwwdOhRnz57F0KFDxYLJ19e3URdMRKZkuT8TaWB5eXkAAH9/fxQXFyMqKgrp6eno2LEjYmJi4O/vrxZHRI3Xf/7zHzg6OsLFxcXUqRhcRkaGOO3AyZMncfLkSbGN8zQR1Y5Fk4F4enoCAF566SW10aSTJ0/i448/Rr9+/dTiiMj07ty5Aw8PD7V1V65cwddff43hw4drjBpbioyMDMjlcowYMQJ//fUX2rVrh2+//ZYjTERPwKLJQPr16wepVIqzZ8/C3t4eixcvxowZM/DPf/4TmzZtwtmzZyGVSsXiiYhMb8KECZBKpQgJCUHLli3xxx9/IDY2Fk5OTnj//fdNnZ5RyWQy/Pzzz6ZOg8isWObXKBMoLS1FcXExAGDw4MEIDQ1Fy5YtERoaisGDBwMAiouLUVpaaso0iaiasLAw3L17F5s2bcLcuXPx1VdfYezYsbh06RK6dOli6vSIqJHhSJOBREVFAQDGjBmDy5cvIyQkRGzz8fFBWFgYjh49iqioKGzbts1UaRJRNQsWLMCCBQtMnQYRmQkWTQaSnp4OAIiJiUGHDh1w9uxZ5OXlwdPTE/369UNmZiaOHj0qxhEREZF54ek5A+nYsSMA4J///CdsbW3xwgsv4NVXX8ULL7wAW1tbfP7552pxREREZF5YNBlITEwMAGDTpk0a1y2VlpZiy5YtanFERERkXlg0GYhUKsXo0aNRWloKV1dXLFu2DGlpaVi2bBlcXV1RWlqK0aNHQyqVmjpVIiIiqgMWTQb05YFDGDhkOEpLS7F+/Xo8/fTTWL9+PUpLSzFwyHCs/vgLFJdWmDpNIiIiqgNeCG5AmXeU+M9z89C26xt4mLgT5Q/yYNfME01fmIb/2Esx8qOfkRDRF/5enECOiIjI3LBoMiBfDxckRPQFAGSE98Gir1KwZUIg/Fq6qMUQERGR+eHpOQOS2tvC30sGfy+ZWCj5tXQR1/l7ySC1f/Id04mIqOGtWbMGEolEvFdodefOnUPfvn3h5OSE1q1bY8GCBVAqlRpxKpUKy5YtQ5s2bSCVStGrVy+cOnWqIdKnBsCiiYiIrF5OTg7Wrl0LZ2dnjbaUlBQMGjQIRUVF2LRpE2bMmIHY2FiMHz9eI3bq1KnYtGkTXnvtNWzduhW2trZ46aWXeMsaC8HTc0REZPWWLFmC3r17o6KiAnfv3lVrW7FiBZo1a4bExES4ubkBADp06ICZM2fi5MmTGDJkCAAgOTkZ+/fvR0xMDJYsWQIAmDJlCvz9/bF06VKcO3euYXeKDI4jTUREZNV++uknxMfHi/PpVadQKHDq1ClMnjxZLJiAR8WQi4sLDhw4IK6Lj4+Hra0tZs2aJa5zdHTE9OnTkZSUhOzsbKPuBxkfR5qIiMhqVVRUICIiAjNmzEBAQIBGe2pqKsrLy9GzZ0+19fb29ggMDMTly5fFdZcvX0anTp3UiisACA4OBvDoNJ+3t7fGa6hUKqhUKvGxQqGo1z6R8XCkiYiIrNYnn3yCGzdu4B//+IfW9ry8PACAp6enRpunpydu3rypFltTHAC12OrWrVsHmUwmLtoKK2ocWDQREZFVunfvHt555x2sXLkSHh4eWmOKi4sBAA4ODhptjo6OYntVbE1x1Z/rcdHR0ZDL5eLC03iNF0/PERGRVXr77bfh7u6OiIiIGmOqbn1V/fRZlZKSErVbY0ml0hrjqj/X4xwcHLQWW9T4sGgiIiKrk56ejtjYWGzZskXttFlJSQnKysqQlZUFNzc38dRa1Wm66vLy8tCmTRvxsaenJ3Jzc7XGAVCLJfPE03NERGR1cnNzUVlZiQULFsDHx0dcLly4gLS0NPj4+OC9996Dv78/7OzscOnSJbXtS0tLkZKSgsDAQHFdYGAg0tLSNC7kvnDhgthO5o1FExERWR1/f38cOXJEY+natSvatWuHI0eOYPr06ZDJZBg8eDD27t2LgoICcfs9e/ZAqVSqTXA5btw4VFRUIDY2VlynUqmwc+dO9OrVixd4WwCeniMiIqvTokULhIWFaayvmqupetuaNWsQEhKCAQMGYNasWcjJycHGjRsxZMgQDBs2TIzr1asXxo8fj+joaOTn58PPzw9ffPEFsrKy8Pnnnxt5j6ghcKSJiIioFt27d8fp06chlUoRGRmJ2NhYTJ8+HfHx8Rqxu3fvxqJFi7Bnzx4sWLAAZWVlSEhIQP/+/U2QORlanYqm3377DaGhoXB3d4eTkxP8/f3x4YcfqsXoenNDIn3p0v+IiOoiMTERV69e1Vjft29f/PLLLyguLkZ+fj62bdsGV1dXjThHR0fExMQgLy8PJSUlSE5OxtChQxsidWoAep+eO3nyJEaNGoXnnnsOK1euhIuLCzIzM5GTkyPGVN3csEuXLti0aRNycnKwYcMGpKen4/jx4wbdAbIuuvQ/IiIiY9CraFIoFJgyZQpGjBiB+Ph42NhoH6jS9eaGRPrQtf8REREZg15HnX379uH27dtYs2YNbGxsUFhYiMrKSrUYfW5uSKQPXfofERGRsehVNJ0+fRpubm7Izc3F008/DRcXF7i5uWHOnDnijKf63NxQG5VKBYVCobYQAbr1P23Yp4iIyBD0KprS09NRXl6O0aNHY+jQoTh06BDeeOMNfPLJJ5g2bRoA/W5uqA1vXEg10aX/acM+RUREhqBX0aRUKlFUVIQpU6bgww8/xNixY/Hhhx9i9uzZ2L9/P9LT0/W6uaE2vHEh1USX/qcN+xQRERmCXkVT1c0GX331VbX1kyZNAgAkJSXpdXNDbRwcHODm5qa2EAG69T9t2KeIiMgQ9Cqaqm422KpVK7X1LVu2BAA8ePBAr5sbEulDl/5HRERkLHoVTT169AAAjbs4V12n5OHhodfNDYn0oUv/IyIiMha9iqZXXnkFADTuofPPf/4TdnZ2eOGFF/S6uSGRPnTpf0RERMai1+SWzz33HN544w387//+L8rLyzFgwAAkJibi4MGDiI6OFk+f6HpzQyJ96Nr/iIiIjEHv26h88sknaNeuHXbu3IkjR46gffv22Lx5MxYtWiTGVN3ccNmyZYiMjISrqyumT5+OdevWGTJ3skK69D8iIiJj0LtoatKkCVatWoVVq1bVGld1c0MiQ9K1/xERERkab95FREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTUREREQ6YNFEREREpAMWTURE/7VmzRpIJBL4+/ubOhWjUyqVGDNmDLp164YxY8ZAqVSaOiWiRs/O1AkQETUGOTk5WLt2LZydnU2ditEFBwfj4sWL4uPU1FS4uroiKCgIycnJJsyMqHHjSBMREYAlS5agd+/e6Nmzp6lTMaqqgkkikSA8PBxXrlxBeHg4JBIJLl68iODgYFOnSNRosWgiIqv3008/IT4+Hlu2bDF1KkalVCrFgqmoqAi7d+9Gt27dsHv3bhQVFYmFE0/VEWnHoomIrFpFRQUiIiIwY8YMBAQE6LSNSqWCQqFQW8xBeHg4AGDy5MlwdHRUa3N0dMSkSZPU4ohIHYsmIrJqn3zyCW7cuIF//OMfOm+zbt06yGQycfH29jZihoaTmZkJ4NGpSG0WL16sFkdE6lg0EZHVunfvHt555x2sXLkSHh4eOm8XHR0NuVwuLtnZ2UbM0nB8fX0BABs2bNDavmnTJrU4IlLHoomIrNbbb78Nd3d3RERE6LWdg4MD3Nzc1BZzsGfPHgDA3r17UVJSotZWUlKCffv2qcURkToWTURkldLT0xEbG4sFCxbg5s2byMrKQlZWFkpKSlBWVoasrCzcv3/f1GkalIuLC4KCgiAIApycnDB58mT89ttvmDx5MpycnCAIAoKCguDi4mLqVIkaJRZNRGSVcnNzUVlZiQULFsDHx0dcLly4gLS0NPj4+OC9994zdZoGl5ycLBZOcXFx6NGjB+Li4sSCifM0EdWMk1sSkVXy9/fHkSNHNNa//fbbKCgowNatWy322p7k5GQolUqEh4cjMzMTvr6+2LNnD0eYiJ6ARRMRWaUWLVogLCxMY33VXE3a2iyJi4uL1qKRiGrG03NEREREOuBIExFRNYmJiaZOgYgaKY40EREREemARRMRERGRDlg0EREREemARROZjcTEREgkEq3L+fPnTZ2eUcnlcvTt2xft2rVD3759IZfLTZ0SEZHV0etC8MTERAwcOFBrW1JSEnr37i0+PnfuHJYuXYrffvsNbm5ueOWVV7B27VrOA0L1tmDBAgQFBamt8/PzM1E2xufn56d2A9Xs7Gw0bdoUvr6+yMjIMGFmRETWpU6/nnvSQSslJQWDBg1Cly5dsGnTJuTk5GDDhg1IT0/H8ePH65cxWb1+/fph3Lhxpk6jQVQvmIYNG4ZVq1bh3XffxYkTJ5CZmQk/Pz8WTkREDaRORdOTDlorVqxAs2bNkJiYKN7IskOHDpg5cyZOnjyJIUOG1C1bov8qKCiAVCqFnZ3lzpohl8vFgqmwsBBOTk4AgOPHj6OoqAjOzs7IzMyEXC6HTCYzZapERFahztc0FRQUoLy8XGO9QqHAqVOnMHnyZLU7f0+ZMgUuLi44cOBAXV+SCAAwbdo0uLm5wdHREQMHDsSlS5dqjVepVFAoFGqLORgxYgSARyNMVQVTFScnJ/HLR1UcEREZV52KptoOWqmpqSgvL0fPnj3VtrG3t0dgYCAuX75c63Ob6wGOjM/e3h4vv/wytm7dimPHjmH16tVITU1Fv379au1X69atg0wmExdvb+8GzLru/vrrLwDAqlWrtLa//fbbanFERGRcehVNuhy08vLyAACenp4a23t6euLmzZu1voa5HuDI+EJCQhAfH4833ngDoaGhWL58Oc6fPw+JRILo6Ogat4uOjoZcLheX7OzsBsy67tq1awcAePfdd7W2r169Wi2OiIiMS68LQkJCQhASEiI+Dg0Nxbhx49CtWzdER0fjxIkTKC4uBgA4ODhobO/o6Ci21yQ6OhqLFy8WHysUChZOVCM/Pz+MHj0ahw8fRkVFBWxtbTViHBwctPbHxu7bb79F06ZNceLECRQVFamdoisqKsLJkyfFOCIiMr56z9NUddA6c+YMKioqIJVKATw6zfa4kpISsb0mDg4OcHNzU1uIauPt7Y3S0lIUFhaaOhWDkslk8PX1BQA4Oztj6NChOHv2LIYOHQpnZ2cAgK+vLy8CJyJqIAb56VH1g1bVabmq03TV5eXloU2bNoZ4SSLRf/7zHzg6OlrkHGAZGRnitAMnT54UR5cAcJ4mIqIGZpAZwasftPz9/WFnZ6fxi6bS0lKkpKQgMDDQEC9JVujOnTsa665cuYKvv/4aQ4YMgY2NZU5wn5GRgYcPH+L555+Ht7c3nn/+eTx8+JAFExFRA9NrpOnOnTvw8PBQW1d10Bo+fDhsbGwgk8kwePBg7N27FytXroSrqysAYM+ePVAqlRg/frzhsierMmHCBEilUoSEhKBly5b4448/EBsbCycnJ7z//vumTs+oZDIZfv75Z1OnQURk1fQqmnQ9aK1ZswYhISEYMGAAZs2ahZycHGzcuBFDhgzBsGHDDL4TZB3CwsIQFxeHTZs2QaFQwMPDA2PHjsWqVass+jYqRETUOOhVNOl60OrevTtOnz6NZcuWITIyEq6urpg+fTrWrVtn8B0g67FgwQIsWLDA1GkQEZGV0qto0ueg1bdvX/zyyy91SoqIiIiosbHMK2eJiIiIDIxFExERWZ3ff/8d48ePx1NPPQUnJye0aNEC/fv3xzfffKMRe+3aNQwbNgwuLi5wd3dHeHi41l/zVlZWYv369fDx8YGjoyO6deuGL7/8siF2hxqI5d4inoiIqAY3btxAQUEBXn/9dbRp0wZFRUU4dOgQQkND8emnn2LWrFkAgJycHPTv3x8ymQxr166FUqnEhg0bkJqaiuTkZNjb24vP+dZbb+H999/HzJkzERQUhGPHjmHSpEmQSCSYOHGiqXaVDElo5ORyuQBAkMvlpk5FL6k5D4X2yxKE1JyHpk5FL+b6fuvDGvaxMbGG99sa9rExMdb7XV5eLjz77LPC008/La6bM2eOIJVKhRs3bojrTp06JQAQPv30U3FdTk6O0KRJE2HevHniusrKSqFfv35C27ZthfLycp3zYH9qeLq+5zw9R0REBMDW1hbe3t54+PChuO7QoUMYOXKk2o2xBw8ejE6dOuHAgQPiumPHjqGsrAxz584V10kkEsyZMwc5OTlISkpqkH0g42LRREREVquwsBB3795FZmYmNm/ejOPHj2PQoEEAgNzcXOTn56Nnz54a2wUHB+Py5cvi48uXL8PZ2RldunTRiKtqr4lKpYJCoVBbqHHiNU1ERGS13nzzTXz66acAABsbG4wdOxbbtm0D8H/3UK26p2p1np6euH//PlQqFRwcHJCXl4dWrVpBIpFoxAHAzZs3a8xh3bp1ePfddw2yP2RcHGkiIiKrtWjRIpw6dQpffPEFhg8fjoqKCpSWlgIAiouLAQAODg4a2zk6OqrFFBcX6xSnTXR0NORyubhkZ2fXb6fIaDjSREREVqtz587o3LkzAGDKlCkYMmQIRo0ahQsXLkAqlQJ4dPrscSUlJQAgxkilUp3itHFwcNBacFHjw5EmIiKi/xo3bhwuXryItLQ08dRa1Wm66vLy8uDu7i4WO56enrh16xYEQdCIA4A2bdoYOXNqCCyaiIiI/qvqNJpcLoeXlxc8PDxw6dIljbjk5GQEBgaKjwMDA1FUVIRr166pxV24cEFsJ/PHoomIiKxOfn6+xrqysjLs3r0bUqkUzzzzDADg5ZdfRkJCgtp1Rj/88APS0tIwfvx4cd3o0aPRpEkTbN++XVwnCAI++eQTeHl5ISQkxIh7Qw2F1zQREZHVmT17NhQKBfr37w8vLy/cunULcXFx+PPPP7Fx40a4uLgAAFasWIGDBw9i4MCBWLhwIZRKJWJiYhAQEIBp06aJz9e2bVssWrQIMTExKCsrQ1BQEI4ePYqzZ88iLi4Otra2ptpVMiAWTUREZHUmTJiAzz//HDt27MC9e/fg6uqKHj164IMPPkBoaKgY5+3tjR9//BGLFy/G8uXLYW9vjxEjRmDjxo0aF2+///77aNasGT799FPs2rULHTt2xN69ezFp0qSG3j0yEhZNRERkdSZOnKjz/eC6du2K77///olxNjY2iI6ORnR0dH3To0aK1zQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREdXb/fv3ERAQgObNmyMgIAD37983dUoGZ2fqBIiIiMi8tW7dGrdv3xYf379/H82bN0erVq1w69YtE2ZmWBxpIiIiojqrXjD17t0bP/zwA3r37g0AuH37Nlq3bm3K9AyKI01ERERUJ/fv3xcLpoKCAri4uAAAkpKSoFQq4erqitu3b+P+/ftwd3c3ZaoGwZEmIiIiqpMBAwYAeDTCVFUwVXFxcUFwcLBanLlj0URma82aNZBIJPD39zd1KkaXnJwMiUQiLsnJyaZOySL8/vvvGD9+PJ566ik4OTmhRYsW6N+/P7755htTp2Z0crkcffv2Rbt27dC3b1/I5XJTp0Rm6ObNmwAefR5r895776nFmbt6F021HbjOnTuHvn37wsnJCa1bt8aCBQugVCrr+5JEyMnJwdq1a+Hs7GzqVIxOIpGgV69eaut69eoFiURioowsx40bN1BQUIDXX38dW7duxcqVKwEAoaGhiI2NNXF2xuPn54emTZvil19+QXZ2Nn755Rc0bdoUfn5+pk6NzEybNm0AAG+99ZbW9nfeeUctztzVq2iq7cCVkpKCQYMGoaioCJs2bcKMGTMQGxuL8ePH1+cliQAAS5YsQe/evdGzZ09Tp2JUjxdGM2fOrLWd9PPSSy/hxIkTWLVqFWbOnImFCxfizJkzePbZZ7Fp0yZTp2cUfn5+yMzMBAAMGzYMSUlJGDZsGAAgMzOThRPp5ccffwQAnD9/XmNQRKlUiqPiVXHmrl5FU20HrhUrVqBZs2ZITEzE3//+d6xevRrbtm3DiRMncPLkyfq8LFm5n376CfHx8diyZYupUzGq6qfg0tPTIQgCYmNjIQgC0tPTtcZR/dna2sLb2xsPHz40dSoGJ5fLxYKpsLAQx48fR+/evXH8+HEUFhYCeFQ48VQd6crd3R2tWrUCALi6uqJXr174/vvv0atXL7i6ugIAWrVqZREXgQP1KJpqO3ApFAqcOnUKkydPhpubm7h+ypQpcHFxwYEDB+r6smTlKioqEBERgRkzZiAgIECnbVQqFRQKhdpiDqqfknv823/1x4+fuiP9FRYW4u7du8jMzMTmzZtx/PhxDBo0qMZ4c+1TI0aMAPBohMnJyUmtzcnJCUOGDFGLI9LFrVu3xMIpOTkZw4YNE7/McZ4mPPnAlZqaivLyco0RKHt7ewQGBuLy5cs1Pre5fhhRw/jkk09w48YN/OMf/9B5m3Xr1kEmk4mLt7e3ETM0vMdPyVUJDw9v4Ews15tvvgkPDw/4+flhyZIlGDNmDLZt21ZjvLn2qb/++gsAsGrVKq3tb7/9tlocka5u3bqFe/fuwd/fH+7u7vD398e9e/csqmAC6lg0PenAlZeXBwDw9PTUaPP09Kz1Knpz/TAi47t37x7eeecdrFy5Eh4eHjpvFx0dDblcLi7Z2dlGzNLwPvvsM63r9+zZ08CZWK5Fixbh1KlT+OKLLzB8+HBUVFSgtLS0xnhz7VPt2rUDALz77rta21evXq0WR6QPd3d3pKam4t69e0hNTbWYU3LV6V006XLgKi4uBgA4ODhotDk6Oort2pjrhxEZ39tvvw13d3dERETotZ2DgwPc3NzUFnNw4cIF8e+MjAy1tuqPq8dR3XTu3BmDBw/GlClTkJCQAKVSiVGjRkEQBK3x5tqnvv32WwDAiRMnUFRUpNZWVFQkXm9aFUekj9LSUmzZsgURERHYsmVLrV88zJXeRZMuBy6pVArg0am2x5WUlIjt2pjrhxEZV3p6OmJjY7FgwQLcvHkTWVlZyMrKQklJCcrKypCVlWVxN4esmhQOADp27AiJRIIpU6ZAIpGgY8eOWuPIMMaNG4eLFy8iLS3N1KkYlEwmg6+vLwDA2dkZQ4cOxdmzZzF06FDxV9C+vr6QyWSmTJPM0NKlS+Hs7IzIyEhs27YNkZGRcHZ2xtKlS02dmkHpVTTpeuCqOi1XdZquury8PIuZr4EaTm5uLiorK7FgwQL4+PiIy4ULF5CWlgYfHx9xEjVL8vhIx+On5GoaCaH6qRoNt8RfkWVkZIiF08mTJ9G/f39xhMnX11djVJPoSZYuXYqYmBg0b94cn332GfLy8vDZZ5+hefPmiImJsajCSa+iSdcDl7+/P+zs7HDp0iW17UtLS5GSkoLAwEBD7gNZAX9/fxw5ckRj6dq1K9q1a4cjR45g+vTppk7TKARB0DgFd+HCBRZMBpCfn6+xrqysDLt374ZUKsUzzzxjgqyMLyMjAw8fPsTzzz8Pb29vPP/883j48CELJtJbaWkpNm/ejFatWiEnJwczZsxA69atMWPGDOTk5KBVq1bYvHmzxZyq0+uGvVUHrse9/fbbKCgowNatW8Wh3cGDB2Pv3r1YuXKlOFfDnj17oFQqOcEl6a1FixYICwvTWF815YW2NksSHBzMIskIZs+eDYVCgf79+8PLywu3bt1CXFwc/vzzT2zcuFHjXlqWRCaT4eeffzZ1GmTmtm/fjvLycqxevRp2duolhZ2dHd577z3Mnj0b27dvx6JFi0yTpAHpVTTpc+Bas2YNQkJCMGDAAMyaNQs5OTnYuHEjhgwZIs4+S0RkShMmTMDnn3+OHTt24N69e3B1dUWPHj3wwQcfIDQ01NTpETV6VZOljhw5Umt71fqqOHOnV9Gkj+7du+P06dNYtmwZIiMj4erqiunTp2PdunXGekmyQomJiaZOgczYxIkTMXHiRFOnQWS2qq6PS0hIwIwZMzTaExIS1OLMnURo5GP+CoUCMpkMcrncrH5JdzVXjpEf/YyEiL7w9zKfX6KY6/utD2vYx8bEGt5va9jHxsTS329z2r/S0lI4OzujefPmyMnJUTtFV15ejrZt2+LevXsoLCyEvb29CTOtna7vudFGmqzF9buFKFSVa6zPyFeq/fdxzg528GmheaNjIiIic2Fvb4/IyEjExMSgbdu2eO+99zBy5EgkJCTgnXfewe3btxEVFdWoCyZ9sGiqh+t3CzFwQ2KtMYu+Sqmx7cySF1g4ERGRWVu/fj0AYPPmzZg9e7a43s7ODlFRUWK7JWDRVA9VI0xbJgTCr6X6r2xKyiqQ86AYbZtJ4djEVq0tI1+JRV+laB2hIiIiMjfr16/H6tWrsX37dmRmZsLX1xdz5861mBGmKiyaDMCvpYvW65Z6dmj4XIiIiEzB3t7eIqYVqE2dbthLREREZG1YNBERERHpgEUTERERkQ5YNBERERHpgEUTERER1ZtSqcSYMWPQrVs3jBkzBkql9nkKzRl/PUdERET1EhwcjIsXL4qPU1NT4erqiqCgICQnJ5swM8PiSBMRERHVWVXBJJFIEB4ejitXriA8PBwSiQQXL15EcHCwqVM0GI40ERERUZ0olUqxYCoqKoKjoyMAYPfu3YiNjYWTkxMuXrwIpVIJFxeXJzxb48eRJiIiIqqT8PBwAMDkyZPRpEkTJCYm4ssvv0RiYiKaNGmCSZMmqcWZO440ERERUZ1kZmYCAAIDA+Hn54esrCyxrUOHDpg3bx7i4uLEOHPHkSYiIiKqE19fXwDAm2++iYCAACQlJaGgoABJSUkICAhAVFSUWpy540gTERER1cmuXbvQtGlTAMD+/fvh5OQEAOjduzf2798PZ2dnMc4ScKSJiIiI6uTy5cvi3y4uLpg8eTJ+++03TJ48We3C7+px5oxFExEREdVJXl4eAKB79+4QBAFxcXHo0aMH4uLiIAgCunfvrhZn7lg0ERERUZ14enoCAD7++GMUFBQgLCwMAQEBCAsLQ0FBAbZt26YWZ+54TRMRERHVSb9+/dChQwesXbsWR48exZEjR8S2yspKrFu3Dj4+PujXr58JszQcFk1ERERUJ7a2tti4cSPGjRuHkSNHQqlU4t69e2jevDlcXFxw4sQJxMfHw9bW1tSpGgSLJiIiIqqzsWPH4qmnnsLx48c12nx9fTF27FgTZGUcvKaJiIiI6iw4OBiZmZmQSCQYMmQI1q1bhyFDhkAikSAzM5P3niMiIiKq6d5zy5cvR0lJCe89R0RERASo33uuqmCq4ujoaHH3nmPRRERERHVSdU+5JUuWaG1fvHixWpy5Y9FEREREdVJ1T7kNGzZobd+0aZNanLlj0URERER1smfPHgDA3r17UVJSotZWUlKCffv2qcWZOxZNREREVCcuLi4ICgqCIAhwcnJSu/eck5MTBEFAUFCQRVwEDrBoIiIiK3Tx4kXMnz8fXbt2hbOzM9q1a4dXXnkFaWlpGrHXrl3DsGHD4OLiAnd3d4SHh+POnTsacZWVlVi/fj18fHzg6OiIbt264csvv2yI3TGp5ORksXB6/N5zQUFBSE5ONnWKBsMpB4iIyOp88MEH+OWXXzB+/Hh069YNt27dwrZt29C9e3ecP38e/v7+AICcnBz0798fMpkMa9euhVKpxIYNG5Camork5GTY29uLz/nWW2/h/fffx8yZMxEUFIRjx45h0qRJkEgkmDhxoql2tUEkJydDqVQiPDwcmZmZ8PX1xZ49eyxmhKkKiyYiIrI6ixcvxr59+9SKngkTJiAgIADvv/8+9u7dCwBYu3YtCgsL8euvv6Jdu3YAHk3m+OKLL2LXrl2YNWsWACA3NxcbN27EvHnzxJvUzpgxAwMGDEBUVBTGjx9vMbcSqYmLi4vavecsEU/PERGR1QkJCVErmACgY8eO6Nq1K65duyauO3ToEEaOHCkWTAAwePBgdOrUCQcOHBDXHTt2DGVlZZg7d664TiKRYM6cOcjJyUFSUpIR94YaCosmIiIiAIIg4Pbt22jRogWAR6NH+fn56Nmzp0ZscHAwLl++LD6+fPkynJ2d0aVLF424qvaaqFQqKBQKtYUaJxZNREREAOLi4pCbm4sJEyYAAPLy8gAAnp6eGrGenp64f/8+VCqVGNuqVStIJBKNOAC4efNmja+7bt06yGQycfH29jbI/pDhsWgis/H7779j/PjxeOqpp+Dk5IQWLVqgf//++Oabb0ydmtGlpKRAIpGIS0pKiqlTIrIof/75J+bNm4c+ffrg9ddfBwAUFxcDABwcHDTiq24ZUhVTXFysU5w20dHRkMvl4pKdnV2/nSGj4YXgZDZu3LiBgoICvP7662jTpg2Kiopw6NAhhIaG4tNPPxUvyLQ0j39zBYDnnnsOwKPTCURUP7du3cKIESMgk8kQHx8vXrAtlUoBQBxNqq5qIseqGKlUqlOcNg4ODloLLmp89Bpp0uebvq7zWhDp6qWXXsKJEyewatUqzJw5EwsXLsSZM2fw7LPPilP1W5rqBZONjQ0iIyNhY2OjtZ2I9CeXyzF8+HA8fPgQJ06cQJs2bcS2qlNrVafpqsvLy4O7u7tY7Hh6euLWrVsaX2Sqtq3+vGS+9Cqaqn/T37p1K1auXAkACA0NRWxsrBhXNa9FRkYG1q5diyVLluDbb7/Fiy++iNLSUsPuAVk1W1tbeHt74+HDh6ZOxeCqn4K7fv06KioqsGnTJlRUVOD69eta44hIdyUlJRg1ahTS0tKQkJCAZ555Rq3dy8sLHh4euHTpksa2ycnJCAwMFB8HBgaiqKhI7Zd3AHDhwgWxnSyAUE/l5eXCs88+Kzz99NPiujlz5ghSqVS4ceOGuO7UqVMCAOHTTz/V6/nlcrkAQJDL5fVN1eBScx4K7ZclCKk5Dxtku4bQmN/vKkqlUrhz546QkZEhbNq0SbC1tRUmTZpUY3xJSYkgl8vFJTs7u9HvoyAIAgABgGBjY6O13cbGRoxpzMyhT9WXNexjY2KI97u8vFwIDQ0V7OzshG+//bbGuL///e+CVCoV/vrrL3Hd6dOnBQDCjh07xHXZ2dlCkyZNhHnz5onrKisrhX79+gleXl5CeXm5zrmxPzU8Xd/zel/TVPVN/+LFi+K6J81rYanXnlDDePPNN/Hpp58CeHTKauzYseJkctqsW7cO7777bkOlZ3ALFy7Uun727NnYsWNHA2dDZBnefPNNfP311xg1ahTu378vTmZZZfLkyQCAFStW4ODBgxg4cCAWLlwIpVKJmJgYBAQEYNq0aWJ827ZtsWjRIsTExKCsrAxBQUE4evQozp49i7i4OIuf2NJa1KloKiwsRHFxMeRyOb7++mscP35c/Inmk+a1+O6772p9bpVKpXYxHeeroMctWrQI48aNw82bN3HgwAFUVFTUeto3OjoaixcvFh8rFAqz+knv1q1btV6zVVU4EpH+qk5rf/PNN1qvy60qmry9vfHjjz9i8eLFWL58Oezt7TFixAhs3LhR4+Lt999/H82aNcOnn36KXbt2oWPHjti7dy8mTZpk9P2hhlGnoqm2b/q6zmtR0y8FzH1UgIyvc+fO6Ny5MwBgypQpGDJkCEaNGoULFy5ovTDaXH+ZcvnyZTz33HOorKxEVlYWOnToILZlZWWhsrJSjCMi/SQmJuoc27VrV3z//fdPjLOxsUF0dDSio6PrkRk1ZnWap2nRokU4deoUvvjiCwwfPlztm74+81pow/kqSF/jxo3DxYsXtd6d3JxVv3DUx8cHtra2mDt3LmxtbeHj46M1joiIjKdOI021fdPXZ14Lbcx1VIBMp6oIl8vlJs7E8ARBEEfPKisrNa5hEjhPExFRgzHIjODVv+nrM68FkT7y8/M11pWVlWH37t2QSqUaPxe2FIIgaJyCu3z5MgsmIqIGZpAZwat/03/66ad1nteCSB+zZ8+GQqFA//794eXlhVu3biEuLg5//vknNm7cCBcXF1OnaDSBgYEskoiITEyvkSZdv+m//PLLSEhIULse6YcffkBaWhrGjx9fz5TJWk2YMAE2NjbYsWMH5syZg02bNqFt27Y4duyY2q/jiIiIjEGvkSZdv+nrOq8FkT4mTpyIiRMnmjoNIiKyUnoVTRMmTMDnn3+OHTt24N69e3B1dUWPHj3wwQcfIDQ0VIzTZ14LIiIiInOgV9Gkzzd9Xee1ICIiIjIHBrkQ3FqpKkpg45iL64p/w8ZR94uQryuUsHHMhaqiBIDMeAkSERGRwbBoqoebhTfg7PMRViTrv62zD3CzMBA90MrwiRHRE128eBFffPEFzpw5g6ysLDRv3hy9e/fG6tWr0alTJ1OnZ3QjR47Et99+Kz4eMWIEEhISTJgRUePHoqke2ji3R+H1CGydEAjflrqPNGXmK7HwqxS0GdjeiNkRUW0++OAD/PLLLxg/fjy6deuGW7duYdu2bejevTvOnz8Pf39/U6doNNpuN/Ttt99CIpFwaguiWrBoqgcHW0dUlnjBx+1pPNNc99NslSVyVJbcgYOtoxGzI6LaLF68GPv27YO9vb24bsKECQgICMD777+vcdd7S6GtYHq8nYUTkXYGmRGciMjchISEqBVMANCxY0d07doV165dM1FWxjVy5Ejx74ULF0IQBHFZuHCh1jgi+j8smoiI/ksQBNy+fRstWrSoNU6lUkGhUKgt5qD6NUxbtmxRa6v+uHocEf0fFk1ERP8VFxeH3NxcTJgwoda4devWQSaTiYu3t3cDZUjUeJWWlmLLli2IiIjAli1bUFpaauqUDI5FExERgD///BPz5s1Dnz598Prrr9caGx0dDblcLi7VbxlFZI2WLl0KZ2dnREZGYtu2bYiMjISzszOWLl1q6tQMikUTEVm9W7duYcSIEZDJZIiPj4etrW2t8Q4ODnBzc1NbzMGIESPEvxctWqTWVv1x9TiiJ1m6dCliYmLQvHlzfPbZZ8jLy8Nnn32G5s2bIyYmxqIKJxZNRGTV5HI5hg8fjocPH+LEiRNo06aNqVMymurzMG3duhUSiURctm7dqjWOqDalpaXYvHkzWrVqhZycHMyYMQOtW7fGjBkzkJOTg1atWmHz5s0Wc6qORRMRWa2SkhKMGjUKaWlpSEhIwDPPPGPqlIzuSdMJcLoB0sf27dtRXl6O1atXw85OfRYjOzs7vPfeeygvL8f27dtNlKFhsWgiIqtUUVGBCRMmICkpCQcPHkSfPn1MnVKDEQRB4xTciBEjWDCR3jIzMwHUPE1F1fqqOHPHyS2JyCq9+eab+PrrrzFq1Cjcv39fYzLLyZMnmyizhsFTcGQIvr6+AB71pxkzZmi0V/Wzqjhzx6KJiKxSSkoKAOCbb77BN998o9Fu6UUTkSHMnTsXUVFRePvttzF16lS1U3Tl5eV45513YGdnh7lz55owS8Ph6TkiskqJiYlqM2I/vhDRk9nb2yMyMhK3b99G27ZtERsbi5s3byI2NhZt27bF7du3ERkZqTH7vrniSBMRERHV2fr16wEAmzZtwuzZs8X1dnZ2iIqKEtstAUeaiIiIqF7S0tJQUVGhtq68vBxpaWkmysg4WDQRERFRnYWFheHYsWNa244dO4awsLCGTciIWDQRERFRnRQXF4sFk0QiQXh4OK5cuYLw8HBIJBIAjwqn4uJiU6ZpMCyaiIiIqE4iIiLEv4uKirB7925069YNu3fvRlFRkdY4c8aiiYiIiOqkapQpLCwMNjY22LJlCyIiIrBlyxbY2Nhg1KhRanHmjr+eIyIiojqprKwEAKSnp8PZ2Rnl5eViW1RUFDp16qQWZ+440kRERER1UnX7od9//x1NmzbFZ599hry8PHz22Wdo2rQp/vjjD7U4c8eiiYiIiOpk9+7d4t9yuRzp6elQKBRIT0+HXC7XGmfOWDQRERFRnVQvhsrKyrB+/Xo8/fTTWL9+PcrKyrTGmTMWTURERFQnmZmZAIDAwECt7VXrq+LMHYsmIiIiqhNfX18AwLx581BQUICwsDAEBAQgLCwMBQUFmDNnjlqcuWPRRERERHUyd+5c2NnZ4e2334ajoyOOHDmC//f//h+OHDkCR0dHvPPOO7Czs8PcuXNNnapBsGgiIiKiOrG3t0dkZCRu376Ntm3bIjY2Fjdv3kRsbCzatm2L27dvIzIyEvb29qZO1SA4TxMRERHV2fr16wEAGzZswOzZs8X1EokEUVFRYrsl4EgTERER1UtaWhoEQVBbJwgC0tLSTJSRcbBoIiIiojoLCwur8TYpx44dQ1hYWMMmZEQsmoiIiKhOiouLxYJJIpEgPDwcV65cQXh4OCQSCYBHhVNxcbEp0zQYFk1ERERUJxEREeLfRUVF2L17N7p164bdu3ejqKhIa5w5Y9FEREREdVI1yhQWFgZHR0e1NkdHR4waNUotztyxaCKzcfHiRcyfPx9du3aFs7Mz2rVrh1deecXiLjQkIjIXlZWVAAB3d3et7c2aNVOLM3d6FU36HLSuXbuGYcOGwcXFBe7u7ggPD8edO3cMljhZnw8++ACHDh3CoEGDsHXrVsyaNQs//fQTunfvjqtXr5o6PSIiq9OnTx8AwK5du1BaWqrWVlpair1796rFmTu95mn64IMP8Msvv2D8+PHo1q0bbt26hW3btqF79+44f/48/P39AQA5OTno378/ZDIZ1q5dC6VSiQ0bNiA1NRXJyckWM8kVNazFixdj3759av1nwoQJCAgIwPvvvy/+z0lERA1j//79cHV1RWVlJVxcXBAZGYnp06fj888/x+bNm8URpv3795s4U8PQq2jS9aC1du1aFBYW4tdff0W7du0AAMHBwXjxxRexa9cuzJo1y4C7QNYiJCREY13Hjh3RtWtXXLt2zQQZERFZNxcXFwQFBeHixYsoKyvD+vXrNSazDAoKgouLi4kyNCy9iiZdD1qHDh3CyJEjxYIJAAYPHoxOnTrhwIEDLJrIYARBwO3bt9G1a9caY1QqFVQqlfhYoVA0RGoGUVxagcw7SgBASVkFch4Uo20zKRyb2AIAfD1cILW3NWWKRGTlkpOTERwcjIsXL2q0BQUFITk52QRZGUe9b6Py+EErNzcX+fn56Nmzp0ZscHAwvvvuu1qfz5wOcMVlFQCAq7lyjTZtB7gqGfnKBsnPGsTFxSE3NxfvvfdejTHr1q3Du+++24BZGU7mHSVGfvRzje0JEX3h7yVrwIyIiDQlJydDqVQiPDwcmZmZ8PX1xZ49eyxmhKlKvYumxw9aeXl5AABPT0+NWE9PT9y/fx8qlQoODg5an8+cDnCZ/y1+lh9OrdP2zg689V99/Pnnn5g3bx769OmD119/vca46OhoLF68WHysUCjg7e3dECnWm6+HCxIi+gJ4VGwv+ioFWyYEwq+li9hOREQNo15HbW0HrapZP7UVRVVzOBQXF9dYNJnTAW5I19YAAN+WLpBqGU16/ABXnbODHXxaODdInpbo1q1bGDFiBGQyGeLj42FrW/MpKgcHhxr7W2MntbfVGEnya+nC0SUialQePz2XmpoKV1dXnp6rUtNBSyqVAoDaKbYqJSUlajHamNMBzt3ZHhOD29UawwOc4cnlcgwfPhwPHz7E2bNn0aZNG1OnRERktaoKJolEgsmTJ2PJkiXYsGED9u7di4sXLyI4ONhiCqc6FU21HbSqTstVnaarLi8vD+7u7mZTFFHjU1JSglGjRiEtLQ2nT5/GM888Y+qUiIisllKpFAumoqIi8YzS7t27ERsbCycnJ1y8eBFKpdIirm/Se0bw6gethIQEjYOWl5cXPDw8cOnSJY1tk5OTERgYWOdkybpVVFRgwoQJSEpKwsGDBy1msjQiInMVHh4OAJg8ebLW26hMmjRJLc7c6TXSVP2gdezYsRoPWi+//DK++OILZGdni9cj/fDDD0hLS0NkZGT9syar9Oabb+Lrr7/GqFGjcP/+fY3JLCdPnmyizIiIrFNmZiYAYMmSJSguLkZUVBTS09PRsWNHxMTEYPHixYiLixPjzJ1eRZOuB60VK1bg4MGDGDhwIBYuXAilUomYmBgEBARg2rRphsuerEpKSgoA4JtvvsE333yj0c6iiYioYfn6+iI1NRUjRoxATk6OuP7kyZP4+OOP4eXlJcZZAr2KJl0PWt7e3vjxxx+xePFiLF++HPb29hgxYgQ2btzI65mozhITE02dAhERVbNnzx64uroiJycHNjY2eOqpp2Bra4uKigr85z//QW5urhhnCfQqmvQ5aHXt2hXff/+9vvkQERGRmag+3UtlZSUyMjKeGGfO9L4QnIiIiAgAoqKiDBrX2LFoIiIiojr5448/DBrX2PE+HkRERFQn169fF//28PDAwIED4ezsjMLCQpw5cwZ37tzRiDNnLJqIiIioTpycnMS/7927hwMHDoiPbWxstMaZM56eIyIiojqpXhhVVlZi6NCh+PnnnzF06FBUVlZqjTNnHGkiIiKiOunZsyeuXr0qPv7++++1/nK+Z8+eDZmW0bBoIiIiojp5+PCh+LdEIkHHjh3RrFkzPHjwAOnp6RAEQSPOnFnGeBkREZGelEolVq1ahWHDhsHd3R0SiQS7du3SGnvt2jUMGzYMLi4ucHd3R3h4uHiRc3WVlZVYv349fHx84OjoiG7duuHLL7808p6YjqenJ4BH8zAJgoC0tDRcuHABaWlpEARBnJ+pKs7ccaSJiIis0t27d/Hee++hXbt2ePbZZ2ucwDknJwf9+/eHTCbD2rVroVQqsWHDBqSmpiI5ORn29vZi7FtvvYX3338fM2fORFBQEI4dO4ZJkyZBIpFg4sSJDbRnDadTp04AHt2btkWLFvDy8oJKpYKDgwNyc3Nx9+5dtThzx6KJiIiskqenJ/Ly8tC6dWtcunQJQUFBWuPWrl2LwsJC/Prrr2jXrh0AIDg4GC+++CJ27dqFWbNmAQByc3OxceNGzJs3D9u2bQMAzJgxAwMGDEBUVBTGjx9vMTNjV5k7dy6ioqJgb2+P+/fvi0US8OjibycnJ5SWlmLu3LkmzNJweHqOiIiskoODA1q3bv3EuEOHDmHkyJFiwQQAgwcPRqdOndR+Yn/s2DGUlZWpFQgSiQRz5sxBTk4OkpKSDLsDjYC9vT0iIyNRVFSEFi1a4JVXXsHUqVPxyiuvoEWLFigqKkJkZKTaaJw540gTERFRDXJzc5Gfn6/111/BwcH47rvvxMeXL1+Gs7MzunTpohFX1d63b1+N51GpVFCpVOJjhUJhqPQbxPr16wEAmzdvVisi7ezsEBUVJbZbAo40ERER1SAvLw+A9guZPT09cf/+fbHgycvLQ6tWrSCRSDTiAODmzZtaX2PdunWQyWTi4u3tbchdaBDr16/HgwcPEBYWhoCAAISFheHBgwcWVTABLJqIiIhqVFxcDODRqbzHOTo6qsUUFxfrFPe46OhoyOVyccnOzjZI7g1p6dKlaNasGY4ePYrU1FQcPXoUzZo1w9KlS02dmkHx9BwREVENpFIpAKidPqtSUlKiFiOVSnWKe5yDg4PWYstcLF26FDExMWjZsiVeeOEF8d5ziYmJiImJAQCLGXFi0URERFSDqlNrVafpqsvLy4O7u7tY8Hh6euLMmTMQBEHtFF3Vtm3atGmAjBtWaWkpNm/eDCcnJ+Tn56td0wQ8uufc5s2bsXr1aou4GJyn54iIiGrg5eUFDw8PXLp0SaMtOTkZgYGB4uPAwEAUFRXh2rVranEXLlwQ2y3N9u3bUV5ejqKiIq3tRUVFKC8vx/bt2xs4M+Ng0URERFSLl19+GQkJCWrXGv3www9IS0vD+PHjxXWjR49GkyZN1AoEQRDwySefwMvLCyEhIQ2ad0NIS0tTe9yyZUv06NEDLVu2rDXOXPH0HBFZLaVSiZiYGFy4cAHJycl48OABdu7cialTp5o6NaPr1KkT0tPTxccdO3a0mAObPrZt24aHDx+Kv2z75ptvkJOTAwCIiIiATCbDihUrcPDgQQwcOBALFy4U+01AQACmTZsmPlfbtm2xaNEixMTEoKysDEFBQTh69CjOnj2LuLg4i5vYEgCuX7+u9jg/Px/5+flPjDNbQiMnl8sFAIJcLjd1KnpJzXkotF+WIKTmPDR1Knox1/dbH+a6j+xThnf9+nUBgNCuXTvhhRdeEAAIO3fu1Pt5GvM+agOgxsUcGPL9bt++fY3vxfXr18W4q1evCkOGDBGcnJyEpk2bCq+99ppw69YtjeerqKgQ1q5dK7Rv316wt7cXunbtKuzdu1evnMypPzVt2lR8v5o0aSIsX75cyMjIEJYvXy40adJEbGvatKmpU62Vru85R5qIyGrpehsNS/L4HELa2oX/3pneGmRlZekU17VrV3z//fdPjLOxsUF0dDSio6PrmZl5qPplIAC4ubnh4MGD2L17N6RSKdzc3HDv3j2NOHPGa5qIyGrpehsNS1H9pqnDhw+HIAjiMnz4cK1xRLWpPo3CvXv3kJmZiZs3byIzM1MsmB6PM2csmoiI9KRSqaBQKNQWc1D9Gqbqt/94/HH1OKLaPPvsswaNa+xYNBER6ckSbntBZAhPPfWUQeMaOxZNRER6soTbXhAZQmpqqkHjGjsWTUREenJwcICbm5vaYg46duwo/v3SSy+ptVV/XD2OqDZ//PGHQeMaO/56jojISqSlpYm/njt+/HiNv6SzxvmaqG5KS0sNGtfYcaSJiMiKPGk6AWuaboDqr6yszKBxjR2LJiIiKyMIgsYpuI4dO7JgInoCnp4jIqumy200LBFPwRHpj0UTEVm1DRs24MaNG+Ljw4cP4/DhwwCAyZMnW2zRRET6Y9FERFZN19toEJEmGxsbVFZW6hRnCSxjL4iIiKjB6TrdhrlMy/EkLJqIiIioThwcHAwa19ixaCIiIqI68fHxMWhcY8eiicyGUqnEqlWrMGzYMLi7u0MikWDXrl2mTouIyGr9+uuvBo1r7Fg0kdm4e/cu3nvvPVy7ds1i7phNRGTOdLkIXJ+4xk7vokmfb/vXrl3DsGHD4OLiAnd3d4SHh+POnTv1zZmslKenJ/Ly8nDjxg3ExMSYOh0iIqvXpEkT8W97e3t4eXmhdevW8PLygr29vdY4c6Z30aTrt/2cnBz0798fGRkZWLt2LZYsWYJvv/0WL774osXcg4YaloODA1q3bm3qNIiI6L/GjH1Z/Lu0tBS5ubm4desWcnNz1Y7148aNM0V6Bqf3PE1V3/Zbt26NS5cuISgoSGvc2rVrUVhYiF9//RXt2rUDAAQHB+PFF1/Erl27MGvWrPplTqQjlUoFlUolPlYoFCbM5smu3y1EoapcY31GvlLtv49zdrCDTwtno+ZGRFSdd8eu6itsm8DGrTUqFbeAiv+731yPHj0aODPj0Lto0vXb/qFDhzBy5EixYAKAwYMHo1OnTjhw4ACLJmow69atw7vvvmvqNHRy/W4hBm5IrDVm0VcpNbadWfICCyciajArlizCxtUrUVFR8WhFRRkqH2SrxdjZ2WHu3LkmyM7wjDIjeG5uLvLz89GzZ0+NtuDgYHz33Xc1bmtuowLU+EVHR2Px4sXiY4VCAW9vbxNmVLOqEaYtEwLh19JFra2krAI5D4rRtpkUjk1s1doy8pVY9FWK1hEqIiJjkblIsXjxYsTExKBZs2YoKi6GSlUKBwd7OEmlePDgASIjI9WubzJnRima8vLyADw6lfc4T09P3L9/HyqVSutkV+Y0KkDmwcHBwewmVvNr6QJ/L817nvXs0PC5EBHVZv369QCAzZs3o7z80Rc3VUkJKsrLERUVJbZbAqNMOVBcXAxA+wygjo6OajGPi46OhlwuF5fs7GytcURERNQ4rF+/HoWFhVi6ai1cu4/E0lWPrmu2pIIJMNJIk1QqBQC102xVSkpK1GIeZ46jAkRERNbO3t4e4TPn4quSbgif2ddiTslVZ5SRpqrTclWn6arLy8uDu7s7CyMiIiIyK0YZafLy8oKHhwcuXbqk0ZacnIzAwEBjvCxZgW3btuHhw4e4efMmAOCbb75BTk4OACAiIgIymeZ1QERERIZglKIJAF5++WV88cUXyM7OFn+p9MMPPyAtLQ2RkZHGelmycBs2bMCNGzfEx4cPH8bhw4cBAJMnT2bRRERERlOnokmXb/srVqzAwYMHMXDgQCxcuBBKpRIxMTEICAjAtGnTDLcHZFWysrJMnQIREVmpOhVNunzb9/b2xo8//ojFixdj+fLlsLe3x4gRI7Bx40Zez0RERERmp05Fk67f9rt27Yrvv/++Li9BRERE1KgY5ddzRERERJaGRRMRERGRDlg0EREREemARRMRERGRDlg0EREREemARRMRERGRDlg0EREREemARRMRERGRDlg0EREREemARRMRERGRDlg0EREREemARRMRERGRDlg0EREREemARRMRERGRDuxMnQARERGZl+t3C1GoKtdYn5GvVPvv45wd7ODTwtmouRkTiyYiIiLS2fW7hRi4IbHWmEVfpdTYdmbJC2ZbOLFoIiIiIp1VjTBtmRAIv5Yuam0lZRXIeVCMts2kcGxiq9aWka/Eoq9StI5QmQsWTURERKQ3v5Yu8PeSaazv2aHhc2kovBCciIiISAcsmoiIiIh0wKKJiIiISAcsmoiIiIh0wKKJiIiISAcsmoiIiIh0wKKJiIiISAcsmoiIiIh0wKKJiIiISAecEZyIiIh0pqoogY1jLq4r/g0bR5cnb/Bf1xVK2DjmQlVRAkBzJnFzwKKJiIiIdHaz8AacfT7CimT9t3X2AW4WBqIHWhk+sQbAoomIiIh01sa5PQqvR2DrhED4ttR9pCkzX4mFX6WgzcD2RszOuFg0ERERkc4cbB1RWeIFH7en8Uxz3U+zVZbIUVlyBw62jkbMzrh4ITgRERGRDjjSRERERDorLqsAAFzNlWu0lZRVIOdBMdo2k8Kxia1aW0a+skHyMyYWTURERKSzzP8WP8sPp9Zpe2cH8y09zDdzskoqlQrvvPMO9uzZgwcPHqBbt25YvXo1XnzxRVOnRmaI/YkMzRr61JCurQEAvi1dINUymrToqxRsmRAIPy0XiTs72MGnhXOD5GkMLJrIrEydOhXx8fFYtGgROnbsiF27duGll17CmTNn0LdvX1OnR2aG/YkMzRr6lLuzPSYGt6s1xq+lC/y9zHMuptoY9UJwlUqFZcuWoU2bNpBKpejVqxdOnTplzJckC5acnIz9+/dj3bp1iImJwaxZs/Cvf/0L7du3x9KlS02dHpkZ9icyNPYpy2fUomnq1KnYtGkTXnvtNWzduhW2trZ46aWX8PPPPxvzZclCxcfHw9bWFrNmzRLXOTo6Yvr06UhKSkJ2drYJsyNzw/5EhsY+ZfmMdnququKOiYnBkiVLAABTpkyBv78/li5dinPnzhnrpU2muLQCmXceXSBX9SuBx38t4OvhAqm9rca29GSXL19Gp06d4ObmprY+ODgYAJCSkgJvb2+N7VQqFVQqlfhYoVAYN9F6eFhSCBvHXJzK+BXXFS5QlVciX1FSY3xLN0c42Nkg+36R2d+eoKHVtT8B5tWnbsrl+CrlVwCPPqP+ul9Ya3w7d2fxM6q1zBFh/s9Baic1ep6WwBo+ox5X/bgHaD/2WdJxz2hFU20V94oVK5CdnV3jB5K5yryjxMiP1EfRFn2VovY4IaKvRZ7nbQh5eXnw9PTUWF+17ubNm1q3W7duHd59912j5mYoF3P+hLPPR/jfLABZ+m3r7AM8KOsBmOntCRpaXfsTYF596quUX/G/WQt1jv/lsd12d96FoR17GDgry2QNn1GP03bcA9SPfZZ03DNa0WSNFbevhwsSIh5d6FfTXBW+HrpPOU/qiouL4eDgoLHe0dFRbNcmOjoaixcvFh8rFIpGW7BPCOwBYCu83Z3gYGej80gTAEjtbfF8+2caKFPzV9f+BJhnnwLqNtLU34d9SlfW8Bn1uOrHPUD7sc+SjntGK5qsseKW2tuqVdM9O5guF0sklUrVCuoqJSUlYrs2Dg4OWj/IGqM2MhkiB/zN1GlYhbr2J4B9irSzhs+oxz1+3AMs+9hntAvB61Nxy+VyceGFc1TF09MTeXl5Guur1rVp06ahUyIzxv5EhsY+ZfmMVjTVp+J2c3NTW4gAIDAwEGlpaRqnbC9cuCC2E+mK/YkMjX3K8hmtaGLFTYY2btw4VFRUIDY2VlynUqmwc+dO9OrVy2yuAaDGgf2JDI19yvIZ7ZqmwMBAnDlzBgqFQm20iBU31VWvXr0wfvx4REdHIz8/H35+fvjiiy+QlZWFzz//3NTpkZlhfyJDY5+yfEYbaWLFTcawe/duLFq0CHv27MGCBQtQVlaGhIQE9O/f39SpkRlifyJDY5+ybBJBEARjPfkrr7yCI0eOIDIyUqy4k5OT8cMPP+jcgRQKBWQyGeRyOa9vagDW8H5bwz42JtbwflvDPjYmlv5+W/r+NUa6vudGvWHv7t27sXLlSrW7PbPiJiIiInNk1KLJ0dERMTExiImJMebLEBERERmdUW/YS0RERGQpWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6YBFExEREZEOWDQRERER6cCok1saQtVdXhQKhYkzsQ5V77MR765jcuxTDYt9igzN0vsU+1PD07VPNfqiqaCgAAB4g98GVlBQAJlMZuo0jIJ9yjTYp8jQLLVPsT+ZzpP6lFFv2GsIlZWVuHnzJlxdXSGRSEydjs4UCgW8vb2RnZ1tVjdcFAQBBQUFaNOmDWxsLPPsLftUw2KfarzYpxonc+1PgOX3qUZfNJkr3qWaDI19igyNfYoMzdL7lOWV6ERERERGwKKJiIiISAcsmozEwcEBq1atgoODg6lTIQvBPkWGxj5FhmbpfYrXNBERERHpgCNNRERERDpg0URERESkAxZNRERERDpg0URERESkAxZNRCbUoUMHTJ06VXy8a9cuSCQSXLp0yXRJET0B+ylZKxZNeti+fTskEgl69epl6lTIDKSmpmLcuHFo3749HB0d4eXlhRdffBEfffSRQZ6/srISu3fvRq9eveDu7g5XV1d06tQJU6ZMwfnz5w3yGtS4VBUrVYujoyM6deqE+fPn4/bt26ZOjyzE4/2s+rJ8+XJTp2dSjf6GvY1JXFwcOnTogOTkZGRkZMDPz8/UKVEjde7cOQwcOBDt2rXDzJkz0bp1a2RnZ+P8+fPYunUrIiIiAAD//ve/63zvrAULFuDjjz/G6NGj8dprr8HOzg7//ve/cfz4cTz11FPo3bu3IXeJGpH33nsPPj4+KCkpwc8//4wdO3bgu+++w9WrV+Hk5GTq9MhCVPWz6vz9/U2UTePAoklH169fx7lz53D48GHMnj0bcXFxWLVqlanTokZqzZo1kMlkuHjxIpo2barWlp+fL/5d1wngbt++je3bt2PmzJmIjY1Va9uyZQvu3LlTp+cl8zB8+HD07NkTADBjxgw0b94cmzZtwrFjx/Dqq6/W6TkrKytRWloKR0dHQ6ZKZqx6PzOEwsJCODs7G+z5TIGn53QUFxeHZs2aYcSIERg3bhzi4uI0Yu7du4fw8HC4ubmhadOmeP3113HlyhVIJBLs2rVLLfbPP//EuHHj4O7uDkdHR/Ts2RNff/11A+0NGVtmZia6du2qUTABQMuWLcW/H7+mqUpRURFmz56N5s2bw83NDVOmTMGDBw/E9uvXr0MQBDz//PMa20okErXXqBpq/+mnn2p9TjJff/vb3wA86hcbNmxASEgImjdvDqlUih49eiA+Pl5jG4lEgvnz5yMuLg5du3aFg4MDTpw4AQDIzc3F9OnT0aZNGzg4OMDHxwdz5sxBaWmp2nOoVCosXrwYHh4ecHZ2xpgxY1iwW7gbN25g7ty5ePrppyGVStG8eXOMHz8eWVlZanFVnzs//vgj5s6di5YtW6Jt27Zi+/Hjx9GvXz84OzvD1dUVI0aMwO+//97Ae6M/jjTpKC4uDmPHjoW9vT1effVV7NixAxcvXkRQUBCAR9/SRo0aheTkZMyZMwedO3fGsWPH8Prrr2s81++//47nn38eXl5eWL58OZydnXHgwAGEhYXh0KFDGDNmTEPvHhlY+/btkZSUhKtXr9ZpOHv+/Plo2rQp/ud//gf//ve/sWPHDty4cQOJiYmQSCRo3749AODgwYMYP368TqdknvScZL4yMzMBAM2bN8fq1asRGhqK1157DaWlpdi/fz/Gjx+PhIQEjBgxQm27f/3rXzhw4ADmz5+PFi1aoEOHDrh58yaCg4Px8OFDzJo1C507d0Zubi7i4+NRVFQEe3t7cfuIiAg0a9YMq1atQlZWFrZs2YL58+fjq6++atD9J+OQy+W4e/eu2rqLFy/i3LlzmDhxItq2bYusrCzs2LEDL7zwAv744w+Nz6K5c+fCw8MD77zzDgoLCwEAe/bsweuvv46hQ4figw8+QFFREXbs2IG+ffvi8uXL6NChQ0Ptov4EeqJLly4JAIRTp04JgiAIlZWVQtu2bYWFCxeKMYcOHRIACFu2bBHXVVRUCH/7298EAMLOnTvF9YMGDRICAgKEkpIScV1lZaUQEhIidOzY0ej7Q8Z38uRJwdbWVrC1tRX69OkjLF26VPj++++F0tJStbj27dsLr7/+uvh4586dAgChR48earHr168XAAjHjh0T102ZMkUAIDRr1kwYM2aMsGHDBuHatWsauejznNS4Vf1bnj59Wrhz546QnZ0t7N+/X2jevLkglUqFnJwcoaioSG2b0tJSwd/fX/jb3/6mth6AYGNjI/z+++9q66dMmSLY2NgIFy9e1Hj9yspKtTwGDx4srhMEQYiMjBRsbW2Fhw8fGmqXyQSq/n21LY/3L0EQhKSkJAGAsHv3bo3n6Nu3r1BeXi6uLygoEJo2bSrMnDlT7Tlu3bolyGQyjfWNDU/P6SAuLg6tWrXCwIEDATwa1p4wYQL279+PiooKAMCJEyfQpEkTzJw5U9zOxsYG8+bNU3uu+/fv41//+hdeeeUVFBQU4O7du7h79y7u3buHoUOHIj09Hbm5uQ23c2QUL774IpKSkhAaGoorV65g/fr1GDp0KLy8vHQ6DTtr1iw0adJEfDxnzhzY2dnhu+++E9ft3LkT27Ztg4+PD44cOYIlS5agS5cuGDRokNY+pMtzknkYPHgwPDw84O3tjYkTJ8LFxQVHjhyBl5cXpFKpGPfgwQPI5XL069cPv/32m8bzDBgwAM8884z4uLKyEkePHsWoUaO0Xsvy+IjkrFmz1Nb169cPFRUVuHHjhiF2k0zs448/xqlTp9SW6v2rrKwM9+7dg5+fH5o2baq1j82cORO2trbi41OnTuHhw4d49dVXxePf3bt3YWtri169euHMmTMNsm91xdNzT1BRUYH9+/dj4MCBuH79uri+V69e2LhxI3744QcMGTIEN27cgKenp8bQ5OO/sMvIyIAgCFi5ciVWrlyp9TXz8/Ph5eVl+J2hBhUUFITDhw+jtLQUV65cwZEjR7B582aMGzcOKSkpagerx3Xs2FHtsYuLCzw9PdWuG6gqyufNm4d79+7hl19+wSeffILjx49j4sSJOHv2rN7PSebh448/RqdOnWBnZ4dWrVrh6aefFn+FmZCQgNWrVyMlJQUqlUrcRtsp2Md/GXXnzh0oFAqdTym3a9dO7XGzZs0AgNfKWYjg4GCN4rm4uBjr1q3Dzp07kZubC0EQxDa5XK7xHI/3sfT0dAD/dx3e49zc3OqbtlGxaHqCf/3rX8jLy8P+/fuxf/9+jfa4uDgMGTJE5+errKwEACxZsgRDhw7VGsOpDCyLvb09goKCEBQUhE6dOmHatGk4ePCgQX992bx5c4SGhiI0NBQvvPACfvzxR9y4cUO89oksi7aDGQCcPXsWoaGh6N+/P7Zv3w5PT080adIEO3fuxL59+zTiq48a1EX1EYTqqh9IybJERERg586dWLRoEfr06QOZTAaJRIKJEyeKx7fqHu9jVTF79uxB69atNeLt7Bp3WdK4s2sE4uLi0LJlS3z88ccabYcPH8aRI0fwySefoH379jhz5gyKiorURpsyMjLUtnnqqacAAE2aNMHgwYONmzw1OlUHury8vFrj0tPTxdPBAKBUKpGXl4eXXnpJp9f48ccfkZeXp1Y01ec5yTwcOnQIjo6O+P7779Wms9i5c6dO23t4eMDNzQ1Xr141Vopk5uLj4/H6669j48aN4rqSkhI8fPhQp+19fX0BPPoVsTkeA3lNUy2Ki4tx+PBhjBw5EuPGjdNY5s+fj4KCAnz99dcYOnQoysrK8Nlnn4nbV1ZWahRbLVu2xAsvvIBPP/1U64GTP9e1DGfOnNH6bbvq+qGnn3661u1jY2NRVlYmPt6xYwfKy8sxfPhwAMCtW7fwxx9/aGxXWlqKH374ATY2Nhojlk96TjJ/tra2kEgk4rWWAJCVlYWjR4/qtL2NjQ3CwsLwzTffaL1FCkeQyNbWVqMffPTRR2p9rjZDhw6Fm5sb1q5dq/Z5VKWxHwM50lSLr7/+GgUFBQgNDdXa3rt3b3h4eCAuLg5HjhxBcHAw3nzzTWRkZKBz5874+uuvcf/+fQDq1xN8/PHH6Nu3LwICAjBz5kw89dRTuH37NpKSkpCTk4MrV640yP6R8URERKCoqAhjxoxB586dUVpainPnzuGrr75Chw4dMG3atFq3Ly0txaBBg/DKK6/g3//+N7Zv346+ffuKfTEnJwfBwcH429/+hkGDBqF169bIz8/Hl19+iStXrmDRokVo0aKFXs9J5m/EiBHYtGkThg0bhkmTJiE/Px8ff/wx/Pz88P/+3//T6TnWrl2LkydPYsCAAZg1axa6dOmCvLw8HDx4ED///LPWucfIeowcORJ79uyBTCbDM888g6SkJJw+fRrNmzfXaXs3Nzfs2LED4eHh6N69OyZOnAgPDw/89ddf+Pbbb/H8889j27ZtRt6LejDlT/cau1GjRgmOjo5CYWFhjTFTp04VmjRpIty9e1e4c+eOMGnSJMHV1VWQyWTC1KlThV9++UUAIOzfv19tu8zMTGHKlClC69athSZNmgheXl7CyJEjhfj4eGPvFjWA48ePC2+88YbQuXNnwcXFRbC3txf8/PyEiIgI4fbt22JcTVMO/Pjjj8KsWbOEZs2aCS4uLsJrr70m3Lt3T4xTKBTC1q1bhaFDhwpt27YVmjRpIri6ugp9+vQRPvvsM7Wfgev6nNT4Vf1bapsOoMrnn38udOzYUXBwcBA6d+4s7Ny5U1i1apXw+Mc9AGHevHlan+PGjRvClClTBA8PD8HBwUF46qmnhHnz5gkqlarWPM6cOSMAEM6cOVO/HSWTqq2fPXjwQJg2bZrQokULwcXFRRg6dKjw559/1vhZVlNfPXPmjDB06FBBJpMJjo6Ogq+vrzB16lTh0qVLxtotg5AIAsdbjeno0aMYM2YMfv75Z62zNxMZ265duzBt2jRcvHjRoLdEICKyNrymyYCKi4vVHldUVOCjjz6Cm5sbunfvbqKsiIiIyBB4TZMBRUREoLi4GH369IFKpcLhw4dx7tw5rF27tt4/7SUiIiLTYtFkQH/729+wceNGJCQkoKSkBH5+fvjoo48wf/58U6dGRERE9cRrmoiIiIh0wGuaiIiIiHTAoomIiIhIByyaiIiIiHTAoomIiIhIByyaiIiIiHTAoomIiIhIByyaiIiIiHTAoomIiIhIB/8fEi5/N/bjoRIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1.15 s (started: 2024-10-26 13:18:11 +00:00)\n" ] } ], "source": [ "df[nums].plot(kind=\"box\", subplots = True,figsize=(6,5))\n", "plt.tight_layout();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 425 }, "executionInfo": { "elapsed": 44, "status": "ok", "timestamp": 1729948694968, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Y3LgXGc3ejvf", "outputId": "3f16c337-1797-4703-b5ce-e41febfdc6ba" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFFElEQVR4nO3dd3hTddsH8O/J7t5ACy172YJlDxkiQ2QqMpyVrSggKI6iqPjIkiEiLw8iCCoIIsh0MR4qU2ZRdlktnXTPNPu8f6QJDU3bpE1yzknvz3X1sj05Se6UY/rNbzIsy7IghBBCCCHVEnFdACGEEEKIUFBwIoQQQgixEQUnQgghhBAbUXAihBBCCLERBSdCCCGEEBtRcCKEEEIIsREFJ0IIIYQQG1FwIoQQQgixkYTrArhmMBiQlpYGHx8fMAzDdTmcY1kWRUVFCAsLg0hEubom6JqyRNdU7dE1ZYmuqdqja8qSPddUnQ9OaWlpCA8P57oM3klOTkajRo24LkOQ6Jqyjq6pmqNryjq6pmqOrinrbLmm6nxw8vHxAWD8Zfn6+nJcDfcKCwsRHh5u/r0Q+9E1ZYmuqdqja8oSXVO1R9eUJXuuqTofnExNlL6+vnTxlENNtzVH15R1dE3VHF1T1tE1VXN0TVlnyzVFncOEEEIIITai4EQIIYQQYiMKToQQQgghNqLgRAghhBBiIwpOhBBCCCE2ouBECCGEEGIjCk6EEEIIITai4EQIIYQQYiMKToQQQgghNqLgRAghhBBiIwpOhBBCCCE2ouBECCGEEGIjCk6EEEIIITai4MQja9aswW+//cZ1GcRN6HQ6fPbZZzh27BjXpRA3oVQq8cknn+D69etcl0LcRHp6OubNm4fU1FSuS7EZBSce2b59Oz7//HOuyyBu4tatWzh06BDmzZvHdSnETRw4cABxcXFYtGgR16UQN7Fp0yYcO3YM69ev57oUm1Fw4gmWZbkugbgZg8HAdQnEzZSWlgIAkpKSOK6EuIu8vDwAQHZ2NseV2I6CE09QcCKOxjAM1yUQQkiVhPg+RcGJJyg4EUIIqauE9DeQghNPCOmiIcJA1xQhRCiE1PJEwYkQQgghxEYUnHiCWgeIo9HgcEIIcTwKTjxBwYk4mk6n47oEQgixCXXVEbtRcCKOptfruS6BEEKqZPrbJ6S/gRSceEJIFw0RBmpxIoQQx6PgxBMUnIijUYsTIUQohPQ3kIITTwjpoiHCQMGJECIUNMaJ2I1mQBFHo+BECCGOR8GJJ6jFiTgajXEihAiFkP4GUnDiCSFdNO7s5s2beO6559CoUSN4enqiTZs2+PTTT6FUKrkuzW7UiskfFy5cwIgRIxAYGAhPT09ERUVh1apVXJdFCOeE1EVnIuG6AGJEf+S4l5ycjK5du8LPzw/Tp09HYGAgTp06hY8//hjnz5/Hnj17uC7RLtRVxw8HDhzA8OHD0aFDB8ybNw/e3t64ffs2UlJSuC6NEFIDFJx4glqcuPfDDz8gPz8fx48fR2RkJABg6tSpMBgM+P7775GXl4eAgACOq7QdBSfuFRYWIiYmBkOHDsWOHTsgElEjf10SFxeHfv36Wb3t1KlT6N69u/nnkydP4t1338WFCxfg6+uLsWPHYuHChfD29ra4n1qtxkcffYQffvgBeXl5aN++PT777DMMHDjQqa/FWYT4t4+CE09QixP3CgsLAQD169e3OB4aGgqRSASZTMZFWTVG1xT3fvzxR9y/fx8LFiyASCRCSUkJPDw8KEDVMTNnzkSXLl0sjrVo0cL8/cWLF9G/f3+0bdsWK1asQEpKCpYtW4abN2/i999/t7jf+PHjsWPHDsyaNQstW7bEpk2bMGTIEBw5cgS9evVyyetxBiF12VFw4gkhpm538/jjj2PJkiWYNGkS5s+fj6CgIJw8eRL//e9/MXPmTHh5eXFdol3omuLeoUOH4Ovri9TUVDz99NNISEiAl5cXXn75ZXzxxRdQKBRcl0hcoHfv3hg9enSlt8+dOxcBAQGIi4uDr68vAKBJkyaYMmUKDhw4gEGDBgEAzpw5g23btmHp0qWYM2cOACAmJgZRUVF49913cfLkSee/GEKDw/mCWge4N3jwYPznP//BwYMH0aFDB0REROC5557DjBkz8MUXX1R6P7VajcLCQosvPqDgxL2bN29Cp9Nh5MiRePLJJ7Fz505MnDgRa9euxYQJEyq9H1+vKVJzRUVFVme6FhYW4uDBg3jppZfMoQkwBiJvb29s377dfGzHjh0Qi8WYOnWq+ZhCocCkSZNw6tQpJCcnO/dFOIGppUlILU4UnHiC/sjxQ5MmTdCnTx+sW7fO/Edu4cKFWL16daX3WbRoEfz8/Mxf4eHhLqy4cnRNca+4uBhKpRIxMTFYtWoVRo0ahVWrVuHVV1/Ftm3bcPPmTav34+s1RWpmwoQJ8PX1hUKhQL9+/XDu3DnzbZcuXYJOp0Pnzp0t7iOTyRAdHY34+Hjzsfj4eLRq1coiYAFA165dARi7/IRKSO9XvAxOtk4JP3nyJHr16gVPT080aNAAM2fORHFxMUdV1w61OHFv27ZtmDp1KtavX48pU6Zg1KhR2LBhA1555RW89957yMnJsXq/2NhYFBQUmL+E+KmPOIeHhwcA4Pnnn7c4/sILLwAwDhC2hq4p9yCTyfDss8/iyy+/xJ49e/DZZ5/h0qVL6N27tzkQpaenAzCOpXxYaGgo0tLSzD+np6dXeh4Ai3MfRq2YjsO7MU62Tgm3ZzCdEFBw4t6aNWvQoUMHNGrUyOL4iBEjsGnTJsTHx2PAgAEV7ieXyyGXy11Vps2E1PTtrsLCwnDlypUKEw7q1asHAMjLy7N6P75eU8Q+PXv2RM+ePc0/jxgxAqNHj0b79u0RGxuLP/74A6WlpQBg9d9boVCYbweA0tLSSs8z3V6ZRYsWYf78+TV+LeQB3gUnW6eE2zqYTigoOHHv/v37Vpcb0Gq1AIS3EjcFJ+516tQJBw8eRGpqKlq3bm0+bmoZCAkJ4ao0wpEWLVpg5MiR+OWXX6DX682tkmq1usK5KpXKfDtgbMGs7DzT7ZWJjY3FW2+9Zf65sLCQV13A1FVXC7ZMCbdnMJ1QUHDiXqtWrRAfH4+EhASL41u3boVIJEL79u05qqxmaMo798aOHQsA2LBhg8Xx9evXQyKR4PHHH+egKsK18PBwaDQalJSUmLvZTF125aWnpyMsLMz8c2hoaKXnAbA492FyuRy+vr4WX3wipA96vHtnNb2RTJo0CRcvXkRycjJ++ukniynh9gymEwohpW139c4770Cv16N37974z3/+gzVr1mDIkCHYvXs3Jk6cWOWbEh9RcOJehw4dMHHiRPz4448YN24c1qxZg7Fjx2Lr1q145513BHdNEce4c+cOFAoFvL29ERUVBYlEYjFgHAA0Gg0uXryI6Oho87Ho6GgkJCRUGJ90+vRp8+3E+Xj3zmrLlHB7BtM9jK8D5KjFiXt9+vTByZMn0alTJ6xZswazZs3C7du3sWDBAvz3v//lujy7icVirksgANauXYtPPvkEp0+fxqxZsxAfH48vvvgCCxcu5Lo04mRZWVkVjv3zzz/Yu3cvBg0aBJFIBD8/PwwYMACbN29GUVGR+bwffvgBxcXFGDNmjPnY6NGjodfrsW7dOvMxtVqNjRs3olu3brzqenNnvBvjBDyYEv7ss88iKCgIv/76KxYuXIgGDRpg+vTpdg2mexhfB8hRcOKHrl274rfffuO6DIeg4MQPUqkUH3/8MT7++GOuSyEuNm7cOHh4eKBnz56oV68erl69inXr1sHT0xOLFy82n7dgwQL07NkTffv2xdSpU5GSkoLly5dj0KBBGDx4sPm8bt26YcyYMYiNjUVmZiZatGiB7777DomJiRW6g4VGSF11vAtOpinhCQkJ5tlNo0aNgsFgwHvvvYfnn3/ersF0D+PrADkKTsTRKDgRwq2nn34aW7ZswYoVK1BYWIiQkBCMGjUKH3/8scWWKx07dsShQ4fw3nvvYfbs2fDx8cGkSZOwaNGiCo/5/fffY968eRZ71e3fvx99+vRx5Uur03gXnGyZEm7PYLqH8XWaLwUn4mgUnAjh1syZMzFz5kybzu3VqxdOnDhR7XkKhQJLly7F0qVLa1serwhpnC/vxjjdv3/f6q7u5aeE2zOYTihoJ3viaBScCCFCQcGpFmyZEm7PYDqhKN/iRK1PxBEkEt41KBNCiFU0xqkW3nnnHfz+++/o3bs3pk+fjqCgIOzfvx+///47Jk+ebO6Gs3UwnVCUb3HS6/U0lZzUGgUnQghxPN79dbZ1SrhpMJ2Hhwdmz56NdevWYdKkSdixYweH1ddc+VYm6rYjjkBddYQQoRBSVx0vP5LaOiXc1sF0QlB+Ow8KTsQRKDgRQoRCSF11vGtxqqsoOBFHo+BEHE1IrQKEOAsFJ54oH5aEtpks4SchfYIjhBChoODEE+XDEgUnQggfURgnhIITb1BXHXE06lYhhBDHo+DEE+WDk2mxT0IIIYTwCwUnnigflig4EUegbhVCiFAIqYWcghNPUHAihBBC+I+CE09QcCKORi1OhBDieBSceEKj0Zi/p+BECOEjIXWnEOIsFJx4glqcCCGEEP6j4MQT5Vucyn9PCCF8Qd2/hFBw4g0KTsTRqFuFEEIcj4ITT6jVaqvfE0IIIYQ/KDjxRPlWJgpOhBBCCD9RcOIJanEijkbjUQghxPEoOPEEBSdCCCGE/yg48QQFJ0IIIYT/KDjxBAUnQgghhP8oOPGESqUyf0/BiRBCCOEnCk48odFowDJiABScCCGEEL6i4MQTpSoVWIkcAAUnQgghhK8oOPGEulxwKt9tRwghfEGr0RNCwYk31Go1WLEMYBgKToQQQghPUXDiAa1WC71eD4glgEhKwYkQQgjhKQpOPGAKSqxIAlYkpjFOhBBeotXoCaHgxAvmFiaRBKxIgtLSUm4LIoQQQohVFJx44EGLkxSsSEJddYQQQghPUXDiAXMLk1gCiKXU4kSIm4iLiwPDMFa//v77b67LI4TUgITrAsiD4MSWddVptVrodDpIJPTPQ4g7mDlzJrp06WJxrEWLFhxVQwipDfrLzAPm4CSWghVLzcd8fHy4LIsQ4iC9e/fG6NGjuS6DEOIA1FXHA0ql0viNSGr8Kn+MEOIWioqKoNPpuC6DEFJLFJx4wBSSyrc4UXAixH1MmDABvr6+UCgU6NevH86dO8d1SYSQGqKuOh6g4ESIe5LJZHj22WcxZMgQBAcH4+rVq1i2bBl69+6NkydPokOHDlbvp1arLdZzKywsdFXJhJBqUHDigZKSEuM3YpnxC0BxcTGHFRFCHKFnz57o2bOn+ecRI0Zg9OjRaN++PWJjY/HHH39Yvd+iRYswf/58V5VpM1oAkxDqquMFU0hixTLjfnUoF6YIIW6lRYsWGDlyJI4cOWLcasmK2NhYFBQUmL+Sk5NdXCUhpDLU4sQD1oITtTgR4r7Cw8Oh0WhQUlICX1/fCrfL5XLI5XIOKqsay7Jcl0AI56jFiQeKiooAAKxEDlYitzhGCHE/d+7cgUKhgLe3N9elEELsRMGJBwoLCwFGZNyrjoITIW4jKyurwrF//vkHe/fuxaBBgyAS0VswIUJDXXU8UFRUZAxMDGMOTjSLhhDhGzduHDw8PNCzZ0/Uq1cPV69exbp16+Dp6YnFixdzXR4hpAYoOPFAfn4BDGJjYDIFp4KCAi5LIoQ4wNNPP40tW7ZgxYoVKCwsREhICEaNGoWPP/6YtlwhRKConZhjBoMBhUWFYKUK4wGRFGBEFJwIcQMzZ87E6dOnkZOTA61Wi7S0NPzwww8UmuqwBQsWgGEYREVFVbjt5MmT6NWrFzw9PdGgQQPMnDnT6kQhtVqN9957D2FhYfDw8EC3bt1w8OBBV5RPQMGJc0VFRWANBrCSsuDEMGAlCgpOhBDiZlJSUrBw4UJ4eXlVuO3ixYvo378/lEolVqxYgcmTJ2PdunUYM2ZMhXPHjx+PFStW4MUXX8SXX34JsViMIUOG4Pjx4654GXUeddVxLD8/H8CDLjoAMEjkyMvL56YgQgghTjFnzhx0794der0e2dnZFrfNnTsXAQEBiIuLMy9R0aRJE0yZMgUHDhzAoEGDAABnzpzBtm3bsHTpUsyZMwcAEBMTg6ioKLz77rs4efKka19UHUQtThwzByeph/kYK/VAcXERtFotR1URQghxpKNHj2LHjh1YuXJlhdsKCwtx8OBBvPTSSxbresXExMDb2xvbt283H9uxYwfEYjGmTp1qPqZQKDBp0iScOnWKFkt1AQpOHMvLywPwUHCSGL+n7jpCCJ/QApg1o9frMWPGDEyePBnt2rWrcPulS5eg0+nQuXNni+MymQzR0dGIj483H4uPj0erVq0qLJzatWtXAMYuP+Jc1FXHMXNwMo1xAswDxfPy8hAcHMxJXYQQQhxj7dq1SEpKwqFDh6zenp6eDgAIDQ2tcFtoaCiOHTtmcW5l5wFAWlqa1eegjaMdh1qcOGa1xans+9zcXE5qIoQQ4hg5OTn46KOPMG/ePISEhFg9p7S0FACsbrOjUCjMt5vOrey88o/1sEWLFsHPz8/8FR4ebvdrIUYUnDhmCkfS9EvwvLIHittxMFBwIoQQt/Dhhx8iMDAQM2bMqPQcDw/je375FiETlUplvt10bmXnlX+sh9HG0Y5DXXUcM4UjkaYE4lLj92xwS4vbCCGECM/Nmzexbt06rFy50qILTaVSQavVIjExEb6+vuZuNlOXXXnp6ekICwsz/xwaGorU1FSr5wGwOLc8vm4cLUTU4sSxvLw8QCQBGMZ8rPwYJ0IIIcKUmpoKg8GAmTNnomnTpuav06dPIyEhAU2bNsWnn36KqKgoSCQSnDt3zuL+Go0GFy9eRHR0tPlYdHQ0EhISKoxROn36tPl24lwUnDiWk5Nj7pozYaWeAKjFiRBChCwqKgq7du2q8BUZGYmIiAjs2rULkyZNgp+fHwYMGIDNmzdbbPD+ww8/oLi42GIRzNGjR0Ov12PdunXmY2q1Ghs3bkS3bt1o7JILUFcdh1iWRW5uLlh5IMDqHxyXyAEwFJwIIUTAgoOD8fTTT1c4blrLqfxtCxYsQM+ePdG3b19MnToVKSkpWL58OQYNGoTBgwebz+vWrRvGjBmD2NhYZGZmokWLFvjuu++QmJiIDRs2OPkVEYBanDhVXFwMnU4Hg1RheQMjAitVUHDiyIULFzBixAgEBgbC09MTUVFRWLVqFddlEULcWMeOHXHo0CF4eHhg9uzZWLduHSZNmoQdO3ZUOPf777/HrFmz8MMPP2DmzJnQarXYv38/+vTpw0HldQ+1OHHIFIxYqSegKbG4zSBRIDeXxji52oEDBzB8+HB06NAB8+bNg7e3N27fvo2UlBSuSyOEuIm4uDirx3v16oUTJ05Ue3+FQoGlS5di6dKlDq6M2IKCE4cerOGkqHAbK/VAcWEaNBoNZDKZq0urkwoLCxETE4OhQ4dix44dEImoQZYQQogl+svAoQctThXX3TAdM+1lR5zvxx9/xP3797FgwQKIRCKUlJTAYDBwXRYhhBAe4W1wsmWcycmTJ9GrVy94enqiQYMGmDlzJoqLizmq2H7mDX4lVoJT2TFaksB1Dh06BF9fX6SmpqJ169bw9vaGr68vpk2bZl5cjhBCSN3Gy646W8aZXLx4Ef3790fbtm2xYsUKpKSkYNmyZbh58yZ+//13Dqu3nbXtVkwM1OLkcjdv3oROp8PIkSMxadIkLFq0CHFxcfjqq6+Qn5+PrVu3Wr0f7QFFCCF1B++Ck63jTObOnYuAgADExcWZd4lu0qQJpkyZggMHDmDQoEGuLLtGTMGpwqw6PBj3RDPrXKe4uBhKpRKvvfaauXVz1KhR0Gg0+Prrr/Hpp5+iZcuWFe63aNEizJ8/39XlEkII4QDvuupsGWdSWFiIgwcP4qWXXjKHJgCIiYmBt7c3tm/f7uqya8Tc4iSxEpzKjlGLk+uY9nh6/vnnLY6/8MILAIBTp05ZvR/tAUUIIXUH74KTLeNMLl26BJ1Oh86dO1vcVyaTITo6GvHx8VyUbreCggKAEQHiirPmaHC465n2eKpfv77F8Xr16gGofLyZXC6Hr6+vxRchhBD3xLvgVH6cyZNPPomdO3di4sSJWLt2LSZMmADgwWaGpo0RywsNDbXYTPFharUahYWFFl9cycvLM45lKrdPnQm1OLlep06dAKDCBpqm6ykkJMTlNRHCJ4yV9ypC6hreBSfTOJOYmBisWrUKo0aNwqpVq/Dqq69i27ZtuHnzJkpLSwHA6k7PCoXCfLs1ixYtgp+fn/mLy3198vLyrHbTATTGiQtjx44FgArbFqxfvx4SiQSPP/44B1URQgjhE94FJ1vGmZjOKT+TyUSlUplvt4Yv41E0Gg2USmWlwQkiCSCWGrvziEt06NABEydOxI8//ohx48ZhzZo1GDt2LLZu3Yp33nnH3JVHCCGk7uLdrLqwsDBcuXKlynEmzZs3B/Cgy6689PT0Kv/AyeVyqy1VrmZew8nKjDoTg0SBvLx81xREAABr165FREQENm7ciF27dqFx48b44osvMGvWLK5LI4QQwgO8a3GyZZxJVFQUJBIJzp07Z3GORqPBxYsXER0d7ZJaa+PB4peVBydW4oG8vFywLOuiqohUKsXHH3+MxMREaDQa3Lx5U7Chia4bQghxPN4FJ1vGmfj5+WHAgAHYvHkzioqKzOf88MMPKC4uxpgxY1xac01UtfiliUGqgE6nQ0lJSaXnEEIIIcR1eNdVZxpn8u2330Kn06Fv376Ii4vDzz//jNjYWHM33IIFC9CzZ0/07dsXU6dORUpKCpYvX45BgwZh8ODBHL+K6pkGfRuqCE6mUJWXlwdvb2+X1EUIIYSQyvEuOAG2jTPp2LEjDh06hPfeew+zZ8+Gj4+PeZsMIbClxcl0W25uLqez/4gw0dRx4mjU/UsIT4OTaZzJxx9/XOV5vXr1wokTJ1xUlWOZWpysbfBrUr7FiRBCCCHc490Yp7oiJycHAMDKqghOZaHKdC4hhBBCuEXBiSPGFiemyll1BpknAApOhBBCCF9QcOJITk6OsSuOqfyfgJVScCKEEEL4hIITB1iWRWZmlrlFqdLzysY4ZWVluaIsQgghhFSDghMHioqKoNGoYZB5VX2iSAxW6kHBiRBCCOEJCk4cyMzMBACw0mqCEwCDzAv3MzNpGjAhhBDCAxScOHD//n0AgEFe/aKWBpk3NGo1bfZL7EZhm58WLFgAhmEQFRXFdSmEkBqg4MSBjIwMAABrQ3AynWO6DyFEuFJSUrBw4UJ4eVXf2kwI4ScKThwwhSCDzKfacw0yY3BKT093ak2EEOebM2cOunfvjs6dO3NdCiGkhig4cSAtLQ2AjV11cmO4ouBEiLAdPXoUO3bswMqVK7kuhRBSCxScOJCamgpWIgck8mrPNSh8zfchhAiTXq/HjBkzMHnyZLRr147rcgghtcDLvercmcFgQFpaGgxyP5vOZ2XeABgKTsRutMkvf6xduxZJSUk4dOiQTeer1Wqo1Wrzz4WFhc4qjRBiJ2pxcrHs7GxoNBpzF1y1RGIY5N5ISUlxbmHE7RgMBq5LIDCu/P/RRx9h3rx5CAkJsek+ixYtgp+fn/krPDzcyVUSQmxFwcnF7t27BwAwKGxrcQIAg9wX2dnZUCqVziqLuCEKTvzw4YcfIjAwEDNmzLD5PrGxsSgoKDB/JScnO7FCQog9qKvOxczBycOO4OThBxSmIiUlBa1atXJWacTN6PV6rkuo827evIl169Zh5cqV5kkhAKBSqaDVapGYmAhfX18EBgZa3E8ul0Mur34MJCHE9ajFycVMnxztanEqO9cUugixBbU4cS81NRUGgwEzZ85E06ZNzV+nT59GQkICmjZtik8//ZTrMgkhdqAWJxdLSkoCYG9w8gdAwYnYh4IT96KiorBr164Kxz/88EMUFRXhyy+/RPPmzTmojBBSUxScXCwxMck4MFxk+6/e4OFfdt9E5xRF3BJ11XEvODgYTz/9dIXjprWcrN1GCOE36qpzoaKiIuTm5phbkGzFShRgJXJzaxUhtqAWJ0IIcTxqcXKhmgwMBwAwDPQKP6SkpECr1UIqlTqhOuJuaJNf/oqLi+O6BEJIDVGLkwvdvXsXAKD3CLD7vgYPf+j1eloIk9iMWpyIo1EYJ4SCk0s9GBjub/d9DQpj2KJxTsRW9EeOOBqtRk8IBSeXMoUe02Bve5juY2q1IqQ61OJECCGOR8HJhRITE2GQeQNi+8coGcq692hJAmIranEihBDHo+DkIiUlJcjKyqpRaxMAsFIPsGIZddURQgghHKLg5CK1Gd8EAGAYGBT+uJecDJ1O57jCCCGEEGIzCk4uYg5ONWxxAgC9hz/0Oh3S09MdVBUhhBBC7EHByUVMY5P0dmy18jDTNi20ECaxBc2AIoQQx6Pg5CIPFr/0r/FjmO5LA8SJLSg4EUeja4oQCk4uk5R0D6zUA5DIa/wYphYnCk7EFvRHjhBuXblyBWPGjEGzZs3g6emJ4OBg9OnTB/v27atw7rVr1zB48GB4e3sjMDAQL7/8MrKysiqcZzAY8Pnnn6Np06ZQKBRo3749tm7d6oqXQ8rQlisuoNPpkJ6eBr1HcK0eh5V7A4wIycnJDqqMuDORiD4XEcKlpKQkFBUV4ZVXXkFYWBiUSiV27tyJESNG4Ouvv8bUqVMBACkpKejTpw/8/PywcOFCFBcXY9myZbh06RLOnDkDmUxmfswPPvgAixcvxpQpU9ClSxfs2bMHL7zwAhiGwXPPPcfVS601IX3Qo+DkAunp6dDr9eYWoxpjRNDLfSk4EZsI6Y2IEHc0ZMgQDBkyxOLY9OnT0alTJ6xYscIcnBYuXIiSkhKcP38eERERAICuXbti4MCB2LRpk/m81NRULF++HG+88QZWr14NAJg8eTL69u2Ld955B2PGjIFYLHbhK6yb6COpC5iCDqvwrfVjGRS+KCwsREFBQa0fi7g3Ck6E8I9YLEZ4eDjy8/PNx3bu3Ilhw4aZQxMADBgwAK1atcL27dvNx/bs2QOtVovXX3/dfIxhGEybNg0pKSk4deqUS15DXUfByQVSUlIAoPYtTgDYsscwPSYhlaGuOkL4oaSkBNnZ2bh9+za++OIL/P777+jfvz8AYytSZmYmOnfuXOF+Xbt2RXx8vPnn+Ph4eHl5oW3bthXOM90uVEL6oEdddS6QmpoKADDIHdDiJPcxP2ZkZGStH48QQmxF2/jUzNtvv42vv/4agPEDzahRo8xdbaZ1+UJDQyvcLzQ0FLm5uVCr1ZDL5UhPT0f9+vUrhAzTfdPS0iqtQa1WQ61Wm38uLCys3Yuqw+gjqQs8aHHyqfVjmVqtTGGMkMpQixMh/DBr1iwcPHgQ3333HZ566ino9XpoNBoAQGlpKQBALq8441qhUFicU1paatN51ixatAh+fn7mr/Dw8Nq9KAcTUiind1YXSE1NhUHmBYhq38BnKBsnRcGJEEKEoU2bNhgwYABiYmKwf/9+FBcXY/jw4WBZFh4eHgBg0RpkolKpAMB8joeHh03nWRMbG4uCggLzF98mGQmpq46Ck5NpNBrcz8x0SDcdALBST0AkpuBUZteuXRg5ciQiIiLg5+eHiIgIPP3009i9ezfXpRFCiFWjR4/G2bNnkZCQYO5ms7aVVnp6OgIDA82tTKGhocjIyKjQOmO6b1hYWKXPKZfL4evra/FFaobGODlZRkYGWIPBId10AACGgV7uU+cHh+t0OrzwwgvYuXMnWJaFRCJBUFAQMjIysHfvXuzbtw/PPvssfvzxR0gkdJkT22RlZWHjxo04e/Ys8vPzodfrK5zDMAwOHz7MQXXEXZi61AoKCtC6dWuEhITg3LlzFc47c+YMoqOjzT9HR0dj/fr1uHbtGh555BHz8dOnT5tvJ85Hf1GczBRwWAe1OAHGQeZF+fdQWFhYZz81LFq0CDt27ECfPn2wYMEC9OjRAyKRCAaDASdPnsQHH3yAnTt3YvHixfjwww+5LpcTBoOB6xIE5d9//8UTTzyBvLy8KsdbCKlLgXArMzMT9erVszim1Wrx/fffw8PDwxx+nn32WXz33XdITk42jz06fPgwEhISMHv2bPN9R44cidmzZ2PNmjXmweUsy2Lt2rVo2LAhevbs6aJX5nhCGuNEwcnJzDPqHLCGkwlbbpxTXQ1OGzduRJs2bXDo0CGLFiWRSIRevXrh0KFDaN++Pb799lsKTsQmb7/9NnJzc/Hhhx9i0qRJaNSoES0mSGrl1VdfRWFhIfr06YOGDRsiIyMDW7ZswfXr17F8+XJ4e3sDAObOnYuff/4Z/fr1w5tvvoni4mIsXboU7dq1w4QJE8yP16hRI8yaNQtLly6FVqtFly5dsHv3bhw7dgxbtmwR9PUqpA8kFJyczJFLEZiYHislJaXCeh51RXp6OmbOnFlpN5xUKsXw4cPx1Vdfubgy/qDgZJ9Tp07h6aefxqeffsp1KcRNjBs3Dhs2bMB///tf5OTkwMfHB506dcKSJUswYsQI83nh4eH466+/8NZbb+H999+HTCbD0KFDsXz58gqz6BYvXoyAgAB8/fXX2LRpE1q2bInNmzfjhRdecPXLq7MoODmZeSkCRwYnxYPgVFeFh4ejuLi4ynNKSkosVuKtayg42Ucmk6F58+Zcl0HcyHPPPWfz/nGRkZH4888/qz1PJBIhNjYWsbGxtS2PV4TUVUez6pzs3r17xqUIxI7LqKa1nPg2ndSVJk+ejO3bt1udiQIYW/p++uknTJ482cWV8YdpnRhim759+1odoEvqptzc3Dr9HutqQuqqq1Vwio+Px7vvvosRI0ZgwIAB5uNJSUnYvn07cnNza12gkKlUKmRmZjpkq5XyjEsSSOr0/9Rjx45Fz5490aFDByxevBjHjx/HzZs3cfz4cSxatAidOnVCr169MGbMGNy7d8/iq67QarVclyAoy5Ytw+XLl7Fs2TKuSyEcKSgowJtvvon69esjJCQETZs2Nd92+vRpDBkyBOfPn+ewQsIHNW4Geffdd7F8+XJz81r5tMiyLF544QUsX74cb775Zu2rFChH7lFngWGgV/ghOTkZLMsKKqk7SrNmzcAwDFiWxQcffFDhdpZlsW/fPuzbt8/iOMMw0Ol0riqTUxScqjZx4sQKx6KiovDee+9h7dq1iI6Otjr5gmEYbNiwwRUlEhfKzc1Fz549kZCQgI4dOyIkJATXrl0z396+fXucOHECW7ZsQadOnTis1D0JqauuRsFp48aNWLZsGYYPH44FCxZg69atWLx4sfn2Jk2aoGvXrti7d2+dDk5JSUkAnBCcyh5TlZuDzMxM1K9f3+GPz3cxMTF1MjDag7rqqrZp06ZKb7tz5w7u3Llj9TYKTu7pk08+QUJCArZt24axY8di/vz5FhMFPDw80LdvX/zvf//jsErCBzUKTmvWrEHbtm2xc+dOSCQSyGSyCueYporXZebg5BHg8Mc2ePgDABITE+tkcKrqjx4xMm3DAKDOtkxW5e7du1yXQHhk7969GDZsGMaOHVvpOU2aNMHJkyddWBXhoxoFp6tXr2LKlClVrshcv359ZGZm1rgwd5CYmAjgQchxpPLBqVu3bg5/fCJ85fe00mg0VjcHrcsaN27MdQmER9LT06udASeXy1FSUuKiiuoGUxed23fVSSSSarsB0tLSzIt71VV37twBK5GDlSgc/tj6slYs+tT8wMWLF3HkyBEAQK9evdClSxeOK+JW+RYnlUpFwYmQKgQFBVU74eb69evmveWIYwixJbxGs+ratWuH//3vf1b3cQIApVKJQ4cO1ekBdKWlpUhNTYXeMxBwwoXByn0AkQS3b992+GPz1dGjRxETE4O///67wm0ffvghOnXqhDlz5mDOnDno3r07ZsyYwUGV/GHaDwuwDFHEuuXLlyM4OBhpaWlWb09LS0NISAhWrVrl4sqIK/Tp0wd79uypdH28q1ev4o8//rCYQU5qz9oEM76rUXCaOHEiEhIS8Nprr1l0BwBAYWEhxo8fj4yMDEyZMsUhRQrRnTt3wLIsDB5BznkCRgS9RyDu3r1bZ2ZP/fTTT/j5558tNrcEgCNHjmDhwoUQi8V4+eWXMW3aNAQHB2PNmjXYvXs3N8XyQPngVP57Yt3PP/+MRx99tNId5sPCwhAdHY1t27a5uDL+ENIfN3t98MEH0Ov1eOyxx7BlyxZkZ2cDAK5du4YNGzbgiSeegFwuxzvvvMNxpYRrNeqqmzhxIg4dOoQNGzbgp59+gr+/PwCga9euuHbtGkpKSjB+/HiMHj3akbUKyq1btwDA2OLkJHrPQOhKMpGUlIQWLVo47Xn44tSpU+jZs2eFKeJff/01GIbB2rVrzVPMZ82ahaioKGzatAlPP/00B9Vy7+GuOlK1mzdv4sUXX6zynMjISGzZssVFFRFXateuHX766Se8/PLLiImJAWBsDYmKigLLsvDx8cH27dvRsmVLjit1L6Yw7vZjnADgxx9/RL9+/bB69WpcvnwZLMvi3LlzaNu2LWbOnIlXX33VkXUKzo0bNwAABq9gpz2HwSsYyDI+V10ITmlpaXj88ccrHD9y5Ah8fX0xfvx487EWLVpgyJAhOHPmjOsK5JnyrcEUnKpXWloKLy+vKs9RKBTVbvVDhGvEiBG4e/cuvvvuO5w+fRq5ubnw9fVFt27dMGHCBAQHO+/9vK4TUmtmrfYBmTJlCqZMmYLS0lLk5eXB19e3zg8IN7l27RogljplDScTfVkou379OoYOHeq05+GLvLw8eHh4WBy7d+8esrKyMHToUIhElj3PLVq0wG+//ebKEnmlfFh6uEudVBQREVHtVPNTp06hUaNGLqqIuNL333+P+vXr48knn8Ts2bO5LqfOEFJLk4lD9qrz8PBAWFiYU0LTggULwDAMoqKiKtx28uRJ9OrVC56enmjQoAFmzpzJi0+DSqUSiYlJ0HkGO2VguInBwx8QSXD16lWnPQef+Pj4IDU11eLY2bNnAcDqRASGYaBQ1G5GY1XXH99Ri5N9hg4diuPHj+Pbb7+1evv69etx/PhxDB8+3ObHvHLlCsaMGYNmzZrB09MTwcHB6NOnT4UV7Qn3Jk2ahD/++IPrMogAOG7nWSdISUnBwoULrTafX7x4Ef3790fbtm2xYsUKpKSkYNmyZbh58yZ+//13Dqp94Pr162BZA/ReIc59IkYEnVcw7ty5C6VSCU9PT+c+H8fat2+P/fv3o6SkxHxN7Nq1CwzDoE+fPhXOv337dqUDfW1R1fUnBOWDE7U4Ve/999/H1q1bMWXKFGzevBkDBw5Ew4YNkZqaigMHDuDo0aMICwuza1f6pKQkFBUV4ZVXXkFYWBiUSiV27tyJESNG4Ouvv8bUqVOd+IqIPUJDQ+vMdkx8IqQuOpMaBSeRSFTti2UYBr6+vmjdujWeeeYZzJgxo0I3S3VM08r1er15hoPJ3LlzERAQgLi4OPNg4SZNmmDKlCk4cOAABg0aZN+LcqBLly4BAPQ+zl/RW+9dH5KiDFy9ehWdO3d2+vNxaeLEiYiJiUHfvn0RExODhIQEbN26FRERERXGPun1ehw9ehT9+vWr8fNVdf0JQfnZlvQHoXohISE4cuQIXnrpJcTFxSEuLs68HyIAdOnSBVu2bEFIiO0fiIYMGYIhQ4ZYHJs+fTo6deqEFStWUHDikREjRuDgwYNQq9W05hkHhBSgatRV16dPH7Rv3x4sy0IkEqFJkybo1q0bmjRpApFIBJZl0a5dOzRq1Aj//vsvYmNj0b17dxQWFtr8HEePHsWOHTuwcuXKCrcVFhbi4MGDeOmllyxmWMXExMDb2xvbt2+vyctyGHNw8q7n9OcyhTPTc7qzl156Ca+88gouXLiA2bNnY82aNfDx8cGGDRsqjG/69ddfkZ2djSeffLJGz1XV9ScU5cNSXVmyorZat26Ns2fP4vTp0/jqq6/wn//8B6tXr8aZM2dw+vRph0zCEIvFCA8PR35+fu0LJg6zYMECeHl5YdSoUbhy5QrX5RAeq1GL0+bNm9GrVy/ExMTgs88+sxgsmZqaig8//BBxcXE4fvw4/Pz8MGfOHKxbtw4LFy602Ay4Mnq9HjNmzMDkyZPRrl27CrdfunQJOp2uQguLTCZDdHQ04uPja/KyHEKr1eLy5cvGlb0lzv/UoveqB4DBxYsXnf5cfLBx40ZMmjQJp06dQlBQEJ588kk0bNiwwnlyuRxffPEFRo4cafdzVHf9CUX54EQtTtWbOHEi2rVrh9mzZ6NLly4OXXm+pKQEpaWlKCgowN69e/H7779j3LhxDnt8UnsdOnSAWq3GxYsX8ccff0ChUKBevXoVWkIYhqlTCw+7ipAGidcoOM2ZMwdhYWFWN1pt2LAhNm7ciMceewxz5szB1q1bsWbNGhw/fhy7du2yKTitXbsWSUlJlW4SnJ6eDgBWl74PDQ3FsWPHKn1stVptMd7DnlYwW1y7dg0qlQr6+s0c+riVksig9wrClStXoFKpaj0YWgh69eqFXr16VXnOk08+WePWpuquv4c5+5qqKeG8DfHDjz/+6LTZVG+//Ta+/vprAMahDqNGjcLq1asrPZ+v15SQulPsZTAYIJPJEBERYXH84T/oQvoDT5yjRsHp0KFD1a7T1LdvX3zzzTcAjG8UvXv3tmlH+5ycHHz00UeYN29epWMJTKsgW+uHVigUVa6SvGjRIsyfP7/aOmrqwoULAACdb80HJdtL5xMGcUk2Ll++7PbjnCpz584dFBQUwM/PD82a1Ty02nL9PczZ1xRxjebNm5s/lDnarFmzMHr0aKSlpWH79u3Q6/VV7vdJ15TrmTZlJ6Q6NRrjpFKpqn2DSU9PtwgwPj4+kEiqz2kffvghAgMDq9xnzDTI3NpMIZVKVeUg9NjYWBQUFJi/qtvU0V7G4MRA793AoY9bFb2vseXt/PnzLntOPigoKMCbb76JgIAAtGzZEp07d0bLli0REBCAWbNmoaCgwO7HtOX6e5izryniGhMnTsSvv/5aYckLR2jTpg0GDBiAmJgY7N+/H8XFxRg+fHilrRd8vaaotYU4i5CurRq1OHXs2BHbtm3DlClT0KNHjwq3nz59Gj/99JPFGIE7d+6gfv2qZ5ndvHkT69atw8qVKy022lSpVNBqtUhMTISvr6+5i85aeEtPT69yCrpcLnfajIni4mLj+CbvEEAic8pzWKP3qQ+IxDhz5kydWbE9MzMTvXv3xs2bN+Hv74++ffuifv36uH//Pi5evIhVq1bh999/x7Fjx1Cvnm2D9G29/gIDLbfRceY1VRsSsfjB9zZ8aKnrnn32WRw5cgQ9e/bEu+++iy5duqB+/fpWu6ce7s6x1+jRo/Hqq68iISEBrVu3rnA7X68pQhxNiJv81ujd9D//+Q8GDhyI3r17Y8SIEXjsscdQr149ZGZm4sSJE9i3bx9EIhE+/fRTAMZA8eeff2Ls2LFVPm5qaioMBgNmzpyJmTNnVri9adOmePPNNzF//nxIJBKcO3fO4jE1Gg0uXrxY7fM4y4ULF2AwGKDzs21lYc/Lu8BojQsTMjrjf0XKXHjFbwUrVUAZ9YxtTyySQOcTitu3byM7O7tObAsQGxuLmzdv4v3338cHH3xgsdZSSUkJPvvsMyxZsgRz587F+vXrbXpMW68/ocy0k0ql5u/F5UIUsa5Zs2bm5Qes/fubMAxT68H2ptb4mrSKEuc6deoUDh06hLS0NKu9GgzDYMOGDRxURviiRsGpb9++2L9/P6ZOnYrdu3dj9+7dFuudREREYO3atejbty8A4xin48ePW539VF5UVBR27dpV4fiHH36IoqIifPnll2jevDn8/PwwYMAAbN68GfPmzYOPjw8A4IcffkBxcTHGjBlTk5dVa6dPnwYAm4MTo1VBpLMcj8WABaMrhcHO59b5NYKkIAVnz57FU089Zee9hWffvn144oknsHDhwgq3eXl5YdGiRTh9+jT27t1r82Paev0JRflWpvIhilgXExPj8E+9mZmZFVo8tVotvv/+e3h4eOCRRx5x6PORmtPpdHj++efxyy+/gGVZi79pAMw/U3ByLCG1NJnUuP1+0KBBuHPnDo4fP45//vkHhYWF8PX1xaOPPopevXpBJBKZFxLz9PTEo48+Wu1jBgcHW93J3vQJv/xtCxYsQM+ePdG3b19MnToVKSkpWL58OQYNGoTBgwfX9GXVmMFgwKlTf4OVesDgGeTy5zeFtVOnTtWJ4FRSUoLu3btXeU6PHj3s2uTXnutPCMqHJeqqq54tk1fs9eqrr6KwsBB9+vRBw4YNkZGRgS1btuD69etYvnw57e3JI8uXL8fOnTsxceJEvP766+jcuTNmzZqFcePG4ejRo1i8eDEGDBiAJUuWcF2qW3L7MU4mIpEIffr0qbDdxYULF7BhwwZs27YNOTk5tSqwMh07dsShQ4fw3nvvYfbs2fDx8cGkSZOwaNEipzxfdRISEpCbmwNtcEun7k9XGVbhC4PCH2fOnKkTK99GRUVVOwsmMTFRkHvMOUr5a8DeVfuJY4wbNw4bNmzAf//7X+Tk5MDHxwedOnXCkiVLMGLECK7LI+Vs2bIFUVFRFl37/v7+6NatG7p164YhQ4aga9eueOKJJ+rMWFJXengRYz5z2MfQ/Px8bN68GRs2bMC///4LlmUd9mYdFxdn9XivXr1w4sQJhzxHbZl2Vdf7127QaG1o/cOhyriEixcvolu3bpzV4Qpz587FuHHjMH78eAwYMKDC7QcOHMCOHTuwY8eOWj9XZdcf35Vf08vdgzRfPffcc3juuee4LoPY4NatW5g8ebL5Z4ZhLFbcj4yMxPDhw/Hf//6XglMdV+vgdOjQIWzYsAF79uyBWq0Gy7Lo0aMHJkyYUKdWxj1+/DggErt0/aaH6f0jgIxLOHHihNsFp++//77CsUGDBuHJJ5/EwIED0atXL/OsumPHjuHQoUMYNmwY8vLyOKiWH8qHJQpOtikqKsLq1aurHRxMK0e7H5lMZrFRure3NzIzMy3Oady4Mfbt2+fq0uoEt++qS05OxsaNG7Fx40bcu3cPLMuadxEfP348vv32W0fXyWupqam4c+cOtP4RgJi7Qbh67xCwUg8cO34cs2bNElTTZ3XGjx9fYRCh6X+0AwcO4MCBAxXus2/fPuzfvx8xMTEuqZFvyrc41YUV5WsrKysLPXv2xO3bt+Hr64vCwkL4+flBo9GYZ8GFhYXRQHs3FR4ebrFeVps2bXD06FHzgHAA+PvvvyssR0IcQ0iDxG0OTlqtFrt378aGDRtw+PBh6PV6eHl54cUXX0RMTAyeeOIJSCSSOjkI1bTFiy6gMbeFMCJo/SOQl3UDV69edavxPRs3buS6BMEp38pEwal6n3zyCW7fvo3vv/8eL774IsRiMWbPno2PPvoIZ8+exYwZMyCRSKyG9LpCSK0C9urbty/27NljDkrjxo3DnDlzMGzYMAwZMgTHjx/H8ePHMXHiRK5LdSuma0pI15bNKScsLAy5ublgGAb9+vVDTEwMRo0aZbF+Tl117NgxgGGg43B8k4kuoDFkWTdw9OhRtwpOr7zyCtclCE75sCSTuW5BVqH67bff0L9/f7z00ksVbuvSpQt+//13tGvXDvPnz6eZVW6isLAQCoUCMpkMEydOhF6vR2pqKho1aoQZM2YgLi4O+/fvx++//w4A6Nq1q037rRL7CSk42dyXk5OTA4ZhMHv2bPz44494+eWXKTTB2Lx/5coV6HxCAQn340j0PqFgxTJzEzOpu8qHJWpxql56ejo6dOhg/lksFltsGxUQEICnnnoK27dv56I84gQBAQHmENyxY0f897//RWpqKlatWgWpVIq9e/fizJkz2Lp1K06ePImTJ08iKMj1y83UBULqqrM5OI0fPx4eHh5YsWIFGjVqhBEjRuDnn3+ucqPKuuBBN10TbgsxEYmh849ARkYGEhISuK6GcKh8cKJxOdXz8/OzmEUVEBCAlJQUi3N8fX1x//59V5dGnIRl2QofMP/44w/Mnj3b/HPnzp0xbtw4dO/e3a3GjZKas/kq+Pbbb5Geno6vv/4aHTt2xP79+/Hcc8+hfv36ePXVV42zyuqgv/76CwDD/fimcrSBTQCYanMPIpEIEonEHAZFIhHEYnG1X3VxzJ0JBSf7NGvWzGJtsA4dOuDgwYPmtehKS0uxb9++Wu9TRwgRNrv+qnh7e2Py5MmYPHkyrl27hvXr12Pz5s345ptvsH79ejAMgxs3biApKQmNG/MnSDhLbm4u/v33X+h86oOV8meBQb1vGCCWIu6vvzBlyhRBNYFWpk+fPmAYxjxd2PQzqVz50FiXA6StBg0ahC+++AJKpRKenp549dVXMXr0aDz66KPo0aMHLly4gMTERCxYsIDrUglxG0J8H6/xu2nbtm2xfPlyLFmyxDzb7uDBgzh27BiaN2+Ovn37Yvz48Xj55ZcdWS+vHDt2DCzL8qebzkQkgdYvHGmpd3D79m20aNGC64pq7eFFKIW6KKUrUbeCfaZNm4ZHHnnEHJxGjRqFpUuX4rPPPsPOnTvh4eGBt956C++88w7XpRJCOFTrd1aJRILRo0fj999/R2JiIubPn4/GjRvjyJEjGD9+vANK5C9TVxjvghMAnRt211VHp9MhPj4e8fHxFmNV6iqxWMx1CYJw6tQpPPHEE2jZsiWmTJmC559/3rzH4dtvv43s7Gykp6ejuLgYS5cupd8rIXWcQ9vvGzVqhHnz5mHevHk4fPiwWy+EmZ+fj/j4i9B51wcr86z+Di6m82sEiCSIi4vDxIkTBdkc+rA7d+4gLi4OvXr1QqtWrSxu279/PyZNmoTs7GwAxoG9a9aswdixY7kolReoxal6ly5dQv/+/aFSqczHDh8+jJMnT+LMmTOIjIyEWCxG/fr1OaySONPmzZvx999/m3++desWAGDIkCFWz2cYBr/++qtLaqsL3HodJ3v1798f/fv3d9bDc+748eNgWQMvW5sAmLvrkpPvIjExEU2bNuW6olpbv349lixZgjt37lgcv3XrFsaOHQuVSoXGjRvDy8sL165dw4svvoiWLVtaTDGvSwwGA9cl8N7ixYuhUqnwwQcfYMaMGQCA//u//8N//vMfLFmyxOpWP8S93Lp1yxyWyvvjjz+snu8OH0L5SEi/VxoxWkMPuun4OwheF9gY0ry7OHr0qFsEp+PHjyM6OrrCxIMvv/wSKpUKb7zxBr766isAwO7duzFq1CisXr0aGzZs4KJczgnpExxXjh07hl69euE///mP+dj8+fMRFxdXp7q566q7d+9yXQIRIApONVBUVIQLFy5A7xUMVu7NdTmV0vmFAyIx/vrrL7dYefvu3bsYNmxYheN//PEHZDIZFi5caD729NNPo3fv3uZ1tuoianGq3v379/Hcc89VON6tWzecPn2ag4r4TUitAraoC7O/iePRIIgaOHXqFPR6PX+76UzEUmh9G+LOnTtITU3luppay8rKQnBwsMWx3Nxc3L59G926dYOPj4/FbR06dHCL111Ter3e/D21Plmn1Wrh7V3xw4+XlxdNMLCCriNCKDjViGmxTy2Pu+lMTF2JJ06c4LiS2pNKpebFCE3Onz8PwLi678Pq+pZA5Vf11+l0HFZCCCHug7rq7KRWq3HmzBkYFP5gFX5cl1MtvV84AAbHjh0T/AyzVq1a4fDhwxbHDhw4AIZh0LNnzwrnp6WlITQ01FXl8U75FhOtVkurh1fi4VlVQNUzq2hWFSF1GwUnO8XHx0OlUkEb2qr6k3mAlSqg86mPy5evID8/H/7+/lyXVGPPPvssPvzwQ7z22mt4/fXXkZCQgHXr1sHb2xuDBw+ucP6JEyfcYvHPmiofnDQajXnVdWKpsllVgPWZVe42zsceNG6OOIuQuoEpONnp1KlTAMoGXguEzi8ckqIMnDlzBoMGDeK6nBqbNWsWfvrpJ6xbtw7ffPMNAOP/bCtWrKjQLXfu3DncunULr776Khel8oJarTZ/X9c3464MzaqyT3FxMdclEDclpA8kNMbJDizL4uTJU2Alchi8Q7gux2Z6f2PIM4U+ofL09MSJEycwf/58DB48GC+++CL27NmDWbNmVTj3woULGDlyJEaMGOH6QnmifHAq/z15oHHjxjX6qquKioq4LkFQzp49i+nTpyMyMhJeXl6IiIjA2LFjzZuVl3ft2jUMHjwY3t7eCAwMxMsvv4ysrKwK5xkMBnz++edo2rQpFAoF2rdvj61bt7ri5ZAy1OJkh7t37yIrKxO6oOYAI5zMaVD4wSD3wZmzZ6HT6QS94au3tzfmzZtX7XlTp07F1KlTXVARf5VvZaLgRByBgpN9lixZghMnTmDMmDFo3749MjIysHr1anTs2BF///03oqKiAAApKSno06cP/Pz8sHDhQhQXF2PZsmW4dOkSzpw5A5lMZn7MDz74AIsXL8aUKVPQpUsX7NmzBy+88AIYhrG6tAbfCamlyUS4f0E5cO7cOQBl25kICcNA59cQJZnXcePGDURGRnJdEXGB8sGJptYTRzBtaQQAJSUldX7manXeeust/PjjjxbBZ9y4cWjXrh0WL16MzZs3AwAWLlyIkpISnD9/HhEREQCArl27YuDAgdi0aZP5Q2BqaiqWL1+ON954A6tXrwYATJ48GX379sU777yDMWPGCHYvRSEFKOE0m/DA2bNnAQB63zCOK7Gf3rchgAfhj7i/8sGJxjgRRyjfdVQ+RBHrevbsaRGaAKBly5aIjIzEtWvXzMd27tyJYcOGmUMTAAwYMACtWrXC9u3bzcf27NkDrVaL119/3XyMYRhMmzYNKSkpgh+OIRQUnGyk0Wjwzz//Qu8RCFbqwXU5dtP5hAIMQ8GpDqGuOuJIOp3OYh21zMxMDqsRLpZlcf/+ffNivqmpqcjMzLS6Fl3Xrl0RHx9v/jk+Ph5eXl5o27ZthfNMtwuVkGbVUXCy0fXr16HRqKH3Fei6QBIZ9J7BuHrtGv0RrSPKL3pJC2CS2rp//z4MBgNYxtgVlJaWxnFFwrRlyxakpqZi3LhxAID09HQAsLrmXGhoKHJzc83v2enp6ahfv36Fbi3Tfav6N1Gr1SgsLLT44hPqqnND//77LwBA79OA40pqTufTAHqdDlevXuW6FOIC5cNS+e1XCKmJe/fuAQB0/hEWPxPbXb9+HW+88QZ69Ohh3j+0tLQUACCXyyucr1AoLM4pLS216TxrFi1aBD8/P/NXeLhwltThGwpONvrnn38AADqf+hxXUnOm0GcKgcS9lQ9LFJxIbSUnJwMAdGXLm1Bwsk9GRgaGDh0KPz8/7NixwzyI28PDOPTDWk+ASqWyOMfDw8Om86yJjY1FQUGB+cv070nsR7PqbGAwGHDlyhXoFf6ARMF1OTWm964HALh06RLHlRBXKL/KMwUnUluJiYkAAINXMAwyL1o81A4FBQV46qmnkJ+fj2PHjiEs7MEEI1M3m6nLrrz09HQEBgaaW5lCQ0Nx5MgRsCxr0bVlum/5x32YXC632lrFFzTGyc0kJydDqVQKatFLqyRyGBR+uHb9uqAuUkII927dugWIJDAofGHwDER2djby8/O5Lov3VCoVhg8fjoSEBOzfvx+PPPKIxe0NGzZESEiI1Yk7Z86cQXR0tPnn6OhoKJVKixl5AHD69Gnz7UJFY5zcjOki1XsJPDgB0HsFo6S4GKmpqVyXQpys/BuRkN6UCP/odDrcvXsXeo8AgBFB7xkEALh9+zbHlfGbXq/HuHHjcOrUKfz888/o0aOH1fOeffZZ7N+/36L77PDhw0hISMCYMWPMx0aOHAmpVIo1a9aYj7Esi7Vr16Jhw4ZWNzsnjkdddTa4ceMGAGPoEDq9VwikObdx/fp1NGoksIU8SY1RcCK1ce/ePWi1Wuj9AwEABg/jf2/duoVOnTpxWRqvvf3229i7dy+GDx+O3Nxc84KXJi+99BIAYO7cufj555/Rr18/vPnmmyguLsbSpUvRrl07TJgwwXx+o0aNMGvWLCxduhRarRZdunTB7t27cezYMWzZskWwi18Cwuqqo+Bkgzt37gAMA4OHP9el1JrB0/iGd+fOHY4rIc5WfmsdIW+zQ7h369YtAA/eP/Rl/6UWp6pdvHgRALBv3z7s27evwu2m4BQeHo6//voLb731Ft5//33IZDIMHToUy5cvrzAuafHixQgICMDXX3+NTZs2oWXLlti8eTNeeOEFp78eZxLShzt6N60Gy7K4ffsO9HJfQCT8X5feIwAABae6oHxYEvInUcI9U0DSl7U0sXIfsGKpOVAR6+Li4mw+NzIyEn/++We154lEIsTGxiI2NrYWlZHaEH4ScLKcnBwUFxfBENDEKY9fvq+6vNdmvu2U54NEDlbmScGpDqAWJ+IopuBkanECw0DvEYikpCRoNJoK24oQYi8hddXR4PBqmAbruUM3nYle4Y/MzExaQdzNSaVSq98T1zl79iymT5+OyMhIeHl5ISIiAmPHjkVCQgLXpdklKekeDDJvQPzgOjJ4+EOv11udRk+Ivairzo2YZp8Z5D5OefzymzVakDhvPzzTa0lPT0eTJk2c9jyEW+XHRvB5/RZ3tmTJEpw4cQJjxoxB+/btkZGRgdWrV6Njx474+++/ERUVxXWJ1VKr1cjOzoLhoV0TDHJfAMb3yMaNG3NRGnEDppYmIbU4UXCqhmnvH7bsTcIdmN7w0tLSKDi5sfLdJ9SVwo233noLP/74o8Xvf9y4cWjXrh0WL15cYZYVH2VkZIBlWfP7hglb9gGM9qwjdQ0Fp2pkZGQAcF6LExfYci1OxH1RVx33rK2r07JlS0RGRlZYxJCvMjMzAQCszNviuEHubXE7IbUhpBYnGuNUjZycHAAMWKlwt1p5mEHmCcD02oi7Kh+WqMWJP1iWxf379xEcLIx14UpKSgAArMTyGmLFxp+VSqXLayLuR0hjnCg4VSMnJwes1ANg3OdXxUqN46coOLk3anHipy1btiA1NRXjxo2r9By1Wo3CwkKLL66YghEreugaKhsobgpWhNSEEMc4uU8acJKcnFwYpM4bqM0FVmpsccrNzeW4EuJM5VuZKDjxw/Xr1/HGG2+gR48eeOWVVyo9b9GiRfDz8zN/hYeHu7BKS6WlpcZvxJYjO9iyde3MtxNSA0JqaTKh4FQFvV6P0lIlWImbzUgSiQGRBMXFxVxXQpyo/KKXtI4T9zIyMjB06FD4+flhx44dVS5KGhsbi4KCAvNX+T3MXM0cug0GyxtY48/UDUwcQUgBit5Nq2Buoha736d1ViyjJnY3V/4Ps0hEn5G4VFBQgKeeegr5+fk4duwYwsLCqjxfLpfzZgkJLy8vAABj0FocZ/TGnz09PV1eEyFcouBUBXOwELvfJyqDWErByc2VD0sUnLijUqkwfPhwJCQk4NChQ3jkkUe4LskuHh5lQxX0FJwIASg4VUmj0QAAWMYN9/kSiaFWa7iugjiRkJq+3ZVer8e4ceNw6tQp7NmzBz169OC6JLsFBBj3txRpLWfPMWU/+/v7u7ok4kaE+D5FwakK5lH+AvyHrR4DFsKZxUDsp9frzd8bHh6fQlzi7bffxt69ezF8+HDk5uZWWPDypZde4qgy25m6FRmV5cw+kdr4c8OGDV1eE3EfQppNZ0LBqQoP/kHdMTgBEOAFS2xHwYl7Fy9eBADs27cP+/btq3C7EIKTr68vvLy9UagusjguUhl/puBEakOn0wEQVoCigQ9VeNCEKJx/UEJMygcn05sTca24uDiwLFvplxAwDIPwRo0gVheaZ9IBgEhVAICCE6kd02bzpqExQkDBqQqmQZHMQ4Mi3QGj19KgTjdnekN6+HtC7NWsWTPAoIeoXHedqDQXwSEh8PFxn+2oiOuZ3puE9B5FwakK5mDhjsHJoDVPMybuSaVSmb8X0psS4Z8WLVoAAETKskVzdWqINCVoWXackJqi4ORmHrQ4CacJ0SYsC0aveTDNmLil8m9E5UMUIfZq3rw5gAfBSVz2X9NxQmpKVfY+JaT3KApOVRCLxQgMDIRI417rHTE6NWDQIyQkhOtSiBOVX6eLNmIltdGsWTMAgLjUGJhMAaoFtTiRWtKULYuj1QqnZ4eCUzVCQ0Mh0hS71Qw0RmPcaqVBgwYcV0KcqXxwosVOSW34+PigQYMG5pYmU4CiFidSW1otBSe306BBA4A1mBd7cweismnFFJzcW/m9CGlfQlJbzZs3B6NVgtGWQqTMhVwur3brGEKqYwpMWq1WMDNNKThVw7Qruag0j+NKHMf0WrjccZ04XxEFJ+JApu46UWk+xKp8NGnSpMqNigmxha5s2RSWZS2WUOEzCk7VaNOmDQBAXJzFcSWOY3otptdG3FNx0YMFC4uKiqo4k5DqmT5oiYvSAYOePniRWjMYDGDLLc4rlIV6eReczp49i+nTpyMyMhJeXl6IiIjA2LFjkZCQUOHca9euYfDgwfD29kZgYCBefvllZGU5NuCYg1NJtkMflzMsC7EyG40aNaL1V9yYWq2GVquFQWpccoKCE6mtRo0aAQAk+ckAqMWa1N7DQUkoLU6823JlyZIlOHHiBMaMGYP27dsjIyMDq1evRseOHfH3338jKioKAJCSkoI+ffrAz88PCxcuRHFxMZYtW4ZLly7hzJkzkMlkDqnH398fYWFhSM3MNK6ay/Aua9pFpMoHo1MLbod2Yh9T15xB7g2RtoSCE6k10wrhYmWOxc+E1NTDQYmCUw299dZb+PHHHy2Cz7hx49CuXTssXrzYvEnmwoULUVJSgvPnzyMiIgIA0LVrVwwcOBCbNm3C1KlTHVZT9+7d8csvv0BcdB9631CHPS4XJHn3AADdunXjuBL+OXv2LL777jscOXIEiYmJCAoKQvfu3fHZZ5+hVatWXJdnF9MsOlZmbHGi5QhIbfn6+kIikZi37wkODua4IiJ0Dw8Gp8HhNdSzZ88KrUUtW7ZEZGQkrl27Zj62c+dODBs2zByaAGDAgAFo1aoVtm/f7tCaHnvsMQCAJP+eQx+XC5L8exBLJBScrFiyZAl27tyJ/v3748svv8TUqVNx9OhRdOzYEZcvX+a6PLs8HJxoOQJSWwzDIDAw0Pxz+e8JqYmHu+qEEpx41+JkDcuyuH//PiIjIwEAqampyMzMROfOnSuc27VrV/z2228Off5HH30UXt7eMOQlQR3eFTBv/issjKYE4pIsdOjcGd7e3lyXwzu2tnYKgTk4iWWAWEotTsQhgoKCkJmZCQAICAjguBribmhwuANt2bIFqampGDduHAAgPT0dgHFxyoeFhoYiNze30n1v1Go1CgsLLb6qI5FI8HjfvhBpiiEuTKvFK+GWNMs4wP6JJ57guBJ+srW1UwhMO42zIglYRiyofaAIf5Xfpon2uiS1JZSg9DDeB6fr16/jjTfeQI8ePfDKK68AAEpLSwEAcrm8wvkKhcLinIctWrQIfn5+5i9bZ4aMGDECACDNvG73a+AF1gBZdgK8vL0pONnB1NoptPEcpuAEkQisSCyoVXkJf5X/YCES8f7PByFOwesrPyMjA0OHDoWfnx927NhhXmzN9KnH2qdo00aBlW1gGxsbi4KCAvNXcnKyTbW0bt0abdq0gbTgHhgB7l0nyTfWPfjJJ83hklTv4dZOa2rSiulspqAkS/8XjE79IEgRUguOmq1MCECDwx2uoKAATz31FPLz8/HHH39YLO1v6qIzddmVl56ejsDAQKutUYCxlcrX19fiy1bPPPMMwLKQpV+y89VwjGUhS/sXDMNg5MiRXFcjGNZaO62paSumM5mm9Yo0JQBrgE4njGm+hN8YgY7vJMIglK47XgYnlUqF4cOHIyEhAfv376+w5lDDhg0REhKCc+fOVbjvmTNnEB0d7ZS6+vfvj7CwMMiybzik1YmVKmCQeMAg8QAL4xsSC8b4s9RxrULigmSIldl44oknLGYhkspV1tppTU1bMV2J/t4RR6CxcsSRhBKUHsa74KTX6zFu3DicOnUKP//8M3r06GH1vGeffRb79++3+CN1+PBhJCQkYMyYMU6pTSKRGFseDHrI0v+t9eMpo55BSYfnUdLheRg8jVN7DZ6BKOnwPJRRz9T68QEALAt5ajwYRoSYmBjHPKabq6q105ratGI6y8MtA9RSQByhfHAyredESE093DUnlCDFu+UI3n77bezduxfDhw9Hbm5uhSngL730EgBg7ty5+Pnnn9GvXz+8+eabKC4uxtKlS9GuXTtMmDDBafX1798fP/zwA1JSb0BT/xGwCj+nPZcjSHLvQqzMwYCBA9G4cWOuy+G98q2dhw4dEuwK6xSciDOUX9ZCqVTy4kMCEa6HVwqn4FRDFy9eBADs27cP+/btq3C7KTiFh4fjr7/+wltvvYX3338fMpkMQ4cOxfLlyysd3+QIEokEr732Gj788EMo7p1BaauBTnuuWtNroUg5C6lMhkmTJnFdDe+Vb+3cs2dPpa2dQiCRWP6vLZVKOaqEuJOs7Ad7dmZnZ1NwIrXycFCi4FRDcXFxNp8bGRmJP//803nFVOKxxx5D586dce7cOYjzk6H3534wsDWy9H/AaErw4vjxaNCgAdfl8J6trZ1CYBGUWLZCkCLEXlqtFnm5ueafs7Ky0KxZMw4rIkJHe9XVIQzDYMaMGZg4cSIU906jxDcUEPHrV8moCiDPuIx69evj+eef57ocQbC1tVMIHg5KFJxIbWVnZ4NlWbBgwIA1ryBOSE09HJSEMm6Od4PDhaJx48YYO3YsROpCyFIvcl2OJZaFIvEEwBowY/p0p3ZdupO4uDjjH4ZKvoSk/CxABhScSO0lJiYCAHT+ERY/E1JTDwclobQ4UXCqhVdeeQVhYWGQ378EUUkO1+WYSbNuQFKUgb59+6J3795cl0M4YLl8AlvlcgqE2OLWrVsAAF1Qc4BhzD8TUlMPByeh7HBAwakWFAoF3nnnnbIWnuMAy/3ANkZTAkXKOXh5eWPmzJlcl0M48vB2GLQ9BqktU1DSe9eDXuGPmzdvCq4llvALtTjVUR06dMDQoUMhVuZwv6I4y0KReBLQa/DGG68jKCiI23oIbwhltgrhJ5ZlceXqVbBSD7BSDxg8g6BUKpGUlMR1aUTAqMWpDps2bRqCg0MgT4uHSJnHWR2SnFuQFCSja9eueOqppzirg3DPtGcjYFyNnvaqI7WRmpqK7Kws6HwaAAwDna9x26v4+HiOKyNCZnpfYssmV1FwqkO8vb3xzjtzANYAxd1jnHTZMRolPJJPw9PTE3PmzKEFD+s4i60xGMYiSBFiL1NA0vuEWvyXghOpDVNQYsUyi5/5joKTg3Tr1g1DhgyBWJkNWYaLu+xYFvKkk4BOgzfeeAP16tVz7fMT3im/wjPAoLi49nsrkrrrwoULAGBuaWLl3jDIfRAfHy+YcSmEf8wtTmXBSSh7IVJwcqBp06YhKCgI8rSLYFQFLnteSe5dSPPvoVOnThgyZIjLnpfwV3p6+oMfGBEKCvJRWlrKXUFEsPR6Pc6ePQeD3Bus/MFK4TrfMBQVFSEhIYHD6vivuLgYH3/8MQYPHozAwEAwDINNmzZZPffatWsYPHgwvL29ERgYiJdffhlZWVkVzjMYDPj888/RtGlTKBQKtG/fHlu3bnXyK3E8U0u4aVN7obSMU3ByIB8fH8yePRsw6KG4exxwwYwTRquCIvlvyOVy6qIjZqmpqebvWZFxKYK0tDSuyiECdv36dRQXF0Hn2wgo9/6i92sEADhz5gxXpQlCdnY2Pv30U1y7dg2PPvpopeelpKSgT58+uHXrFhYuXIg5c+bg119/xcCBAyuMUfzggw/w3nvvYeDAgfjqq68QERGBF154Adu2bXP2y3Eoc3CSeACAYD7cUXBysF69eqFfv36QFN+HNOuG059PnnwajFaFKVOmIDQ01OnPR4QhJSXlwQ+M8X/z5ORkjqohQmYKRrqyoGSi8w0FGBEFp2qEhoYiPT0dSUlJWLp0aaXnLVy4ECUlJfjf//6HmTNnYu7cudi+fTv++ecfixaq1NRULF++HG+88QbWrVuHKVOmYN++fejduzfeeecdQXWdmoKSqcWJglMdNmPGDHh6eUGReh6M1nlNj+KiDEhzbqN16zZ45plnnPY8RFiKi4tx69Yt80wV03ZAly5xvFwGESTjVkQM9L4P7XcplkHnFYJr1649NKaOlCeXy23aK3Tnzp0YNmwYIiIizMcGDBiAVq1aYfv27eZje/bsgVarxeuvv24+xjAMpk2bhpSUFJw6dcqxL8CJioqKAAAGuQ8A43uXEFBwcoLAwEBMnjQJ0KkhSz3vnCdhDZAnnQLDMJg9exatDE3MLly4AIPBAFZs3OiXFUsBsZRaBojd1Go1rly5Ar1XEFA2gLc8vU8DGAwGXL58mYPq3EdqaioyMzPRuXPnCrd17drVYvZifHw8vLy80LZt2wrnmW4Xivz8fACAQeEHACgocN3Y4Nqg4OQkI0aMQLNmzSDLugFRSbbDH1+aeR3i0jwMHToUbdq0cfjjE+E6e/YsgAczVQBA6xOK5ORky0HjxCXsGRzMN1evXoVOp4Pex3qLien4P//848qy3I7p/0trwy1CQ0ORm5trnnGWnp6O+vXrVxjParpvZWMZ1Wo1CgsLLb64Zg5OHv4WP/MdBScnkUgkePPNNwEA8pRzjn1wvRby9Ivw9PLC5MmTHfvYRNDUajXi/voLrNTD3EUHAHr/cADA//73P65Kq7NsHRzMRzduGMdp6r2tL3FiOn79+nWX1eSOTGN7rG3IrlBYjv8pLS216byHLVq0CH5+fuav8PBwh9ReG7m5uQAjAivzAkQS488CQMHJiR599FF069YNksI0iIsyHPa4ssxrYLQqPDduHPz9/R32uET4jhw5gqLCQmiCW1kc1wY2A8RS7N69u8I2B8S5bB0czEemSQYGhb/1E8RSGGRelpMRiN08PIyzyqytY2SaeWY6x8PDw6bzHhYbG4uCggLzFx8mi9y/fx8GmRfAiKCXeSEjw3F/J52JgpOTTZgwAQAgS73gmAfUayDLuAQfHx88++yzjnlM4jZ27doNMAy0Ia0tbxBLoQlqiaysLEENHnUHtg4O5iNjIGLMg3etMch9kZmZKZjFC/nI1M1mrSs9PT0dgYGB5lam0NBQZGRkVNhg2XTfsLAwq88hl8vh6+tr8cUlrVaL7OxsGGTeAIyLqubn5wtiLScKTk7Wpk0bPPbYY5AUZUBcdL/WjyfNvAFGp8Zzzz0HLy8vB1RI3MW///6LGzeuQ+sfAVbuXeF2bT3jWLiffvqJdrUnNklPTze2CIgqn3xiUPiCZVncv1/797e6qmHDhggJCcG5cxWHdZw5cwbR0dHmn6Ojo6FUKnHt2jWL806fPm2+XQgyMzPBsqz5vcogM4ZzIYzDpODkAuPGjQMASLNqOQ6AZSHLug65XI6RI0c6oDLiLliWxfr16wEAmgbtrZ5j8PCH1r8xLl++bB5ATviJLwN5tVqdeQHVSpXdTl3AtfPss89i//79Fl1ohw8fRkJCAsaMGWM+NnLkSEilUqxZs8Z8jGVZrF27Fg0bNkTPnj1dWndNmV6nQeFr8V8hdPtKqj+F1Fa7du3QuHFjJCUnQqXrBkgUNXoccWEaROoiDBg6FN7eFVsUSN117tw5/Pvvv9D6R8DgHVLpeZpGHSHNT8KGDRvQpUsXWmmepxYtWoT58+dzXQZxkNWrVyM/P988423fvn3mgDBjxgz4+flh7ty5+Pnnn9GvXz+8+eabKC4uxtKlS9GuXTvzkA8AaNSoEWbNmoWlS5dCq9WiS5cu2L17N44dO4YtW7YIZmmaB8HJz+K/9+7d46wmW1FwcgGGYTBy5EisWrUK0uxb0DaIqtHjmFYiHzFihCPLIwJnbG3aAADQNOxY5bkGjwBoA5vjxo0bOH78OHr37u2KEomdYmNj8dZbb5l/Liws5MUsKKuo17day5YtQ1JSkvnnX375Bb/88gsA4KWXXjLPcvvrr7/w1ltv4f3334dMJsPQoUOxfPnyCrPoFi9ejICAAHz99dfYtGkTWrZsic2bN+OFF15w6euqDVNAejg48WHQenUoOLnIgAEDsHr1akjyEmsWnAw6SAtS0KRJE7Ru3br680mdcfz4cePYpsCmMHgGVnu+umEHSPPuYMOGDejZs6dgPqHWJXK53OqUc1fz8fFGTmHVM50YXWnZuZUPIK/rEhMTbTovMjISf/75Z7XniUQixMbGIjY2tpaVcefBxANjFx0r9wYYkSC66miMk4v4+vqiXbt2kBRnATr7Zw2IC9MBg04w/dfENfR6PTZ8+y3AMFBX09pkwip8oQlqicTERFrXiVQpPDwcjE5d5XuWSFUIuVyO4OBgF1ZGhC45ORkGufeDiQeMCHq5D+4JoMWJgpML9ejRAwALSUFqtec+TFJgvJi6d+/u4KqIkMXFxSHx7l1oglqALWvqtoUmLBpgRNi4cSMN6iWVatTIuLGvSFXJ4HSWhUhdiIYNG9J4OWKz0tJS41IECsslEQwKPxQWFJj3sOMr6qpzoa5du2Lt2rUQF6ZDF9TcrvuKCzPg6emJRx55xEnVESHatm0bwIigCetg1/1YuTc0Ia2RlnYNx48fx+OPP+6cAgkA2wYH81Hjxo0BAGJlLgxWVg9nNMVg9FrzeYTYwrTkgKmbzoQtWy8sNTWV11uJUXByocaNG0Mmk0OvzLHvjnodxKoCtIp+FBIJ/ZMRo4SEBNy8eRPagMZW122qjrZeW8gyr+G3336j4ORktgwO5qOoKON4THFRhnkdsPJMOyK0a9fOpXURYcvMzAQA8+KXJqafs7KyeB2cqKvOhcRiMZo3bwaxKh8wGGy+n6g0DwCLFi1aOK02Ijy//fYbAED70PYqtjJ4+EPnXR9nz56lxQudLDEx0bjYn5WvJk2acF1epRo1aoSAwEBIijMAK4umSsqCk1AWXST8YApOrMzT4jgrMy7qnJWV5fKa7EHBycVatGgBGPQQqQtsvo+41LjxYfPm9nXvEfdlMBhw8NAhsDIv6P0amo97Xt4Fr/it8IrfCpHSeN2IlLnwit8Kz8u7KjyONqQVWJbF4cOHXVY7EQ6GYdAhOhqMRglGXXHcibgoAz4+PrwOf4R/TMHIFJRMDBSciDWmPasYTYnN9zGda9rPiJDMzEyUFBdD59MAYB78b8xoVRDpSiHSlYIpW2CHAWv8WVtxZpTex3hN3blzxzWFE8Hp2NE4W1NSaDmphVEVQqQuQseOHSES0Z8SYrv8/HwAgEFquSExW/ZzXl6eq0uyC13tLhYYaFxnh9GW2nwf07lBQUFOqYkIj2m8jMGOmXTWsDIvQCSxGH9DSHmdO3cGAIgfmg1sClJdunRxeU1E2AoKjD0u7EO7aLASucXtfEXBycVM4UekVdp8H9O5FJyIyYNVd/1r90AMA73CD/fu3YPBjnF3pO5o0KABwsPDIS1KtxibaQpSFJyIvYzBiAHEMssbRBJAJDa3SPEVBScX8/Utm36p09p+J70WIpEIHh4e1Z9L6gSt1nj9sOLaz7JkxVJotVqwVgb/EgIAnTp1Mr4PmWYEsywkxffRsGFD1K9fn9viiOAUFBQYW5ceXvuLYWAQy3m/jhMFJxczLSfAsHqb78MY9JBKpbTAHDEzrdIs0tjeclkZkaYEQUFBtPUKqZRpuQFxsXH2pUiVD0anRvv27bksiwhUYWEhDBLrWwqxEjl11RFLUqnU+I0dwQmsARLT/QgBEBISAsC+SQZWsSxEWqX58Qix5uHgJC66b3GcEFuxLIuCwkKgLDgpbsfB88oeKG7HGW+XyFFcXAy93o6/kS5GwcnFzJ/qWTvGk7AGag0gFkyzM41rfNUcoy4CDHrz4xFiTb169RASUg/ikmwAgKjsv5GRkVyWRQSopKQEep0OhrKB4SJVAcTKHIhUDwaMsyzL6+46Ck4uZk7RjB1BiBHxOn0T12vQoAEaNmwEaWEqYKj5tSHJNw4ypwG+pDrh4Y0g0pQABh1E6kIwIhHCwsK4LosITHa2MXSzUk+rt5sWxeTzWk4UnFzMNKi3/No71WJE0GntGExO3B7DMHjssZ6AXmve9qImJPn3wDBM2QbUhFSuYUPjQqsidTFE6iLUr1fvwdADQmxU2eKXJkJYBJOCk4uZd6K3IzixjIh2sCcVPPbYYwAASX4N12DSqSApvo/IyEj4+/s7rjDilsyL96oKIdKU0IK8pEZM2zsZZJW0OEm9LM7jIwpOLqZSGVdvZkV2dNWJJNDr9RSeiIWoqCgEBARAmpdk35i5Msb7sejTp48TqiPuRi43DuZlWJ3Fz4TY4/bt2wAAg0eA1dsNHv4A+L2bAQUnF3sQnGxv4mZFxiUMSkttX22cuD+xWIzHH38cjLa0Rt11khzjG9Pjjz/u4MqIOzKNszS9H9G4S1ITN27cABhR1cFJJMH169ddW5gdKDi5mCk4wZ6FC8vONd+XkDJPPPEEgAchyFaMthSSogy0b98e9erVc0ZpxM08mNhi/LNBLeDEXjqdDrdu3YbeIwCorNeFEUHvGYg7d+9Co9G4tkAbUXBysQctTrYHJ9O5FJzIwyIjI+Hr62teX8dWxvNZ9OzZ0zmFEbeTkWFs1WQlHmAlCqRn1HxSAqmbzp8/D41GDb1P1avN67zrQ6/T4ezZsy6qzD4UnFxMrVYbv7EjOIGCE6mESCRCs2bNIFYXAgbbWwBEpfkAgObNmzupMuJuLl++DIilMHgGQOddDxnp6cjJyeG6LCIgBw8eBABoA6t+39EFGW8/cOCA02uqCQpOLlabFidz6CKknKZNmxpXAFfZvk2BSJn74L6EVKOoqAh3796FzivE2JXibWwxuHTpEseVEaFQKpU4evQYDAo/GLyCqzzX4BkIvUcATp48ycuFMCk4uRi1OBFHM41RYtS2b78i0pRALBYjMDDQWWURN/LXX3+BZVnofYxLEpi6Wo4cOcJlWURAdu7cCY1GDW1Qi4qb+1qhDW4BrVaLHTt2uKA6+1BwcrEHAyzt2LC37FyDwf4p58T93btnXP3boPCz+T4GhR/0ej3S0tKcVRZxE2q1Ghs3bQLEEmhDWgMADF4h0HvXw19//cXr2U+EH9LS0vD9Dz+AlXlBU/8Rm+6jDWkDVuaNLVu2IDk52ckV2oeCk4uZp/TatQAmY3FfQsq7efMmIJKAVfjafB+9ZxAA4NatW84qi7iJXbt2ISc7G+p6kWClHsaDDAN1o84AgG+++YbD6gjfsSyLlStXQqvRQBXeFRDbuBSPWIrSiO7Q6XT44osvwLKscwu1AwUnF3sQfuxocSr7Z6IWJ/KwnJwc3E1MhN4z0K5WTIOnsYvu/PnzziqNuIHk5GT88MNmsBI5NA3aWdym92kAnV8jnD9/3jzol5CH7d27F2fOnIHOrxF0AU3suq8+IAJa/whcuHCBV112FJxcTCIxjldi7Fnpuexc030JAYyf5FasWAG9TgdtcEu77qv3rgeDwg/79++nAb7EqqysLLw9Zw5KSoqhCu8GSGQVzjEdX7x4Mc6cOcNBlYTPDh8+jJUrV4KVekDVuKd9Q1TKqBv3ACvzwv/93//hjz/+cEKV9qPg5GLmbQpY27vdmLJzZbKKb1yk7jpw4ABOnDgBnW8YtMGt7LuzSIzSpr3BssCixYtpVXpiobCwEO+88w4y79+HulFn6IJbWD2P9fCDssVA6FkG8z76CFevXnVxpYSvTp48iQULFoAVy6Bs9SRYuXeNHoeVeUHZ6klAosCSJZ/j6NGjDq7UfhScXMwcfuxYc8d0LgUnYnLv3j18uWoVIJZB1aRXjT7JGbzrQR3aDmmpqfjqq6+oK5gAAPLz8xEbG4vExERo6kdW6KJ7mN6nPpTN+0GtVuO9996jweIEf//9Nz7++GMYGBFKWg40Dw0w8by8C17xW+EVv9W8NIpImQuv+K3wvLyrwuMZPPxR0moQWJEY8+d/iuPHj7vkdVSGgpOLeXoad4Rm9Fqb72M613RfUrf9888/eP3116EsKUFpRPcaf5IDAE1YB+g9g/Dbb7/h008/pbXC6rjLly9j0uTJuHLlCrRBLaAO72pTKNf7h6O0SS8UFRVj+vTp2LNnD68G8xLXMBgM+OGHHxAbGwut3gBliwEweFfc0onRqiDSlUKkKwUD43XCgDX+rLW+7I7BKxjKlgOhZ4EPP/wQGzdu5OzDHgUnFwsIMG5syGht7xoxnWu6L6m7Dh48iLfffhvFJUqUNu1TaReKzURiKFsPhs4nFHFxcZg9+y3k5+c7pFYiHCzL4ueff8abb76JnJwcqBp1gappb7taMnXBLaFsNQhaRoIvvvgCn332GZRKpROrJnxSUlKCjz76CBs2bIBB5oWSNsOg9w1z6HPofRqgpO0wGOQ++O677/DBBx9wskAmBScXq2lwEolE8PW1fbo5cS8GgwHff/89FixYAB3EULZ6svahyUQiR2mrQdAGtcDVq1cw7fXXkZSU5JjHJrxXVFSEjz/+GP/3f/8HnUgOZeunoA1tV6PuX71fQ5Q8MhI67/o4fPgwXnttGu7csW8DaiI8SUlJeG3aNBw/fhw63zAUPzICBq8gpzyXwTMQJY+MgM6vEU6dOoXXXnvN5dcYBScXCwoyXkwire2fxETaUgQEBEAkon+uuigzMxNz5szBt99+C4PcByVthkLvG+rYJxGJoWraG+qwDkhPS8PUqVOxe/du6m5xYyzLIi4uDjExr+Do0aPQ+YSiJHKkeXXwGj+uzAulrZ+CpkEU7t1LwpSpU7Fx40be7nRPas5gMOCXX37BlClTkXzvHtQN2qG01SBAonDuE0vkKG05AOrQR5GamopXX30VP//8s8u67mh+u4sFBwdDIpFAryq07Q4GA0SaIjRq1N65hRHeYVkWf/75J1atWgWlUgmtfwTUTR57sAihozEMNA07wOARADbpJFauXInjx4/j3XffNW/rQtxDZmYmVq5ciZMnTwIiMdSNOhkHgduxMG+VRCKow7tC5xMKj6ST+O677/C/I0cw5+238eijjzrmOQinMjMzsWTJEpw/fx6sVAFVi/7QBTR2XQGMCJpGnaD3rgePxOP4v//7P5w4cQLvv/8+GjSoXfivjqCbMEyzOMLCwuDh4YFu3brxfiE2sViMhg0bQqS2LTgxmiKAZdGoUSMnV0b4JC8vD/PmzcPixYuhVOtQ2rQ3VC36Oy80laMLbIKSqGeg9Y/AuXPnMH7CBBw4cIBan9yAXq/Hzp07EfPKKzh58qSxWyXyGWhCH3VcaCr/fP7hKI4aBU39SCTfS8abb76JZcuW8XLjVmIblmVx8OBBjJ8wAefPn4fWPwIlkc+4NjSVo/cPR0nkM9AGNMHFixcxYcIE/P777059vxJ0cBo/fjxWrFiBF198EV9++SXEYjGGDBnC+VTF6kRERIDRqSudPVCeacf78PBwZ5dFeOLEiRMYP3582XiBUBRHPg1dcMsajTmpKVbqAVWL/iht2htKlQYLFy7EJ598goKCApfVQBzr9u3beOONN/DVV1+hVMuitGkflLZ60q6tempELIU6ohtKHhkOvWcg9u/fj5djYnDkyBEK4wKjVCrx2WefYcGCBVCqNC79QFcVVqqAqnk/4zWt0WPJkiX45JNPUFxc7JTnE2xwOnPmDLZt24ZFixZh6dKlmDp1Kv73v/+hcePGePfdd7kur0pNmzYFAIiUOdWeKy5b48J0H+K+lEolPv/8c3zwwQcoKCqBKqI7SlsNrtVyA7XCMNAFt0Rx5DPQ+TTAX3/9hQkTJuD06dPc1ENqRK1W45tvvsHUqVNx/fp1aINaoCRqlHFygQvDuMErGMpHRkDVqAvyC4owf/58zJ07F5mZmS6rgdTc7du3MXXqVBw+fBg67/qcfKCrEsNAF9zCWFfZ+9WUqVORkJDg8KcSbHDasWMHxGIxpk6daj6mUCgwadIknDp1ine7KZfXsqVxewyxDcFJVJINAGjVys6VoYmgXLp0CZMmTcJvv/0GvWcwSh4ZAW39R3jxpsTKvVHa+imowrsiNy8f7733HlauXAmVqvoWU8Kt+Ph4TJg4EVu2bIFW4gllqyehatYHrNTJg3crw4igDW1n/OPmG4ZTp04h5pVX8Msvv9Am5jzFsiz279+P16ZNQ0pKCtSh7VHa5imwch+uS7PK+H41GOqwaKSnpeH11193+EQXwQan+Ph4tGrVqsIU/a5duwIALl68yEFVtmndujWAB6GoKmJlDoJDQmgNJzfFsiw2bdqEmTPfRHp6BtRh0VC2HQaDhz/XpVliGGgbRKHkkZHQewRi9+7dmDx5MhITE7mujFihVquxbNkyzJ49G2lpadA0aIeSyGeg92vIdWkAAFbhi9JWTxq7VrQsVq1ahenTpyM9PZ3r0kg5er0eixcvxrJly6A1iKBsORCaRp2dMh7OoRgRNA07QtnqSWgZCVauXInPPvsMOp0dO3ZUgeevvnLp6ekIDa04Jdt0LC0tzer91Go1CgsLLb5cLaQsCIlLsszHDAo/6D2DYFD4mY8xmhKINCVoUxa0iPO5csIBy7JYvXo1Nm3aBL3MGyVth0LTsCPA42UnDJ4BUD4yHOoG7ZCSkoI333wTt2/f5rosXnP1JJb8/HzMnv0W9u/fD71nEErajoA6vAsg5tkk6rKulZKoZ6ANao5r165h2rRpuHLlCteVkTJbtmzBn3/+Cb1XPRRHjoTeX1hjbY3rij1tXlfsu+++c8jj8vcduhqlpaUPNswtR6FQmG+3ZtGiRfDz8zN/cTHommEYtGvXDiJNCRi1cfCaqvnjUEaOhKr54+bzxMX3AQDt2lW9VxRxHFdNODAYDPjyyy+xc+dO6D0CoWw71OrWBLwkEkMT3gWlTXqhoKAAs2bPxs2bN7muirdcOYklKSkJr732Gq5eNW6Zomw7zGkLEToKK/WAqllfqBr3RH7Z9XTkyBGuy6rz/v33X2zcuAms3BvKVgPByry4LqlGWJknSlsNhEHui82bN+P8+fO1fkyefQSxnYeHh9V9tUzjLjw8rI/yj42NxVtvvWX+ubCwkJPwFBUVhaNHj0JcnAldJYN/xUWZ5nOJ85kmHCxduhRz5swBAMTExCAqKgrvvvuucc0bBzAYDPjiiy+wb98+6D2DoGz9pPMXjHMCXUgrlDIi4O4xzJ49G8uXLzd3QxMjV11TAHDhwgV8OG8elCUlUDfsWLbEAPdj5GylrdcGBrkPPG8fwfz585GamooXX3wRjIBeg7vIz8/H/E8/BQtA2exxQFKxkaK21qxZY/X4azPfdvhzQSxDafPH4XVtP/7z2Wf4dsMGBAYGVn+/Sgi2xSk0NNRqf7jpWFiY9T1y5HI5fH19Lb64YGpFMrUqWSMuvg+pTEYDw13EVRMOjh07VhaagqFsPViQoclEF9wCpc36oLi4BJ9++h+aXv4QV11TRUVFmPvBB1CWqlDa7HFowqIFFZpM9H4NUdJ2KFi5N9avX4+///6b65LqpD///BM52dlQh0ULpyW8GgavYKgbdkR+Xh5+/fXXWj2WYFucoqOjceTIERQWFlqEH9NU6ejoaI4qs03Lli2hUCigL8qwfoJOA7EyF1EdoiGVSl1bXB1ly4QDR7ROmloZVE0fc8onOVfTBTWHNv8eUlPvIjk5GREREVyXxBuuuqZ+/fVXqEpLoQrvCl1Qs1o/HpcMHgFQthwIr8u7sGPHDvTo0YPrkuqc+vXrG79x4iDw119/3foNEuetCcUyYgDlXl8NCTY4jR49GsuWLcO6devMTeBqtRobN25Et27deL9gpEQiQbt27XD27FlAp6rQ6mBsiWLRvj1tteIqtZlwUL7buKoJBwaDAX//fRqszBMGj5o3FVfFpU3gZXR+jSDNvYvTp09TcCrHFdeUXq/Hrl27ALEU2mDntE5vmv6U1ePjV//ulOczeARA5xuG8+fPIzExEU2aNHHK8wiVWq3GRx99hB9++AF5eXlo3749PvvsMwwcONAhj29qeBAXpgOh7vM3SFJo/P+tY8eOtXocwXbVdevWDWPGjEFsbCzeffddrFu3Dk888QQSExPx+eefc12eTUx7NkmKKnbXScpaovjecuZOXDHh4Pbt2ygoyIfOt6Egu1Iqo/czbgl09uxZjivhF1dcU+fPn8f9+/ehCWoOSGSOKZwHNPUeAQD89ttvHFfCP86ecODv74/mzZtDUnzfpmVzhECkzIGkOAMREREIDg6u1WMJtsUJAL7//nvMmzfPInXv378fffr04bo0m5hak8RFGRX2+REXZUAskaBt27ZclFYnuWLCgb+/P8QSCQxF9wGDwSlLD3DRBC4u+yQXEhLitOcQIldcU6bHYHQVn8dRnNWyVBVGZ/wdmUImMXLVhIMxY8ZgyZIl8Lq2H6qI7tCGtBbshz1JVgI87p0CDHqMHTu21o8n2BYnwPg/1NKlS5Geng6VSoUzZ87gySef5Losm7Vu3RoSiaTiAHG9DmJlDlq3akVvGi7kigkHISEheHrkSIjUhZBmO34rAE4Y9JCnXoBEIsHLL7/MdTW84oprKioqCi1atIQ0L9G8vIngsSxk969ALJFgxIgRXFfDK66acDB48GAsXboUPj7eUCSdhOLuMUDvmAUkXcagg/zucXgkHoePlyeWLFmCYcOG1fphBR2chE4ul6NNmzbG/ej0WvNxcUkWwBpofJOLRUdHIyEhocJ4EkdPOHj55Zfh4eEBeVq8cXybA7FSBQwSD6tfztpmQ5p5FSJ1EUaNGoUGDRo45TmEyhXXFMMwGDt2jDFsZFyu9ePxgbggBeLSPPR/4olad6u4G1fumtG5c2dsWL8ejzzyCKQ5t+B1bR9ExVnV35EHRCXZ8Lz2K2TZCWjdujW++eYbdOvWzTGP7ZBHITXWrl07gDVAXK4fWVxM6zdxYfTo0dDr9Vi3bp35mDMmHPj7++Oll14Coy2F17X9EJXmO+RxAUAZ9QxKOjxv9UsZ9YzDngeA8Q91ajwUyWfh4+ODF1980bGP7wZcdU3169cP9es3gCzzKuTJZwEBLwshyUuC5+0jYBiRQ7pV3I2rd82oV68evvzySzz77LMQlebB69o+KG4ehqg0r8avofwHPBbG7j8WjEM+4IlK86G49T94Xd0LsTIHI0aMwFdffeXQD3WCHuPkDkxjmEQl2dD7hpq/L38bcY3yEw4yMzPRokULfPfdd0hMTMSGDRsc+lzPP/88NBoNvvvuO3hd2w9ls77C2s5Ar4Pi7lFI8xIRGhqKhQsXws/Pr/r71TGuuqakUim++GIF3n8/FvfuXQKjKoCqWV9ALKClTFgW0ozLUKSchULhgY8//ggtWrTguireqc2Eg/nz59foOaVSKWbMmIG+ffvim2++waVLlyDNT4I2qAXUDTvYveFv+Q9xnlf2QKzMgcEzEMrIkTWqDwAYdTHkafGQZt8CwCIyMhKTJ09Ghw4davyYlaHgxLE2bdoAMHbPmTrrJMoshITUQ1AQv7dKcEeumnAgEokwYcIENG3aFAsXLgJuHoIqvDO09aN4PwCTURfD49ZhiJU5iI6Oxvz58yk0VcFV11RYWBj+7/9WY/78+Th37hxE139DacsBwtgqw6CHPOkUZNkJCAkJweLFi9G8eXOuq+IlLnfNaN++PVatWoUzZ87gm2++wa1btyDNvQNNSCtoQqPByjztejwA5v1Zy+/Tag9GWwpZ2j+QZV0HWAOaNWuGyZMno0ePHk5bdZ6CE8dCQkIQEBiInGJjKxOjVYLRKNG2bWeOK6ubTBMOli5d6pLne/zxxxEWFoa5cz9AdvJZSArSoGrS0+5PcC7BspBm34Qi5Qyg02DkyJGYMWMGJBJ6G6mKK68pHx8fLF68GKtWrcLevXvhfWU3Sht1gS64JW8Duag4Ex6JJyAqzUObNm2wYMEC+tBYhdDQUKSmplY4bsuEA2stVfZiGAbdunVDly5d8Ndff2HDhg1ISbkOWfYtqOs/Ak2D9nYti1F+f1a76DWQZVyG/P5lQK9DWFgYJk2ahH79+kHk5I3S6R2PYwzDoGWLFsg7cwbQayBSGvuNqYm67mjVqhW+/notli1bhlOnTsH78i6oGnaCtn5bp67caw9GVQhF4glIitLh6eWF6W/NwpAhQ7gui1ghkUgwe/ZstGrVCv/3f/8HJB6HLuc2VE0eA6vgZospq/RayFPOQ5Z5FQAwcuRITJs2jWYSV4Mvu2aIRCL069cPvXv3xp9//olvN25ETvq/kGXdgDq0PbT12gIiJ0QMgx7SzOuQp/8DRqdCYGAgxo8fjyFDhrjsQxw/3pXruKZNmwIwDmoTleZaHCN1Q1BQEBYuXIh58+bBz8cLiuTT8Lz2qzlIc4Y1QJp+Cd5XdkFSlI7evXvj++++o9DEcwzDYNiwYfj+++/Rq1cvSIrS4X1lF2Rp/xjXD+OYOP8evC//AlnmVTRu3BhfffUVZs+eTaHJBq6acGAriUSCoUOH4sctW/Daa6/BRyGFIvksvC/thCQrAWAddL2xBkiyb8L70k4okk/DSy7GlClT8OOPP2LEiBEubfmmFiceMIUksTIX4rIZVhSc6h6GYdC/f3907twZa9aswZ9//gmvq3ugDm1v3OleJHZpPSJlDhR3j0OszEFAQCBmzXoTffv2dWkNpHZCQkLw2Wef4dixY/jiiy+Qm3oe0tw7KG3yGCebtzJaJeRJpyHNu2tc92vCBDz//POQydxnxXNnc+UkFnvI5XI899xzGDp0KLZt24aff94BJvE4DPevoLRZHxg8a979KlLmQnH3KMTKXEhlMox+/nk8//zzVa5v5kwUnHjAtLeXSF0IkaoAYonE6nRTUjf4+fkhNjYW/fv3x7Lly5GZdhHSvESUNunlmj92Bj1kaRchz7gEsAYMGTIE06ZNg48PD8ddEZv07t0bHTp0wLp167B37154XdsPTb1HoG7UERC7ILSwLKRZN6BIOQfoNWjfvj3efvttNG7cuPr7kgr4vGuGj48PpkyZglGjRmHTpk3Yt28fvK7ug6pRF2jrP2LfWDuWhTTzGhQpZwGDHkOGDMH48eNRr57rQ395DMsKeMEPBygsLISfnx8KCgo4S6/5+fl4+umnoQ1oAklxJsLrB2Lz5s2c1MKH34fQOfJ3qFQqsX79euzatQssy0JTPxLqhh2dNs1cVJwJj7vHIVLlo36DBnhnzhx07ly7iQp0TdWeI3+Hly5dwrJly5CUlARW5gVVRPcKWz45kqg0D/LEE5AUZ8LLyxvTpr2GIUOG1GoAL11Tteeq3+HZs2exYOFC5OflQefXCKqmvcFKq9/+idGqoEg8Bkl+svnDZPfu3Z1Wpz2/DxrjxAN+fn7w8PCEqDQPjFZJrU3EzNPTEzNnzsSqVasQHhEB2f0r8LqyG+KyTaAdxqCD/N5peF3bD7G6AKNHj8amjRtrHZoI/7Rr1w7r16/HxIkTITWo4XHrMBS3DoPRWl//p8ZYA2Sp8fC6sgeS4kz069cP33//HYYNG+b0WU+EP7p06YKN336L7t27Q1KQYnz/Kqy4DVF54qIMeF3ZDUl+Mjp37oxvy+7PF3T18gDDMAgLC4VYVQAAtG0FqaBdu3ZY/803eOmllyDRlsDzxu+QZlx2yArRjLoYntd/g+z+FTRu3BirV6/G9OnTK10PhgifVCpFTEwMvv32Wzz66KOQ5iXB6+oeiIvuV39nGzAaJTxu/AF5WjzqhQRj0aJF+Pjjj2mZgToqICAAixYtwsyZMyGDDp63DlW68jijKoDnzUOQGDR4/fXX8fnnn/PuuqHgxBOBgYHm72lvJmKNXC7H5MmT8dVXXyEoMBCK5DNQ3Imz2OfQXuLCdOPWBCXZGDJkCNatW4fIyEjHFU14LSIiAitXrsS0adMg1qngeeM3SDMu1SqQG6+pPZAUZaBfv37YuHEjevTo4cCqiRAxDINRo0Zh3rx5gF4Lj1uHAd1DC3nqNfC8eQjQazB3bizGjh3Ly9ZJ/lVUR5VP1HxL14RfIiMjsW7dOrRv3x7S3LvwurYfjMq2fafMWBbS9EvwvPEHpNBhzpw5ePfddx2yQB4RFoZhMG7cOKxcubIskJ+F4tb/Kv5Rqw7LQpb2Dzxv/AGJQYuZM2fio48+gpeXAFYuJy7Tp08fxMTEQKQqhMeduAfLFbAsPO78BZGqAM8//zz69+/PaZ1VoeDEE+VbnAICAjishAhBUFAQVqxYgdGjR0NUmgfv6/vBlHX12kKechaKlLMICg7CqlWrMGzYMCdWS4Sgffv2WL9+PTp16gRpfhI8b/xue3hiWciTTkKeeh716oVg9eqvMGrUKKdteUGEbfz48XjssccgKUiFNOsGAECafROS/GR07doVkydP5rjCqlFw4onyo/hplgixhUQiwfTp0zFnzhxAq4JXwp9gNMpq7yfNuAxZxmU0btwY67/5Bo888ogLqiVCEBAQgM8//xxPP/00xMpceNw8BOh11d5PlnoesqwbaNWqFb755hvaoJxUSSQS4Z133oFYIoE0KwEAIM26AZFIhPfeew9isWvXrLMXBSee8Pb2Nn9P6+UQewwbNgxTpkwxbr578wCg01R6riTnNhTJZxAcHIKlS5dS6yapQCwWY+bMmRgwYAAkxffhcftIlauNSzMuQ57+L8LDw/H555/Ths/EJv7+/nisZ0+IlTmQ5NyBuCQL3bp1E8RQFVoAkyfKh6XyIYoQW7zwwgvIzs7Grl274HV5J1iJ9bFKYlUhvLy8sXTp55wvIkf4SyQS4f3330dxcTH+/vtveF3aAVZs5c8FC4hV+QgJCcHy5cvh7+/v8lqJcA0ePBhHjx6F4u4xAMBTTz3FcUW2oeDEE23btkV4eDgCg4KoFYDYjWEYTJ8+HQaDAX/99Vel5/kEN8S7775LW/qQakkkEnzyySdYsGABLl26VOl5QY1a4KN58yiIE7t17doV0dEdkJh4F+Hh4YKZfUkrh9MKtBbo91F79Du0RL+P2qPfoSX6fdQe/Q4t0crhhBBCCCFOQMGJEEIIIcRGFJwIIYQQQmxEwYkQQgghxEYUnAghhBBCbETBiRBCCCHERhScCCGEEEJsRMGJEEIIIcRGFJwIIYQQQmxEwYkQQgghxEYUnAghhBBCbETBiRBCCCHERhScCCGEEEJsJOG6AK6xLAvAuDMyefB7MP1eiP3omrJE11Tt0TVlia6p2qNrypI911SdD05FRUUAgPDwcI4r4ZeioiL4+flxXYYg0TVlHV1TNUfXlHV0TdUcXVPW2XJNMWwdj+wGgwFpaWnw8fEBwzCc1VFYWIjw8HAkJyfD19eXszpYlkVRURHCwsIgElFPbk3QNWWJrqnao2vKEl1TtUfXlCV7rqk6H5z4orCwEH5+figoKOD04iHug64p4mh0TRFHE+I1RVGdEEIIIcRGFJwIIYQQQmxEwYkn5HI5Pv74Y8jlcq5LIW6CriniaHRNEUcT4jVFY5wIIYQQQmxELU6EEEIIITai4EQIIYQQYiMKToQQQgghNqLgRAghhBBiIwpOhBBCCCE2ouBECCGEEGIjCk6EEEIIITai4EQIIYQQYqP/Bxzy9vSWwAT2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1.14 s (started: 2024-10-26 13:18:12 +00:00)\n" ] } ], "source": [ "plt.figure(figsize=(6,4))\n", "for e,n in enumerate(nums):\n", " plt.subplot(1,len(nums),e+1)\n", " ch=sns.violinplot(y=n, data=df)\n", "plt.tight_layout()\n", "plt.show();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 42, "status": "ok", "timestamp": 1729948694968, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "WVhTephOejvf", "outputId": "cca2b101-5f66-4cdf-cf2f-83aca4f5acd4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Age, Min:0.42, Max:80.0, Q1: 20.12, Q3: 38.00, IQR: 17.88, Q3+1,5*IQR: 64.81, Q1-1,5*IQR: -6.69, Mean within the box: 69.77, Total Mean: 29.70, Outliers:11\n", "\n", "SibSp, Min:0, Max:8, Q1: 0.00, Q3: 1.00, IQR: 1.00, Q3+1,5*IQR: 2.50, Q1-1,5*IQR: -1.50, Mean within the box: 4.37, Total Mean: 0.52, Outliers:46\n", "\n", "Parch, Min:0, Max:6, Q1: 0.00, Q3: 0.00, IQR: 0.00, Q3+1,5*IQR: 0.00, Q1-1,5*IQR: 0.00, Mean within the box: 1.60, Total Mean: 0.38, Outliers:213\n", "\n", "Fare, Min:0.0, Max:512.3292, Q1: 7.91, Q3: 31.00, IQR: 23.09, Q3+1,5*IQR: 65.63, Q1-1,5*IQR: -26.72, Mean within the box: 128.29, Total Mean: 32.20, Outliers:116\n", "\n", "time: 25.8 ms (started: 2024-10-26 13:18:13 +00:00)\n" ] } ], "source": [ "da.outlierinfo(df,nums,imputestrategy=\"None\",thresh=0.25)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 34, "status": "ok", "timestamp": 1729948694969, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "0kTNBVbgejvg", "outputId": "7db084dd-cd8a-4c1b-e677-0128e1e2aaf0" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "11 outliers exists in feature 'Age'\n", "46 outliers exists in feature 'SibSp'\n", "213 outliers exists in feature 'Parch'\n", "116 outliers exists in feature 'Fare'\n", "time: 20.8 ms (started: 2024-10-26 13:18:13 +00:00)\n" ] } ], "source": [ "da.outliers_IQR(df,nums,imputestrategy=\"None\",thresh=0.25)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 28, "status": "ok", "timestamp": 1729948694969, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "IZq8lOAQejvg", "outputId": "1da4f276-1db0-4c68-cd76-3b07cdebf43f" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "46 outliers exists in feature 'SibSp'\n", "1 outliers exists in feature 'Parch'\n", "20 outliers exists in feature 'Fare'\n", "time: 19.2 ms (started: 2024-10-26 13:18:13 +00:00)\n" ] } ], "source": [ "da.outliers_IQR(df,nums,imputestrategy=\"None\",thresh=0.1)" ] }, { "cell_type": "markdown", "metadata": { "id": "SXuqxJ55ejvh" }, "source": [ "Evet hepsinde outlier var, özellikle Fare'de. SizSp ve Parch her ne kadar outlier gösterse de bunlar outlier olarak ele alınmamalı, çünkü bunlar kişi sayısı ve çok da bir uç değer yok aslında." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 22, "status": "ok", "timestamp": 1729948694969, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "ZNVhL3zzejvh", "outputId": "ebc577e0-108f-41c5-ab28-d81e67111d98" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12 outliers exists in feature 'SibSp'\n", "10 outliers exists in feature 'Parch'\n", "17 outliers exists in feature 'Fare'\n", "time: 18.6 ms (started: 2024-10-26 13:18:14 +00:00)\n" ] } ], "source": [ "# z score'a göre de bakalım\n", "da.outliers_zs(df,nums,imputestrategy=\"None\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 17, "status": "ok", "timestamp": 1729948694969, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "RZyisOX3ejvh", "outputId": "104b4a84-2780-4aab-875e-991e5c63495d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2 outliers exists in feature 'Age'\n", "30 outliers exists in feature 'SibSp'\n", "15 outliers exists in feature 'Parch'\n", "20 outliers exists in feature 'Fare'\n", "time: 11.5 ms (started: 2024-10-26 13:18:14 +00:00)\n" ] } ], "source": [ "# standar sapmaya göre de bakalım\n", "da.outliers_std(df,nums,imputestrategy=\"None\")" ] }, { "cell_type": "markdown", "metadata": { "id": "JWhW7sToejvh" }, "source": [ "Sonuç olarak, thresholdu 0.1 olan IQR yöntemi ile ilerleriz." ] }, { "cell_type": "markdown", "metadata": { "id": "9xM1pQAyejvi" }, "source": [ "#### Null kontrolü" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 524 }, "executionInfo": { "elapsed": 1580, "status": "ok", "timestamp": 1729948696538, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "yMAAMBt_ejvi", "outputId": "7e8da376-d8a2-4311-de00-00b47176ede2" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHpCAYAAABJOtJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSz0lEQVR4nOzdd3gUxf8H8M+k90ZIQgud0DtSIkoTFJEOAtL7FxQpIoiCIAioIIQWUQEBQREFNBTp0ktCU5QqHek1IZXk/fsjv13vcgmEg9xdzvfreXwMt3ubmeze3ftmZmcUAAgRERERPTEHaxeAiIiIKLdikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiOiZ4dKdRPRfwyBFRM+MUkpSU1OtXQyiXMPwy0daWpoVS0LmYpCyc/b2oWZP9bGnukyYMEHeeustASCOjo528YFgT+fHnuoiYn/1uXPnjqSmpkpCQoK1i/LU7O3cZAeDlJ1avny53Lp1y24+1OypPvZUFxGRIUOGyJgxY+S7776TMWPGCABxcHDItXWzp/NjT3URsb/6LF68WDp37iyVK1eW6tWrS6tWrWTVqlVy/fp1fZ/c0l1ub+fmiYDszrvvvgulFLp27Yo7d+4AAFJTU61bqKdgT/Wxp7oAQGJiIp5//nkopeDj4wNXV1d88MEHSEtLA5D76mZP58ee6gLYX31GjBgBpRScnZ1RuHBhFCpUCEopKKXQqVMn/PLLL/q+2uvJVtnbuXlSDFJ2ZtasWfqL0dXVFT179szVF7Y91cee6mKobdu2CAwMxJgxY+Dv7w9XV1e8//77uS5M2dP5sae6APZXn88++wxKKTRp0gR79+5FcnIybt26hffff1+vZ5UqVRAZGak/x1bDlL2dG3MwSNmR7du3o1SpUlBKoX///ihatCiUUrn2wran+thTXTRaeadNmwYfHx+sWrUKEydOhLe3N9zc3HJVy5Q9nR97qgtgf/U5evQoSpQogZCQEBw8eNBk+6effqoHk2LFimHOnDlWKGX22Nu5MReDlJ24e/cuevfuDaUUPvjgA9y5cwdffvml3lyc2y5se6qPPdUlM+vWrYNSCr/++ivi4+Px8ccfw8fHB25ubhg1apS+34EDB3Dv3j0rljRz9nR+7KkugP3VBwA2btwIZ2dn9OnTx+jxhw8f6j937NhRD1MlS5bEzz//bOliPpY9nhtzMUjZiVu3bqFt27YoXbo09u/fDyD9Qv/qq68QGhqa6y5se6qPPdUlM6dOnYKzszPef/99AMDFixcxceJEPUxNmDABv/76KwIDA/Hyyy8jKSnJyiU2Zk/nx57qAthffQDgq6++glIKbdu2xcOHD5GSkqJv037+6KOPoJRC/fr14ejoiE6dOuHu3bvWKnKm7PHcmItByo4cPnwYW7ZsMXosOxe2rfa921N97KkumQkLC8PLL7+s//vSpUuYOHEifH194eLigrx580IphSlTplixlFmzp/NjT3UB7K8+K1eu1Fuarl27BuDfAGUYpPLkyYPIyEiUKFECSilERUVZrcxZsbdzYy4GKTtlmP4fdWEbtg7cuHHD0sXMNnuqjz3VReuOaNasGYoVK4b79+/rj8XHx6NHjx5wdHSEUgqNGzfWn5ecnGyV8maHPZ0fe6oLYB/1uXv3LsqWLQulFF544QXcv3/faPvt27dRrFgx/fUyffp0KKXQpUsXALYbQuzh3JiLQSoXMnwhaRfv45pNM7uwDS/iMWPGoG/fvjh+/HjOFPoR7Kk+9lSX7NDqq73Zx8TE6Nu2bNmCYsWKQSkFd3d3uLu744MPPtC/dVujqd+ezo891QWwv/pkRqvPypUrUbhwYSilULlyZaxevRrbtm3DmjVrUKVKFbi7u+Obb74BkB6sihQpgho1ahh1A1rSf+HcPA0GqVxIu1X2/v37SEhIyPbzMl7Yffv2xf379zF58mQopeDn54crV67kYMkzZ0/1sae6aLLzDXjVqlVQSmH16tUAgLVr1+p384wbNw4zZ86Ej48PvL29MWTIkJwucpbs6fzYU10A+6vPgQMH8O2332L06NFYsGCB3iIDpI8v+vLLL1G8eHH9i4Y2uDwoKAgfffQRYmNjAaQHqbCwMFSuXBmJiYkWrwdgf+fmWWOQymUWLVqEDh06oFixYihdujRee+01zJs3Dw8ePND3edQH3927dzF37lz921D16tWhlELevHlx9OhRS1TBiD3Vx57qAgA//fQTTp8+na19z549C2dnZ4wZMwYbNmxAyZIloZTCtGnTAABXr17FxIkToZRCSEgIrl+/noMlz5w9nR97qgtgf/WZPHky8ufPr4cjbZLNkydP6vs8ePAAR44cQcuWLVGrVi2UKFEC3bp1w6+//oq4uDh9v9jYWOTPnx/NmjWzeD0A+zs3OYFBKhcZOXIklEqfCbdkyZLIly+f/iLt0qUL1qxZk615e5KTkzFv3jwEBgZCKYWAgAD8+eeflqqGzp7qY091AYBhw4ZBKYU+ffrg/PnzAB79ZpmQkICSJUuiePHiKFOmjFGI0ly6dAmff/65VZry7en82FNdAPurj/baKVq0KD788EOMGTMGAQEBUEph7NixJvunpKQgISEBV69ezfR4o0ePhlIKs2bNAmDZMVL2dm5yCoNULjFlyhQolT4T7q5duwAA586d08emKKVQu3ZtzJ49O8s7Iwz717XlCQICAvDXX39ZriL/z57qY091AYDZs2fr5fbx8UHfvn1x7ty5LPdPTU1FUlISBg4cqD/v888/17cbzo9j+LOl2NP5sae6APZXn2nTpkEphZYtW+KPP/7QH1+/fj2UUqhWrRoePnyo32xhWHatXoaPRUZGIm/evChfvjwuXbpkoVqks7dzk5MYpHKB48ePo1SpUggKCsKhQ4dMti9YsEC/sMuVK4dZs2Y98tvBBx98YNVvBfZUH3uqC2A8U3GvXr1QqlQpuLm5oW/fvnrLVFZ2796NGjVqYPbs2fpj1p47xp7Ojz3VBbDP+oSFhSFv3rx6fVJSUvQwUbduXbRp0wYA9PFPmoz1un37Nt566y34+/sjJCSE15qNY5DKBbZs2QIHBwf99lcgPfkbXrjaDLNKKZQvXz7LOUe2bdsGpRS8vb2t9q3AnupjT3W5d+8e+vfvD6UURo8ejXv37mHmzJkoWrRotsOUNi8OYP0QBdjX+bGnugD2V59NmzZBqfQB1RqtBfbChQsIDAxEzZo1MXLkSJQvXx79+/fHkiVL9H20et+6dQtDhgyBUgrh4eFW6Qq3t3OT0xyEbN61a9cEgDx8+FBERB4+fChKKXFwcBAAIiKSP39+ERGpVauW/Pnnn7J06VJ9m6EXXnhBPv30U9m5c6eUKVPGcpUwYE/1sae6JCQkyL1796Ry5cryyiuviI+Pj3Tv3l2GDRsm+fLlk0WLFsnHH38sFy5cMHmuVp+goCD93w4O1n97safzY091EbG/+ly5ckVEROLi4iQ1NVUePnwojo6Ocu3aNRk3bpzcunVLrly5InPnzpU///xT5s6dK8OGDZMxY8ZIamqq/noJCAiQPn36yI8//ig//fSThIWFWbwu9nZucpwFQxuZacWKFVAq/VZRLdFr32K0vvaPP/4YhQsXxpdffomCBQtCKYXFixcbHcca41MyY0/1sYe6GN5SvWfPHmzdutVoe2xsLGbNmvXIlilbnSTQHs6Pxp7qAthffTZs2AClFDw9PbFixQqcPXsWFy9eROfOnaGUwosvvoidO3fi4sWL2LJlC9q1awcPDw/kz58f33//PQDbaMUF7O/c5DQGqVwgKSkJ9erVg1LpM+H+/fffRtvv3LmDokWLon79+gCAxYsXQymF3r17A7C9Dzl7qk9ur8uYMWOwcOHCTLelpqbq5XtUmDKcpdzW1gPL7efHkD3VBbC/+gBAz5499bvc8ubNC29vbyilUKdOHZP5l44cOYJGjRqZdAfaAns8NzmJQcrGXL9+HTExMdi+fTv++ecf/fElS5boc/OUKlUKUVFR2LZtG9atW2c0E25aWhquXr2KokWLIiwszOoLxNpTfeypLsC/d9GEhoYajW3K6FFhyvANdsSIEejevTsuXryY42XPjD2dH3uqC/DfqQ8AvP/++2jQoAEKFSqEnj17oly5cli1ahWA9BYaw5CxcOFCKJU+u/mtW7esEkDs7dxYA4OUDZk9ezZq1qypD+DLkycPfvrpJwDpAxAjIiJQsWJFKKXg4OCg75dxJtz79++jYsWKKFOmjFWbiu2pPvZUFwAYPHiwPr2Bh4cHFixYACDrroWswtSAAQNw6dIlTJo0Sf8mnvGDxRLs6fzYU13+K/VZsWKF0T6pqalISEjA3r17oZTC5s2bjbZrrbjatAjNmze3WPkN2du5sRYGKRsxfPhwvU+6cePGqFWrFpRS8Pf3x++//w4g/UPswIED6NatG6pVq4aSJUuiR48eWL9+vdEss3FxcQgNDcXLL79srerYVX3sqS7AvyGqZcuWaNeuHZRSaN269WOfZximIiIiUKxYMbi5ueG5556DUtabqdiezo891QX479QnICAg02v/yy+/hFIKP//8M4D0FinDcUMDBgyAUgpTpkwBYNkuMXs7N9bEIGUDxo8fD6UUmjVrZjRnR6dOnaCUwvvvvw/AuLUgLi4Ot27dyvR4Y8aMgVL/zixt6eZie6qPPdUF+DdEtW/fHpcvX8apU6f0b5pLlix57PMNZzGeM2cOgoKC9A8Sa8wPY0/nx57qAvz36vPBBx8AMJ6E8quvvoJSCsHBwSavjzlz5sDDwwPly5e3eHe4vZ0ba2OQsrKNGzfC19cX5cuXx5EjRwBA72OOiYlBYGAgIiIiMn2u9oI1HOwbGRmJoKAglCtXzuIz4QL2VR97qgtgHKKOHTumP/7mm2/CyckJgwcPBvDoN0HDb9Pa8hHWmqnYns6PPdUFYH009+/fR926dfUW22nTpuHLL79Et27d4OLigsDAQIu/duzt3NgCJ2tPv/Bfd/ToUYmNjZW3335bKlasKCIijo6OIiKSmJgoiYmJcu7cOVm8eLEcOXJEGjVqJOXLl5eCBQuKk1P66XN2dpbY2FgZMWKELFu2TFxcXOSHH36QAgUKsD6si4iI9OvXT7766itp166dfPTRR0Zz09SpU0dmz54tM2bMkDfeeEOqV6+e5XG0+r/33nvyySefiL+/v+zYscMq88PY0/mxp7qwPun1KVu2rISGhsqIESMkJSVF9u3bJ8OHD5fU1FQREalatap8++23Urp0aZuviy2fG5tg7ST3X9e+fXsopbB06VIAQHx8PID0GaJbtmwJpRRKlCihD/JzcXFBhw4dsHPnTv0Y165dwzvvvAOlrDcTrsae6mMvdTl27BgcHBzw6quv4sSJE/rjhs322lipYcOGISkp6ZEDRvft2welFFxdXa06U7G9nB97qwvA+ri4uOD111/H/v37AQB///03+vXrh2bNmqFly5aYM2cOLl++nGvqYsvnxhYwSFmZ1t3SokUL/bHbt2/jf//7H5RKXxRyxowZWLVqFfr37488efLA2dkZr7/+ulG/+oEDB7By5cpH3sZuCfZUH3uqy6FDh3Dy5EmTx7XANG/ePCilUKlSJX0uqEd18X311VdWGVhuyJ7Ojz3VBWB98uTJAycnJ7Rv396oPrZwR5u9nRtbwCBlZb///jv8/PyglEKNGjXQokULFCtWDEqlz4RreGcEAHz++edwdXWFm5sbNmzYYLTNFgb42VN97Kkuj3Pjxg19zphRo0ZZuzjZYk/nx57qArA+j6oPYN062du5sQUMUjZgz549KFasGLy8vKCUQtmyZREWFqbf5ZGammo0yLdVq1ZQSuHdd98FYHsXsz3Vx57qkhXtW/LXX38Nd3d3NGnSBHFxcQBsv/z2dH7sqS4A65OxPrbE3s6NtVl/VVGSWrVqyZ49eyQ6OlrOnDkjAwcOlOTkZMmTJ4+IiDg4OIijo6MkJiaKiEjx4sVFRMTV1VVERJRS1il4FuypPvZUl6xoi6VWqlRJPD09ZcOGDbJq1SoRsf3y29P5sae6iLA+GetjS+zt3Fgb79qzEUFBQRIUFCRpaWmyYcMGefjwofj7+4uISGpqqiilxM3NTURETpw4IZ6envL8889bs8iPZE/1sae6PEr16tXlrbfekrFjx8rixYvlpZdekrx589r8m6Y9nR97qosI62PL9bGnulgbW6Rs1KVLl2TUqFEikn5rqtZqMHv2bFm9erVUqVJFKleubMUSPhl7qo891UUDQEREmjRpIvnz55eDBw/K5cuXRSmlb8st7On82FNdRFgfW2ZPdbE4a/ctkqkffvgBHh4ecHZ2xoABA3DixAmcPHkSI0eOhJ+fH/LmzWt0G7uts6f62FNdsqKNh2jatKnJwFNbZ0/nx57qArA+tsye6mINDFI26Pbt2+jTpw88PT2hVPoCkdqgwBIlSlhlKY6nYU/1sae6ZKQNOj948CAcHBxQuXJl3Llzx7qFekL2dH7sqS4A62PL7Kku1sAgZaOuX7+OadOmISQkBH5+fqhcuTIGDRqEc+fOWbtoZrGn+thTXTJz/vx5tGjRwurzRJnLns6PPdUFYH1smT3VxdIUkMsGQPzH3Lx5U2JjYyUkJEScnZ31KfpzK3uqjz3VJaPExER9oGluZU/nx57qIsL62DJ7qoulMEgRERERmYl37RERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZLBKkTpw4ITNnzpTu3btLhQoVxMnJSZRSMmHChKc67qZNm6Rp06YSGBgo7u7uUrp0aXn//fclLi7uGZWciIiIctKFCxfkzTfflLCwMHF3dxc3NzcpWrSodOvWTY4cOZLpc27fvi3vvfeelClTRtzd3cXf319eeOEFWbx4cZa/59atW/LNN9/IW2+9JXXq1BEPDw9RSkmjRo2eqvwWmSAiMjJSIiIinukxp02bJkOHDhWllNStW1eCg4Nlx44dMnHiRPnpp59k586dEhgY+Ex/JxERET07+/btk5deekliY2OlQIEC0rhxY3F0dJTDhw/LokWLZOnSpbJ06VJp166d/pwzZ85IgwYN5Pz585InTx5p2LChJCQkyN69e2XHjh2yefNmWbBggcmC6zt27JAePXo8+0pYYtbPr776Cu+88w6WLFmCY8eOoUuXLhARjB8/3qzjHTx4EEopODo6Yu3atfrjDx48QMOGDSEiaNOmzbMqPhEREeWAihUrQkTQt29fJCcn64+npqbigw8+gIjAz88PCQkJ+rbnnnsOIoJ69erh9u3b+uOnTp1C8eLFISL48ssvTX7X7t270a9fP8ydOxfR0dH44osvICJo2LDhU9XBKkvEdOvW7amCVLt27SAi6N27t8m2c+fOwcHBASKCY8eOPW1RiYiIKAfcvHkTIgIRwfXr1022P3z4EO7u7hARHDx4EEB6GBIRODo64vTp0ybP+fnnnyEiKFSoENLS0h75+xcsWPBMglSuG2yenJwsa9asERGRTp06mWwvXLiwhIeHi4jIypUrLVo2IiIiyh5XV9ds76sN1YmOjhYRkSJFikjx4sVN9tPGO128eFH279//DEr5eLkuSJ08eVLi4+NFRKR69eqZ7qM9fujQIYuVi4iIiLLPy8tL6tatKyIiH3zwgaSkpOjb0tLSZOzYsZKQkCCvvPKKFCpUSEREv5ksT548mR7Tw8ND3N3dRUTkwIEDOVl8Xa5bjfDs2bMiIuLn5yfe3t6Z7qP9wbV9iYiIyPZ89dVX0rRpU/nyyy9lzZo1Ur16dXF0dJRDhw7J5cuXpUuXLjJr1ix9/6CgIBHJ+vP96tWrkpCQ8Mh9nrVcF6RiY2NFRMTT0zPLfby8vERE5P79+zlengEDBuT47xARmTNnjkV+D+tjHkvVx57Y27mxp/rYU13skT2dn7CwMNmzZ4906dJFNmzYIJcvX9a3lS1bVurVqyc+Pj76Y/Xr1xellNy4cUNWrVolLVu2NDreF198of9siQwgkguDFBER0ZOwp+Bhb3bt2iWtW7cWJycnWbp0qTRo0EBcXFxk165dMnToUOnVq5fs2rVL5s2bJyIixYsXl86dO8vixYulZ8+eEhcXJ6+88ookJCTIkiVLZOLEieLs7CwpKSni4GCZ0Uu5Lkhp3XkPHjzIch+tD9UwxRIREZHtuHv3rrRq1Upu3rwpe/bskZo1a+rbmjVrJmXLlpUKFSrI/PnzpXPnzlK/fn0RSZ+bMjY2VlatWiVdunQxOmb79u0lOTlZVq1aJQEBARapR64LUkWKFBGR9BMQGxub6TipixcvGu1LREREtmXNmjVy48YNKV68uFGI0hQrVkxq1qwpW7dulU2bNulBytPTU1auXCl79uyRX3/9Va5cuSIBAQHSpEkTqV+/vtSpU0dERCpUqGCReuS6IBUWFiYeHh4SHx8vMTEx+h/WUExMjIiIVK1a1dLFIyIiomy4cOGCiDy698jX11dE0peEyah27dpSu3Zto8diY2Pl8OHD4uTklGk+yAm5bvoDFxcXefXVV0VEZOnSpSbbz58/L7t37xYRkVatWlm0bERERJQ9BQoUEBGR48ePy71790y2p6SkyMGDB0VEpGjRotk65pw5cyQhIUHatWsnwcHBz66wj2CzQWrWrFlSunRp6dq1q8m2kSNHilJKFixYIL/++qv+eHx8vPTq1UtSU1OlTZs2Urp0aUsWmYiIiLLplVdeEU9PT0lISJA+ffro45tF0iffHjJkiFy4cEGcnZ2lbdu2+ra///5bbty4YXQsADJ//nwZPXq0BAQEyNSpUy1WD4t07R08eNDorom///5bRETmzp0rq1ev1h9fuXKl5MuXT0REbt68KSdOnJCQkBCT41WtWlWmTp0qQ4cOlaZNm8qLL74oQUFBsmPHDrly5YqEhYUZ3QJJREREtiVv3rzyxRdfSI8ePWT58uXy22+/SY0aNcTZ2VliYmLk8uXL4uDgIDNmzJBixYrpz4uKipLhw4dL1apVJTQ0VABITEyMnD9/XoKCgmTdunV6lsioVq1a+s9aGIuOjjZ6fPTo0XrPV3ZYJEjdv39f9u3bZ/L4pUuX5NKlS/q/k5KSsn3MIUOGSIUKFWTq1Kmyf/9+efDggYSGhsp7770n7733XpaTdRIREZFt6Ny5s1SoUEGmT58u27dvl82bNwsAyZcvn7zxxhsyaNAgee6554yeEx4eLm3atJH9+/fL0aNHRSklxYoVk9GjR8vQoUPFz88vy9+XWRbJmFEytnY9jkWCVL169QTAEz1n7NixMnbs2Efu06hRI31dHSIiIsp9KlWqJAsWLMj2/jVq1JDvv//erN/1pFkkO2x2jBQRERGRrWOQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMZNEgtXz5cqlXr574+/uLp6enVKpUST799FNJSUl54mM9ePBAJk2aJNWrVxcfHx9xdnaWkJAQadasmfzyyy85UHoiIiJ6Vs6dOydKqWz9t337dv15Fy9elLlz50rfvn2lWrVq4urqKkop6d279yN/36FDh2TSpEnSsGFDCQ4OFmdnZ/H395e6devK7NmzzcoiIiJOZj3LDIMHD5aIiAhxcnKSBg0aiJeXl2zZskVGjBghUVFRsmHDBnF3d8/WsW7duiUvvPCC/PXXX+Ll5SV16tQRPz8/OX36tKxZs0bWrFkjgwYNkoiIiByuFREREZnDy8tLunXrluX2v/76S6Kjo8Xb21uqVaumP/7TTz/JkCFDnuh3PXz4UKpWrar/3ho1akhwcLBcunRJ9uzZIzt37pRFixbJ+vXrxc/P74mObZEgtWrVKomIiBAvLy/Ztm2bXpmbN29KgwYNZOfOnTJ69GiZMmVKto730UcfyV9//SXVqlWTDRs2SEBAgL5t7dq10qJFC5kxY4Z07NhRatWqlSN1IiIiIvMFBgbKN998k+X2pk2biohIhw4dxNPTU3+8aNGi8tZbb0nVqlWlatWq8sMPP8jHH3/82N9XrVo1GTFihDRv3lxcXV31x//44w9p0qSJ7N+/X4YOHSrz589/onpYpGtv4sSJIiIycuRIPUSJpP8R58yZIyIis2bNknv37mXreFu2bBERkREjRhiFKJH0P3z9+vVFRGTPnj1PXXYiIiKyrMuXL8v69etFRKRXr15G27TGku7du0vFihXFyenxbUJOTk4SExMj7dq1MwpRIiIVKlSQTz/9VEREvv/++yfu4svxIHX58mWJjo4WEZFOnTqZbH/++eelUKFCkpSUJGvXrs3WMd3c3LK1X2BgYPYLSkRERDbhm2++kbS0NClXrpzUrFkzx39flSpVREQkISFBbt68+UTPzfEgdejQIRERCQgIkKJFi2a6T/Xq1Y32fZxXXnlFREQ++eQTuX37ttG2tWvXytatWyUkJESaN29ubrGJiIjISrQuv4ytUTnl1KlTIiLi4uJi0tP1ODk+Rurs2bMiIhIaGprlPoUKFTLa93FGjBgh+/fvl/Xr10vhwoUlPDxcH2x+4MABCQ8Pl3nz5omvr+/TV4CIiIgsZtu2bXL69GlxcXGRLl265PjvA6B37TVr1syk6+9xcjxIxcbGiogYDRTLyMvLS0RE7t+/n61jenp6SlRUlIwaNUqmTp2q96OKiOTJk0caNWokBQoUeIpSExERkTVog72bN29ukSE648aNkz179oiXl5dMnjz5iZ9vsekPnqUrV65IixYt5Pfff5cJEyZIx44dJSgoSP766y/54IMPZNy4cbJq1SrZsWOHeHt7W7u4RM/EgAEDLPJ7tBtAiIgs7f79+/Ljjz+KiEjPnj1z/PctWrRIPvroI3FwcJD58+dLyZIln/gYOT5GSgsyDx48yHKfuLg4ERHx8fHJ1jG7desm0dHRMn78eBk1apQULVpUPD09pUaNGrJ69WqpUKGCHDlyJNvTKRAREZH1ff/99xIfHy8FCxaUJk2a5OjvWr58uR7WvvrqK2nXrp1Zx8nxIFWkSBERSZ+JNCvaNm3fR7l8+bJs3LhRREQ6duxost3Z2Vnatm0rIiKbNm16wtISERGRtWjdet27dxcHh5yLKCtWrJBOnTpJWlqazJ0796lav3I8SGm3FN66dSvLweQxMTEiIkZzTGXlwoUL+s9ZtWBpg8wz3tFHREREtumvv/6Sffv2iVJKevTokWO/Z9WqVdKhQwdJTU2VyMhI6dOnz1MdL8eDVMGCBaVGjRoiIrJ06VKT7Tt37pSLFy+Kq6urPovpoxgOIt+3b1+m++zdu1dEJMvpFoiIiMi2zJs3T0RE6tevL8WKFcuR3xEVFSXt27eXhw8fSmRkpPTr1++pj2mRmc1HjRolIiKTJ0+WgwcP6o/funVLH0D75ptvGk1XsHLlSildurQ0bNjQ6FihoaF6MHv77bfl3LlzRtu//fZbWbZsmYhkPgEoERER2ZaUlBT59ttvRSTn5o5au3attG3bVh4+fChffPHFMwlRIha6a69ly5YyaNAgmTFjhtSqVUsaNmwonp6esnnzZrl7966Eh4fL+PHjjZ5z7949OXHihCQmJpocb/78+VK/fn05duyYlClTRmrVqiWBgYFy7Ngx+fPPP0VEpHPnzvLGG29YonpERET0FFavXi3Xr18XPz8/ad269SP3vXLlirRq1Ur/96VLl0RE5JdffjFaX3fOnDn6kKHr169L69atJTk5WQoWLCi7d++W3bt3Z3r8KVOmPNG0Cxab/iAiIkLCw8Nl9uzZsnv3bklJSZHixYvLyJEjZciQIeLi4pLtY5UvX16OHj0q06ZNk3Xr1kl0dLQkJSWJv7+/NGnSRHr27Cnt27fPwdoQERHRs6INMu/UqdNjl4FLSkrKdGjPjRs35MaNG/q/DeemjI+Pl6SkJBFJD14LFy7M8vhjx461zSAlItK+fftsB5zu3btL9+7ds9weHBwskydPNmvyLCIiIrIdUVFR2d63SJEiAuCJjm/Oc7LLImOkiIiIiOwRgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzWTRILV++XOrVqyf+/v7i6ekplSpVkk8//VRSUlLMPubPP/8szZs3l5CQEHFxcZGgoCCpU6eOfPTRR8+w5ERERPSsde/eXZRSj/wvMTHR6Dm7d++WAQMGSO3ataVAgQLi5uYmnp6eUrZsWXnrrbfk3Llz2f79R44cERcXF1FKSYkSJcyqg5NZzzLD4MGDJSIiQpycnKRBgwbi5eUlW7ZskREjRkhUVJRs2LBB3N3ds3285ORk6dy5syxfvlzc3d2ldu3aEhwcLFevXpU///xTZsyYIWPGjMnBGhEREdGzEB4enmWQcXR0NPr32rVrJTIyUkJDQyUsLEyCg4Pl3r17cvDgQZk1a5YsWLBAVq9eLfXq1Xvk70xOTpauXbvKw4cPn6rsFglSq1atkoiICPHy8pJt27ZJ1apVRUTk5s2b0qBBA9m5c6eMHj1apkyZku1j9unTR5YvXy4tW7aUr776SgIDA/VtaWlpsn///mdeDyIiInr2evfuLd27d8/Wvm+88Yb07t1bihQpYvR4cnKyvPvuuxIRESFdunSRc+fOmYQwQx999JH8/vvv8uabb8qsWbPMLrtFuvYmTpwoIiIjR47UQ5SISGBgoMyZM0dERGbNmiX37t3L1vE2b94sixYtkvLly8sPP/xgFKJERBwcHKRWrVrPqPRERERkK8qUKWMSokREXFxc5LPPPhM3Nze5dOmS/PXXX1keIzo6WiZPnizt2rWTNm3aPFV5cjxIXb58WaKjo0VEpFOnTibbn3/+eSlUqJAkJSXJ2rVrs3XMmTNnikh6d6Gzs/OzKywRERHlWkopcXBIjzaurq6Z7pOYmCjdunUTf3//p2qJ0uR4196hQ4dERCQgIECKFi2a6T7Vq1eXixcvyqFDh6Rjx46PPF5qaqps3rxZREReeOEFuXr1qnz//fdy4sQJcXV1lSpVqkibNm3Ey8vr2VaEiIiIcsTWrVvljz/+kNjYWMmTJ48899xz0rRp0yzDUGZSU1Nl3LhxEh8fL2XLls1yzNXo0aPl2LFjsnTpUgkKCnpky1V25HiQOnv2rIiIhIaGZrlPoUKFjPZ9lDNnzkhcXJyIiOzdu1cGDBig/1szfPhw+f7776VBgwbmFpuIiIgsZNGiRSaP5cuXT+bPny8vv/xyps+5cOGCflPZ7du35dChQ3Lp0iUpUaKE/PDDD3rLlKHdu3fL559/Li1atHhsw0125XjXXmxsrIiIeHp6ZrmP1np0//79xx7v1q1b+s+9evWSatWqSXR0tMTGxsrhw4eladOmcuPGDWnRooWcOnXqKUtPREREOaVSpUoSEREhR48elfv378u1a9dkw4YNUqdOHbly5Yo0b95cfvvtt0yfe/v2bVm4cKEsXLhQoqKi5NKlS1K1alX58ccfpVy5cib7x8fHS/fu3cXX11ciIyOfWR1y3YScAPSfCxQoIOvXr5fq1auLl5eXVKpUSX755RcpX768xMXFyeTJk61YUiIiInqUIUOGyKBBg6RcuXLi7e0tQUFB8tJLL8nOnTulRYsWkpKSIoMHD870uZUrVxYAkpaWJpcuXZIffvhB4uPjpVq1ajJjxgyT/UeOHCmnTp2S6dOnS758+Z5ZHXI8SHl7e4uIyIMHD7LcR+ua8/HxyfbxRNIn8srYf+ro6Cj9+vUTEZFNmzY9cXmJiIjIupRSMm7cOBFJnzTz4sWLj9y3QIEC0q5dO9mzZ48EBwfLkCFD5MiRI/o+v/32m8yaNUuaNm0qXbt2faZlzfExUtotio/6I2jbMrudMbPjKaUEgBQrVizTfbTHr1y58mSFJSIiIptQpkwZ/edLly7p46kfxc/PT1q1aiWzZ8+WX375RSpVqiQi6fNZApALFy6YTNR59+5dEUmfZUDbNn36dKlcuXK2ypnjQapKlSoikj626ezZs5neuRcTEyMiYjTHVFa8vLwkLCxMjh8/Ljdv3sx0H+1x3rlHRESUOxmOiTbsjXocbUz29evXTbYdPXo0y+clJibKtm3bROTfcJUdOd61V7BgQalRo4aIiCxdutRk+86dO+XixYvi6uoqTZs2zdYx27VrJyJZd91t3LhRRESee+45c4pMREREVvb999+LSPqwn7CwsGw/b8uWLSIiUqpUKf2x6dOnC4BM/9u6dauIiBQvXlx/7HHLyxiyyGDzUaNGiYjI5MmT5eDBg/rjt27dkgEDBoiIyJtvvim+vr76tpUrV0rp0qWlYcOGJscbNGiQ+Pv7y9q1a2Xu3LlG277//ntZsmSJvh8RERHZnsOHD8svv/xistZdWlqazJs3T88OgwYNMpp8e9KkSXLjxg2T4925c0feeustiYmJEV9fX2nfvn3OVuD/WWStvZYtW8qgQYNkxowZUqtWLWnYsKF4enrK5s2b5e7duxIeHi7jx483es69e/fkxIkTJqs+i6QvLbNs2TJp3ry59O/fX2bOnCllypSRv//+W58AdPTo0dlu4SIiIiLLOnfunLRq1Ur8/f2latWqEhwcLHfv3pWjR4/KhQsXRESkY8eO8uGHHxo9b9SoUTJ69GipUKGCFC9eXJycnOTy5cty6NAhefDggfj6+sry5cslODjYIvWwSJASEYmIiJDw8HCZPXu27N69W1JSUqR48eIycuRIGTJkiLi4uDzR8V566SU5cuSITJw4UTZt2iQ///yz+Pj4SNOmTeXtt9+Wxo0b51BNiIiI6GlVqlRJBg8eLDExMXL8+HHZtWuXAJDg4GBp27at9OjRI9MGkVmzZsmOHTvk0KFDsnnzZomLixNvb2+pUKGCNGnSRP73v/9ZLESJWDBIiYi0b98+201t3bt3f+xK0KVKlZJvvvnm6QtGREREFlW0aFGZNm3aEz9v4MCBMnDgwGdWjnr16hnNUfmkct2EnERERES2gkGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmSwapJYvXy716tUTf39/8fT0lEqVKsmnn34qKSkpT33stWvXilJKlFLSqFGjZ1BaIiIiyklLliyRrl27SqVKlSQoKEicnZ3F19dXnnvuOZk0aZLExcWZPGfs2LH6531W/x0/fvyRv3f79u3SoUMHKViwoLi6ukpgYKBUq1ZNhgwZ8sSZxOmJ9n4KgwcPloiICHFycpIGDRqIl5eXbNmyRUaMGCFRUVGyYcMGcXd3N+vYd+7ckT59+ohSSgA845ITERFRToiMjJTdu3dLmTJlpGrVqhIQECDXrl2TPXv2SHR0tMyfP1+2bdsm+fPnN3lupUqVpHLlypke19fXN9PHAciQIUMkIiJCnJ2dpWbNmvLCCy/IzZs35dixYzJ9+nQZP368ODs7Z7sOFglSq1atkoiICPHy8pJt27ZJ1apVRUTk5s2b0qBBA9m5c6eMHj1apkyZYtbx33rrLbl27Zr0799fIiMjn2XRiYiIKIdMnTpVSpYsKQEBAUaP37p1S1q2bCk7d+6UYcOGyXfffWfy3JYtW8rYsWOf6PeNHTtWIiIipE6dOrJ06VIpXLiw0fbo6Ghxc3N7omNapGtv4sSJIiIycuRIPUSJiAQGBsqcOXNERGTWrFly7969Jz72ypUrZcmSJTJ06FB57rnnnk2BiYiIKMfVrFnTJESJiOTJk0fPDhs2bHgmv+vEiRMyceJECQ4OljVr1piEKBGRGjVqiJPTk7Ux5XiQunz5skRHR4uISKdOnUy2P//881KoUCFJSkqStWvXPtGxb968Kf3795ewsDD56KOPnkl5iYiIyPq0QOPq6vpMjhcZGSkPHz6UPn36iJ+f3zM5pogFuvYOHTokIiIBAQFStGjRTPepXr26XLx4UQ4dOiQdO3bM9rH/97//yc2bN2XFihVP3BRHREREtik2NlbvtmvevHmm+xw8eFBGjhwpt2/fFl9fX6lSpYq89tpr4u3tnen+69evFxGRF154Qe7evSvLli2T33//XRwcHKR8+fLSpk0bCQwMfOKy5niQOnv2rIiIhIaGZrlPoUKFjPbNju+//15+/PFHefvttyU8PPzpCklERERWs2HDBlm6dKmkpaXpg81jY2Pl5Zdflk8++STT50RFRUlUVJTRY76+vjJjxgzp2rWr0ePJycly4sQJEUnPGp07d5br168b7fPOO+/IV199JR06dHiisud4115sbKyIiHh6ema5j5eXl4iI3L9/P1vHvHr1qgwcOFCKFy+u96ESERFR7vTXX3/JwoULZfHixbJhwwaJjY2VTp06yTfffGNyB5722X/o0CG5ffu23L59W3bu3CnNmjWTe/fuSbdu3WTJkiVGz7l9+7Z+V/+bb74pISEh8ttvv8n9+/fl+PHj0r17d4mLi5POnTvLjh07nqjsuXJCzr59+8qdO3fk66+/Fg8PD2sXh4iIiJ7C4MGDBYAkJyfL6dOnZerUqbJu3TopW7asbN++3WjfLl26yHvvvSeVK1cWf39/8ff3l/DwcImKipK33npLRESGDBkiycnJ+nMMp0Zyd3eXTZs2yYsvvije3t4SFhYmCxYskFdeeUVSU1Of+E7AHA9SWl/lgwcPstxHm3DLx8fnscdbuHChREVFSf/+/aVevXrPpIxERERkfc7OzlK8eHEZOnSorFu3Tu7cuSOdO3eWhISEbD1/7Nix4ujoKDdu3JB9+/bpjxuOm2rdurXkzZvX5LkDBgwQEZEdO3YYhbDHyfExUkWKFBERkYsXL2a5j7ZN2/dRVq5cKSLpcz1kDFJXr14VEZEDBw7o277//nsJCQl5skITERGRVdWsWVPKli0rf/75p8TExEjdunUf+5yAgAAJCgqSK1euyKVLl/THvby8JG/evHLjxg0pVqxYps/VHk9JSZGbN29mOgloZnI8SFWpUkVE0ifXOnv2bKZ37sXExIiIGM0x9TjaczJz9+5d2bZtm4iIJCYmPklxiYiIyEZo46szDgzPSmpqqj4nZca796pVqya//vqr3Lx5M9PnGj6ujd3Ojhzv2itYsKDUqFFDRESWLl1qsn3nzp1y8eJFcXV1laZNmz72eKtWrRIAmf63YMECERFp2LCh/lh2WrmIiIjItty8eVOOHDkiIiKlSpXK1nN++eUXiY+PF6WUVK9e3Whbu3btRERky5YtkpaWZvLcjRs3iohIWFhYtoYaaSwy2HzUqFEiIjJ58mQ5ePCg/vitW7f0Psk333zTaGT+ypUrpXTp0tKwYUNLFJGIiIgs6K+//pIlS5Zk2nN08uRJadeunSQlJUmtWrWkQoUKIiJy4cIF+fbbbzN9zqpVq6R3794iIvLGG2+YDOvp3LmzFC9eXI4ePSpjxowxClNbt26Vzz//XEREBg0a9ET1sMhaey1btpRBgwbJjBkzpFatWtKwYUPx9PSUzZs3y927dyU8PFzGjx9v9Jx79+7JiRMn2DVHRERkh65fvy6dO3eWfv36SZUqVaRgwYKSnJwsFy5ckIMHD0paWpqUKVNGli1bpj/n9u3b0qVLF/nf//4nVapUkQIFCkhCQoL89ddfcurUKRERqV+/fqbr7rq4uMiKFSukfv368vHHH8v3338vlStXlsuXL8v+/fslLS1NunXrJv/73/+eqB4WCVIiIhERERIeHi6zZ8+W3bt3S0pKihQvXlxGjhwpQ4YMERcXF0sVhYiIiKysXLly8vHHH8uOHTvk+PHjcujQIUlJSZGAgABp2LChtG7dWnr06GG0REyhQoVkxIgREh0dLadPn5aDBw9KcnKyBAYGSrNmzaRTp07y+uuvi4ND5h1uFStWlKNHj8rHH38sa9askaioKPHw8JAXX3xR+vbt+8STcYpYMEiJiLRv317at2+frX27d+8u3bt3f6Ljm/McIiIisry8efPqQ3+yK0+ePDJ58uSn+r358uWTWbNmyaxZs57qOJpcOSEnERERkS1gkCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzGTRILV8+XKpV6+e+Pv7i6enp1SqVEk+/fRTSUlJeaLjHDp0SCZNmiQNGzaU4OBgcXZ2Fn9/f6lbt67Mnj37iY9HRERElnfixAmZOXOmdO/eXSpUqCBOTk6ilJIJEyZk+RylVLb+W7RokclzHzx4IJMmTZLq1auLj4+PODs7S0hIiDRr1kx++eUXs+rgZNazzDB48GCJiIgQJycnadCggXh5ecmWLVtkxIgREhUVJRs2bBB3d/fHHufhw4dStWpVERHx8vKSGjVqSHBwsFy6dEn27NkjO3fulEWLFsn69evFz88vh2tFRERE5oqMjJSIiIgnek63bt2y3HbhwgXZunWrKKXkxRdfNNp269YteeGFF+Svv/4SLy8vqVOnjvj5+cnp06dlzZo1smbNGhk0aNATl8ciQWrVqlUSEREhXl5esm3bNj0I3bx5Uxo0aCA7d+6U0aNHy5QpU7J1vGrVqsmIESOkefPm4urqqj/+xx9/SJMmTWT//v0ydOhQmT9/fo7Uh4iIiJ5e+fLl5Z133pEqVapI1apVZeLEibJ48eJHPuebb77JctuAAQNk69at0qhRIylcuLDRto8++kj++usvqVatmmzYsEECAgL0bWvXrpUWLVrIjBkzpGPHjlKrVq1s18EiXXsTJ04UEZGRI0fqIUpEJDAwUObMmSMiIrNmzZJ79+499lhOTk4SExMj7dq1MwpRIiIVKlSQTz/9VEREvv/+e3bxERER2bDevXvLZ599Jp06dZLSpUuLg4P5sSQxMVG+++47ERHp1auXyfYtW7aIiMiIESOMQpSISNOmTaV+/foiIrJnz54n+r05HqQuX74s0dHRIiLSqVMnk+3PP/+8FCpUSJKSkmTt2rVP/fuqVKkiIiIJCQly8+bNpz4eERER2b6ffvpJ7t69KwEBAdKyZUuT7W5ubtk6TmBg4BP93hwPUocOHRIRkYCAAClatGim+1SvXt1o36dx6tQpERFxcXExSZxERERkn7ThPJ07dzbpsRIReeWVV0RE5JNPPpHbt28bbVu7dq1s3bpVQkJCpHnz5k/0e3N8jNTZs2dFRCQ0NDTLfQoVKmS0r7kA6F17zZo1y/QPSURERPbl3LlzsnXrVhHJvFtPJL1Lb//+/bJ+/XopXLiwhIeH64PNDxw4IOHh4TJv3jzx9fV9ot+d40EqNjZWREQ8PT2z3MfLy0tERO7fv/9Uv2vcuHGyZ88e8fLyksmTJz/VsYiIiCh3WLBggQCQ6tWrS8WKFTPdx9PTU6KiomTUqFEydepUWb9+vb4tT5480qhRIylQoMAT/267mZBz0aJF8tFHH4mDg4PMnz9fSpYsae0iERERUQ5LS0vT7+Tr2bNnlvtduXJFwsPDZebMmTJhwgQ5c+aMxMXFyf79+6VatWoybtw4ef755/UGoOzK8SDl7e0tIumTYGUlLi5ORER8fHzM+h3Lly/X/3hfffWVtGvXzqzjEBERUe6yadMmuXDhgri7u2d6U5umW7duEh0dLePHj5dRo0ZJ0aJFxdPTU2rUqCGrV6+WChUqyJEjR7I9FZMmx4NUkSJFRETk4sWLWe6jbdP2fRIrVqyQTp06SVpamsydO/eRaZSIiIjsizbIvE2bNlmOb7p8+bJs3LhRREQ6duxost3Z2Vnatm0rIunB7EnkeJDSpiO4detWloPJY2JiRESM5pjKjlWrVkmHDh0kNTVVIiMjpU+fPk9XWCIiIso1bt++LatWrRKRrAeZi6TPeK7JqvdLC2EZ7+h7nBwPUgULFpQaNWqIiMjSpUtNtu/cuVMuXrworq6u0rRp02wfNyoqStq3by8PHz6UyMhI6dev3zMrMxEREdm+JUuWSFJSkhQvXtxkSRhDhoPI9+3bl+k+e/fuFRHJcqqmrFhksPmoUaNERGTy5Mly8OBB/fFbt27JgAEDRETkzTffNGqSW7lypZQuXVoaNmxocry1a9dK27Zt5eHDh/LFF18wRBEREf0Had16PXv2FKVUlvuFhobqjTpvv/22nDt3zmj7t99+K8uWLRORzCcPfxSLrLXXsmVLGTRokMyYMUNq1aolDRs2FE9PT9m8ebPcvXtXwsPDZfz48UbPuXfvnpw4cUISExONHr9+/bq0bt1akpOTpWDBgrJ7927ZvXt3pr93ypQpTzxDKREREVnGwYMH9QYVEZG///5bRETmzp0rq1ev1h9fuXKl5MuXz+i5hw4dksOHD4ujo6N07979sb9r/vz5Ur9+fTl27JiUKVNGatWqJYGBgXLs2DH5888/RSR9Ms833njjiepgkSAlIhIRESHh4eEye/Zs2b17t6SkpEjx4sVl5MiRMmTIEHFxccnWceLj4yUpKUlERC5duiQLFy7Mct+xY8cySBEREdmo+/fvZ9rVdunSJbl06ZL+b+1z35DWGtWkSRPJnz//Y39X+fLl5ejRozJt2jRZt26dREdHS1JSkvj7+0uTJk2kZ8+e0r59+yeug8WClIhI+/bts13I7t27Z5owixQpIgCeccmIiIjI0urVq2f2Z/rMmTNl5syZT/Sc4OBgmTx58jOdtNtuJuQkIiIisjQGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGZikCIiIiIyE4MUERERkZkYpIiIiIjMxCBFREREZCYGKSIiIiIzMUgRERERmYlBioiIiMhMDFJEREREZmKQIiIiIjITgxQRERGRmRikiIiIiMzEIEVERERkJgYpIiIiIjMxSBERERGZiUGKiIiIyEwMUkRERERmYpAiIiIiMhODFBEREZGZGKSIiIiIzMQgRURERGQmBikiIiIiMzFIEREREZmJQYqIiIjITAxSRERERGayaJBavny51KtXT/z9/cXT01MqVaokn376qaSkpJh1vAMHDki7du0kODhY3NzcpGjRovLWW2/J9evXn3HJiYiIKKc863xgSRYLUoMHD5b27dvLrl275LnnnpOXX35ZLly4ICNGjJAGDRpIQkLCEx3vxx9/lFq1asmPP/4ohQsXlhYtWoiDg4PMmjVLKlasKKdPn86hmhAREdGz8qzzgaVZJEitWrVKIiIixMvLS/bt2yfr16+Xn376SU6dOiUVKlSQnTt3yujRo7N9vH/++Ue6desmDx8+lLlz58r+/ftl2bJlcvLkSencubNcu3ZNOnXqJABysFZERET0NJ51PrAGiwSpiRMniojIyJEjpWrVqvrjgYGBMmfOHBERmTVrlty7dy9bx5s+fbrEx8dLo0aNpG/fvvrjjo6OEhkZKb6+vhIdHS0bNmx4hrUgIiKiZ+lZ5wNryPEgdfnyZYmOjhYRkU6dOplsf/7556VQoUKSlJQka9euzdYxV65cmeXxvLy8pHnz5iIismLFCnOLTURERDkoJ/KBNeR4kDp06JCIiAQEBEjRokUz3ad69epG+z5KbGysPv5Je97THI+IiIgs71nnA2vJ8SB19uxZEREJDQ3Ncp9ChQoZ7fso586d03/O6phPcjwiIiKyvGedD6zFKad/QWxsrIiIeHp6ZrmPl5eXiIjcv38/28d71DGf5HhPS+vDtResj+2yp7qIsD62zJ7qIsL62KpnnQ+shRNyEhEREZkpx4OUt7e3iIg8ePAgy33i4uJERMTHxyfbx3vUMZ/keERERGR5zzofWEuOB6kiRYqIiMjFixez3Efbpu37KIULF9Z/vnDhwlMfj4iIiCzvWecDa8nxIFWlShUREbl161aWg8ViYmJERIzmkMiKj4+PlChRwuh5T3M8IiIisrxnnQ+sJceDVMGCBaVGjRoiIrJ06VKT7Tt37pSLFy+Kq6urNG3aNFvHbNWqVZbHi4uLk6ioKBERad26tbnFJiIiohyUE/nAGiwy2HzUqFEiIjJ58mQ5ePCg/vitW7dkwIABIiLy5ptviq+vr75t5cqVUrp0aWnYsKHJ8QYPHiweHh6yadMm+eqrr/THU1NTZcCAAXL37l2pUaOGNG7cOKeqRERERE/JnHxgaxQstCDd22+/LTNmzBBnZ2dp2LCheHp6yubNm+Xu3bsSHh4uGzduFHd3d33/b775Rnr06CGFCxc2mjtKs3z5cunYsaOkpqZKzZo1pUiRIhIdHS1nzpyR4OBg2blzp94FSERERLbpSfOBrbFYkBIR+eGHH2T27Nly+PBhSUlJkeLFi0vnzp1lyJAh4uLiYrTv44KUiMiBAwdk4sSJsmPHDrl3757ky5dPmjVrJqNHj5bg4GAL1IiIiIie1pPkA1tj0SBFREREZE84IScRERGRmRikiIiIiMzEIEVERERkJgYpM5w4ccLaRSAiokfQlhYhymkMUk9o6NChUrt2bVm7dq21i0JERJn48MMPZcyYMXL16lVrF4X+A5ysXYDc5P79+3L9+nW5e/euDBs2TADIq6++au1iPRMARCll7WI8M6mpqeLo6GjtYhCRhe3bt0+mTp0qDg4O4uvrK/369ZOQkBBrF4vsGFuknoCPj498+umnMmDAADlx4oQMGTLELlqmUlNTRSklaWlpkpycrD+WW2khKj4+Xvbv3y8i6UExN0lLSzP6d3Jysn5ucivtHAAwOh+57dyQbStfvrxMmTJFgoODZdq0aRIZGZmrW6YyvheQ7WGL1BPKnz+/vPfee5KWliZffPGFDB48WNLS0qRZs2bWLppZHj58KE5OTpKYmCgRERGyd+9emTNnjuTLl8/aRTObo6OjJCQkSGhoqDRo0EB++OGHXNXaZtiatmLFCtmzZ48cPHhQHB0dpUWLFlK9enWpWbOmiOSelkTDOiml5O7du+Ln5ydpaWni4JA7v89lVfbc2hqa1bWUm+oDQDw9PaVr164iIvLJJ59IRESEiIj0798/172vGf7tT58+Lbdv35YbN25IxYoVxc/PT7y9vXP1a8hugLItJSVF//nq1avo168flFIoV64cfv75ZyuWzDxafeLi4vDKK6/AwcEBefPmxapVq6xcsqf3559/QimFnj17WrsoTyQ1NVX/edSoUXB0dIRSCv7+/lBKQSmF4sWLY8GCBdYr5BN6+PCh/vPXX3+Ntm3bIiQkBM8//zzatm2LQ4cOITY21oolfHLaaycpKQmHDx/Gpk2bEB0dbeVSmU87RykpKbh16xb27NmD33//HYmJiVYu2ZNLTk4GACQkJODrr79GWFgY/Pz8MGbMGFy+fNnKpcs+w/eCyZMno1ixYvr7QZEiRdC0aVP8/vvvViwhaRikskl743zw4AFmz56NDh064JVXXoFSCs7OzihTpgxWr15t5VJmn/YijYuLQ5UqVeDq6opevXohLi7OZL+0tDRrFNFsaWlpOH36tB5yExISjEJwbjBu3DgopdCgQQNs3LgRN2/exJ49ezB27FgopZA3b178+uuv1i7mYxleOyNGjNDDoJeXF7y9vaGUQr58+TB+/HicO3fOiiXNntTUVD10xMXFoWnTpvD19dXfBzp27IhLly5ZuZRPxvC9rVevXihRooR+nkqXLo0ZM2bgzJkzVi5l9mh1iY+PR3R0ND7++GO89tprUEohNDQUY8aMwT///GPlUj6Z999/H0opBAUFoXPnzqhZsyYKFy4MpRS8vb2xfv16AMh179P2hEEqGwxDR+3ateHt7Y2KFSti6NChaNCgAfLnzw+lFEqWLJmrwlRiYiJeffVVKKXw4Ycf4sGDB9Yu0jOTlJSEsmXLIjg4ONe1dvz222/w9fXFc889hz/++MNo2wcffAClFFq0aIGYmBgrlfDJffHFF3B2dkbTpk2xa9cuXLx4EYcOHcLrr78ONzc3+Pj4YMSIETbZYjBw4EDMmTPH6LEHDx7gueeeg1IK1apVQ7NmzZAnTx4opVCvXj3ExMTkig82w/e2qlWrQimFGjVqYNCgQXjllVeQL18+uLq6omPHjjh27JiVS/toWsCNjY1Fo0aN4O3tjcDAQFSqVAmenp76F5AxY8bgypUrVi5t1gyvmy1btsDX1xctW7bEoUOHAAC3b9/GgQMH0KZNG/1Lya5du0yeS5bDIJVNSUlJaNKkiR46DJtdN23ahDfeeCPXhamVK1fCxcUFrVq1QkJCgtG2gwcP4rPPPkObNm0we/Zskw90W/GolqaXXnoJSim9pcPwnNmyqVOnQill0sWqtVI1a9YMBw4c0B+/c+eOhUv4eIbdeQDQsWNHlClTxqQrIjk5GePGjUNAQADy5MmDpUuXArCdc7Vz5069dWbhwoX64x9++CECAgLwwQcf6NfgiRMnULduXSilEB4enmvCVFJSEpo3bw4HBwe8//77Rudu2bJlcHR0RKlSpbBkyRKbOS9ZSUhIQJ06deDm5ob33nsPCQkJSE5OxqVLlzBgwAAEBQXp3Xy22DJl+PdNTExEREQEfHx8cOTIEZPtAPD6669DKYXChQvj7NmzliwqGWCQegztjXDz5s1wdHREw4YNER8fDwBG4ePEiRPo0qWL3hyeG8ZMaa0bP/74o/5YamoqRowYgSJFiugfIM7OzmjXrh1OnTplxdKa0s5NbGwsZs6cicWLF+PQoUP4448/cOvWLfTs2RNKKZMuMMM3o4wf+NaUlpaGlJQUNG/eHEopoxYALUS9+uqrOHz4sP742bNnMWPGDJvtFps6dSq++OILlCxZEp9++imAf8+b9rdPSkrCkCFDoJRC2bJlbS4YTps2TX8tfPPNNwCA+vXro379+norrjaW6PTp03orr62HKa1cq1atgrOzM1q1amXSeluzZk14eHhg+PDhuHv3rjWKmS1aXaZPnw6lFLp27aoPU0hKSgIA3L9/H1OmTEFwcDACAwNteszUkCFD0LlzZ/Tt2xcNGjQA8O/YL+Df97B79+6hXr16RtemrV5v9oxBKpvmzZsHpRQ+++wzAJm3hOzcuRMlS5aEk5MTypUrZ/MtU1rLx9ixY3H48GH89ttvendFiRIlMG/ePEyYMAFly5aFt7c3Nm/ebO0im0hKSkLx4sX1DzoPDw94enqievXq+hicbt26Ye7cudi6dSsuXLiAmzdvWrvYj6QFcm1cypgxYzINUUD6gHQfHx+rthimpaVl+ua9cuVKKKXw3HPPITAwEB9//DEA49eOYddSuXLlMg2+1mIYsrUPaKUUpk+fjpYtW2LNmjUA/q2P9jc4c+YMmjZtmivCFAC89957UEph7969+mOpqamoVasWlFL44IMPcO/ePQDpX1psNXwAQP/+/aGUwr59+wD8ew4Nv3QNHTrUaMyUrXXzHT9+HH5+flBKwdfXFxUqVMh0P+11p42b7NOnj4VLShoGqWyaOXMmlFJo166dSTeYoVatWkEpBUdHR+TJk0cfCGhNhh8Ihm/o27Zt0z+8tNAREhKCoUOHGoWNgQMHQimFqVOnWrTc2XHnzh0sWLAAixcvxptvvolOnTqhUqVKCAoK0gdkOjg46B+C7u7u8Pf3R6NGjVCvXj1ERERYZSB6Zi1hDx8+RGpqKkaOHAmlFIYNG4YJEyZAKYWmTZuahKh169bB398fzZo1w40bNyxVdCP//PMPfvjhB/z4448mLRZ//fUX+vbtC2dnZyil0LFjR32bYaug9k27a9euUErhyy+/tEzhs8GwnBEREfp1pJTC5MmTTfbPLEy9+OKL2LNnj02Eqcyu9TZt2sDFxUXvLk5OTkbt2rX1EHX//n193/3796NOnTo4efKkxcqcHdrftnHjxlBK4dtvvwVgfP60fa5fv66PZwsODsawYcNw9epVyxf6EaKiolChQgW4uLjAw8MDK1asMLl+tLpt375d/2wi62CQyqZ9+/bB398fFStW1PuiDT8Mtab9zz//HM8//zzat28PNzc3q3eHaWVMTEzEwoULsXTpUqOQ9PPPP6Nnz54oV64c+vbti3379uldl5qWLVsiJCQk19xqm5KSgmvXrmHChAlwcHBA5cqVMWbMGLRv3x6NGzdGSEgIPD094eDgYPUBtMuXL9fHP2gMv5FqLVHHjx832mf37t144YUXkDdvXkRFRVmyyLoDBw6gWbNm+gDrnTt3muxz4sQJvP3223qY/eqrr/RtDx8+NPpw6NevH9zc3Gyu5dPww1hrxVVKYeDAgZnuYximtG7al19+2epTCRjebTh16lT99dy3b18opfDdd98BQJYhCgDatm0LZ2dnk2vW2rS/uXZn6JAhQ0y2Af++Tzdo0AD169dHcHAwQkNDcf36dcsW+P8ZfoZkHP/0yy+/oGzZslBK4fXXX8eJEyf0bYbdfFpvyYcffgiAXXvWwCBlwPACzNhdcf36db3bK2PyN/yW17RpU9SqVQsXL160+rccw9uaW7durQ+G//PPP41eiEDWA5bnzJkDd3d3vPbaa1Yfu/Koga6pqal6nbTztm/fPri5uaFv375G+/7zzz+4ePEiLly4kHOFzYLhNWU4nuPo0aNG+82aNUu/0yhjk31UVBSqVasGpRRmz56d6bFz2m+//YaCBQvC3d0dvXr1QkxMTJYttcePH8egQYPg4OCAkiVL6q0Fhnbu3ImAgADkz5/fJj6kDT/gMr5WDMOUYTDMLEydOnUK7du3t5mbNR48eIAKFSrA3d1dL7vWBVurVi29hXr06NEmr/cpU6bA09MT/fr1s/odvtrfN+P0LBs2bDAZzwakn0/Dc1q6dGn06dMHCxcutInWtUmTJuGHH34wudZWr16NUqVK6e8TGe/U3b17N6pUqQIHBwds2LDBkkUmAwxS/y9jX/qVK1dMBl7GxMTAy8sLSim0b98eV65cMbrwv/zySwQGBmLUqFGWK3gWDG8FrlatGpydnfHGG2/g77//znR/7UPA8E0pIiICISEhCA0NtXrLmuEEiDt27MCMGTMwe/Zs/PTTT0ZzXxl+mB05cgSurq6oUKECYmNj9W3WGmCe8fd+8803eP755+Ho6Ij+/fsbfdhevHgREyZM0K+3F198ER07dkTjxo3h5OQEV1dXRERE6Ptb8m6qbdu2wcXFBaVKlcLXX39ttC3jlxHNiRMnMGDAADg4OCAwMBBjx47FhQsXkJiYiKioKDRq1AhKKcydO9di9ciKdq0lJiZi3rx5GD16tElrrOGYKcPJUQ3Pg/aztecwMzwPI0eOREBAAEaNGqW/bm7duqXfSq+UQo8ePUxazyIjI5E/f36UK1fOqneHZee1q827lC9fPqM7LTUzZ86Eh4cHfvnll5wo4hNbtWoVlFIoUKAAfvnlF5MwtWbNGj1M1ahRAwMHDsTatWsxadIkVKpUCUopo/cCsjwGKRhP4jZy5Ei8+OKL8PDwQIkSJdCnTx/8/vvv+pvO2rVr9Q+35557Dv369cO3336LXr16wcvLCwULFsTp06etWR1dQkIC6tWrB2dnZ4wePTpb3yLj4uJw/PhxtG3bFm5ubihevDj+/PNPC5Q2a4ZdEi1atNBbarT/mjRpYnRrtvbBERcXh7Jly6Jw4cK4ffu21coPGH8AfPHFF+jQoQNKlSqFvHnz6vXo27evUZi6desWfvnlF5QpUwY+Pj5QSiEgIAAdO3Y0uivUkiHq+PHjKFasGPLkyaN3BQFZj8PL+Nw333xT7+YLDg5G/vz54e7ujtDQUKu1rhnKONmm1oq7du1aJCcnZzkAPaswZW3ae9vDhw8RFxeHhg0b4pVXXjFpvf35559Ru3ZtODg4oEGDBvj555/xzz//6OPc3N3dkTdvXvz1119Wr4s2Y/nAgQPx0ksv4d133zUKRadOnUL37t31czNq1CisW7cO586dw5gxYxASEoKwsDBcvHjRWlUx8uDBA/zvf/+DUgqFChXCzz//nGmYKl26tP7a0WZrf+2114xa3mzp2vsv+c8HKcM3Tq3rrnDhwqhduzaCgoKglEL58uURGRmpt1BFR0ejfPny8PDwMPpAL1OmjNVDB/Dvm+OMGTP0rqGMIerKlStYsmQJvv32W6Mm4U2bNuG5556Di4sL2rRpk2ULlqVobwwPHjzQu7OaN2+OZcuWYc6cOfqEjsWLF8fcuXONPoBTUlJQu3ZteHp6WvUDIOPs3k5OTihfvjxmzJiBiIgI9O3bV3+D7Nmzp0k30J07d3Dy5Ens3r0bFy9e1G/nBiz3xqnV4eOPP4ZSCmPGjNG3ZWwliIuLw7Vr13DixAmTuXqOHTuGwYMH6y1TnTt3RkxMjFGLp7U+DAyvterVq8PV1RV9+/Y16aI3LF9WYcqWxqnExcXhpZdewrhx4xAaGqqXMyUlxaicK1as0OfK00K7tiRJnTp1TMbpWZLh+3T9+vX1aVmcnJz08r7zzjv6WKcTJ07g3XffNXp/dnV1hVIKBQsWtIn3aeDfeiUkJOg39WQVplavXo3y5cvrw0sOHDhg1HLIEGU9//kgBaRfxA0bNoSTkxPeeecdPHjwAKmpqbh37x7efPNNfTDt7t279Qv/n3/+wfr16zF27FiMGzcOS5cutbkJ3nr06AFnZ2eTD4JPPvkENWrUMHqTMZy5+bvvvkNUVJTVW3E0KSkp+pxQo0aNMnqDOX36NEJCQpA3b1589tlnesjQ3lQ6deoEpZRNNON//fXXUErhlVdeMekqWrx4sT6wtFevXo8cU2PND+mGDRvC2dkZ58+fBwCTLqB169bhtddeQ3BwMLy8vODr64vZs2cbzXN17NgxDBw4EA4ODqhSpQrWrl2rb7N2N1hycjI6d+6sh0XtxouMYTGrMBUZGWnR8mZHZGQklEqf1dvZ2dmo5Q8wrsu5c+ewcOFCvPrqq3jppZfQvXt3fPfdd7h27Zqli63Trvf4+HjUqlULTk5O6NGjB06dOoXff/8dK1asQGBgoB6mDIdkrF69Gj179kStWrXw6quv4t1337XanGtZdXtrf//MwpThlyYgfXxkWFgYlFIYMGCAzbSq/df9p4OUdjFrUxv06NHD5C6VqlWrwtfXF8OGDdO32dK3zcykpqYiLi4OL7zwApRSiIqKQnx8PP788080bNgQSqWv29SrVy+9Cdzf39+o1cZadczs9/71118oWLAg6tSpY9Sylpqaitq1a8PZ2RnvvfeePjjW8INh4MCB8PPzs4m1wtq3bw+llH53mzYBp+bHH39EgQIFoJQyGTNlC9dcfHy8Phg5KirK6O/8xx9/6JOGav9pCy27u7tj3LhxRq+tEydO4H//+x8cHBxQqVIlrFixQt9mzbpGR0cjMDAQ4eHhJqE8I8Nwpb2HKKVw9+5dmzhfmtjYWIwdO1afZDc8PNwkTGR1a72tSE1NxbBhw6CUwtChQ03Gr5YpUwaBgYEYMmTII4cwWLvLOKvHDFumtC/vhQsXzjRMrV27Vh8z1a9fv1y3tqM9+k8HKU3Hjh3h5+dn1KL08OHDLCek0xh+CNrSG6dm/vz5UEohf/78qF27NgIDA+Hl5YVu3brpk9AlJibqzfnWXLvt2rVr+jxEGd/EFy1aBKX+nQxV28fw/Ggf0vHx8di5c6f+74ULF1q1SwJIvzbu3r2rT7tw7ty5LL+dTpkyRf9A7t27t03cUQSklzExMREtW7bUvw3v3bsXaWlpmD17tr4cj9aiNn/+fOzfvx+9evXSw9Rvv/1mdMyTJ0/qYapatWpGY66sRZsrasaMGQBM79gzlPE6/eKLL2zijkNDWhljY2MxevRoFChQAD4+PpgyZcojW5yzM+bNkpKTk1G1alWULVvWaHqW5ORko/cB7cuU4R2khl2Y1q5Lz5490atXL/3fmYWp+Ph4fcmxYsWKPTZMvfHGGzbXG/Jf858OUg8fPsSDBw9QpEgRlChRQn8RPnz4MMu5VJYvX44BAwZYqcTZo715xsfH45NPPoGbmxtcXV3RrFkzrFy50uTbXPXq1VGkSBGrdeVFRUWhdevWKF++fKZTEixevBhKKXz++ecA/h37lNn5uXv3LgICAjB9+nSLlT+7b85169aFl5eXHlgzm0Pm+vXrKFSoEEJCQqBU+qScttQ68P333+uBqVChQnp3pLOzM8qVK4cvvvjC5DkdO3aEUgqDBg0CYPz3OnnypP4N/PnnnzdpEc5JmXUjjh8//rF3QWnnbe/evSbTVlhTVtehVs/Y2FiMGTMGfn5+CAkJwdy5c2162RdDf/zxh95roNFapDN7H1i2bJlRK6e1aK/d1NRUnDx5Un/tDB06VN8ns/eBe/fuoXTp0lBKoWjRolixYoVJmPr1118RGBgINzc3Bikr+08FqYxvnKmpqUhKSkK5cuXg7u6uN5Fm1tKhadCgAfz9/W3iws34bebOnTsmk2kCwIULF7K8k/Dzzz+Hg4MDevXq9cgZ23PKJ598An9/fzg6OqJNmzaZLg/yww8/QKn0SQ0vXbqEOnXqZHl++vfvDwcHB4tOUplxvp2sgk+HDh2glEKLFi30u0Azm3aiaNGieOONN/Slb1auXJkj5X4ShuWLjIzU71xVSsHT0xOjR4/Gjh079H1SU1P16+mzzz7TW6oy89dff2HYsGEWHQCsvXbu37+P3r17611ds2bNglLps7BnFuoMz229evXw1ltvWeV1k5Hh9C2pqalGLbza40D6YO0PP/wQvr6+yJcvn02GKe192vBvffToUSil0KhRI/2xrEJUWloaKleujObNm1v13Bi+P2uv9/Xr1+sD+AcPHpzpvloraLNmzRAaGgonJyd4eXnpN/4YvhY3btxo9alp6D8UpAzXWlq0aJHRtrfffhtKKbz77rv6nWGG3Xma8ePHw83NDaNHj35kk78lGE7ZMHbsWDRq1AjFihVDtWrV8OOPP2a5HpZhmJwzZw7y58+PEiVKWGVumHfeeQcODg6oUaPGI5fSiY+P1xdPLViwIBwcHDB27FiTADN79mwEBASgZcuWFmtd27hxI1xcXPDuu+8aLf4MGH8bBdI/DAoXLgwXFxejeXwMr6W1a9fC09MTBw4cwIIFC/QPj8TERKt3Sxj+/j179mD58uVYunSpyRt5xkkSBw8eDFdXV/z0009ZHtsar6f4+Hg8//zzUErho48+ApDeyqTdvLBly5Ysy6i1XH3yySdWHyCfcfqW8PBw+Pj4oFSpUpg2bRpu3bpltL8thynttXL//n30799fb6FOSEhA2bJlUbp0acTExDzyy+7w4cPh6OhoMseZJRle/wMGDICvr6++jNOWLVv0LyEZw5Th81q3bo3u3bujZ8+eRsMaMh6frO8/E6SA9DeckiVLQill9O138+bNKFSoEBwdHeHg4IChQ4ea3I305ZdfIl++fKhWrZrV75QwnGxT+yAICgpCqVKl4OjoCA8PDwwaNMhovIb2wktMTMT169fRv39/+Pn5oUCBAla5FXjixIlQSqFVq1Ymd7BlXIctNTUVkZGRyJcvnx4sMrawTZs2DSEhIShevLjF5vE6evSofku1i4sLHBwc8Prrr2P58uUma99pNwBMnjwZ/v7+8PX1xYABA4wC386dO9GoUSOEhobqUwfkzZsXpUqVssryIpmNK8kq8GQ2qzeQPp2Gp6cnypUrZxOzexuGvM8++wxBQUFGA+FTU1PRo0cPKJW+qO22bdtMBi/PnTsXQUFBqFSpktUH+hpOC6C11BYqVAg1a9bUWw179Oihr6OnMQxToaGhiIiIMPniaC3JycmoWLEiqlatqj+WmJiIPn36QCmFPHnywNHREaNHjzYp85dffong4GDUq1fP6itLAOlj7tzc3BAWFob9+/frj2cVpjTr1q2Di4sLli1bZvS4LXXz07/+U0EKALp06QKlFCZOnKg/lpSUhOHDhyMgIAAeHh4YM2YMrl27hrS0NMTFxWH48OHw8fFB3rx5rT5w2XCum+effx5OTk7o16+f3gI1bdo0+Pj4wN3dHd27dzcKKUlJSdi0aZO+mG+TJk2sMph548aN8Pf3R9GiRXHo0CH9ca1bIjO3b9/GsGHD4O/vD39/f7Rv3x7Lli3D119/jRYtWkCp9AWXLRkKr169qo9lCgsLg5ubmx6qypQpg6VLl5oMPj537hxGjx6N4OBgKKVQokQJdO7cGb1799bX19PGd128eBG+vr544YUXLFYnTcZ1JG/fvo2kpCSjcRoZl1HSHtPs3r0bdevWhVIKS5YsyflCP4bh7PhA+iLJlSpV0rvDtccfPnyoD54PDg5G//79sXjxYvz000/o0qULXF1dERQUZJW5yb799lvs3bsXgPG0AHXr1oWzszP+97//6SF+0aJF+uK87du3zzRMffTRR1BKoXTp0hZfAkoLQRmvocTERPj4+OD111832n7y5EkULFhQL6/hewcAfPTRRwgMDET+/PmtdpOG4esmKSkJNWvWRL169fRrJTU1VX+PMwxTffv21b8Abtu2DS+88AICAwONusvZCmW7/jNBSrt4f/31V/j6+qJy5cpG/ecPHjzAkCFD9PlI8ubNi+rVqyN//vxQSqFChQpWeePM7MWTkpKC/v37w93dHe+++64+ePz8+fN6UNQm0+vevTsOHz6sP/fkyZOYNGkSZs+ebbWFOj/55BM4ODgYLQeSsZ7r1q3D9OnT0a5dO0ydOhUxMTFISUnBlClT9AHOhrfZt2zZ0qJjBbTr6bPPPoOjoyOGDRuGv//+G2PHjtW7h93c3FCoUCFMmDABf/zxh/4me/XqVSxfvhyVK1fW6+Dm5oYCBQoYzeeldTm/9957mYaWnGL4YfD111+jZcuWKF68OKpUqYLOnTtj9erVj3wOkD65ozZXmXaTAGD9D4O4uDh4eHigSZMmeO211/S787SQZTgT+BtvvAFfX1+TSR3Dw8Otsti1Nih/1qxZegtlSkoKBg0aBDc3N7z77rt6y9qpU6f0ljUttL/++uuIjo42OmZsbCwmTZpk8S+II0eORKdOnfQWPcPr4vz581BK4a233gJgHD4OHTqk16dq1aro2rUr3n77bYSHh0MphSJFitjEZJvLli3DyZMnUbhwYfzwww8AMp9HasuWLXB3d9enO6hQoQKcnZ0fe8MD2Zb/TJDS3L9/X3/RTZkyBcC/HwKJiYlYvnw5unfvjsDAQOTNmxcNGzbE5MmTrdqEn7GVZteuXQgKCkLTpk31EHXq1Ck9RPXr1w8bNmxAiRIl4Obmht69e+PgwYP685OSkqy23lxycjIaN24MpZQ+sFxrEUhJScHly5fRp08fo1njHRwckC9fPixfvhwAcPPmTcycOROff/45Jk+ejIMHD1ptjMe2bdv0cu7ZswdAeiifOHEiXnvtNX1b8eLF0bJlSxw8eFDvzouNjcX69evx9ddfY8uWLUbnaM6cOfDy8kJYWJg++WVOiYmJ0ZdAMTRixAi9/IGBgUazSE+ePNlk7E1aWhpWrVqFIUOG6F9GDMOyLXRL/Pnnn0bBqEOHDib1NhzsvH79eowfPx59+/bF22+/jdWrV1tlcsrBgwfrXeGGoWffvn3ImzcvmjRpooeo06dP6+8FAwcOxP79+1GsWDEopdC5c2eTMGXpcPvHH38gODgYjo6OGDhwoN6abrjQs1IKY8eONXqedv0cO3YMrVu3RmhoqH4eteW8LDXW81F/s08++QRKpS8h5u/vj127dj3yGHv37sUrr7yCfPnywcnJCRUrVsT8+fP1/WzhdUOPZpdByvDbe2aLiG7cuBGenp5o3ry5HigyDhi9efOmVWf2/uCDDzBhwgT934b1WLRoEfz9/fW7OC5duqR/WzW8M0p783V3d0fPnj2tOk+UJiUlBa+++qr+Jq+5c+cO5s+fjxdffBFKKTg5OaFGjRpo3LixPpNvQEDAIwelW4vhRIGGATUhIQFbtmxB/fr19W+dwcHBaNy4MX788ccsByl/8MEHCAwMRGBgYI5/uz527BgcHBwQFhaGdevW6aHiyy+/hIuLC5o1a4bt27fj7t272Lx5s9GyGx988IFeh7S0NGzcuFE/d02bNjWasdwWPgy0Muzfv18/H3Xq1NG/JGV2G7ot0F7H7du3x4kTJ4y2bd68GQ4ODnoX8j///INBgwaZvBdoy0VpLVNa96A1xMfH46effkLFihXh7OyM/v37G90cc/DgQZPhFxrDwejXr1/Hb7/9hu3bt+P+/ftWuUMvs1b9PXv2oFChQnoL5uLFiwFkPt2G9jl19+5dfVklbY4/wLauQ8qa3QSpjCutZ2xxMfwGcfbsWVSsWBFKKb3ZNeN+hoNSLf2NbceOHVBKwcPDw6h517BOmzZt0u/6Wr58OTw8PNCuXTuj48TExMDHx0ev6//+9z+TuUisYenSpfD09ISDgwN69OiBRYsWoUGDBggICNCb59etW6e/SW3duhWtWrWCUulLxADZWwU+pxku+Orm5ob8+fPrHwjadfjgwQN9wtPSpUvrc8MopVC3bl288847+vEuX76s3wxRtWpVi3Ql//3332jbti1cXV1RvXp1rFmzBqmpqejZsyfKli2b6QBxww/lefPmGW1bvHgxVqxYYfTBaEsfBoZhSmv17NSpk77d2nfgZWQYogxbotLS0vTXwOHDh/XWwaioKHh6eqJt27b6vg8fPsSRI0fg6+uL6tWrQymFrl27WuUGBk1iYiJ++uknlCtXTg9T2k08P//8M5RS+l13hu/tWb2/W9I///yDX375Bc2aNUO7du1MWviA9PderRWwatWq+t/6Scpt7W5wyr5cH6QyG6sQGxuL2rVrY8SIEfjjjz/0i9jwwvziiy+glELLli1x7949m7po7927h88//xzu7u7w9vbGtGnT9G0Zg1BKSgrq1KmDvHnz6gMstX2OHDkCNzc3jBs3Dk2aNLHqwr2Gbt26hd69e+sfZFqXUdGiRdG/f3/9A8PwQ0378G7UqJHJ7fXWlpqaqg9OHjlypH69Xb58Ga1bt4ZS6evrpaSk4O+//8bo0aP1sXeTJ082OlZERATef/99i94ZeubMGXTr1g0ODg6oXr06li1bhsKFC+Pdd9/V9zH84Ab+nRsqODgYx48fz/J82NJSQ9rjWj1iYmL0a7B79+76PrYSpoYPH663IGUc/2d4Lgxb1Bo0aAB3d3e9JVN7L7h8+TL8/f0xZswYNGvWzKrjiAyHUqxcuRJlypTRw1RsbCzWrVsHpZTRYura87QW07S0NJPWOUuIjo7Gq6++ChcXF7i6uqJhw4bYsGFDpqE0JiZG/2LUokULs8IU5Q65Oki9++67cHZ2NpqwMC0tTe+j1samtGvXDn/++afRmI7Lly+jevXq8PX11Qdj29KH8/379zFt2jS4uLiYhCnDF+Lx48fh5+eHYsWKmUwSOmjQIISGhuLBgwc2MWmgoWvXruHzzz9H4cKFUadOHXTs2BHR0dH6nUPaudA+CNasWWPSXWELtHOxdu1aeHt7o27dugCAGzdu6MupvPzyyybPO3DggD6mCjD+8M7pD/LLly+bzG7/999/o1u3blBKoUqVKihSpAg+/fRTk/JorQPJycn6h/bWrVtztLxPSjsnDx8+xK1bt7Bnzx7cvHlTH0f38OFDvU5ZhSlrf9iNGjVKb501fH9LTU01KluXLl1Qs2ZNXLx4EVeuXEFoaCiCg4NNxgoNGzYMgYGBiI+Pt2pQ1H53QkKCXsaVK1eiXLlycHBwwKBBg/Tu4woVKqBOnTqoXbs2atWqhTJlyqB48eIoXbo03N3dUbRoUYveMLNlyxbkyZMHHh4e+l12Wa3rp71ODhw4oLdMtWvXjmHKTuXaIBUbG4vXX3890+6FhIQE7Ny5E3379tUHJAYFBaF58+ZYuXKl/iH9wQcf6M3mmc0Ibm2PClPaC/X27duoWLEigoKCsGXLFv2N6osvvkDBggXRvHlzm6ybJi4uLsuuH8PHO3bsCEdHR31eFVsKvUB6q472hjl27Fi0a9fOJESlpKRkWldLdn3t3LkT7u7uGD9+vEm41sKUt7c3lFKoXbu2Hrgy3nGUmpqqL3itTRZoC+fEsEv1rbfe0ru1ixUrhjZt2ugD+m09TO3YsUOfAbtPnz5GNyJotPXY+vXrh+vXryMuLg5169aFu7s7fv31V731Zs6cOShYsCBefvlliy7Bk5Hhun/Vq1fHa6+9hr///lvv5itTpgy8vb31u/JCQkLg6OgIX19f5M+fH0FBQShUqBDKly+PypUrW3Resu3bt8PDwwMlSpTAN998Y7TN8DoxHFdr2PKpvTe0bduWYcoO5dogBaR/s9ZmH37w4IHJN+PExERcunQJgwYN0scGKKXQrFkzzJ07F2fPnkXx4sVRpkwZm51m/969e49smUpMTNQHO5cqVQrt2rVDs2bN9G4XazR/m8swUBi+yUyfPh1KKdSvX99qUzZkx7x586CU0idCbNKkib7NVrqLtC65Dh06ZDpe7vTp0+jWrRv8/f0REBCAefPmGXWNG4alYcOGwcHBwWhQuTUZTk753HPP6XdzvfLKK/pyIn5+fvriyVmFqTZt2litDoaio6P196xu3boZjcXp1KmTHrIM16ccO3asPiVI8+bN0ahRIz2UWHsOPCC9JbNly5ZwdHTE8OHD9S95CQkJ+Omnn1CpUiUopdC8eXMcOnQIsbGxuHv3LpKTk3Hv3j29BciSgfD48eMoWbIkgoODjRbWzhiEDh8+jFdffdVoRvXMwtTrr7+e6XATyr1ydZDSJCUloWzZsvDy8jJaY83wNubr169j5syZqF69uj5xYvny5fUWK20QszVl1TJx//59TJ8+HS4uLvDy8jKalwdIH/zYuXNnfeZvHx8f1KlTxybeOJ/WrFmzEBQUhODgYKtNspddf/zxB8qXLw+llNEkmrYSojQ///yz3oW6e/dukw8lLUw5OzujQoUK+P77701apnbt2oV8+fIhODjYaJ4yazCcyDU+Ph7169eHq6srhg0bpre6nT59Wh/o7+DgoE90aBimDhw4oAcXW1hLE0gfFK+VqVevXjh16pTeEtWrVy99LJ3hh/qbb76pt+r4+PggPDzcql+oDK//v//+GyEhIRgyZIh+s4xWdu1uPm3M1MCBA/U1ELXjGK4pmNPS0tKQnJysTwOS1V3UQPp6kR06dICLi4tJL4lhmCpVqpTeUm1LN2HQ08m1QcrwhXTt2jV07txZ/wb6yy+/6NsyfoidP38ev/76K+rUqaMHjzx58lh9FXftxZaUlITvvvsO3377rdGYrseFqVu3biEmJgZfffUV9u7da5W5bp6VuLg4XLt2DV27doWXlxeKFCli9fOTXQMHDtRbz+Lj423izTIhISHT7l2ta3vGjBlZjplydHREqVKlMGTIEJw+fRp37tzBmjVrUK9ePSilEBkZaalqmMj4YZqcnIyRI0fCzc0NgwcP1lsvjh07pndDal19jo6O2L59OwDjMHX48GGrTLb5KIZhSlvIuk+fPnrY0/4OhmHq0KFD+Pnnn/Hnn3/i5s2bVik3YLxY8oIFC/DZZ5/B1dVVn3094+tDa5kyvJsv4zxTlpScnIwyZcqgbNmymU6pA6TPTdamTRt9Og3tXGXWMhUdHY2AgACjUEa5X64MUpndAnv58mV9LqXixYsbhanMZoW+c+cOduzYgT59+lh9DTCtPnFxcfoA5eDgYBw8eNAoCD4uTNmDS5cuoVevXvrSFk2aNLHY2nlPQ7u+Tp8+jZIlS6JgwYL62lrWDFN///03Pv74YzRq1Ahnzpwx2jZ27Fi4ubnB09MTM2fOzDJMeXp6Qqn02ddDQ0Ph4uKCIkWKGM3CbskPue3bt2P27Nno06cPRo0ahYMHDyI2NhZXrlxB/vz5UadOHT1Eaa1rSikMGDAAQPrSMFqYyqybzxbt379fn/G6VKlSWLdunb7N8G9vC8E9o5SUFP2u1ubNm6Nq1ar6GpqZMQxTHh4e6Ny5s9VaCH/77Te93IDp3/eff/7Rr6fhw4cD+HdB64xhSnuu4Zdcdu3Zh1wZpID0AYv16tUzWqH9n3/+0VsEMgtTGlt6s9HKEhcXh6pVq8LV1RVdu3Y1+dDTPCpM2cPgxWvXrqFLly6oW7cuIiMjbXpMVGbu3bunTzjasWNHq5Zl7969+lihokWLYubMmSbrGU6dOhUeHh5wc3PLNExpQSQwMBB+fn545513sHnzZqO7wiz5epo0aRLy5s2rf1Bpd3eNGTMGu3btQocOHbBp0yYA6deSNn6wZ8+e+jHWr1+vr5Ho5uaGzZs3W6z8T2Pv3r16mOrTp4/J2nm2bNKkSXprmlLqsX/zhIQErFy5Evnz50fevHmNJqm0JG1OK22OvozjCm/fvo1OnTph9OjR+mMpKSn6GoZKKXz//feZHtuWPofo6eTaIPXhhx8adS1oQSm7YcqWJCUl6U3DY8eO1ccOZGfMlL+/Pz7++GNLFjfH3b9/H/fu3cu1wTAmJgZOTk5wd3e3WjfR5s2b9WWORowYgYSEBKMPAcNr67PPPntkmDp16hR69uypTypquFySJV9T2tIz+fPnx8CBA/H222/D398fSimEhoZi/PjxOHLkiP762bp1K/z9/dGqVSuj41y6dAlBQUH6mo3atAC2+v5gyLCbr1u3biYL99oaw7/p9OnT9b959+7dH7ucS3x8PKKiovQVHKxh/fr1UEqhZs2a+mMZrxPDMYaGrZraZKp9+vTJte9llD25NkitWrUKjo6OCAsLM1nK5VFhyha+BWScMX3z5s1wc3ND06ZN9bs5HlfO+/fv65NUFixY0GTdM7KeuLg41K5dW18Q19J2796t36q9ZMkSo22GHwKGa8x9+umnj22ZatOmDaZPn56zhc+C9qHUpk0bfTkUAPj999/1Vrfw8HCjLiCtZVBb01Gr7/3791G8eHFs3LgR77//fqZTC9iy3BamDEPEjBkzULhwYXh4eGDcuHFWa2nKrvPnz8PPzw9KKcydO/eRYTvjEJK33noLLi4uuarlkMyTa4NUcnKyvi7bjBkzTGZezhimMlux3tIyvgi1f2t96mvWrAHw6Lu8DAPW3bt3ERkZaTMzltO/DMO9JcP7+fPnUbNmTSilsGDBAv3xhw8fPrbFZfLkyY8MU/fu3dN/tmTrTWYzfBu+3vfv36/fiWs4JuWFF15Anjx5jO78AtJfb25ublad3ftpZbybL7NlSiztUde54XvazJkzUbBgQXh5eeHjjz+22TCVmpqK2NhYvbegRYsWjxxPa/iaWLt2Ldzd3dGmTRv9DlmyX7kySGlvoFFRUXB3d0eLFi30bYYvZsMw5e/vbzRA05KyGhyrlVe74/BRk01q9Tp16pRR61Nu6I74L7P0+dm4cSM8PDzQpUsX/bGM3QqnT5/G1q1b8eGHH2LFihVGC9gahqnZs2ebhCnAsnV61Azfhho3bgyllL5AbFpamj6HUs+ePfVloGbOnIkCBQogPDw817fi7t+/H66urvpAemuunacFpcTERERFReHDDz/EuHHj9POR0axZs1CgQAGbD1NAeu+HFlr79etn1NWY2Z18+/btQ926dREYGKi3hpJ9s+kglfHNMuO/z5w5o8/LkdUL9p9//kG3bt3g7u5ulUk3MxscW7FiRYwZM0a/Lfn999+HUkqfbDPjB5XhHDmVKlXC3LlzLVoHyj205TW0a8kwCKWkpOD7779HqVKl4OvrC6UUXFxcEBYWZjTvzSeffKJv/+yzz6x6N9ujZvg2nCm7QoUKcHR0xL59+/TtMTEx+jxxFSpUQOXKlaGUQr58+WxuigNz7d69GwEBAVadHsRwItTXXntNHxCv/dehQwdER0ebvH8bhqlJkyYZLXRtbRlvypg2bZpRC+DOnTszbYHbvHkzXnjhBSilMGvWLKPjkf2y2SBlOK9Sxq4rw4tSm026a9euSElJyfSCvXr1qlW+8TxqcGyBAgUwadIkpKSkYMmSJVBKwdPTE7t27dKfn5aWZvQhNnr0aP0Fagtjvcj2aEGqa9euRo9v374dgwYN0j8MChYsiDJlyhhN3Pjjjz/q+0+ePBlKKcycOdPSVTCRcYbvjGOCvv32Wyil0LdvXyQkJBjNq7R+/Xp9Is6CBQvi1VdftfmJXZ+UNdfRNLzrWFs9olmzZli9ejV+/vlnVKlSRZ/GZPPmzZmGqSJFikAphalTp1ptUHZ23k+114Q2+HzIkCE4ceIEzpw5g+joaHz66af6l+bMlvMi+2WTQUp7I3zw4AGqVKmCfPnyYcSIETh37pw+P4wWMI4fP47SpUvDxcUFMTExVitzRtkZHFujRg19Yjqte69WrVrYvXu3yfHmzp2LwMBAPPfcczYz6zLZnvXr1+vjhd5++23ExMRg5MiR+ozrSimMHDkSBw8eREJCAtauXauvC9i9e3ejRVhtaZCs4Zigrl276mVbt24dlFKoVq2aPsFmRnfv3sWuXbtw7tw5q641Z6+SkpLQunVruLu74/3339eD3b1799C8eXP9vL344ovYsmWLSVj67LPPULZsWau1EhqWZ8WKFfjss8/Qs2dP/Prrrybj67T3Ye01FhQUhLx588LJyQlKKZQtW9aod4Qh6r/B5oKUFpBSUlKwaNEivPTSS/oaWGXKlMEbb7yBo0ePGr3ha6GlS5cu+q3P1vQkg2O1brr9+/frYzr8/f3x5ZdfYvPmzTh8+DAGDBgALy8vBAUF2cWyL5Rz7t+/j379+unXl9YC6uLigvr162Pp0qUmz1m2bBmUUihXrhxiY2Oz7Fq2NsMwNWDAAEREROjlNlwaypCtlN2eLVy4EN7e3ujatav+/nvs2DH9y2G7du3QqlUro5apjGEq453XlmJ4fWhDLLT/fHx80KJFC6NeAiC9u/mzzz5DxYoVUaJECZQoUQLVq1fHV199ZbRcEq+9/w6bClKGYx7q1auHcePG4cKFC9i3bx9ef/11lChRAkop+Pr64o033tA/FM6dO4fKlSujWLFieheetfqkn3Rw7MKFC/Xte/fuRYcOHYxezNp/VatW5d15lC1Xr17FmDFj4OPjg4IFC6JEiRJYsGCB0fWTmpqqf2k5duwYnJ2dUaVKFaMvKLbIMEw5ODiY3JHLsSiWlZCQgMaNG8PPz09v7Tt37hx69+6td7cC6ePVtMW8GzdujK1bt9rU3EoTJ07Ux9LNmTMHb7/9tr7cS5UqVbBt2zaT5yQmJuLu3buIi4szmaiT1+F/i00FKSD94nzllVeglDJadDQ2NhYXL17EoEGDUK5cOf3NtG3btpgwYQJat24NpRTeeustq5b/aQbHAukvwC+//BJ9+/ZF48aN0atXLyxatMim72oh23TlyhXcuHHD5PbrjPPdREZGQimFDz/8EIDtf5M2bNFt2LCh3Qwcz61+++03fbmghIQEfPrpp3oPgSHtDmpXV1eUL19eXzjaGgyv8Vu3bqFs2bJ4+eWX8fvvvwNI7+47dOiQ/sW2YsWKRmEqsxDI8PTfZRNByvCi3LVrF4KCgjBq1CijKQIMnTp1Cl9++SXCwsLg7u6uz06slEKDBg2sPg7C3MGxGdnSNzbK3QyvMcOff/vtNxQsWBDBwcFW/WB7Uvv27dO/sPTo0cOmxnP9l2jvzVqLzPXr11GkSBGEh4fr845pX4aHDx+OYsWKoWnTpvD19TUZf2Qphtd/dHQ0tm/fDm9vb2zduhWA8efN2bNn9S7KjGGKwYk0Vg9S2kX74MED7N69Gx9//DF8fX31MGR4UWcMVH///TeioqJQp04duLq6wsXFxWYm2XuawbGAcasBX7D0LGS8jrZv34569eqZTGSZW+S2Gb5zs6xaKbXHtf9rrZsDBw40eV7jxo3x+uuv49y5c7h48WIOl/hfWc2vNXbsWHh7e+N///sfSpQogdu3b2d653fGMPWo9236b7J6kALSv82UL18eLi4uaN26NV599VUAWc/wnfFC1yaBu3DhQo6X9UmYMziWKCdkfM188803KFmyJJycnIwWvs5tod0WZ/i2N9r7cHJyMi5fvozffvsNf//9d6bDDZYvX66/3xmKjIyEn58fxo0bZ5Eya7Zv34533nnHZMqLuLg4DB8+HN7e3nBxcYGHh4feQpbZa8AwTJUuXVpfGJsIsKEg1blzZ72bzs/PL9sDq229+4uDY8lWpKWlYfr06frSSoUKFcKiRYv07bY+NiortjTDtz1JTU01mmyzU6dO+g0/QUFBKFasGBYvXozz58/rz9m6dSsCAwPh5OSESZMmYfXq1XjnnXfg7++PokWLPnah4mfp+vXr+hxiCxcuNHmvvXr1Kj766CMULlxYv3bu3r0LIOsw9frrr0MphW+//dYidaDcwSpBKrM37Pj4ePTv3x9+fn5wd3fHJ598kunyFLkRB8eSLbh9+za6deuGoKAg9O/f32hMVG4NURpbmOHbHkyYMAGffPKJ0WMPHjxAtWrVoJRCWFgYateujQoVKujTavTp08dojNrHH3+sf3HUvkSGhYVZ5a7jyMhIvPXWW/oNFxmnWbhy5QrGjRuHoKAg5MuXD7Nnz9ancMgsTJ0+fZrLvpAJiwcpwxnLr169CuDfCzY+Ph4DBgzQZwP/6aefjFaoz804OJZswa1bt3DixAmjGzLspVXUmjN824PNmzfrS+jMnj1bD9cDBgyAn58fPvzwQ6M19caPH48CBQrAyckJPXr0wIkTJ/RjzZ8/HwMGDECLFi0wYcIEiw8sN/xioH2GvPfee+jbty/OnDljtO/Vq1cxbtw4+Pv7o3Dhwo8NU5n9Dvpvs0qLVHx8PEqXLo02bdrogw61CzYhIUG/TbZQoUL4+eef7SZMcXAsEdmqy5cvY8KECfD19UWBAgX0teJeeOEFNGvWTA8Xhu/H8+bNQ2hoKFxdXfHll19apdxZMQxBhw4dQkBAABwcHDB8+HCTLkbDMBUaGprtMEUEWClI7d27V5+uoGfPnvogccMw9eabb+rrY61atcouwxQHxxKRLbly5Qo+/vhjeHl5IV++fBg9ejTy5MmDH374AYDpXXrAv2vQhYSEGI2XsjWLFy9G2bJl4eTkhGHDhj02TEVGRtrEShlk+6w22HzTpk0oW7ZstsPUzz//bDJ7bG7FwbFEZKu0MOXh4YEiRYrAw8NDb50yvLnHMEzVqlULnp6e2L9/v8XL+ziG5fz2228RFhb22DCVN29ehISE4PPPP8/y7nEijcWDlGEz6caNG7MVphwcHODh4YE1a9ZYurg5hoNjichWXblyBRMmTICfn5++Rp72vmwYTLQvty1atIBSCt99951VyqvJqhvOMAw9Lkxdu3YNo0ePhlIK8+bNy8nikp3I0SBlePEavvgyhqkyZcroYUprGjYMU927d4ePj4/JXCC5HQfHEpGtunz5MiZPnoyAgAAopfDRRx/p7+MPHz40ek9v1KgR8ubNa9UvhoatZdevX8fJkyfx+++/IzEx0aRV6XFh6sqVK9i7d68lik124JkHqYzfWuLi4vS7OR4VpkqWLAmlFPr162cyMVpiYqJ+hx8RET0bmd15ZvjY5cuXMXHiRPj4+CAwMBATJkww2X/u3LlQSuH555/HzZs3c7S8WTEMUZ9//jmqV68OFxcXKKXw3HPPYejQoSazqT8uTGl4dx49zjMLUteuXdMnM9MuvMTERH3F7yNHjgAwvuANw9SKFSv0Qdh9+vQx6eYjIqJnx3Aqg3379mHlypU4f/68vkaeRhsz5e3tDaUUWrZsiR9//BE7d+7Em2++iYIFCyIoKAjHjx+3WNk3bdpkNCO/5r333tMnda5fvz5CQ0Ph4eEBpRTKli2L06dPG+2vhSl3d3e8/fbbJtuJsuOZBKmoqCi0bt0a5cuXN1mm5dVXX4VSCr6+vjh8+DCArMNUly5d9DDVpk0bXLp06VkUj4iIDBjOWN6kSRP4+vrqN/b0798fMTExRvtfuXIFEydO1Lv53Nzc4O3tjbCwMDRv3txiISotLQ3//POP/jkxffp0fdvKlSvh4eGBFi1a6PP0nT9/HkuWLEGdOnWglEJoaKjJPFJLly5F0aJFoZTiOnpklqcOUp988gn8/f3h6OiINm3a6LO+GoYlbY0iHx+fTMOU9s2oT58+KF++PIoWLQoXFxf8888/T1s8IiLKRHx8PMLDw/XurwYNGqBgwYJQSqFWrVrYuXOn0f7//PMPJk+erE9cOWDAACQkJFhlrOeMGTPg5OQEpRSmTJkCIL01KiQkBL///juAf3tG0tLScOLECX1ppCZNmuDWrVtGx5s/fz4WLlxo2UqQ3XiqIPXOO+/AwcEBNWrUwPr16022G4alN954wyRMGa7lBAB169bFiBEjEB0djVOnTj1N0YiIKBNaL8C8efMQFBRkNGP59u3b0apVKyilULlyZaNlhID0MVOTJk2CUgplypQx6QbMaYbjlbSxWUopTJ06FT179kS3bt0ApH85zzgsJDo6GmFhYQgKCsKePXv0/R71O4iyw+wgNXHiRCil0KpVK/0bgMbwQjScI6lTp056mNIuZE1ERATc3d0RGRlpbpGIiCib+vTpg8qVK5tMOnn69Gn9vTqrMDV16lSrrRmaVZjy8vJCkyZNsnzegwcP0KFDByilMh00T2Qus4LUxo0b9dW8DZc5SUtLe2ya1y5kLy8vTJgwAT/88APeeecd+Pn5oXjx4iZjrIiI6OkYtvxrOnXqhHfffReAaSvMmTNnjMJUxrFDmR3PkgzLGxkZqS8KX6ZMmUyX3tLKu3jxYiil8M4771iqqPQf4CRmOHjwoNy7d08mT54slStXFhERAKKUEqWUiIj8+uuvcuLECdm1a5fUqVNHypUrJy+99JJ899134uXlJfPmzZPRo0frxyxUqJD88ssvUqhQIXOKREREmXj48KE4OTlJQkKCTJ06VU6ePCne3t5y4cIFcXJK/wgAYPScokWLyoQJE0RE5LvvvpOhQ4fKJ598Ig0aNBAREUdHR8tWIgMHBwdJS0sTBwcH6d+/v6SlpcmQIUPk+PHj8uOPP0rp0qXFzc1NRP6tv4jItWvXRESkePHiVis72aEnTV7Jyclo3LgxlFL6wPL4+HgA6f3Nly9fRp8+ffRbTpVScHR0RIECBfDVV1/px1m4cCGGDx+Oli1bYty4cVnO4UFEROYxnM9Pu3PNwcFBf28ODg7W72LLrJXpzJkz+t3UdevW1d/rLc1wvJNha5ThGKcvvvhCr9f48eNx48YNo2Ps2bMHYWFhcHNzMxlIT/Q0njhIpaSk6FMaDBw4UH/8zp07mD9/vn5nhJOTE2rUqIHGjRsjLCwMSikEBgZi7dq1z7QCRESUtZSUFLRu3RoeHh7o2bMn1q9fj4kTJ6J69epQSqF69eq4fPkygMzD1KlTp9CnTx/88ccfli46ANNux/v37xv923AcruGYqQ4dOuDzzz/HsWPH8MUXX6B27dpQSmHmzJkWKTf9d5g1Rmrp0qXw9PSEg4MDevTogUWLFqFBgwb6HCNFihTBunXrcP36dQDA1q1b9TtBRo0aBYB3RhAR5ZTk5GT952vXriEkJARDhgzBgwcP9O1Hjx7VW6nCw8P16WYyC1PWWrjXsCzfffcdevTogfz586Np06Z499139bX+DMs3d+5cODo66oGqXLlycHZ2Rp06dYx6RfgZRM+KWUHq1q1b6N27t959p83nUbRoUfTv31+fnM3w4p4xYwaUUmjUqBFSU1M5YzkR0TNy9OhRo5YZALh37x7Gjh2LgwcPonjx4rhy5QoA43By7tw5vaXmcWHK0gyDzvvvv68PEwkJCUGePHn0+a60JcUMyxwZGQkPDw84OjqiR48eOHPmjNHyNQxR9CyZPf3BtWvX8Pnnn6Nw4cKoU6cOOnbsiOjoaNy5cwfAv33a2jeGNWvWQCmFXr16PX2piYgIANC/f39UqFBBn408LS0NaWlpeP7556GUQoUKFZA/f36TteY0Z8+ezTRMWTNsGH7R/vDDD/UxWlu2bEFqairOnj2LYsWK6XcVauu5GoYpwzFThosp80s8PWtPPbN5XFxcli84w8c7duwIR0dHLFu2DAAvZiKipzVkyBAopfDaa6/h/PnzRttiYmLg7++vDyrXpjDIrLXJMEyVK1fOoovEP+qz4LvvvoOvry9efvllfSLnBw8eYO7cuXB3d9fX/6tevTpOnjwJwLh+M2bMwLRp03K0/ETPbNFiwDg4GV7M06dPh1IK9evX18dNERGR+QYPHgylFF5//XWTte60999Dhw7pYaN58+b69szGPJ07dw5lypSBUsrid1EnJCTg6NGjeg8GAFy9ehUNGzZESEiIPilocnIyPvvsM3h6eqJUqVI4fvw4atSoAaUUqlWrlmnLlIbdeZRTnmmQysysWbMQFBSE4OBg/RsDERGZTwtR7du3NwlRWmDQwsThw4fh4+MDpRQ6deqk75dZmDp//rxFQ9SJEycwduxYlCxZEh4eHli2bJl+V96FCxdQsmRJjB8/HkB6fb7++mv4+fmhWLFiehfk3r17kTdvXj1MaX8P9nqQpeRIkIqLi8O1a9fQtWtXeHl5oUiRIkZ91EREZJ5HhaisBokfOXIk22HKUrZt24bSpUtDKYXatWujffv22LNnD2JjYwGk1+XgwYP61AzHjx9HlSpVULBgQZw+fRpAegvVxYsXUaBAAT1MFStWTB+rS2QJzzxIXbp0Cb169dLvqmjSpIl+0RMRkfmGDx+ud+dlXNjdMES9+uqraN++PYB/W6hsKUxt3boVbm5uKFSoECZOnJjlfobdcR999BGUUvoUBoZTPLzwwgsYMWIEatWqhXHjxuVcwYky4fCsZ0p3dnaW5ORkKVu2rMyZM0cWL17M6fiJiJ7S+++/L1OmTJHChQtLhw4dpESJEiIikpaWJqmpqfqyLV27dpW1a9cKALl9+7Y4ODhIamqqVKxYUXbs2CHe3t7y3XffSbdu3URE9OVTLOXQoUPy+uuvS/78+WXq1Kny3nvv6fXIyMHh34+ovXv3ioODg1SoUEFE/l2mZvXq1bJjxw5p1qyZ7NmzR8aMGSMipsveEOWUZx6kgoKCZPbs2bJ69Wrp06eP5M2b91n/CiKi/5xXXnlFHBwc5Pz587J27Vo5dOiQiKSHDS1UdO7cWb799lvp06ePTJ06VQICAkQkPXQYhqmAgABZvHix9O3b16J1uHPnjkyePFlu3Lghw4YNk3bt2omI6OvmZQbpPSfi6ekpaWlpsm3bNhFJr/eePXvk888/l6JFi4q3t7fRc7R1X4lynFXbw4iIKNuio6P1uZG6deuG6OhofVunTp2glELv3r1x4cIFAP8OuNb+r3WVRUdHIzQ0FAcPHrRo+f/44w8EBgaiRYsW+mPZvZsuKipKr3vPnj0xcOBAFChQAEopzJ49O4dKTPR4DFJERLnI/v379UDRq1cvnDp1Cm+88Yb+74whyjCoHD58WJ/hO+NM6DlJK8uoUaOglMKECRMAPPkM6t98841ed6UU8ubNi7lz55r8HiJLsmznOBERPZUaNWrIvn37pGbNmjJ//nz57bff5MyZM9K7d28ZN26c5MuXT+/aMuwymzdvnsydO1fatGkjw4cPFxcXF4uVWetmi4+PFxHRx3dpXZKPotXl+PHj0q1bN6lQoYIcPHhQQkJCpHDhwvqYqUd1DxLlJAYpIqJcRgtT4eHhcubMGSlZsqS0bt1a8uXLp+9jGCwWLlwoo0ePltu3b8vixYutFjji4uJERGTfvn3Svn17SUtLe2yYUkpJfHy8jB07Vpo3by6dOnWSqlWrGu0DgCGKrIZXHhFRLlSjRg3ZsWOHODk5yalTp2TFihVy8OBBEUkPH1qw+Oabb+S9996ThIQEiYmJkbCwMIuXFf9/B512B/eRI0dEKSWOjo6Z3q2n0bbduHFDfvjhB1myZImkpKSY7MeB5WRNDFJERLlUzZo1ZdeuXSIi8vXXX8uMGTPkwIED+vYFCxbIqFGjJD4+Xnbs2CHly5e3Sjm1oNO0aVPx8PCQrVu3yvvvvy8i6Xff/V87d8jSahiHYfxaeBERw0QHhgWLYQqLa+4bWJzCkskg4lhfMIlajIJRWbKIH0AQ3dKwrKgogqy9UZhbcicpgsdzDk8475Tr9wnuePE88P9dTH18ZTo9PSWVSrG6ukoURf9vuPQPDClJ+sbevvkAjo+POTg4oN1uc3R0RK1W4+XlhUajkVhEfTQ/P8/6+jpRFFGv1zk8PAR4v3X1ZvDhfMHFxQV7e3vk83ny+Xwiu6U/SQ0GXi2TpO+u1WpRKBQAWFhYoN1u8/r6OjQR9ebp6YlSqcT19TWzs7NsbGywubkJfL7/1Gw2qdVqXF1dUa/XKZfLSc2WvmRISdIP0Wq1KBaL9Pt90uk0l5eXzM3NJT3rk5ubG5aWlri9vWVsbIyVlRW2trZIp9OMj4/T7/c5OTlhe3ub+/t79vf3qVargMc2NXwMKUn6QZrNJqVSifPzc3K5XNJzvnR3d0elUqHRaNDr9ZiZmSGKIqanp+l0Ojw+PjIxMcHOzg5ra2uAJw40nAwpSfpher0eo6OjSc/4qziOOTs7Y3d3l263SxzHjIyMMDU1xfLyMouLixSLRcCI0vAypCRJiYrjmOfnZx4eHshkMmSzWSYnJ9+/8PzO0zAzpCRJQ8cXKH0XhpQkSVIgc1+SJCmQISVJkhTIkJIkSQpkSEmSJAUypCRJkgIZUpIkSYEMKUmSpECGlCRJUiBDSpIkKZAhJUmSFMiQkiRJCmRISZIkBTKkJEmSAv0C69mnJx1TLwwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1.68 s (started: 2024-10-26 13:18:14 +00:00)\n" ] } ], "source": [ "import missingno as msno\n", "msno.bar(df, figsize=(6,4));" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 564 }, "executionInfo": { "elapsed": 463, "status": "ok", "timestamp": 1729948696988, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "e5NTvOyhejvi", "outputId": "c5bbdf9e-604c-4048-86d1-2abaeb2a5e3a" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAIRCAYAAAC8rfCSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACADklEQVR4nO3ddXxT1/sH8OemLlSglLYwpLht+IYNdx/DNhguwwaDAcMZ7u502GCDIWN8h9twLwwKBQqjSKF4aVJPnt8f/O5Z0jQ1uJH28369eI0lp+W5TZN8cu5zz5GYmQkAAAAAAIyoLF0AAAAAAIC1QlgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAACwOjqdztIlEBGRvaULAAAAAABDarWa3N3dLV2GxWi1WrKzsyMiorCwMHr16hU9f/6cPv74Y/Ly8qIcOXKQTqcjlUr5eV+EZQAAAAArMmHCBIqOjqYRI0aQn5+fpcsxO51OJ4LyzJkzadWqVRQeHk46nY4KFChApUqVohkzZlDZsmXNUo/EzGyWfwkAAAAAUnXu3DmqV68eqVQqGjZsGPXt2zdbBmYiorFjx9K0adMod+7c1LBhQ7pz5w49ffqUHjx4QO7u7rRt2zZq2LAhMTNJkqRYHehZBgAAALASZcqUoTlz5lCePHlo/vz5tHz5cnr69KmlyzIL/fnbo0eP0pIlS6hVq1a0f/9+2rhxI+3du5d27NhBX3zxBanVamrbti2dPn2aJEkiJed+EZYBAAAArAAzk5ubG33zzTc0bNgw8vb2poULF9Ly5cvpyZMnli5PUTqdTswOx8fH07Vr14iZadKkSVSuXDnS6XTk7e1NFSpUoG3btlH79u1Jo9HQV199Rffv31d0Zhk9ywAAAABWQJIkSkxMJFdXV+rWrRs5ODjQ7NmzadGiRURE1LdvXwoICLBwlcqQL9T7/vvv6fnz5+Tq6kqVKlWijz/+mBITE8nBwYGISFzUt2rVKoqMjKS///6b/v77bypYsKBi7RiYWQYAAACwAklJSeTg4ECxsbF0/fp1ioyMpGLFilFUVBStW7eOVq5cmaVnmG/dukVr166lTZs20ZYtW+j58+dERCIoE70L1cxMOXLkoNq1axMR0alTp4iIFJtdRlgGAAAAsDCtVkv29vakVqupZcuWVLduXZo/fz49ePCAXF1d6eHDh7R8+XJasWJFlu1hLl68OG3cuJHKlClDsbGxdPfuXdq5c6dRP7I8g1y3bl0iInrz5o2idSEsAwAAAFiYnZ0dxcXFUaNGjejkyZM0cOBAevjwIV24cIFu3bpF3377LUmSRIsWLcoSPcxarVb8XX/zkebNm9PUqVOpSJEiFBsbS1u2bKE7d+6I+xMTE0XLhnx7qVKliIgUu8gPYRkAAADAguSQt3LlSjpz5gy1b9+exowZQ87OzsTMlDdvXpoxYwaNGDGCnJycaNmyZbRixQqKiIiwcOWZJ6+jPGPGDNq+fTslJiaK+1q0aEGzZs2iokWL0tatW2nq1Kl06dIlIvqvJePMmTO0ZMkSkiSJqlevTkTKtWHgAj+wGbdu3aLixYtbugwAAIAPSg55oaGhREQ0YMAAcnNzI61WS46OjqJHt2/fvhQREUHz58+ndevWERHRt99+a7PrMO/atYtGjx5NAQEB5OzsTI0bNxZhuFmzZiRJEg0dOpQ2btxIN2/epCpVqlCzZs3o6tWr9Ntvv9E///xDCxYsoAYNGihaJ2aWwSZ8//33VLVqVdqzZ4+lSwEAAPig5Jnle/fuEdF/7QVyiJbXEXZ3d6dRo0ZRzpw56eHDh7Ry5UqaM2cORUZGWqbw99SgQQPq168fRURE0IABA2jv3r0GM8xNmzal+fPnU/HixenSpUu0bNkyGjp0KM2cOZPy589Pa9eupcGDBxORYSvHh4awDFbv7du39OzZM3rz5g0NGzaM/vrrL0uXBAAA8MGVL1+eiEi0HMgrPxC9C8zx8fGUO3du+uSTT8RKEL///rvo4bUlWq2WXF1dad68edS/f3969OgRDRw4MMXAPGfOHNGX/PHHH9Phw4fp999/p65duxLRf8vJKcX2frqQ7Xh4eNCsWbOof//+dOvWLRo6dChmmAEAwGbJAVin0xmsDVyvXj0iIlqwYAGtX7+eiN6FZK1WS1qtlpycnIiIKCIigooUKUKzZs2iQ4cOUe7cuS1wFOmnf+Gd/Hc7OzvS6XTk7OxMc+bMMQrMCQkJ4muaNWtG06dPp2LFitG2bdsoKChILCtHRMp/WGAAG/Ho0SP+9ttvWZIkLlq0KO/evdvSJQEAAKRbUlJSmmPGjBnDkiSxv78/r1+/3uj+xYsXs6urK//5559KlPjBpXTM+rfJf4+NjeWBAweyJElcoEAB3rVrF8fHxxt83Z49e7hYsWIsSRL37duXHz16pGzx/w8X+IHVS0pKInt7e8qbNy9NmDCBdDodrVq1ikaNGkU6nY5atmxp6RIBAABSJb+XxcXF0aZNmyg4OJhu375N5cuXpxo1alCLFi2IiKhbt270+PFjWr9+PXXr1o1u3bpFNWvWpJIlS9LPP/9Mq1atoo8++ki0bFg7edWLnj17kiRJtGbNGrKzsyOtVkt2dnbi787OzjRr1ix6/fo1bd68mYYOHUpERI0bNyZHR0ciImrSpAkREQ0ZMoRWrVpFarWaZs+eTf7+/ooeg8Ss0KJ0AB+A/OISExND69atoxMnTlBUVBTt27eP7O3tqUiRIjR79mxq1qyZpUsFAABIkRwMNRoNtWjRgo4dO0b29vbEzGK94WHDhtGIESMod+7cdPv2bQoKCqLZs2eL7+Ho6EgJCQmUN29e2r9/v+jhtVZyH7FOp6O7d++K1ayGDh1Kc+fOJaL/fi7649++fUuffvop3bp1iwoWLEhz586lZs2aicBMRLR//37q3LkzqdVqunfvHsIyZF/yE0ej0VCDBg3o+vXrVKhQIapfvz5duXKFQkND6cmTJ1SkSBGaP38+AjMAAFgd/v+e5NjYWKpbty5dvHiRunTpQqNHj6bY2FgKCwujPn360MuXL2nYsGE0YcIEcnd3JyKiv/76i3bs2EE3btygXLlyUenSpal///5UoEABCx9V6vRDsEajITc3Nzpw4AA1bdqUdDodfffddzR//nyjsYmJieTg4EAtWrSgf/75hyIiIsjZ2ZmuXr1KgYGBBv3dhw4dooIFC1KRIkUUPx60YYDVUqlUlJCQQG3btqWzZ8/S+PHjafz48aKR//Dhw7R27VqD0zUIzAAAYE0kSSKdTkfjxo2jc+fO0dChQ2nSpEkiEJctW5bGjBlDRO+Co/7Fas2aNTN4X9MPi9aKmUX4HTBgAG3atInCwsKoYcOGdPDgQapXrx4tXLiQiIjmz58v2jBUKpVYY9nR0ZHq1q1LKpWKSpYsSYGBgUT03xJ6kiRR/fr1zXpQAFZHp9MxM/Phw4fZzs6O69WrxzExMcz87iIA2a1bt7hLly4sSRKXKFGCd+3aZZF6AQAATElISOAKFSpwqVKlxHuZfPtnn33GkiTx2LFj+fXr18xs+D6XmJgo3hPl/9qChQsXsrOzMxcvXpzPnz8vbj9y5AhLksSSJPGQIUOMvm7v3r3s6OjIW7ZsMbhdq9UqXrMpWDoOrJL8yfn+/fuk0+mocePG5OLiQklJSeTs7CzGFStWjPr27UtFihShsLAwGj16NNZhBgAAq3Lr1i0KDg6mTz/9lFxcXIjoXathrVq16Ny5czRmzBgaMWIEeXl5ERHRn3/+STt37iQiInt7e4PNSayV3HtNRJSQkECbN2+mzz77jHbu3EmVK1cmnU5HOp2O6tSpQ4cPHyYiooULF1Lfvn3p7t27RER0/Phxmj59Onl4eFBAQID4fsxs0bWkEZbBqsXExBAR0fnz5ykuLo7s7Y07h6pXr05lypQhrVZLoaGh1LVrVzpw4IC5SwUAAKCkpCQiMtxRTg65Dx8+FLfVqFGDzp49K4Jyjhw5iOhdMJw+fTqtW7eO4uLizFj5+5FbL7Zu3Urh4eH09OlT6t+/P5UsWVKEXXmTFTkwOzs70+rVq6levXr08ccfU/369enEiRM0btw4qlGjhvjelv6QgLAMVq1KlSrk5eVFt27doqdPnxKR4afX+Ph4IiKqWbMmVa9endq2bUsajUb0NwEAAJiLTqcje3t7io6OpgEDBohwXLhwYSpZsiQ9evSILl26RFWrVk0xKBMRjRw5kq5du0YtW7Y0OJNqLTiVdSFmzZpFHTt2pM6dO9Pbt28pb968RGQYduW+4zp16tDRo0epcePGlJCQQDdv3qSSJUtSUFCQWbawzgishgEWx3oXLLDetp5ERM+fP6fmzZvThQsX6Msvv6StW7eKr5OXlSN6dxHEq1ev6PfffycHBwfKkyePmY8CAADg3YoOlSpVInt7e7FtdXx8PA0aNIjWrFlDOXPmpDdv3tDo0aNp+PDh5OHhIb529erVNG7cOCpZsiT99ttvVv1e9vz5c6OdA8+ePUvt27enR48ekaOjI61Zs4Y6d+5s8H4tk9/7o6KiKD4+nt68eUMeHh7k5+dHRMpvYZ0R1lEFZFtarVZ8yiQiioyMJI1GI+7PnTs3LVu2jNzc3Gjbtm3UoUMHevr0KSUmJoon3urVq+n8+fNUt25dypcvn1W/uAAAQNbw9u1bIjKeadXpdHT//n0qWrSouN/JyYl++OEHyps3L7169YqKFi1KX3zxhUFQnjx5Mo0ePZrs7Oxo1apVVvle9uTJE9q9eze1aNGCBgwYQBcvXjS4X+5RLlSoECUkJND8+fMpPj6e7O3tDc4KE/03Kebp6Um+vr5UrFgxEZQt3aOcHJaOA4uRP2nGxsbSTz/9RGfOnKELFy5QQEAA1alThwYNGkSBgYFUsWJF2rp1K7Vv355+//13un//PpUvX55q1qxJR48epS1btpCXlxf16NHD0ocEAADZwI8//kgPHjygWbNmUd68eQ3OkEZGRlJ0dDT5+voS0bvgx8xUtGhR2r17NzVu3Jhu3bpFPXv2pDJlypC3tzddvHiRTp8+TQUKFKC//vpLBG1rcvHiRZo4cSIdPHiQJEmiGjVq0OvXryk+Pp6cnJzEOPk9u1OnThQcHEwdOnSgLVu2kJOTk8GayqmxdI+yEXMvvwHA/N9e8Gq1mqtUqSL2gq9atSr7+vqyJElcpkwZXr58OUdHRzMz84ULF7hMmTLs6uoqlp2RJIlLlizJISEhljwcAADIJq5du8Z58uRhOzs7HjBgAD9+/JiZ/1vW7c6dOyxJEk+cONHg6+Slz27evMlffPEF58+fX7yPFSlShHv37s3//vuvWY8lvY4cOcK5cuViV1dX7tOnD4eFhbFGo0lxrHycly5d4sDAQJYkidu1a8dxcXHM/N/7vy3BzDJYhJ2dHcXFxVGrVq3o8uXLNGzYMJo0aRI5OzuTWq2mMWPG0NKlS2nLli30ySefUJUqVahSpUp04MABunbtGp05c4YkSaKiRYtS7dq1Fd/qEgAAgOjdxXrLli2jSZMm0apVq0ir1dK4cePEUmfR0dFERAbbMxOR2Pq5RIkSYqWLGzdukEqlonLlypGDg4NVXtB34sQJat68OQUEBNDcuXOpa9eu4j79meLXr1+Tt7c3qVQq0mq1VKFCBXFWeNu2bcTM9Msvv2RohtlqWDqtQ/Yjf/pevHgxS5LE3bt357dv3xqMqVChAnt6evKwYcPEfba0GDsAAGRdcXFxvH37di5dujQ7ODhwv379+OHDh8zMvGvXLpYkidesWcPM/820JiYmcmJiIjPbzuxqaGgoFy1alPPkycO//vqruD15/VeuXOFmzZqJY9Yfc/HiRTHD3KFDBzHDbEvv6dbTPQ3ZhtyLdPr0afL09KSpU6eKZXO0Wi1VrVqVgoODadCgQTR+/HjKkSMHqdVq8XXyGpZEqS9hAwAA8KFptVpycnKiZs2a0ZQpU6hIkSIUFBREU6dOJbVaLWaU8+fPT0QkLlTTv5hdpVLR7du3LXMA6cDMlJiYSGvXrqWwsDAaNGgQdezYkYjeXcCoPyt88+ZNmjFjBh08eJB69+5NP//8MxGR2MZa7mEuWrQobd26lVq3bk06nc76+pJTgTYMMDutVkvx8fF05swZ8vHxEbsZabVaqlmzpsFuRnKI3rdvHx09epSWLl1qsPyMLT3ZAADAtskXpsfFxdHTp0+pdevWREQ0duxYWrVqFTk6OopWimHDhlGOHDnEBX5RUVGUkJBADg4OFB4eTn5+fnTu3Dmj5desgfze+ueff1LJkiVp9OjRRGS8nNuNGzdo/PjxtGPHDqpatSqdOXOGevXqRcxMPXv2NAjMmzZtokaNGlGNGjWsaqWLdLHktDZkD/JpJ5lWq+X4+HguXbo0u7i48KNHj5iZ+bPPPmNJknjs2LFGbRl169Zlb29vjoiIMFvdAAAAMrmdIjo6mitVqsQtWrTgu3fvipaMkiVLco4cOThPnjwsSRL7+fmxnZ0de3p6ckBAAPv6+vJHH33EZcqU4XLlyvG1a9csfESpO3bsGEuSxC1btmTm/45fFhERwd988w1LksQ//PADMzNPnjxZXLSo35Ihf21kZKS4DW0YAP+Pmcne3p7UajVt3LiRiN6dfnJ0dKT69etTXFwcLVq0iCpVqiRmlH/44QeD3YymTJlCp0+fpoEDB5KPj4+lDgUAALIxlUpFiYmJ1KVLFwoODqYSJUqQv78/OTk5UdOmTWnKlCkUGBhIz549oxYtWtDevXvpzZs3FB4eTvfv36c7d+5QaGgoXbt2jY4fP05lypSx9CGlKioqiohILAun3wJJROTs7ExJSUk0duxYmjVrFhERjRo1iiZNmkRERL1796YtW7YQ0X+tKPJyerbWhoGZZVBcYmIiFy1alCVJMlji7fDhw/zRRx+xnZ0dq1Qq/v7770Xjv2zVqlXs7+/PFStWFBdPWDtb+rQMAACp0z87evfuXfbz8+OhQ4eyWq1m5v8uZIuJiREzzA4ODjxgwAC+f/++wfeRx9rC+8T+/ftZkiT+9NNPxW3J69Y/C6z/cxoyZAhLksS9e/e2mYsZU4OZZVCcvb09ffbZZ0REtGvXLnF7jRo1qGPHjuTp6UnOzs7k7u5OUVFRxMyk0WhoxIgRNHz4cEpKSqJNmzZRvnz5LHUI6SbvSKjT6SghIUHcBgAAtof//+yoRqOhdevW0Y4dO+j169c0evRocnNzM7jYzcXFRcwwFytWjFatWkUzZsygiIgIInp3wZs81hZmVUuUKEGenp50/vx5WrVqlcHGKzL5LDAzG1z0p9VqycHBgfr162dbS8SZgLAMitLpdERE9PXXX5OHhwdt3bqV4uLiiOjdGpQTJ06krl27kqurK02ePJnKlClDVapUoWLFitGcOXOoQIEC9Pfff1Px4sUteRjpkpSUJNaPnj17NnXo0IGePHmSJV4oAACyI0mSKCkpidq0aUM9evSgEydOUOnSpcnT09PoYjeid60JTZs2pZ9++omKFStGGzZsoJEjR9KTJ09sIiDLdDod5cyZk+rVq0dERHv27KGQkJBUv0Y+vr1799KaNWuoRYsWFBgYqHit5oCwDIqSX0iqVatGZcqUoatXr9LSpUuJ6N0nT1dXV5o+fTotX76cunbtSsxM4eHhVLJkSZo+fTrt3buXSpYsaclDSBf5CmmNRkNffPEFjR49mk6dOkXnz5+3dGkAAPAe7O3tqW7duhQYGEi7d++m4OBgOnHihMkVHeTAPGXKFPLy8qL9+/fbVFAmevfe7e7uTl26dCGid6tiLFmyhO7duyfG8P8vg6fff3z+/HmaPn06ubm5Ue/evcnLy8vstSvCkj0gkLXodDrRz6R/1az894MHD7Kbmxu3bNlS9DAlXynjxYsX/OrVKzNV/GHIx6dWq7l8+fLs5OTEPXv2FP1s+uNsoU8NAADe0X/NXrBgAZcqVYolSeJu3bqluTV1TEwM7969m+/evatwlR+WTqczeA+fP3++WOGiZ8+efPLkSaOVMZjfXYf0+eefsyRJvGTJEoPvZ+skZuzqAJknn4aSZ1aTb2HJej1O9+/fp1atWtG1a9doy5Yt1K5dO6Nx8idUefF2W/k0Hh8fT23btqU9e/bQ+PHjacSIEeTq6mrpsgA+CPm5KL9dyM9LW3qOAmSW/vva4sWLae7cufT8+XMaOXIk9enTh/z8/Cxc4ftJqZ0kuZkzZ9KPP/5IRERVqlShatWqUb9+/cjBwYFevnxJR48epdmzZ9OLFy9o3rx5NGTIkHR/b1uAsAyZEhoaSiVKlDC4Ta1WU8OGDenzzz+nzp07U9GiRcnJycngDXXlypX07bffUqtWrWj9+vWUI0eOLPFm+8cff1CHDh2oWbNmtHnzZrEoPRFRcHAwHT58mM6ePUt169alzz//3OqXDAKQJf8A/ObNG/Ly8soyb4IAstR+p+UJISKiJUuW0MyZM+nNmzf0448/Uo8ePWw2MOs/v3fu3El3796lmzdvUvv27alEiRJUoEABMXbVqlU0ZswYUqvVFB8fT7lz5yZmptevX5NWq6WSJUvSjz/+SJ07dyairBOUiQhtGJBxI0aMYAcHB965c6e4TafT8cyZM8WpmsKFC3O7du04JCSEX758KcY9fvyYK1WqxJ6ennzlyhXxtbZu7NixLEkSb9u2Tdym1Wp55MiRXLBgQfFzcXBw4Hbt2vGdO3csWC1A+ugv+bRmzRr+8ssv2c/Pj2vUqMFffvklBwcHc3R0tAUrVE5Kp5mZOUssgwXG5JbAuLg43r17N0+YMIEnTZrEGzduTHH8kiVLOG/evOzu7s5Tp07lJ0+emLPcD0L/d3zMmDHifUqSJPbw8OBWrVrxqVOnDL7mxIkTPHv2bP7444+5SJEiXKRIEa5UqRKvXr1avKcn/95ZAcIyZEh0dDR36NCBJUnioKAgg/tiY2P55MmT3KdPH86fPz9LksS+vr7csmVL3rlzpwjFcrBs3749x8TEWOIwPri5c+eyJEk8ceJEvnLlCh87doyrVKnCkiRxkSJFOCgoiKdMmcKlSpXiHDly8OHDhy1dMkCq9D/Ejhw5UryJuru7c44cOViSJPb39+fJkycbrCWbFcjBKT4+nq9cucKHDh3iCxcuWLgqUIr8AUitVnOLFi3YwcHBIDh27NiRL1y4YBQA9QPz9OnT+fHjx5Yo/71NmzaNJUnismXL8rJly/i7777jatWqsSRJXL58ef7777+NviYuLo7fvHnDarWa4+PjDe7LChNgySEsQ4Y9fvyYjxw5wszMGo2Gjx49anB/XFwcP3r0iAcPHsyVKlUSLzjNmzfnlStX8r///suFCxfmkiVL2twMq/6skv4Lwt9//82lS5dmSZJEkPDz8+Pvv/+eX7x4IcYNGDCAJUniuXPnmrVugMxasWIFOzg4cNOmTfnUqVP88OFDDg4O5g4dOrCzszN7eHjwyJEjbTYo6NNqtQbBqWnTpuzp6SnOCnXq1IkfPXpk4SrhQ9K/QFt+v2revDn/73//4127dnH58uVZkiRu1KgRHz58OMXALJ89nDt3rk2cedA/hpcvX3KpUqW4cePG/M8//zDzu/e54OBg7tixI0uSxB9//LFBYE7pGLNiQNaHsAyZFh8fz6VKlWJ3d3fevXu3uF2eldFqtfzs2TNevHgxV6pUiZ2dnVmSJC5TpoyYeR49erSlys8w+QUiLi6O169fz5s3bzYIwrt27eIePXpw6dKluU+fPnzu3DmjmfPWrVuzn5+feFECsDbJ3wg7derEJUuWNPqdTUhI4EmTJnHOnDk5V65cvHnzZma2vdOvAwYM4GXLlhncptFoxJmhihUrcvPmzTlXrlwsSRLXrl2bL168mOXDQXYSHx/PX3zxBbu4uPCYMWM4NjaWmZmjoqK4ZcuWYsKnVq1afOTIEaPnyOzZs7lUqVJ88+ZNS5SfIfq/txcuXODjx49zjhw5xKSX/vP333//5c6dO6cYmLPb7z/CMmSI/hMkMjJSPJGKFCnCf/75p7gv+ZJw4eHhvG/fPq5WrRr7+/uzJEmcK1cuvn79utlqfx/y8Wg0Gv7iiy9YkiQuWrQoh4SEcEJCgsHY169fp/g9li1bxi4uLtyiRQuTYwCsxdy5c3nFihVctGhRnjVrFjP/9/yXw0J8fDwPHTqUJUniUqVK2dzv9cmTJ0UQWr9+vbh9woQJnDNnTh47dqx47t+6dYtr1qzJkiRx9erVEZizkPXr13OOHDn4m2++EUt+3rx5U7y/tWvXjtu0aWMww5w8MFvrkqdxcXEp3j5x4kTOkSMHf/vtt1ykSBF+9eoVJyYmGv1OJw/Mx48fN0fZVgdhGdJNftPQf5F4/PgxDxw4UFzUpx+Y9dddlr1+/ZpPnDjBvXv35mvXrpmn8PckH290dDRXrFiRHRwc+Ouvvza5dqb8yVz/2BcuXMh+fn6cP39+m2s9gawrpecoM/POnTtZkiSuUqUK+/j48NSpU5nZ8EOw/ulruQVp37595in8A9JfQ3bdunXMzFynTh2uU6cOazQaZv4vcISFhXGzZs0QmLOQ2NhYbtiwIXt5efHbt2+Zmfn+/fvcq1cvliSJ+/Tpw8zMFy9eZHd3d5YkiRs2bMhHjx61+paL48eP8/Dhw/n27dsGt6vVav7hhx84R44c7OjoyK6uruK6g5R+n/UDc4kSJfjQoUNmqd+aICxDhkRHR3Pt2rVFzzIzc0REhOjFTSkwy2zt9Ky+2NhYrl27Njs4OPC4cePEm2hq1Go1h4aG8pdffsnOzs5cuHBhDgkJMUO1AGmLiIjgrVu38rZt2/jNmzcG9924cYP79OkjLnTq1KmTuE//eSyfVfnmm29YkiRetWqVeYr/APSDzoIFC0RgXrBgAbdu3Zr/+usvZv7vA4L8Wnbv3j1u2rQpAnMWcuzYMdGKExsby7NmzWJJkrhLly4G4+T3OScnJy5TpgyfOHHCEuWmy7Nnz7hEiRLirEny39GnT5/yTz/9xAUKFGBJkrh///7idcBUYJYv7v/ll1/McgzWBGEZMmTChAksSRIvX76cmf97UqU3MNsaufZFixaxJEncu3dvo6D85MkT3rRpE//yyy984MABcfuhQ4e4SpUq7OjoyG3btrW5XZwg67p06RI3b95c9OCePHnSaMytW7f4u+++Y5VKxZIk8erVq8V9SUlJBs/rvn37srOzs82t8qIf/BcuXGiwAsKMGTOMxqcUmGvVqsVnzpyx6de57Ez+HZBXdHj27BkXLFiQq1evzlFRUczMoof5hx9+4MDAQHHhp7WvArN8+XIeNGiQaI9K3iry5MkTnjRpEvv6+rK/vz8vXbpUtKGk9PscFhZmk2ePPgSEZciQP/74g+3s7Lh48eJGT7zUArMtzyozM3fv3p0dHBz46dOnBrfPnDmTK1eubPAmq3+x0K+//sq7d++22n42yH6OHTvG+fLlYxcXF+7ZsydfvHhRhIHkQkNDefDgwaxSqbho0aIpziidPHmSc+bMyQEBAXz16lWly//g9F+b5CUgJUniAQMGpDhGPzDLF381btzYZG8oWAdT70Hy7fJ/ly9fbvD4639dw4YNuUOHDnz//n1++PChwhVnXkpnf3788Ufu06cP37t3z2Ds06dPedKkSezt7c0FChRIMzCn9G9kBwjLkCEJCQlcq1YtliSJFy1axDqdzuB0ZvLA/L///c+C1b4/rVbLarVa7He/e/dujomJ4ZCQEK5Xr55YS7pnz57crVs3liSJvb29+caNG+J7YMYJrMXff//Njo6OXKxYMV6zZo3Bffq/p/p/v3XrFvfv359VKhX7+PjwxIkT+cGDB2Lzhvr167MkSbxy5UqzHcf70n/NSn6Brn5g1p9NTykw37lzh9u3b28z119kV3IrTUJCAj9+/JiPHTvGd+/eTXEjkd9//120Jehbvnw5e3l58aRJk8xS8/vSfw4HBwdzzpw5WaVS8Q8//MD//vuvwVj9wJw/f/50B+bsBGEZ0k1+g9m9eze7uLhwq1atxH36byT6gdnb25v37t1r7lI/uJ9//pklSeKAgACuWrUq+/j4sLu7O3ft2lW84MbFxXGjRo1YkiS+ePGihSsGMBQaGsqBgYGcK1cu/vXXX8XtptYOT/61AwcOFC0ZefLk4YCAAHZxcRFvrml9D2uhv1NbUFAQjxs3zmhZPP0e5rVr14rb9V/n5L8nX/nHWpl6XKz9IrX3kXzd7K+++oqLFCkiJjkCAwN548aNHB4eLr7m6NGj7OPjw/b29jx9+nT+3//+x8OHD2dvb28uVKiQUdC0FRs3buRSpUqxvb09Dxs2LM3AvHz5chGYAWEZUpD89Ery/7937x4XK1aMJUkyuRVoREQEd+3alV1cXGx69Qf52GNiYnjmzJns7OzMTk5O3Lx5c965c6fRVr+VKlXiggULou0CrIYckqZOncqSJPH48ePFfcmDklqt5sjISL516xZHREQY3Hfz5k0eMmSImGHu3LkzX7x40eD5be2nZpNvOCIvAblnzx5OSEgwedGfqcBsK+TjSkxM5JcvX/KZM2f4n3/+yZKtI1OmTOGZM2ca3KbRaLhixYosSRIXL16cq1atymXLlmVJktjR0ZF79+7Nly5dEuPl54r84VD+Ov0zhrZC//f1l19+4eLFi6cZmHPnzs1+fn48b948m/kwqDSEZTCgv35q8hcG/ZmJoKAgliSJv/nmmxTXZmR+98RL6TSXNdJ/k0xKSuLXr1+nuBX3gwcPOCwsLMXvMW/ePFapVNyzZ0+TPaDWJivPKqUkedCJj4832qo1q6pXrx47ODiIWbTkQWnv3r3cokULzpMnD7u7u7OnpycvXbrU4CKmmzdv8oABA1ilUnH58uV5z5494j5rf1OVH3uNRsOVKlViJycn7tOnj9F1CPq/I6YCs7XPnuvTXyO+Z8+eYmZVXgZs0aJFRn2sturw4cNiG/alS5eKx7J///7s5eXFEyZMMDizMHnyZM6bNy/b29tz9+7d+datW+J7/fzzz9y/f39u1aoVT5kyxeov5mM2/Xup/9xMKzBHRkbyuHHjWJIkDgoKUrJcm4KwDIL8RNNoNFy+fHn29/fnkSNH8v3798UKEPKTLjQ0lEuUKMGOjo4233IgH1NMTAxPnDiR69evz4GBgVyxYkXetm2byW189V+Ali1bxgEBAVykSBGbOU0nB2WNRsPnzp1jZtsKARml/8Fg+/btPHz4cK5bty43aNCAlyxZwmfPnhX3Z7WfQ0xMjFgLeffu3QaB8Nq1azxp0iSDi1S9vb1ZkiR2cXHhSZMmifVnmd/1MH/77besUqn4k08+4R07doj7rP3nlpCQINaLHT9+vPhAnPxDo6nALK8CZCv018KuUKECS5LElStX5sGDB3OTJk3Y39+fnZycuFOnTjax+1xaHj9+zFOmTGFPT0/OmzcvL1myhJmZP//8c27evLloK9DvUw8KCuL8+fOzk5OTTS19mJz+7/CzZ8/49u3b4uxB8g+yaQXmJ0+eGLweAsIy/D/5yZSYmMgbNmzgBg0asKurK0uSxCVLluSvv/6ar1+/brBs2pAhQ8RalLba26S/4UiNGjVEL1uxYsXYzs6OXV1defDgwQZX+cuBIC4ujp89e8b9+vVjLy8vzps3r82toxwTE8O5cuXidu3aWboURemHn9GjR7OdnZ1BKJQvSNWfPcwqdDodx8XFcevWrcWFS2fPnmWdTsdLly7lBg0aiJ9Bz549+eeff+bz589zz549RWA+duyYwfe8ffu2CMwVK1Y06IG2ZhcuXGAfHx+uXr26OKNgqq1CP3wsXrxY/IzevHlj9R8K9MXHx3PLli1ZpVLxmDFjDI5ry5YtbGdnx8WKFeNNmzbZZItJck+ePOGpU6eyu7s7+/v787hx4zhXrly8detWZjZe/YKZecaMGSxJEvv5+Rn0L9sK/cd03rx5XKlSJXZ0dBQbC33//fdGq3ekFZhlWeF34kNAWAbxZJA3HJk0aRI/ePCAz507xx06dBCn7Tw9Pfnrr7/mzZs3M/O7XY7KlSvHgYGBot3Clt5E9E/L1qhRg+3t7blv375iJnn+/Pns4eHBLi4u3K1bN4OLgOLj4/nQoUNiQfdGjRoZ7ZJkC0JCQliSJO7Ro4elSzELeQa1bt26fPDgQX7x4gWfOXOGJ06cyJIkce7cubPsOqK//fabCHwfffQRlypViiVJYgcHBy5dujSvWLHC6Gs6derEkiTx4MGDmdnw+X379m2xe2eNGjUMZp+tlbyW8qJFi5jZeCUMfclDwooVK2xqaTz5sfrjjz/YwcGB27RpY3SNxaeffsqurq78ww8/GG1MY8vkwOzq6soFCxZkV1dXMcusHyz1H+PPPvuM3dzc+Pz582avN6MOHTrE8+bNM7r9xx9/ZEmS2MvLi+vUqcP58+cXk16lSpUyaiGUA7OLiwt/9913JlsMAWEZ/l9cXBw3adKEJUniYcOGiZ7b6OhofvjwIQ8ePFicxpUkib/88kueMmUKf/HFFyxJEg8aNMjCR5C2lIJ8YmIi9+vXj11cXHjEiBHizSQ8PJy7dOnCkiRxzpw52c7Ojrt168ZXrlwRX3v79m2ePn06L126lJ89e2a24/hQdDodh4WFsSRJXLp0aY6NjbX6vtP3cezYMfb09OQqVaoYLfU1duxYliSJW7VqZfNtRcnp/94vX75cbNkrSRK7ubnxuHHjDHYi02q14vk/e/ZsMeOckhs3bvCwYcOs8oxKSr/LkydPZkmSeOHChSa/Tg5TZ8+e5evXrytWn7nIAUr/tLpWq+XPPvuMJUnisWPHis03oqOjTbad2ZonT57wlClT2MvLS0xoyM8F/ZAsn2Fo1aoVS5Jk1WdJdDodR0REGOw2Kdu5cye7urpyq1atxMWK4eHhvGnTJq5WrRpLksT58+c36k/fvHkzFypUiCVJ4uPHj5v1eGwJwnI2pv8J+9SpU+zr68ujR48WgTH5zMqdO3d41apV4pOoJEns4+MjZupsYWYp+THJx920aVNx3Hfu3BFBuW/fvnzgwAEuUqQIOzs7c69evfjy5cvi6+Pj4236Irn4+HguVaoU58mTx2jWKauR18/9448/DG6XZ5ubN29ucEW8vOtVVqAfmM+cOcO///47b9682WilGq1WazB2yJAh7OTkxNu3bzf5vVObnbUU+Tn59u1b7tWrl7g4a8mSJWL77pRer/RfH2rXrs2DBg2ymYt1mVP+gNC2bVt2dHQUv9sJCQlctWpVEZT1fw7nz5/natWq2eRZspQ8fvyYZ8yYwTlz5mRJkvinn34Sj3FSUpLB412/fn3OnTu3TXxAWrRoEdvb27MkSTxnzhxmfvehyM/PT5wBlY9Np9PxrVu3xP4IjRo14pcvXxp8v59//pnXr19v3oOwMQjL2ZR+C8Lp06d56tSp7OnpKV44U1pPVHb37l3evXs3V6tWjZ2cnNjR0dEqZ5ZkY8eO5SlTpoj/1z+eDRs2sLe3t9iK+tGjR+LUsv5smtyf7eLiwj169LC52cfUZozlnlU5UGS1HjWdTseJiYlitzX9C5nkoNysWTODswb//vsvL1q0yCaugE+JHHj1g6+pUJvSZhvM7071urm5cenSpW1y042YmBhxHcJPP/3EzO9mi/38/Dh37tx85MgRg/H6Px95BnrmzJk2c7ZFf1m8uXPnitDUp08fgxlTU0GZmfnLL79kBwcHm2o3Sen1Sv+2x48f87Rp09jDw4N9fHwM3gtkK1euFO1EL168ULTe96F/XHLNkiTx3LlzuUePHty1a1dm5hRXqLpw4QIXL16cfX19+cyZM2Jcav8G/AdhORuLj4/nMmXKsKOjI3/xxRfcrFkzZjYdrJI/+eQdvB48eKB4rZl14sQJliSJXV1dDU696s8GHzp0SFyg+Pvvv7Orq6vRBW8XL15kDw8P/vjjj1mSJP72229tZskx+XGLjo7mxYsX88aNGzk4OJivXbvGL1++5B49erAkSUa9uvovmrY8ey6TzxbIpyHHjx+fYlBmfncRoIeHh02GRP3HKi4ujl+9emW0RJ5OpzN6Puv//+nTp7lmzZosSRJv2rRJ+aI/EP2Z8dmzZ7Ovr6/Bah5arZa7d+8uTkn//fffBhctM78LIb6+vvzJJ5/wo0ePzH4M70Oj0XDZsmXZxcVF7D64c+dOliSJP/vsM9FKN27cOKMzJ3PmzGE3Nzfu27ev0c/EWukvA3fu3DneuXMnh4eHi7YSmdzDnCNHDpYkiVu3bs3btm3jkydP8sCBAzlfvnzs6+vLoaGhljiMDDEVmN3d3blRo0Ymv06j0XDHjh1ZkqQUPzBA6hCWs7H4+Hju3LmzaKnw8vJK96LrthKeoqKieN68eezi4sI5cuTg+fPni/uSh93ExESuVq0a586dW5yGlMdcvXqVnZ2dedKkSdyoUSObW5w+Pj6eCxcuLF5YXV1d2c3NjStVqiTeQLp27corV67ko0eP8oMHD6x6hsWUlH4v5dOto0aNEj35U6ZMYUmSuGnTpkZBee/evezt7c3Nmzfn58+fm6v0D0L/+NesWcOtW7fmwoULc/ny5blz584pbj+f/Ge2Y8cOrly5MkuSZHARkbVfvCsHJ/k5+8033/Ann3wiloeTb09KShJnU/LkycP9+vXjjRs38vbt27lLly7s5OTEvr6+NvMc139cRo0axTlz5uTRo0eLCYCXL19y27ZtxXO/e/fuRmtsL1++nAMCArh06dI2t/SlWq3mRo0asaenJ0uSxPny5eN+/foZnf178uQJT5s2TbRkODs7c44cObh48eLcsmVLmwjKMv3AvHz5cnZ2dhYrVwUHBxuNl39WGzduZEmSePjw4eYqNctAWM5GUjq9EhMTI5Y+c3Fx4ZkzZ2a53tW3b9/y/Pnz2dHR0Sgw6weF0NBQ9vLy4sDAQKPdywYPHsz58+dnjUZjUz2MstevX/PatWt548aNPHDgQP7qq6/4k08+YV9fX7Gih/5uVS4uLuzt7c3169fn2rVr88KFC23mdDTzuzMEyU8ly4+vfIzNmjUzeoM8ffo0f/7555w7d27evXu3OUvOlIsXL4rd5/SNHDlSHKe8da/8/zNmzDDqWdTpdPzHH3/w0KFDxaogK1euFPfbyqlZtVrNrq6u3KhRI27RooVY9UJ/aUzmd8/7r7/+WgQs+Y+TkxNXr17dZtYc1j8etVrN9erV4yZNmojfBzlI79q1i6tWrcoqlYrr1q3Lu3bt4oiICL5x4wb36dOHXVxcOHfu3DbzAUEWExPD1atXF0uk1a1bl/Plyydm0k+ePGkwPiIigmfMmMHe3t5coEAB7t+/P8fGxtrka7r+c3Lp0qViqbgxY8YYHI/+6/acOXNscr1wa4CwnE3o78wn71glv5DGxMRw//79WZIkDggI4O3bt1vlRTvvI7XALL/ovHr1ij/++GP29fXlI0eOiBeZFStWcL58+bhly5Yp7upnqxITEzkyMpKnTJnCKpWKy5Urx+PHj+f27dtzw4YN2c/Pj93c3FilUll9eNCfXZM3kfjmm2+MLtZZsmQJu7m5sSRJ3Lt3b4P7du/eLbbEXbp0aYrf25rcvHmTVSoVFy9enPfu3Sues6tWrWJHR0du3rw5Hz9+nN+8ecOHDx/mESNGiFA4duxY8fut0+n44MGDLEkS29vbc9OmTQ125rOVoMz831KI8p+OHTsavZbJx63Vann//v08efJk7tOnD3/33Xf8v//9jyMjIy1Reqap1Wpu0KABT5o0ifPnzy/WCk/et7pjxw5u1KiR+NnIq/xIksTVqlWzqZlV+biCgoLY19fXYGe+48ePc5s2bViSJC5XrpzBSi/M73qYp0+fLmZik7dsWCP9x1H/+agfhFesWCEe28mTJxudFTtz5gwXL16cnZ2djT5EQNoQlrORmJgYLlGiBLdt21YsUC4/CWNjY3nAgAFiDdZdu3ZlucAcFRWV6gxzXFwcDxs2jCVJ4mLFinG7du24efPm4nSt/lao1iy1cKPVao1mnc6dO8fOzs7cp08fg7ERERH88OFDq+5JZzZuI1i3bh3XqFGD7ezsuF+/fgZ9xw8fPuQpU6aI5dNq1arFnTp14oYNG7K9vT07OTkZ9LZbc1C8e/cuf/nll+zk5MSVKlXiv/76i7VaLffo0YNLlSqVYr/1okWLxBtq8q1sN27cyDt27DBYOsyajz85udbz58+L1rJq1aqJvmNT6+vauuXLl4uzAQ4ODgYf9JgNj/X+/fu8fv16btasGTdo0IC7devGv/76q819QJD17t2by5UrZ7QpVlhYGH/11VepBua5c+da/SQAs/HvavKLMvVbavR7mDt27Mjz5s3jmzdv8ooVK8SFnYsXLzZL3VkNwnI2cvbsWbHUW48ePUQI0g/M8koQ+fLl4z/++MNmA7OpN8O3b9/yggUL2NHRkd3d3Y0Wdo+IiODOnTuzv78/S5LEHh4eNjXrot+3eeLECV60aBEvXbqUt2/fbvCGov/zuXr1Kjs5OXHZsmU5OjraYGkla6df44oVK7hjx45crFgxzp07t3jT6NOnj0FwfPnyJf/5559csmRJ9vDwELNsnTp14l27dolxthCo7t27x127dmWVSsWVKlXiLVu2cIECBXjEiBFijE6nM/g5yWsn58mTh0NDQ03OnFvrjHpq9AOzvBnDV199Je63pVai9IqOjuaJEydywYIFWZIkrl69utEqLskfS1v43U4updejr776SvyuJz+me/fuGQTm5GsI29rr26+//srdu3fngIAAbtq0KY8YMUL04ev/Xq9cuVKcMZDX0HdwcOBq1aqJiz6ZbfN3wJIQlrOZQ4cOiZ270hOYd+3aZTOrPsj0W05+/fVX/uWXXwx6NNMKzC9fvuSLFy/y6tWr+ezZszYz66J/wUurVq1Eu4H8p1GjRgZb2sqPuVqt5lKlSnGBAgX41atXFqs/o/QDwMiRI9ne3p7LlCnDixYt4oULF3KfPn1EH3aPHj2MZlpfv37Nt2/f5tOnT/PDhw8Nfs+t9Y3k8ePHRtcU3L17l7t27cqSJHH58uW5YMGCPGvWLGY2fBOVjykhIYHr1q3LLi4ufPToUbPV/iGlFvDl58HFixdFYO7WrZsYk5UCs/7uq+PGjeO8efOyh4cHz5kzJ9Xnsn4Is4UPRfJjFhMTw5MnT+YuXbpw//79uUaNGvzNN98wc8rhVz8wV6pUiQ8fPmzWut+H/mvQmDFjWJIktrOzYz8/P86VK5foy5Y/GOkf//Lly9nV1ZXt7Oy4e/fufO/ePYMLtq319c2aISxnE/oviAcPHkxXYFapVOzq6sp//fWXRWrODPlFVa1Wc+vWrcUM2uXLlw3eJNMKzLZGf91sue+2ZcuWvGXLFl62bBl36NCBnZ2duXDhwrxy5UqD34fExESuWrUqu7m52dwFPszvVn2QJImbNGlisCU587vWAvl3vWfPnqkuBWftoeHkyZPs4uLCkydPNrogSQ7M8somVatWFaFa/7h0Oh1rtVru1q0bS5LEs2fPNhpj7eRQkJSUxC9fvuQzZ87wixcvxHbNSUlJ4rluKjDbwqxicqYeI/lYo6Ojefz48ezl5cV+fn68cuXKLLGFtfzaplarxU50+hcj58mTRywHaSowy8tG1qxZ0yauO9F/rCdMmCBqP3LkCGu1Wv733385MDBQzJrLLYLJz7TJPyP9azds6bluTRCWs6CUZpOYjQNzyZIlRWAODw83GBMbG8vdunVjDw8Pm9nNSf9FtUKFCuzk5MTffPON0faestQCsy2+mSYmJoo1k0ePHm3QQhMWFiY2Y5g9e7aYRZV/ZvLsy59//mmR2t9H+/btWZIkcdGKvAmJbNu2bZw3b16WJMmoh9mW3jjk9omOHTumeLYnLCyMu3btyt7e3pwzZ04OCgoS/YzJ11UeNmwYq1Qqgwv5bIH8uGo0Gh40aJBY9zwwMJDbtm0rdtfMaoFZrlX+sBMZGWkQhPXPEk2YMIE9PT3Z398/ywTmxMRE/uKLL9jV1ZV79OjB+/fv52nTpnGlSpXErLHca5/S43rnzh3u3bu3Va6bntpr0K+//sqenp7cuHFjscSlRqPhlStXiuVQ5eOX36f1j3/RokUG1+ZA5iEsZxHJ97xXq9Xi02Zqgblo0aIsSe+2dZZP58hj4uLixMoZtiI+Pl6sKTpx4kTRp5ueHmZvb2+eOnWqOcvNtJReYG/cuMH58uXjatWqGWwqoNVquWrVquzg4MA//vij2IxA/2cyYMAA9vLyMvnBwhrpdDp+8+aNWLXj/v37RrOoMnnJJEmSuFevXjbzATC5Xbt2icfv9OnTRhf7yIHZwcGBy5Yty7/99pvRDPOpU6fY39+f8+TJY7TGtDXTbzOqUqUKS5LERYoU4SZNmoiLl7y8vPjYsWNifEqBuW3bthY7hszQb0EYNWoUV69enT08PLhYsWI8f/58o2UAs0pg1v+wHxkZyX5+fjx06FDx2paQkMDXr18Xs83Vq1cXS36mFJituf0mNjaWr1+/bvAh+OnTp1yvXj328/MTFygmJCTw7Nmz2c3NjYsVK8ahoaFiTfSKFSumOMMsQ+vF+0FYtnH6MwzykyEuLk5c7S+vNWuqR23Hjh0iRPTu3duoJcPaJd/W9/Dhw+zs7MxNmzYVs2ppvUi8fftWrBKQL18+ozcfa5LS4y3bsGGDwal1ecxnn30mlguTw1VMTAyfPHlS/P/69eut7iLG9P4O1qxZk93d3cUmBCmtevDs2TP+6KOP2M/PT2xMYgtvHrGxsSmeNh47dixLksSLFi0y2cNsZ2fHxYoV46FDh3JYWBi/fv2a//rrL65du7ZNrbUqz6Yyv/u9rVOnDjs5OfGwYcNEO0pYWBiXKFFCnKKXw4V+YL506ZJ4rUu+jrq10v+AIIfCjz76iD/99FPxGt+9e3e+dOmSwdfpB+b8+fPzwoULrX6JtOvXrxttlhIVFcUTJ07ky5cvc+HChfnJkyfMbPgcv3//vviwlFZgtja3bt3iiRMnctGiRdnV1ZW3bNkiXpMfPHjARYsW5cmTJzPzu+NZs2aN0V4AZ8+eFRc0V6xYUbyO28p7uK1AWLZhu3fv5i+++ILLlCljtLxXs2bNWJIk9vT0FLNHpgKz3M8lz7rYwhavprbqnTx5MkuSJPqsU5tN0A9Lb9684eXLl1t1z25qjzfzf7szye0kci9y8qDM/O54c+bMyQsWLDBb/RmVfDteU+FW3sK1VatWRmcS9H9PChUqxF9//bXYyXDnzp2K1P2h3L17l6dOncr169c3mvGfOHEiOzs7s5ubGy9evNhkYJYv8nR2dub8+fOzo6MjFyxYkJctWybGWuubavK6EhISeNSoUezs7MxDhgwRM4w3b94UPdhyW4adnZ1Y/UA/MF+5csWqlwv75Zdf+OzZs8xsuA5+zZo12cHBgb/99luxfu6GDRvEhV7t27dPMTD/9NNPLEkSlyhRwuj5ZE369evHZcuWFR945bahGjVqsCRJXLZsWQ4ICBBLnib377//phiYrfkD8d9//y0+4FWtWpXbt2/PZ86cEc/lpKQkvnz5smgvCQ0N5fLly3O+fPk4LCyMmd89Jx4+fMh58+YVgTkwMNCqH2tbhbBso2bOnMne3t5sZ2fHbdu25X379jGzYSDu3LmzWP4spcAsv4H07t2by5Qpw4UKFWJHR0ernnU5fvw4L126lHv37s2jR4/my5cvixcXrVYrjnnLli3MnHIQkF9A79y5YzCLbK2hgdn0461v69atLEkSN27cmB89eiRmopIHZeZ3b04qlcpqd6k7ePAgOzo68ogRI3jbtm0G98mPn/zf69evc4ECBdjR0dFgm1/907h79uxhNzc3vnTpEq9du5YlSeL69etzXFycVT7uZ8+eFa0GhQoV4sWLFxvMsDIzz507l11dXdnZ2TnFwCy3ZPj4+LCXlxcPHz6cDx8+bLCdsTWGCVPP8SdPnnBAQIBBm5F8jJIkcf/+/Zn53TbXcmBOqSXDWsmrEC1ZskTMsCYmJvLgwYPZ2dmZR4wYIZ7Hd+7c4e7du4sL3CRJ4g4dOvCFCxcMvmd0dDRPnz7d6s4a6ZN3jWzRooW4dkZ28eJF9vb2Fsep/wEoOf3AXLp0aatuITx69Cg7OzvzRx99xNOmTTM5Tv/5KX/wkZd/0399+/zzz3nkyJH82Wef8aRJk5QrPBtDWLZBw4cPZ5VKxZUrV+b9+/cb3a//QvL1118bBWatVmswpmbNmjxy5Ei+cOEC37lzR/kDyKTp06cbrJ8rzySNHz9eLIsjL7EjX9Rgan3RmJgY/uSTTwy29LVWaT3espiYGP7000/Z1dWV8+XLxyqViidOnGg0y7B06VLOmTMnt27d2iqXirt+/To7OTmxJEns6OjIKpWKO3TowL///rvRrlRarZbVarXYwtbT05P79+9vcFwnT57k+vXrc/78+fnWrVscERHBuXPn5mLFihmd9rUGhw8fZh8fH86dOzePHDmSY2NjTS5rN3v27FQD8507d8RFnyVKlDA4a2SNHxJSeo6XLVuWx48fz6dOneKOHTvyoUOHmPldS5K8iVCPHj3E99i/f79ot3F2draJ5cKGDBnCkiRxmzZtDILtuXPnOHfu3NyoUSMRlMPCwsTZwAEDBvD58+fFygidO3c2CszW+DjL5OPu0KGDUaCX36OCg4PFhWwtW7YU96f04ef+/fviwnX9D4XW5PLly+zr68uBgYG8detWcXtaH1ybNm3KdnZ24syDPH737t0sSZLRxivW/LjbIoRlGzNt2jTxopp8mSz9J5t+CJBXOvDw8OAzZ84YfM3ChQvZxcXF6vsX5dmHgIAAHjBgAH/33XdixiFv3rw8ffp0TkxM5E2bNrEkSezm5sanTp0SX598hYRx48aJWRxrnF2TpffxTkhIYK1Wy8uXLxcbqtSvX1+crpPNnz+f/fz8uHDhwkb3WYunT5+KsCNvzyoH55IlS/LmzZtFL77s/v37PG7cODHLVqRIEe7cuTP36tWLvby8WJIk0XLy8OFD9vT05M8//9wSh5eq06dPs6urKxcpUoQ3bdpkcJ/+m5/+rNKsWbPSnGFu27atVbfcMKf+HM+fPz9PnjyZr169Ks4cHD16lL29vblNmzYG3+fRo0fs6+srlgz08fHhmJgYqw0PcmBs37690S6hhw8fZpVKJX7fIyIiePDgwWIpRJn+zowdOnQQgcqa6R938qCcfGOkK1euiA2E0tpkJjw83GqD8qtXr8TqPfo7Lab2HiS3pLRr144lSeKZM2eK+06fPs116tThwMBAg4t1rfV33ZYhLNuQgwcPsre3NxcqVIiDg4PF7clPz6ZE7ut0d3fnKVOm8NatW3n48OHs5eXFhQsXtuotjeUX1bZt2xqEpH/++Uecqq5cubKYdZRbMT777DM+ffq00fdbuXIl+/j4cJUqVay65SQzj/erV6942LBh7O3tzd7e3ty+fXvesmULr1mzhlu1asWSJLGfnx+HhISY6SgyRj6u2bNns52dHQ8bNozv3r3LEydOFOtHy6cvp0yZwteuXRNvqE+fPuXff/+dy5UrJ4KDs7Mz582b16BH97vvvmNJkvjHH380WlLNksLDw/nTTz9lSZJ47dq14vakpKQ0a5wxY0aqgVn/4i5rOV596XmO6/eiMv93XYbckiR/gHj79i0XLlyYDx48yGPGjBHLyVkjU4FRf3OVK1euiHax3bt3s5ubG3/55ZdibFJSEl+9epU9PT3FUmrffPONVZ41kaUWlE1dmHf16tV0B2Zrde3aNfbx8eFWrVqJ29I7WSPPIMtnUgYMGCCWxEy+xTl8eAjLNmTmzJmsUqkMWgeSv/Ht3buXFyxYwO3ateP58+fzgQMHxH29evUyOL0pz9hYa3BiZv7hhx/EbIncIqL/RnL+/Hkx8yj/XM6fP8/169dnSZLY29ubV61axYcPH+YrV65w//792d3dnX19fa26j48544/33Llz+eLFi5yYmMhz5swRM2vyH29vb27durVVt9rI/v77b1G3fDZEo9HwtGnTuEWLFuK+woULc+vWrfny5cui9SI6Opr379/Pa9as4SNHjhiEpWXLlrG7uzsXL17cqD/S0g4ePMiurq7cpUsXcVvy4BAWFsZHjx7lCRMm8I4dOwxmEPUD89KlS40CM7N1BuWMPMfXrFkjvu7zzz/nXLlyGW3tPHnyZHZ2drbq1zXmlI9bpv+4y60zSUlJYudF+djk9pzHjx+zt7c3jx8/nps3b27Vx57e427WrBm3b9+emf8LlLYamOXn3ejRo1mSJJ4yZQozZ3zFjnXr1hm8pufOnTvV9wf4cBCWbURCQgI3bNjQYCZFXlIqMTGRHz9+zL179xZricoXuOTNm9dgP/j169fzDz/8wK1bt+ZJkyZZ7ekq5v9eWAoWLGiwckHyT+Lyz2X9+vXi/rNnz4rZ9OR/KlSoYNWrXjBn7vFWqVTs7+/Pv//+OzMzv3jxghcvXszz5s3jGTNm8OXLl21qvVW5H/X77783eFOJjY3lI0eOcJ06ddjFxUVc/NOwYUPetm2byTfOsWPHso+PD/v4+FhlmBgxYoRBv71+2E1MTOTffvuNixUrxp6enqItpXjx4hwUFCTGzZw5U9w/e/Zsqw8RGX2Ob9y4kZnfhQL5A3GPHj04KiqKdTodL168mPPmzcvVq1e36iUgUztu/d/1Ll268KeffsoPHz7kJ0+ecP78+TlPnjxGr9vDhg0T7SbW/Jhn5LglSeJ27dqJx1G+Xz8wy1td2wp5Rv23335L99fIAVhexeXSpUu8evVq3r17t0FrnjW3E2YFCMs2IjExUZx2HDBggLj99evX/PPPP3OtWrVYkiS2t7fnypUrc8OGDbl48eKiZ8/WdupiZj5x4gTb2dmxJL1bA1p/hlB+YYiOjuayZcuynZ0dnzt3zuDrdTodr1q1ivv06cMNGzbknj178oYNG8RandbsfR7vnDlzpnohoLWT3xx27drFzs7OHBAQIJZP0t/BrVGjRuLCNXkJJkl6ty3s8OHDxfd7/Pix2HzHmj8oyWE5eQA4fvy46FOVpHdrgZcsWVL0Z3t4eBisGDJjxgyWJIkXL15s7kPIsPd5jl+8eJHz588vLgKU22/8/f2tenk45tSPWyZfnN23b19+9uwZq9VqrlmzJru4uPC+fftE28myZcs4X7583LhxY6NVb6xNRo67T58+Ru2B+oFZXjavd+/eZqn9Q5DP7g4dOtTg7ElaNBoNd+jQweg6BhlmlJWHsGxDNm/ezG5ubqxSqbh79+68YcMGrlu3LufMmVN8Wt+7dy8/e/aMmd9dANOmTRuWpHfbHzPb3qfPCxcuiJDQtWtXg95d5nfrksovrLGxsSZfNGxhgfrkPsTjbYvHLdNqtdygQQOWJIlHjRolejAfP37MX3zxBUuSxE2aNOHExES+e/cujxs3jgMCAliSJJ4xY4bB91q4cCGPGTPG5Dqt1mD//v2i3eC7777jixcv8qhRo7hMmTLiOTBq1Ci+fPkyx8bG8p49e8RFP926dTPYtTH5mrvWLLPP8aSkJN6/f7/4oJQvXz5u1qyZzezOmPy49VexkC/K1t8oivnd+tpyS1XLli3F7Lqfn5/Vt5XJ0nPcvXr1MtogK/kutRcuXOD8+fNbdU+6TK59+vTpLEkS161bV9yX2nuyfN/9+/dZkiRu2rSpwcW9YD4Iyzbk5cuX3KtXL3Hq3d7eniXp3Tqs/fr1Ey+W+qfh5Kuk69evz1qt1iY/gZ4/f168uH7zzTciCOzdu5cl6d2uRfL6mynRv4jLlo4/uz7ezP+F/D179nCOHDm4Zs2azMz8/Plzbt26NUvSu/Wkk7t06ZLBii/6PxtrPj3N/O7CtL59+4rALK8E4ejoyHXq1OHNmzcbfc2WLVtYkt6tKxsdHW1yqURr9z7P8Tdv3vCpU6f4/v37Vj+zmpz+cffs2ZPv3LkjZlZ79uwpPtzpf+gdOHCgwVmF6tWrG62iYe3SOu7kQVn/9/jKlStiqVBrvogxJVevXhUbBckTGswpP0/1n8vz589nlUol9g8A80NYtjGRkZE8b948LlCgAFerVo07derEFy5cEGvpyk8w+cKPv/76S7wA2TL9F9f+/fvzwoULRUiw1o01PoTs+njL7t27J9aQnThxophJ1Q/KiYmJKb7Z2EpQ1Pf06VMeP348e3h4cL58+bhIkSK8du1ag9YRrVYrgv/NmzfZwcGBy5cvbzCzbIsy8xy3xcc4Of3jlneX7N27t1j5Q38mXRYcHMy7du3ikJAQERxtTXqPW/8xXrNmDVeuXJlnzJhhk5MBWq2Whw8fzo6Ojpw/f35esWKFuM/UDrtHjx5lPz8/Ll++vM2cPciKEJZtlFqtNvlGoX97p06d2M7OLtUd7WyF/ourSqXiwoUL8//+9z9xvy0fW1qy4+MtCwoKYkl6t+yhJEncqFEjcZ+1zxZn1pMnT/j58+dGG8okX+pu+fLlLEkST5gwgZltPzxm1+f4+fPn2cHBgSVJ4mLFivHevXvFffrHbOuPb3JpHbf+8a5bt479/f3ZycnJpkPj/fv3xRJ/xYsX50WLFon7kv9+nzx5kmvVqsUqlSrFM0tgPgjLWYD+C4r+p9MFCxawJElcp04d0ddq6/SXkapXr57VX8ijhOz0eDO/W5tU7tvV30gkqwbl5PTfQPX/fuzYMc6XLx/nyZPHaPcuW5Zdn+Nnz54VwbF379421Xf+PtJz3GvXrmV/f3/28vLia9euWaDKD+vGjRtip0F3d3fu0aMHh4eHizai2NhYXr9+PRcrVsxghRzmrPuB0dohLGdRS5YsYV9fX86TJ4/NXPCSXufOnRNXVHfv3j3bvKmkJis/3szMAwYMEB8EYmJistwMW1qSv0EeP36ca9euzZJkuPZwVpFdn+P6M+spXeyYVSU/7osXL4r7fv75Z/b392dPT88sEZRloaGh3LBhQ3FNSmBgIBcvXpxr164t2lJy5crFq1atEl+T3V73rAnCchaiVqs5MjKSv/nmG3Z3d+eCBQvy9evXLV2WIrLrm4q+7PB4yyExLCyMixYtyvny5ePz588zc/Z540gelNetW8dFixZle3t7njdvnslxti67Psdx3O/Wzr569apovchqQVkWGRnJq1at4sDAQHHRprxD6ffff8/Hjh0TY7PL6521QljOIh49esQ9e/YUa082atSIw8LCLF2WopJfUa2/BFFWl90e76ioKLHudKdOnSxdjtnpdDpesGCBWF/7o48+4g0bNoj7s+obaXZ9juO4Ja5VqxZ7e3tn2aCsLzIyku/cucN79+7lS5cu8bNnz0y2X4FlICxnEZGRkdylSxeuWbMmL1++PEv1rKbm/Pnz7OTkJK6gt7WlhDIrOz7eFy9eZHt7e3Zxcck2fayyV69ecdeuXdnX15f79etn0KOcVYOyLLs+x7Pzccs7c+bMmTPLnS1Lr6z+vLY1EjMzQZYQHR1NzExubm5kZ2dn6XLM5syZM9S8eXM6fvw4lS5d2tLlmE12e7w1Gg01aNCAOnXqRIMGDbJ0OWb36tUrevHiBfn7+1OOHDmIiIiZSZIkC1emvOz6HM+ux33q1Cn68ssv6fDhw1SqVClLlwNACMuQJcTFxZGzs7OlywCFvX79mry9vYmISKfTkUqlsnBFYC7Z9TmeXY87NjaWXFxcLF0GABEhLAOADcouM6oAAGB5mJYBAJuDoAwAAOZi82H52bNn9L///Y/Gjx9PTZo0IR8fH5IkiSRJom7dulm6PAAAAACwYfaWLuB95cmTx9IlAAAAAEAWZfMzy/ry589PDRs2tHQZAAAAAJBF2PzM8vjx46ly5cpUuXJlypMnD92/f58KFSpk6bIAAAAAIAuw+bA8adIkS5cAAAAAAFlUlmrDAAAAAAD4kBCWAQAAAABMQFgGAAAAADABYRkAAAAAwASbv8DPHGrXrm3pEszK2dmZ9u3bR0REjRs3pri4OAtXZB44bhx3doDjxnFnF9n52ImIjh07ZukSMuTatWs0ePBgCggIoE2bNlm6HAMIywAAAACguDt37lCfPn1SHZOQkGCmatIPYRkABHkWBgAA4EPbu3dvmmNevHhhhkoyBmEZAITsdKpS/xQtAAAor2vXrhQdHU23b98mIiJJksR9MTEx9Pz5cwoICLBUeSYhLAMAAACA4jw9PWnMmDEp3hcSEkIDBw40c0Xpg9UwAAAAAABMwMwyAAAAACju5cuXNGPGDAoJCTG6Lz4+3gIVpQ/CMgAI6OEFAAClTJ06lYKDg1MdExERYaZq0g9tGAAAAAAAJtj8zPLJkycpLCxM/L/+kiNhYWG0bt06g/HdunUzU2UAtgerYQAAgFJGjx5N06dPpxs3bhjdl5CQQDqdDqthKGHNmjW0fv36FO87deoUnTp1yuA2hGUAAAAA84uNjaXw8PBUJ2V0Op0ZK0ofmw/LAPDhYKYVAACUMmXKFHr58mWqY54+fWqmatLP5nuW161bR8yc7j8AAAAAYH7p2cra3d3dDJVkjM2HZQAAAACwfta8PFxq0IYBAAIu8AMAAKU0b96cVq9eneoYb29vM1WTfphZBgAAAADFvX37Ns0xDx8+NEMlGYOwDAAAAACKK1++fJpjHBwczFBJxiAsAwAAAIDicubMmeYYT09PM1SSMehZBgABPbwAAKCUHTt2pDlGf3M5a4GZZQAAAABQXHouIC9XrpzyhWQQwjIAAAAAKE6r1aZ6v7OzM7Vu3do8xWQA2jAAQMDScQAAoJRKlSrRqVOnTG5pHRcXR+vWraNatWqZubLUISwDAAAAgOJatmxJtWrVomfPnhn9CQ8Pp7t376Zrlz9zQ1gGAAAAAMX98ccftHDhwlTHREREmKma9EPPMgAAAAAojpktXUKmICwDAAAAgOLq1KmT5sYkAQEBZqom/dCGAQAAkA3gglawtA0bNlBwcHCqY6yxDQNhGQAAIBvITqvdEGHFG2v06tWrNMfkyZPHDJVkDMIyAAh4YwEAAKWkZyvrmJgYM1SSMQjLACBkp5knzDoBAJhX7969qVSpUhQVFUUxMTGk0WhIrVaTRqOh58+fU2hoKOXIkcPSZRpBWAYAAAAAxbm7u1OjRo1SvC8kJIQGDhxo5orSB2EZAAAAAMwmMTGRYmJixKyyRqOh0NBQS5dlEsIyAAAAACju4MGDNG3atFTH2NtbXzS1vooAwGLQwwsAAEq5cOFCmmNevHhhhkoyBmEZAARc4AcAAEpp3749HTx4MNUxXl5e5ikmAxCWAUBAeAQAAKXs3bs3zTHYlAQArBpmlgEAQCm1a9emHTt2pDomPWsxm5vK0gUAAAAAQNaXnp7lqKgoM1SSMQjLAAAAAKC4woULW7qETEEbBgAAAAAorlatWnT06FEiIkpKShJrLL9+/ZqCg4MpKCiIAgICLFylMYRlAAAAAFDc9evXadCgQamOUavVZqom/dCGAQAAAACKk2eVU/P27VszVJIxCMsAAAAAoLhevXpRxYoVSaVSkUqVcgRFGwYAAAAAZEvbt2+nS5cupTrGGtdZxswyAAAAACguT548li4hUxCWAQAAAEBxZcqUoQIFCqQ6Bm0YAGDVsKMdAAAoZerUqRQeHp7qGLRhAAAAAEC2lCNHDkuXkCmYWQYAoXHjxhQXF2fpMszC2dkZM+kAAGb0448/0vLly+n27dtG98XExNDTp0/RhgEAAAAA2ZOHhweNHDkyxftCQkJo4MCBZq4ofdCGAQAAAABgAmaWAQAAAEBxz58/p+nTp9P169eN7ktMTLRARemDsAwAAnp4AQBAKZs3b6bg4OBUx1jjahgIywAg4AI/AABQStOmTemPP/5IdYw1blyCsAwAAsIjAAAo5bfffktzTGRkpBkqyRhc4AcAAAAAirt//76lS8gUzCwDgIA2DAAAUMrYsWOpb9++qV7M5+vra8aK0gdhGQAAAAAUV6hQITpw4ECK912/fp0GDRpE9vbWF03RhgEAAAAAFiVJkqVLMMn64jsAAAAAZDlarZb27NkjloeTA3J8fLxVLhknQ1gGAAE9vAAAoJTVq1fTli1bUh1jjaEZYRkABFzgBwAASqlQoUKaYdnR0dFM1aQfwjIAAAAAKK5KlSp09OhR8f9arZZiY2NJrVbTtWvXaNq0aeTj42PBClOGsAwAAAAAZmdnZ0fu7u7k7u5OL1++tHQ5JmE1DAAAAAAAEzCzDAAAAACK0+l0dPr0aXr27BkRvVsNIyEhgTQaDT18+NDC1ZmGsAwAAAAAigsKCqLNmzenOsYaV8NAGwYAAAAAKC537txpjrHGzUkwswwAApZSAwAApdy+fTvNMc7OzmaoJGMQlgFAwDrLAACglKJFi9LevXtTHZOe2WdzQ1gGAAAAAMW1adOG6tWrR5GRkRQZGUnPnz+nyMhIevbsGYWHh9O9e/coKSnJ0mUaQVgGAAAAAMX9+eefNH/+/FTH4AI/AAAAAMiWgoKCLF1CpiAsAwAAAIDiBg8ebOkSMgVtGAAAAACguHr16lG9evVIp9NRTEwMxcTEkEajIbVaTVevXqWgoCAKCAiwdJlGEJYBAAAAQHGhoaH07bffpjrGGldkQhsGAAAAACjuwIEDaY559eqVGSrJGIRlAAAAAFBcvnz50hyTP39+M1SSMWjDAAABm3QAAIBSbt26leaY58+fm6GSjEFYBgABO/gBAIBSSpcunWYrRs6cOc1UTfohLAOAgPAIAABK+eeff9IcExUVZYZKMgZhGQAEzCwDAIBSvvjiC7p37x79+++/Jsd4eHiYsaL0QVgGAAAAAMWVKlWKfv75Z6Pbk5KS6PLlyzRy5EgLVJU2hGUAAAAAMAu1Wi02I9H/ExYWZunSTEJYBgAAAADF7dy5kxYtWpTqmIiICDNVk35YZxkAAAAAFLdu3TpLl5ApCMsAAAAAoLjKlStbuoRMQVgGAAAAAMX5+flZuoRMQc8yAAAAACiuR48eVKJECYNd+hITE0mtVtPDhw/p2LFjFBAQYMEKU4awDAAAAACKU6lUVKNGjRTvCwkJoWPHjpm3oHRCGwYAAAAAgAmYWQYAAAAAxWm1Wjpw4AA9efLE4PbY2FirXDJOhrAMAAK2fwYAAKWsXr2atmzZkuoYawzNCMsAIDRu3Jji4uIsXYZZODs748MBAIAZlS9fPs2w7ODgYKZq0g9hGQAAAAAU9+mnn9LRo0fF/2u1WrHd9bVr12j69OmUO3duC1aYMoRlAAAAAFBcTEwMrVu3ju7du0dERJIkifvUarWlykoTwjIACGhLAAAApQQFBdGOHTtSHYOeZQCwauhZBgAApdStWzfNsOzl5WWeYjIA6ywDAAAAgOISExM/yBhzQ1gGAAAAAMWdOnUqzTEajcYMlWQMwjIAAAAAKK5Xr15UsWJFUqlUpFKlHEEDAgLMXFXa0LMMAAAAAIr79ddf6dKlS6mOscYL/DCzDAAAAACKK1CggKVLyBSEZQAAAABQXHr6ka0xUKMNAwAELKUGAABKCQkJSXPMs2fPzFBJxiAsA4CAdZYBAEAp3bp1Iy8vL9JoNBQXFye2utZoNPTmzRt68eIFeXt7W7pMIwjLAAAAAKC4PHnyUN++fY1uZ2a6evUqDR061AJVpQ1hGQAAAAAUd+vWLerXr1+qY+Lj481UTfrhAj8AAAAAUNz+/fvTHPPy5UszVJIxCMsAAAAAoLhu3bpRhQoVTG5IQoRNSQAAAAAgm9q3bx9dvnw51THYlAQAAAAAsqXUZpStGWaWAUDAUmoAAKCUJ0+eWLqETEFYBgAB6ywDAIBSChYsmOYYNzc35QvJIIRlABAQHgEAQCn37t1Lc0x6tsQ2N4RlABAwswwAAErp0qULhYeHU3BwsMkx1rgahm12WgMAAACATTlx4kSqQZkIq2EAAAAAQDZlq2cu0YYBAALaEgAAQCkvXrywdAmZgrAMAAJ6lgEAQCmvXr2ydAmZgjYMAAAAAFBc8eLFLV1CpmBmGQAAAAAU1759e6pVqxa9evWKXr16Rc+ePRN/wsPD6e7du1a5GgbCMgAAAAAobt++fTRz5sxUx2A1DAAAAADIll6/fm3pEjIFM8sAAAAAoLhOnTpR9erVKTo6mrRaLWk0GvHn33//pV27dqENAwAAAACyr/z586d4e0hICO3atcvM1aQPwjIAAAAAKE6n09HJkyfp2bNnREQkSRIlJiaSRqOhhw8fWrg60xCWAUDAusMAAKCUoKAg2rx5c6pjrPECP4RlABCwKQkAACglMjLS0iVkClbDAAAAAADFXbhwwdIlZArCMgAAAAAozsPDI80xbm5uZqgkY9CGAQAC2hIAAEAp9vZpx05JksxQScZgZhkAAAAAFKdSpR071Wq1GSrJGMwsA4CAC/wAAEApY8eOpb59+1JiYqLJMb6+vmasKH0QlgEAAABAcYUKFaIDBw6keN/169dp0KBB6WrVMDe0YQAAAACARVljr7IMYRkAAAAAwASEZQAAAAAAExCWAQAAAMCikpKSLF2CSdbXRQ0AAAAAWc7t27epb9++qY5JSEgwUzXph5llAAAAAFBcepbrfPHihRkqyRiEZQAAAABQXNeuXalChQqpbk4SEBBgxorSB20YAAAAAKC4AwcO0OXLl1MdExERYaZq0g8zywAAAAAAJmBmGQAEbP8MAABKefz4cZpjPDw8zFBJxiAsA4DQuHFjiouLs3QZZuHs7IwPBwAAZpSeIOzu7m6GSjIGYRkAAAAAFNe9e3eqW7cuRUVFUUxMDKnVatJoNKTRaCg8PJwOHjxo6RJThLAMAAAAAIqTJIkKFiyY4n0hISFWG5ZxgR8AAAAAWExiYiJpNBpLl2ESZpYBAAAAQHEhISE0cODAVMfExMSYqZr0w8wyAAAAACjuyJEjaY558+aN8oVkEMIyAAAAACjO39/f0iVkCsIyAAAAACguJCTE0iVkCsIyAAAAACjO29vb0iVkCsIyAAAAACguX758aY7Jnz+/GSrJGKyGAQACdrQDAACl3Lp1K80xz58/N0MlGYOwDAACtrsGAACltGvXjg4cOJDqGGts1UBYBgAB4REAAJSyd+/eNMdERESYoZKMQVgGAAEzywAAoJTXr1+nOcbHx8cMlWQMLvADAAAAAMW5uLikOcYad/DDzDIAAAAAKK5Xr15UsGBBevv2LWk0GlKr1aTRaEij0dCrV6/o4cOH5OXlZekyjSAsAwAAAIDioqKiaP369aTRaEyO0Wq1ZqwofdCGAQAAAACK27VrV6pBmYgoMjLSTNWkH2aWAQAAAEBxX3/9NT148IBu3LhhdF9CQgLpdDoKCAiwQGWpQ1gGAAAAAMX5+PjQ3LlzjW7XarV0+fJlGjFihAWqShvCMgAAAAAo7saNGzRgwIBUx8TGxpqpmvRDzzIAAAAAKO7w4cNpjknPWszmhrAMAAAAAIrz9/e3dAmZgrAMAAAAAIpLSkqydAmZgp5lAAAAAFBcx44dqWbNmqRWqykxMZFiYmLExiT//vsv7dy5E6thAAAAAED2lTdv3hRvDwkJoZ07d5q5mvRBGwYAAAAAgAkIywAAAAAAJiAsAwAAAACYgLAMAAAAAGACLvADAAAAALNKSEggjUYj/ty+fdvSJZmEsAwAAAAAivv7779p0aJFFB0dTYmJiSmOsbOzM3NVaUNYBgBh3759li4BAACyqMOHD9OrV69SHfPxxx+bqZr0Q88yAAAAACju4sWLaY7566+/zFBJxiAsAwAAAIDi3NzcLF1CpqANAwCExo0bU1xcnKXLMAtnZ2e0nQAAmNHo0aPp+++/T3WMq6urmapJP4RlABAQHgEAQCnXr19Pc0xMTIwZKskYhGUAEDCzDAAASvHz87N0CZmCnmUAAAAAUFxSUpKlS8gUhGUAAAAAUNz58+ctXUKmICwDAAAAgOIcHR0tXUKmoGcZAAT08AIAgFKY2dIlZArCMgAIuMAPAACU0qZNGzp48GCqY7y9vc1UTfohLAMAAACA4kqWLElHjx41ul2n01FwcDANHz6cXFxcLFBZ6tCzDAAAAAAWo1KpyNnZ2dJlmISZZQAAAACwCK1WS7GxsfT69WtLl2ISwjIAAAAAKO7q1as0ZMiQVMe8ffvWPMVkANowAAAAAEBxJ0+eTHOMWq02QyUZg5llAAAAAFBcr169yN3dnR48eGBwe0JCAkVERNC9e/coICDAQtWZhrAMAAAAAIq7c+cOrVu3LtUx1jizjDYMAAAAAFDcH3/8keYYa+xZxswyAAjYpAMAAJTi4OBg6RIyBTPLAAAAAKA4jUZj6RIyBWEZAAAAABQXEhJi6RIyBW0YACA0btyY4uLiLF2GWTg7O6PtBADAjEaOHEkjR45MdYyTk5OZqkk/hGUAEBAeAQBAKXfu3ElzTHx8vBkqyRi0YQAAAACA4jZs2GDpEjIFYRkAAAAAFMfMli4hUxCWAQAAAEBxgYGBli4hU9CzDAACLvADAAClDBs2jPr06ZPqGH9/fzNVk34IywAgIDwCAIBS9u/fn+aYJ0+emKGSjEFYBgABM8sAAKCUWrVq0fbt21Md4+HhYaZq0g89ywAAAACgOJ1Ol+YYa7wIEGEZAAAAABR34sSJNMdER0eboZKMQVgGAAAAAMX5+vpauoRMQVgGAAAAAMXZ2dlZuoRMQVgGAAAAAMX5+fmlOUalsr5oan0VAQAAAECWExISkuaY9FwEaG4IywAAAACguBo1aqQ5xtvb2wyVZAzCMgAAAAAobvr06WmOef36tRkqyRiEZQAAAABQ3CeffGLpEjIFYRkAAAAAFNe8efM0x/j4+JihkoxBWAYAAAAAxR04cCDNMS9evDBDJRmDsAwAAAAAimvatGmaYwICAsxQScbYW7oAALAe+/bts3QJAACQRf31119pjomIiDBDJRmDsAwAQuPGjSkuLs7SZZiFs7MzPhwAAJhRYGBgmmNcXFzMUEnGoA0DAAAAABT34MGDNMfExsaaoZKMQVgGAAAAAMX17t2bKlasSCqVilQqFUmSZDQGPcsAYNXQlgAAAEr55Zdf6NKlS6mOQc8yAFg19CwDAIBS0tOzbI3QhgEAAAAAinv79q2lS8gUzCwDgICZVgAAUEpQUJClS8gUhGUAENCGAQAASqlcuTIdPnzY0mVkGNowAAAAAEBxvr6+li4hUzCzDAACZloBAEApTk5Oli4hUzCzDAAAAACK27Vrl6VLyBTMLAOAgJ5lAABQyqhRo2jkyJGpjnFwcDBTNemHsAwAAsIjAAAo5d69e2mOSUxMNEMlGYOwDAACZpYBAEApHh4eli4hUxCWAQAAAEBxTZs2pcaNG1NsbCxpNBrSaDSkVqtJo9HQ7du3ae3atRQQEGDpMo0gLAMAAACA4piZzp49S8+fPxe3xcfHk0ajoUePHlmwstQhLAOAgLYEAABQSlBQEG3atCnVMREREWaqJv0QlgFAQM8yAAAopXjx4pYuIVOwzjIAAAAAKO7FixeWLiFTEJYBAAAAAExAWAYAAAAAxeXOnTvNMZIkmaGSjEFYBgAAAADFHTp0KM0xzGyGSjIGYRkAAAAAFOfu7m7pEjIFq2EAgIDVIQAAQCnR0dFpjsmZM6cZKskYhGUAELB0HAAAKMXf3z/NMfb21hdNra8iALAYhEcAAFBKetownj17ZoZKMgZhGQAEzCwDAIBSfHx8LF1CpuACPwAAAABQnEplm7HTNqsGAAAAAJtijS0W6YGwDAAAAACKK1myZJpjXFxczFBJxiAsAwAAAIDizp07l+aY2NhYM1SSMQjLAAAAAKC4Xr16UcWKFUmlUpGdnR3Z2dkZjQkICLBAZanDahgAIGB1CAAAUMrGjRvp0qVLqY6JiIgwUzXph7AMAAKWjgMAAKUULVrU0iVkCtowAAAAAEBxr169snQJmYKwDAAAAACKS0hIsHQJmYI2DAAQ0JYAAABKef78uaVLyBSEZQAQ0LMMAABKsdU2DIRlABAQHgEAQCkXL160dAmZgrAMAAJmlgEAQCmVK1emw4cPW7qMDENYBgAB4REAACzJzc3N0iUYQVgGAAEzywAAoJR27dpRZGQkPXr0SNym0+koNjaWEhMTiYjI09PTUuWZhLAMAAAAAIorXrw4LV68OMX7rl69SkOGDDFvQemEsAwAAAAAinv69Cnt2bOHoqKiSKPRGPyJioqydHkmISwDgIC2BAAAUMq6deto//79qY4pWLCgeYrJAIRlABDQswwAAEqxt087dlrjLn8IywAAAACguF69elHhwoVTbMN48eIFhYeHU0REhKXLNIKwDAAAAACK8/LyojZt2qR4X0hICA0cONDMFaWPytIFAAAAAABYK4RlAAAAAAAT0IYBAAAAABbBzJSQkEDR0dGWLsUkhGUAAAAAUNz169dp0KBBqY5Rq9Vmqib90IYBAAAAAIo7evRommPevn1rhkoyBmEZAAAAABTn7+9v6RIyBWEZAAAAABSn0+ksXUKmICwDAAAAgOIaN25MFSpUIJXKdPwMCAgwY0Xpgwv8AEDA9s8AAKCUdevW0eXLl1Mdgx38AMCqNW7cmOLi4ixdhlk4OzvjwwEAgBkFBgamOcbd3d0MlWQM2jAAAAAAQHH37t1LcwyWjgMAAACAbKlp06ZpjrHGnmWEZQAAAABQ3KJFi9IcY409ywjLAAAAAAAm4AI/ABBwwRsAACjF19fX0iVkCmaWAQAAAEBxzGzpEjIFM8sAIGDpOAAAUErZsmXpyJEjli4jwxCWAQAAAEBxrVu3pkaNGpFGo6GYmBhSq9Wk0WhIo9HQnTt3aPPmzVa5GgbCMgAAAACYhYuLC7m4uBjdnjt3btq8ebMFKkobwjIAAAAAKC4hIYF27dpFjx49Mrhdq9VSZGSkhapKG8IyAAjo4QUAAKXMnTuXDhw4kOoYrLMMAAAAANnSrVu3LF1CpmBmGQAErIYBAABK+fHHH6lfv36pjvHx8TFTNemHsAwAAsIjAAAo5ejRo2mOefHihRkqyRiEZQAQMLMMAABKqVChAm3ZsiXVMY6OjmaqJv3QswwAAAAAivPy8kpzjIeHh/KFZBDCMgAAAAAoLj1n89CGAQAAAADZUteuXUmtVtPt27eJiEiSJHFfbGwsRUZGYgc/AAAAAMiePD09afTo0SneFxISQgMHDjRzRemDNgwAAAAAABMwswwAAAAAinvx4gVNmzaNQkJCiMiwDSM+Pt5SZaUJYRkAAAAAFLdp0yYKDg5OdQy2uwYAAACAbKlJkyZpjsmTJ48ZKskYzCwDgIBNOgAAQCkHDx5Mc0xkZKQZKskYhGUAELCDHwAAKKV69eq0bdu2VMe4ubmZqZr0Q1gGAAAAAMWVK1eOjh49anCbVqsljUZDV65coQkTJpCnp6eFqjMNPcsAAAAAYBF2dnbk4eFBuXLlsnQpJmFmGQAAAADM4t69exQVFUU6nY5iY2NJo9GQRqOh+/fvW7o0kxCWAUBADy8AAChlw4YNtHbt2lTHYOk4AAAAAMiW/vjjD0uXkCmYWQYAAathAACAUkaNGkUjR45MdYyDg4OZqkk/hGUAAAAAUFzFihVp3LhxFBkZScxMOp2OoqOj6fnz5xQeHk737t2j3LlzW7pMIwjLACBgphUAAJQSFBREv/76a6pjrLFnGWEZAAS0YQAAgFLKli2bZli2s7MzUzXph7AMAAAAAIqrWrWq2JSEmSkhIYE0Gg2p1Wq6fv06zZ49m/LkyWPhKo0hLAMAAACA4mJjY2nz5s1iTWVJksR9b968sUxR6YCwDAAC2hIAAEApQUFBtH379lTHoGcZAKwaepYBAEApn3/+eZph2cPDw0zVpB/CMgAICI8AAKCUS5cupTnm7du3ZqgkYxCWAUDAzDIAACilUKFCli4hUxCWAQAAAEBxhQsXpjZt2lBUVBS9fv2anj17Rs+ePaPExEQxJiAgwIIVpgxhGQAEzLQCAIBSNm7cSAcPHkx1TJEiRcxUTfohLAOAgDYMAABQiouLS5pjoqOjzVBJxiAsAwAAAIDi+vTpQ2XKlKGoqCjSaDQGfyIjIyk0NJQiIyMtXaYRhGUAAAAAUJybmxs1aNAgxftCQkJo4MCBZq4ofVSWLgAAAAAAwFohLAMAAAAAmICwDAAAAABgAsIyAAAAAIAJuMAPAAAAAMzi9evXFBMTQ7GxsaRWq8VqGHfv3rV0aSYhLAOAgHWHAQBAKdu2baOlS5emOiYiIsJM1aQfwjIACNiUBAAAlOLo6GjpEjIFPcsAAAAAoLjq1avTJ598kuqYgIAAM1WTfgjLAAAAAKC4adOm0dWrV1MdY41tGAjLAAAAAKA4ZrZ0CZmCsAwAAAAAiuvfv3+aY9CGAQAAAADZ0p49e9IcY41tGFgNAwAErA4BAABKef78uaVLyBTMLAMAAACA4m7cuGHpEjIFM8sAIGCdZQAAUMqoUaNoxIgRqY5xcnIyUzXph7AMAALCIwAAKCUsLCzNMfHx8WaoJGMQlgFAwMwyAAAoxdvb29IlZArCMgAAAAAornHjxlSuXDl69eoVvX79mp49eyb+hIeH0927d61y6TiEZQAQMNMKAABK2bJlC61YsSLVMda4dBxWwwAAAAAAxW3evNnSJWQKZpYBQEDPMgAAKKV+/fq0Y8eOVMdYY18zwjIAAAAAKK5v375UuXJlioqKopiYGNJoNKRWq0mj0dCTJ0/o0qVL5OLiYukyjSAsAwAAAIDiHB0d6bPPPkvxvpCQELp06ZKZK0of9CwDAAAAAJiAsAwAAAAAYALCMgAAAACACQjLAAAAAAAmICwDAAAAAJiA1TAAAAAAQHFJSUn0119/0ePHj4mISJIkIiJKTEy0yp37ZAjLACBgkw4AAFDK6tWraevWramOscbQjLAMAAJ28AMAAKVUrFgxzbDs5ORkpmrSD2EZAAAAABRXpUoVOnr0qPh/nU5HsbGxpNFo6J9//qGpU6dSrly5LFhhyhCWAQAAAMBstFotqdVqgy2vX758aemyTEJYBgABbQkAAKCUgwcP0rRp01IdY29vfdHU+ioCAItBzzIAACjlt99+S3PMixcvzFBJxiAsAwAAZAP4cAiW5ujomOYYeTk5a4KwDAAAkA1kpzNHRDh7ZI3y5s1LoaGhqY7RaDRmqib9sIMfAAAAACguX758li4hUxCWAQAAAEBx5cuXT3NMjhw5zFBJxiAsAwAAAIDipk+fnuaY6OhoM1SSMQjLAAAAAKC4mjVrWrqETMEFfgAAAACguP79+1PFihXpxYsXxMwUFxdHL1++pGfPnlF4eDjdu3ePAgICLF2mEYRlAAAAAFDc6dOnaezYsamOefr0qZmqST+0YQAAAACA4g4ePJjmGJ1OZ4ZKMgZhGQAAAAAU5+npaekSMgVhGQAAAAAU16lTJypatGiqY9CzDAAAAADZkp+fH61atSrF+0JCQmjgwIFmrih9EJYBAAAAQHFarZaOHDlCkZGR4jadTkcxMTEUERFhwcpSh7AMAMK+ffssXQIAAGRRa9asod9++y3VMdYYmhGWAUBo3LgxxcXFWboMs3B2dsaHAwAAM/Lz80tzjJ2dnRkqyRhc4AcAAAAAirt//36aY7RarfKFZBDCMgAAAAAormnTpmmOSc/ss7m9V1hOSEigNWvWUKNGjcjf35+cnJzI3d2dihcvTt27d6fTp0+n+T3+/fdfGjp0KJUpU4Zy5MhBbm5uVLRoUerfvz+FhISk+fXx8fF09uxZWrx4MXXp0oWKFy9OKpWKJEkiSZLe5/AAAAAA4APZv39/mmOscQe/TPcsh4eHU7NmzYwCbUJCAt2+fZtu375N69ato0GDBtHChQtTDK6rVq2iQYMGUUJCgsHtYWFhFBYWRkFBQTR37txUlxLp168frVu3LrOHAQAAAABExMy0c+dOWrx4MYWGhlJUVBR99NFHVLt2bRo5ciQFBga+1/evVasWbd++PdUxHh4e7/VvKCFTYTkxMdEgKH/88cf0/fffU/HixSk6OppOnjxJc+fOJY1GQ4sXL6aAgAAaNWqUwff47bffqG/fvkT0bkeXYcOGUd26dcnJyYmCg4Np1qxZFBYWRoMHDyZfX19q3759irUws/h7jhw5qEKFCnTr1i2r/GQCAAAAYK2GDx9O8+bNI39/f2rdujV5eHjQ1atXafXq1fTrr7/S6dOnqUyZMpn+/mXLlqWjR48a3MbMFB8fT8HBwTR69Ghyd3d/38MgnU5Hy5Yto59//plCQ0PJ3t6eypUrR8OHD6eWLVtm+PtlKizv2rVLBOWqVavSiRMnDK5ebNCgAbVs2ZKqVq1KiYmJNHPmTBo+fDjZ27/752JiYui7774jIiJ3d3c6efKkwQ+/UqVK1KFDB6pRowZdu3aNBg8eTE2bNk3xB9ikSROqXbs2Va5cmUqWLEkqlYpq166NsAwAAACQTk+fPqUFCxZQgQIF6OrVqwZbU8+fP5++//57mjdvHv3888/v9e8kJCSQWq2mmJgY0mg0pFarSaPRUFhY2PseAhG9C9/t27en7du3U+HChalnz54UHx9Pu3btolatWtHixYszvPlJpsKyfi/yjz/+mOIyHxUrVqTmzZvTzp076c2bN3Tz5k0qW7YsERHt2bOHnj17RkRE3333XYqfUjw8PGjevHnUoEEDioyMpHXr1qV4cB06dMjMIQBACrCUGgBA9nT//n3S6XRUvXp1g6BMRNS8eXP6/vvv6fnz5+/1b/z55580f/78VMe87zrL27dvp+3bt1P16tXp4MGD5OLiQkRE06ZNo0qVKtHw4cOpefPmVLBgwXR/z0yFZf0e49T6VwoXLpzi11y8eFH8vUmTJia/vnbt2uTs7ExxcXG0bds2q90GESCrwDrLAADZU9GiRcnR0ZFOnTpFb9++Negd/t///kdERPXq1cv093/06BH9/fff711nWnbt2kVERKNHjxZBmYjIx8eHhg4dSkOGDKG1a9fSpEmT0v09MxWWixcvLv5+7949Kl26dIrj7t69S0REkiRR0aJFxe0vX74Uf8+TJ4/p4uztKWfOnBQREUFnzpyhpKQk0coBAAAAAB9Grly5aMaMGTRs2DAqUaIEtWrVSvQsHzlyhPr375/pScu9e/fSnDlziIjEamXMTB07dqRSpUqRRqOhK1eu0L59+8jFxYVWr15NTZo0oXz58mX435LbcAsVKmR0n3zbkSNHMhSWM7V0XKdOncQnjpkzZ6a4gHRwcDD99ddfRET01VdfGXxC0e89joqKMvnvMDO9ffuWiN7NTH+ofhYAAAAAMDR06FD67bffSK1W04oVK2jWrFm0f/9++vTTT+mrr77K1ITlo0ePaM6cOaTT6Uin0xEzi/9u2bKFChUqRFqtViwrFxsbS7/99ht17do1U2f/fHx8iOjd0sTJybfdvn07Q98zU2HZx8eHNm7cSK6urnTq1CmqXLkybdiwgc6ePUuHDh2iSZMmUa1atSghIYEqVKhAc+fONfj6kiVLir+nNiUfHBxMarVa/P+DBw8yUy4AAAAApOGnn36izp070+jRo+nhw4cUHR1NJ06coLi4OKpduzb9+eefGf6ee/fuNXmfTqejzp070+zZsw1WN5OD9ezZs+nx48cZ+vfk9t4ZM2YYtBW+fPmSFixYQEREb968ydD3zPSmJC1btqRLly5Rr1696MqVK9S1a1eqWrUqNWjQgCZOnEiurq60YMECOnHihFGrRZMmTcSnk3nz5tGLFy+Mvr9Op6MxY8YY3BYdHZ3ZcgEAAADAhEOHDtGECRNo4MCBNGrUKMqXLx+5u7tTjRo1aPfu3eTg4EDDhg3L8Pd939XJ9uzZk6HxX331FdWpU4dOnDhBZcuWpUGDBlG/fv2odOnSostBpcpY/M10A3BCQgJt2LCBdu3aZfBpQBYZGUm//PILFSpUyGhNu48++oj69etHS5YsocePH1P16tVp1qxZVKdOHXJ0dKQrV67QxIkTaf/+/eTo6CguDoyNjc1sue/l2LFjFvl3rUF2vQAKx5294LizFxx39pOdjz295BngOnXqGN3n5+dHJUqUEGf8M7IWcmrbV6tUKvroo4/o4cOHpNPpUhyT0bBtb29Pe/fupRkzZtDmzZtp1apV5OnpSW3atKHhw4dTsWLFyNfXN2PfM0Oj/59Go6EmTZqI9ZVHjBhB3bt3p8DAQIqLi6Nz587RTz/9RCdPnqTWrVvTnDlz6Pvvvzf4HnPmzKF79+7Rnj176Pbt29S6dWujf6dSpUpUuXJlWr58ORG923QEAAAAAD4seWLS1PJwz58/J5VKRQ4ODhn6vr1796bevXu/d30Z4eTkRBMmTKAJEyYY3C5PflaqVClD3y9TbRgTJ06kEydOEBFRUFAQzZw5k0qUKEGOjo7k4eFBDRo0oKNHj1KdOnWImemHH36gq1evGh3I7t27afXq1VSuXDmD7bB9fX1pzJgxdOLECYNZa29v78yUCwAAAACpqF69OhG9a49NvvjCihUr6NGjR1S1alVycnKyRHkfxKZNm4iIqGPHjhn6OolT6qFIBTOTj48PvXr1iooVK0a3bt0yOfbUqVNUo0YNIiIaMmRIqgtRR0dHU2RkJLm6upKfn5/oJ6lfvz4dPnyYiN59qpGvckxN7dq1xYWDGTw8AAAAgGxHq9VS3bp16fjx4+Tr60stW7YkLy8vunz5Mh05coRcXFzo2LFjVKVKFUuXmqbk60QTEW3bto06dOhAFStWpDNnzqS4oZ4pGW7DiIyMpFevXhERUfny5VMdW7FiRfH30NDQVMfmyJHDqM1Cq9XSlStXiOjd5ifpCcoAAAAAkDF2dnZ04MABmj9/Pm3dupU2b95MCQkJlCdPHrFChv5qZtbs008/pY8++ohKlixJzs7OdP78eTp27BgFBgbS77//nqGgTJSJsKy/xl5SUlKqYxMTE1P8uvQ6evSo2MAE21oDAAAAKMfJyYlGjRpFo0aNsnQp76VDhw60Y8cOOnv2LCUmJlKhQoVo7Nix9MMPPxjNOKdHhhNszpw5ycPDg96+fZvmrnr6ayintJNKapiZJk6cSEREDg4OZm8OBwAAAADbM3HiRJEhP4QMX+CnUqmoWbNmREQUERFBU6dOTXHc69evaeTIkeL/mzdvbnD/y5cvKT4+PsWv1Wq1NHDgQDp16hQREf34448ZDtsAAAAAAO8rwxf4Eb3rP65YsSLFxMQQEVGLFi2oa9euYum4s2fP0oIFC8SOe/Xq1aNDhw4ZfI9t27bRwIEDqWPHjlSrVi3Knz8/xcXF0T///EOrVq0SvcpNmjShP/74gxwdHVOs5enTp0brJ86YMUNceLh27VqD+2rUqEFFihTJ6CEDAAAAQDaUqbBM9G6nl06dOqW4+56+unXr0rZt24yWfdu2bRu1a9fOdGGSRN27d6dly5alukzJsWPHUlxA25S1a9dSt27d0j0eAAAAALKvTO/gV79+fQoNDaWgoCDau3cvhYSE0Js3b8je3p78/PyocuXK9NVXX1HLli0N1lCW1axZk2bPnk1Hjhyh0NBQioyMJJVKRQEBAVSnTh3q3r07ffrpp+91cAAAAAAA7yPTM8sAAAAAAFldpnbwAwAAAADIDhCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADABYRkAAAAAwASEZQAAAAAAExCWAQAAAABMQFgGAAAAADDh/wBgQGNepDpMAwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 644 ms (started: 2024-10-26 13:18:15 +00:00)\n" ] } ], "source": [ "# da.nullPlot(df)\n", "msno.matrix(df,figsize=(8,5));" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 419, "status": "ok", "timestamp": 1729948697398, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "suaESIfPejvi", "outputId": "05d2c223-f432-4345-e95b-39f934b74dab" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are no null-like values\n", "Don't forget to check for 0's manually\n", "time: 79.1 ms (started: 2024-10-26 13:18:16 +00:00)\n" ] } ], "source": [ "# -1, -999, NA, Tanımsız gibi null yerien geçebilecek değerler var mı diye de bakalım\n", "da.findNullLikeValues(df)" ] }, { "cell_type": "markdown", "metadata": { "id": "0yNgundAejvj" }, "source": [ "### Target bazlı analizler" ] }, { "cell_type": "markdown", "metadata": { "id": "cW8Fp9uRejvj" }, "source": [ "Targetın dağılımına bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 476 }, "executionInfo": { "elapsed": 18, "status": "ok", "timestamp": 1729948697399, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "bvTBNyKFejvj", "outputId": "8843dfe8-a92f-4868-9f5f-8fb6ff70916e" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAroUlEQVR4nO3de3BUZYKw8acJ0gmXBPACCQRhBUoUMKOQjIhhUFHGG5QScRAwLMiMOsjFC0ZHx8uKjAhqLesqW65cR0VUEGZHRQRBQRAnjO4KE29BQsIgIgnXEEN/f1Dpj9gBIeTSgedX1TX2e94+/R6rMj51zunuQCgUCiFJknSSq1fbC5AkSYoGRpEkSRJGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRIA9Wt7AXXJgQMHyM/Pp0mTJgQCgdpejiRJOgqhUIidO3eSlJREvXqHPx9kFB2D/Px8kpOTa3sZkiSpEjZt2kTr1q0Pu90oOgZNmjQBDv5LjY+Pr+XVSJKko1FUVERycnL4v+OHYxQdg7JLZvHx8UaRJEl1zM/d+uKN1pIkSRhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEQP3aXoAiXXD3zNpeghR1Ppk0tLaXIOkE55kiSZIkjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCojCKli1bRiAQqPDx0UcflZu7cuVKevbsScOGDWnZsiV33HEHu3btithncXEx48ePJykpibi4ONLS0li8eHFNHZIkSaoD6tf2Ag7njjvuoHv37uXG2rdvH/7ndevWcemll9KpUyemTJlCXl4eTz75JF988QV//etfy70uMzOTefPmMWbMGDp06MD06dO58sorWbp0KT179qyR45EkSdEtaqPo4osvZsCAAYfdft9999GsWTOWLVtGfHw8AG3btuWWW27hnXfe4fLLLwdgzZo1vPzyy0yaNIm77roLgKFDh9K5c2fuueceVq5cWf0HI0mSol7UXT471M6dO/nxxx8jxouKili8eDGDBw8OBxEcjJ3GjRszd+7c8Ni8efOIiYlh5MiR4bHY2FiGDx/OqlWr2LRpU/UehCRJqhOiNoqGDRtGfHw8sbGx9O7dm7Vr14a3ffbZZ/z4449069at3GsaNGhASkoK2dnZ4bHs7Gw6duxYLp4AUlNTgYOX4Q6nuLiYoqKicg9JknRiirooatCgAddffz3PPPMMCxYs4N/+7d/47LPPuPjii8OxU1BQAEBiYmLE6xMTE8nPzw8/LygoOOw8oNzcn3r88cdJSEgIP5KTk4/r2CRJUvSKunuKevToQY8ePcLPr732WgYMGEDXrl3JysrirbfeYu/evQAEg8GI18fGxoa3A+zdu/ew88q2H05WVhbjxo0LPy8qKjKMJEk6QUVdFFWkffv29OvXj9dff53S0lLi4uKAg5e3fmrfvn3h7QBxcXGHnVe2/XCCwWCFQSVJkk48UXf57HCSk5PZv38/u3fvDl/6KruMdqiCggKSkpLCzxMTEw87Dyg3V5IknbzqTBR9/fXXxMbG0rhxYzp37kz9+vXL3XwNsH//ftatW0dKSkp4LCUlhZycnIibpFevXh3eLkmSFHVR9N1330WM/f3vf+fNN9/k8ssvp169eiQkJHDZZZcxe/Zsdu7cGZ43a9Ysdu3aRUZGRnhswIABlJaWMm3atPBYcXExL774Imlpad4jJEmSgCi8p2jgwIHExcXRo0cPzjjjDD7//HOmTZtGw4YNmThxYnjeY489Ro8ePejVqxcjR44kLy+PyZMnc/nll9O3b9/wvLS0NDIyMsjKymLr1q20b9+eGTNmkJubywsvvFAbhyhJkqJQ1J0p6t+/P9u2bWPKlCncdtttvPLKK1x33XWsXbuWTp06heedf/75vPvuu8TFxTF27FimTZvG8OHDmTdvXsQ+Z86cyZgxY5g1axZ33HEHJSUlLFq0iPT09Jo8NEmSFMUCoVAoVNuLqCuKiopISEigsLAw4ssgq9IFd8+stn1LddUnk4bW9hIk1VFH+9/vqDtTJEmSVBuMIkmSJIwiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAupAFD322GMEAgE6d+4csW3lypX07NmThg0b0rJlS+644w527doVMa+4uJjx48eTlJREXFwcaWlpLF68uCaWL0mS6oiojqK8vDwmTJhAo0aNIratW7eOSy+9lD179jBlyhRGjBjBtGnTyMjIiJibmZnJlClTuOmmm3jmmWeIiYnhyiuv5IMPPqiJw5AkSXVA/dpewJHcdddd/PKXv6S0tJRt27aV23bffffRrFkzli1bRnx8PABt27bllltu4Z133uHyyy8HYM2aNbz88stMmjSJu+66C4ChQ4fSuXNn7rnnHlauXFmzByVJkqJS1J4pWr58OfPmzePpp5+O2FZUVMTixYsZPHhwOIjgYOw0btyYuXPnhsfmzZtHTEwMI0eODI/FxsYyfPhwVq1axaZNm6r1OCRJUt0QlWeKSktLGTVqFCNGjKBLly4R2z/77DN+/PFHunXrVm68QYMGpKSkkJ2dHR7Lzs6mY8eO5eIJIDU1FTh4GS45ObnCdRQXF1NcXBx+XlRUVOljkiRJ0S0qzxQ999xzbNy4kUcffbTC7QUFBQAkJiZGbEtMTCQ/P7/c3MPNA8rN/anHH3+chISE8ONw8SRJkuq+qIui77//ngcffJAHHniA008/vcI5e/fuBSAYDEZsi42NDW8vm3u4eYfuqyJZWVkUFhaGH15qkyTpxBV1l8/+8Ic/0Lx5c0aNGnXYOXFxcQDlLm2V2bdvX3h72dzDzTt0XxUJBoMVBpUkSTrxRFUUffHFF0ybNo2nn3663GWtffv2UVJSQm5uLvHx8eFLX2WX0Q5VUFBAUlJS+HliYiKbN2+ucB5Qbq4kSTp5RdXls82bN3PgwAHuuOMO2rVrF36sXr2anJwc2rVrxyOPPELnzp2pX78+a9euLff6/fv3s27dOlJSUsJjKSkp5OTkRNwkvXr16vB2SZKkqIqizp0788Ybb0Q8zj33XNq0acMbb7zB8OHDSUhI4LLLLmP27Nns3Lkz/PpZs2axa9eucl/gOGDAAEpLS5k2bVp4rLi4mBdffJG0tDRvnpYkSUCUXT477bTT6N+/f8R42XcVHbrtscceo0ePHvTq1YuRI0eSl5fH5MmTufzyy+nbt294XlpaGhkZGWRlZbF161bat2/PjBkzyM3N5YUXXqjmI5IkSXVFVJ0pOhbnn38+7777LnFxcYwdO5Zp06YxfPhw5s2bFzF35syZjBkzhlmzZnHHHXdQUlLCokWLSE9Pr4WVS5KkaBQIhUKh2l5EXVFUVERCQgKFhYURXwZZlS64e2a17Vuqqz6ZNLS2lyCpjjra/37X2TNFkiRJVckokiRJwiiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiQA6tf2AiTpZHLB3TNrewlS1Plk0tDaXgLgmSJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAo4jimbOnMmnn356xDn/+7//y8yZfqW9JEmKfpWOoszMTObPn3/EOQsWLGDYsGGVfQtJkqQaU62Xz0pLS6lXzyt0kiQp+lVrsWRnZ9O8efPqfAtJkqQqUf9YJl9yySXlnk+fPp1ly5ZFzCstLSUvL4/c3FxuuOGG41qgJElSTTimKDo0gAKBALm5ueTm5kbMq1evHs2bNycjI4Onn376OJcoSZJU/Y4pig4cOBD+53r16vHQQw/x4IMPVvmiJEmSatoxRdGhli5dStu2batwKZIkSbWn0lHUq1evqlyHJElSrap0FAHs37+f+fPn8/HHH7Njxw5KS0sj5gQCAV544YXjeRtJkqRqV+ko2rhxI3369OGrr74iFAoddp5RJEmS6oJKf0/R2LFj+fLLLxk8eDBLly7liy++4Jtvvol4fP3118e03//7v/8jIyODf/mXf6Fhw4acdtpppKens3Dhwoi569evp2/fvjRu3JjmzZszZMgQvvvuu4h5Bw4c4IknnqBdu3bExsbStWtXXnrppcoeuiRJOgFV+kzRe++9x6WXXsqMGTOqcj1s3LiRnTt3cvPNN5OUlMSePXt47bXXuPbaa3n++ecZOXIkAHl5eaSnp5OQkMCECRPYtWsXTz75JJ999hlr1qyhQYMG4X3ef//9TJw4kVtuuYXu3buzYMECBg0aRCAQ4MYbb6zS9UuSpLopEDrSta8jiI+P53e/+x1PPPFEVa8pQmlpKRdccAH79u1jw4YNANx2221Mnz6dDRs20KZNGwDeffdd+vTpUy6eNm/eTLt27Rg5ciRTp04FIBQK0atXL7755htyc3OJiYk5qnUUFRWRkJBAYWEh8fHx1XCkB11wtz+iK/3UJ5OG1vYSqoR/31Kk6v77Ptr/flf68llaWhrr16+v7MuPSUxMDMnJyezYsSM89tprr3H11VeHgwjgsssuo2PHjsydOzc8tmDBAkpKSrjtttvCY4FAgFtvvZW8vDxWrVpVI8cgSZKiW6WjaOLEibz33nvMmzevKtcTtnv3brZt28ZXX33FU089xV//+lcuvfRS4ODZn61bt9KtW7eI16WmppKdnR1+np2dTaNGjejUqVPEvLLth1NcXExRUVG5hyRJOjFV+p6iv/zlL/Tu3ZuBAwfSq1cvzj///ApPSQUCAR544IFj3v+dd97J888/Dxz89uzrrrsufPmroKAAgMTExIjXJSYmsn37doqLiwkGgxQUFNCiRQsCgUDEPID8/PzDruHxxx/n4YcfPua1S5KkuqfSUfTQQw+F/3nZsmUV/jAsVD6KxowZw4ABA8jPz2fu3LmUlpayf/9+APbu3QtAMBiMeF1sbGx4TjAYDP/vkeYdTlZWFuPGjQs/LyoqIjk5+ZiPRZIkRb/j+pmP6nT22Wdz9tlnAzB06FAuv/xyrrnmGlavXk1cXBxw8PLWT+3btw8gPCcuLu6o5lUkGAxWGFSSJOnEU2d+5mPAgAH89re/JScnJ3zpq+wy2qEKCgpo3rx5OGYSExNZunQpoVCo3CW0stcmJSXVwOolSVK0q/SN1jWt7DJXYWEhrVq14vTTT2ft2rUR89asWUNKSkr4eUpKCnv27In4pNzq1avD2yVJkip9pmj58uVHPTc9Pf2o527dupUzzjij3FhJSQkzZ84kLi6Oc845B4Drr7+eGTNmsGnTpvB9PkuWLCEnJ4exY8eGX9uvXz/Gjh3Ls88+W+57ip577jlatWpFjx49jnptkiTpxFXpKPrVr34V8Ymuw6noh2IP57e//S1FRUWkp6fTqlUrtmzZwpw5c9iwYQOTJ0+mcePGANx33328+uqr9O7dm9GjR7Nr1y4mTZpEly5dGDZsWHh/rVu3ZsyYMUyaNImSkhK6d+/O/PnzWbFiBXPmzDnqL26UJEkntkpH0YMPPlhhFBUWFvK3v/2N5cuXc9VVV1X4XUJHMnDgQF544QX+8z//k++//54mTZpwwQUX8Kc//Ylrr702PC85OZn333+fcePGce+999KgQQOuuuoqJk+eHHFz9MSJE2nWrBnPP/8806dPp0OHDsyePZtBgwZV7uAlSdIJp9I/8/Fz5s2bR2ZmJsuXL+f888+vjreocf7Mh1R7/JkP6cRV53/m4+cMGDCA3r17k5WVVV1vIUmSVGWq9dNnnTp18rfFJElSnVCtUZSdnU29enXmU/+SJOkkVukbrb/99tsKx3/88Uc2b97M9OnTee+99+jfv39l30KSJKnGVDqK2rZte8SP5IdCIc466yyeeuqpyr6FJElSjal0FA0dOrTCKKpXrx7NmjWje/fu9OvXL/zDq5IkSdGs0lE0ffr0KlyGJElS7fIuaEmSJI7jTFGZ3bt3M3/+fNatW0dRURHx8fGkpKTQv39/GjVqVBVrlCRJqnbHFUWvvfYaI0eOZMeOHRz6xdiBQICmTZvyX//1X1x33XXHvUhJkqTqVukoWrlyJTfeeCMxMTGMGDGC3r17k5iYyJYtW1i6dCkzZszgxhtv5P333+fCCy+syjVLkiRVuUpH0YQJEwgGg3z44Yecd9555bYNHDiQ2267jR49ejBhwgQWLlx43AuVJEmqTpW+0XrVqlUMHDgwIojKdO3alRtuuIGVK1dWenGSJEk1pdJRtGfPHlq0aHHEOS1atGDPnj2VfQtJkqQaU+koatu2LYsXLz7inCVLltC2bdvKvoUkSVKNqXQU3XDDDXzyySfcfPPN5Ofnl9tWUFBAZmYmn3zyCQMHDjzuRUqSJFW3St9oPX78eN566y1mzZrFK6+8Qvv27WnRogX//Oc/+fLLL9m/fz+pqamMHz++KtcrSZJULSp9pqhhw4YsX76chx56iNatW/P555+zdOlSPv/8c1q3bs3DDz/M+++/T1xcXFWuV5IkqVoc15c3BoNBHnzwQR588EF27twZ/kbrJk2aVNX6JEmSakSlzxR9+OGHjBs3ji1btgDQpEkTWrVqFQ6igoICxo0bx0cffVQ1K5UkSapGlY6iKVOmsHDhQlq2bFnh9sTERBYtWsRTTz1V6cVJkiTVlEpH0ccff0zPnj2POCc9Pd0zRZIkqU6odBRt3bqVVq1aHXFOy5Yt2bp1a2XfQpIkqcZUOoqaNm3Kt99+e8Q5GzdupHHjxpV9C0mSpBpT6Sj65S9/yRtvvMGmTZsq3P7tt98yf/58evToUenFSZIk1ZRKR9G4cePYs2cPF110ETNnzqSgoAA4+KmzGTNmcNFFF7F3717uvPPOKlusJElSdan09xSlp6czZcoU7rzzToYNGwZAIBAgFAoBUK9ePZ555hnS09OrZqWSJEnV6Li+vHH06NH07t2b5557jo8//pjCwkKaNm1Kamoqv/vd7+jcuXNVrVOSJKlaHVcUAXTt2pVnn322KtYiSZJUayp9T5EkSdKJxCiSJEnCKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKiMIo+/vhjfv/733PuuefSqFEj2rRpww033EBOTk7E3PXr19O3b18aN25M8+bNGTJkCN99913EvAMHDvDEE0/Qrl07YmNj6dq1Ky+99FJNHI4kSaoj6tf2An7qT3/6Ex9++CEZGRl07dqVLVu2MHXqVM4//3w++ugjOnfuDEBeXh7p6ekkJCQwYcIEdu3axZNPPslnn33GmjVraNCgQXif999/PxMnTuSWW26he/fuLFiwgEGDBhEIBLjxxhtr61AlSVIUibooGjduHH/+85/LRc3AgQPp0qULEydOZPbs2QBMmDCB3bt388knn9CmTRsAUlNT6dOnD9OnT2fkyJEAbN68mcmTJ3P77bczdepUAEaMGEGvXr24++67ycjIICYmpoaPUpIkRZuou3zWo0ePckEE0KFDB84991zWr18fHnvttde4+uqrw0EEcNlll9GxY0fmzp0bHluwYAElJSXcdttt4bFAIMCtt95KXl4eq1atqsajkSRJdUXURVFFQqEQ//znPznttNOAg2d/tm7dSrdu3SLmpqamkp2dHX6enZ1No0aN6NSpU8S8su2HU1xcTFFRUbmHJEk6MdWJKJozZw6bN29m4MCBABQUFACQmJgYMTcxMZHt27dTXFwcntuiRQsCgUDEPID8/PzDvu/jjz9OQkJC+JGcnFwlxyNJkqJP1EfRhg0buP3227nwwgu5+eabAdi7dy8AwWAwYn5sbGy5OXv37j2qeRXJysqisLAw/Ni0adPxHYwkSYpaUXej9aG2bNnCVVddRUJCAvPmzQvfEB0XFwcQPht0qH379pWbExcXd1TzKhIMBisMKkmSdOKJ2jNFhYWF/PrXv2bHjh289dZbJCUlhbeVXfoqu4x2qIKCApo3bx6OmcTERLZs2UIoFIqYB5TbryRJOnlFZRTt27ePa665hpycHBYtWsQ555xTbnurVq04/fTTWbt2bcRr16xZQ0pKSvh5SkoKe/bsKffJNYDVq1eHt0uSJEVdFJWWljJw4EBWrVrFq6++yoUXXljhvOuvv55FixaVu89nyZIl5OTkkJGRER7r168fp5xyCs8++2x4LBQK8dxzz9GqVSt69OhRfQcjSZLqjKi7p+jOO+/kzTff5JprrmH79u3hL2ssM3jwYADuu+8+Xn31VXr37s3o0aPZtWsXkyZNokuXLgwbNiw8v3Xr1owZM4ZJkyZRUlJC9+7dmT9/PitWrGDOnDl+caMkSQKiMIrWrVsHwMKFC1m4cGHE9rIoSk5O5v3332fcuHHce++9NGjQgKuuuorJkydH3Bw9ceJEmjVrxvPPP8/06dPp0KEDs2fPZtCgQdV+PJIkqW6IuihatmzZUc8999xzefvtt392Xr169cjKyiIrK+s4ViZJkk5kUXdPkSRJUm0wiiRJkjCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiRJkgCjSJIkCYjCKNq1axd//OMf6du3L82bNycQCDB9+vQK565fv56+ffvSuHFjmjdvzpAhQ/juu+8i5h04cIAnnniCdu3aERsbS9euXXnppZeq+UgkSVJdEnVRtG3bNh555BHWr1/Peeedd9h5eXl5pKen8+WXXzJhwgTuuusu/vKXv9CnTx/2799fbu7999/P+PHj6dOnD//+7/9OmzZtGDRoEC+//HJ1H44kSaoj6tf2An4qMTGRgoICWrZsydq1a+nevXuF8yZMmMDu3bv55JNPaNOmDQCpqan06dOH6dOnM3LkSAA2b97M5MmTuf3225k6dSoAI0aMoFevXtx9991kZGQQExNTMwcnSZKiVtSdKQoGg7Rs2fJn57322mtcffXV4SACuOyyy+jYsSNz584Njy1YsICSkhJuu+228FggEODWW28lLy+PVatWVe0BSJKkOinqouhobN68ma1bt9KtW7eIbampqWRnZ4efZ2dn06hRIzp16hQxr2y7JElS1F0+OxoFBQXAwUttP5WYmMj27dspLi4mGAxSUFBAixYtCAQCEfMA8vPzD/s+xcXFFBcXh58XFRVVxfIlSVIUqpNnivbu3QscvNT2U7GxseXm7N2796jmVeTxxx8nISEh/EhOTj7utUuSpOhUJ6MoLi4OoNxZnDL79u0rNycuLu6o5lUkKyuLwsLC8GPTpk3HvXZJkhSd6uTls7JLX2WX0Q5VUFBA8+bNw2eHEhMTWbp0KaFQqNwltLLXJiUlHfZ9gsFghWeZJEnSiadOnilq1aoVp59+OmvXro3YtmbNGlJSUsLPU1JS2LNnD+vXry83b/Xq1eHtkiRJdTKKAK6//noWLVpU7pLWkiVLyMnJISMjIzzWr18/TjnlFJ599tnwWCgU4rnnnqNVq1b06NGjRtctSZKiU1RePps6dSo7duwIfzJs4cKF5OXlATBq1CgSEhK47777ePXVV+nduzejR49m165dTJo0iS5dujBs2LDwvlq3bs2YMWOYNGkSJSUldO/enfnz57NixQrmzJnjFzdKkiQgSqPoySefZOPGjeHnr7/+Oq+//joAgwcPDn8S7P3332fcuHHce++9NGjQgKuuuorJkydH3Ac0ceJEmjVrxvPPP8/06dPp0KEDs2fPZtCgQTV6XJIkKXpFZRTl5uYe1bxzzz2Xt99++2fn1atXj6ysLLKyso5zZZIk6URVZ+8pkiRJqkpGkSRJEkaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkScBJFUXFxMePHjycpKYm4uDjS0tJYvHhxbS9LkiRFiZMmijIzM5kyZQo33XQTzzzzDDExMVx55ZV88MEHtb00SZIUBerX9gJqwpo1a3j55ZeZNGkSd911FwBDhw6lc+fO3HPPPaxcubKWVyhJkmrbSXGmaN68ecTExDBy5MjwWGxsLMOHD2fVqlVs2rSpFlcnSZKiwUlxpig7O5uOHTsSHx9fbjw1NRWAdevWkZycHPG64uJiiouLw88LCwsBKCoqqsbVQmnx3mrdv1QXVfffXU3x71uKVN1/32X7D4VCR5x3UkRRQUEBiYmJEeNlY/n5+RW+7vHHH+fhhx+OGK8ooCRVr4R//11tL0FSNampv++dO3eSkJBw2O0nRRTt3buXYDAYMR4bGxveXpGsrCzGjRsXfn7gwAG2b9/OqaeeSiAQqJ7FKmoUFRWRnJzMpk2bIs4ySqrb/Ps+uYRCIXbu3ElSUtIR550UURQXF1fuMliZffv2hbdXJBgMRsRU06ZNq3x9im7x8fH+n6Z0gvLv++RxpDNEZU6KG60TExMpKCiIGC8b+7lylCRJJ76TIopSUlLIycmJuJFr9erV4e2SJOnkdlJE0YABAygtLWXatGnhseLiYl588UXS0tK8cVoVCgaD/PGPf6zwfjRJdZt/36pIIPRzn087Qdxwww288cYbjB07lvbt2zNjxgzWrFnDkiVLSE9Pr+3lSZKkWnbSRNG+fft44IEHmD17Nj/88ANdu3bl0Ucf5YorrqjtpUmSpChw0kSRJEnSkZwU9xRJkiT9HKNIkiQJo0iKUFxczPjx40lKSiIuLo60tDQWL15c28uSdJx27drFH//4R/r27Uvz5s0JBAJMnz69tpelKGIUST+RmZnJlClTuOmmm3jmmWeIiYnhyiuv5IMPPqjtpUk6Dtu2beORRx5h/fr1nHfeebW9HEUhb7SWDrFmzRrS0tKYNGkSd911F3Dwk4udO3fmjDPOYOXKlbW8QkmVVVxczA8//EDLli1Zu3Yt3bt358UXXyQzM7O2l6Yo4Zki6RDz5s0jJiaGkSNHhsdiY2MZPnw4q1atYtOmTbW4OknHIxgM0rJly9pehqKYUSQdIjs7m44dO0b8QGRqaioA69atq4VVSZJqglEkHaKgoIDExMSI8bKx/Pz8ml6SJKmGGEXSIfbu3VvhbyHFxsaGt0uSTkxGkXSIuLg4iouLI8b37dsX3i5JOjEZRdIhEhMTKSgoiBgvG0tKSqrpJUmSaohRJB0iJSWFnJwcioqKyo2vXr06vF2SdGIyiqRDDBgwgNLSUqZNmxYeKy4u5sUXXyQtLY3k5ORaXJ0kqTrVr+0FSNEkLS2NjIwMsrKy2Lp1K+3bt2fGjBnk5ubywgsv1PbyJB2nqVOnsmPHjvAnSRcuXEheXh4Ao0aNIiEhoTaXp1rmN1pLP7Fv3z4eeOABZs+ezQ8//EDXrl159NFHueKKK2p7aZKOU9u2bdm4cWOF27755hvatm1bswtSVDGKJEmS8J4iSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJKkCG3bto2qn3uItvVIJyqjSFKN2L17NxMmTOD888+ncePGBINBWrduzcUXX0xWVhZfffVVbS9R0kmufm0vQNKJb+fOnfTs2ZNPP/2U9u3bM3jwYE499VS2bdvGmjVrmDhxImeddRZnnXVWbS8VgCVLltT2EiTVAqNIUrV7+umn+fTTTxkxYgTTpk0jEAiU2/7NN99QXFxcS6uLFC1xJqlmeflMUrVbtWoVALfffntEEAG0a9eOs88+O/w8EAjwq1/9qsJ9VXR/TWZmJoFAgK+//prJkydzzjnnEAwGyczM5NFHHyUQCDBz5swK9/f6668TCAS4//77D/seldkHHIy9ESNG0KZNG4LBIImJiWRmZrJx48YK97NgwQK6d+9OXFwcLVq04JZbbuGHH36ocK6kqmcUSap2p556KgA5OTnV+j6jRo1iwoQJdOvWjTFjxtClSxcGDx5MIBBg9uzZFb5m1qxZAAwZMuSw+63MPlavXs0vfvELZsyYwQUXXMDo0aO5+OKLmTNnDqmpqXz99dfl9jFz5kz69+9PTk4OQ4YM4eabb+bDDz/ksssuY//+/cf070FSJYUkqZotWLAgBISaNGkSuvPOO0Nvv/12aNu2bYedD4R69epV4bYzzzwzdOaZZ5Ybu/nmm0NAqHXr1qGNGzdGvKZnz56hmJiYUH5+frnx77//PtSgQYNQt27dfvY9jmUf+/fvD7Vt2zbUpEmT0N/+9rdy81esWBGKiYkJXX311eGxwsLCUHx8fKhRo0ahf/zjH+X2k56eHgIi1iOp6nmmSFK1u/baa5k8eTKhUIjJkydzxRVXcNppp9G+fXt+//vf88UXX1TJ+9x99920adMmYnzIkCGUlpby0ksvlRt/5ZVX2L9/P4MHD/7ZfR/LPhYtWkRubi533303v/jFL8rN79mzJ/369eN//ud/KCoqAmD+/PkUFRXxr//6r3Ts2DE895RTTuGxxx77+QOXVCWMIkk1Yty4ceTn5zN37lzGjBlDz549+fbbb/mP//gPunbtyptvvnnc75Gamlrh+A033EAwGAxf5ioze/Zs6tevz29+85uf3fex7OOjjz4C4B//+AcPPfRQxGPLli0cOHAgfDnx73//OwAXX3xxxPteeOGF1K/vZ2KkmuBfmqQa06RJEzIyMsjIyACgsLCQ++67j2effZbhw4ezefNmGjRoUOn9t2jRosLxpk2bcvXVV/Paa6/x+eefc8455/DVV1+xcuVKrrzySs4444yf3fex7GP79u0AzJkz54j73L17N3Dw3wNQ4TpiYmLC92RJql6eKZJUaxISEpg6dSpnnnkm27Zt47PPPgMOfvrsxx9/rPA1ZQFRkYo+2Vam7CbosjM9ZTdNH+kG68ruIz4+HoCFCxcSCoUO++jVqxdw8N8DwNatWyPes7S0lO+///6o1yip8owiSbUqEAjQqFGjcmPNmjVj8+bNEXNzc3PZsWNHpd7nyiuv5NRTT+XPf/4zBw4cYM6cOTRp0oR+/fpV+T7S0tKA//9VBD/nvPPOA2DFihUR21atWnXYQJRUtYwiSdXu+eef5+OPP65w2/z581m/fj1Nmzalc+fOAHTv3p3c3Fzef//98Lz9+/czbty4Sq/hlFNOYeDAgXz77bc88cQTfPHFF1x//fXExcVV+T769etHmzZtmDJlCsuXL4/YT0lJCR988EG5+fHx8fz3f/93ua8tKCkp4Q9/+EMljlZSZQRCoVCothch6cTWv39/FixYQPv27bnoootISkpi9+7dZGdns2LFCurVq8fs2bPDNyu/88479O3bl7i4OH7zm9/QsGFDFi9eTNOmTdm4cSMNGjQgNzc3vP/MzExmzJjBN998c8QfTv3oo4+48MILOeWUUygpKWHJkiVccsklEfPK9nHoexzrPj7++GN+/etf8/3333PJJZfQpUsXAoEAGzduZMWKFZx66qls2LAhPH/GjBlkZmYSHx/PjTfeSEJCAosWLSIuLo6CgoKIY5ZUDWrruwAknTw2bNgQeuKJJ0J9+vQJtWvXLhQbGxuKjY0NnXXWWaGbb745tHbt2ojXvPrqq6EuXbqEGjRoEGrZsmVo1KhRoZ07dx7xe4q++eabn11Lhw4dwt9pVFpaWuGcit7jWPcRCoVCeXl5odGjR4c6dOgQCgaDofj4+FCnTp1CI0aMCC1ZsiRi/htvvBG64IILQsFgMHTGGWeERowYEdq+ffvPrkdS1fBMkSRJEt5TJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSQD8P4jGubLKFmcqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 270 ms (started: 2024-10-26 13:18:16 +00:00)\n" ] } ], "source": [ "sns.countplot(x=df[\"Survived\"]);" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 196 }, "executionInfo": { "elapsed": 14, "status": "ok", "timestamp": 1729948697399, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Kn728dhzejvj", "outputId": "87ebc426-28ca-495c-bee1-1482bb388796" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
proportion
Survived
00.616162
10.383838
\n", "

" ], "text/plain": [ "Survived\n", "0 0.616162\n", "1 0.383838\n", "Name: proportion, dtype: float64" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 5.46 ms (started: 2024-10-26 13:18:17 +00:00)\n" ] } ], "source": [ "df.Survived.value_counts(normalize=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "0DSs__GDejvk" }, "source": [ "Çok büyük olmamakla birlikte hafif bir imbalance sözkonusu." ] }, { "cell_type": "markdown", "metadata": { "id": "er6W_Gueejvk" }, "source": [ "\n", "Target bazında numeriklerin **ortalama** değerlerine bakalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 325 }, "executionInfo": { "elapsed": 883, "status": "ok", "timestamp": 1729948698270, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "ZrzbTSo4ejvl", "outputId": "332037cc-7b0a-4b65-befe-9614844a899c" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAEiCAYAAACP/f82AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJr0lEQVR4nO3de1RU5f4/8PeAMTOKICgoIHgJUROMUiEVMS8ooVIeIe2ooD+UVuUt9aj4zdLOEVTAtLwkLQ6I0fEoailapqYcDRItMCoRzVCBMbzBgMKgsH9/tJichssMcwXfr7VmrebZz372Z4b55HxmP/vZIkEQBBAREREREbWQhakDICIiIiKi1o1FBRERERER6YRFBRERERER6YRFBRERERER6YRFBRERERER6YRFBRERERER6YRFBRERERER6YRFBRERERER6YRFBRERERER6YRFBRG1Cj179sSsWbOUz5OTkyESiXD+/HnTBUX0BGCuEZEmWFSYqW3btkEkEsHX19fUoRAZXF5eHkJCQtCjRw9IJBK4uLggICAAH330kV7Gr6urQ0pKCnx9fWFvb4+OHTvCw8MDYWFh+O677/RyDCJ9q/8yX/+QSCTw8PDAvHnz8Pvvv5s6PCKz8ddcefyxYsUKU4f3xGhn6gCoYampqejZsyeys7Nx5coVuLu7mzokIoPIzMzEqFGj4Obmhrlz56Jbt264ceMGvvvuO2zevBnz588HAFy6dAkWFi37HWTBggXYunUrXn75ZUyfPh3t2rXDpUuX8OWXX6J379544YUX9PmSiPTq/fffR69evVBdXY0zZ85g+/btOHLkCH766Se0b9/e1OERmY36XHmcp6eniaJ58rCoMEO//fYbMjMzsX//frz++utITU3Fe++9Z+qwiAxi7dq1sLW1xblz59CpUyeVbaWlpcr/FovFLRr/999/x7Zt2zB37lwkJCSobNu0aRNu3brVonGJjOWll17C4MGDAQBz5sxB586dsXHjRnzxxRd47bXXWjRmXV0dampqIJFI9BkqkUk9niv6cP/+fXTo0EFv47V1nP5khlJTU2FnZ4cJEyYgJCQEqampan3u3LmDmTNnwsbGBp06dUJ4eDguXLgAkUiE5ORklb75+fkICQmBvb09JBIJBg8ejIMHDxrp1RA17ddff8WAAQPUCgoAcHR0VP73X6+pqPfgwQO8/vrr6Ny5M2xsbBAWFoZ79+4pt//2228QBAHDhw9X21ckEqkco/4U+v/+978mxyQypdGjRwP447MdFxeHYcOGoXPnzpBKpRg0aBDS0tLU9hGJRJg3bx5SU1MxYMAAiMVifPXVVwCA4uJiREREwNnZGWKxGL169cIbb7yBmpoalTEUCgUWL14MBwcHdOjQAZMnT2ZRTmbv2rVrePPNN9G3b19IpVJ07twZoaGhKCwsVOlX////jIwMvPnmm3B0dET37t2V27/88kuMGDECHTp0QMeOHTFhwgT8/PPPRn415o1nKsxQamoq/va3v8HKygqvvfYatm/fjnPnzmHIkCEA/viFadKkScjOzsYbb7yBfv364YsvvkB4eLjaWD///DOGDx8OFxcXrFixAh06dMCePXvwyiuvYN++fZg8ebKxXx6Rih49eiArKws//fRTi05Tz5s3D506dcLq1atx6dIlbN++HdeuXcOpU6cgEonQo0cPAMDevXsRGhqq0XSR5sYkMqVff/0VANC5c2f861//QnBwMKZPn46amhrs3r0boaGhSE9Px4QJE1T2++abb7Bnzx7MmzcPXbp0Qc+ePVFSUgIfHx+UlZUhMjIS/fr1Q3FxMdLS0vDgwQNYWVkp958/fz7s7Ozw3nvvobCwEJs2bcK8efPw3//+16ivn6gx5eXluH37tkrbuXPnkJmZiWnTpqF79+4oLCzE9u3b8eKLL+KXX35R+zfhzTffhIODA959913cv38fALBr1y6Eh4dj/PjxWL9+PR48eIDt27fDz88POTk56Nmzp7FeonkTyKycP39eACAcO3ZMEARBqKurE7p37y4sXLhQ2Wffvn0CAGHTpk3KttraWmH06NECACEpKUnZPmbMGMHLy0uorq5WttXV1QnDhg0T+vTpY/DXQ9Scr7/+WrC0tBQsLS2FoUOHCsuWLROOHj0q1NTUqPTr0aOHEB4ernyelJQkABAGDRqk0nfDhg0CAOGLL75QtoWFhQkABDs7O2Hy5MlCXFyccPHiRbVYtBmTyNDqP4/Hjx8Xbt26Jdy4cUPYvXu30LlzZ0EqlQpFRUXCgwcPVPapqakRPD09hdGjR6u0AxAsLCyEn3/+WaU9LCxMsLCwEM6dO6d2/Lq6OpU4xo4dq2wTBEF4++23BUtLS6GsrExfL5moReo/ow09/pojgiAIWVlZAgAhJSVFbQw/Pz/h0aNHyvaKigqhU6dOwty5c1XGuHnzpmBra6vW/iTj9Cczk5qaiq5du2LUqFEA/jhlPXXqVOzevRu1tbUAgK+++gpPPfUU5s6dq9zPwsICb731lspYd+/exTfffINXX30VFRUVuH37Nm7fvo07d+5g/PjxuHz5MoqLi4334ogaEBAQgKysLAQHB+PChQvYsGEDxo8fDxcXF42m6UVGRuKpp55SPn/jjTfQrl07HDlyRNmWlJSELVu2oFevXjhw4ACWLl2K/v37Y8yYMQ3mgCZjEhnL2LFj4eDgAFdXV0ybNg3W1tY4cOAAXFxcIJVKlf3u3buH8vJyjBgxAj/88IPaOCNHjsQzzzyjfF5XV4fPP/8ckyZNanAe+l/PykVGRqq0jRgxArW1tbh27Zo+XiaRzrZu3Ypjx46pPB7PkYcPH+LOnTtwd3dHp06dGsyTuXPnwtLSUvn82LFjKCsrw2uvvab8HnX79m1YWlrC19cXJ0+eNMpraw04/cmM1NbWYvfu3Rg1ahR+++03Zbuvry/i4+Nx4sQJjBs3DteuXYOTk5PaKbu/rhB15coVCIKAVatWYdWqVQ0es7S0FC4uLvp/MURaGDJkCPbv34+amhpcuHABBw4cwAcffICQkBDk5uaqfBH6qz59+qg8t7a2hpOTk8p82fqi+6233sKdO3fw7bff4uOPP8aXX36JadOm4fTp01qPSWQsW7duhYeHB9q1a4euXbuib9++ypXQ0tPT8a9//Qu5ublQKBTKfRqapvfXVXFu3boFuVyu8bRDNzc3led2dnYAwOuNyGz4+PioFchVVVWIiYlBUlISiouLIQiCclt5ebnaGH/Nk8uXLwP481qmv7KxsdE17DaDRYUZ+eabbyCTybB7927s3r1bbXtqairGjRun8Xh1dXUAgKVLl2L8+PEN9uFStWROrKysMGTIEAwZMgQeHh6YPXs29u7dq9fVzzp37ozg4GAEBwfjxRdfREZGBq5du6a89oLI3DT0RQkATp8+jeDgYPj7+2Pbtm1wcnLCU089haSkJHz22Wdq/R//xbYlHv/19nGPf0kjMjfz589HUlISFi1ahKFDh8LW1hYikQjTpk1Tfk963F/zpL7Prl270K1bN7X+7drxq3Q9vhNmJDU1FY6Ojti6davatv379+PAgQP4+OOP0aNHD5w8eRIPHjxQOVtx5coVlX169+4NAHjqqacwduxYwwZPpGf1X6JkMlmT/S5fvqycLggAlZWVkMlkCAoK0ugYGRkZkMlkKkWFLmMSGcu+ffsgkUhw9OhRlSWXk5KSNNrfwcEBNjY2+OmnnwwVIpHJpaWlITw8HPHx8cq26upqlJWVabT/008/DeCP1Qj5XappvKbCTFRVVWH//v2YOHEiQkJC1B7z5s1DRUUFDh48iPHjx+Phw4f45JNPlPvX1dWpFSOOjo548cUXsWPHjga/mHEpQDIHJ0+ebPCXzvrrF/r27dvk/gkJCXj48KHy+fbt2/Ho0SO89NJLAICbN2/il19+UduvpqYGJ06cgIWFhdoZu+bGJDIHlpaWEIlEyuvtAKCwsBCff/65RvtbWFjglVdewaFDh3D+/Hm17TwDQW2BpaWl2mf5o48+UsmbpowfPx42NjaIjo5W+XehHr9L/YlnKszEwYMHUVFRgeDg4Aa3v/DCC3BwcEBqaioOHDgAHx8fLFmyBFeuXEG/fv1w8OBB3L17F4DqXNqtW7fCz88PXl5emDt3Lnr37o3ff/8dWVlZKCoqwoULF4zy+ogaM3/+fDx48ACTJ09Gv379UFNTg8zMTPz3v/9Fz549MXv27Cb3r6mpwZgxY/Dqq6/i0qVL2LZtG/z8/JS5VFRUBB8fH4wePRpjxoxBt27dUFpaiv/85z+4cOECFi1ahC5dumg1JpE5mDBhAjZu3IjAwED8/e9/R2lpKbZu3Qp3d3f8+OOPGo0RHR2Nr7/+GiNHjkRkZCT69+8PmUyGvXv34syZMw3eP4aoNZk4cSJ27doFW1tbPPPMM8jKysLx48fRuXNnjfa3sbHB9u3bMXPmTDz//POYNm0aHBwccP36dRw+fBjDhw/Hli1bDPwqWgcWFWYiNTUVEokEAQEBDW63sLDAhAkTkJqairKyMhw+fBgLFy7Ezp07YWFhgcmTJ+O9997D8OHDVe6Q+swzz+D8+fNYs2YNkpOTcefOHTg6OuK5557Du+++a6yXR9SouLg47N27F0eOHEFCQgJqamrg5uaGN998E++8806zX2q2bNmC1NRUvPvuu3j48CFee+01fPjhh8rium/fvti0aROOHDmCbdu24ffff4dEIoGnpyc++eQTREREaD0mkTkYPXo0EhMTsW7dOixatAi9evXC+vXrUVhYqHFR4eLigrNnz2LVqlVITU2FXC6Hi4sLXnrpJY3u6UJk7jZv3gxLS0ukpqaiuroaw4cPx/Hjxxu91rQhf//73+Hs7Ix169YhNjYWCoUCLi4uGDFiRLM/fD1JRALPb7YZn3/+OSZPnowzZ840ePdgImpacnIyZs+ejXPnzjV4YSwRERE1jNdUtFJVVVUqz2tra/HRRx/BxsYGzz//vImiIiIiIqInEac/tVLz589HVVUVhg4dCoVCgf379yMzMxPR0dE6LxtIRERERKQNFhWt1OjRoxEfH4/09HRUV1fD3d0dH330EebNm2fq0IiIiIjoCcNrKoiIiIiISCe8poKIiIiIiHTCooKIiIjIwE6dOgWRSNTg47vvvlPpm5mZCT8/P7Rv3x7dunXDggULUFlZaaLIiTRj9tdU1NXVoaSkBB07duQa8dRigiCgoqICzs7OsLBo3bU0c4L0hXlBpMoYObFgwQIMGTJEpc3d3V3537m5uRgzZgz69++PjRs3oqioCHFxcbh8+TK+/PJLrY7FvCB90DQvzL6oKCkpgaurq6nDoDbixo0b6N69u6nD0AlzgvSNeUGkypA5MWLECISEhDS6feXKlbCzs8OpU6dgY2MDAOjZsyfmzp2Lr7/+GuPGjdP4WMwL0qfm8sLsi4qOHTsC+OOF1CcXkbbkcjlcXV2Vn6fWjDlB+sK8IFJlrJyoqKiAVCpFu3aqX8PkcjmOHTuGt99+W+VzHBYWhrfffht79uzRqqhgXpA+aJoXZl9U1J+us7GxYUKQztrC6V/mBOkb84JIlSFzYvbs2aisrISlpSVGjBiB2NhYDB48GACQl5eHR48eKZ/Xs7Kygre3N3JycrQ6FvOC9Km5vDD7ooKIiIiotbOyssKUKVMQFBSELl264JdffkFcXBxGjBiBzMxMPPfcc5DJZAAAJycntf2dnJxw+vTpJo+hUCigUCiUz+VyuX5fBFETWFQQERERGdiwYcMwbNgw5fPg4GCEhIRg4MCBiIqKwldffYWqqioAgFgsVttfIpEotzcmJiYGa9as0W/gRBpq3ct9EBEREbVS7u7uePnll3Hy5EnU1tZCKpUCgMrZhnrV1dXK7Y2JiopCeXm58nHjxg2DxE3UEJ6pICIiIjIRV1dX1NTU4P79+8ppT/XToB4nk8ng7Ozc5FhisbjBsxxExsAzFUREREQmcvXqVUgkElhbW8PT0xPt2rXD+fPnVfrU1NQgNzcX3t7epgmSSANaFRU///wzQkND0bt3b7Rv3x5dunSBv78/Dh06pNb34sWLCAwMhLW1Nezt7TFz5kzcunVLb4ETERERtRYNfQe6cOECDh48iHHjxsHCwgK2trYYO3YsPv30U1RUVCj77dq1C5WVlQgNDTVmyERa0Wr607Vr11BRUYHw8HA4OzvjwYMH2LdvH4KDg7Fjxw5ERkYCAIqKiuDv7w9bW1tER0ejsrIScXFxyMvLQ3Z2NqysrAzyYoiIiIjM0dSpUyGVSjFs2DA4Ojril19+QUJCAtq3b49169Yp+61duxbDhg3DyJEjERkZiaKiIsTHx2PcuHEIDAw04SsgappIEARBlwFqa2sxaNAgVFdXIz8/HwDw5ptvIjk5Gfn5+XBzcwMAHD9+HAEBASrFhybkcjlsbW1RXl6u8xrLPVcc1ml/QyhcN8HUITwR9Pk5MjW9v5bVtrqPoU+ry00dwRODeUG68NrpZeoQVOSF5+k8hiE/Rx9++CFSU1Nx5coVyOVyODg4YMyYMXjvvffg7u6u0vfMmTNYvnw5fvjhB3Ts2BGvvvoqYmJitL4pH/PCuC7262/qENT0z7+o8xiafo50vlDb0tISrq6uOHfunLJt3759mDhxorKgAICxY8fCw8MDe/bs0aqoICIiImrtFixYgAULFmjU18/PD99++62BIyLSrxYVFffv30dVVRXKy8tx8OBBfPnll5g6dSoAoLi4GKWlpWp3gwQAHx8fHDlyRLeIiYiIiIjIrLSoqFiyZAl27NgBALCwsMDf/vY3bNmyBQCavRvk3bt3oVAoGl3yjHeDJCIiIiJqXVq0pOyiRYtw7Ngx7Ny5Ey+99BJqa2tRU1MDAM3eDfLxPg2JiYmBra2t8uHq6tqSEImIiIiIyEhaVFT069cPY8eORVhYGNLT01FZWYlJkyZBEIRm7wYJoMk7QvJukERERERErYtebn4XEhKCc+fOoaCgoNm7Qdrb2zd5t0exWAwbGxuVBxERERERmS+9FBX105nKy8vh4uICBwcHtbtBAkB2djbvBklERERE1MZoVVSUlpaqtT18+BApKSmQSqV45plnAABTpkxBenq6ytSlEydOoKCggHeDJCIiIiJqY7Ra/en111+HXC6Hv78/XFxccPPmTaSmpiI/Px/x8fGwtrYGAKxcuRJ79+7FqFGjsHDhQlRWViI2NhZeXl6YPXu2QV4IERERERGZhlZFxdSpU5GYmIjt27fjzp076NixIwYNGoT169cjODhY2c/V1RUZGRlYvHgxVqxYASsrK0yYMAHx8fFNXk9BREREREStj1ZFxbRp0zBt2jSN+g4YMABHjx5tUVBERERERNR66OVCbSIiIiIienKxqCDSkkKhwPLly+Hs7AypVApfX18cO3as2f1Wr14NkUik9qi/KSQRERFRa6XV9Cdq+3quOGzqENQUrptg6hBUzJo1C2lpaVi0aBH69OmD5ORkBAUF4eTJk/Dz82t2/+3btysXNQAAS0tLQ4ZLREREZHAsKoi0kJ2djd27dyM2NhZLly4FAISFhcHT0xPLli1DZmZms2OEhISgS5cuhg6ViIiIyGg4/YlIC2lpabC0tERkZKSyTSKRICIiAllZWSr3ZmmMIAiQy+UQBMGQoRIREREZDYsKIi3k5OTAw8MDNjY2Ku0+Pj4AgNzc3GbH6N27N2xtbdGxY0fMmDEDv//+uyFCJSIiIjIaTn8i0oJMJoOTk5Nae31bSUlJo/va2dlh3rx5GDp0KMRiMU6fPo2tW7ciOzsb58+fVytU6ikUCigUCuVzuVyu46sgIiIi0i8WFURaqKqqavAGjvUrOFVVVTW678KFC1WeT5kyBT4+Ppg+fTq2bduGFStWNLhfTEwM1qxZo0PURERERIbF6U9EWpBKpSpnDepVV1crt2vj73//O7p164bjx4832icqKgrl5eXKhybXbRAREREZE4sKIi04OTlBJpOptde3OTs7az2mq6sr7t692+h2sVgMGxsblQeROWnpvVv+KiAgACKRCPPmzTNAlEREZEgsKoi04O3tjYKCArXrGs6ePavcrg1BEFBYWAgHBwd9hUhkdLNmzcLGjRsxffp0bN68GZaWlggKCsKZM2c0HmP//v3IysoyYJRERGRILCqItBASEoLa2lokJCQo2xQKBZKSkuDr6wtXV1cAwPXr15Gfn6+y761bt9TG2759O27duoXAwEDDBk5kIPX3bomJiUFsbCwiIyPxzTffoEePHli2bJlGY1RXV2PJkiVYvny5gaMlIiJD4YXaRFrw9fVFaGgooqKiUFpaCnd3d+zcuROFhYVITExU9gsLC0NGRobKvSh69OiBqVOnwsvLCxKJBGfOnMHu3bvh7e2N119/3RQvh0hnTd27ZeXKlbhx44ay2G7Mhg0bUFdXh6VLl+Ldd981dMhERGQALCqItJSSkoJVq1Zh165duHfvHgYOHIj09HT4+/s3ud/06dORmZmJffv2obq6WvlL7v/93/+hffv2RoqeSL80uXdLU0XF9evXsW7dOvz73//WeqEDIiIyHywqiLQkkUgQGxuL2NjYRvucOnVKre2TTz4xYFREpqHLvVsAYMmSJXjuuecwbdo0rY7L+7cQEZkXXlNBREQtpsu9W06ePIl9+/Zh06ZNWh83JiYGtra2ykdzU6yIzNHatWshEong6empti0zMxN+fn5o3749unXrhgULFqCystIEURJphmcqiIias9rW1BGoW11u6ggAtPzeLY8ePcKCBQswc+ZMDBkyROvjRkVFYfHixcrncrmchQW1KkVFRYiOjkaHDh3UtuXm5mLMmDHo378/Nm7ciKKiIsTFxeHy5cv48ssvTRAtUfNYVBARUYs5OTmhuLhYrb25e7ekpKTg0qVL2LFjBwoLC1W2VVRUoLCwEI6Ojo1ebyQWixs8Q0LUWixduhQvvPACamtrcfv2bZVtK1euhJ2dHU6dOqW8Xqlnz56YO3cuvv76a4wbN84UIRM1idOfiIioxVp675br16/j4cOHGD58OHr16qV8AH8UHL169cLXX39t0NiJTOV///sf0tLSGpz6J5fLcezYMcyYMUNlAYSwsDBYW1tjz549RoyUSHM8U0FERC0WEhKCuLg4JCQkYOnSpQAav3fLgwcP0K9fPwDAtGnTGiw4Jk+ejKCgIMydOxe+vr5Gex1ExlJbW4v58+djzpw58PLyUtuel5eHR48eYfDgwSrtVlZW8Pb2Rk5OjrFCJdIKiwoiImqxlt67pV+/fsoC46969eqFV155xRjhExndxx9/jGvXruH48eMNbq+fOtjYqmqnT59udGyuikamxOlPRESkk5SUFCxatAi7du3CggUL8PDhQ43u3UL0pLlz5w7effddrFq1Cg4ODg32qV8xrbFV1ZpaUY2ropEp8UwFERHppKX3bmnI43ehJ2pr3nnnHdjb22P+/PmN9qlfMa2xVdWaukkkV0UjU2JRQURERGRgly9fRkJCAjZt2qRyU8jq6mo8fPgQhYWFsLGxUU57qp8G9TiZTNboimoAV0Uj0+L0JyIiIiIDKy4uRl1dHRYsWKCy4tnZs2dRUFCAXr164f3334enpyfatWuH8+fPq+xfU1OD3NzcRldUIzI1nqkgIiIiMjBPT08cOHBArf2dd95BRUUFNm/ejKeffhq2trYYO3YsPv30U6xatQodO3YEAOzatQuVlZUIDQ01duhEGmFRQURERGRgXbp0aXBVs/p7VTy+be3atRg2bBhGjhyJyMhIFBUVIT4+HuPGjUNgYKBxAibSEqc/EREREZmR559/HsePH4dUKsXbb7+NhIQEREREIC0tzdShETWKZyqIiIiITKSxldH8/Pzw7bffGjcYIh3wTAUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQWRlhQKBZYvXw5nZ2dIpVL4+vri2LFjWo8TEBAAkUiEefPmGSBKIiIiIuNhUUGkpVmzZmHjxo2YPn06Nm/eDEtLSwQFBeHMmTMaj7F//35kZWUZMEoiIiIi42FRQaSF7Oxs7N69GzExMYiNjUVkZCS++eYb9OjRA8uWLdNojOrqaixZsgTLly83cLRERERExsGigkgLaWlpsLS0RGRkpLJNIpEgIiICWVlZuHHjRrNjbNiwAXV1dVi6dKkhQyUiIiIyGhYVRFrIycmBh4cHbGxsVNp9fHwAALm5uU3uf/36daxbtw7r16+HVCo1VJhERERERtXO1AEQtSYymQxOTk5q7fVtJSUlTe6/ZMkSPPfcc5g2bZrGx1QoFFAoFMrncrlc432JiIiIjIFFBZEWqqqqIBaL1dolEolye2NOnjyJffv24ezZs1odMyYmBmvWrNEuUCIiIiIj4vQnIi1IpVKVswb1qqurldsb8ujRIyxYsAAzZ87EkCFDtDpmVFQUysvLlQ9NrtsgIiIiMiaeqSDSgpOTE4qLi9XaZTIZAMDZ2bnB/VJSUnDp0iXs2LEDhYWFKtsqKipQWFgIR0dHtG/fXm1fsVjc4NkRIjIMr51epg5BTV54nqlDICJqEs9UEGnB29sbBQUFatc11E9p8vb2bnC/69ev4+HDhxg+fDh69eqlfAB/FBy9evXC119/bdDYiYiIiAyFZyqItBASEoK4uDgkJCQol4RVKBRISkqCr68vXF1dAfxRRDx48AD9+vUDAEybNq3BgmPy5MkICgrC3Llz4evra7TXQURERKRPLCqItODr64vQ0FBERUWhtLQU7u7u2LlzJwoLC5GYmKjsFxYWhoyMDAiCAADo16+fssD4q169euGVV14xRvhEREREBsGigkhLKSkpWLVqFXbt2oV79+5h4MCBSE9Ph7+/v6lDIyIiIjIJra6pOHfuHObNm4cBAwagQ4cOcHNzw6uvvoqCggK1vhcvXkRgYCCsra1hb2+PmTNn4tatW3oLnMhUJBIJYmNjIZPJUF1djezsbIwfP16lz6lTp5RnKZoiCAK2bNliqFCJiIiIjEKromL9+vXYt28fxowZg82bNyMyMhL/+9//8Pzzz+Onn35S9isqKoK/vz+uXLmC6OhoLF26FIcPH0ZAQABqamr0/iKIiMh0FAoFli9fDmdnZ0ilUvj6+uLYsWPN7nfgwAGMHz8ezs7OEIvF6N69O0JCQlT+PSEiotZBq+lPixcvxmeffQYrKytl29SpU+Hl5YV169bh008/BQBER0fj/v37+P777+Hm5gYA8PHxQUBAAJKTkxEZGanHl0BERKY0a9YspKWlYdGiRejTpw+Sk5MRFBSEkydPws/Pr9H98vLyYGdnh4ULF6JLly64efMm/v3vf8PHxwdZWVl49tlnjfgqiIhIF1oVFcOGDVNr69OnDwYMGICLFy8q2/bt24eJEycqCwoAGDt2LDw8PLBnzx4WFUREbUR2djZ2796N2NhY5YpoYWFh8PT0xLJly5CZmdnovu+++65a25w5c9C9e3ds374dH3/8scHiJiIi/dL5PhWCIOD3339Hly5dAADFxcUoLS3F4MGD1fr6+PggJydH10MSEZGZSEtLg6WlpcqPRRKJBBEREcjKytL6DvD1N4EsKyvTc6RERGRIOhcVqampKC4uxtSpUwH8eWdhJycntb5OTk64e/cuFApFo+MpFArI5XKVBxERmaecnBx4eHjAxsZGpd3HxwcAkJub2+wYZWVluHXrFvLy8jBnzhzI5XKMGTPGEOESEZGB6FRU5Ofn46233sLQoUMRHh4OAKiqqgIAiMVitf4SiUSlT0NiYmJga2urfNTfTIyIiMyPTCZr9EckACgpKWl2jBdeeAGOjo4YOHAg9uzZg3feeQcRERFN7sMfoKi1+fnnnxEaGorevXujffv26NKlC/z9/XHo0CG1vlxBk1qjFt+n4ubNm5gwYQJsbW2Vp78BQCqVAkCDZyOqq6tV+jQkKioKixcvVj6Xy+UsLIiIzFRVVVWLf0Sql5SUBLlcjqtXryIpKQlVVVWora2FhUXjv3vFxMRgzZo1LQ+cyMiuXbuGiooKhIeHw9nZGQ8ePMC+ffsQHByMHTt2KKcQ1q+gaWtri+joaFRWViIuLg55eXnIzs5WWSyHyJy0qKgoLy/HSy+9hLKyMpw+fRrOzs7KbfW/TtVPg3qcTCaDvb19g/8A1ROLxU1uJyIi8yGVSlv8I1K9oUOHKv972rRp6N+/PwAgLi6u0X34AxS1NkFBQQgKClJpmzdvHgYNGoSNGzcqiwquoEmtldbTn6qrqzFp0iQUFBQgPT0dzzzzjMp2FxcXODg44Pz582r7Zmdnw9vbu8XBEhGReXFycmr0RyQAKj86acLOzg6jR49Gampqk/3EYjFsbGxUHkStjaWlJVxdXVUWJmhuBU0ic6VVUVFbW4upU6ciKysLe/fuVfl16XFTpkxBenq6yqofJ06cQEFBAUJDQ3WLmIiIzIa3tzcKCgrUrmk4e/ascru2qqqqUF5ero/wiMzO/fv3cfv2bfz666/44IMP8OWXXyoXJuAKmtSaaTX9acmSJTh48CAmTZqEu3fvKm92V2/GjBkAgJUrV2Lv3r0YNWoUFi5ciMrKSsTGxsLLywuzZ8/WX/RERGRSISEhiIuLQ0JCgvI+FQqFAklJSfD19VVOSbp+/ToePHiAfv36KfctLS2Fo6OjyniFhYU4ceJEg1+qiNqCJUuWYMeOHQAACwsL/O1vf8OWLVsAaL6CZmPTxBUKhcp0RC5gQMakVVFRvzTgoUOHGlytoL6ocHV1RUZGBhYvXowVK1bAysoKEyZMQHx8PK+XICJqQ3x9fREaGoqoqCiUlpbC3d0dO3fuRGFhIRITE5X9wsLCkJGRAUEQlG1eXl4YM2YMvL29YWdnh8uXLyMxMREPHz7EunXrTPFyiAxu0aJFCAkJQUlJCfbs2YPa2lrU1NQA0HwFzca+S3EBAzIlrYqKU6dOadx3wIABOHr0qLbxEBFRK5OSkoJVq1Zh165duHfvHgYOHIj09HT4+/s3ud8bb7yBw4cP46uvvkJFRQUcHR0xbtw4rFy5El5eXkaKnsi4+vXrpzxjFxYWhnHjxmHSpEk4e/YsV9CkVq3FS8oSEREBf/yCGhsbi9jY2Eb7NPSj1OrVq7F69WrDBUbUCoSEhOD1119HQUEBV9CkVk3nO2oTERERUcvUT3kqLy/nCprUqrGoICIiIjKw0tJStbaHDx8iJSUFUqlUuUQ/V9Ck1orTn4iIiIgM7PXXX4dcLoe/vz9cXFxw8+ZNpKamIj8/H/Hx8bC2tgbAFTSp9WJRQURERGRgU6dORWJiIrZv3447d+6gY8eOGDRoENavX4/g4GBlP66gSa0ViwoiIiIiA5s2bRqmTZumUV+uoEmtEa+pICIiIiIinbCoINKCQqHA8uXL4ezsDKlUCl9fXxw7dqzZ/Q4cOIDx48fD2dkZYrEY3bt3R0hICH766ScjRE1ERERkWCwqiLQwa9YsbNy4EdOnT8fmzZthaWmJoKAgnDlzpsn98vLyYGdnh4ULF2Lbtm144403kJOTAx8fH1y4cMFI0RMREREZBq+pINJQdnY2du/ejdjYWCxduhTAH3dD9fT0xLJly5CZmdnovu+++65a25w5c9C9e3ds374dH3/8scHiJiIiIjI0nqkg0lBaWhosLS0RGRmpbJNIJIiIiEBWVpbKmuKacHR0RPv27VFWVqbnSImIiIiMi0UFkYZycnLg4eEBGxsblXYfHx8AQG5ubrNjlJWV4datW8jLy8OcOXMgl8sxZswYQ4RLREREZDSc/kSkIZlMBicnJ7X2+raSkpJmx3jhhRdw6dIlAIC1tTXeeecdRERENLmPQqGAQqFQPpfL5dqETURERGRwLCqINFRVVdXgjYckEolye3OSkpIgl8tx9epVJCUloaqqCrW1tbCwaPykYUxMDNasWdPywImIiIgMjEUFkYakUqnKGYN61dXVyu3NGTp0qPK/p02bhv79+wMA4uLiGt0nKioKixcvVj6Xy+VwdXXVOG4iIiIiQ+M1FUQacnJygkwmU2uvb3N2dtZqPDs7O4wePRqpqalN9hOLxbCxsVF5EBEREZkTFhVEGvL29kZBQYHaNQ1nz55VbtdWVVUVysvL9REeERERkcmwqCDSUEhICGpra5GQkKBsUygUSEpKgq+vr3JK0vXr15Gfn6+yb2lpqdp4hYWFOHHiBAYPHmzYwImIiIgMjNdUEGnI19cXoaGhiIqKQmlpKdzd3bFz504UFhYiMTFR2S8sLAwZGRkQBEHZ5uXlhTFjxsDb2xt2dna4fPkyEhMT8fDhQ6xbt84UL4eIiIhIb1hUEGkhJSUFq1atwq5du3Dv3j0MHDgQ6enp8Pf3b3K/N954A4cPH8ZXX32FiooKODo6Yty4cVi5ciW8vLyMFD0RERGRYbCoINKCRCJBbGwsYmNjG+1z6tQptbbVq1dj9erVhguMiIiIyIR4TQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREREREemERQUREelEoVBg+fLlcHZ2hlQqha+vL44dO9bsfvv378fUqVPRu3dvtG/fHn379sWSJUtQVlZm+KCJiEiveEdtIiLSyaxZs5CWloZFixahT58+SE5ORlBQEE6ePAk/P79G94uMjISzszNmzJgBNzc35OXlYcuWLThy5Ah++OEHSKVSI74KImrKxX79TR2Civ75F00dAv0FiwoiImqx7Oxs7N69G7GxsVi6dCkAICwsDJ6enli2bBkyMzMb3TctLQ0vvviiStugQYMQHh6O1NRUzJkzx5ChExGRHnH6ExERtVhaWhosLS0RGRmpbJNIJIiIiEBWVhZu3LjR6L5/LSgAYPLkyQCAixf5KyS1LefOncO8efMwYMAAdOjQAW5ubnj11VdRUFCg1vfixYsIDAyEtbU17O3tMXPmTNy6dcsEURNpjmcqiIioxXJycuDh4QEbGxuVdh8fHwBAbm4uXF1dNR7v5s2bAIAuXbroL0giM7B+/Xp8++23CA0NxcCBA3Hz5k1s2bIFzz//PL777jt4enoCAIqKiuDv7w9bW1tER0ejsrIScXFxyMvLQ3Z2NqysrEz8SogaxqKCiIhaTCaTwcnJSa29vq2kpESr8davXw9LS0uEhIQ02U+hUEChUCify+VyrY5DZGyLFy/GZ599plIUTJ06FV5eXli3bh0+/fRTAEB0dDTu37+P77//Hm5ubgD+KNIDAgKQnJysclaQyJxw+hMREbVYVVUVxGKxWrtEIlFu19Rnn32GxMRELFmyBH369Gmyb0xMDGxtbZUPbc6GEJnCsGHD1M4y9OnTBwMGDFCZ7rdv3z5MnDhRWVAAwNixY+Hh4YE9e/YYLV4ibbGoICKiFpNKpSpnDOpVV1crt2vi9OnTiIiIwPjx47F27dpm+0dFRaG8vFz5aOraDSJzJQgCfv/9d+V0v+LiYpSWlmLw4MFqfX18fJCTk2PsEIk0xulPRETUYk5OTiguLlZrl8lkAABnZ+dmx7hw4QKCg4Ph6emJtLQ0tGvX/D9NYrG4wTMkRK1JamoqiouL8f777wP4M28am1J49+5dKBSKRj/7nBZIpsQzFURE1GLe3t4oKChQ+/Jy9uxZ5fam/PrrrwgMDISjoyOOHDkCa2trQ4VKZFby8/Px1ltvYejQoQgPDwfw53TBlk4p5LRAMiUWFURE1GIhISGora1FQkKCsk2hUCApKQm+vr7KLzXXr19Hfn6+yr43b97EuHHjYGFhgaNHj8LBwcGosROZys2bNzFhwgTY2toql2UG/pwu2NIphZwWSKbE6U9ERNRivr6+CA0NRVRUFEpLS+Hu7o6dO3eisLAQiYmJyn5hYWHIyMiAIAjKtsDAQFy9ehXLli3DmTNncObMGeW2rl27IiAgwKivhcgYysvL8dJLL6GsrAynT59WmSJYP+2pfhrU42QyGezt7Zuc9sdpgWRKLCqIiEgnKSkpWLVqFXbt2oV79+5h4MCBSE9Ph7+/f5P7XbhwAQCwYcMGtW0jR45kUUFtTnV1NSZNmoSCggIcP34czzzzjMp2FxcXODg44Pz582r7ZmdnNzudkMiUOP2JSAsKhQLLly+Hs7MzpFIpfH19cezYsWb3279/P6ZOnYrevXujffv26Nu3L5YsWYKysjLDB01kYBKJBLGxsZDJZKiurkZ2djbGjx+v0ufUqVMqZymAP1a+aexx6tQpI74CIsOrra3F1KlTkZWVhb1792Lo0KEN9psyZQrS09NVpi6dOHECBQUFCA0NNVa4RFrjmQoiLcyaNQtpaWlYtGgR+vTpg+TkZAQFBeHkyZPw8/NrdL/IyEg4OztjxowZcHNzQ15eHrZs2YIjR47ghx9+0HjZTSIiap2WLFmCgwcPYtKkSbh7967yZnf1ZsyYAQBYuXIl9u7di1GjRmHhwoWorKxEbGwsvLy8MHv2bFOETqQRFhVEGsrOzsbu3bsRGxuLpUuXAvhjnrinpyeWLVuGzMzMRvdNS0vDiy++qNI2aNAghIeHIzU1FXPmzDFk6EREZGK5ubkAgEOHDuHQoUNq2+uLCldXV2RkZGDx4sVYsWIFrKysMGHCBMTHx/N6CTJrnP5EpKH6FToiIyOVbRKJBBEREcjKympylY2/FhQAMHnyZABQuZMqERG1TfVTABt7PG7AgAE4evQo7t+/j3v37uHTTz9F165dTRQ5kWZYVBBpKCcnBx4eHrCxsVFp9/HxAfDnr1CaunnzJgAo76RKRERE1Fpx+hORhmQyWaN3OQWAkpISrcZbv349LC0tERIS0mQ/3iGViIiIzB3PVBBpqKqqqsV3Of2rzz77DImJiViyZAn69OnTZF/eIZWIiIjMndZFRWVlJd577z0EBgbC3t4eIpEIycnJDfa9ePEiAgMDYW1tDXt7e8ycORO3bt3SNWYik5BKpS2+y+njTp8+jYiICIwfPx5r165ttj/vkEpERETmTuvpT7dv38b7778PNzc3PPvss42uJV5UVAR/f3/Y2toiOjoalZWViIuLQ15eHrKzs2FlZaVr7ERG5eTkhOLiYrX2+jufPn5X1MZcuHABwcHB8PT0RFpaGtq1az4FeYdUIiIiMndaFxVOTk6QyWTo1q0bzp8/jyFDhjTYLzo6Gvfv38f3338PNzc3AH9c0BoQEIDk5GSVFXSIWgNvb2+cPHkScrlc5WLts2fPKrc35ddff0VgYCAcHR1x5MgRWFtbGzJcIiIiIqPRevqTWCxGt27dmu23b98+TJw4UVlQAMDYsWPh4eGBPXv2aHtYIpMLCQlBbW0tEhISlG0KhQJJSUnw9fVVXutw/fp15Ofnq+x78+ZNjBs3DhYWFjh69CgcHByMGjsRERGRIRlk9afi4mKUlpZi8ODBatt8fHxw5MgRQxyWyKB8fX0RGhqKqKgolJaWwt3dHTt37kRhYSESExOV/cLCwpCRkaGy7nhgYCCuXr2KZcuW4cyZMzhz5oxyW9euXREQEGDU10JERESkTwYpKurnmDe2/Obdu3ehUCganCfO5TPJnKWkpGDVqlXYtWsX7t27h4EDByI9PR3+/v5N7nfhwgUAwIYNG9S2jRw5kkUFERERtWoGKSrql9ZsbvnNhrbHxMRgzZo1hgiLSGcSiQSxsbGIjY1ttE9Dixf89W6pRERERG2JQe5TUb+0ZkuW3+TymURERERErYtBzlTUT3uqnwb1OJlMBnt7+0aXyOTymURERERErYtBzlS4uLjAwcEB58+fV9uWnZ3d7NKbRERERETUehikqACAKVOmID09XWX60okTJ1BQUIDQ0FBDHZaIiIiIiIysRdOftmzZgrKyMpSUlAAADh06hKKiIgDA/PnzYWtri5UrV2Lv3r0YNWoUFi5ciMrKSsTGxsLLywuzZ8/W3ysgIiIiIiKTalFRERcXh2vXrimf79+/H/v37wcAzJgxA7a2tnB1dUVGRgYWL16MFStWwMrKChMmTEB8fDyvmSAiIiIiakNaVFQUFhZq1G/AgAE4evRoSw5BRERERESthMGuqSAiIiIioicDiwoiIiIiItIJiwoiIiIiItIJiwoiIiIiItIJiwoiIiIiItIJiwoiIiIiItIJiwoiIiIiItIJiwoiIiIiItIJiwoiItKJQqHA8uXL4ezsDKlUCl9fXxw7dqzZ/S5duoS3334bw4YNg0QigUgk0vjmqkREZF5YVBARkU5mzZqFjRs3Yvr06di8eTMsLS0RFBSEM2fONLlfVlYWPvzwQ1RUVKB///5GipbIdCorK/Hee+8hMDAQ9vb2EIlESE5ObrDvxYsXERgYCGtra9jb22PmzJm4deuWcQMm0gKLCiIiarHs7Gzs3r0bMTExiI2NRWRkJL755hv06NEDy5Yta3Lf4OBglJWVIS8vD9OnTzdSxESmc/v2bbz//vu4ePEinn322Ub7FRUVwd/fH1euXEF0dDSWLl2Kw4cPIyAgADU1NUaMmEhz7UwdABERtV5paWmwtLREZGSksk0ikSAiIgIrV67EjRs34Orq2uC+9vb2xgqTyCw4OTlBJpOhW7duOH/+PIYMGdJgv+joaNy/fx/ff/893NzcAAA+Pj4ICAhAcnKySr4RmQueqSAiohbLycmBh4cHbGxsVNp9fHwAALm5uSaIisg8icVidOvWrdl++/btw8SJE5UFBQCMHTsWHh4e2LNnjyFDJGoxnqkgIqIWk8lkcHJyUmuvbyspKTHIcRUKBRQKhfK5XC43yHGIjK24uBilpaUYPHiw2jYfHx8cOXLEBFERNY9nKoi0wFVuiFRVVVVBLBartUskEuV2Q4iJiYGtra3y0dgUK6LWRiaTAUCjxfrdu3dVCurHKRQKyOVylQeRsbCoINICV7khUiWVShv8glNdXa3cbghRUVEoLy9XPm7cuGGQ4xAZW30h3pJincU2mRKLCiINcZUbInX1F57+VX2bs7OzQY4rFothY2Oj8iBqC+oL8ZYU6yy2yZRYVBBpqKlVbrKyspr8n7e9vT06duxojDCJjMrb2xsFBQVq0yzOnj2r3E5Emquf9tRYsW5vb9/gWQyAxTaZFosKIg1xlRsidSEhIaitrUVCQoKyTaFQICkpCb6+vsrpF9evX0d+fr6pwiRqNVxcXODg4IDz58+rbcvOzmahTmaLqz8RaYir3BCp8/X1RWhoKKKiolBaWgp3d3fs3LkThYWFSExMVPYLCwtDRkYGBEFQtpWXl+Ojjz4CAHz77bcAgC1btqBTp07o1KkT5s2bZ9wXQ2QmpkyZgp07d6rc5+XEiRMoKCjA22+/beLoiBrGooJIQ6Zc5WbNmjUGGZtIH1JSUrBq1Srs2rUL9+7dw8CBA5Geng5/f/8m97t37x5WrVql0hYfHw8A6NGjB4sKapO2bNmCsrIy5Q9Rhw4dQlFREQBg/vz5sLW1xcqVK7F3716MGjUKCxcuRGVlJWJjY+Hl5YXZs2ebMnyiRrGoINKQKVe5Wbx4sfK5XC7nih5kViQSCWJjYxEbG9ton1OnTqm19ezZU+XMBdGTIC4uDteuXVM+379/P/bv3w8AmDFjhnLVpoyMDCxevBgrVqyAlZUVJkyYgPj4+EavpyAyNRYVRBpycnJCcXGxWrsxVrnhPyJERG2DpvcoGjBgAI4ePWrYYIj0iBdqE2mIq9wQERERNYxFBZGGuMoNERERUcM4/YlIQ1zlhoiIiKhhLCqItMBVboiIiIjUsagg0gJXuSEiIiJSx2sqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJywqiIiIiIhIJwYtKhQKBZYvXw5nZ2dIpVL4+vri2LFjhjwkkcHp8rkuLi7Gq6++ik6dOsHGxgYvv/wyrl69auCIiQyLOUGkX/z+RK2RQYuKWbNmYePGjZg+fTo2b94MS0tLBAUF4cyZM4Y8LJFBtfRzXVlZiVGjRiEjIwMrV67EmjVrkJOTg5EjR+LOnTtGip5I/5gTRPrF70/UGrUz1MDZ2dnYvXs3YmNjsXTpUgBAWFgYPD09sWzZMmRmZhrq0EQGo8vnetu2bbh8+TKys7MxZMgQAMBLL70ET09PxMfHIzo62iivgUifmBNE+sXvT9RaGexMRVpaGiwtLREZGalsk0gkiIiIQFZWFm7cuGGoQxMZjC6f67S0NAwZMkT55QkA+vXrhzFjxmDPnj0GjZvIUJgTRPrF70/UWhmsqMjJyYGHhwdsbGxU2n18fAAAubm5hjo0kcG09HNdV1eHH3/8EYMHD1bb5uPjg19//RUVFRV6j5fI0JgTRPrF70/UWhls+pNMJoOTk5Nae31bSUlJg/spFAooFArl8/LycgCAXC7XOaY6xQOdx9A3fbwufWqr71H9GIIg6DROSz/Xd+/ehUKhaHbfvn37qm03ZE78cQDd3hO9M7OcAGB+7xGgl/dJH3lhipwADJsXtVW1Oo+hb+b2bwVgfu+TOf1boYuW5hRg2LyorG17f299M7f3CDBuXhisqKiqqoJYLFZrl0gkyu0NiYmJwZo1a9TaXV1d9RugmbDdZOoIzJ8+36OKigrY2tq2eP+Wfq7r25kTGljX8r/PE0WP75MueWGKnACevLywfYN50Rx9vke6/luhi5bmFPCE5YWJ/j6tjh7fp+bywmBFhVQqVamW61VXVyu3NyQqKgqLFy9WPq+rq8Pdu3fRuXNniEQiwwSrBblcDldXV9y4cUPt1CT9ydzeJ0EQUFFRAWdnZ53Gaennur69LeYEYH5/b3Nkju+RPvLCFDkBMC/aCnN7j/T1b4UuWppTgPnnhbn9vc2ROb5HmuaFwYoKJycnFBcXq7XLZDIAaDQwsVisVqF36tRJ7/HpysbGxmz+2ObMnN4nffzq1NLPtb29PcRisbKfNvu2lpwAzOvvba7M7T3SNS9MkRMA86KtMaf3yFRnKOq1NKeA1pMX5vT3Nlfm9h5pkhcGu1Db29sbBQUFanO5zp49q9xO1Nq09HNtYWEBLy8vnD9/Xm3b2bNn0bt3b3Ts2FHv8RIZGnOCSL/4/YlaK4MVFSEhIaitrUVCQoKyTaFQICkpCb6+vm1zfh+1eZp+rq9fv478/Hy1fc+dO6fyJerSpUv45ptvEBoaapwXQKRnzAki/eL3J2q1BAMKDQ0V2rVrJ/zjH/8QduzYIQwbNkxo166dkJGRYcjDGlR1dbXw3nvvCdXV1aYOxay15fdJk8/1yJEjhb+ml1wuF55++mnB0dFR2LBhg/DBBx8Irq6ugrOzs1BaWmrsl6FXbfnvrS9t+T1iTjSsLf/N9YXvUcPa4vcnQeDfWxOt+T0yaFFRVVUlLF26VOjWrZsgFouFIUOGCF999ZUhD0lkcJp8rhv6AiUIgnDjxg0hJCREsLGxEaytrYWJEycKly9fNlboRAbBnCDSL35/otZIJAgmXIyZiIiIiIhaPYNdU0FERERERE8GFhVERERERKQTFhVERERERKQTFhVERERERKQTg91Ruy0pLi5Gbm4uSkpKUFVVBalUCmdnZ3h7e8PFxcXU4bUaFRUVuHfvHtzc3EwdCumIOaEfzIm2hXmhH8yLtoM5oR+tJidMvfyUOfv222+F4cOHCxYWFoKFhYUgEolUHhYWFsKwYcOEM2fOmDrUVuFf//qXYGFhYeowSAfMCf1iTrQNzAv9Yl60fswJ/WotOcEzFY04fvw4goKC0KNHD6xduxY+Pj5wcnKCRCJBdXU1ZDIZvvvuOyQnJ2P06NE4fPgwxo4da+qwiQyGOUGkjnlBpIo58eTifSoa8cILL6Bdu3Y4ceIExGJxo/1qamowatQo1NbW4rvvvjNihOYhJSVF474HDx7EgQMHUFtba8CIyFCYE5phTjxZmBeaYV48OZgTmmmLOcGiohHt27fHhx9+iDlz5jTb95NPPsHChQvx4MEDI0RmXiwsLCASiaDpx0gkEpl9UlDDmBOaYU48WZgXmmFePDmYE5ppiznB6U+NsLOzw5UrVzTqe+XKFdjZ2Rk4IvNkZ2cHb29vbNiwodm+iYmJ2LFjhxGiIkNgTmiGOfFkYV5ohnnx5GBOaKYt5gSLikbMmDEDH3zwAbp27Yq5c+fC2tparU9lZSUSEhKwadMmLFq0yPhBmgEfHx/k5+dj0KBBzfb96quvjBARGQpzQjPMiScL80IzzIsnB3NCM20xJ1hUNOKf//wnrl+/jiVLlmD58uXw8PCAk5MTxGIxFAoFZDIZCgoK8OjRI4SGhuKf//ynqUM2CR8fHxw9ehSlpaVwdHRssm+nTp3Mfzk0ahRzQjPMiScL80IzzIsnB3NCM20xJ3hNRTOys7ORlpaG3NxcyGQy5TrLTk5O8Pb2RkhICHx8fEwdpsncv38ft2/fhrOzM5566ilTh0NGwJxoGnPiycS8aBrz4snDnGhaW8wJFhVERERERKQTC1MHQERERERErRuLCiIiIiIi0gmLCiIiIiIi0gmLCiIiIiIi0gmLijaoZ8+e6Nmzp6nDUDK3eOjJY26fQXOLh55M5vY5NLd46Mljbp9Bc4unOSwqNHT//n1ER0fj+eefh7W1NcRiMbp3744RI0YgKioKv/76q6lDJDIq5gSROuYFkSrmxJODN7/TQEVFBfz8/PDjjz/C3d0dM2bMQOfOnXH79m1kZ2dj3bp1ePrpp/H000+bOlQAwIkTJ0wdArVxzAkidcwLIlXMiScLiwoNbNq0CT/++CPmzJmDhIQEiEQile2//fYbFAqFiaJTZy7JSW0Xc4JIHfOCSBVz4snC6U8ayMrKAgC89dZbagkBAL169UK/fv2Uz0UiEV588cUGx2poftysWbMgEolw9epVxMfH45lnnoFYLMasWbPwz3/+EyKRCCkpKQ2Ot3//fohEIvzf//1fo8doyRjAH8k+Z84cuLm5QSwWw8nJCbNmzcK1a9caHOeLL77AkCFDIJVK0bVrV8ydOxf37t1rsC+1bswJ5gSpY14wL0gVc+LJygkWFRro3LkzAKCgoMCgx5k/fz6io6MxePBgLFq0CF5eXpgxYwZEIhE+/fTTBvfZtWsXAGDmzJmNjtuSMc6ePYvnnnsOO3fuxKBBg7Bw4UKMGDECqamp8PHxwdWrV1XGSElJwSuvvIKCggLMnDkT4eHh+PbbbzF27FjU1NRo9T6Q+WNOMCdIHfOCeUGqmBNPWE4I1KwvvvhCACB07NhRWLJkiXD06FHh9u3bjfYHIIwcObLBbT169BB69Oih0hYeHi4AELp37y5cu3ZNbR8/Pz/B0tJSKCkpUWm/c+eOYGVlJQwePLjZY2gzRk1NjdCzZ0+hY8eOwg8//KDS//Tp04KlpaUwceJEZVt5eblgY2MjdOjQQbh06ZLKOP7+/gIAtXiodWNO/Ik5QfWYF39iXpAgMCce9yTkBM9UaCA4OBjx8fEQBAHx8fEYP348unTpAnd3d8ybNw+XL1/Wy3H+8Y9/wM3NTa195syZqK2txX/+8x+V9v/+97+oqanBjBkzmh1bmzHS09NRWFiIf/zjH3juuedU+vv5+eHll1/GkSNHIJfLAQCff/455HI5/t//+3/w8PBQ9n3qqaewdu3a5l84tTrMiT8xJ6ge8+JPzAsCmBOPexJygkWFhhYvXoySkhLs2bMHixYtgp+fH65fv46tW7di4MCBOHjwoM7H8PHxabD91VdfhVgsVp5mq/fpp5+iXbt2eO2115odW5sxvvvuOwDApUuXsHr1arXHzZs3UVdXpzydeeHCBQDAiBEj1I47dOhQtGvH9QDaIuYEc4LUMS+YF6SKOfEE5YRpT5S0bmVlZcKbb74pABC6dOkiKBQKQRBafvru6tWrjR5rypQpAgDh559/FgRBEK5cuSIAEIKCgjQ6hjZjzJkzRwDQ7OPUqVOCIAhCRESEyvO/6tq1a6s6fUctx5xgTpA65gXzglQxJ9pmTvBMhQ5sbW2xZcsW9OjRA7dv30ZeXh6AP1YvePToUYP7lJeXNzpeQysj1Ku/CKi+Uq6/aKipC4xaOoaNjQ0A4NChQxAEodHHyJEjAfzxPgBAaWmp2jFra2tx584djWOk1o05wZwgdcwL5gWpYk60zZxgUaEjkUiEDh06qLTZ2dmhuLhYrW9hYSHKyspadJygoCB07twZn332Gerq6pCamoqOHTvi5Zdf1vsYvr6+AP5cCq45zz77LADg9OnTatuysrIa/R8EtU3MCeYEqWNeMC9IFXOiDeaEcU6ItG4ff/yxkJ2d3eC2AwcOCCKRSOjUqZNQXV0tCIIgjB8/Xu10lkKhECZPntzglfz1p+9+++23JuOoP1UYExMjABBmzZrVYL/GTt9pOkZ1dbXg5uYmSCQSISMjQ217TU2NcPr0aeXzsrKyRlcvGDlyZKtbvYCax5xQxZwgQWBe/BXzgpgTqtp6TrCo0MDLL78sABDc3d2F8PBwISoqSliwYIEwYsQIAYBgYWEhfPbZZ8r+R48eFUQikdC+fXshIiJCmD9/vtCvXz/hhRdeEJycnFqcFFlZWQIA4amnnhIACCdOnGiwX1NJoekY2dnZQufOnQUAwujRo4WFCxcKixYtEiZPnix06dJF6Nu3r0r/5ORkAYBgY2MjREZGCv/4xz+E/v37C88//3yDr5laN+YEc4LUMS+YF6SKOfFk5QSLCg3k5+cLGzZsEAICAoRevXoJEolEkEgkwtNPPy2Eh4cL58+fV9tn7969gpeXl2BlZSV069ZNmD9/vlBRUdHkhUbNJYUgCEKfPn0E4I81mWtraxvs01RSaDqGIAhCUVGRsHDhQqFPnz6CWCwWbGxshP79+wtz5sxpMJkOHDggDBo0SBCLxYKjo6MwZ84c4e7du83GQ60Pc4I5QeqYF8wLUsWceLJyQiQIgqD9pCkiIiIiIqI/8EJtIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSCYsKIiIiIiLSyf8H7xV3aNlIJFMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 634 ms (started: 2024-10-26 13:18:17 +00:00)\n" ] } ], "source": [ "da.plotNumericsByTarget(df,\"Survived\",nums=nums,layout=(1,4),figsize=(8, 3))" ] }, { "cell_type": "markdown", "metadata": { "id": "IG7cJDvcejvl" }, "source": [ "Fare ve Parch, target bazında oldukça farkediyor, bunların feature importance'ı önemli olacak gibi duruyor. Korelasyon analizinde Fare için bu durumu gözlemlemiştik zaten ancak Parch için aynı durum sözkonusu değil. (Outlier varsa sonuçları yorumlamayı yanıltabilir, ki Fare'da oldukça büyük outlierlar vardı, o yüzden buradaki sonuçlara şuan çok da güvenmemekte fayda var)" ] }, { "cell_type": "markdown", "metadata": { "id": "0Mf3wHXoejvm" }, "source": [ "Kategorik kolonlar üzerinden baktığımızda ilgili kategorilerdeki her bir değer için Surviving olasılıklarına(prior probability) bakalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 625 }, "executionInfo": { "elapsed": 1146, "status": "ok", "timestamp": 1729948699407, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "SezPRcMeejvm", "outputId": "30e04ba7-6a10-4194-de8d-a3f34484deb2" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw6UlEQVR4nOzdd1gU59oG8HtpSwcBUVAQSyyxobEl1liQaKzY4rG3NDXRYwkqsYMaSzTGmJwkamLUqNgSY08withQjyUa1IACoggISFvKvt8ffuxxpQjM7s4C9++6uBJm3p33WVi595mZnVEIIQSIiIiIiIiISOdM5C6AiIiIiIiIqKJi001ERERERESkJ2y6iYiIiIiIiPSETTcRERERERGRnrDpJiIiIiIiItITNt1EREREREREesKmm4iIiIiIiEhP2HQTERERERER6YmZ3AWUJ2q1Gg8ePICdnR0UCoXc5RARUQUlhAAA2NvbM2/KgHlNRESGIITA06dP4e7uDhOToo9ns+kuhQcPHsDDw0PuMoiIqJJISUmBvb293GWUO8xrIiIypOjoaNSsWbPI9Wy6S8HOzg7Asx8q3wQREZG+pKamsmmUgHlNRESGkJ/X+blTFDbdpZB/ipq9vT1DnIiIyEgxr4mIyJBe9lEmXkiNiIiIiIiISE+MrulOS0vD/Pnz4evrCycnJygUCmzevLnQsTdv3oSvry9sbW3h5OSEkSNH4vHjxwXGqdVqrFixArVr14alpSWaNWuG7du36/mZEBERVWzMbCIiopczuqY7ISEBixYtws2bN9G8efMix8XExKBTp064c+cOAgMDMWPGDBw8eBA9evRAdna21ti5c+di9uzZ6NGjB7744gt4enpi+PDh2LFjh76fDhERUYXFzCYiIno5o/tMt5ubG+Li4lC9enVcvHgRrVu3LnRcYGAg0tPTER4eDk9PTwBAmzZt0KNHD2zevBmTJk0CAMTGxmLVqlX48MMPsX79egDAhAkT0LlzZ8ycORODBw+GqampYZ4cEVEllJeXh5ycHLnLMCrm5uYVInuY2UREFQszW5uu8tromm6lUonq1au/dFxwcDDefvttTXgDQPfu3VG/fn3s3LlTE+D79+9HTk4OPvjgA804hUKB999/H8OHD0dYWBg6dOig+ydCRFTJCSHw8OFDJCcny12KUXJ0dET16tXL9X2kmdlERBUDM7toushro2u6SyI2Nhbx8fFo1apVgXVt2rTBb7/9pvn+8uXLsLGxQaNGjQqMy1/PACci0r388HZ1dYW1tXW5bi51SQiBjIwMxMfHA3h2tLgiY2YTERk/ZnZBuszrctl0x8XFASj8ibu5uSEpKQkqlQpKpRJxcXGoVq1agRdO/mMfPHhQ5DwqlQoqlUrzfWpqqi7K17h//z4SEhJ0uk2Sj4uLi9ZRnJLga6Bi4Wvgf4QQMDExQbVq1WBpaQm1Wi13SQZhZmYGpVL50nFWVlYAgPj4eLi6ulboU6YNkdmVNa9f/JvDOqVhnbrFOnVLn3XqMrNfzEGVSoXc3FxdlKlThs7rctl0Z2ZmAkChPyhLS0vNGKVSqflvceOKEhQUhIULF+qi5ALu37+Phg0bITMzQy/bJ8OzsrLGrVs3S9x08TVQ8fA18D+enp7YuHEj8vLyit25WdGYmJigcePGJQpya2trAEBOTk6FbroNkdmVNa+f/5vDOqVjnbrFOnVLn3XqMrOfz0GVSoUbN24Y5Y53Q+d1uWy68/c4PL9XO19WVpbWGCsrqxKNK4y/vz+mT5+u+T41NRUeHh5lL/w5CQkJyMzMQNtx82Hv5qWTbZJ8UuOicO77hUhISChxw8XXQMXC14C2qrZKWDm6wKZqDZiamctdjkHk5WQjPeEBcnNzSxTileXUPUNkdmXM6xf/5rBOaVinbrFO3dJ3nbrK7BdzMDc3F2q1GjYu7jA1t5Bcp67IkdflsunOP80s/5S158XFxcHJyUnzA3Rzc8Mff/wBIYTWDyz/se7u7kXOo1QqS/SLkMLezQtOng30OgcZN74GqCK+BhyUgImpOUzNLWBqrt+/o2TcDJHZzOv/YZ26xTp1i3Xqlq7q1Hdmm5pbwNTCUufbLU+M7j7dJVGjRg1UrVoVFy9eLLDu/Pnz8Pb21nzv7e2NjIwM3Lx5U2vcuXPnNOuJiKjyOBt6CvVc7ZCakqzXecaMGYP+/fvrdY7ygJlNRERlUZHyulw23QDg5+eHX3/9FdHR0ZplJ06cQEREBAYPHqxZ1q9fP5ibm2PDhg2aZUIIbNy4ETVq1MAbb7xh0LqJiOiZxITH+HTmx+jYohEa1XRGu8Z1MWZIf4SfC9PrvC1bt0XYtTuws3fQ6zz0P8xsIqLyi3ktnVGeXr5+/XokJydrPsj/yy+/ICYmBgAwZcoUODg4YM6cOdi1axfefPNNfPTRR0hLS8Nnn32Gpk2bYuzYsZpt1axZEx9//DE+++wz5OTkoHXr1ti3bx9OnTqFn376qUJfvIaIyJhNHjcC2TnZWPHF1/Cs5YWEx/E4cyoET54klWl7Qgjk5eXBzKz4aLOwsEDVatXKNAcVxMwmIqrYmNfSGeWR7pUrVyIgIABfffUVAGDPnj0ICAhAQEAAnjx5AgDw8PDAyZMnUbduXXzyySdYsWIFevXqhWPHjhX4XNeyZcsQGBiII0eO4MMPP0RUVBS2bt2K4cOHG/y5ERERkJqSjAtnz2BWwGK83qETanh4onnLVnj/oxno7tsbMffvoZ6rHf66dlXrMfVc7XA29BSA/512dvLEUfTr3hGv1nTG7m0/oJ6rHe7e/ltrvu83rsebrZtpPS41JRlPn6aisWdVnDxxVGv80YMH0Ly2GzIznl0Z9kFsDKZMGIUW9WritfqeeHfUUMTcv6cZn5eXh6CFAXjzzTfh6emJWbNmQQihl5+dsWFmExFVXGXJ6+TkZCgUCvz5558AgHNnQit9Xhtl0x0VFQUhRKFfXl5emnGNGzfGkSNHkJ6ejidPnmDr1q2oVsjeEBMTE/j7+yMqKgoqlQrXr1/Hv/71LwM+IyIiep61jS1sbGxx7NCvhV6tujQ+WzwfM+ctxOHTF+Hbpz+aerfEgeCdWmMOBO9EX7/BBR5rZ2ePN3v44kDwLq3l+4N3ovtbb8PK2ho5OTkYO7Q/bGxtsePAEfz861HYWNti3LAByM7OBgB8t2Ed9u7cgYCAABw9ehRJSUnYu3evpOdVXjCziYgqLua1bhhl001ERBWbmZkZlq/biL0/b0PLV2piSO/uWLl0AW7duF7qbX00ey46dOmKWrXrwLGKE/r6DcEve3Zr1kfevY3r/72Mvn5DCn18P78hOH7oV81e8qdPUxFy/Aj6Dno2/uC+YAi1GkFrvkSDVxujXv2GWLbuKzyIjcG5/z/qvvmbDZg0+SN07doVDRs2xMaNG+HgUP4/g0ZERJUb81o32HQTEZEsfPv0w5mrEfj6h5/RqWsPnAs9hX7dOyB4x9ZSbaepd0ut79/uPwix0fdw+eJ5AMD+3TvRuJk36r5S+G1VOnfvCTNzc5w48hsA4Miv+2Fra4f2nd4EANy6cQ33Iv9B89puaOZVHc28qqNVfU+osrJwPyoST1NTEP/oIZq3+F8dZmZmaNWqVameBxERkTFiXktnlBdSIyKiykFpaYkOXbqiQ5eumPzv2fCf9iHWrgjEjgNHAAAC//ucVU5OTqHbsLa21vq+arVqaNehM37ZswstWrXBL3t2YfiY8UXWYGFhAd8+/XBgz068PWAQfgnehd79/TQXeMlIT0eT5i2wasO3BR7r7OJS6udMRERU3jCvpeGRbiIiMhr16jdEZkY6nJyfhePjRw81625ev1bi7fTzG4KD+4Jx6cI5RN+LxNsDBhU7vq/fUJz6/Tgibt1E2OmTWqe2vdqsOaL+uQvnqlXhVaeu1pedvQPs7B3gWq06/nv5kuYxubm5CA8PL3G9RERE5UlxeX3tGvP6RWy6iYjI4J4kJWLEwN7Yt2sHbt24juh7UfjtwF78Z/3n6ObbG5ZWVvB+rTW+XrcadyJu4dyZ01izbHGJt+/zdl+kp6dh/qxpaNe+E6pVdyt2fJvX28PFtRr+/f541PT0gvdrrTXr+vkNRRUnJ7w3ahgunA1F9L0onA09hUVzZiLuQSwAYPTE9/GfL9chJCQEf//9Nz744AMkJyeX6WdDRERkLEqT13dvRyA8PByLFi0q8fYrS16z6SYiIoOztrFF85atsOnrL/FOP1/06twWny9bjKEjx2BB0CoAwLK1G5Cbm4v+PTphybzZmPZJQIm3b2trh64+b+HmjWuaC6wUR6FQoM+AQc/Gv3ABFytra2zffwTuNWrig7H/Qs8OreD/8YdQqbJga2cHABj/wVT09RuMBQsWoFu3brCzs8OAAQNK8RMhIiIyPqXJ64Fvdcfq1avx6aeflnj7lSWv+ZluIiIyOKVSiZnzFmLmvIVFjqlXvyF2/XZCa9md+Kea/2/XvqPW9y9a958tWPefLQWWF/W4WZ8uxqxPCz+aXrVaNXy2/psi5zIzM8PchUsx5b2JaNSoEWxsbIocS0REVF6UJq/zsrOQGheFRo0aQQiB9PR03Lx5E23faF/p85pHuomIiIiIiIj0hE03ERERERERkZ6w6SYiIiIiIiLSEzbdRERERERERHrCppuIiIiIiIhIT9h0ExEREREREekJm24iIiIiIiIiPWHTTURERERERKQnbLqJiIiIiIiI9MRM7gKIiIjyPYiJRlJSokHmcnJyhntNj1I/7sfvvsG3G9bicfwjNGrcFJ8GfobmLVvpoUIiIiLjVFheq3NUSE+Ig0qlgpWVFTIzMxEZGQmbhBSYmCslzafLzG7SpImkWsqCTTcRERmFBzHR6NH+NagyMw0yn9LKCsdCw0sV4gf3BSNwvj8Wf/Y5mrdsjc3ffImxQwfg2JlLcHSw02O1RERExsHQeQ3oNrMPnzwDcz3WWhg23UREZBSSkhKhysxEy9EBsK1eS69zpT28h0tbFiMpKbFUAf79xvUYOmIMBr0zEgCw+LO1CDl2BLu2/4CJ732or3KJiIiMRpF5rRbIy1HB0tIKJqYmUOepkZWVCVNzJWCiKPN8us7s4B3bMMyvX5nrKQs23UREZFRsq9eCo0cDucsoIDs7G9f/exnvTZ2uWWZiYoI3OnXB5YvnAbDpJiKiyqNAXqvVyM3OgrW1DUxNTZCXp0ZGRjrMLCwBE8NeSqzYzL500eBNNy+kRkREVAJPkhKRl5cH56quWstdqroiIT5epqqIiIjoRcaW2Wy6iYiIiIiIiPSETTcREVEJVHFyhqmpKRIfa+8hT3gcDxdX1yIeRURERIZmbJnNppuIiKgELCws0KR5C5w5dVKzTK1W48ypk2jRqo2MlREREdHzis1sGW7zyQupERERldC49yZj5pR30bR5CzRr+Ro2f70BmRkZGDRspNylERER0XOKyuyBQ98BcjMMWku5brpv376NgIAAnD59GklJSfD09MTw4cMxY8YMWFtba8adOXMGs2bNwqVLl2Bvb48hQ4YgMDAQtra2MlZPRESFSXt4z2jn6N3fD4mJCfh8xVI8jn+EV5s0w/c79sDF1RV52Vk6rrJiYWYTEVUsBbL0/28ZptLDLcPKosjMruqK1LioMtdTFuW26Y6OjkabNm3g4OCAyZMnw8nJCWFhYZg/fz7Cw8Oxf/9+AMCVK1fQrVs3NGrUCKtXr0ZMTAxWrlyJ27dv49ChQzI/CyIiyufk5AyllRUubVlskPmUVlZwcnIu9eNGjX8Xo8a/q4eKKi5mNhFRxWHovAZ0m9ly7CQvt033jz/+iOTkZJw+fRqNGzcGAEyaNAlqtRo//PADnjx5gipVqmDOnDmoUqUKQkJCYG9vDwDw8vLCxIkTcfToUfj4+Mj5NIiI6P+51/TAsdBwJCUlGmQ+JydnuNf0MMhclR0zm4io4igqr9U5KqQnxKF27dqwsrJCZmYmIiMjYePiBhNzpaQ5y3tml9umOzU1FQBQrVo1reVubm4wMTGBhYUFUlNTcezYMUybNk0T3gAwatQoTJs2DTt37mSAExEZEfeaHuU6VKlwzGwiooqlsLzOy85CapwDGjVqBBsbG6Snp0OpVMLezQumFpYyVWocyu3Vy7t06QIAGD9+PK5cuYLo6Gj8/PPP+OqrrzB16lTY2Njg2rVryM3NRatW2leos7CwgLe3Ny5fvixD5URERJULM5uIiCqzcnuk29fXF4sXL0ZgYCAOHDigWT537lwsWbIEABAXFwfg2Z70F7m5ueHUqVPFzqFSqaBSqTTf5++pJyIiopLTd2Yzr4mIyJiV26YbePY5r06dOsHPzw/Ozs44ePAgAgMDUb16dUyePBmZmZkAAKWy4GcILC0tNeuLEhQUhIULF+qldiIiospEn5nNvCYiImNWbpvuHTt2YNKkSYiIiEDNmjUBAAMHDoRarcbs2bPxzjvvwMrKCgC09n7ny8rK0qwvir+/P6ZPn675PjU1FR4e/KwhERFRaeg7s5nXRERkzMrtZ7o3bNiAFi1aaMI7X9++fZGRkYHLly9rTlHLP2XteXFxcXB3dy92DqVSCXt7e60vIiIiKh19ZzbzmoiIjJlOmu7s7Gz89ttvWL16NRYv/t/92rKyshAfHw+1Wq2LabQ8evQIeXl5BZbn5OQAAHJzc9GkSROYmZnh4sWLBeq9cuUKvL29dV4XERGRsZIjrwFmNhERVW6Sm+4DBw7A09MTffr0wYwZM7BgwQLNuqtXr8LNzQ07duyQOk0B9evXx+XLlxEREaG1fPv27TAxMUGzZs3g4OCA7t27Y+vWrXj69KlmzI8//oi0tDQMHjxY53UREREZI7nyGmBmExFR5Sap6Q4NDcWgQYOgVCqxdu1aDB8+XGt9mzZtUK9ePQQHB0sqsjAzZ85EXl4eOnbsiMWLF2PDhg3o1asX9u3bh3HjxmlOQ1u6dCmSkpLQuXNnbNy4EfPmzcPkyZPh4+MDX19fnddFRERkbOTMa4CZTURElZukC6ktXrwYjo6OCA8Ph4uLCxITEwuMadWqFc6dOydlmkJ16tQJZ86cwYIFC7BhwwYkJiaidu3aWLp0KWbNmqUZ17JlSxw/fhyzZ8/GtGnTYGdnh/HjxyMoKEjnNRERkTQPYqKRlFQwS/TByckZ7jVLd7Gt82Gn8Z8v1+LGf68g/tFDfLV5G3r06qOnCnVHzrwGmNlERBVNYXmtzlEhPSEOKpUKVlZWyMzMRGRkJGwSUmBiXvDOFKVR3jNbUtN97tw5DBo0CC4uLkWO8fDwwP79+6VMU6Q2bdrgt99+e+m4Dh06IDQ0VC81EBGRbjyIiUbP9i2RmZllkPmsrCxxJPRSqUI8MyMDjRo3xeB3RuKDsf/SY3W6JXdeA8xsKp8eR95CZnqG3GVopMXfl7sEIoPnNVD+M1tS061SqV56hdDk5GSYmJTbi6QTEZGBJCUlIjMzC9+Pb4oG1W31OtffD9Mw7rtrSEpKLFWAd+7mg87dfPRYmX4wr4lKR6VSAQoFrmxbLncpBSkUhd5aj8hQisprIdTIy8mGlaUlTE1MkafOQ2ZWFkzNLaBQlD1fKkJmS2q669SpgwsXLhQ7JiwsDA0bNpQyDRERVSINqtuiRS3e8kmXmNdEpaNUKgEhsHhgfdR2sZa7HI3IhAwE7Il4Vt9zeESe5PBiXgu1GrnZWbCxtoGpqSny8vKQnmEGMwtLKCr5Tl1JTbefnx+WLFmCTZs2YezYsQXWr1y5EtevX8eKFSukTENEREQSMK8rDzZfutWrqStaejnIXYbGpagUBOz5310AeESeqHyQ1HTPnDkTwcHBmDBhArZt26b5hzVr1iyEhYXhzJkz8Pb2xuTJk3VSLBEREZUe87riY/NVOZW3I/JElZWkptvW1hanTp3C5MmTsXPnTuTl5QF4tsdcoVBgyJAh2LBhA//BERERyYh5XfGx+arcjP2IPFFlJ6npBoAqVargp59+wrp163DhwgUkJSXB3t4erVu3RrVq1XRRIxEREUnEvK4c2HwRERkfyU13PmdnZ/j6+upqc0REREYnPS0N9yL/0Xwfff8e/rp2FY5VqqCaa1UZKys55jUREVUGRWW2na01bA18XTedNd1ERES68PfDNKOd49p/L2PEgF6a7wM/9QcADBw6HEGr1uqkNiIiovLgxSz93y3Dcl+4ZVi25FuGlUVRmT1g8FDMmTWjzPWUhaSmu2vXri8dY2JiAnt7ezRo0AD9+/dH27ZtpUxJREQVlJOTM6ysLDHuu2sGmc/KyhJOTs6leky79h1xJ/5poevysrN0UZZeMK+JiEhXDJ3XgG4zOy87C6lxUTqqrGQkNd0hISEAAIVCASFEgfUvLl+xYgXGjh2Lb7/9Vsq0RERUAbnX9MCR0EtISko0yHxOTs5wr+lhkLnkxrwmIiJdKSqv1TkqpCfEoXbt2rCyskJmZiYiIyNh4+IGE3NpF1Ms75ktqenOzMzEkCFDcPfuXcybNw/t27dHtWrV8OjRI4SGhiIwMBB16tTBl19+iZs3b8Lf3x+bNm3Ca6+9hvfff19Xz4GIiCoI95oe5TpUjRXzmoiIdKmwvH52BNkBjRo1go2NDdLT06FUKmHv5gVTC0uZKjUOkj5CPn/+fFy7dg3nzp3DsGHD4OHhAQsLC3h4eGDYsGEICwvD1atX8cUXX6B79+44duwYqlatik2bNumqfiIiInoJ5jUREZF8JDXd27Ztw8CBA2FjY1PoehsbGwwcOBDbt28HADg6OsLX1xc3b96UMi0RERGVAvOaiIhIPpKa7sePHyMnJ6fYMbm5uYiPj9d87+bmhry8PCnTEhERUSkwr4mIiOQjqemuW7cudu3ahcTEwi96k5iYiJ07d6Ju3bqaZQ8ePICTk5OUaYmIyMiJAv9DLyrsgmb6wrwmIqKiMLOLp4u8ltR0T5kyBQ8fPkTLli2xbt06hIeHIzo6GuHh4Vi3bh1atmyJR48eYcqUKQAAtVqN33//Ha1bt5ZcOBERGa/0HCBXrTbq22jJLSMjAwBgbm6u97mY10REVBRmdvF0kdeSrl7+7rvvIjY2FkFBQZg2bZrWOiEETExM4O/vj3fffRcAkJSUhBkzZuCNN96QMi0RERm5bDVwNT4HSrMEOAHPrlqqkLsq/crLfXb6tkqlgqmpaZHjhBDIyMhAfHw8HB0dix2rK8xrIiIqiq4y+8UcVKlU/1uuMJ43AXLktaSmGwAWLVqEkSNHYtu2bbh69SpSU1Nhb2+P5s2bY9iwYahfv75mrIuLCz766COpUxIRUTlw9qEaQBaa5T6CmYmkE6vKBXVeDrJSEmFubg4LC4uXjnd0dET16tUNUNkzzGsiIiqKLjL7xRzMzs5GQkIC0nIETEz1f1ZXScmR15KbbgB45ZVXMH/+fF1sioiIKpCzD9UIj1fB1rzCH+hGSlwUQjf6Izg4GA0aNCh2rLm5uUGOcL+IeU1EREWRmtkv5uCNGzfw3nvvof17QXBw89J1uWUmR17rpOkmIiIqSo4aeKKSuwr9S0pT4d69e1AoFLC0tJS7HCIiolKTktkv5qBCocC9e/dQP02FPCN6HyBHXuuk6c7KysKFCxfw4MEDzbn7Lxo1apQupiIiIqIyYl4TEREZnuSm+8svv0RAQABSUlIKXS+EgEKhYIgTERHJiHlNREQkD0lXttmzZw+mTJkCDw8PrFy5EkII9OvXD4GBgfD19YUQAn5+fvj+++91VS8RERGVEvOaiIhIPpKa7s8//xyurq4ICwvT3ILE29sbs2fPxsGDB7F161bs27cPtWrV0kmxREREVHrMayIiIvlIarqvXr2Kvn37wtraWrMsLy9P8//Dhw9H165dsWjRIinTEBERkQTMayIiIvlIarpzcnJQtWpVzfdWVlZITk7WGtO8eXNcunRJyjTFunTpEvr27QsnJydYW1ujSZMmWLdundaYM2fOoEOHDrC2tkb16tUxdepUpKWl6a0mIiIiY2IMeQ0ws4mIqHKSdCE1d3d3xMXFab6vVasWLl++rDXm3r17MDPTz53Jjh49ij59+qBFixYICAiAra0t7t69i5iYGM2YK1euoFu3bmjUqBFWr16NmJgYrFy5Erdv38ahQ4f0UhcREZExkTuvAWY2ERFVXpLStXXr1lp7xX19fbF27VoEBQWhb9++OH36NPbs2YPu3btLLvRFqampGDVqFHr37o3du3fDxKTwg/Zz5sxBlSpVEBISAnt7ewCAl5cXJk6ciKNHj8LHx0fntRERERkTOfMaYGYT0TOPI28hMz1D7jI00uLvy10CVRKSmu7Bgwdjzpw5iIqKgpeXF/z9/REcHIx58+Zh3rx5EELAwcEBK1as0FW9Gtu2bcOjR4+wdOlSmJiYID09HVZWVlpBnpqaimPHjmHatGma8Aae3YN02rRp2LlzJwOciIgqPDnzGmBmE1V2KpUKUChwZdtyuUspSKF4Vh+RHklqugcMGIABAwZovq9atSquXLmCb7/9Fv/88w9q1aqFkSNHokaNGpILfdHx48dhb2+P2NhY9O/fHxEREbCxscHIkSOxZs0aWFpa4tq1a8jNzUWrVq20HmthYQFvb+8Cp9YRERFVRHLmNcDMJqrslEolIAQWD6yP2i7WL3+AgUQmZCBgT8Sz+oj0SOcf3qpSpQpmzpyp680WcPv2beTm5qJfv34YP348goKCEBISgi+++ALJycnYvn275vNrbm5uBR7v5uaGU6dOFTuHSqXS2vOVmpqq2ydBREQkE0PlNaD/zGZeE5UPvZq6oqWXg9xlaFyKSkHAngi5y6BKQFLT3bVrV4wZMwajRo0qcszWrVvx/fff4/fff5cyVQFpaWnIyMjAe++9p7ny6cCBA5GdnY2vv/4aixYtQmZmJgAUuvfK0tJSs74oQUFBWLhwoU7rJiIiMjQ58xrQf2Yzr8sffraXiCoTSU13SEgIunTpUuyYe/fu4eTJk1KmKZSVlRUA4J133tFaPnz4cHz99dcICwvT3I+0sM9pZGVlabZRFH9/f0yfPl3zfWpqKjw8PKSWTkREZFBy5jWg/8xmXpcf/GwvEVVG+rs3yP9LT0+Hubm5zrfr7u6OGzduoFq1alrLXV1dAQBPnjxB3bp1AUDrNin54uLi4O7uXuwcSqWSn/EgIqJKQV95Deg/s5nX5Qc/20tElVGpm+7797VPv0lOTi6wDADy8vIQHR2N4OBgeHl5lbnAorz22ms4duwYYmNj0aBBA83yBw8eAHh2kZgmTZrAzMwMFy9exJAhQzRjsrOzceXKFa1lREREFYmx5DXAzKaC+NleIqpMCr9RZjG8vLxQu3Zt1K5dGwqFAmvXrtV8//xXvXr18Oabb+L27duYOHGizgvPD9/vvvtOa/m3334LMzMzdOnSBQ4ODujevTu2bt2Kp0+fasb8+OOPSEtLw+DBg3VeFxERkTEwlrwGmNlERFS5lfpI96hRo6BQKCCEwA8//IDmzZvD29u7wDhTU1M4OTmha9eu8PX11UWtWlq0aIFx48bh+++/R25uLjp37oyQkBDs2rUL/v7+mtPQli5dijfeeAOdO3fGpEmTEBMTg1WrVsHHx0cvdRERERkDY8lrgJlNRESVW6mb7s2bN2v+/+TJkxg7diymTp2qy5pKbOPGjfD09MSmTZuwd+9e1KpVC2vWrMHHH3+sGdOyZUscP34cs2fPxrRp02BnZ6e5XQkREVFFZUx5DTCziYio8pJ0IbXIyEhd1VEm5ubmmD9/PubPn1/suA4dOiA0NNRAVRERERkXufMaYGYTEVHlpferl1PxjO0+lVQ2vL8nEREREREVRnLTffz4caxevRoXLlxAcnIy1Gp1gTEKhQK5ublSp6pQjPo+lVQ2vL8nERkx5jUREZE8JDXdwcHBGDp0KNRqNWrVqoWGDRvCzIwHz0vCWO9TSWXD+3sSkTFjXhMREclHUuIuWrQIVlZW2L9/P7p27aqrmioVY7tPJZUN7+9JRMaMeU1ERCSfUt+n+3l///03hg0bxgAnIiIyYsxrIiIi+Uhqup2dnWFtzVOjiYiIjBnzmoiISD6Smu5Bgwbh+PHjvOgKERGREWNeExERyUdS0x0YGAhHR0cMHToU9+/zlklERETGiHlNREQkH0kXUmvatClycnJw9uxZ7Nu3D46OjnBwKHhRMIVCgbt370qZioiIiMqIeU1ERCQfSU23Wq2GmZkZPD09NcuEEAXGFbaMiIiIDIN5TUREJB9JTXdUVJSOyiAiIiJ9YV4TERHJR1LTTUREREREVJE8jryFzPQMucvQSIvntTjKO5013X/99Rdu3bqF9PR0jBw5UlebJSIiIh1iXhMRFU6lUgEKBa5sWy53KQUpFM/qo3JJctN94cIFTJw4EdeuXdMsyw/xP//8E76+vtixYwf69u0rdSoiIiIqI+Y1EVHxlEolIAQWD6yP2i7WcpejEZmQgYA9Ec/qo3JJUtN948YNdO3aFSYmJpg2bRpu3bqFQ4cOadZ37NgRLi4u2LVrF0OciIhIJsxrIqKS69XUFS29Ct7hQS6XolIQsCdC7jJIAkn36Z4/fz4AIDw8HCtXrkTr1q211isUCrz++uu4cOGClGmIiIhIAuY1ERGRfCQ13SdPnoSfnx/q1atX5BhPT0/ExcVJmYaIiIgkYF4TERHJR9Lp5U+fPoWrq2uxYzIzM5GXlydlGiIiIpKAeS0dr2ZMRERlJanp9vDw0LogS2EuXbqEunXrSpmGiIiIJGBelx2vZkxERFJJarrffvttrFu3DsePH0f37t0LrN+5cyfOnj2LgIAAKdMQERGRBMzrsuPVjImISCpJTfecOXOwe/du9OrVC6NHj8bDhw8BABs2bEBYWBi2b98OLy8vTJ8+XSfFEhERUekxr6Xj1YyJiKisJDXdVatWxcmTJzFy5Eh89913muWTJ08GALRt2xbbt2+Hg4PxhBQREVFlw7wmIiKSj6SmGwDq1KmD0NBQXLlyBWfPnkVSUhLs7e3Rtm3bArckISIiInkwr4mIiOQhuenO5+3tDW9vb11tjoiIiPSAeU1ERGRYku7TnZKSgqtXryIjo/BbaKSnp+Pq1atITU2VMg0RERFJwLwmIiKSj6Sme9GiRWjfvn2R9/XMy8tD+/btsXTpUinTlNjSpUuhUCjQpEmTAuvOnDmDDh06wNraGtWrV8fUqVORlpZmkLqIiIjkxLwmIiKSj6Sm+/Dhw+jRowfs7OwKXW9vb4+ePXvit99+kzJNicTExCAwMBA2NjYF1l25cgXdunVDRkYGVq9ejQkTJuCbb77B4MGD9V4XERGR3JjXRERE8pH0me779+/j7bffLnZM3bp1cezYMSnTlMiMGTPQrl075OXlISEhQWvdnDlzUKVKFYSEhMDe3h4A4OXlhYkTJ+Lo0aPw8fHRe31ERERyYV4TERHJR9KRboVCAZVKVewYlUpV5OlsuvLnn39i9+7d+PzzzwusS01NxbFjxzBixAhNgAPAqFGjYGtri507d+q1NiIiIrkxr4mIiOQjqelu2LAhDh8+DCFEoevVajUOHTqEBg0aSJmmWHl5eZgyZQomTJiApk2bFlh/7do15ObmolWrVlrLLSws4O3tjcuXL+utNiIiImPAvCYiIpKPpKb7nXfeQUREBMaNG4eUlBStdSkpKRg3bhzu3LmDESNGSCqyOBs3bsS9e/ewePHiQtfHxcUBANzc3Aqsc3Nzw4MHD4rctkqlQmpqqtYXERFRecO8JiIiko+kz3RPnjwZwcHB2LJlC/bv34/WrVujRo0aiI2NxYULF5CcnIxOnTph8uTJuqpXS2JiIj799FMEBASgatWqhY7JzMwEACiVygLrLC0tNesLExQUhIULF+qmWCIiIpkwr4mIiOQjqek2NzfH8ePHMW/ePPznP//RugCLvb09Zs6ciUWLFsHc3FxyoYWZN28enJycMGXKlCLHWFlZAUChn2XLysrSrC+Mv78/pk+frvk+NTUVHh4eEiomKuhx5C1kphd+71wqP9Li78tdAlGRmNdERETykdR0A8/2Pq9cuRLLly/HrVu3kJKSAkdHRzRo0ACmpqa6qLFQt2/fxjfffIPPP/9c65SzrKws5OTkICoqCvb29prT1PJPW3teXFwc3N3di5xDqVQWusedSBdUKhWgUODKtuVyl0K6UoKLVRHJhXlNREQkD0lNd506dfDWW2/hyy+/hKmpKRo3bqyrul4qNjYWarUaU6dOxdSpUwusr127Nj766CMsXLgQZmZmuHjxIoYMGaJZn52djStXrmgtIzIkpVIJCIHFA+ujtou13OWQRJEJGQjYE8E3/mSUmNdERETykdR0JyQkaN3Ww5CaNGmCvXv3Flg+b948PH36FGvXrkXdunXh4OCA7t27Y+vWrQgICICdnR0A4Mcff0RaWhoGDx5s6NKJtPRq6oqWXg5yl0ESXYpKQcCeCLnLICoU85qIiEg+kpruZs2aISJCnjeZLi4u6N+/f4Hl+ff+fH7d0qVL8cYbb6Bz586YNGkSYmJisGrVKvj4+MDX19cwBRMREcmEeU1ERCQfSbcMmz17Nn755Rf88ccfuqpHL1q2bInjx4/DysoK06ZNwzfffIPx48dj9+7dcpdGRESkd8xrIiIi+Ug60v3kyRP4+PjAx8cH/fv3R+vWrVGtWjUoFIoCY0eNGiVlqhILCQkpdHmHDh0QGhpqkBqIiIiMCfOaiIhIPpKa7jFjxkChUEAIgeDgYAQHBwOAVogLIaBQKAwW4kRERKSNeU1ERCQfSU33pk2bdFUHERER6QnzmoiISD6Smu7Ro0frqg4iIiLSE+Y1ERGRfCRdSI2IiIiIiIiIiibpSHe+vXv3Yvv27bh16xYyMjJw584dAMCtW7dw4MAB/Otf/0KNGjV0MRURUYXzOPIWMtMz5C6DJEqLvy93CS/FvCYiIjI8SU23Wq3GO++8o7mVh5WVFTIzMzXrq1Spgrlz5yIvLw/+/v7SKiUiqmBUKhWgUODKtuVyl0K6olA8+70aGeY1ERGRfCQ13WvWrMGuXbvw3nvvYdmyZVi9ejUWL16sWV+tWjV07NgRBw8eZIgTEb1AqVQCQmDxwPqo7WItdzkkUWRCBgL2RDz7vRoZ5jUREZF8JDXdmzdvRuvWrbFhwwYAKPR+n/Xq1cPBgwelTENEVKH1auqKll4OcpdBEl2KSkHAngi5yygU85qIiEg+ki6kdufOHXTs2LHYMc7OzkhMTJQyDREREUnAvCYiIpKPpKbbysoKKSkpxY65d+8eHB0dpUxDREREEjCviYiI5COp6W7RogWOHDmCrKysQtcnJSXh8OHDaNeunZRpiIiISALmNRERkXwkfaZ76tSpGDBgAPz8/PD1119rrbt79y7GjRuHlJQUTJ06VVKRREREVHbMayIikoux3RpVjlt8Smq6+/Xrh9mzZ2P58uWoVasWbGxsAACurq5ITEyEEAIBAQHo2rWrToolIiKi0mNeExGRoRn1rVENfItPSU03AAQFBaFbt2744osvcO7cOWRlZUGtVsPX1xdTp05Fz549dVEnERERScC8JiIiQzLWW6PKcYvPMjXdYWFhmDt3Li5cuACFQoG2bdtiyZIlaNu2ra7rIyIiojJiXhMRkdyM7daoctzis9RN97Vr19CtWzeti7GcOHECYWFhOH/+PF599VWdFkhERESlx7wmIiIyDqW+evmyZcuQlZWFuXPn4uHDh3j48CECAgKQkZGBZcuW6aNGIiIiKiXmNRERkXEo9ZHuU6dOoUOHDli8eLFm2cKFCxESEoKTJ0/qtDgiIiIqG+Y1ERGRcSj1ke5Hjx4Veh/Ptm3b4tGjRzopioiIiKRhXhMRERmHUjfdOTk5sLW1LbDcxsYGOTk5OimKiIiIpGFeExERGYdSN91EREREREREVDJlumXY1q1bcfbsWa1ld+7cAQD06tWrwHiFQoGDBw+WZSoiIiIqI+Y1ERGR/MrUdN+5c0cT2i86fPhwgWUKhaIs0xAREZEEzGsiIiL5lbrpjoyM1EcdREREpEPMayIiIuNQ6qa7Vq1a+qiDiIiIdIh5TUREZBzK7YXULly4gMmTJ6Nx48awsbGBp6cnhgwZgoiIiAJjb968CV9fX9ja2sLJyQkjR47E48ePZaiaiIio8mFmExFRZVamz3Qbg+XLlyM0NBSDBw9Gs2bN8PDhQ6xfvx4tW7bE2bNn0aRJEwBATEwMOnXqBAcHBwQGBiItLQ0rV67EtWvXcP78eVhYWMj8TIiIiCo2ZjYREVVm5bbpnj59OrZt26YVwEOHDkXTpk2xbNkybN26FQAQGBiI9PR0hIeHw9PTEwDQpk0b9OjRA5s3b8akSZNkqZ+IiKiyYGYTEVFlVm5PL3/jjTcK7PF+5ZVX0LhxY9y8eVOzLDg4GG+//bYmvAGge/fuqF+/Pnbu3GmweomIiCorZjYREVVm5bbpLowQAo8ePYKLiwsAIDY2FvHx8WjVqlWBsW3atMHly5cNXSIRERGBmU1ERJVHhWq6f/rpJ8TGxmLo0KEAgLi4OACAm5tbgbFubm5ISkqCSqUqcnsqlQqpqalaX0RERCSdLjObeU1ERMaswjTdt27dwocffojXX38do0ePBgBkZmYCAJRKZYHxlpaWWmMKExQUBAcHB82Xh4eHHionIiKqXHSd2cxrIiIyZhWi6X748CF69+4NBwcH7N69G6ampgAAKysrACh0z3hWVpbWmML4+/sjJSVF8xUdHa2H6omIiCoPfWQ285qIiIxZub16eb6UlBS89dZbSE5OxqlTp+Du7q5Zl3+KWv4pa8+Li4uDk5NToXvU8ymVymLXExERUcnpK7OZ10REZMzKddOdlZWFPn36ICIiAsePH8err76qtb5GjRqoWrUqLl68WOCx58+fh7e3t4EqJSIiqtyY2UREVFmV29PL8/LyMHToUISFhWHXrl14/fXXCx3n5+eHX3/9VetUsxMnTiAiIgKDBw82VLlERESVFjObiIgqs3J7pPvf//43Dhw4gD59+iApKQlbt27VWj9ixAgAwJw5c7Br1y68+eab+Oijj5CWlobPPvsMTZs2xdixY+UonYiIqFJhZhMRUWVWbpvuK1euAAB++eUX/PLLLwXW5we4h4cHTp48ienTp+OTTz6BhYUFevfujVWrVvHzX0RERAbAzCYiosqs3DbdISEhJR7buHFjHDlyRH/FEBERUZGY2UREVJmV2890ExERERERERk7Nt1EREREREREesKmm4iIiIiIiEhP2HQTERERERER6QmbbiIiIiIiIiI9YdNNREREREREpCdsuomIiIiIiIj0hE03ERERERERkZ6w6SYiIiIiIiLSEzbdRERERERERHrCppuIiIiIiIhIT9h0ExEREREREekJm24iIiIiIiIiPWHTTURERERERKQnbLqJiIiIiIiI9IRNNxEREREREZGesOkmIiIiIiIi0hM23URERERERER6wqabiIiIiIiISE/YdBMRERERERHpCZtuIiIiIiIiIj1h001ERERERESkJ2y6iYiIiIiIiPSETTcRERERERGRnrDpJiIiIiIiItITNt1EREREREREelJpmm6VSoXZs2fD3d0dVlZWaNu2LY4dOyZ3WURERPQc5jUREVU0labpHjNmDFavXo1//etfWLt2LUxNTdGrVy+cPn1a7tKIiIjo/zGviYioojGTuwBDOH/+PHbs2IHPPvsMM2bMAACMGjUKTZo0waxZs3DmzBmZKyQiIiLmNRERVUSV4kj37t27YWpqikmTJmmWWVpaYvz48QgLC0N0dLSM1RERERHAvCYiooqpUjTdly9fRv369WFvb6+1vE2bNgCAK1euyFAVERERPY95TUREFVGlOL08Li4Obm5uBZbnL3vw4EGhj1OpVFCpVJrvU1JSAACpqamSa0pLSwMAhN9LQZoqV/L2SF5/P0wH8Oz3WtLXB18DFQtfA1SW10BRdJEz5RHzuuRefL2xTmlYp26xTt0qqs6HEf/F06REOUvTkp4QA6D8/TylyH+8EKL4gaISqFOnjnjrrbcKLL97964AINasWVPo4+bPny8A8Itf/OIXv/gly1dKSoqeE9K4MK/5xS9+8Ytf5fErOjq62HyrFEe6raystPaA58vKytKsL4y/vz+mT5+u+V6tViMpKQnOzs5QKBT6KbaCSU1NhYeHB6KjowucLkiVA18DxNdA6Yn/32NuZ2cncyWGVdHzurz8W2CdusU6dYt16hbrlEYIgadPn8Ld3b3YcZWi6XZzc0NsbGyB5XFxcQBQ5A9JqVRCqVRqLXN0dNR5fZWBvb29Uf0DIcPja4D4GqCXqSx5XV7+LbBO3WKdusU6dYt1lp2Dg8NLx1SKC6l5e3sjIiKiwDn7586d06wnIiIieTGviYioIqoUTfegQYOQl5eHb775RrNMpVJh06ZNaNu2LTw8PGSsjoiIiADmNRERVUyV4vTytm3bYvDgwfD390d8fDzq1auHLVu2ICoqCt99953c5VVoSqUS8+fPL3DaH1UefA0QXwNUUhU9r8vLvwXWqVusU7dYp26xTsNQCPGy65tXDFlZWQgICMDWrVvx5MkTNGvWDIsXL0bPnj3lLo2IiIj+H/OaiIgqmkrTdBMREREREREZWqX4TDcRERERERGRHNh0ExERERERVQBPnjwBT2Q2Pmy6iYiIiIiIyrmvv/4aQ4YMwcOHD+Uu5aXu3r0LtVotdxkGw6abSuzOnTv49ddf8e233yIvL0/ucohIRtyLTkS6xPcYlVdcXJzcJZRITk6O3CUUa8uWLXj//fdRr149o7/C988//4xu3brhxIkTcpdiMGy6qUR27dqFYcOGYejQodi3bx8OHz4sd0lEJIOUlBQAgEKhYONNVA4IIaBWq436iFJ5eY9R3v7m7d+/H+fOnZO7jGJ99913GDBgAG7fvi13KUW6cOECli1bhlatWuHEiRNG+TrYsmULxo4di48//hiffvopnJyc5C6pSJs3b8Y777yD+/fvV6qmu1Lcp5uk2bp1K8aNG4d//etfmD9/Pvr06WOUf3BIf2JjY/H3338jLCwMJiYmaNGiBby8vNCwYUO5SyMDOnnyJDZt2oScnBz89NNPUCgUcpdEZFBHjx5FZmYm+vXrp1mWl5cHU1NTGasqWkhICA4dOoTr16+jbdu2GDZsGOrXry93WVrK03uMrKwspKamIiIiAmq1Gq+//joUCgXMzc3lLq2A/Cbss88+w2uvvQYzM+N7y79lyxZMnDgRU6ZMMdomcfv27fj0009hYmKChg0bIiMjA0IIo8q/nTt3YuzYsRg/fjw+++wzo/17BDxruMeNG4cJEybg0KFDuHPnDgAY3c9ULwRRMf7880/h6uoq3n//fXHv3j3NcrVaLWNVZEhnz54VTZs2Ffb29kKhUGi+PD09xbp16+Qujwzkp59+EjVq1BCtW7cW/v7+cpdDZHChoaGav3/Dhw8X33//vdwlFeuHH34QVatWFbVq1RIeHh5CoVCIoUOHiidPnshdmkZ5eo8REhIixo4dK+zs7DSvg+bNm4sFCxaIR48eyV2elk2bNgmFQiH+/e9/i5iYGLnLKVR+jdOnTxcPHjzQLDem3/1PP/0kzMzMxHvvvSdOnz5dYL0x1Jr/c8x/X5b/WszOzpa5soLya/3oo49EbGys6Nu3r6hXr57IzMwUubm5cpend2y6qVD5f0g++eQTUbt2bXHu3LkC66jiu3DhgrCzsxN9+/YV27dvF1lZWeLatWtiw4YNonr16ppQp4otODhYWFpaikmTJomzZ8/KXQ6RLA4dOiRq1aolRo0aJdq2bStq1KghWrRoIfbt26fVMAohf07mv7n9+OOPxeXLl4UQQsyYMUOYm5uLiIgIWWsTovy9x/jpp5+Eu7u7aNOmjZg9e7b4+eefxbx580STJk2EQqEQPXv2FPfv35e7TCHE/37306ZN02pmjcnmzZuFiYlJgYZbCCFu3rwpU1XaQkNDhbu7u3jvvfe0frcqlUoIIUR8fLxYs2aNePz4sVwlis2bN2v+na9Zs0a4urqKmjVriujoaCGEEDk5ObLV9qLCdrJ88MEHws7OTqSlpclcnWGw6aYiZWVliSZNmojevXvLXQrJIDExUXTq1En4+PiI69eva5bnvyE6c+aM8PHxEQqFQixcuFCuMknP7t+/L7y9vcWoUaNEVFSUZrkx7kUn0ie1Wi26dOki/Pz8RHZ2tvj999+Fj4+PcHZ2Fq+++qrYtGmT1lFFuZrHohqakydPirp164qzZ8+Kq1evav17lkN5eY+xadMmYWpqKj744AMRHh6utS49PV0MGjRIKBQK0bFjR9mb3OKa2fXr14uePXvKVNn/XL9+XSgUCtGgQQNx584drXVff/21UCgU4vz58zJV979/t/PmzRO1atUSZ86c0azLPxr76NEj0ahRI6FQKMQHH3wgkpKSDF7nhg0bNAc+8uf/7rvvNI13/t8iY2i8v/rqK2FmZlbgdRkUFCQUCoW4dOmSjNUZDptuKtLTp09Fw4YNRZ8+fYRarX7pP9zExMRKcXpIZRERESHs7e3FmjVrNMvUarXWG8mLFy+K119/XSgUCrF7924ZqiR9u3LlirC0tBS7du0SQmg3Ek+fPhWbNm0SX3zxhTh37pxISEiQq0wivcrLyxNCCHHu3DlhbW0tNm3apFm3Y8cO8f777wuFQiE6d+4sFixYIFQqlSYP8x9rCMU1NAsXLhQKhUK4uroKhUIh7OzsxIYNGzRH7gytPLzH2LJli+boXGxsrGZ5bm6uVi0jRowQCoVCTJgwQaSmphq0xnzF/e6/++47YWZmJqZNmyYyMjJkqS/fkydPxPTp04VSqRSzZs0S6enpmhotLCzE7NmzRUpKiqw1qlQq0bRpU9GrV68C6+Lj40XDhg1F69atxXvvvScUCoV49913Dd54//7772LixIlaTWxubq749ttvjarxfvLkibC3txeTJk0ScXFxWut+++03oVAoNO8vKjo23VSszp07i4YNG2reNBT25iF/2eHDh8W8efOM8tQwKr3g4GCtPZBF/V6PHDkizMzMxOjRo4sdR+XTsWPHhEKhEL/99ptmWWRkpFi7dq145ZVXNJ8ls7e3F++9916B02yJKpL4+HjRrVs3MWDAAK3PRh87dkyYmpqKxo0bC0tLS9GoUSOxdOlSg58qW1RD8+233wpTU1MxZswYsX//fvGf//xHtGrVSpiammrtWDU0Y36P8XwTe/fuXc3y5+d/vvHu1KmTqFKlitap8oZUXDOrUCjEvHnzZNsh8KKUlBQxY8YMTV1fffWV5v/lbriFeLZDqEGDBqJfv35CCO0zu7777jvRqVMnzRmA8+bNEwqFQkyaNMngtT+/wyz/tahWq42u8Y6LixMPHz4ssDw0NFSYmpqK1atXCyEKvn98/PixQXda6hubbipU/gt/6dKlQqFQiLlz52rWFfUPoG/fvqJr164GqY/0b9++fVpHsF88wvD8H8fhw4eLKlWqGN3FZEi6+Ph44eHhIVq3bi32798vDh48qDm7oU2bNmLRokVi8+bNok+fPkKhUIjPPvtMCMGdL1Rx7d69WygUCnHo0CEhhBAnTpwQjo6Oonfv3iIsLEycOXNGdOvWTSgUClGnTh2DH1ksrqFJTEzUjPvjjz9Eo0aNhJmZmdZHiAyhPLzHeL6JnT17dpG/x/xm5sSJE0KhUIjZs2cbrMYXlbSZNYZGJiUlRfz73/8WZmZmQqFQiE8++cRodgoI8Wwnyquvvqp5rT7/M3vxrK4FCxYU2Dkth/wai2q8je1s1Pj4eFG1alUxYsQIIYT2joEbN26IESNGiKVLl8pVns6x6aZi3bt3T3h6egpHR0fx3XffaZbn5uZq/QE6efKk8Pb2rlD/OCq76OhoUaVKFTFw4EDNsheDOv8P+Pz584VSqRT//POP1nKqGM6fPy9cXFw0R7Wtra3FlClTtI70RUdHi/r164vWrVvLVyiRAWRlZYm33npL+Pr6il27dokqVaoIHx8fce3aNa1xP/30k7h9+7YsNb7Y0MyePVvT0Dy/Q2zFihVCoVCIX3/9VZY6jf09xvNN7L///W/N0ePC/PPPP8Le3l5MnDjRgBUW9LJm9vmf6507d8SJEydkOwqanJws5s2bJ8zNzcWUKVNEZmamLHU8L//fx+LFi4VCoRABAQGadUVdy+STTz4RtWrVkv0z/UIU3XjnfzzCmN6f5ebmioYNGwofHx+t5X/99Zfo3bu3MDc3N/gOQX1i000vFRoaKmxtbUX16tXF559/XmB9eHi46NWrl6hTp46IjIw0fIGkF6mpqaJ3795CoVCItWvXapYXtofc399f1KxZUxNIPMpZ8URFRYmNGzeKLVu2aF3BPP/1kJ2dLZo1aybatm0rV4lEBrNmzRphYWEhzMzMRJ8+fcR///tfzTpjuchgUQ3N83+flyxZIhwdHWW9K4Gxv8d4vvGeMWNGgcY7/29gamqqsLe3Fx9//LHBa3xRSX73f/31l3jzzTdFkyZNZL2NXHJysubnO3PmTKO5knVUVJTw8PB46Q6hs2fPio4dO4rRo0fL/nn5fC823jVq1BDW1tZGsVMgX37z361bN1GnTh2RnJwshHh2hLt3797C1tZWXLlyRc4SdY5NN5XIsWPHhIODg1AoFGLgwIFi586dIiwsTMybN0+8/vrrwtnZWetNB1UMf/31l3BwcBBubm5aofP8XvGbN2+Ktm3bCktLSzFmzBgxZMgQsWbNGqM4fY306/nm4vjx48LT01N8/PHHIi8vjzteqEJ6/nXdvXt34ezsLP766y8ZKyreiw3N80c8r169Ktq2bSvatm0r+0UQjf09xssabyGEWLVqlXB1dRUhISFCCPl3Phf3u79x44Z4++23hZ2dXYErssuhJD9fOeTvEHJzc9M6+JDv/Pnz4q233hI1atQwilvxPe/5xnv9+vXilVdeMboahRDi3//+t3B0dBT//POPuHv3rujdu7ewsbGpcA23EGy6qRRu3rwp+vTpI5ycnDSnmTo7O4u+ffsazX0VSfeOHj0qbG1thYODg/D39xfZ2dmaNxPh4eFiwoQJwszMTLz++uuicePG4pVXXqlQpwNR4Z4/Re3SpUuiZ8+eombNmloXHCKqiPL//m3cuFE4OTlpXcncGD3f0MyaNUtkZGSIv/76S9N0Gcvfa2N/j/FiY/j06VPNugsXLohOnTqJt99+W+tz83Ir6ndvjI3N87XOnj3baI54Hz16VLNDyM/PTwQHB4uwsDDh7+8v2rZtK1xdXY32oNPzjXf+kWRjs3r1aqFQKMSmTZtEv379KuQR7nxsuqlUnj59KuLi4sThw4fFoUOHRGxsrFbwUMV0+vRp4enpKRQKhahXr5546623RK9evUT9+vVFlSpVxL59+4QQz14ffD1UDvmNx9q1a0XXrl1FtWrVjPaNB5E+xMTEiJo1a4pevXrJdtutknq+oRk3bpx46623jK7pEsL432MU18RWr17dKHYOvKi8/O6FeFbr7NmzC3yWWm75v+MqVapodgi5uLiIgQMHilu3bsldXrHkPuOiKPl1nTx5UvPztLGxEZcvX5a3MD1SCCEEiIhe4v79+9i+fTuOHDmCuLg4WFhYwMfHB/3790f79u2Rl5cHU1NTucskA0lKSkLv3r1x9+5dtGrVCqtXr0bDhg3lLovIoLZs2YKxY8di+/btGDp0qNzlFCs1NRVBQUFYvnw5TE1NcfHiRTRv3lzussqd1NRULF68GKtWrcLYsWMRFxeHP//8E6GhoUb78yxPv/uUlBSsWrUK77zzDho1aiR3ORpPnz7F06dPcfXqVQCAt7c37OzsYGNjI3Nl5dvff/+NRo0awdzcHJcuXULjxo3lLklv2HQTUak9ffoUSqUSFhYWmmVCCCgUChmrIkP766+/EBkZiXbt2sHZ2VnucogMLjY2Fv369cOPP/5oVA1CUZKTk7FhwwYMHDiQO8kkeL6JNTMzw4ULF4y2ic1Xnn73arUaJiYmcpdBBrJ582a8/vrraNCggdyl6BWbbiIqsRcbazbaRFTZqVQqKJVKucsoMTY0ulGemth8/N2TMaos7yXZdBMRERERlRKbWCIqKTbdRERERERERHrC3XNEREREREREesKmm4iIiIiIiEhP2HQTERERERER6QmbbiIiIiIiIiI9YdNNREREREREpCdsuomIiIiIiIj0hE03ERERERERkZ6w6SaiIkVFRUGhUGDMmDGy1dClSxcoFAqDzmkMz5uIiOh5pc3DkJAQKBQKLFiwQH9FEVGJsOkmKgfym8Divry8vOQuk4iIqNILDw/H+PHj8corr8DGxgZWVlaoW7cuRo4ciWPHjsldXpnl5uZi69at6NevH2rUqAGlUgkbGxvUr18fI0aMwN69e6FWq+Uuk8gomcldABGVXN26dTFixIhC1zk6Ohq2GCIiItJQq9WYMWMG1qxZAzMzM3Tt2hV9+/aFubk5/vnnHxw8eBBbt27FokWLEBAQoPd62rRpg5s3b8LFxUXytu7du4cBAwbg8uXLcHFxQbdu3VCrVi2o1WpERkbi8OHD+Omnn9C/f3/s3btXB9UTVSxsuonKkXr16vE0MSIiIiM0b948rFmzBt7e3ti9ezfq1q2rtT4zMxPr169HYmKiQeqxtrZGw4YNJW8nNTUVPXv2xN9//41Zs2ZhwYIFsLKy0hqTk5ODbdu24ZdffpE8H1FFxNPLiSoghUKBLl26IDY2FsOHD4eLiwvs7OzQu3dv/PPPPwCAmzdvon///nBycoKdnR0GDRqER48eFbnNGzduoHfv3nB0dIStrS18fHwQHh5eYFx4eDgmT56MJk2awMHBAVZWVmjatCmWLVuGnJycAuO9vLzg5eWF5ORkTJ48GR4eHjAzM8PmzZuLfY4///wzlEolmjdvjri4OM3yP//8E3369IGLiwuUSiVeeeUVzJs3DxkZGQW2kZeXh+XLl6NevXqwtLREvXr1EBQUxNPjiIioVO7cuYMVK1bA2dkZhw8fLtBwA4CVlRVmzpyJhQsXAgAiIiIwa9YstGzZEs7OzrC0tET9+vXxySefIC0trci5srKy8Mknn8DT0xOWlpZo1KgRvvjiCwghtMYV9Znu/NxNS0vDRx99BHd3dyiVSjRr1gy7d+8uMN9nn32Gv//+G6NHj8by5csLNNwAYG5ujtGjR2PHjh1ayxcsWACFQoGQkBBs3rwZLVu2hLW1Nbp06VJg/Ys2b94MhUKh9X7g+WuulPR9CZEx4JFuogrqyZMn6NChA6pXr47Ro0cjIiICv/76K27duoX9+/ejY8eOeO211zBu3DiEh4cjODgYSUlJ+P333wts659//kH79u3RsmVLvP/++7h37x527dqFTp064ffff0fbtm01Y//zn//gl19+QadOndCrVy9kZGQgJCQE/v7+uHDhAoKDgwtsX6VSoWvXrkhLS0Pfvn1hZmaGatWqFfncvvjiC3z00Ufo2LEjDhw4AAcHBwDAV199hQ8//BCOjo7o06cPXF1dcfHiRSxduhR//PEH/vjjD1hYWGi2M2nSJHz//feoXbs2PvzwQ2RlZWH16tU4c+aMlB89ERFVMps3b0ZeXh7efffdYvMLAJRKJQBgz549+O677/Dmm2+iS5cuUKvVOHv2LJYvX46TJ0/izz//hLm5eYHHDxkyBJcvX4afnx8AIDg4GFOnTkVUVBRWrVpVonpzcnLg4+ODJ0+ewM/PDxkZGdixYweGDBmCw4cPw8fHRzN206ZNAFCiU+LNzApvLT777DP88ccf6NevH3x8fGBqalqiOotSmvclREZBEJHRi4yMFABE3bp1xfz58wv9OnTokGY8AAFATJs2TWs777//vgAgHB0dxeeff65ZrlarRa9evQQAER4eXmBeAOKTTz7R2tbhw4cFANG0aVOt5ffu3RO5ublay9RqtRg3bpwAIE6fPq21rlatWgKA6Nmzp8jIyCjw3Dt37iye/1M1Z84cAUAMGDBAZGZmapbfuHFDmJmZiebNm4uEhAStbQQFBQkAYuXKlZplf/zxhwAgmjdvLtLS0jTLY2JihIuLiwAgRo8eXaAeIiKiF3Xp0kUAEMePHy/xY2JiYoRKpSqwfOHChQKA2Lp1q9by/Dxs0KCBSE5O1ixPTk4WDRo0EAqFQly4cEGzPD/n5s+fr7Wd/Nzt16+f1vzHjx/X5HG+e/fuCQDCw8OjxM/refPnzxcAhI2Njbh69WqR6//4448C6zZt2iQAiE2bNmmWleV9CZEx4OnlROXI3bt3sXDhwkK/Dh8+rDXW1tYWS5Ys0Vr2zjvvAACcnZ0xdepUzXKFQoFhw4YBAP773/8WmNfR0RFz587VWtazZ09069YN165d0zqdy9PTs8AebIVCgQ8//BAAcPz48UKf24oVKwo9ZS1fXl4eJkyYgMDAQEycOBG7du2CpaWlZv3XX3+N3NxcfPHFF3B2dtZ67KxZs1C1alVs375ds+yHH34AAHz66aewsbHRLK9RowY++uijIusgIiJ60cOHDwEANWvWLPFjatSooXX2Vb7JkycDKDovAwICNGd4AYCDgwPmzZsHIQS2bNlS4vnXrFmjNX/+xdEuXLigWZb/vNzd3Qvdxueff44FCxZofSUnJxcYN2nSJDRt2rTEtb1Mad6XEBkDnl5OVI707NmzQHNdlFdeeQXW1tZay9zc3AAAzZo1K3Cvz/x1Dx48KLCtFi1awNbWtsDyjh074sSJE7h8+TJee+01AEB2djbWr1+PHTt24NatW0hLS9P6nFlh27e0tHxpGPv5+WH//v2YO3dugZ0JAHD27FkAwJEjR3DixIkC683NzXHr1i3N9/k7Fzp27Fjo8yIiItInIQQ2bdqEzZs34/r160hJSdG6pkhheQkUn1uXL18u0dyOjo6oXbt2geU1a9ZEWFhYibYBPGu67927p7VszJgxBe6o0qZNmxJvsyRK876EyBiw6SaqoOzt7Qssy/+sVXHrCrvYWVGfT8tfnpKSolk2aNAg/PLLL6hfvz6GDh0KV1dXmJubIzk5GWvXroVKpSqwHVdX1wI7AV70559/wtLSEr169Sp0fVJSEgBg6dKlxW4nX0pKCkxMTAq9lcrLPo9HRET0vOrVq+PWrVuIjY1FgwYNSvSYqVOnYv369fDw8EDfvn3h5uam+bz3woULC81LoPCMKiyPi/P8kfLnmZmZaTX++dstagdAVFSU5v99fX1x5MiREtcsRWnelxAZAzbdRPRSRV3VPH95fnhfuHABv/zyC3r27ImDBw9qnWZ+9uxZrF27ttDtvKzhBoATJ06ge/fu8PX1xeHDh/HGG29orc/fkZCamgo7O7uXbs/BwQFqtRoJCQmoWrVqoc+LiIioJNq3b4+QkBCcOHECXbt2fen4+Ph4fPnll2jWrBnCwsK0zkx7+PCh5grnhXn06BE8PT0LLAOKbqbLqlatWqhRowaio6Nx9+7dQq/KXhJF5byJybNPuubm5hZYV1zjXNL3JUTGgp/pJqKXunz5cqG3Lzl16hSAZ6d5Ac8+cw4AvXv3LvC57vyxZdWiRQv8/vvvsLCwgK+vL0JDQ7XW51+pNP8085dp3rx5kXVJrZWIiCqXMWPGwNTUFN988w0eP35c7FiVSoV//vkHQgh07969wEfBXpZBxeVWfh7r0tixYwGU/Eyy0qhSpQoAIDY2tsC64k6VL+n7EiJjwaabiF4qOTm5QNjmf3a6SZMmms9N1apVCwBw+vRprbE3btxAUFCQ5DqaN2+O33//HUqlEr6+vlrzfPDBBzAzM8OUKVNw//79Qp/D8wE+cuRIAMCiRYuQnp6uWR4bG1vkEXkiIqLC1KtXD7NmzUJCQgLeeustREZGFhiTf1vKBQsWaPLyzJkzWqdzx8TEwN/fv9i5Fi9erHUUOCUlBUuWLIFCocDo0aN19Iz+Z+bMmahfvz42bdoEf39/ZGVlFRiTm5urlaUl1bp1awDPLm76/M8hLCwMP/30U5GPK+n7EiJjwdPLicqRO3fuYMGCBUWu/+STT7Su6K0rHTt2xFdffYVz586hXbt2iIqKwq5du2BlZYVvv/1WM65NmzZo06YNdu7cibi4OLRr1w7379/HgQMH0Lt3b+zevVtyLc2aNcPvv/+Obt264a233sJvv/2Gjh07okmTJtiwYQPef/99NGjQAL169ULdunXx9OlT/PPPPzh58iTGjBmDjRs3AgDefPNNjB07Fps2bULTpk0xYMAAqFQq/Pzzz2jXrh1+/fVXybUSEVHlsWTJEmRlZWHNmjVo0KABunbtiiZNmsDc3ByRkZE4fvw4EhMTsWTJEri5ucHPzw/BwcFo1aoVunXrhkePHuHXX39Ft27dNGeOFaZ+/fpo0qSJ1n26Y2JiMH36dLRq1Urnz8ve3h5Hjx5F//79sWzZMnz77bfo3r07atWqhdzcXMTFxeHEiRN49OgRmjRpUuAiasVp164d2rdvj99//x2vv/46OnXqhHv37mH//v3o06cP9u7dW+jjSvq+hMhoyHvHMiIqiefvS1nc15MnT4QQz+7T3blz5yK3U9j9pwu7n+fz469fvy569eol7O3thY2Njejevbu4ePFige3Ex8eLcePGCXd3d2FpaSmaNm0qvvzyS/HPP/8UOnetWrVErVq1inzuL96nO9+1a9eEq6ursLGxESdPntQsP3/+vBg2bJhwd3cX5ubmwsXFRbRs2VJ88skn4ubNm1rbyM3NFUFBQaJOnTrCwsJC1KlTRwQGBoo7d+7wPt1ERFQmFy5cEOPGjRP16tUTVlZWQqlUCi8vLzF8+HBx7NgxzbinT5+Kf//738LLy0solUrxyiuviMWLF4vs7OxCczw/DzMzM8WsWbOEh4eHsLCwEA0aNBDr1q0TarVaa3xx9+kuKneLylwhhMjJyRE//PCDePvtt4Wbm5uwsLAQ1tbWom7dumLYsGFi7969Ijc3V+sxxd2HO19CQoIYNWqUcHJyElZWVqJdu3biyJEjxd6nuzTvS4iMgUKI5+7lQ0REREREZISioqJQu3ZtjB49Gps3b5a7HKIS42e6iYiIiIiIiPSETTcRERERERGRnrDpJiIiIiIiItITfqabiIiIiIiISE94pJuIiIiIiIhIT9h0ExEREREREekJm24iIiIiIiIiPWHTTURERERERKQnbLqJiIiIiIiI9IRNNxEREREREZGesOkmIiIiIiIi0hM23URERERERER6wqabiIiIiIiISE/YdBMRERERERHpCZtuIiIiIiIiIj1h001ERERERESkJ2y6iYiIiIiIiPTETO4CyhO1Wo0HDx7Azs4OCoVC7nKIiKiCEkLg6dOncHd3h4kJ94+XFvOaiIgMoaR5zaa7FB48eAAPDw+5yyAiokoiOjoaNWvWlLuMcod5TUREhvSyvGbTXQp2dnYAnv1Q7e3tZa6GiIgqqtTUVHh4eGhyh0qHeU1ERIZQ0rxm010K+aeo2dvbM8SJiEjveGp02TCviYjIkF6W1/ygGBEREREREZGeGF3TnZaWhvnz58PX1xdOTk5QKBTYvHlzoWNv3rwJX19f2NrawsnJCSNHjsTjx48LjFOr1VixYgVq164NS0tLNGvWDNu3b9fzMyEiIqrYmNlEREQvZ3RNd0JCAhYtWoSbN2+iefPmRY6LiYlBp06dcOfOHQQGBmLGjBk4ePAgevTogezsbK2xc+fOxezZs9GjRw988cUX8PT0xPDhw7Fjxw59Px0iIqIKi5lNRET0ckb3mW43NzfExcWhevXquHjxIlq3bl3ouMDAQKSnpyM8PByenp4AgDZt2qBHjx7YvHkzJk2aBACIjY3FqlWr8OGHH2L9+vUAgAkTJqBz586YOXMmBg8eDFNTU8M8OSKiSigvLw85OTlyl2FUzM3NK0T2MLOJiCoWZrY2XeW10TXdSqUS1atXf+m44OBgvP3225rwBoDu3bujfv362LlzpybA9+/fj5ycHHzwwQeacQqFAu+//z6GDx+OsLAwdOjQQfdPhIiokhNC4OHDh0hOTpa7FKPk6OiI6tWrl+uLpTGziYgqBmZ20XSR10bXdJdEbGws4uPj0apVqwLr2rRpg99++03z/eXLl2FjY4NGjRoVGJe/ngFORKR7+eHt6uoKa2vrct1c6pIQAhkZGYiPjwfw7GhxRcbMJiIyfszsgnSZ1+Wy6Y6LiwNQ+BN3c3NDUlISVCoVlEol4uLiUK1atQIvnPzHPnjwoMh5VCoVVCqV5vvU1FRdlK9x//59JCQk6HSbZeHi4qJ19IFIX/iarzzy8vI04e3s7Kz3+VQqFXJzc/U+z8uYmZlBqVS+dJyVlRUAID4+Hq6urhX6lGlDZHZlyWuistJ17vHfRMUihICJiQmqVasGS0tLqNVquUvSO0PndblsujMzMwGg0B+UpaWlZoxSqdT8t7hxRQkKCsLChQt1UXIB9+/fR8OGjZCZmaGX7ZeGlZU1bt26ySaE9Iqv+col//Ng1tbWep9LpVLhxo0bRvEmwcTEBI0bNy5RkOf/bHJycip0022IzK4seU1UVrrMPf6bqHg8PT2xceNG5OXlFXtAsiIxdF6Xy6Y7f4/D83u182VlZWmNsbKyKtG4wvj7+2P69Oma71NTU+Hh4VH2wp+TkJCAzMwMtB03H/ZuXjrZZlmkxkXh3PcLkZCQwAaE9Iqv+crJEKen5ebmQq1Ww8bFHabmFnqfryh5OdlIT3iA3NzcEoV4ZTl1zxCZXRnymqisdJ17/DdR8VS1VcLK0QU2VWvA1Mxc7nL0To68LpdNd/5pZvmnrD0vLi4OTk5Omh+gm5sb/vjjDwghtH5g+Y91d3cvch6lUlmiX4QU9m5ecPJsoNc5iIwJX/OkL6bmFjC1sHzpuLOhpzBiQC9cuh0NewdHvdUzZswYJCcnY9++fXqbozwwRGYzr4kMj/8mKg4HJWBiav4sR831+7e0NCpSXhvdfbpLokaNGqhatSouXrxYYN358+fh7e2t+d7b2xsZGRm4efOm1rhz585p1hMRkeE9fvwY77//Pjw9PTVXwe7ZsydCQ0P1Om/L1m0Rdu0O7Owd9DoPPcPMJiIq3xITHuPTmR+jY4tGaFTTGe0a18WYIf0Rfi5Mr/NWpLwul003APj5+eHXX39FdHS0ZtmJEycQERGBwYMHa5b169cP5ubm2LBhg2aZEAIbN25EjRo18MYbbxi0biIiesbPzw+XL1/Gli1bEBERgQMHDqBLly5ITEws0/aEECW6mJqFhQWqFnKxLtIfZjYRUfk1edwI3Lj+X6z44mscD7uMr3/8GW3bd8CTJ0ll2l5lzGujbLrXr1+PJUuW4PvvvwcA/PLLL1iyZAmWLFmClJQUAMCcOXNgbW2NN998E1988QWCgoIwePBgNG3aFGPHjtVsq2bNmvj444/x5Zdf4t1338W3336LPn364NSpU1ixYkWFvngNEZGxSk5OxqlTp7B8+XK8+eabqFWrFtq0aQN/f3/07dsXUVFRUCgUuHLlitZjFAoFQkJCAAAhISFQKBQ4evQoRo4ciaZ1amD3th9Qz9UOd2//rTXf9xvX483WzQA8O12tnqsdUlOS8fRpKhp7VsXJE0e1xh89eADNa7shM+PZhYIexMZgyoRRaFGvJl6r74l3Rw1FzP17mvF5eXkIWhiAN998E56enpg1axaEEHr4yRkfZjYRUcWVmpKMC2fPYFbAYrzeoRNqeHiiectWeP+jGeju2xsx9++hnqsd/rp2Vesx9VztcDb0FID/5e7JE0fRr3tHvFrTudLltVE23StXrkRAQAC++uorAMCePXsQEBCAgIAAPHnyBADg4eGBkydPom7duvjkk0+wYsUK9OrVC8eOHSvwua5ly5YhMDAQR44cwYcffoioqChs3boVw4cPN/hzIyIiwNbWFra2tti3b1+hF84qjU8//RSTJ0/Gb3+EwrdPfzT1bokDwTu1xhwI3om+foMLPNbOzh5v9vDFgeBdWsv3B+9E97fehpW1NXJycjB2aH/Y2Npix4Ej+PnXo7CxtsW4YQOQnZ0NAPhuwzrs3bkDAQEBOHr0KJKSkrB3715Jz6u8YGYTEVVc1ja2sLGxxbFDv0rO688Wz8fMeQtx+PTFSpfXRtl0R0VFQQhR6JeXl5dmXOPGjXHkyBGkp6fjyZMn2Lp1K6pVq1ZgeyYmJvD390dUVBRUKhWuX7+Of/3rXwZ8RkRE9DwzMzNs3rwZW7ZsgaOjI9q3b485c+bg6tWrL3/wC+bNm4e2bdvC06s2HKs4oa/fEPyyZ7dmfeTd27j+38vo6zek0Mf38xuC44d+1ewlf/o0FSHHj6DvoGfjD+4LhlCrEbTmSzR4tTHq1W+IZeu+woPYGJz7/734m7/ZgEmTP0LXrl3RsGFDbNy4EQ4O5f8zaCXBzCYiqrjMzMywfN1G7P15G1q+UhNDenfHyqULcOvG9VJv66PZc9GhS1fUql2n0uW1UTbdRERU8fn5+eHBgwc4cOAAfH19ERISgpYtW2Lz5s2l2k7Lli21vn+7/yDERt/D5YvnAQD7d+9E42beqPtK4VfZ7dy9J8zMzXHiyG8AgCO/7oetrR3ad3oTAHDrxjXci/wHzWu7oZlXdTTzqo5W9T2hysrC/ahIPE1NQfyjh2je4n91mJmZoVWrVqV6HkRERMbIt08/nLkaga9/+BmduvbAudBT6Ne9A4J3bC3Vdpp6V968Lpe3DCMioorB0tISPXr0QI8ePRAQEIAJEyZg/vz5OHXq2R7p5z9nlZOTU+g2rK2tNZ8dBoCq1aqhXYfO+GXPLrRo1Qa/7NmF4WPGF1mDhYUFfPv0w4E9O/H2gEH4JXgXevf3g5nZs4jMSE9Hk+YtsGrDtwUe6+ziUqbnTUREVJ4oLS3RoUtXdOjSFZP/PRv+0z7E2hWB2HHgCABAoGR5/bzKlNc80k1EREbj1VdfRXp6OqpWrQpA+97Oz19U7WX6+Q3BwX3BuHThHKLvReLtAYOKHd/XbyhO/X4cEbduIuz0Sa1T215t1hxR/9yFc9Wq8KpTV+vLzt4BdvYOcK1WHf+9fEnzmNzcXISHh5e4XiIiovKkXv2GyMxIh5Pzs2b28aOHmnU3r18r8XYqS16z6SYiIoNLTExE165dsXXrVly9ehWRkZHYtWsXVqxYgX79+sHKygrt2rXDsmXLcPPmTZw8eRLz5s0r8fZ93u6L9PQ0zJ81De3ad0K16m7Fjm/zenu4uFbDv98fj5qeXvB+rbVmXT+/oaji5IT3Rg3DhbOhiL4XhbOhp7BozkzEPYgFAIye+D7+8+U6hISE4O+//8YHH3yA5OTkMv1siIiIjMWTpESMGNgb+3btwK0b1xF9Lwq/HdiL/6z/HN18e8PSygrer7XG1+tW407ELZw7cxprli0u8fYrS16z6SYiIoOztbVF27ZtsWbNGnTq1AlNmjRBQEAAJk6ciPXr1wMAvv/+e+Tm5uK1117Dxx9/jCVLlpRi+3bo6vMWbt64prnASnEUCgX6DBj0bPwLF3CxsrbG9v1H4F6jJj4Y+y/07NAK/h9/CJUqC7Z2dgCA8R9MRV+/wViwYAG6desGOzs7DBgwoBQ/ESIiIuNjbWOL5i1bYdPXX+Kdfr7o1bktPl+2GENHjsGCoFUAgGVrNyA3Nxf9e3TCknmzMe2TgBJvv7LktUJUlhuJ6kBqaiocHByQkpICe3t7Sdu6dOkSXnvtNfSYuwlOnoVfLMAQku7/jWNLxyI8PLzAxYiIdImv+colKysLkZGRqF27NiwtLfU6V3p6Om7evAl7Ny+YWuh3ruLkZWchNS4KjRo1go2NzUvHF/cz0mXeVEYVMa+JykrXucd/ExWPkxIY1sgK1Wt6wNRc+fIHlHNy5DWPdBMRERERERHpCZtuIiIiIiIiIj1h001ERERERESkJ2y6iYiIiIiIiPSETTcRERERERGRnrDpJiIiIiIiItITNt1EREREREREesKmm4iIiIiIiEhP2HQTERERERER6QmbbiIiIiIiIiI9MZO7ACIionz3799HQkJCqR6TmZmJyMhI2CSkwMRcWeLHOTk5w72mR2lLxI/ffYNvN6zF4/hHaNS4KT4N/AzNW7Yq9XaIiIjKqwcx0UhKSjTYfLrM7CZNmuihwuKx6SYiIqNw//59NGzYCJmZGQaZT2llhWOh4aUK8YP7ghE43x+LP/sczVu2xuZvvsTYoQNw7MwlODrY6bFaIiIi4/AgJho92r8GVWamwebUZWYfPnkG5nqstTBsuomIyCgkJCQgMzMDbcfNh72bV4kfp85TIysrE6bmSsBEUaLHpD28h0tbFiMpKbFUAf79xvUYOmIMBr0zEgCw+LO1CDl2BLu2/4CJ731Y4u0QERGVV0lJiVBlZqLl6ADYVq+l9/l0ndnBO7ZhmF8/fZVbKDbdRERkVOzdvODk2aDE4/Py1MjISIeZhSVgor9LlWRnZ+P6fy/jvanTNctMTEzwRqcuuHzxPAA23UREVHnYVq8FR4+S57UhFZvZly4avOnmhdSIiIhK4ElSIvLy8uBc1VVruUtVVyTEx8tUFREREb3I2DKbTTcRERERERGRnrDpJiIiKoEqTs4wNTVF4mPtPeQJj+Ph4upaxKOIiIjI0Iwts9l0ExERlYCFhQWaNG+BM6dOapap1WqcOXUSLVq1kbEyIiIiel6xmS3DbT55ITUiIqISGvfeZMyc8i6aNm+BZi1fw+avNyAzIwODho2UuzQiIiJ6TlGZPXDoO0CuYW5Pmq9cN923b99GQEAATp8+jaSkJHh6emL48OGYMWMGrK2tNePOnDmDWbNm4dKlS7C3t8eQIUMQGBgIW1tbGasnIqLCpMZFlWp8WW8ZVha9+/shMTEBn69Yisfxj/Bqk2b4fsceuLi6Ii87q0zbrCyY2UREFUtZs9RQ8xSZ2VVdS/1eQ6py23RHR0ejTZs2cHBwwOTJk+Hk5ISwsDDMnz8f4eHh2L9/PwDgypUr6NatGxo1aoTVq1cjJiYGK1euxO3bt3Ho0CGZnwUREeVzcXGBlZU1zn2/0CDzKa2s4OTkXOrHjRr/LkaNf1cPFVVczGwioorDyckZSisrXNqy2GBz6jKz5dhJXm6b7h9//BHJyck4ffo0GjduDACYNGkS1Go1fvjhBzx58gRVqlTBnDlzUKVKFYSEhMDe3h4A4OXlhYkTJ+Lo0aPw8fGR82kQEdH/8/T0xK1bN5GQkFCqx2VmZiIyMhI2Lm4wMVeW+HFOTs5wr+lR2jKpDJjZREQVh3tNDxwLDUdSUqLB5izvmV1um+7U1FQAQLVq1bSWu7m5wcTEBBYWFkhNTcWxY8cwbdo0TXgDwKhRozBt2jTs3LmTAU5EZEQ8PT3h6elZqsekp6dDqVTC3s0LphaWeqqMpGBmExFVLO41Pcp1E2xo5fbq5V26dAEAjB8/HleuXEF0dDR+/vlnfPXVV5g6dSpsbGxw7do15ObmolUr7SvUWVhYwNvbG5cvX5ahciIiosqFmU1ERJVZuT3S7evri8WLFyMwMBAHDhzQLJ87dy6WLFkCAIiLiwPwbE/6i9zc3HDq1Kli51CpVFCpVJrv8/fUExERUcnpO7OZ10REZMzKbdMNPPucV6dOneDn5wdnZ2ccPHgQgYGBqF69OiZPnozMzEwAgFJZ8DN+lpaWmvVFCQoKwsKFhrmgDxERUUWmz8xmXhMRkTErt033jh07MGnSJERERKBmzZoAgIEDB0KtVmP27Nl45513YGVlBQBae7/zZWVladYXxd/fH9OnT9d8n5qaCg8PfnaBiIioNPSd2cxrIiIyZjppurOzs3H8+HHcunUL6enpCAgIAPAsJFNTU+Hi4gITE91+fHzDhg1o0aKFJrzz9e3bF5s3b8bly5c1p6jln7L2vLi4OLi7uxc7h1KpLHSPOxERUXkkR14D+s9s5jURERkzycl64MABeHp6ok+fPpgxYwYWLFigWXf16lW4ublhx44dUqcp4NGjR8jLyyuwPCcnBwCQm5uLJk2awMzMDBcvXtQak52djStXrsDb21vndRERERkjufIaYGYTEVHlJqnpDg0NxaBBg6BUKrF27VoMHz5ca32bNm1Qr149BAcHSyqyMPXr18fly5cRERGhtXz79u0wMTFBs2bN4ODggO7du2Pr1q14+vSpZsyPP/6ItLQ0DB48WOd1ERERGRs58xpgZhMRUeUm6fTyxYsXw9HREeHh4XBxcUFiYsEbpLdq1Qrnzp2TMk2hZs6ciUOHDqFjx46YPHkynJ2d8euvv+LQoUOYMGGC5jS0pUuX4o033kDnzp0xadIkxMTEYNWqVfDx8YGvr6/O6yIiorK7f/8+EhISSvWYzMxMREZGwiYhBSbmJT/F2MnJudLcY1TOvAaY2UREFc2DmGgkJRXMEn0p75ktqek+d+4cBg0aBBcXlyLHeHh4YP/+/VKmKVSnTp1w5swZLFiwABs2bEBiYiJq166NpUuXYtasWZpxLVu2xPHjxzF79mxMmzYNdnZ2GD9+PIKCgnReExERld39+/fRqGEDZGRmGWQ+KytLHAm9VKoQPx92Gv/5ci1u/PcK4h89xFebt6FHrz56rFI35MxrgJlNRFSRPIiJRs/2LZFpoLwGyn9mS2q6VSoV7O3tix2TnJysl4uyAM9Oh/vtt99eOq5Dhw4IDQ3VSw1ERKQbCQkJyMjMwtZJ3mjkZlvix+Wp85CZlQVTcwsoFCXLm78fpmHcd9eQlJRYqgDPzMhAo8ZNMfidkfhg7L9K/Di5yZ3XADObiKiiSEpKRGZmFr4f3xQNqpc8r8uqImS2pKa7Tp06uHDhQrFjwsLC0LBhQynTEBFRJdLIzRYtvRxKPD4vLw/pGWYws7CEQo9NIwB07uaDzt189DqHPjCviYhI1xpUt0WLWsXv0JWTMWW2pHcnfn5+CA0NxaZNmwpdv3LlSly/fh1Dhw6VMg0RERFJwLwmIiKSj6Qj3TNnzkRwcDAmTJiAbdu2QaVSAQBmzZqFsLAwnDlzBt7e3pg8ebJOiiUiIqLSY15L9zjyFjLTM+Qug6jU0uLvy10CUaUnqem2tbXFqVOnMHnyZOzcuVNzD86VK1dCoVBgyJAh2LBhA5TKkl9NloiIiHSLeV12KpUKUChwZdtyuUshKjuFQrOzjYgMT1LTDQBVqlTBTz/9hHXr1uHChQtISkqCvb09WrdujWrVqumiRiIiIpKIeV02SqUSEAKLB9ZHbRdrucshKrXIhAwE7IngTjUiGUluuvM5OzvzHppERERGjnldNr2aupbqAn9ExuJSVAoC9kTIXQZRpaazppuIiKiiS09Lw73IfzTfR9+/h7+uXYVjlSqo5lpVxsqIiIjoeUVltp2tNWz1e7OTAiQ13V27dn3pGBMTE9jb26NBgwbo378/2rZtK2VKIiKq4G7GpZVq/P/u051dqvt0l8W1/17GiAG9NN8HfuoPABg4dDiCVq0t0zYNgXlNRES6VtYsNdQ8RWX2gMFDMWfWDJ3UVlKSmu6QkBAAgEKhgBCiwPoXl69YsQJjx47Ft99+K2VaIiKqgFxcXGBtZYkR31wxyHxWVpZwcnIu1WPate+IO/FPC12Xl52li7L0gnlNRES64uTkDCsrS4z77prB5tRlZudlZyE1LkpHlZWMpKY7MzMTQ4YMwd27dzFv3jy0b98e1apVw6NHjxAaGorAwEDUqVMHX375JW7evAl/f39s2rQJr732Gt5//31dPQciIqoAPD09cfPW30hISCjV4zIzMxEZGQkbFzeYmJf8QkFOTs5wr+lR2jLLJeY1ERHpintNDxwJvYSkpESDzVneM1tS0z1//nxcu3YN165dg42NjWa5h4cHhg0bhj59+qBp06b44osvsGzZMrRq1QoNGzbEpk2bGOJERFSAp6cnPD09S/WY9PR0KJVK2Lt5wdTCUk+VlW/MayIi0iX3mh7lugk2NEkfId+2bRsGDhyoFeDPs7GxwcCBA7F9+3YAgKOjI3x9fXHz5k0p0xIREVEpMK+JiIjkI6npfvz4MXJycoodk5ubi/j4eM33bm5uyMvLkzItERERlQLzmoiISD6Smu66deti165dSEws/Hz+xMRE7Ny5E3Xr1tUse/DgAZycnKRMS0RERKXAvCYiIpKPpKZ7ypQpePjwIVq2bIl169YhPDwc0dHRCA8Px7p169CyZUs8evQIU6ZMAQCo1Wr8/vvvaN26tU6KJyIi41bYlbLpGUP+bJjXRERUFFHgf+h5ushrSRdSe/fddxEbG4ugoCBMmzZNa50QAiYmJvD398e7774LAEhKSsKMGTPwxhtvSJmWiIiMnLm5OQAgIyMDVlZWMldjnDIyMgD872elT8xrIiIqSnoOkKtWIy87C6YWJb8LSGWhi7yW1HQDwKJFizBy5Ehs27YNV69eRWpqKuzt7dG8eXMMGzYM9evX14x1cXHBRx99JHVKIiIycqampnB0dNR8Rtja2hoKhUIvc6lUKgBAXm4OoKc5SiIvN0dTj6mpaZHjhBDIyMhAfHw8HB0dix2rS8xrIiIqTLYauBqfA6VZApyAZ3cCkS9O9U6OvJbcdAPAK6+8gvnz5+tiU0REVEFUr14dALQuzqUP2dnZSEhIQFqOgImp/o8aF0Wdl4OslESYm5vDwsLipeMdHR01PyNDYV4TEVFhzj5UA8hCs9xHMDOR9AlkoydHXuuk6SYiInqRQqGAm5sbXF1dX3rlbClu3LiB9957D+3fC4KDm5fe5nmZlLgohG70R3BwMBo0aFDsWHNzc4Md4SYiIiqJsw/VCI9Xwda8Qh/oliWvddJ0Z2Vl4cKFC3jw4IHmNL8XjRo1ShdTERFROWNqaqrXBlOhUODevXuon6ZCXuERZBBJaSrcu3cPCoUClpaW8hVSDOY1EREVJ0cNPJExSw1BjryW3HR/+eWXCAgIQEpKSqHrhRBQKBQMcSIiIhkxr4mIiOQh6YT9PXv2YMqUKfDw8MDKlSshhEC/fv0QGBgIX19fCCHg5+eH77//Xlf1EhERUSkxr4mIiOQjqen+/PPP4erqirCwMM0tSLy9vTF79mwcPHgQW7duxb59+1CrVi2dFEtERESlx7wmIiKSj6Sm++rVq+jbty+sra01y/Ly8jT/P3z4cHTt2hWLFi2SMg0RERFJwLwmIiKSj6TPdOfk5KBq1aqa762srJCcnKw1pnnz5vjmm2+kTFOhPY68hcz0DNnmT4u/L9vcRERkGMxrIiIi+Uhqut3d3REXF6f5vlatWrh8+bLWmHv37sHMTH93Jrt06RIWLFiA06dPIysrC3Xq1MGkSZMwdepUzZgzZ85g1qxZuHTpEuzt7TFkyBAEBgbC1tZWb3W9jEqlAhQKXNm2XLYaNBSKIq9iS0RE5Z8x5DVQfjObiIhICknp2rp1a1y6dEnzva+vL9auXYugoCD07dsXp0+fxp49e9C9e3fJhRbm6NGj6NOnD1q0aIGAgADY2tri7t27iImJ0Yy5cuUKunXrhkaNGmH16tWIiYnBypUrcfv2bRw6dEgvdZWEUqkEhMDigfVR28X65Q/Qk8iEDATsiXhWDxERVUhy5zVQvjObiIhICklN9+DBgzFnzhxERUXBy8sL/v7PbjI+b948zJs3D0IIODg4YMWKFbqqVyM1NRWjRo1C7969sXv3bpiYFP7x9Dlz5qBKlSoICQmBvb09AMDLywsTJ07E0aNH4ePjo/PaSqNXU1e09HKQbf5LUSkI2BMh2/xERKR/cuY1UHEym4iIqCwkXUhtwIABuHnzJry8vAAAVatWxZUrV7Bs2TJMmjQJgYGBuH79Opo2baqLWrVs27YNjx49wtKlS2FiYoL09HSo1WqtMampqTh27BhGjBihCW8AGDVqFGxtbbFz506d10VERGRs5MxrgJlNRESVm84/vFWlShXMnDlT15st4Pjx47C3t0dsbCz69++PiIgI2NjYYOTIkVizZg0sLS1x7do15ObmolWrVlqPtbCwgLe3d4HPsxEREVUWhsprgJlNRESVm6Qj3V27dsUPP/xQ7JitW7eia9euUqYp1O3bt5Gbm4t+/fqhZ8+eCA4Oxrhx47Bx40aMHTsWADQXjXFzcyvweDc3Nzx48KDYOVQqFVJTU7W+iIiIyhs58xrQf2Yzr4mIyJhJOtIdEhKCLl26FDvm3r17OHnypJRpCpWWloaMjAy89957WLduHQBg4MCByM7Oxtdff41FixYhMzMTAAq9SJilpaVmfVGCgoKwcOFCnddORERkSHLmNaD/zGZeExGRMZN0pLsk0tPTYW5urvPtWllZAQDeeecdreXDhw8HAISFhWnGFHY7rKysLM36ovj7+yMlJUXzFR0drYvSiYiIjI6+8hrQf2Yzr4mIyJiV+kj3/fv3tb5PTk4usAwA8vLyEB0djeDgYM2FW3TJ3d0dN27cQLVq1bSWu7q6AgCePHmCunXrAoDWvUnzxcXFwd3dvdg5lEolb6VFRETlkrHkNaD/zGZeExGRMSt10+3l5QWFQgEAUCgUWLt2LdauXVvkeCEEPvvss7JXWITXXnsNx44dQ2xsLBo0aKBZnv+Zr6pVq6JJkyYwMzPDxYsXMWTIEM2Y7OxsXLlyRWsZERFRRWIseQ0ws4mIqHIrddM9atQoKBQKCCHwww8/oHnz5vD29i4wztTUFE5OTujatSt8fX11UauWIUOGYNmyZfjuu++0Lvzy7bffwszMDF26dIGDgwO6d++OrVu3IiAgAHZ2dgCAH3/8EWlpaRg8eLDO6yIiIjIGxpLXADObiIgqt1I33Zs3b9b8/8mTJzF27FhMnTpVlzWVSIsWLTBu3Dh8//33yM3NRefOnRESEoJdu3bB399fcxra0qVL8cYbb6Bz586YNGkSYmJisGrVKvj4+OjtzQUREZHcjCWvAWY2ERFVbpKuXh4ZGamrOspk48aN8PT0xKZNm7B3717UqlULa9aswccff6wZ07JlSxw/fhyzZ8/GtGnTYGdnh/HjxyMoKEi+womIiAxI7rwGmNlERFR5SWq65WZubo758+dj/vz5xY7r0KEDQkNDDVQVERERvYiZTURElZXkW4YdP34cvXr1QtWqVWFubg5TU9MCX2Zm5bq3JyIiKveY10RERPKQlK7BwcEYOnQo1Go1atWqhYYNGzKwiYiIjAzzmoiISD6SEnfRokWwsrLC/v37ta5GSkRERMaDeU1ERCQfSaeX//333xg2bBgDnIiIyIgxr4mIiOQjqel2dnaGtbW1rmohIiIiPWBeExERyUdS0z1o0CAcP34cubm5uqqHiIiIdIx5TUREJB9JTXdgYCAcHR0xdOhQ3L9/X1c1ERERkQ4xr4mIiOQj6UJqTZs2RU5ODs6ePYt9+/bB0dERDg4OBcYpFArcvXtXylRERERURsxrIiIi+UhqutVqNczMzODp6alZJoQoMK6wZURERGQYzGsiIiL5SGq6o6KidFQGERER6QvzmoiISD6SPtNNREREREREREWTdKT7eX/99Rdu3bqF9PR0jBw5UlebJSIiIh1iXhMRERmW5CPdFy5cgLe3N5o2bYrBgwdjzJgxmnV//vknrK2tceDAAanTEBERkQTMayIiInlIarpv3LiBrl27IjIyEtOmTcNbb72ltb5jx45wcXHBrl27JBVJREREZce8JiIiko+kpnv+/PkAgPDwcKxcuRKtW7fWWq9QKPD666/jwoULUqYhIiIiCZjXRERE8pHUdJ88eRJ+fn6oV69ekWM8PT0RFxcnZRoiIiKSgHlNREQkH0kXUnv69ClcXV2LHZOZmYm8vDwp0xBRBfI48hYy0zNkmz8t/r5scxPJhXlNREQkH0lNt4eHB65du1bsmEuXLqFu3bpSpiGiCkClUgEKBa5sWy53KYBC8aweokqCeU1ERCQfSU3322+/jXXr1uH48ePo3r17gfU7d+7E2bNnERAQIGUaIqoAlEolIAQWD6yP2i7WstURmZCBgD0Rz+ohqiSY10RERPKR1HTPmTMHu3fvRq9evTB69Gg8fPgQALBhwwaEhYVh+/bt8PLywvTp03VSLBGVf72auqKll4Ns81+KSkHAngjZ5ieSA/OaiIhIPpKa7qpVq+LkyZMYOXIkvvvuO83yyZMnAwDatm2L7du3w8FBvjfYRERElR3zmoiISD6Smm4AqFOnDkJDQ3HlyhWcPXsWSUlJsLe3R9u2bQvckoSIiIjkwbwmIiKSh+SmO5+3tze8vb11tTkiIiLSA+Y1ERGRYUm6T3dKSgquXr2KjIzCb/+Tnp6Oq1evIjU1Vco0REREJAHzmoiISD6Smu5Fixahffv2Rd7XMy8vD+3bt8fSpUulTENEREQSMK+JiIjkI6npPnz4MHr06AE7O7tC19vb26Nnz5747bffpExTYkuXLoVCoUCTJk0KrDtz5gw6dOgAa2trVK9eHVOnTkVaWppB6iIiIpIT85qIiEg+kpru+/fv45VXXil2TN26dXH//n0p05RITEwMAgMDYWNjU2DdlStX0K1bN2RkZGD16tWYMGECvvnmGwwePFjvdREREcmNeU1ERCQfSRdSUygUUKlUxY5RqVRFns6mSzNmzEC7du2Ql5eHhIQErXVz5sxBlSpVEBISAnt7ewCAl5cXJk6ciKNHj8LHx0fv9REREcmFeU1ERCQfSUe6GzZsiMOHD0MIUeh6tVqNQ4cOoUGDBlKmeak///wTu3fvxueff15gXWpqKo4dO4YRI0ZoAhwARo0aBVtbW+zcuVOvtREREcmNeU1ERCQfSU33O++8g4iICIwbNw4pKSla61JSUjBu3DjcuXMHI0aMkFRkcfLy8jBlyhRMmDABTZs2LbD+2rVryM3NRatWrbSWW1hYwNvbG5cvX9ZbbURERMaAeU1ERCQfSaeXT548GcHBwdiyZQv279+P1q1bo0aNGoiNjcWFCxeQnJyMTp06YfLkybqqt4CNGzfi3r17OH78eKHr4+LiAABubm4F1rm5ueHUqVNFblulUmmdjsdbqRARUXnEvCYiIpKPpCPd5ubmOH78OKZPn468vDwcO3YMmzdvxrFjx6BWqzFz5kwcOXIE5ubmuqpXS2JiIj799FMEBASgatWqhY7JzMwEACiVygLrLC0tNesLExQUBAcHB82Xh4eHbgonIiIyIOY1ERGRfCQ13cCzIFy5ciWSkpJw7do1nD59GtevX0diYiKWL19eaHjqyrx58+Dk5IQpU6YUOcbKygoACr2ATFZWlmZ9Yfz9/ZGSkqL5io6Oll40ERGRDJjXRERE8pB0enmdOnXw1ltv4csvv4SpqSkaN26sq7pe6vbt2/jmm2/w+eef48GDB5rlWVlZyMnJQVRUFOzt7TWnqeWftva8uLg4uLu7FzmHUqnU65sQIiIiQ2BeExERyUfSke6EhAStK4waUmxsLNRqNaZOnYratWtrvs6dO4eIiAjUrl0bixYtQpMmTWBmZoaLFy9qPT47OxtXrlyBt7e3LPUTEREZCvOaiIhIPpKOdDdr1gwRERG6qqVUmjRpgr179xZYPm/ePDx9+hRr165F3bp14eDggO7du2Pr1q0ICAiAnZ0dAODHH39EWloaBg8ebOjSiYiIDIp5TUREJB9JTffs2bPh5+eHP/74A2+++aauaioRFxcX9O/fv8Dy/Ht/Pr9u6dKleOONN9C5c2dMmjQJMTExWLVqFXx8fODr62uYgomIiGTCvCYiIpKPpKb7yZMn8PHxgY+PD/r374/WrVujWrVqUCgUBcaOGjVKylSStGzZEsePH8fs2bMxbdo02NnZYfz48QgKCpKtJiIiIkNhXhMREclHUtM9ZswYKBQKCCEQHByM4OBgANAKcSEEFAqFwUI8JCSk0OUdOnRAaGioQWogIiIyJsxrIiIi+Uhqujdt2qSrOoiIiEhPmNdERETykdR0jx49Wld1EBERkZ4wr4mIiOQj6ZZhRERERERERFQ0nTTde/fuxZAhQ9CsWTPUq1dPs/zWrVtYsWIFYmNjdTENERERScC8JiIiMjxJp5er1Wq888472L17NwDAysoKmZmZmvVVqlTB3LlzkZeXB39/f2mVEhERUZkwr4mIiOQj6Uj3mjVrsGvXLrz77rt48uQJZsyYobW+WrVq6NixIw4ePCipSCIiIio75jUREZF8JDXdmzdvRuvWrbFhwwbY29sXer/PevXqITIyUso0REREJAHzmoiISD6Smu47d+6gY8eOxY5xdnZGYmKilGmIiIhIAuY1ERGRfCQ13VZWVkhJSSl2zL179+Do6ChlGiIiIpKAeU1ERCQfSU13ixYtcOTIEWRlZRW6PikpCYcPH0a7du2kTENEREQSMK+JiIjkI6npnjp1KmJiYuDn54eYmBitdXfv3sWAAQOQkpKCqVOnSiqSiIiIyo55TUREJB9Jtwzr168fZs+ejeXLl6NWrVqwsbEBALi6uiIxMRFCCAQEBKBr1646KZaIiIhKj3lNREQkH0lHugEgKCgIR48exdtvvw1ra2uYmppCrVbD19cXhw4dwsKFC3VRJxEREUnAvCYiIpJHmY50h4WFYe7cubhw4QIUCgXatm2LJUuWoG3btrquj4iIiMqIeU1ERCS/Ujfd165dQ7du3bQuxnLixAmEhYXh/PnzePXVV3VaIBEREZUe85qIiMg4lPr08mXLliErKwtz587Fw4cP8fDhQwQEBCAjIwPLli3TR41ERERUSsxrIiIi41DqI92nTp1Chw4dsHjxYs2yhQsXIiQkBCdPntRpcURERFQ2zGsiIiLjUOoj3Y8ePSr0Pp5t27bFo0ePdFIUERERScO8JiIiMg6lbrpzcnJga2tbYLmNjQ1ycnJ0UhQRERFJw7wmIiIyDpJvGUZEREREREREhSvTLcO2bt2Ks2fPai27c+cOAKBXr14FxisUChw8eLAsUxEREVEZMa+JiIjkV6am+86dO5rQftHhw4cLLFMoFGWZhoiIiCRgXhMREcmv1E13ZGSkPuogIiKS5HHkLWSmZ8g2f1r8fdnmLgzzmoiIyDiUuumuVauWPuogIiIqE5VKBSgUuLJtudylAArFs3qMAPOaiIjIOJTp9HIiIiJjoVQqASGweGB91Haxlq2OyIQMBOyJeFYPERER0f8rt033hQsXsGXLFvzxxx+IioqCs7Mz2rVrhyVLlqB+/fpaY2/evIlp06bh9OnTsLCwQO/evbF69WpUrVpVpuqJiEjXejV1RUsvB9nmvxSVgoA9EbLNb8yY2UREVJmV26Z7+fLlCA0NxeDBg9GsWTM8fPgQ69evR8uWLXH27Fk0adIEABATE4NOnTrBwcEBgYGBSEtLw8qVK3Ht2jWcP38eFhYWMj8TIiKiio2ZTURElVm5bbqnT5+Obdu2aQXw0KFD0bRpUyxbtgxbt24FAAQGBiI9PR3h4eHw9PTE/7V351FRXGkbwJ+mG2hEBQFFUAQDLnHBHYO4MQQUHU1cEeOSqDEuIbgrbvFLNE5GURyjEfco0biMScxoVIyigIgaFzSCKKISRImIbEKz9P3+cLrHDmpcaEq6n985faSrbhdvXW/15a26VRcAPDw84Ovri82bN2Ps2LGSxE9ERGQs2GcTEZExM5E6gJfVqVOncme8GzVqhObNmyMxMVG77N///jf+/ve/aztvAHj77bfRuHFj7Ny5s9LiJSIiMlbss4mIyJhV2aT7SYQQuHv3Luzs7AAA6enpyMzMRPv27cuV9fDwwLlz5yo7RCIiIgL7bCIiMh4GlXR/++23SE9PR0BAAAAgIyMDAODg4FCurIODA+7fv//MqV1UKhVyc3N1XkRERPTqKrLPZn9NRESvM4NJupOSkjBx4kR4enpi5MiRAIDCwkIAeOL0LUqlUqfMkyxevBhWVlbal5OTkx4iJyIiMi4V3WezvyYiotdZlX2Q2uPu3LmD3r17w8rKCrt374ZcLgcAWFhYAMATz4wXFRXplHmSkJAQTJkyRfs+NzeXHTkREdEr0Eefzf6aqPL9kZqEwoKHUodB9MLyM29V+u+s8kl3Tk4O/P398eDBA0RHR8PR0VG7TjNETTNk7XEZGRmwsbF54hl1DXNz82euJyIiouenrz6b/TVR5VGpVIBMhvPbvpQ6FKKXJ5M98zbjilalk+6ioiL06dMHycnJOHz4MJo1a6azvl69eqhduzbOnDlT7rOnTp1C69atKylSIiIi48Y+m8gwmJubA0Lg8/6N0dCumtThEL2w1HsPMW9PcqWerK2ySXdZWRkCAgIQFxeHH3/8EZ6enk8sN2DAAHzzzTdIS0vTDjX75ZdfkJycjMmTJ1dmyEREREaJfTaR4enVsg7aulhJHQbRCzt7Iwfz9iRX6u+sskn31KlTsXfvXvTp0wf3799HRESEzvphw4YBAGbPno1du3bB29sbwcHByM/Px5IlS9CyZUt88MEHUoRORERkVNhnExGRMauySff58+cBAD/99BN++umncus1HbiTkxOOHTuGKVOmYNasWTAzM0Pv3r0RGhrK+7+IiIgqAftsIiIyZlU26Y6Kinruss2bN8fBgwf1FwwRERE9FftsIiIyZgYzTzcRERERERHR64ZJNxEREREREZGeMOkmIiIiIiIi0hMm3URERERERER6wqSbiIiIiIiISE+YdBMRERERERHpCZNuIiIiIiIiIj1h0k1ERERERESkJ0y6iYiIiIiIiPSESTcRERERERGRnjDpJiIiIiIiItITJt1EREREREREesKkm4iIiIiIiEhPmHQTERERERER6QmTbiIiIiIiIiI9YdJNREREREREpCdMuomIiIiIiIj0hEk3ERERERERkZ4w6SYiIiIiIiLSEybdRERERERERHrCpJuIiIiIiIhIT5h0ExEREREREekJk24iIiIiIiIiPWHSTURERERERKQnTLqJiIiIiIiI9MRokm6VSoWZM2fC0dERFhYW6NixIyIjI6UOi4iIiB7D/pqIiAyN0STd77//PpYtW4b33nsPK1asgFwuR69evRATEyN1aERERPRf7K+JiMjQKKQOoDKcOnUK3333HZYsWYJp06YBAEaMGIEWLVpgxowZOHHihMQREhEREftrIiIyREZxpXv37t2Qy+UYO3asdplSqcTo0aMRFxeHtLQ0CaMjIiIigP01EREZJqNIus+dO4fGjRujZs2aOss9PDwAAOfPn5cgKiIiInoc+2siIjJERjG8PCMjAw4ODuWWa5bdvn37iZ9TqVRQqVTa9zk5OQCA3NzcV44pPz8fAPDrzRzkq0pfeXsv68qdAm08ubm5SEhIQGJiomTxaLz55ptwd3fXvmdcz1YV4mKbf7aq8H8IvJ5xva5t61VoPi+EeOW4qhL210QVryK/mzTbAXhMUNUlSX8tjMAbb7wh/P39yy1PSUkRAMTy5cuf+LlPP/1UAOCLL7744osvSV5paWl67iFfL+yv+eKLL774qoqvv+qvjeJKt4WFhc4ZcI2ioiLt+icJCQnBlClTtO/VajXu378PW1tbyGSyl4olNzcXTk5OSEtLKzd8jvSH9S4d1r00WO/SqYi6F0IgLy8Pjo6OFRzd6+116q+p8vD7ikgXj4mq43n7a6NIuh0cHJCenl5ueUZGBgA8tZLMzc1hbm6us8za2rpCYqpZsyYPIgmw3qXDupcG6106r1r3VlZWFRhN1fA69tdUefh9RaSLx0TV8Dz9tVE8SK1169ZITk4uN2Y/Pj5eu56IiIikxf6aiIgMkVEk3QMHDkRZWRnWrl2rXaZSqbBp0yZ07NgRTk5OEkZHREREAPtrIiIyTEYxvLxjx44YNGgQQkJCkJmZCTc3N3zzzTe4ceMGNmzYUKmxmJub49NPPy03DI70i/UuHda9NFjv0mHdv7zXqb+mysNjhkgXjwnDIxPCOOYjKSoqwrx58xAREYHs7Gy4u7vj888/R48ePaQOjYiIiP6L/TURERkao0m6iYiIiIiIiCqbUdzTTURERERERCQFJt1EREREREREesKkm4iIiIiIiEhPmHQTERERERER6QmTbiIiIiIiIiI9YdJNVRYfvE/GhO2diIiIqGpi0l1B1Gq11CEYjejoaJSUlEAmk0kditFie688bO+vD7Z7IiIiehkKqQOoik6cOIGkpCSkp6fDw8MD7dq1g52dndRhGYVNmzZh9OjR+PbbbxEYGCh1OEaB7V06bO/SYbsnenFqtRomJryeQ6QhhOBJcwLApPuFbd26FRMnToRSqUROTg5MTEzg5OSE9evXo3Pnzuxs9Gjz5s0YM2YMJk2ahC5dukgdjlFge5cO27t02O6JXlxZWRnkcjkyMzNx4cIFPHjwAPXr14enp6e2DBMQMiaaY+L+/fu4desWHj58CHt7e7i6ukodGkmAfzm8gDNnzmDq1Kn48MMPcejQIRQVFSE0NBTW1tbo1asXwsPDkZubK3WYBmnLli0YNWoUJk2ahEmTJqF+/fpPLMfhnxWH7V06bO/SYbsnenFqtRpyuRyXL19G9+7dERgYiOHDh8PLywvjxo3DqVOnAIAJNxmNx48JHx8f+Pr64m9/+xvatGmDpUuXIiMjQ+oQqZLxSvcLSE1NRXFxMfr374/WrVsDACZMmICuXbvi888/x6RJk1BcXIyxY8fCwsJC2mANyL59+/D+++9j7NixmDJlCurVqwcA2LBhA65du4YHDx6gU6dO6NmzJ2rXrs3hbRWE7V0abO/SYrsnenEmJia4ceMGfH190aRJE3z66adwdXVFXFwcgoODUVpaioYNG6J27dpSh0pUKUxMTJCSkgJvb280bdoUixYtgr29PSIjIzFjxgwUFBRg2rRpsLS0lDpUqiRMul9AWloaiouL4eLiAgBQqVQwNzdHixYtsHz5cpiammLWrFmoV68eBg4cyD+GK0BJSQlSU1OhVCqRmpoKa2trAEDfvn1x4MABKJVKCCGwdu1atG/fHjt37oSzszPrvgK8aHvXDKOil8f2Lj22e6Jny87ORq1atbRDxTX/bt26FTVr1sTChQvRqVMnAMD3338PuVyOLl26oEaNGhJHTqQfhYWFsLCwKHdMfPXVV7C3t8eSJUvg4eEBADh69ChMTEzg4uICU1NTiSOnSiXouV28eFFYWFiIuXPnapeVlpZqf05JSRF+fn6iVq1aIjU1VYIIDdP9+/fF119/LapVqyYGDRok3nnnHVG3bl3xzTffiGvXromcnBwxe/ZsYWdnJ1q1aiXu3LkjdcgGge1dGmzv0mK7J3q6ESNGiMDAQJGeni6EEEKtVmvX9evXT/ztb3/Tvp8+fbpQKBRi3bp1Ii8vTwghhEqlqtyAifRsyJAhYuHChSI3N1cIoXtMdO3aVQwePFj7fsaMGUKhUIj169dry5eUlJT7HBkmJt0vICsrSwwYMEA4OjqK77//Xru8rKxM+/P+/fuFjY2NCAoK4gFUgR48eCBWrVolrK2tRfXq1cX3338viouLdcosXLhQyOVysXDhQiEEv8BeFdu7dNjepcN2T/R0gYGBwtbWVkycOFGbeGuOjSFDhghPT08hhBCzZ88WpqamYu3ateLhw4faz3t7e4sdO3ZUfuBEetKmTRthaWkpVqxYUS7xfjzpnjVrllAoFDrHhFqtFj4+PuL48ePSBE+Vikn3Czp27JioXbu2eOutt0RUVJR2+eNXQnr27Cnat2/PP8YqWHZ2tli1apUYP368ztU9Td2rVCrRqFEj4e/vL1WIBoftXTps79JhuyfS9fhJp4kTJwobGxsxfvx4beIthBBff/21cHJyEn5+fkKhUIhNmzaJnJwc7fr//Oc/omHDhmLNmjU8bqjKe/yY8PPzExYWFiIsLEybeJeVlYnJkyeLRo0aiSFDhgiFQiE2bNigXS+EEDt37hQNGjTgiSgjwaT7JezevVvIZDLh5eUlDh48WG79hx9+KFq2bCkKCwsliM6w/fHHH+KPP/7QWabpvMvKykSLFi2Ej4+PFKEZLLZ36bC9S4ftnkjX4yedxo8fr028f//9dyGEEOnp6cLd3V3IZDIxYsQInfJnzpwRvr6+ok2bNtryRFWdZmi4EEL4+vpqE2/NyaakpCRhY2MjZDKZmDx5sk75M2fOCB8fH+Hp6SkyMjIqPXaqfHzyzgsQQgAABgwYgO+++w5nz57F1KlTsWbNGm2ZxMREnD9/Hm5ubnywkR7Y2dnBzs5O+16tVmunIDl27BgePHignRNU8/9FT/bn+nnae7b3ivdXda/B9q5/f552je2e6MnkcjnKysoAAKtXr0ZAQAB27NiBRYsW4datW3B0dMSePXvg6OiIn376CR999BGioqKwYMECBAcH49dff8XWrVu1MzIQVXUKhQKlpaUAgEOHDqFz584ICQnBxo0bkZ2djSZNmmDXrl2oXr069u3bh9DQUNy4cQP/+te/MG3aNJw7dw7r169H3bp1Jd4TqhSSpfuvsWcNe3p83f79+0W7du2EXC4XXbp0Ef7+/qJ9+/bCxsZG/Pbbb5URqsF5kSFnj5eNjY0Vfn5+on79+uL69ev6CM0gPXz4UKceH78yIQTbuz79Vd3/Gdt7xcjOzhZpaWkiOTlZu4ztnuj5Pf58iceveN+4cUMI8ehhg/369RN16tQRMplM2NnZCT8/Px4vZLAePyY0V7yXL18uHjx4IIR41Gc3a9ZMmJmZCZlMJmrWrCk6deokLl68KFXIJAGZELw8AgBRUVEoLCyEr68vFIpnz6Qm/jsVAAAkJyfj+PHjiIiIQGlpKVxdXRESEoKmTZtWRtgG4UXq/s9ycnLw5Zdf4vDhw0hLS8PBgwfh7u6up0gNx6FDhxAREYGYmBi4uLjAx8cHc+bMAYBy00+xvVesF6n7P2N7fzU//vgjVq5ciXPnzkGpVKJz587YsWMHAN12/uf3bPdkzP7qe2nChAnYsWMHAgICMHPmTDg7OyMvLw8PHz7ElStX4ObmBktLS1hZWVVi1ET681fHhJ+fH2JiYrB48WKMHDkS1tbWuHv3LjIzM5GcnIxmzZrB3t4eNjY2lRg1SY1JN4A9e/Zg4MCBaN26NZYsWYLu3bu/9LyrpaWlL5w4GrNXrfsTJ04gMDAQLVu2RGhoKJo0aaLHaA1DREQEgoOD4erqCmdnZ1y6dAm///47Ro8ejbCwsBfaFtv7i3nVumd7f3kREREYP348unXrho4dOyIpKQm7d+/G2LFjsXLlyhfaFts9GQvNPPS3bt3Cvn37cOvWLTRr1gw+Pj5wdHTUlns88Q4JCYGTkxOA8ieziKo6zTFx+/ZtxMXF4ffff0eHDh3QvHlznRNLPXr0QHR0NBYtWoQPPvgA1tbW0gVNrwfJrrG/JhISEoS7u7twdnYW9vb2onnz5iIyMvIvh3o+rrS0VDsckU/kfH4VUfdCCJGamiru37+vpygNy7Fjx4S9vb345JNPxNWrV4UQQty5c0f4+voKBwcHcebMGSHEs9sx2/vLqYi6F4Lt/WX8/PPPws7OTnz88cciJSVFCCFEQUGBaNasmejZs6dO2ad9/7Ddk7HRPJ35t99+E/Xq1RPW1tZCqVSKWrVqiaZNm4qkpCSd8pqh5h9//LFIS0uTImQivXr8mHBxcRGWlpZCJpMJW1tb0bdvX52n+Qvxv6ear1ixQjvUnIyXUT8BpqSkBDt27MDFixexYMECHDhwAHl5eZg8eTKOHj2qfWDIk6SkpGDVqlXaM16aM7k8o/t8KqLuS0pKAAAuLi6oVatWZYVeZRUUFGDbtm2wt7fHqFGj4ObmBgCwt7fHkiVLkJWVhfj4eADl2zHb+6upiLpne3852dnZ2LhxI1q2bImJEyfijTfegFqthlwuh4uLC0pLS3HixAnExMSgpKREZ6QN2z0ZMxMTE6SmpqJv375o0aIFvv32WxQWFiI8PBy3b99Gly5dkJiYqC2/evVqDB06FKtWrUJYWNgz+3GiqsjExATXr1+Hv78/GjVqhM2bNyM3NxdTpkzB8ePHMWjQIPz+++/a8gcPHoS3tzcmTZqE7du384Gnxk7qrF9qP//8s5gwYYL2fXR0tGjQoMEzr7oWFxeL2bNnC5lMJkJCQiozXIPCuq9c+fn5onv37mLOnDnaZWq1WqjVanHnzh3h4OAggoKCyn2Odf7qWPfSKS4uFqtWrRIRERE6y7/++mshk8mEi4uL6NGjh7CyshItWrQQcXFxQohHD7pj3ZMxU6lUYsqUKaJbt27i2LFj2hEe06dPFxYWFsLW1lbUqlVLJCYm6nxu6tSp5a6CExmChw8fijFjxggfHx8RGxurXT59+nShUChErVq1hIeHR7lp8fr371/uOCHjY/RJtxD/G06o6VBiY2P/MvmLjY0VQ4YMEZcvX67UWA0N675yXb9+Xdy8eVMI8b9hUhrt2rUT/fv3F0KUH2J7/PhxERgYyDp/Bax76RQVFem8/+mnn4RMJhOTJk0Sv/76qygsLBTbt28XzZo1E02aNNHOsRobG8u6J6MWEBAghg0bpn0/b948oVAoxNq1a8W2bduEXC4XderUEVeuXJEwSqLKUVRUJN5++20xZswY7bLZs2cLU1NTER4eLj777DMhk8mEl5cX56Oncph0P8Xjyd+hQ4e0y0+ePKm9Z+PPf8hRxWDdVy7NCY9OnTqJPn366KxLTU3V/lxYWFiZYRkF1n3l0tT3jh07RHh4uDa5FuLRPd5r1qwRMplMhIWFaZerVKpKj5NIKppjRHPyr7S0VJSUlAghhIiIiBBmZmYiLCxMu+ydd94RMplMyGQyXskjg/PnE+RCCJGRkaFt/xs2bBCmpqbiX//6l3Z9hw4dhKWlpXBzc2PiTTqM+p7uZ+nUqRO2b9+OvLw8TJkyBUeOHEFkZCTee+89DB06FCUlJTAzM5M6TIPEuq9carUaAGBpaYnCwkLt8sTERAQGBqJnz54AAHNzc0niM2Ss+8qluRd78ODBGDVqFGrWrAng0dPIq1Wrhn79+gEAVCqV9jP8riFjoLn/WvOdpHm2gUwmg0KhgEqlwpEjR9C+fXsMHDhQ+/T+hw8fok+fPvDx8eGzDsiglJWVwcTEBHfv3sUvv/yCa9eu4cGDB6hbty4UCgWys7Oxd+9e+Pr6YvDgwdrPqdVqdOjQATY2NiguLpZwD+h1wzlPnqFTp07YtWsXBg0ahHHjxqGsrAz379/Hzp07YWpqKnV4Bo11X3k0f1xZWlrizp07KCkpwdWrVzFz5kwkJiYiMjISAB8epQ+se+lokga1Wq39ef/+/bC0tMSbb74pZWhElUrzoMBr164hLCwM1apVg7u7O/r3749q1apBCAG5XI7k5GSoVCrUq1cPAHD27FkUFBRg/Pjx6NmzJywsLCTeE6KKoWnziYmJ8Pf3R3p6OhQKBXr37o3p06ejY8eOMDMzw5UrV9C4cWPY29sDAOLj46FUKrFw4UK0bNlSe2KXCGDS/VTiv3NLenh4YNq0aQgODoa1tTWio6PRokULqcMzaKx7aWiutl6+fBlz587F0aNHERsbi1atWkkdmsFj3UtDrVbDxOTRgK/z588jIiICbm5u8PDwkDgyosojl8tx9epVdOrUCSqVCqWlpSgrK8O2bdvw3XffaROHvn37IiQkBEFBQXB1dcUPP/yA69evo3379ky4yaDIZDI8ePAAI0eOxBtvvIEpU6bg5s2b2LhxI5KTkxEaGgpfX1906tQJ33//PUJDQ1G7dm1s3boVt27dgqurKxNuKodJ91NoriwdPnwYW7duRY0aNRATE4NmzZpJHJnhY91XLk3iYWFhgXv37uHjjz/GuXPnEBMTw6RPz1j30tIk3BEREdi8eTN+/fVXREdHa69aEBk6zVXuNWvWoG3btpg/fz7c3d0xf/58bN26Fd27d8eRI0dgbW2NPn364NatW/jmm28AAE5OTjh06BCcnJwk3guiiqG56AM8OhlVvXp1zJs3D97e3gCAZs2aYdGiRRg/fjy2bduG+fPnIz09HSEhITA3N4e9vT327duHunXrSrkb9Jpi0v0MhYWF2LhxIxISEnDq1CkmfZWIdV95NIlH/fr1cfv2beTl5eHEiRNwd3eXODLDx7qXVklJCYKDg3HgwAFYW1sjJiYGzZs3lzosIr3TnPDT3OKSn58PHx8feHl5AQAWLVoEBwcHfPHFF/D29saRI0fQtGlT/N///R8++eQT5OTkwMXFBXZ2dlLuBlGF0ZyAys7ORlZWFjIyMpCZmYmWLVtqy4wePRpmZmaYN28ehg4dip07d2Lv3r2Ii4tDXl4e2rVrBwcHBwn3gl5nMiE4U/uzpKSkQK1Wo1GjRlKHYnRY95Xrt99+w4gRIxAREcF7WisZ6146ycnJiI2NhZ+fn/ZeVSJDpkkubt68id27d6Nu3boIDw/He++9h48++gglJSUwNTVFcXExli9fjsWLF6Nhw4Y4evQorK2tpQ6fqMJpTkJdvnwZw4YNQ1paGpycnJCVlYVDhw6hSZMmUKlU2oeabtmyBfPnz4dSqcSKFSvQo0cPifeAqgIm3USk9XinQpWLdS+dx4cUEhmDpKQkdOvWDQ8ePADwaNRH//79sXv3bgCPnuivUChQXFyMsLAwLF26FNWqVcOFCxdgZWUlYeREFUvz/X/nzh107doVNWrUQOfOnXH69GmcPHkSXbt2RVRUFADdfjoiIgITJ06Em5sbjh8/jmrVqrEfoWfilGFEpMWkTzqse+nwDyUyBpppwYqLi/HZZ5+hTZs22Lt3L/bu3Ys+ffpgz549mDlzJoBHT/cvLS2FmZkZJk+ejAkTJgAAsrKyJIufqKKp1WrIZDIUFBSgqKgIderUwYoVK7BixQocPnwY06dPR1xcHHx9fSGEgLm5uXZKyWHDhmHt2rXYsWMHLC0t2Y/QX+I93UREREQGTi6X4/r160hPT0dJSQkGDBigHRbr7OyMunXrYsmSJZDJZPjHP/6hTbxNTU0xZ84cBAUFwdbWVuK9IKo4JiYmuH37Npo1a4bmzZvDysoKnTt3BgBUq1YNc+bMgUKhQGhoKPz8/BAZGQlzc3MUFRVBqVQiICBA4j2gqoRJNxEREZGBKyoqwvjx4xEZGQkHBwcEBwcDeDS8tmnTppgxYwYA4J///CcAaBPvsrIymJqaMuEmg2RqaoouXbogKioKDRs2xO3bt7UzWNSsWRMzZsyAEALLli2Dv78/9u/fD6VSKXHUVBVxeDkRERGRgVMqlQgJCUHfvn2RkZGBQ4cOobi4WDss1tXVFTNmzMCHH36IJUuWICgoCAC0TzgnMkS1a9fG2rVr8e677+LSpUvYsmUL5HI55HI5ysrKYGVlhZkzZ2L69Ok4ePAg+vfvL3XIVEXxSjcRERGRgXnSAwK7du0KuVyOnJwcrFy5Eh4eHvj73/+uXa9JvPPz87FlyxbMmzcPderUqezQiSqVg4MDlixZApVKhdmzZ0OpVGLSpEk6iffUqVNhZmaGQYMGSR0uVVF8ejkRERGRAdFMC5aTk4PMzEwUFxejZs2acHJyghACJ0+exNSpU3HlyhVs3boVvXr10vl8amoqLCwsULduXYn2gKjy3b17F0FBQdi9ezeWLVuGSZMmAfjf8cSZLuhVMOkmIiIiMhCaBOHy5ct4//33cePGDeTk5KBOnTqYM2cOxo0bBwCIi4vDtGnTkJSU9MTEm8gYPZ54r1ixQnubBdGr4j3dRFRhunfvzrPARESVKCAgAEePHtW+l8vluHbtGrp37w5zc3PMnTsX69evR6dOnTBhwgQsW7YMAODp6YmlS5eiadOmGDVqFH744QeJ9oDo9WFvb4+VK1ciICAAwcHBWLNmjdQhkYFg0k1khG7cuAGZTKbzMjMzg5OTE4YOHYqEhASpQyQior8wePBg7Nu3D8XFxRBCQK1Wo6ysDEuXLoWjoyOWL1+OTz75BMOHD0etWrUgl8tRq1Yt7VzDmsTb1tYWU6dORUFBgcR7RCQ9e3t7LFu2DCNHjkTXrl2lDocMBB+kRmTEXF1dMWzYMABAfn4+Tp48ie3bt2PPnj345Zdf4OXlJXGERET0JGfPnkVUVBQWLVoEHx8fyGQyCCEgl8tx5swZtG3bFu3btwcAzJw5Exs2bEB4eDgGDhwIc3NzqFQqmJubo2PHjti0aRPq1KkDS0tLifeK6PXg4OCA9evX8+n9VGF4pZvIiLm5uWHBggVYsGABli5dipiYGMyZMwcqlQpz5syROjwiInqKwsJC3Lt3D8XFxVAoFEhKSsK4ceOQm5sLU1NTKBSPrqvMmjULy5cvx+rVqxEYGIgaNWoAAIYPH47o6GiYmJjAw8MDLi4uEu4N0euHCTdVJCbdRKRD89CQ06dPa5cVFxdj+fLl6NChA2rUqIHq1aujWbNmmDJlCrKzs5+5vZycHHz55Zfo1q0bHB0dYWZmBkdHR4wYMQIpKSnlyhcVFSE0NBStWrWClZUVLC0t4eLigsGDB+PChQvacmq1GuvXr4eHhwdsbGxgYWGB+vXro0+fPoiKiqqYyiAiek15eXmhW7duWL16Nb766iu0a9cOmZmZyM7ORsOGDXHy5EmMHj0aoaGhWLNmDQIDA2FhYQEA2LJlC86fP4+8vDyJ94KIyDhweDkRPZHmgWiFhYXw9fVFbGwsGjVqhA8++ADm5ua4evUqwsPDMWLECNSqVeup20lMTMT8+fPh7e2Nfv36wdLSEklJSdi2bRv27duHs2fPwtnZWVt+5MiR2LlzJ9zd3bW/Ky0tDUePHsXp06fRqlUrAEBISAj++c9/wtXVFUOHDkWNGjWQnp6OmJgYHD58GN27d9dr/RARSUUzddGePXvg6emJqVOnomXLlpg/fz6cnZ0xb948eHp64tKlS5g7d65Own327Fls2bIFdevW1Q4/JyIi/WLSTUQ6Vq9eDQDw8PAAAMybNw+xsbEYPnw4Nm3apDPcKicn5y+HX7355pvIyMiAjY2NzvKjR4/i7bffxsKFC7Fu3Trt9nbt2oV27dohPj5eZ9tlZWU6V2XWr18PR0dHJCQkoFq1ajrbvn///kvsORFR1aA5KZqdnY2MjAyYmpri9u3byMjIQHFxMd58802sXbsWY8eOxcGDB9GgQQO8++67+Pe//41du3bh3LlziI6ORp06dSTeEyIi48B5uomM0I0bN9CwYUOdB6kVFBQgPj4e0dHRUCqVOHLkCDp06AAbGxuYmJggNTX1mVe0gUdThh07dgzP+7Xi7u6OvLw8pKamAgByc3NhZWUFLy8vREdHP3P6MVtbW9SsWRNJSUkwNzd/zj0nIjIcqampCA8PR4cOHbBw4UJkZWVh1apV8Pf3h0KhwM8//4yxY8ciPT0dAFC9enU0bdoUGzduRIsWLSSOnojIeDDpJjJCmqT7caamprC3t0fXrl0xa9YstGzZEpcuXULLli3x9ttvIzIy8i+3+7SkOyoqCmFhYYiPj8e9e/dQWlqqXWdmZqadvgYAevfujf3796N169YYNGgQunfvjg4dOsDU1FRnmxMnTsTq1avh5uaGIUOGwNvbG56entohlERExqC0tBQKhQIJCQkYMWIEsrKysGbNGvj6+sLMzAyZmZlITExEWloamjdvDicnJ9jZ2UkdNhGRUWHSTWSENEl3jx49cODAgaeWi42NRefOnTFy5Ehs3rz5L7f7pKR7165dCAgIQPXq1dGjRw+4uLigWrVqkMlk2Lx5M27evKlT/uHDh/jiiy+wbds27RXwmjVr4oMPPsAXX3yhHUpeWlqKsLAwbNq0CZcvXwYAKJVKDB48GKGhofyjkoiMihAC58+fx6hRo5CVlYXVq1fDx8eHJyKJiF4DTLqJjNDzJt2//fYbWrRo8UpXups3b47U1FRcuHABjRo10inftGlTXLly5anD0VNTU3H06FGsWbMGp0+fxtixYxEeHl6u3O3bt3Hs2DFs2rQJkZGR8PPzw8GDB/8yXiIiQ3Pu3Dlt4r1mzRr4+PjwFhwiIokx6SYyQs+bdJeWlsLW1hYymeyl7+lWKpVo3rw5fv31V52yGRkZcHZ2RklJyV/eA15YWIg6deqgevXqyMjIeGo5tVqNJk2a4Pr168jPz+cVHiIySufOncPYsWORmJiIPXv2wM/PT+qQiIiMGufpJqKnUigU+Oijj5CTk4Pg4GCUlZXprM/JyUF+fv4zt+Hs7Ixr167h7t272mVFRUUYP348SkpKdMr+8ccfuHTpUrltZGdnQ6VSQalUAgBUKhVOnDhRrlxBQQHy8/NhamoKExN+vRGRcWrTpg1Wr16Ntm3blnt+BxERVT5OGUZEz/TZZ5/h5MmT2Lp1K06ePAl/f3+Ym5vj+vXrOHDgAGJiYtC6deunfj4oKAhBQUFo06YNBg4ciNLSUkRGRkIIgVatWuHChQvasunp6WjTpg1atWoFd3d31KtXD1lZWfjxxx9RUlKCadOmAXh05dvLywuNGzdGu3bt0KBBA+Tn5+M///kP7ty5g2nTpnE4JREZtQ4dOiAyMpLfhURErwEm3UT0TEqlEpGRkfjqq68QERGBdevWQS6Xo0GDBhg3bhxcXFye+fmJEyfC1NQUK1euxLp162BtbY3evXtj8eLFGDRokE5ZFxcXLFiwAEeOHMHhw4eRlZUFOzs7tG3bFsHBwejZsycAwNLSEl9++SV++eUXREdHIzMzE7Vq1UKTJk2wePFiDBkyRF/VQURUZTDhJiJ6PfCebiIiIiIiIiI94U2PRERERERERHrCpJuIiIiIiIhIT5h0ExEREREREekJk24iIiIiIiIiPWHSTURERERERKQnTLqJiIiIiIiI9IRJNxEREREREZGeMOkmIiIiIjIQBQUF+OKLL9C2bVtUr14d5ubmqF+/Prp06YKQkBCkpKRIHSKR0VFIHQAREREREb26vLw8dO7cGQkJCXBzc8OwYcNga2uLe/fu4dSpU/jHP/4BV1dXuLq6Sh0qkVFh0k1EREREZADCwsKQkJCAMWPGYO3atZDJZDrrU1NToVKpJIqOyHhxeDkRERERkQGIi4sDAEycOLFcwg0ADRs2RNOmTXWWZWZmYvLkyXBzc4O5uTns7OwwYMAAXLp0SVtGCIFevXpBJpNhx44dOp8XQsDf3/+J64joESbdREREREQGwNbWFgCQnJz8XOVTUlLQrl07hIWFwdXVFUFBQejVqxcOHDiAt956C/Hx8QAAmUyGTZs2oU6dOvjoo49w8+ZN7TbCwsJw4MABvP/++wgICKj4nSIyADIhhJA6CCIiIiIiejV79+7FO++8gxo1amDs2LHw8/NDu3bttMn4n3l5eSE+Ph779u1Djx49tMuTk5PRvn17uLi4ICEhQbv8wIED6NWrFzw9PXH8+HFcvHgRHTt2hLOzM86ePYvq1avrfR+JqiJe6SYiIiIiMgB9+/ZFaGgohBAIDQ1Fjx49YGdnBzc3N3z88ce4evWqtuy5c+dw4sQJjBw5UifhBoDGjRvjww8/xMWLF3WGmffs2RPBwcE4ceIEZs2ahcDAQAghsH37dibcRM/AK91ERERERAYkLy8PBw4cwIkTJ3DmzBnEx8ejpKQESqUSO3bsQN++ffH1119jwoQJ6N27N9q3b19uG6dPn8b+/fuxa9cuDBw4ULtcpVLhrbfewvnz5wEAX375JWbMmFFZu0ZUJfHp5UREREREBqRGjRoYNGgQBg0aBADIycnB7NmzsXr1aowePRrp6em4f/8+AGDfvn3Yt2/fU7dVUFCg897c3Bz+/v44f/48lEolxowZo78dITIQHF5ORERERGTArKys8NVXX8HZ2Rn37t3DxYsXUbNmTQDAypUrIYR46mvkyJE624qPj8eSJUtga2uLoqIijB8/XopdIqpSmHQTERERERk4mUwGS0tL7fuOHTsC+N80Y88jLy8PQ4cOhUKhQFRUFAYMGICdO3di48aNFR4vkSFh0k1EREREZADCw8Nx+vTpJ6774YcfkJiYCGtra7Ro0QIeHh7o2LEjtm/f/sT5tdVqNY4dO6azbMKECbh+/TqWLl2KFi1aYN26dXBycsInn3zy3NOUERkjPkiNiIiIiMgAvPvuu/jxxx/h5uYGLy8vODo6oqCgAOfOnUN0dDRMTEwQERGBwMBAAEBqaiq8vb1x8+ZNvPXWW2jbti0sLCxw69YtxMXF4Y8//kBRUREAICIiAsOHD0efPn2wd+9e7e88fvw4vL290aZNG8TFxcHU1FSSfSd6nTHpJiIiIiIyAFeuXMHevXsRGRmJa9euISMjAwBQr149dO7cGUFBQWjXrp3OZ7Kzs7Fs2TL88MMPSElJgVwuh4ODAzp06ICBAweiX79+SE1NRevWrWFpaYmEhATY2dnpbGPu3LlYtGgRpk2bhiVLllTa/hJVFUy6iYiIiIiIiPSE93QTERERERER6QmTbiIiIiIiIiI9YdJNREREREREpCdMuomIiIiIiIj0hEk3ERERERERkZ4w6SYiIiIiIiLSEybdRERERERERHrCpJuIiIiIiIhIT5h0ExEREREREekJk24iIiIiIiIiPWHSTURERERERKQnTLqJiIiIiIiI9IRJNxEREREREZGe/D9L08B8JvXIRAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1 s (started: 2024-10-26 13:18:17 +00:00)\n" ] } ], "source": [ "plt.figure(figsize=(10,6))\n", "da.plotTargetByCats(df, cats, \"Survived\", subplot_tpl=(2,2));" ] }, { "cell_type": "markdown", "metadata": { "id": "u2RJhJ2cejvm" }, "source": [ "Bu grafikleri şöyle okumak lazım. Öncelikle bunların percentage olduğunu unutmayın:\n", "\n", "- 1.sınıflarda hayatta kalma olasılığı daha yüksek olmuş\n", "- Kadınlarda hayatta kalma olasılığı daha yüksek olmuş\n", "- Cherbourg'dan binenler daha şanslıymış\n", "- T Cabin grubunda olanların hiçbiri hayatta kalamamış(muhtemelen en dezavantajlı kabin), sonra kabin numarası bilinmeyenler en şanssız iken, B,D ve E gruplarındakiler daha şanslıymış" ] }, { "cell_type": "markdown", "metadata": { "id": "ioy9s06dejvm" }, "source": [ "Şimdi de hayatta kalanların kategoriler bazındaki dağılımına bakalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 484 }, "executionInfo": { "elapsed": 5221, "status": "ok", "timestamp": 1729948704619, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "TGKJgZfYejvm", "outputId": "7403fc89-98d6-405a-cedb-5b99a50335bf" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAHBCAYAAAASBpk1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUMklEQVR4nOzde3zO9f/H8ee1za5tZhuGzWHOp5wPKZRDcqp0RPEtpPQtp/ClohBCKVROnTSkEoWUnCoqJBSlcj40hw1z2MxmDnv//vDblauNtrmOux732+261fX5fK735/W5ru3ps9f1OViMMUYAAAAAAAAAAI/g5+4CAAAAAAAAAAB/o2kLAAAAAAAAAB6Epi0AAAAAAAAAeBCatgAAAAAAAADgQWjaAgAAAAAAAIAHoWkLAAAAAAAAAB6Epi0AAAAAAAAAeBCatgAAAAAAAADgQWjaAgAAAAAAAIAHoWkLSCpXrpzuuusul6xr1qxZslgs2rx5s1PXY7FY9OKLLzp1HQDwTznN0zVr1shisWjNmjXOLwoAIEk6cOCALBaLZs2a5e5SAADAv6BpC4+W2eC82mPDhg3uLhEAvN7evXv13//+VxUqVFBQUJDCwsLUtGlTvfHGG0pLS3N3eVeVnJyssWPHqmHDhgoPD5fValXZsmX14IMPaunSpe4uDwAc5p/7xEFBQapSpYr69u2ro0ePurs8APAp27ZtU8eOHVW2bFkFBQWpVKlSat26taZMmeLu0pDPBLi7ACAnRo8erfLly2eZXqlSJTdUAwD5x9KlS9WpUydZrVZ169ZNNWvW1Pnz57V27VoNGTJEf/zxh9555x2Hr7dZs2ZKS0tTYGBgnl6/Z88etW3bVn/99Zfuu+8+devWTaGhoTp48KC++uor3XXXXZozZ44eeeQRB1cOAO6TuU987tw5rV27VjNmzNBXX32l33//XSEhIe4uDwDyvfXr16tly5aKiYlRr169FBUVpYMHD2rDhg1644031K9fP3eXiHyEpi28Qvv27dWwYUN3l3Fdzp07l+fmBAA4w/79+/XQQw+pbNmy+vbbbxUdHW2b16dPH+3Zs8dpR6z6+fkpKCgoT6+9ePGi7rvvPh09elTfffedmjZtajd/5MiRWrlypS5dunTNcc6ePauCBQvmqQYAcIcr94kff/xxFS1aVJMmTdLnn3+uLl26uLk6AMj/xo4dq/DwcG3atEkRERF2844dO+aeopBvcXkEeL3Ma3O99tprmjZtmipUqKCQkBC1adNGBw8elDFGY8aMUenSpRUcHKx77rlHJ0+ezHaslStXqm7dugoKCtINN9yghQsX2s0/efKkBg8erFq1aik0NFRhYWFq3769fv31V7vlMq/VOG/ePL3wwgsqVaqUQkJClJycnO16T506pUaNGql06dLauXOnJCk9PV0jR45UpUqVZLVaVaZMGT3zzDNKT0+3e216eroGDhyoYsWKqVChQrr77rt16NChvL6dAHzIhAkTlJKSopkzZ9o1bDNVqlRJTz/9tCQpNjZWt912m4oXLy6r1aobbrhBM2bMuOrY/5an2V3TtkWLFqpZs6b+/PNPtWzZUiEhISpVqpQmTJhg99oFCxbo999/1/Dhw7M0bDO1adNG7du3tz3PPLX4u+++U+/evVW8eHGVLl1aktSjRw+VK1cuyxgvvviiLBaL3TSLxaK+ffvqww8/VNWqVRUUFKQGDRro+++/v+p7AQDOctttt0m6/CWcJJ0+fVoDBw5UuXLlZLVaVbp0aXXr1k2JiYlXHeO3335Tjx49bJfIiYqKUs+ePXXixAm75c6cOaMBAwbYxi5evLhat26tX375xbbM7t279cADDygqKkpBQUEqXbq0HnroISUlJTlh6wHA9fbu3asaNWpkadhKUvHixe2ez507Vw0aNFBwcLCKFCmihx56SAcPHrTNj42NlcVi0fvvv2/3unHjxsliseirr75yyjbAe3CkLbxCUlJSlp1Ni8WiokWL2p5/+OGHOn/+vPr166eTJ09qwoQJ6ty5s2677TatWbNGzz77rPbs2aMpU6Zo8ODBWYJx9+7devDBB/Xkk0+qe/fuio2NVadOnbR8+XK1bt1akrRv3z4tXrxYnTp1Uvny5XX06FG9/fbbat68uf7880+VLFnSbswxY8YoMDBQgwcPVnp6erZH2iYmJqp169Y6efKkvvvuO1WsWFEZGRm6++67tXbtWj3xxBOqXr26tm3bpsmTJ2vXrl1avHix7fWPP/645s6dq65du6pJkyb69ttvdeedd17vWw7AB3zxxReqUKGCmjRp8q/LzpgxQzVq1NDdd9+tgIAAffHFF+rdu7cyMjLUp08fu2VzkqdXc+rUKbVr107333+/OnfurE8//VTPPvusatWqZWvCfvHFF5Kkhx9+ONfb3Lt3bxUrVkwjRozQ2bNnc/16Sfruu+/0ySefqH///rJarZo+fbratWunjRs3qmbNmnkaEwDyYu/evZKkokWLKiUlRbfeequ2b9+unj17qn79+kpMTNSSJUt06NAhRUZGZjvGqlWrtG/fPj366KOKioqyXRbnjz/+0IYNG2xfXj355JP69NNP1bdvX91www06ceKE1q5dq+3bt6t+/fo6f/682rZtq/T0dPXr109RUVE6fPiwvvzyS50+fVrh4eEue18AwFnKli2rH3/8Ub///vs19/vGjh2r4cOHq3Pnznr88cd1/PhxTZkyRc2aNdOWLVsUERGhRx99VAsXLtSgQYPUunVrlSlTRtu2bdOoUaP02GOP6Y477nDhlsEjGcCDxcbGGknZPqxWqzHGmP379xtJplixYub06dO21w4dOtRIMnXq1DEXLlywTe/SpYsJDAw0586ds00rW7askWQ+++wz27SkpCQTHR1t6tWrZ5t27tw5c+nSJbsa9+/fb6xWqxk9erRt2urVq40kU6FCBZOamprtNm3atMnEx8ebGjVqmAoVKpgDBw7Ylvnggw+Mn5+f+eGHH+xe+9ZbbxlJZt26dcYYY7Zu3Wokmd69e9st17VrVyPJjBw58tpvMACflZSUZCSZe+65J0fL/zPLjDGmbdu2pkKFCnbTcpqnmTm5evVq27TmzZsbSWbOnDm2aenp6SYqKso88MADtmn16tUzERERWepJSUkxx48ftz2SkpJs8zKz95ZbbjEXL160e1337t1N2bJls4w3cuRI889dpcx/gzZv3myb9tdff5mgoCBz3333ZRkDABwhM8O+/vprc/z4cXPw4EEzb948U7RoURMcHGwOHTpkRowYYSSZhQsXZnl9RkaGMebv/ebY2FjbvOzy/eOPPzaSzPfff2+bFh4ebvr06XPVGrds2WIkmQULFlzHlgKAZ1u5cqXx9/c3/v7+pnHjxuaZZ54xK1asMOfPn7ctc+DAAePv72/Gjh1r99pt27aZgIAAu+nx8fGmSJEipnXr1iY9Pd3Uq1fPxMTE2O3HwndxeQR4hWnTpmnVqlV2j2XLltkt06lTJ7tv8G+66SZJl4/ECggIsJt+/vx5HT582O71JUuW1H333Wd7HhYWpm7dumnLli1KSEiQJFmtVvn5Xf61uXTpkk6cOKHQ0FBVrVrV7tSwTN27d1dwcHC223To0CE1b95cFy5c0Pfff6+yZcva5i1YsEDVq1dXtWrVlJiYaHtkngK3evVqSbKdLtG/f3+7sQcMGJDtOgEgU+blWgoVKpSj5a/MssyzH5o3b659+/ZlOe01J3l6NaGhoXZH0AYGBqpRo0bat2+fXe2hoaFZXvv888+rWLFitkfXrl2zLNOrVy/5+/v/+wZfQ+PGjdWgQQPb85iYGN1zzz1asWLFv15HFwCux+23365ixYqpTJkyeuihhxQaGqpFixapVKlS+uyzz1SnTh27/M30z0u9XOnKfD937pwSExN18803S5Ld/m1ERIR++uknHTlyJNtxMvfDV6xYodTU1DxtHwB4utatW+vHH3/U3XffrV9//VUTJkxQ27ZtVapUKS1ZskSStHDhQmVkZKhz5852f89HRUWpcuXKtr/nJSkqKsrW77j11lu1detWvf/++woLC3PXJsKDcHkEeIVGjRr9643IYmJi7J5n7jiWKVMm2+mnTp2ym16pUqUsO7RVqlSRdPm6uVFRUcrIyNAbb7yh6dOna//+/XZ/nF95qYZM5cuXv2q9jzzyiAICArR9+3ZFRUXZzdu9e7e2b9+uYsWKZfvazAuc//XXX/Lz81PFihXt5letWvWq6wUASbYdwTNnzuRo+XXr1mnkyJH68ccfs/wxnpSUZPelWU7y9GpKly6d5bWFCxfWb7/9ZnteqFChLNdalC5f+uCuu+6SdPVLJ1wrl3OqcuXKWaZVqVJFqampOn78+DW3DwCux7Rp01SlShUFBASoRIkSqlq1qu2Agr179+qBBx7I9ZgnT57UqFGjNG/evCw30bnyS7kJEyaoe/fuKlOmjBo0aKA77rhD3bp1U4UKFSRdztdBgwZp0qRJ+vDDD3Xrrbfq7rvv1sMPP8ylEQDkKzfeeKMWLlyo8+fP69dff9WiRYs0efJkdezYUVu3btXu3btljMl2n1GSChQoYPf8oYce0ty5c7V06VI98cQTatWqlSs2A16Api3yjasdOXW16caYXK9j3LhxGj58uHr27KkxY8aoSJEi8vPz04ABA5SRkZFl+asdZStJ999/v+bMmaM33nhD48ePt5uXkZGhWrVqadKkSdm+9p+NaADIrbCwMJUsWVK///77vy67d+9etWrVStWqVdOkSZNUpkwZBQYG6quvvtLkyZOzzb+8yklmV6tWTVu3btXhw4dVqlQp2/QqVarYmsNBQUHZjpNdLl/tCDSOmgXgaXJyIENude7cWevXr9eQIUNUt25dhYaGKiMjQ+3atbPL986dO+vWW2/VokWLtHLlSr366qt65ZVXtHDhQts1xydOnKgePXro888/18qVK9W/f3+NHz9eGzZssN38EQDyi8DAQN1444268cYbVaVKFT366KNasGCBMjIyZLFYtGzZsmz3bf95xtiJEye0efNmSdKff/6pjIwM2xdy8G00bYH/t2fPHhlj7P5437VrlyTZ7ir+6aefqmXLlpo5c6bda0+fPn3VmztcTb9+/VSpUiWNGDFC4eHheu6552zzKlasqF9//VWtWrW65ulsZcuWVUZGhvbu3Wt3dO3OnTtzVQsA33TXXXfpnXfe0Y8//qjGjRtfdbkvvvhC6enpWrJkid1ZDVee2nWlnOTp9dY9b948ffjhh3rmmWeue7zChQvr9OnTWab/9ddf2S6/e/fuLNN27dqlkJCQq54hAQDOVrFixRx9EXelU6dO6ZtvvtGoUaM0YsQI2/Tsck6SoqOj1bt3b/Xu3VvHjh1T/fr1NXbsWFvTVpJq1aqlWrVq6YUXXtD69evVtGlTvfXWW3rppZfytmEA4AUyv1CLj49XxYoVZYxR+fLlbQcUXEufPn105swZjR8/XkOHDtXrr7+uQYMGObtkeAFa98D/O3LkiBYtWmR7npycrDlz5qhu3bq2U139/f2zHKG7YMGCLNfHzanhw4dr8ODBGjp0qGbMmGGb3rlzZx0+fFjvvvtultekpaXZ7nieuYP85ptv2i3z+uuv56keAL7lmWeeUcGCBfX444/r6NGjWebv3btXb7zxhu0IgSvzLykpSbGxsdmOm5M8vR6dO3fWDTfcoDFjxmjDhg3ZLpObsykqVqyopKQku0swxMfH223DlX788Ue76zwePHhQn3/+udq0aXPd18sFgLx64IEHbKfp/tPVMjG7fJey7kteunQpy/XLixcvrpIlSyo9PV3S5ay/ePGi3TK1atWSn5+fbRkA8HarV6/ONlMz7zdTtWpV3X///fL399eoUaOyLGuMsbvM16effqpPPvlEL7/8sp577jk99NBDeuGFF2wHPMC3caQtvMKyZcu0Y8eOLNObNGnisNMGqlSposcee0ybNm1SiRIl9P777+vo0aN2TYm77rpLo0eP1qOPPqomTZpo27Zt+vDDD23X8sqLV199VUlJSerTp48KFSqkhx9+WI888ojmz5+vJ598UqtXr1bTpk116dIl7dixQ/Pnz9eKFSvUsGFD1a1bV126dNH06dOVlJSkJk2a6JtvvtGePXsc8ZYAyOcqVqyojz76SA8++KCqV6+ubt26qWbNmjp//rzWr1+vBQsWqEePHho0aJACAwPVoUMH/fe//1VKSoreffddFS9eXPHx8VnGzUmeXo8CBQpo0aJFatu2rW655Rbdf//9uvXWW1WwYEEdPnxYS5YsUVxcnO68884cjffQQw/p2Wef1X333af+/fsrNTVVM2bMUJUqVbK9yWTNmjXVtm1b9e/fX1arVdOnT5ckjRo1yiHbBwB5MWTIEH366afq1KmTevbsqQYNGujkyZNasmSJ3nrrLdWpUyfLa8LCwtSsWTNNmDBBFy5cUKlSpbRy5Urt37/fbrkzZ86odOnS6tixo+rUqaPQ0FB9/fXX2rRpkyZOnChJ+vbbb9W3b1916tRJVapU0cWLF/XBBx/I398/T9faBQBP1K9fP6Wmpuq+++5TtWrVbPvNn3zyicqVK6dHH31UEREReumllzR06FAdOHBA9957rwoVKqT9+/dr0aJFeuKJJzR48GAdO3ZMTz31lFq2bKm+fftKkqZOnarVq1erR48eWrt2LZdJ8HUG8GCxsbFG0lUfsbGxZv/+/UaSefXVV+1eu3r1aiPJLFiwINsxN23aZJtWtmxZc+edd5oVK1aY2rVrG6vVaqpVq5bltefOnTP/+9//THR0tAkODjZNmzY1P/74o2nevLlp3rz5v677auu/dOmS6dKliwkICDCLFy82xhhz/vx588orr5gaNWoYq9VqChcubBo0aGBGjRplkpKSbK9NS0sz/fv3N0WLFjUFCxY0HTp0MAcPHjSSzMiRI3P9ngPwPbt27TK9evUy5cqVM4GBgaZQoUKmadOmZsqUKebcuXPGGGOWLFliateubYKCgky5cuXMK6+8Yt5//30jyezfv982Vk7zNDMnV69ebZvWvHlzU6NGjSz1de/e3ZQtWzbL9NOnT5vRo0ebevXqmdDQUBMYGGjKlCljOnbsaL744gu7ZbPL3iutXLnS1KxZ0wQGBpqqVauauXPnmpEjR5p/7ipJMn369DFz5841lStXNlar1dSrV89uOwDA0f4twzKdOHHC9O3b15QqVcoEBgaa0qVLm+7du5vExERjjLHtN8fGxtpec+jQIXPfffeZiIgIEx4ebjp16mSOHDlity+Znp5uhgwZYurUqWMKFSpkChYsaOrUqWOmT59uG2ffvn2mZ8+epmLFiiYoKMgUKVLEtGzZ0nz99dcOfz8AwF2WLVtmevbsaapVq2bb/6xUqZLp16+fOXr0qN2yn332mbnllltMwYIFTcGCBU21atVMnz59zM6dO40xxtx///2mUKFC5sCBA3av+/zzz40k88orr7hsu+CZLMbk4W5MAAAAPshisahPnz6aOnWqu0sBAAAAkI9xnDUAAAAAAAAAeBCatgAAAAAAAADgQWjaAgAAAAAAAIAHCXB3AQAAAN6CWwEAAAAAcAWOtAUAAAAAAAAAD0LTFgAAAAAAAAA8CJdHyIWMjAwdOXJEhQoVksVicXc5ADyMMUZnzpxRyZIl5efHd2J5Qc4C+Ddk7fUhZwH8G3L2+pG1AK4lpzlL0zYXjhw5ojJlyri7DAAe7uDBgypdurS7y/BK5CyAnCJr84acBZBT5GzekbUAcuLfcpambS4UKlRI0uU3NSwszM3VAPA0ycnJKlOmjC0rkHvkLIB/Q9ZeH3IWwL8hZ68fWQvgWnKaszRtcyHztIawsDCCF8BVcQpU3pGzAHKKrM0bchZATpGzeUfWAsiJf8tZLlADAAAAAAAAAB6Epi0AAAAAAAAAeBCatgAAAAAAAADgQbimLeCDMjIydP78eXeX4ZUCAwPl58f3XQCyunTpki5cuODuMrxegQIF5O/v7+4yAPi4/Jzp5CzgO/JzlnkyR+UsTVvAx5w/f1779+9XRkaGu0vxSn5+fipfvrwCAwPdXQoAD2GMUUJCgk6fPu3uUvKNiIgIRUVFcRMcAC7nK5lOzgL5m69kmSdzRM7StAV8iDFG8fHx8vf3V5kyZThiNJcyMjJ05MgRxcfHKyYmhp1cAJJk2yEuXry4QkJCyIbrYIxRamqqjh07JkmKjo52c0UAfE1+z3RyFvAN+T3LPJkjc5amLeBDLl68qNTUVJUsWVIhISHuLscrFStWTEeOHNHFixdVoEABd5cDwM0uXbpk2yEuWrSou8vJF4KDgyVJx44dU/HixTmFF4DL+Eqmk7NA/uYrWebJHJWzHneYXUpKikaOHKl27dqpSJEislgsmjVrVrbLbt++Xe3atVNoaKiKFCmiRx55RMePH8+yXEZGhiZMmKDy5csrKChItWvX1scff+zkLQE8z6VLlySJU/uvQ+Z7l/leeiuyFnCMzGuE8UWYY2W+n958DTZyFvA+vpTp5Cw5i/zLl7LMkzkiZz2uaZuYmKjRo0dr+/btqlOnzlWXO3TokJo1a6Y9e/Zo3LhxGjx4sJYuXarWrVtnucHS888/r2effVatW7fWlClTFBMTo65du2revHnO3hzAI3FqRN7ll/eOrAUcK79kg6fID+8nOQt4r/yQQf8mP2wjOQtcW374PfdmDnn/jYc5d+6ciY+PN8YYs2nTJiPJxMbGZlnuqaeeMsHBweavv/6yTVu1apWRZN5++23btEOHDpkCBQqYPn362KZlZGSYW2+91ZQuXdpcvHgxx7UlJSUZSSYpKSkPWwa4X1pamvnzzz9NWlqau0vxWtd6D70pIzw1a73pPQSMIVedJT9kLTkLeB9fynRylt4B8i9fyjJP5oic9bgjba1Wq6Kiov51uc8++0x33XWXYmJibNNuv/12ValSRfPnz7dN+/zzz3XhwgX17t3bNs1iseipp57SoUOH9OOPPzp2AwDYefHFF1W3bl2njL1mzRpZLBaH3hHzwIEDslgs2rp1q8PG9ERkLeBdZs2apYiIiGsu48y8Re6RswCy06JFCw0YMMDdZeQL5CyA/M7jmrY5cfjwYR07dkwNGzbMMq9Ro0basmWL7fmWLVtUsGBBVa9ePctymfMBXNajRw9ZLJYsj3bt2rm7NLgBWQs4TkJCgvr166cKFSrIarWqTJky6tChg7755huHrWPw4MF5Gm/Pnj3q2bOnYmJiZLVaVapUKbVq1UoffvihLl686LD6kBU5C3inK/eZAwMDValSJY0ePZrM9EDkLOBZjh8/rqeeesq23xkVFaW2bdtq3bp17i7NIwW4u4C8iI+PlyRFR0dnmRcdHa2TJ08qPT1dVqtV8fHxKlGiRJZrSWS+9siRI1ddT3p6utLT023Pk5OTHVE+8qG4uDglJiY6fNzIyEi7b4RdoV27doqNjbWbZrVaXVpDTnjzTRO8hSuylpxFTnlzzh44cEBNmzZVRESEXn31VdWqVUsXLlzQihUr1KdPH+3YscMh6wkNDVVoaGiuXrNx40bdfvvtqlGjhqZNm6Zq1apJkjZv3qxp06apZs2aV71O4IULF1SgQIHrrtuXkbPwJN6cs+6Quc+cnp6ur776Sn369FGBAgU0dOhQd5eGK9A7gKdxRtZ6U84+8MADOn/+vGbPnq0KFSro6NGj+uabb3TixAl3l+aRvLJpm5aWJin7RlJQUJBtGavVavvvtZa7mvHjx2vUqFGOKBn5WFxcnKpVq660tFSHjx0cHKIdO7a7NICvdZqRxWLRW2+9pS+++ELffvutypYtq/fff1/FihXT448/rk2bNqlOnTr64IMPVLFiRbvXvv3223rppZd04sQJ3XXXXXr33XcVHh4uSdq0aZOGDRumLVu26MKFC6pbt64mT56s+vXr2617+vTpWrZsmb755hsNGTJELVq0sFtHamqqHnjgASUnJ2vp0qWKiIjQe++9p4kTJ2r//v0qV66c+vfvb3fK08aNG/Xf//5X27dvV82aNfX888876J30fq7IWnIWOeHtOdu7d29ZLBZt3LhRBQsWtE2vUaOGevbsKUmaNGmSYmNjtW/fPhUpUkQdOnTQhAkTsjRhFy9erCFDhujgwYNq3ry53nvvPZUpU0bS5csjLF682HZ5lx49euj06dO65ZZbNHHiRJ0/f14PPfSQXn/9dRUoUEDGGPXo0UNVqlTRunXr5Of39wlYlStXVpcuXWSMkXS58Vy+fHnNmzdP06dP108//aS33npLBw4csFunJL3++ut6/fXXdeDAAbs66tWrp6lTpyo9PV1du3bVm2++qcDAQEe/3V6FnIWniIuLU/Xq1ZWa6vicDQkJ0fbtrt2fdYUr95mfeuopLVq0SEuWLNHQoUO1bt06Pf/889q4caOsVqsaNWqkefPmqXDhwlnG+eCDD/TGG29o586dKliwoG677Ta9/vrrKl68uCTp1KlT6tu3r1auXKmUlBSVLl1aw4YN06OPPqrz589r0KBB+uyzz3Tq1CmVKFFCTz75JI3jK9A7gCdx1j6tO/oGeXH69Gn98MMPWrNmjZo3by5JKlu2rO1o9sxlBg8erM8//1zp6elq2LChJk+erDp16uj48eOqVauW+vfvr2HDhkmS1q9frxYtWmjZsmVq1aqVW7bLmbyyaRscHCxJdt9kZTp37pzdMsHBwTlaLjtDhw7VoEGDbM+Tk5NtfxgBmRITE5WWlqqbeo5UWHQ5h42bHH9AP70/SomJiR4VvmPGjNGkSZM0adIkPfvss+ratasqVKigoUOHKiYmRj179lTfvn21bNky22v27Nmj+fPn64svvlBycrIee+wx9e7dWx9++KEk6cyZM+revbumTJkiY4wmTpyoO+64Q7t371ahQoVs47z44ot6+eWX9frrrysgIED79u2zzTt9+rTuvPNOhYaGatWqVQoJCdGHH36oESNGaOrUqapXr562bNmiXr16qWDBgurevbtSUlJ01113qXXr1po7d67279+vp59+2nVvpodzRdaSs8gJb87ZkydPavny5Ro7dqxdwzZT5nVq/fz89Oabb6p8+fLat2+fevfurWeeeUbTp0+3LZuamqqxY8dqzpw5CgwMVO/evfXQQw9d83Sy1atXKzo6WqtXr9aePXv04IMPqm7duurVq5e2bt2q7du36+OPP7Zr2F7pn0cbPffcc5o4caLq1aunoKAgvf322zl6H7755hsFBQVpzZo1OnDggB599FEVLVpUY8eOzdHr8ytyFp4iMTFRqampenfiq6pSsYLDxt21d596/W+Ix+3POkNwcLBOnDihrVu3qlWrVurZs6feeOMNBQQEaPXq1bp06VK2r7tw4YLGjBmjqlWr6tixYxo0aJB69Oihr776SpI0fPhw/fnnn1q2bJkiIyO1Z88eW/PwzTff1JIlSzR//nzFxMTo4MGDOnjwoMu22RvQO4AnccY+raf2DbKTeVbY4sWLdfPNN2f7JUmnTp0UHBysZcuWKTw8XG+//bZatWqlXbt2qVixYnr//fd17733qk2bNqpataoeeeQR9e3bN182bCUvbdpmnp6QearDleLj41WkSBHbh5/5h4oxxu4Pj8zXlixZ8qrrsVqtHnlaODxTWHQ5FYmp6u4yrtuXX36Z5ciuYcOG2b7JevTRR9W5c2dJ0rPPPqvGjRtr+PDhatu2rSTp6aef1qOPPmr3+nPnzmnOnDkqVaqUJGnKlCm68847NXHiREVFRem2226zW/6dd95RRESEvvvuO91111226V27drUbO7Npm5CQoAcffFCVK1fWRx99ZDtya+TIkZo4caLuv/9+SVL58uX1559/6u2331b37t310UcfKSMjQzNnzlRQUJBq1KihQ4cO6amnnrq+NzGfcEXWkrPIDW/M2T179sgYY7vswNVceVOacuXK6aWXXtKTTz5p17S9cOGCpk6dqptuukmSNHv2bFWvXl0bN260O0LhSoULF9bUqVPl7++vatWq6c4779Q333yjXr16adeuXZKkqlX/fk+PHTumChX+bthMmDDB7uyEAQMG2DI1NwIDA/X+++8rJCRENWrU0OjRozVkyBCNGTPmqg1jX0DOwtNUqVhBdWvWcHcZXsUYo2+++UYrVqxQv379NGHCBDVs2NAuv2vUuPp7mnnGhSRVqFBBb775pm688UalpKQoNDRUcXFxqlevnu2arOXKlbMtHxcXp8qVK+uWW26RxWJR2bJlHb+BXo7eATyRN+7TOkJAQIBmzZqlXr166a233lL9+vXVvHlzPfTQQ6pdu7bWrl2rjRs36tixY7bfp9dee02LFy/Wp59+qieeeEJ33HGHevXqpf/85z9q2LChChYsqPHjx7t5y5zHK/eSS5UqpWLFimnz5s1Z5m3cuNHuzsl169ZVamqqtm/fbrfcTz/9ZJsP4G8tW7bU1q1b7R5PPvmkbX7t2rVt/1+iRAlJUq1ateymnTt3zu46TjExMbaGrSQ1btxYGRkZ2rlzpyTp6NGj6tWrlypXrqzw8HCFhYUpJSVFcXFxdrVldwMBSWrdurUqVaqkTz75xNawPXv2rPbu3avHHnvM9o1eaGioXnrpJe3du1eStH37dtWuXdt2ylNmbbiMrAWuX+blBf7N119/rVatWqlUqVIqVKiQHnnkEZ04ccLuVOWAgADdeOONtufVqlVTRERElt+7K9WoUUP+/v6259HR0Tp27NhVly9atKgt+yMiInT+/Hm7+VfL4X9Tp04dhYSE2J43btxYKSkpPn9EGDkLeK/MAx2CgoLUvn17Pfjgg3rxxRdtR9rm1M8//6wOHTooJiZGhQoVsp0ynLkf/NRTT2nevHmqW7eunnnmGa1fv9722h49emjr1q2qWrWq+vfvr5UrVzp2I/MBchbwLA888ICOHDmiJUuWqF27dlqzZo3q16+vWbNm6ddff1VKSoqKFi1q9zf8/v37bX/DS5cbuRcvXtSCBQv04Ycf5usvTLyyaStd/qC//PJLu539b775Rrt27VKnTp1s0+655x4VKFDA7ptOY4zeeustlSpVSk2aNHFp3YCnK1iwoCpVqmT3KFKkiG3+lTedyfwGOrtpGRkZOV5n9+7dtXXrVr3xxhtav369tm7dqqJFi2ZpFmR3arEk3Xnnnfr+++/1559/2qalpKRIkt599127BvTvv/+uDRs25Lg2X0fWAtencuXKslgs17zZ2IEDB3TXXXepdu3a+uyzz/Tzzz9r2rRpkpQlB3PrnzcKs1gstnyuXLmyJNm+QJMkf39/W/YHBGQ9IeufOezn55elMc2NInOHnAW8U+aBDrt371ZaWppmz56tggULXvMU+n86e/as2rZtq7CwMH344YfatGmTFi1aJOnv/G/fvr3++usvDRw4UEeOHFGrVq00ePBgSVL9+vW1f/9+jRkzRmlpaercubM6duzo+I31cuQs4FmCgoLUunVrDR8+XOvXr1ePHj00cuRIpaSkKDo6OstBZDt37tSQIUNsr9+7d6+OHDmijIwM2z0U8iuPvDzC1KlTdfr0advdGb/44gsdOnRIktSvXz+Fh4dr2LBhWrBggVq2bKmnn35aKSkptjsyX3n6dOnSpTVgwAC9+uqrunDhgm688UYtXrxYP/zwgz788EO7o08AOEdcXJyOHDliO6Vow4YN8vPzs52Su27dOk2fPl133HGHJOngwYO5uqPmyy+/rNDQULVq1Upr1qzRDTfcoBIlSqhkyZLat2+f/vOf/2T7uurVq+uDDz7QuXPnbEfb+lJDl6wFnK9IkSJq27atpk2bpv79+2dpep4+fVo///yzMjIyNHHiRNulAubPn59lrIsXL2rz5s22SyHs3LlTp0+fVvXq1fNUW7169VStWjW99tpr6ty5c54uU1CsWDElJCTYnUp65U3JMv36669KS0uzNTM2bNig0NDQfH+9P3IWyL8yD3T4p9q1a+ubb77J0U2pduzYoRMnTujll1+25WF2R4QWK1ZM3bt3V/fu3XXrrbdqyJAheu211yRJYWFhevDBB/Xggw+qY8eOateunU6ePGl30EV+Rs4C3u+GG27Q4sWLVb9+fSUkJCggIMDuUjBXOn/+vB5++GE9+OCDqlq1qh5//HFt27bNdvPG/MYjm7avvfaa/vrrL9vzhQsXauHChZKkhx9+WOHh4SpTpoy+++47DRo0SM8995wCAwNt18j856HRL7/8sgoXLqy3335bs2bNUuXKlTV37lx17drVpdsFeIP09HQlJCTYTQsICFBkZGSexwwKClL37t312muvKTk5Wf3791fnzp1td9ytXLmyPvjgAzVs2FDJyckaMmRIro5SkC7nxqVLl3TbbbdpzZo1qlatmkaNGqX+/fsrPDxc7dq1U3p6ujZv3qxTp05p0KBB6tq1q55//nn16tVLQ4cO1YEDB2w7wL6ArAVcY9q0aWratKkaNWqk0aNHq3bt2rp48aJWrVqlGTNmaN68ebpw4YKmTJmiDh06aN26dXrrrbeyjFOgQAH169dPb775pgICAtS3b1/dfPPNV72e7b+xWCyKjY1V69at1bRpUw0dOlTVq1fXhQsX9P333+v48eP/+gdqixYtdPz4cU2YMEEdO3bU8uXLtWzZMoWFhdktd/78eT322GN64YUXdODAAY0cOVJ9+/bN99ezJWcB3zN06FDVqlVLvXv31pNPPqnAwECtXr1anTp1yrI/HRMTo8DAQE2ZMkVPPvmkfv/9d40ZM8ZumREjRqhBgwaqUaOG0tPT9eWXX9q+rJs0aZKio6NVr149+fn5acGCBYqKirLd5NIXkLOA9zhx4oQ6deqknj17qnbt2ipUqJA2b96sCRMm6J577tHtt9+uxo0b695779WECRNUpUoVHTlyREuXLtV9992nhg0b6vnnn1dSUpLefPNNhYaG6quvvlLPnj315ZdfunvznMIjm7Y5Pby5Ro0aWrFixb8u5+fnp6FDh2ro0KHXWRmQ/y1fvtx2wf5MVatWveapvf+mUqVKuv/++3XHHXfo5MmTuuuuu+xOO5o5c6aeeOIJ1a9fX2XKlNG4ceNsp33lxuTJk+0at48//rhCQkL06quvasiQISpYsKBq1aplu+FPaGiovvjiCz355JOqV6+ebrjhBr3yyit64IEH8ryt3oSsBVyjQoUK+uWXXzR27Fj973//U3x8vIoVK6YGDRpoxowZqlOnjiZNmqRXXnlFQ4cOVbNmzTR+/Hh169bNbpyQkBA9++yz6tq1qw4fPqxbb71VM2fOvK7abr75Zv38888aN26c+vTpo4SEBBUsWFB16tTR5MmT7W6Qk53q1atr+vTpGjdunMaMGaMHHnhAgwcP1jvvvGO3XKtWrVS5cmU1a9ZM6enp6tKli1588cXrqt0bkLOA76lSpYpWrlypYcOGqVGjRgoODtZNN92kLl26ZFm2WLFimjVrloYNG6Y333xT9evX12uvvaa7777btkxgYKDt4ILg4GDdeuutmjdvniSpUKFCmjBhgnbv3i1/f3/deOON+uqrr/L9F2JXImcB7xEaGqqbbrpJkydP1t69e3XhwgWVKVNGvXr10rBhw2SxWPTVV1/p+eef16OPPqrjx48rKipKzZo1U4kSJbRmzRq9/vrrWr16te0AgQ8++EB16tTRjBkz8uUNxS0mp3fIgJKTkxUeHq6kpKQsR5DAd/3yyy9q0KCBWj8f69A7QJ6M26lVYx/Vzz//rPr16ztkzHPnzmn//v0qX7683c23kHPXeg/JiOvHe4jseHLOkqv/rkePHjp9+rQWL16c49eQtc7D+4fsZObsd4s/U92aNRw27tbf/1Dzex9w6P6sM/lSppOzzsV7iOw4Y582u/1ZX8oyT+aInPWdr+AAAAAAAAAAwAvQtAUAAAAAAAAAD+KR17QFAABA/jBr1ix3lwAAAAB4HY60BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADxIgLsLAOBd4uLilJiY6JJ1RUZGKiYmxiXrAgB3c2W+SmQsAOQU+Qwgv/D0v+eNMfrvf/+rTz/9VKdOndKWLVtUt25d5xR4DQcOHFD58uXdtv5MNG0B5FhcXJyqVauutLRUl6wvODhEO3Zsz1XQHz9+XCNGjNDSpUt19OhRFS5cWHXq1NGIESPUtGlTJ1YLAHnn6nyVcp+xa9asUcuWLa86v0WLFlq9erWjygMAjxAXF6fq1asrNdV1+RwSEqLt23O3D/z999/r1Vdf1c8//6z4+HgtWrRI9957r/OKBOB1vOHv+eXLl2vWrFlas2aNKlSooMjISCdW6Plo2gLIscTERKWlpeqmniMVFl3OqetKjj+gn94fpcTExFyF/AMPPKDz589r9uzZqlChgo4ePapvvvlGJ06ccGK1AHB9XJmvUt4ytkmTJoqPj88yfcmSJXryySfVu3dvR5cJAG6XmJio1NRUvTvxVVWpWMHp69u1d596/W9IrveBz549qzp16qhnz566//77nVghAG/lDX/P7927V9HR0WrSpIkTq/MeNG0B5FpYdDkVianq7jKyOH36tH744QetWbNGzZs3lySVLVtWjRo1cnNlAJAznpqvkhQYGKioqCi7adu3b9fgwYM1bNgwderUyU2VAYDzValYQXVr1nB3GVfVvn17tW/f3t1lAPACnrq/2aNHD82ePVuSZLFYVLZsWe3bt0+vvPKK3nnnHSUkJKhKlSoaPny4OnbsKOnvM8GWL1+u5557Tjt27FDjxo01b948/fzzzxo0aJAOHz6su+66S++9955CQkIkXT6i96WXXtLvv/8uf39/NW7cWG+88YYqVqx41fp+//13DRkyRD/88IMKFiyoNm3aaPLkyU49GpgbkQHIN0JDQxUaGqrFixcrPT3d3eUAQL52+vRp3XPPPWrRooXGjBnj7nIAAADgxd544w2NHj1apUuXVnx8vDZt2qTx48drzpw5euutt/THH39o4MCBevjhh/Xdd9/ZvfbFF1/U1KlTtX79eh08eFCdO3fW66+/ro8++khLly7VypUrNWXKFNvyZ8+e1aBBg7R582Z988038vPz03333aeMjIxsazt9+rRuu+021atXT5s3b9by5ct19OhRde7c2anvCUfaAsg3AgICNGvWLPXq1UtvvfWW6tevr+bNm+uhhx5S7dq13V0eAOQbGRkZ6tq1qwICAvThhx/KYrG4uyQAAAB4sfDwcBUqVEj+/v6KiopSenq6xo0bp6+//lqNGzeWJFWoUEFr167V22+/bTu7VpJeeukl2z1sHnvsMQ0dOlR79+5VhQqXL2vTsWNHrV69Ws8++6yky5dVvNL777+vYsWK6c8//1TNmjWz1DZ16lTVq1dP48aNs3tNmTJltGvXLlWpUsWxb8b/40hbAPnKAw88oCNHjmjJkiVq166d1qxZo/r162vWrFnuLg0A8o1hw4bpxx9/1Oeff65ChQq5uxwAAADkM3v27FFqaqpat25tO6s2NDRUc+bM0d69e+2WvfIgrRIlSigkJMTWsM2cduzYMdvz3bt3q0uXLqpQoYLCwsJUrlw5SZdv1padX3/9VatXr7aro1q1apKUpRZH4khbAPlOUFCQWrdurdatW2v48OF6/PHHNXLkSPXo0cPdpQGA15s3b55ee+01LV26VJUrV3Z3OQAAAMiHUlJSJElLly5VqVKl7OZZrVa75wUKFLD9v8VisXueOe3KSx906NBBZcuW1bvvvquSJUsqIyNDNWvW1Pnz569aS4cOHfTKK69kmRcdHZ27DcsFmrYA8r0bbrhBixcvdncZAOD1tm7dqscee0wvv/yy2rZt6+5yAAAAkE/dcMMNslqtiouLs7sUwvU6ceKEdu7cqXfffVe33nqrJGnt2rXXfE39+vX12WefqVy5cgoIcF0rlaYtgHzjxIkT6tSpk3r27KnatWurUKFC2rx5syZMmKB77rnH3eUBgFdLTEzUvffeqxYtWujhhx9WQkKC3Xx/f38VK1bMTdUBgG9LSUnRnj17bM/379+vrVu3qkiRIoqJiXFjZQCQN4UKFdLgwYM1cOBAZWRk6JZbblFSUpLWrVunsLAwde/ePU/jFi5cWEWLFtU777yj6OhoxcXF6bnnnrvma/r06aN3331XXbp00TPPPKMiRYpoz549mjdvnt577z35+/vnqZZ/Q9MWQK4lxx/wyHWEhobqpptu0uTJk7V3715duHBBZcqUUa9evTRs2DDHFwkADuaKfM3repYuXaq//vpLf/31V7angZUtW1YHDuR+XADwBrv27vPo9WzevFktW7a0PR80aJAkqXv37tzbAYAdT/17PjtjxoxRsWLFNH78eO3bt08RERGqX7/+df197+fnp3nz5ql///6qWbOmqlatqjfffFMtWrS46mtKliypdevW6dlnn1WbNm2Unp6usmXLql27dvLzc97twmjaAsixyMhIBQeH6Kf3R7lkfcHBIYqMjMzx8larVePHj9f48eOdWBUAOJ6r81XKfcZ27949z0c0AIC3ioyMVEhIiHr9b4jL1hkSkrt8lqQWLVrIGOOkigDkB57+97wkDRgwQAMGDLA9t1gsevrpp/X0009nu3x22dejR48s97N58cUX9eKLL9qe33777frzzz/tlrlynHLlymUZt3Llylq4cGEutub60bQFkGMxMTHasWO7EhMTXbK+yMhITucC4BNcna8SGQsAORETE6Pt28lnAN6Pv+e9D01bALkSExND8AKAE5CvAOCZyGcA+QV55l2cd+EFAAAAAAAAAECu0bQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPEiAuwsA4F3i4uKUmJjoknVFRkYqJibGJesCAHdzZb5KZCwA5BT5DCC/8MW/53v06KHTp09r8eLF7i4l12jaAsixuLg4Va9WValp51yyvpDgIG3fsTPXQZ+QkKCxY8dq6dKlOnz4sIoXL666detqwIABatWqlZOqBYC8c3W+SrnP2B49emj27Nm250WKFNGNN96oCRMmqHbt2s4qEwDc6nI+V1NqWprL1hkSHKztO3bkOJ/Hjx+vhQsXaseOHQoODlaTJk30yiuvqGrVqk6uFIA38Za/5/E3mrYAciwxMVGpaec094m6qh4d6tR1bY9P0cPvbFViYmKuQv7AgQNq2rSpIiIi9Oqrr6pWrVq6cOGCVqxYoT59+mjHjh1OrBoA8saV+SrlPWPbtWun2NhYSZe/IHvhhRd01113KS4uzlmlAoBbXc7nNA3r2l8xJUo5fX1xRw9r3Edv5iqfv/vuO/Xp00c33nijLl68qGHDhqlNmzb6888/VbBgQSdXDMBbeMPf87BH0xZArlWPDlX9cuHuLiNbvXv3lsVi0caNG+12UmvUqKGePXu6sTIA+HeenK+SZLVaFRUVJUmKiorSc889p1tvvVXHjx9XsWLF3FwdADhPTIlSqlK6grvLyNby5cvtns+aNUvFixfXzz//rGbNmrmpKgCeypP3N1u0aKFatWrJ399fs2fPVmBgoF566SV17dpVffv21aeffqoSJUpoypQpat++vS5duqQnnnhC3377rRISEhQTE6PevXvr6aefvuo6MjIy9Morr+idd95RQkKCqlSpouHDh6tjx44u3NKc4UZkAPKNkydPavny5erTp0+2RxVERES4vigAyKdSUlI0d+5cVapUSUWLFnV3OQCA/5eUlCTp8mVsAMDbzJ49W5GRkdq4caP69eunp556Sp06dVKTJk30yy+/qE2bNnrkkUeUmpqqjIwMlS5dWgsWLNCff/6pESNGaNiwYZo/f/5Vxx8/frzmzJmjt956S3/88YcGDhyohx9+WN99950LtzJnONIWQL6xZ88eGWNUrVo1d5cCAPnSl19+qdDQy6fTnT17VtHR0fryyy/l58dxAADgCTIyMjRgwAA1bdpUNWvWdHc5AJBrderU0QsvvCBJGjp0qF5++WVFRkaqV69ekqQRI0ZoxowZ+u2333TzzTdr1KhRtteWL19eP/74o+bPn6/OnTtnGTs9PV3jxo3T119/rcaNG0uSKlSooLVr1+rtt99W8+bNXbCFOUfTFkC+YYxxdwkAkK+1bNlSM2bMkCSdOnVK06dPV/v27bVx40aVLVvWzdUBAPr06aPff/9da9eudXcpAJAnV97g1t/fX0WLFlWtWrVs00qUKCFJOnbsmCRp2rRpev/99xUXF6e0tDSdP39edevWzXbsPXv2KDU1Va1bt7abfv78edWrV8/BW3L9aNoCyDcqV64si8XCzcYAwEkKFiyoSpUq2Z6/9957Cg8P17vvvquXXnrJjZUBAPr27asvv/xS33//vUqXLu3ucgAgTwoUKGD33GKx2E2zWCySLp9ZMG/ePA0ePFgTJ05U48aNVahQIb366qv66aefsh07JSVFkrR06VKVKmV/c0mr1erIzXAImrYA8o0iRYqobdu2mjZtmvr375/luranT5/murYA4EAWi0V+fn5KS0tzdykA4LOMMerXr58WLVqkNWvWqHz58u4uCQBcYt26dWrSpIl69+5tm7Z3796rLn/DDTfIarUqLi7O4y6FkB2atgDylWnTpqlp06Zq1KiRRo8erdq1a+vixYtatWqVZsyYoe3bt7u7RADwWunp6UpISJB0+fIIU6dOVUpKijp06ODmygDAd/Xp00cfffSRPv/8cxUqVMiW0+Hh4QoODnZzdQDgPJUrV9acOXO0YsUKlS9fXh988IE2bdp01S+vChUqpMGDB2vgwIHKyMjQLbfcoqSkJK1bt05hYWHq3r27i7fg2mjaAsi17fEpHruOChUq6JdfftHYsWP1v//9T/Hx8SpWrJgaNGhguw4jAHgqV+Tr9axn+fLlio6OlnR5p7datWpasGCBWrRo4cDqAMDzxB097LHrydzH/WcWx8bGqkePHg6oCkB+4sl/z+fWf//7X23ZskUPPvigLBaLunTpot69e2vZsmVXfc2YMWNUrFgxjR8/Xvv27VNERITq16+vYcOGuaTm3KBpCyDHIiMjFRIcpIff2eqS9YUEBykyMjLXr4uOjtbUqVM1depUJ1QFAI7n6nyVcp+xs2bN0qxZs5xXEAB4oMv5HKxxH73psnWGBAfnKp+5GS+AnPCGv+fXrFmTZdqBAweyTLsy92JjYxUbG2s3f/z48bb//+f+q8Vi0dNPP62nn346V7W5A01bADkWExOj7Tt2KjEx0SXri4yMVExMjEvWBQDu5Op8lchYAMiJy/m8g3wG4PX4e9770LQFkCsxMTEELwA4AfkKAJ6JfAaQX5Bn3sXP3QUAAAAAAAAAAP5G0xYAAAAAAAAAPAhNWwAAAAAAACAf4SaF7uWI95+mLQAAAAAAAJAPFChQQJKUmprq5kp8W+b7n/l55AU3IgMAAAAAAADyAX9/f0VEROjYsWOSpJCQEFksFjdX5TuMMUpNTdWxY8cUEREhf3//PI/l1U3b3bt3a/jw4Vq7dq1OnjypmJgYde3aVYMHD1ZISIhtufXr1+uZZ57RL7/8orCwMHXu3Fnjxo1TaGioG6sHAO9A1gKAc5GzAOBc5Cx8TVRUlCTZGrdwvYiICNvnkFde27Q9ePCgGjVqpPDwcPXt21dFihTRjz/+qJEjR+rnn3/W559/LknaunWrWrVqperVq2vSpEk6dOiQXnvtNe3evVvLli1z81YAgGcjawHAuchZAHAucha+yGKxKDo6WsWLF9eFCxfcXY7PKVCgwHUdYZvJa5u2H3zwgU6fPq21a9eqRo0akqQnnnhCGRkZmjNnjk6dOqXChQtr2LBhKly4sNasWaOwsDBJUrly5dSrVy+tXLlSbdq0cedmAF4nLi5OiYmJLllXZGSkYmJiXLIuZI+sBVzHlfkqkbGegpwFPB/57N3IWfgyf39/hzQP4R5e27RNTk6WJJUoUcJuenR0tPz8/BQYGKjk5GStWrVKAwcOtIWuJHXr1k0DBw7U/PnzCV4gF+Li4lStejWlpaa5ZH3BIcHasX1HrndaDx48qJEjR2r58uVKTExUdHS07r33Xo0YMUJFixZ1UrX5E1kLuIar81XKe8YmJCRo7NixWrp0qQ4fPqzixYurbt26GjBggFq1auWkavMvchbwbHFxcapWrZrS0lyYz8HB2rEj5/k8Y8YMzZgxQwcOHJAk1ahRQyNGjFD79u2dWKX3IGcBeCuvbdq2aNFCr7zyih577DGNGjVKRYsW1fr16zVjxgz1799fBQsW1Lp163Tx4kU1bNjQ7rWBgYGqW7eutmzZ4qbqAe+UmJiotNQ0NXummcLLhDt1XUkHk/T9hO+VmJiYq4bCvn371LhxY1WpUkUff/yxypcvrz/++ENDhgzRsmXLtGHDBhUpUsSJlecvZC3gGq7MVynvGXvgwAE1bdpUERERevXVV1WrVi1duHBBK1asUJ8+fbRjxw4nVp0/kbOAZ0tMTFRaWpqa39RG4WHO34dMSj6p735amat8Ll26tF5++WVVrlxZxhjNnj1b99xzj7Zs2WI7stSXkbMAvJXXNm3btWunMWPGaNy4cVqyZIlt+vPPP6+XXnpJkhQfHy/p8jdo/xQdHa0ffvjhmutIT09Xenq67XnmN3SArwsvE67IypHuLiNbffr0UWBgoFauXKng4GBJUkxMjOrVq6eKFSvq+eef14wZM9xcpfdwdtaSs4A9T85XSerdu7csFos2btyoggUL2qbXqFFDPXv2dGNl3oucBbxDeFgRRRYu7u4ystWhQwe752PHjtWMGTO0YcMGmraidwDAe/m5u4DrUa5cOTVr1kzvvPOOPvvsM/Xs2VPjxo3T1KlTJcl2CovVas3y2qCgoH89xWX8+PEKDw+3PcqUKeP4jQDgMCdPntSKFSvUu3dvW8M2U1RUlP7zn//ok08+kTHGTRV6J2dmLTkLeI+TJ09q+fLl6tOnj13DNlNERITri8onyFkAjnLp0iXNmzdPZ8+eVePGjd1djsegdwDAG3ntkbbz5s3TE088oV27dql06dKSpPvvv18ZGRl69tln1aVLF1vT5spvvDKdO3cuS1Pnn4YOHapBgwbZnicnJxO+gAfbvXu3jDGqXr16tvOrV6+uU6dO6fjx4ype3DOPlPA0zs5achbwHnv27JExRtWqVXN3KfkKOQvAEbZt26bGjRvr3LlzCg0N1aJFi3TDDTe4uyyPQO8AgLfy2iNtp0+frnr16tlCN9Pdd9+t1NRUbdmyxXZqQ+apDleKj49XyZIlr7kOq9WqsLAwuwcAz/dvR9IGBga6qBLv5+ysJWcB78FZCs5BzgJwhKpVq2rr1q366aef9NRTT6l79+76888/3V2WR6B3AMBbeW3T9ujRo7p06VKW6RcuXJAkXbx4UTVr1lRAQIA2b95st8z58+e1detW1a1b1xWlAnCRSpUqyWKxaPv27dnO3759u4oVK8YpvLlA1gLIVLlyZVksFm425mDkLABHCAwMVKVKldSgQQONHz9ederU0RtvvOHusjwCOQvAW3lt07ZKlSrasmWLdu3aZTf9448/lp+fn2rXrq3w8HDdfvvtmjt3rs6cOWNb5oMPPlBKSoo6derk6rIBOFHRokXVunVrTZ8+Pct1pxISEvThhx+qR48e7inOS5G1ADIVKVJEbdu21bRp03T27Nks80+fPu36ovIBchaAM2RkZGR7qr8vImcBeCuvvabtkCFDtGzZMt16663q27evihYtqi+//FLLli3T448/bjt9YezYsWrSpImaN2+uJ554QocOHdLEiRPVpk0btWvXzs1bAcDRpk6dqiZNmqht27Z66aWXVL58ef3xxx8aMmSIqlSpohEjRri7RK9C1gK40rRp09S0aVM1atRIo0ePVu3atXXx4kWtWrVKM2bMuOqZDrg6chbA9Ro6dKjat2+vmJgYnTlzRh999JHWrFmjFStWuLs0j0DOAvBWXtu0bdasmdavX68XX3xR06dP14kTJ1S+fHmNHTtWzzzzjG25+vXr6+uvv9azzz6rgQMHqlChQnrsscc0fvx4N1YPeLekg0keu47KlStr06ZNevHFF9W5c2cdO3ZMxhjdf//9+uCDDxQSEuLgSvM3shZwLVfk6/Wsp0KFCvrll180duxY/e9//1N8fLyKFSumBg0aaMaMGQ6u0jeQs4B3SEo+6bHrOXbsmLp166b4+HiFh4erdu3aWrFihVq3bu2ECr0POQvAW3lt01aSGjVqpK+++upfl7vlllu0bt06F1QE5G+RkZEKDgnW9xO+d8n6gkOCFRkZmevXlStXTrNmzbI9HzlypCZNmqTffvtNN998swMr9A1kLeB8rs5XKe8ZGx0dralTp2rq1KlOqMo3kbOA54qMjFRwcLC++2mly9YZHJy7fJ45c6YTq8kfyFkA3sirm7YAXCsmJkY7tu9QYmKiS9YXGRmpmJiY6x5n1KhRKleunDZs2KBGjRrJz89rL+cNIJ9ydb5KjstYAMjPYmJitGMH+QwAcD2atgByJSYmxit3Ih999FF3lwAA1+St+QoA+R35DABwBw43AwAAAAAAAAAPQtMWAAAAAAAAADwITVvABxlj3F2C1+K9AwAAyN98YX/PF7YRALwdTVvAh/j7+0uSzp8/7+ZKvFfme5f5XgIAACB/KFCggCQpNTXVzZU4X+Y2Zm4zAMDzcCMywIcEBAQoJCREx48fV4ECBeTnx/c2uZGRkaHjx48rJCREAQHEJwAAQH7i7++viIgIHTt2TJIUEhIii8Xi5qocyxij1NRUHTt2TBERERyIAAAejK4D4EMsFouio6O1f/9+/fXXX+4uxyv5+fkpJiYm3+3AAwAAQIqKipIkW+M2v4qIiLBtKwDAM9G0BXxMYGCgKleuzCUS8igwMJAjlAEAAPKpzIMcihcvrgsXLri7HKcoUKAAR9gCgBegaQv4ID8/PwUFBbm7DADAFeLi4pSYmOiy9UVGRiomJsZl6wMAb+Lv709jEwDgVjRtAQAA3CwuLk7Vq1VTalqay9YZEhys7Tt25Lhx26NHD82ePVvS5WukFylSRLVr11aXLl3Uo0cPzkIAAAAAHIimLQAAgJslJiYqNS1Nrze9RZXCw52+vj1JSRqwbq0SExNzdbRtu3btFBsbq0uXLuno0aNavny5nn76aX366adasmQJN2kEAAAAHIQ9awAAAA9RKTxcNYsWdXcZV2W1Wm03rilVqpTq16+vm2++Wa1atdKsWbP0+OOPu7lCAAAAIH/gPDYAAADk2W233aY6depo4cKF7i4FAAAAyDdo2gIAAOC6VKtWTQcOHHB3GQAAAEC+QdMWAAAA18UYI4vF4u4yAAAAgHyDpi0AAACuy/bt21W+fHl3lwEAAADkGzRtAQAAkGfffvuttm3bpgceeMDdpQAAAAD5RoC7CwAAAIB3SE9PV0JCgi5duqSjR49q+fLlGj9+vO666y5169bN3eUBAAAA+QZNWwAAAA+xJynJo9ezfPlyRUdHKyAgQIULF1adOnX05ptvqnv37vLz4wQuAAAAwFFo2gIAALhZZGSkQoKDNWDdWpetMyQ4WJGRkTleftasWZo1a5bzCgIAAABgQ9MWAADAzWJiYrR9xw4lJia6bJ2RkZGKiYlx2foAAAAA5BxNWwAAAA8QExNDExUAAACAJImLjwEAAAAAAACAB6FpCwAAAAAAAAAehKYtAAAAAAAAAHgQmrYAAAAAAAAA4EFo2gIAAAAAAACAB6FpCwAAAAAAAAAehKYtAAAAAAAAAHiQAHcXAAAAACkuLk6JiYkuW19kZKRiYmJctj4AAAAAOUfTFgAAwM3i4uJUvVp1paalumydIcEh2r5je44btz169NDs2bOzTG/btq2WL1/u6PIAAAAAn0bTFgAAwM0SExOVmpaqAV3HqHSJ8k5f36Gj+/X6R8OVmJiYq6Nt27Vrp9jYWLtpVqvV0eUBAAAAPo+mLQAAgIcoXaK8Kpau7u4yrspqtSoqKsrdZQAAAAD5HjciAwAAAAAAAAAPQtMWAAAAOfLll18qNDTU7jFu3Dh3lwUAAADkO1weAQAAADnSsmVLzZgxw25akSJF3FQNAAAAkH/RtAUAAECOFCxYUJUqVXJ3GQAAAEC+x+URAAAAAAAAAMCDcKQtAAAAciQ9PV0JCQl20wICAhQZGemmigAAAID8iaYtAACAhzh0dL9Hr2f58uWKjo62m1a1alXt2LHDEWUBAAAA+H80bQEAANwsMjJSIcEhev2j4S5bZ0hwSK6OkJ01a5ZmzZrlvIIAAAAA2NC0BQAAcLOYmBht37FdiYmJLltnZGSkYmJiXLY+AAAAADlH0xYAAMADxMTE0EQFAAAAIEnyc3cBAAAAAAAAAIC/0bQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCDeH3T9pdfftHdd9+tIkWKKCQkRDVr1tSbb75pt8z69et1yy23KCQkRFFRUerfv79SUlLcVDEAeB+yFgCci5wFAOciZwF4mwB3F3A9Vq5cqQ4dOqhevXoaPny4QkNDtXfvXh06dMi2zNatW9WqVStVr15dkyZN0qFDh/Taa69p9+7dWrZsmRurBwDvQNYCgHORswDgXOQsAG/ktU3b5ORkdevWTXfeeac+/fRT+fllf9DwsGHDVLhwYa1Zs0ZhYWGSpHLlyqlXr15auXKl2rRp48qyAcCrkLWA68TFxSkxMdFl64uMjFRMTIzL1ofskbMA4FzkLABv5bVN248++khHjx7V2LFj5efnp7Nnzyo4ONgugJOTk7Vq1SoNHDjQFrqS1K1bNw0cOFDz588neAHgGshawDXi4uJUrVo1paWluWydwcHB2rFjR44btz169NDs2bOzTN+9e7cqVark6PJ8BjkLAM5FzgLwVnlu2n7//fcqV67cNXf0Dx48qP3796tZs2Z5Xc1Vff311woLC9Phw4d17733ateuXSpYsKAeeeQRTZ48WUFBQdq2bZsuXryohg0b2r02MDBQdevW1ZYtWxxeFwA4irtzViJrAVdJTExUWlqa+t7fQaUiizp9fYcTT2jqwi+UmJiYq6Nt27Vrp9jYWLtpxYoVc3R5LuXurCVnAeR35CwA5E2em7YtW7bUyJEjNWLEiKsuM2fOHI0YMUKXLl3K62quavfu3bp48aLuuecePfbYYxo/frzWrFmjKVOm6PTp0/r4448VHx8vSYqOjs7y+ujoaP3www/XXEd6errS09Ntz5OTkx27EQBwDe7OWcn5WUvOAvZKRRZVhZJR7i7jqqxWq6KiPLe+vHB31pKz8CS//vGHUlNTHTbe7v37HTYWvFd+z1mJrAXgHHlu2hpj/nWZjIwMWSyWvK7imlJSUpSamqonn3zSdsfH+++/X+fPn9fbb7+t0aNH204xtFqtWV4fFBT0r6cgjh8/XqNGjXJ88QCQA+7OWcn5WUvOAnA3d2ctOQtPkJ6eLj+LRf2fv3pTLa/8LBa7ZhZ8T37PWYmsBeAcTr2m7e7duxUeHu6UsYODgyVJXbp0sZvetWtXvf322/rxxx8VEhIiSdnuJJw7d842xtUMHTpUgwYNsj1PTk5WmTJlrrd0AHAYZ+as5PysJWcB7/Lll18qNDTU9rx9+/ZasGCBGytyDW/epyVnkRNWq1UZxqhnu4cUVaS4w8ZNOHlM7y+fl20jDLiSN+esRNYCcI5cNW179uxp93zx4sU6cOBAluUuXbqkgwcP6vvvv1f79u2vq8CrKVmypP744w+VKFHCbnrx4pd3Mk6dOqWKFStKku1UhyvFx8erZMmS11yH1WplBwOAS3lSzkrOz1pyFvAuLVu21IwZM2zPCxYs6MZq8s6TspachSdpVL2eqpSu4LDxdh3ap/eXz3PYePAevpSzElkLwDly1bSdNWuW7f8tFou2bt2qrVu3ZrusxWLRjTfeqMmTJ19PfVfVoEEDrVq1SocPH1bVqlVt048cOSLp8k0xatasqYCAAG3evFmdO3e2LXP+/Hlt3brVbhoAeAJPylmJrAVgr2DBgqpUqZK7y7hunpS15CyA/IicBYDr55ebhffv36/9+/dr3759MsZowIABtmlXPuLi4pScnKwNGzY4bcc+MzRnzpxpN/29995TQECAWrRoofDwcN1+++2aO3euzpw5Y1vmgw8+UEpKijp16uSU2gAgrzwpZyWyFkD+5ElZS84CyI/IWQC4frk60rZs2bK2/4+NjVW9evXsprlSvXr11LNnT73//vu6ePGimjdvrjVr1mjBggUaOnSo7fSFsWPHqkmTJmrevLmeeOIJHTp0SBMnTlSbNm3Url07t9QOAFfjSTkrkbWAqx1OPJGv1uOpPClryVkA+RE5CwDXL883Iuvevbsj68iTt956SzExMYqNjdWiRYtUtmxZTZ48WQMGDLAtU79+fX399dd69tlnNXDgQBUqVEiPPfaYxo8f777CASAHPCFnJbIWcIXIyEgFBwdr6sIvXLbO4OBgRUZGumx9nsoTspacBZCfkbMAkDd5btpm2rhxozZt2qTTp0/r0qVLWeZbLBYNHz78eleTrQIFCmjkyJEaOXLkNZe75ZZbtG7dOqfUAADO5s6clchawBViYmK0Y8cOJSYmumydkZGRiomJyfHyV16fMD9inxYAnIucBYDcyXPT9uTJk7r33nu1bt06GWOuupyzmwkAkF+Rs4BviYmJyVUTFY5B1gKAc5GzAJA3eW7aDho0SGvXrlWLFi3UvXt3lS5dWgEB133gLgDg/5GzAOB8ZC0AOBc5CwB5k+ek/PLLL9WoUSN98803slgsjqwJACByFgBcgawFAOciZwEgb/zy+sK0tDQ1a9aM0AUAJyFnAcD5yFoAcC5yFgDyJs9N27p16+rAgQMOLAUAcCVyFgCcj6wFAOciZwEgb/LctB05cqSWLFmiDRs2OLIeAMD/I2cBwPnIWgBwLnIWAPImz9e0TUhI0J133qnmzZvrP//5j+rXr6+wsLBsl+3WrVueCwQAX0XOAoDzkbUA4FzkLADkTZ6btj169JDFYpExRrNmzdKsWbOyXKPGGCOLxULwAkAekLMA4HxkLQA4FzkLAHmT56ZtbGysI+sAAPwDOQsAzkfWAoBzkbMAkDd5btp2797dkXUAAP6BnAV8S1xcnBITE122vsjISMXExOT6dT/++KNuueUWtWvXTkuXLnVCZa5F1gKAc5GzAJA3eW7aAgAAwDHi4uJUvVp1paalumydIcEh2r5je64btzNnzlS/fv00c+ZMHTlyRCVLlnRShQAAAIDvynPTNi4uLsfL5uUoDgDwdeQs4DsSExOVmpaq6T3HqUp0Baevb1f8PvV+f5gSExNzlR8pKSn65JNPtHnzZiUkJGjWrFkaNmyYEyt1PrIWAJyLnAWAvMlz07ZcuXJZLh6eHYvFoosXL+Z1NQDgs8hZwPdUia6g2jHV3V3GVc2fP1/VqlVT1apV9fDDD2vAgAEaOnRojrLKU5G1AOBc5CwA5E2em7bdunXLNniTkpL066+/av/+/WrevLnKlSt3PfUBgM8iZwF4mpkzZ+rhhx+WJLVr105JSUn67rvv1KJFC/cWdh3IWgBwLnIWAPImz03bWbNmXXWeMUYTJ07UhAkTNHPmzLyuAgB8GjkLwJPs3LlTGzdu1KJFiyRJAQEBevDBBzVz5kyvbtqStQDgXOQsAOSNnzMGtVgsGjx4sGrUqKEhQ4Y4YxUA4NPIWQCuNnPmTF28eFElS5ZUQECAAgICNGPGDH322WdKSkpyd3lOQdYCgHORswBwdU5p2mZq2LChvv32W2euAgB8GjkLwBUuXryoOXPmaOLEidq6davt8euvv6pkyZL6+OOP3V2iU5G1AOBc5CwAZJXnyyPkxN69e7mQOAA4ETkLwBW+/PJLnTp1So899pjCw8Pt5j3wwAOaOXOmnnzySTdV53xkLQA4FzkLAFk5vGmbkZGhw4cPa9asWfr888/VqlUrR68CAHwaOQvkX7vi93nkembOnKnbb789S8NWuty0nTBhgn777TfVrl3bUSW6HVkLAM5FzgLAteW5aevn55ftHSAzGWNUuHBhTZw4Ma+rAACfRs4CviMyMlIhwSHq/f4wl60zJDhEkZGROVr2iy++uOq8Ro0ayRjjqLJcjqwFAOciZwEgb/LctG3WrFm2wevn56fChQvrxhtv1KOPPqrixYtfV4EA4KvIWcB3xMTEaPuO7UpMTHTZOiMjIxUTE+Oy9XkqshYAnIucBYC8yXPTds2aNQ4sAwDwT+Qs4FtiYmJooroBWQsAzkXOAkDe+Lm7AAAAAAAAAADA3xxyI7J169Zp69atSk5OVlhYmOrWraumTZs6YmgAgMhZAHAFshYAnIucBYCcu66m7fr16/Xoo49qz549ki5fQDzzWjWVK1dWbGysGjdufP1VAoCPImcBwPnIWgBwLnIWAHIvz03bP/74Q23atFFqaqpat26tli1bKjo6WgkJCVq9erVWrlyptm3basOGDbrhhhscWTMA+ARyFgCcj6wFAOciZwEgb/LctB09erTOnz+vr776Su3atbOb9+yzz2r58uW6++67NXr0aM2bN++6CwUAX0POAoDzkbUA4FzkLADkTZ5vRLZmzRp17NgxS+hmateunTp27KjVq1fnuTgA8GXkLAA4H1kLAM5FzgJA3uS5aZuUlKTy5ctfc5ny5csrKSkpr6sAAJ9GzgKA85G1AOBc5CwA5E2em7YlS5bUhg0brrnMTz/9pJIlS+Z1FQDg08hZAHA+shYAnIucBYC8yfM1be+++25NmTJFw4cP1/PPP6+goCDbvHPnzmn8+PFavXq1+vfv75BCAcDXkLOAb4mLi1NiYqLL1hcZGamYmJhcvy4hIUHjx4/X0qVLdejQIYWHh6tSpUp6+OGH1b17d4WEhDihWuchawHAuchZAMibPDdthw8fri+//FLjxo3T22+/rUaNGqlEiRI6evSoNm3apOPHj6tChQoaPny4I+sFAJ9BzgK+Iy4uTtWqVVNaWprL1hkcHKwdO3bkqnG7b98+NW3aVBERERo3bpxq1aolq9Wqbdu26Z133lGpUqV09913O7FqxyNrAcC5yFkAyJs8N22LFi2qDRs26JlnntG8efP01Vdf2eYFBQXp0Ucf1SuvvKIiRYo4pFAA8DXkLOA7EhMTlZaWpieeeELR0dFOX198fLzeeecdJSYm5qpp27t3bwUEBGjz5s0qWLCgbXqFChV0zz33yBjjjHKdiqwFAOciZwEgb/LctJUun1b3/vvv6+2339aOHTuUnJyssLAwVatWTQUKFHBUjQDgs8hZwLdER0erXLly7i4jWydOnNDKlSs1btw4u4btlSwWi4urcgyyFgCci5wFgNzLddN27NixOnv2rEaNGmUL1wIFCqhWrVq2Zc6fP6/nn39ehQoV0nPPPee4agHAB5CzADzRnj17ZIxR1apV7aZHRkbq3LlzkqQ+ffrolVdecUd5uUbWAoBzkbMAcH38crPw119/rREjRqho0aLX/DYsMDBQRYsW1fPPP6/Vq1dfd5EA4CvIWQDeZuPGjdq6datq1Kih9PR0d5eTI2QtADgXOQsA1y9XTds5c+aocOHC6tu3778u26dPHxUpUkSxsbF5Lg4AfA05C8BTVapUSRaLRTt37rSbXqFCBVWqVEnBwcFuqiz3yFoAcC5yFgCuX66atuvXr9ftt98uq9X6r8tarVbdfvvtWrduXZ6LAwBfQ84C8FRFixZV69atNXXqVJ09e9bd5VwXshYAnIucBYDrl6um7ZEjR1ShQoUcL1++fHnFx8fnuigA8FXkLABPNn36dF28eFENGzbUJ598ou3bt2vnzp2aO3euduzYIX9/f3eXmCNkLQA4FzkLANcvVzci8/Pz04ULF3K8/IULF+Tnl6u+MAD4NHIW8G2u+oM1r+upWLGitmzZonHjxmno0KE6dOiQrFarbrjhBg0ePFi9e/d2cKXOQdYCgHORswBw/XLVtC1ZsqR+//33HC//+++/q1SpUrkuCgB8FTkL+KbIyEgFBwfrnXfecdk6g4ODFRkZmevXRUdHa8qUKZoyZYoTqnINshYAnIucBYDrl6um7a233qq5c+fqwIEDKleu3DWXPXDggL799lt169bteuoDAJ9CzgK+KSYmRjt27FBiYqLL1hkZGamYmBiXrc+TkLUA4FzkLABcv1w1bfv06aPY2Fh17NhRy5cvv+rRGSdOnFCnTp108eJFPfXUUw4pFAB8ATkL+K6YmBifbaK6GlkLAM5FzgLA9ctV07Z+/foaMGCAXn/9dd1www168skn1bJlS5UuXVqSdPjwYX3zzTd65513dPz4cQ0aNEj169d3SuEAkB+RswDgfGQtADgXOQsA1y9XTVtJmjhxooKCgvTqq69q7NixGjt2rN18Y4z8/f01dOhQvfTSSw4rFAB8BTkLAM5H1gKAc5GzAHB9ct20tVgsGjdunB577DHFxsZq/fr1SkhIkCRFRUWpadOm6tGjhypWrOjwYgHAF5CzAOB8ZC0AOBc5CwDXJ9dN20wVK1bk2zAAcCJyFvAexhh3l5CvuPL9JGsBwLnIWQDIGz93FwAAAOCtChQoIElKTU11cyX5S+b7mfn+AgAAAL4mz0faAgAA+Dp/f39FRETo2LFjkqSQkBBZLBY3V+W9jDFKTU3VsWPHFBERIX9/f3eXBAAAALgFTVsAAIDrEBUVJUm2xi2uX0REhO19BQAAAHxRvmrajh07Vi+88IJq1Kih33//3W7e+vXr9cwzz+iXX35RWFiYOnfurHHjxik0NNRN1QKA9yFngawsFouio6NVvHhxXbhwwd3leL0CBQr49BG25CwAOB9ZC8Ab5Jum7aFDhzRu3DgVLFgwy7ytW7eqVatWql69uiZNmqRDhw7ptdde0+7du7Vs2TI3VAsA3oecBa7N39/fp5uNuH7kLAA4H1kLwFvkm6bt4MGDdfPNN+vSpUtKTEy0mzds2DAVLlxYa9asUVhYmCSpXLly6tWrl1auXKk2bdq4o2QA8CrkLAA4FzkLAM5H1gLwFn7uLsARvv/+e3366ad6/fXXs8xLTk7WqlWr9PDDD9tCV5K6deum0NBQzZ8/34WVAoB3ImcBwLnIWQBwPrIWgDfx+qbtpUuX1K9fPz3++OOqVatWlvnbtm3TxYsX1bBhQ7vpgYGBqlu3rrZs2eKqUgHAK5GzAOBc5CwAOB9ZC8DbeP3lEd566y399ddf+vrrr7OdHx8fL0mKjo7OMi86Olo//PDDVcdOT09Xenq67XlycvJ1VgsA3oecBQDnImcBwPnIWgDexqubtidOnNCIESM0fPhwFStWLNtl0tLSJElWqzXLvKCgINv87IwfP16jRo1yTLEA4IXIWXiS4/t3KO1sqsPGSzkW57CxgLwiZwHA+chaAN7Iq5u2L7zwgooUKaJ+/fpddZng4GBJsvvWK9O5c+ds87MzdOhQDRo0yPY8OTlZZcqUuY6KAcC7kLPwBOnp6ZLFoq0fveL4wS2WbH92AVchZwHA+chaAN7Ia5u2u3fv1jvvvKPXX39dR44csU0/d+6cLly4oAMHDigsLMx2akPmqQ5Xio+PV8mSJa+6DqvVmu23bADgC8hZeAqr1SoZozH3V1H5yBCHjbs/MVXDF+7iZxBuQ84CgPORtQC8ldc2bQ8fPqyMjAz1799f/fv3zzK/fPnyevrppzVq1CgFBARo8+bN6ty5s23++fPntXXrVrtpAIC/kbPwNHfUKq765cIdNt4vB5I0fOEuh40H5BY5CwDOR9YC8FZe27StWbOmFi1alGX6Cy+8oDNnzuiNN95QxYoVFR4erttvv11z587V8OHDVahQIUnSBx98oJSUFHXq1MnVpQOAVyBnAcC5yFkAcD6yFoC38tqmbWRkpO69994s019//XVJsps3duxYNWnSRM2bN9cTTzyhQ4cOaeLEiWrTpo3atWvnmoIBwMuQswDgXOQsADgfWQvAW/m5uwBXqF+/vr7++msFBwdr4MCBeuedd/TYY4/p008/dXdpAJAvkLMA4FzkLAA4H1kLwJN47ZG2V7NmzZpsp99yyy1at26da4sBgHyInAUA5yJnAcD5yFoAns4njrQFAAAAAAAAAG9B0xYAAAAAAAAAPAhNWwAAAAAAAADwIPnumraAuxzfv0NpZ1MdNl7KsTiHjQUAAAAAAADvQdMWuE7p6emSxaKtH73i+MEtlsvjAwAAAAAAwGfQtAWuk9VqlYzRmPurqHxkiMPG3Z+YquELd10eHwAAAAAAAD6Dpi3gIHfUKq765cIdNt4vB5I0fOEuh40HAAAAAAAA70DTFgAAAACgXX/tceg9Gg4mHnHYWAAA+BqatgAAAADgw9LT02WxWDRp4bsOH9vCPRoAAMgTmrYAAAAA4MOsVquMMapf82aFFgxz2LgpZ5P1y+8buEcDAAB5QNMWAAAAAKDS0eUUWbi4w8ZLPHVMv/y+wWHjAQDgS/zcXQAAAAAAAAAA4G80bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAgwS4uwAAAAAAAADAFxzfv0NpZ1MdMlbKsTiHjAPPRNMWAAAAAAAAcKL09HTJYtHWj15x7MAWy+Wxke/QtAUAAAAAAACcyGq1SsZozP1VVD4yxCFj7k9M1fCFuy6PjXyHpi0AAAAAAADgAnfUKq765cIdMtYvB5I0fOEuh4wFz8ONyAAAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwI17QFAABe4Zd9x3U29azDxtuZkOqwsQAAAADAkWjaAgAAj5aeni4/i9Trg50OH9vPcnl8AAAAAPAkNG0BAIBHs1qtyjBSvW71FBoV6rBxUxJStGXOFlmtVoeNCQAAAACOQNMWAAB4hdI3llZk5UiHjZe4O1Fb5mxx2HgAAAAA4CjciAwAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPAhNWwAAAAAAAADwIDRtAQAAAAAAAMCD0LQFAAAAAAAAAA9C0xYAAAAAAAAAPIjXNm03bdqkvn37qkaNGipYsKBiYmLUuXNn7dq1K8uy27dvV7t27RQaGqoiRYrokUce0fHjx91QNQB4F7IWAJyLnAUA5yJnAXirAHcXkFevvPKK1q1bp06dOql27dpKSEjQ1KlTVb9+fW3YsEE1a9aUJB06dEjNmjVTeHi4xo0bp5SUFL322mvatm2bNm7cqMDAQDdvCQB4LrIWAJyLnAUA5yJnAXgrr23aDho0SB999JFdcD744IOqVauWXn75Zc2dO1eSNG7cOJ09e1Y///yzYmJiJEmNGjVS69atNWvWLD3xxBNuqR8AvAFZCwDORc4CgHORswC8lddeHqFJkyZZvumqXLmyatSooe3bt9umffbZZ7rrrrtsoStJt99+u6pUqaL58+e7rF4A8EZkLQA4FzkLAM5FzgLwVl7btM2OMUZHjx5VZGSkJOnw4cM6duyYGjZsmGXZRo0aacuWLa4uEQC8HlkLAM5FzgKAc5GzALxBvmrafvjhhzp8+LAefPBBSVJ8fLwkKTo6Osuy0dHROnnypNLT0686Xnp6upKTk+0eAODrHJm15CwAZEXOAoBz0TsA4A3yTdN2x44d6tOnjxo3bqzu3btLktLS0iRJVqs1y/JBQUF2y2Rn/PjxCg8Ptz3KlCnjhMoBwHs4OmvJWQCwR84CgHPROwDgLfJF0zYhIUF33nmnwsPD9emnn8rf31+SFBwcLEnZfiN27tw5u2WyM3ToUCUlJdkeBw8edEL1AOAdnJG15CwA/I2cBQDnoncAwJsEuLuA65WUlKT27dvr9OnT+uGHH1SyZEnbvMxTGzJPdbhSfHy8ihQpku03aZmsVus15wOAr3BW1pKzyI2ju48qNTXVYeOdOXzGYWMB14ucBQDnoncAwNt4ddP23Llz6tChg3bt2qWvv/5aN9xwg938UqVKqVixYtq8eXOW127cuFF169Z1UaUA4L3IWrhbenq6ZJE2vrnR8YNbsj+qBnAlchYAnIucBeCNvLZpe+nSJT344IP68ccf9fnnn6tx48bZLvfAAw9o9uzZOnjwoO26Mt9884127dqlgQMHurJkAPA6ZC08gdVqlYz0vzp1VSY01GHjHkxJ0cRft3JkDNyKnAUA5yJnAXgrr23a/u9//9OSJUvUoUMHnTx5UnPnzrWb//DDD0uShg0bpgULFqhly5Z6+umnlZKSoldffVW1atXSo48+6o7SAcBrkLXwJC1LlVLNokUdNt7vJ05o4q9bHTYekBfkLAA4FzkLwFt5bdN269atkqQvvvhCX3zxRZb5mcFbpkwZfffddxo0aJCee+45BQYG6s4779TEiRM5sgYA/gVZCwDORc4CgHORswC8ldc2bdesWZPjZWvUqKEVK1Y4rxgAyKfIWgBwLnIWAJyLnAXgrfzcXQAAAAAAAAAA4G80bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CAB7i4AAAAgJ7YdO6qzaakOG2/fmTMOGwsAAAAAHImmLQAA8Gjp6enykzR082aHj+33/+MDAAAAgCehaQsAADya1WpVhqSu7Z5S8SIlHTbusZNH9NHyGbJarQ4bEwAAAAAcgaYtAADwCvWrN1XF0tUdNt7eQ9v10fIZDhsPAAAAAByFG5EBAAAAAAAAgAehaQsAAAAAAAAAHoSmLQAAAAAAAAB4EJq2AAAAAAAAAOBBaNoCAAAAAAAAgAehaQsAAAAAAAAAHiTA3QUA+cUv+47rbOpZh423MyHVYWMBAAAAAADAe9C0Ba5Tenq6/CxSrw92OnxsP8vl8QEAAAAAAOA7aNoC18lqtSrDSPW61VNoVKjDxk1JSNGWOVtktVodNiYAAAAAAAA8H01bwEFK31hakZUjHTZe4u5EbZmzxWHjAQAAAAAAwDtwIzIAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADwITVsAAAAAAAAA8CA0bQEAAAAAAADAg9C0BQAAAAAAAAAPQtMWAAAAAAAAADxIgLsLAAAAyIk9f+1Q6tk0h413JPEvh40FAAAAAI5E0xYAAHi09PR0WSwWvbXwJYePbbFYlJ6e7vBxAQAAAOB60LQFAAAezWq1yhijzi1vVfHCEQ4b99ip05q/+gdZrVaHjQkAAAAAjkDTFgAAeIV6lSuqQskoh42370iC5q/+wWHjAQAAAICjcCMyAAAAAAAAAPAgNG0BAAAAAAAAwIPQtAUAAAAAAAAAD8I1bQEAgFfYe+iQUtNSHTZe/ImTDhsLAAAAAByJpi0AAPBo6enpskh676uvHT625f/HBwAAAABPQtMWAAB4NKvVKiPpubv7qGxkaYeN+1fiIb28ZJqsVqvDxgQAAAAAR6BpCwAAvMLttW5V7ZjqDhvvt7jtennJNIeNBwAAAACO4jM3IktPT9ezzz6rkiVLKjg4WDfddJNWrVrl7rIAIN8gZwHAuchZAHA+shaAp/CZpm2PHj00adIk/ec//9Ebb7whf39/3XHHHVq7dq27SwOAfIGcBQDnImcBwPnIWgCewicuj7Bx40bNmzdPr776qgYPHixJ6tatm2rWrKlnnnlG69evd3OFAODdyFkAcC5yFgCcj6wF4El8omn76aefyt/fX0888YRtWlBQkB577DENGzZMBw8eVJkyZdxYIQB4N3IWrvDb/j919uxZh42399hfDhsLcDZyFgCcj6wF4El8omm7ZcsWValSRWFhYXbTGzVqJEnaunUrwQsA14GchTOlp6fLz2LRoI9GO3xsP4tF6enpDh8XcDRyFgCcj6wF4El8omkbHx+v6OjoLNMzpx05ciTb16Wnp9v9IZeUlCRJSk5OzvG6v/32W23evDk35eZIw4YNddtttzl9fMn7t8HZ46ekpEiSTuw5oQtpFxw2fvLhyz9nKSkpWrx4sVd+zvnp5ygnMrPBGOPwOjydO3P2mWee0Zo1a3JRbc60aNFCEyZMcMk6vH18ybnvUdeuXZVhjBo3bqzw8HCHjZ2UlKQff/xRFy5c0JNPPunV75E3f85Xjp8Tvpq1+Xl/1hXr8NZtcNV7VKRIEUnSiZPHdOGiA/dnk09Jurw/m5yc7PWfs7f+HP1zHf/GV3NWcm/W/vbbb9q+fXtuys2R6tWrq3bt2l4/vuT971Fm7+Dnv5KUkn7RIWPvTLh8Flpmznr7eyR5/+ecEznOWeMDKlSoYNq3b59l+t69e40kM3ny5GxfN3LkSCOJBw8ePHL1OHjwoJNTzfOQszx48HD1w9eylpzlwYOHqx++lrPGkLU8ePBw7ePfctYnjrQNDg7O9tTHc+fO2eZnZ+jQoRo0aJDteUZGhk6ePKmiRYvKYrFcc53JyckqU6aMDh48mOXUivyKbc7/2+xr2yvlbpuNMTpz5oxKlizpouo8BznrGmwz25xfkbX/jpx1DbaZbc6vyNmccXXW8rPINudXbLNjctYnmrbR0dE6fPhwlunx8fGSdNU3yWq1ymq12k2LiIjI1brDwsJ85gc0E9uc//na9ko532ZHnrrtTchZ12KbfQPbfHW+mLXkrGuxzb6Bbb46X8xZyX1Zy8+ib2CbfYMjc9bPEQV5urp162rXrl1Zrifz008/2eYDAPKOnAUA5yJnAcD5yFoAnsQnmrYdO3bUpUuX9M4779impaenKzY2VjfddBN3fwSA60TOAoBzkbMA4HxkLQBP4hOXR7jpppvUqVMnDR06VMeOHVOlSpU0e/ZsHThwQDNnznTKOq1Wq0aOHJnlFIn8jG3O/3xteyXf3Oa8IGddg232DWwzskPOugbb7BvYZlyNq7PWFz8Xttk3sM2OYTHGGIeN5sHOnTun4cOHa+7cuTp16pRq166tMWPGqG3btu4uDQDyBXIWAJyLnAUA5yNrAXgKn2naAgAAAAAAAIA38Ilr2gIAAAAAAACAt6BpCwAAAAAAAAAehKYtAAAAAAAAAHgQmrYAAAAAAAAA4EFo2l6Dr96j7fz58+4uAS7gqz/f8Cy++nNIzvoOX/0Zh2fxxZ9DctZ3+OLPNzyPr/4ckrW+wVd/vj0BTdtrSE9PlzFGaWlp7i7FZT799FNNmTJFqamp7i7FpXwxhFJSUtxdgkv54mfsDchZ3+Grv4NkLTyBr2UtOetbyFl4Al/LWck3s9ZXf//IWfehaXsVS5YsUY8ePXTzzTfr/vvv1/z585WQkGCb70kfoqPMmjVLnTt31rlz59xdisudOXNG58+fV1JSkrtLcYkPPvhAXbt2VWJiortLcRlf+4y9ATnrW3zxd5CshSfwtawlZ33r94+chSfwtZyVfDdrffH3j5x1L5q22Zg3b546duyo48ePq0SJEkpMTNRDDz2kXr16adWqVZIki8WSr8I3NjZWPXv21MCBA9WtWzeFhIS4uySXWbhwoTp16qSaNWuqefPmmjx5srZt2+buspxm1qxZ6t69u2rUqCF/f393l+MSvvYZewNylpzN77+DZK1vfM6ezteylpz1rd8/ctY3PmdP52s5K/lu1vri7x856wGfs4GdhIQE06BBA9OlSxfz119/GWOMOX36tImNjTUFChQwtWrVMvPmzXNzlY714YcfGovFYp577jlz4MAB2/TTp0+bkydPmqSkJDdW51zz5883AQEB5p577jE9e/Y09957r7FYLKZhw4Zm9uzZ7i7P4d5//31jsVjMoEGDTFxcXJb5GRkZbqjKuXztM/YG5Cw5m99/B8la3/icPZ2vZS0561u/f+Ssb3zOns7XctYY381aX/z9I2c943OmafsP+/fvN+Hh4WbixIm2aRcvXjTGGLNixQpTsmRJU716dbN48WJ3lehQ69atMxaLxTRo0MD89ttvtunPPPOMadq0qalQoYJp0KCB+eSTT0xycrIbK3W8pKQk07x5c3PPPfeYQ4cO2aZ/+eWXpmLFiqZkyZJm0qRJbqzQsT7++GNjsVjM8OHD7f6B3bt3r/nzzz/Nvn373Fidc/jaZ+wtyNnLyNn8+TtI1vrG5+wNfClryVnf+v0jZ33jc/YGvpSzxvhu1vri7x856zmfM03bfzhw4IApVaqUGTx4sMnIyDCXLl0yGRkZtm8RVq1aZSIiIkzTpk3N1q1b3VytY7Rq1cr4+/ubl156yZw9e9Z06NDBWK1W07RpU3P//feb8uXLG39/fzN06FBz8uRJd5frMEePHjXFihUzzz//vG1a5j+yP/74o2ncuLEpXry4mTFjhrtKdJg//vjDFCpUyBQuXNh8//33tun//e9/Tfny5Y3VajWFCxc2AwYMMD/99JMbK3UsX/qMvQk5S84akz9/B8la3/icvYWvZS056xu/f+Ssb3zO3sLXctYY38xaX/v9I2c963Omafv/Mj8MY4xp27atqVy5sjl69KgxxpgLFy4YY/4+/HvRokXGYrGYESNG2E33JmlpaXbP27ZtawICAkyNGjVM6dKlzdKlS01KSooxxpidO3eap59+2vj7+5t3333XGOOd2/xPycnJplatWqZTp0629+PKf2Q3btxo6tSpY6pWrWpWrFjhzlId4oUXXjDR0dGmWbNmJiEhwXTq1MmEhoaaRx55xIwcOdJ06dLFWCwW06xZM7N27Vp3l+sQvvYZezpylpw1Jv//DpK1vvE5ezJfylpy1jd//8hZ3/icPZkv5awxZK0v/v6Rs57zOft80/bKbwYyw3ft2rWmcOHCpkOHDnbzrvzA/vvf/5pChQqZ/fv3u7ReR/j4449N48aNzYkTJ+ym33nnncZisZj33nvPnD9/3m7eX3/9ZRo3bmyioqLMsWPHXFmuU3Xv3t1ERkaajRs32qZd+Y/Kt99+a0JCQkz37t2zzPMWV+5UjB492hQrVsyEhYWZkiVLmmXLlplz587Z5meeBtGjR48sPwPe5MrPyRc+Y09Hzv6NnL0sP/4OkrW+8Tl7Ml/LWnL2b77y+0fO+sbn7Ml8LWeNIWsz+crvHznreZ+zTzdtMy+s/M9rzJw5c8aMGTPGWCwW85///Mc2/dKlS+bSpUvGGGMWLFhgrFar+eGHH1xa8/WaNWuWsVgsxmKxmC+++MIYY//N2aBBg8yOHTuyfe2wYcNMYGCg2blzp0tqdYW4uDhTrlw507RpU9tF0zP/gc38BRw7dqzx9/c3v/76qztLdZjRo0ebsmXLmgkTJmT7DdLAgQONv7+/+eWXX9xZZp58//33tn8wMn9XDx48aMqXL+9Tn7EnIWfJWV/MWWPIWmN843P2FL6WteSsPXKWnM3Pn7On8LWcNYasvRI5S86663P22aZtbGys7U54Bw8etE3P/CASEhJM3759jcViMR07drT7xsEYYz766CMTGRlpNmzY4NK6r0fmNnfr1s2ULFnS3H333bZ5//xmJPN9uPKbg969e5uSJUuahIQE1xTsQOvWrTMzZ840o0ePNsuXLzfHjx83xlw+fWXOnDkmNDTUtG3b1qSmptpek3lqyw8//GACAwPNggUL3FJ7Xvzxxx9m1apV5s033zSbN282Z86csZs/ZcoUs2fPHrtpmT/jmd+YLVy40GX1OkLmjtRHH31kN/3ixYtmzpw5plChQvnqM/YG5Cw5a0z+zVljyNorkbXu42tZS86Ss1ciZy/z9s/Z0/lazhrju1lLzpKznpazPtm0zQyggQMHmri4uKsud+jQIfPss88aq9VqmjRpYhYuXGiOHj1qvv/+e9O2bVtTo0YNrznc/8pt3rdvnxk8eLCxWCzmk08+ueprrvzHZvPmzaZOnTrmnnvuMWfPnnVFyQ6T+UtXrFgxExgYaIKCgkylSpXMmjVrjDHGpKSkmNdee80EBQWZ2267zezdu9fuH6IlS5aYokWLmpUrV7prE3Jl3rx5plq1aiYoKMhYLBYTFhZm+vXrZ06dOpVl2ez+gR03bpwpWrSoV31bFhsba/z8/MzAgQPtdqQynT592rz22msmODg4X3zG3oCcJWfzc84aQ9aStZ7B17KWnCVnyVly1tV8LWeN8d2sJWfJWWM8L2d9rmn7+eefG4vFYoYMGWLi4+Nt0z/66CMzYcIE88ILL5ivv/7adqfDY8eOmblz55oaNWoYPz8/ExQUZKKjo03JkiW95rD3mTNn2r4ZPHLkiDHGmC1btpiQkBDTo0cPY8y1r8WxfPly07ZtW1OkSBGzfft2l9TsKJs2bTLFihUzgwYNMlu2bDEZGRlm2rRp5sYbbzQhISFm2rRp5sKFC+bMmTNmxowZpkSJEqZq1apm0qRJZv/+/Wb58uXmjjvuMJUqVbK9d55s4cKFJigoyDz55JNm8eLFZvfu3eauu+4yAQEBZvr06caYvw/9z/TPf2Bvuukmc8stt2S5bpGnmj17tu3n+6+//rrqcomJiWb69OkmKirKqz9jb0DOkrP5OWeNIWvJWs/ga1lLzpKz5Oxl5Kzr+FrOGuO7WUvOkrNX8qSc9amm7dmzZ82gQYOMxWIxXbp0sU2/5557jNVqNYGBgaZAgQImJCTEdO7c2Rw+fNgYc/kH9eLFi+aDDz4wkydPNrNmzbrmB+wpMjIyzOHDh02xYsXM008/neWHavDgwcbf3/+qd/s7efKkefrpp03x4sVNxYoVzW+//eaKsh1q/vz5Jjw8PMs2btu2zXTu3NkUKFDATJo0yRhz+fo869evN7feeqsJCAgwFovFFC1a1MTExHjFP7J79uwxN998s3n44YezXOS+Zs2apnnz5td8/eLFi03r1q1N4cKFze+//+68Qh3oyy+/NBaLxfz3v/81hw4dsk1/7733zHPPPWeefPJJM3v2bNvdXJOTk826deu89jP2BuQsOZspP+asMWQtWesZfClryVly9krkLDnrKr6Us8aQteTs38hZz8pZn2raGmPMgQMHzHPPPWcsFovp06eP6dKliylRooR56623zJYtW8y+fftM165dTaFChcy9997rNd8YXMvOnTttP3jG/P3N2MqVK01QUJB56KGHTHJycpbXnThxwrz22mvmueeeM/v27XNZvY40ceJEExwcbPulvPJuh4cPHzb/+c9/jNVqzXKqx7fffmvmzp1rli5davcL7ck+++wzU6hQIbttydzeF1980YSHh5t9+/Zl+WY0JSXFDBw40BQoUMDUqFHDbNu2zaV159X58+fNlClTTHBwsGnTpo1JSUkxxhjToUMHU6BAAVOoUCETGhpq/Pz8zI033pjlHyNv/Iy9BTlLzmbKbzlrDFlL1noOX8tacpacNYacJWddy9dy1hjfzVpylpz11Jz1uaatMZevNzNkyBATGBhoihQpYpYsWWLS09PtlunVq5cJCAgwc+bMMcbYHxZ+rdMBPElO6nz44YdN0aJFbcH6z8Pf09PTs7w33mTbtm0mODjYvPDCC7ZpVx7Sv3fvXtOmTRtTuHDhLL+Y3mb9+vWmZ8+e2c779NNPjcViyfYUlQsXLpiNGzeaN954wyu+Bb7SyZMnzYwZM0xISIjp1KmTueeee0xUVJSZPXu22bNnj0lKSjLDhg0zkZGRpk6dOnanNcG5yNm/kbP5J2eNIWvJWs/iC1lLzpKzVyJnyVlX84WcNYasJWf/Rs56Vs76ZNPWGGPi4uLMkCFDTL9+/UxiYqJteuYd4U6fPm1KlChhu25LfpMZQOvXrzchISGmW7dubq7IOU6cOGEeeOABU7JkSbNo0SLb9Cv/gfnqq69MkSJFTL9+/UxGRobX/MOandOnTxtjsv6ju2rVKmOxWLJ8E5b5837x4sUs/+h6i9OnT5tp06aZiIgIExoaahYtWpTljqYvvfSS8ff3Ny+99JIxJusOBpyDnCVnM+WnnDWGrCVrPYsvZy05S85mImfhTL6cs8b4RtaSs38jZz0rZ322aWvM5dMd/nmtlswf2DNnzpgyZcqYjh07uqM0l0lKSjJt2rQxxYoVMxs3bjTGeM+3gTn13XffmWLFipmbb77ZdudHY+y/OWvXrp1p2LBhvtv2TL///ruxWCzmm2++sU37448/zP/+9z/b9Ze82alTp8y0adPMU089ZRISEmzTMz/j9PR0U7lyZdO+fXt3leizyFlyNlN+z1ljyFqy1n18PWvJ2cvIWXIWzuPrOWtM/s9acvYyctazctZPPsAYk+30smXLKjo62m45i8UiSfrhhx904cIF3Xjj/7V3p7FRlW0Yx69DaQesrUBJEcUWU3DBgiJUJbTWF/cF0RAUE7CN1C8ukbhEAU2MRqNGxBh3Ew0KqCgqLqhoNVpZBGVVS0UsKLixCCWojEzv90PTobVTSumczpl5/r+ED8ycPnNfLc9V8rQ9LTrgGkF1MPOambKzs3XPPfeorq5Ob7/9tiRF3wep4swzz9RTTz2lL7/8UtOmTdPChQslSWlpadFrjjnmGO3du1d79+5N1Ji+ysjIkCTt27dPklRdXa3bb79djz32mPbs2ZPI0eKiR48euuKKK3TPPfeoT58+0ce7dGmouK5duyoUCikcDidqxJRHz7Z+DT3bINV7VqJr6Vr/uda19Ox+9GwDepae9ZtrPSvRtY3o2Qb0bLB6NiUPbXfv3q0//vhD//zzj6SGImmriJqW7tKlSzVjxgyFQiFdeeWV0TWC7FAyN15zwgknaPTo0XrwwQe1YsWKzhi30zS+D8aOHatXXnlFK1as0C233KKnn346ek11dbVWrVqlAQMGRDdqKqmvr1ckEpEkRSIR1dbW6tZbb9Wnn36q5cuXa+DAgQmeMD569+6t3r17R/9eX18f3befffaZdu7cqREjRkhKvv9IBRE9S882omcb0LV0rR9c61p6NjZ6tgE9S8/6wbWelejaWOjZBvRsAHvWn2/gTZy5c+daaWmp5ebm2imnnGJlZWUtfoyhNbt27bK77rrLSkpKLDc311avXu3ztPHRkcyNnnrqKcvMzLSff/7Zpyn9daAfT2j63IIFC2zYsGGWlpZmJSUlduGFF9rw4cOtV69e9u2333bGqHHR3h/H2LJli3Xp0sVuvfVWGz16tGVmZtqqVat8ms4f7cnc9NpFixbZeeedZ/369UvK32QaRPQsPXug51KlZ83o2vZcS9fGn2tdS8/SsweDnqVn48m1njWja+nZttGzwerZlDq0ff311y09Pd0uvfRSu/POO+3yyy+3nJwcO+aYY2zOnDm2a9euA779J598Yp7n2f/+97+YvykviDqauek/0N9//93vcePq008/tQULFkRviH0gTXPW1NTYc889Z6WlpTZy5Ei7+uqrk+Lj3Z68/1VXV2d9+/a1zMxMO/zww23lypXxH9AHHcm8c+dOmzJlihUVFdmRRx6ZNP+RCjp6lp5tTSr0rBld2150rT9c61p6lp49WPQsPRsvrvWsmbtdS8+2Dz0brJ5NiUPb+vp6q6urs3POOccuv/zy6M2R//nnH/viiy+stLTUsrKybMaMGfbnn38ecK3q6mrbunVrJ0zdMfHKvG/fvqS8ifa8efPM8zwbOnSoffzxx81uDt5eh7KpO1tH8kYiEdu8ebP16tXLsrOz7ZtvvvFx0vjp6Md40aJFlpeXZxdffLGtW7fOpyndQc/Ss6nes2Z0LV2beK51LT1Lz9KzbaNn48u1njVzu2vpWXr2YAS5Z1Pi0NasoXAKCgqsoqLCzJp/hWTr1q02evRoO+yww+zZZ5+1v//+O/rc+vXrbc6cOZ0+bzy4mNnMbM2aNTZkyBDLz8+3Pn362EknnWQfffRRuzZm0084Qf/EE4+8ZmaVlZVWU1Pj05TxFa/MtbW1tmPHDp+mdI+LneNiZjP3etaMrqVrg8O13nEtbyN6lp5tD3o2vlzsHRcz07P0bHsEtWdT5tB29+7dVlhYaGPHjjWzhq8QRCKR6PM7d+60888/33Jzc+2rr76Kvs2kSZPM8zybMWNGIsbuEBczh8NhmzZtmnmeZy+88IKtXLnS8vLyrLCwsM2N+cMPP9jjjz/eoa+udbZ45A2Hw504cce5mDlZuNg5LmZ2rWfN3OwdFzMnC9d6x7W8ZvSsK53jYuZk4WLvuJaZnnWjc1zInDKHtmZmDz/8sHmeZ2+++Wb0saZfDVm3bp0df/zxdsYZZ0Qfe++992zkyJFJ823f/+Vi5vfff9+uu+666N+rqqosLy/vgF9RCYfDNnXqVPM8z6ZMmdKZ43aYa3nN3MycLFzsHBczu7gHyexG5mThWu+4ltfMzf1HZjcyJwsXe8e1zC7uPzKnXuaUOrT99ddfbejQoXbiiSdaVVVV9PHGItq7d689+OCD1q1bN/v888+jz//111+dPmu8uJjZzKIbrzFn4z1IDrQxFy1aZOPHj7fvvvuuU2eNB9fymrmZORm42DkuZjZzcw+S2Y3MycC13nEtbyMX9x+Z3cicDFzsHRczu7j/yJxamVPq0NbMbNWqVZabm2vFxcW2ePHi6OON3/L8888/m+d5NmvWrESNGHcuZo6l6cZcuHBh9PGlS5c2u9l6qnAtr5mbmYPIxc5xMXMsLu5BMruROYhc6x3X8rbGxf1HZjcyB5GLveNi5v9ycf+ROXkzp9yhrVnDB6Fnz55WVFRkH3zwQbPnFixYYL169bL3338/QdP5w8XMsTRuzMLCQqusrLSFCxdaQUGBlZaWWjgcToqbh7eHa3nN3MwcRC52jouZY3FxD5LZjcxB5FrvuJa3NS7uPzK7kTmIXOwdFzP/l4v7j8zJmdkzM1MK+vrrrzV+/Hj99ttvuuOOO3T22Wdr69ateuaZZ7R27VotXrxYRx99dKLHjCsXM8eybNkyjRs3TqFQSJFIRDt27FBlZaVOPfXURI/mC9fySm5mDiIXO8fFzLG4uAfJ7EbmIHKtd1zL2xoX9x+Z3cgcRC72jouZ/8vF/UfmJMyc6FNjP/3www82ceJEy8jIsPT0dOvVq5cVFBTY6tWrEz2ab1zM3KjpV0kee+wx8zzPevbsaWvXrk3gVP5xLa+Zm5mDzsXOcTFzIxf3IJndyBx0rvWOa3mbcnH/kdmNzEHnYu+4mNnMzf1H5uTNnLLfadsoEomourpaa9euVe/evVVYWKi+ffsmeixfuZi5qY8//lhTp05VTU2NlixZokGDBiV6JF+5lldyM3OQudg5LmZuysU9SGY3MgeZa73jWt7/cnH/kdmNzEHmYu+4mLmRi/uPzMmXOeUPbeGWv//+W5MmTdIbb7yhZcuWaciQIYkeyVeu5ZXczAwEiYt7kMxuZAaCwsX9R2Y3MgNB4eL+I3NyZubQFilnw4YNqq+v18CBAxM9SqdwLa/kZmYgSFzcg2QG0Jlc3H9kBtCZXNx/ZE4+HNoCAAAAAAAAQIB0SfQAAAAAAAAAAID9OLQFAAAAAAAAgADh0BYAAAAAAAAAAoRDWwAAAAAAAAAIEA5tAQAAAAAAACBAOLQFAAAAAAAAgADh0BYAAAAAAAAAAoRDWyBO+vfvr/79+yd6jKigzQMAHRW0XgvaPAAQD0HrtqDNAwAdFbReC9o82I9DWwTanj17dP/99+vUU0/V4YcfrlAopH79+qmkpERTpkzRhg0bEj0iACQ1ehYA/EfXAoC/6Fmkoq6JHgBoze7du1VcXKw1a9ZowIABmjBhgnJycrRt2zYtW7ZMDzzwgAoKClRQUJDoUSVJlZWViR4BANqFngUA/9G1AOAvehapikNbBNajjz6qNWvWqKKiQs8++6w8z2v2fG1trfbu3Zug6VoKyicAADhY9CwA+I+uBQB/0bNIVdweAYG1ZMkSSdL111/fonQl6dhjj9UJJ5wQ/bvneTrrrLNirhXrHi3l5eXyPE8//vijpk+frkGDBikUCqm8vFz33nuvPM/Tiy++GHO9N954Q57nadq0aa2+xqGsITV8QqmoqFBeXp5CoZD69u2r8vJybdq0KeY68+fPV1FRkbp3764+ffro2muv1Z9//hnzWgBoip6lZwH4j66lawH4i56lZ1MVh7YIrJycHEnS999/7+vr3Hjjjbr//vs1fPhwTZ48WYMHD9aECRPkeZ5mzZoV821eeuklSdLEiRNbXfdQ1vjyyy81dOhQzZw5U8OGDdNNN92kkpISzZ49W6eddpp+/PHHZmu8+OKLuuyyy/T9999r4sSJKisr06JFi3TOOecoHA636/0AwD30LD0LwH90LV0LwF/0LD2bsgwIqPnz55sky8rKsltuucU+/PBD27ZtW6vXS7LS0tKYz+Xn51t+fn6zx8rKykyS9evXzzZt2tTibYqLiy0tLc1++eWXZo9v377dMjIybPjw4W2+RnvWCIfD1r9/f8vKyrIVK1Y0u76qqsrS0tLskksuiT62a9cuy87OtszMTKupqWm2zplnnmmSWswDAE3Rs/vRswD8QtfuR9cC8AM9ux89m1r4TlsE1qWXXqrp06fLzDR9+nSdf/756t27twYMGKAbbrhB69evj8vr3HbbbcrLy2vx+MSJExWJRPTyyy83e/zVV19VOBzWhAkT2ly7PWu8++672rhxo2677TYNHTq02fXFxcUaM2aMFixYoLq6OknSW2+9pbq6Ol1zzTU67rjjotemp6frvvvuazs4AOfRs/vRswD8QtfuR9cC8AM9ux89m1o4tEWg3Xzzzfrll180d+5cTZ48WcXFxfrpp5/0xBNPaMiQIXr77bc7/BqnnXZazMevuOIKhUKh6I8iNJo1a5a6du2qq666qs2127PG0qVLJUk1NTW6++67W/z57bffVF9fH/2Rj9WrV0uSSkpKWrzuiBEj1LUrv2cQQNvoWXoWgP/oWroWgL/oWXo2FfGRQeBlZWVp3LhxGjdunCRp165dmjp1qp588klNmjRJW7ZsUUZGxiGv36dPn5iP9+jRQ5dcconmzZun7777ToMGDdKGDRu0ePFiXXTRRcrNzW1z7fassWPHDknS7NmzD7jmnj17JDW8HyTFnCMtLS16Xx8AaAs92xw9C8APdG1zdC2AeKNnm6Nnkx/faYukc8QRR+jxxx9Xfn6+tm3bprVr10pq+A2Q+/bti/k2jSUVS6zfLtmo8UbfjV/tarwx+IFuIn6oa2RnZ0uS3nnnHZlZq39KS0slNbwfJOmPP/5o8ZqRSETbt28/6BkBoCl6lp4F4D+6lq4F4C96lp5NdhzaIil5nqfMzMxmj/Xs2VNbtmxpce3GjRu1c+fOQ3qdiy66SDk5OZozZ47q6+s1e/ZsZWVlacyYMXFf4/TTT5ckLVmy5KDWPfnkkyVJVVVVLZ5bsmRJq5+EAOBg0LP0LAD/0bV0LQB/0bP0bDLj0BaB9cwzz2j58uUxn3vrrbdUXV2tHj16qLCwUJJUVFSkjRs36rPPPoteFw6HdfPNNx/yDOnp6bryyiv1008/6aGHHtL69es1duxYde/ePe5rjBkzRnl5eXrkkUf0+eeft1jn33//1RdffNHs+uzsbD3//PPRe9U0XnfnnXceQloArqFnm6NnAfiBrm2OrgUQb/Rsc/Rs6vDMzBI9BBDLZZddpvnz52vAgAEaOXKkjjrqKO3Zs0crV65UVVWVunTpolmzZkVvyL1w4UJdcMEF6t69u6666ioddthh+uijj9SjRw9t2rRJGRkZ2rhxY3T98vJyzZw5U7W1terfv3+rcyxdulQjRoxQenq6/v33X1VWVmrUqFEtrmtco+lrtHeN5cuX68ILL9T27ds1atQoDR48WJ7nadOmTaqqqlJOTo7WrVsXvX7mzJkqLy9Xdna2xo8fryOOOELvvvuuunfvrl9//bVFZgBoip6lZwH4j66lawH4i56lZ1OWAQG1bt06e+ihh+zcc8+1Y4891rp162bdunWzgoICKysrs6+++qrF27z22ms2ePBgy8jIsCOPPNJuvPFG2717t+Xn51t+fn6za8vKykyS1dbWtjnLwIEDTZL169fPIpFIzGtivUZ71zAz27x5s9100002cOBAC4VClp2dbSeeeKJVVFRYZWVli+vffPNNGzZsmIVCIcvNzbWKigrbsWNHm/MAAD1LzwLwH11L1wLwFz1Lz6YqvtMWAAAAAAAAAAKEe9oCAAAAAAAAQIBwaAsAAAAAAAAAAcKhLQAAAAAAAAAECIe2AAAAAAAAABAgHNoCAAAAAAAAQIBwaAsAAAAAAAAAAcKhLQAAAAAAAAAECIe2AAAAAAAAABAgHNoCAAAAAAAAQIBwaAsAAAAAAAAAAcKhLQAAAAAAAAAECIe2AAAAAAAAABAgHNoCAAAAAAAAQID8HyWtSgg1T6ClAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1.72 s (started: 2024-10-26 13:18:18 +00:00)\n" ] } ], "source": [ "plt.figure(figsize=(14,8))\n", "da.plotPositiveTargetByCats(df, cats, \"Survived\", subplot_tpl=(2,4),pos_label=1);" ] }, { "cell_type": "markdown", "metadata": { "id": "hpT4Hk0vejvn" }, "source": [ "Yorumlar\n", "\n", "Kurtulanların çoğunluğu;\n", "\n", "- Kadın\n", "- Southamptondan binenler\n", "- Kabin numarası bilinmeyenler" ] }, { "cell_type": "markdown", "metadata": { "id": "8j2ORYN1ejvn" }, "source": [ "Her bir kategorik feature ve numerik feature çifti için target'ın ortalama değerlerine bakalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "executionInfo": { "elapsed": 18659, "status": "ok", "timestamp": 1729948723260, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "uWBZO5S9ejvn", "outputId": "3596fa43-d8c3-46ac-ca43-2bf7ab17a02e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Plots for Age,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApH0lEQVR4nO3deXhUVZrH8V9BIAnZEMKSIBAE3CBhc4AoISAoCLiAgChbQMAZZBFEBZURoQV7bBxxb3oA0WgDYsvW2LZEkYCQyM4gGAXCEoI0SxKCpJDkzB9MCsqqhJuQpFLJ9/M8948699a5763Um+etc+5iM8YYAQAAABZU8XQAAAAA8B4UjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPFUxqaqpsNpvi4uI8FkOXLl1ks9nKdJ/l4bhR/pSH7wX5gPKiPHwvyIeKgeKxFOR/UQtbIiIiPB0mStHf//539e7dW3Xr1lW1atUUGhqqli1bauTIkVq5cqWnwytT5AMk6ezZs/rDH/6g6Oho1a5dW9WqVVOdOnXUvXt3vfXWW8rOzvZ0iGWCfIAknThxQs8995yioqIUFBSkGjVq6JZbbtH48eN16NAhT4d3TT6eDqAia9q0qYYMGeJ2Xc2aNcs2GJSZl19+WTNmzFCNGjXUp08fRURE6NKlS9q7d6+WLl2qlJQUPfjgg54Os8yRD5VXQkKCBg4cqDNnzui2227TgAEDVLt2bZ0+fVobNmzQhAkT9MYbb+jAgQOeDrXMkA+V19q1azVo0CCdO3dOHTt21OjRo+Xj46OdO3fq3Xff1V/+8hctXLhQjz32mKdDLRDFYylq1qyZZsyY4ekwUIZSU1M1c+ZMNWzYUFu2bFF4eLjT+gsXLigpKclD0XkW+VA57dq1S/fff78kKT4+XoMHD3bZZv369Zo2bVpZh+ZR5EPltG3bNvXr109VqlTRihUrXAYSNm/erAceeEBDhw5VWFiYunbt6qFIC8e0dTlhs9nUpUsXpaWl6bHHHlNoaKiCgoLUu3dvHTx4UJK0b98+PfTQQ6pVq5aCgoLUv39//fLLLwX2uXfvXvXu3Vs1a9ZUYGCg7r33Xm3bts1lu23btmncuHFq2bKlQkJC5O/vr8jISL366qv67bffXLaPiIhQRESEMjIyNG7cODVs2FA+Pj764IMPCj3GpUuXytfXV61atVJ6erqjfcOGDbr//vsVGhoqX19fNW/eXC+++KJ+/fVXlz5yc3P1xz/+Uc2aNZOfn5+aNWumOXPmKC8vr9B9l5Xk5GTl5eWpX79+LoWjJPn7+6tLly5lH5iXIR8qRj5I0oQJE3ThwgW99dZbbgtH6fJ5cOvXry/bwLwI+VBx8mHixImy2+1688033c5ARUdH65NPPlFeXp6efPJJGWM8EKUFBiXu0KFDRpLp0aOH5fdIMlFRUSYiIsJ07NjRTJ482fTp08dIMjfddJPZs2ePqVmzpunWrZt5+umnTZcuXYwk07VrV7f7jomJMSEhIaZr165m6tSp5tFHHzU+Pj6mRo0aZsuWLU7veeKJJ0x4eLgZNGiQeeaZZ8yTTz5pWrRoYSSZfv36ucTauHFjU79+fdOmTRvTvHlzM3bsWDNhwgSzdu1aY4wxsbGx5vdfrTfffNPYbDbTuXNnk5GR4Wh/9913jc1mMzfccIMZNmyYmTJliuPY7rzzTmO32536GTlypJFkmjRpYiZPnmzGjh1rQkNDHZ/V8OHDLX/mpWHdunVGkunVq5dH4yhPyIfKmw8//fSTkWQaNmxocnNzPRpLeUE+VN58SElJMZJMgwYNzKVLlwrdtkOHDkaS2bBhQxlFVzRMW5ein3/+ucBpiY4dO6pnz55Obbt379akSZP0+uuvO9rGjh2r9957TzExMZoxY4YmTpwoSTLGqE+fPlq7dq22b9+utm3bOvWVmJioqVOnas6cOY624cOHq2fPnho9erR2797taH/++ef1zjvvqGrVqo42Y4xGjRqlhQsXatOmTbrrrruc+j9x4oRatWqlTZs2yd/fv9DP4YUXXtDs2bPVt29fffLJJ/Lz85Mk/fDDD5owYYKioqKUkJCg2rVrO97z6quvatq0aXrrrbf09NNPS7o8tbVw4ULHfgMCAhzxt27dutAYfi81NfWav4R/z8oUU4cOHdSoUSOtXbtWffr00aBBg9S+fXs1b968zK8wLG/Ih8sqUz5s2rRJkhQbG6sqVZjouhr5cFllyofvvvtO0uWR9qs/T3e6deumpKQkbdq0STExMUWKpUx4snKtqPJ/3RW2TJw40ek9kkxgYKA5f/68U/uGDRuMJNO0aVOTl5fntO7DDz80kszChQtd9l2zZk1z7tw5l9i6detmJJmtW7de8zi2bdtmJJkZM2Y4tTdu3NhIMrt27XL7vvxflpcuXTKPP/64kWRGjx7t8ktrwoQJBf6yys3NNXXq1DHt2rVztI0YMcJIMp999pnL9rNmzSrSL8tvvvnmmn+j3y9Wbd++3fHLPH8JCQkxffr0MX/7298s91NRkA+VNx9effVVI8lMnTrV0vaVAflAPljJh/fee89IMuPGjbPUd1lj5LEU9ejRQ//4xz8sb9+8eXPVqFHDqS0sLEySFBUV5TJylb/u+PHjLn21adNGgYGBLu0xMTFKSEjQjh071K5dO0nSxYsX9fbbb2vJkiXav3+/srOznc6zcNe/n5+fIiMjCz2ehx9+WCtXrtQLL7ygP/zhDy7rt2zZIkn68ssvlZCQ4LK+WrVq2r9/v+P1rl27HMfg7riKokuXLqV2LkmbNm20Z88ebd68Wd988422bdumjRs3as2aNVqzZo0GDx6sjz76qNKNRJIPlTMf4B75QD5YUZ7O17waxWM5Ehwc7NLm4+NzzXXuTlquV6+e233kt2dmZjra+vfvr9WrV+vmm2/WI4884rg3YUZGhubNmye73e7ST926da9Z/GzYsEF+fn7q1auX2/VnzpyRJL3yyiuF9pMvMzNTVapUUWhoaIHHVV7YbDbdeeeduvPOOyVdnuZZuXKlhg0bpo8//lgPP/yw+vbt6+EoyzfyoXDekA/169eXJKWlpXk4Eu9HPhTOm/Lh6NGj19w2f5sGDRqUakzFRfFYQRV0lV1+e0hIiCTp+++/1+rVq9WjRw/9/e9/dzoPY8uWLZo3b57bfqyMmiUkJKh79+7q2bOn/vGPfzgKqXz5//CysrIUFBR0zf5CQkKUl5enU6dOqU6dOm6Py6rSOqelIDabTQ899JAmTZqkmTNn6uuvv6Z4LEPkQ+FKKx/yz4Vbv3698vLyOO+xnCAfClda+ZB/jOvXr1dubm6h5z3mj7befvvtRYqjrFA8VlA7duxQdna2y9REYmKipMvTFpIcN+Xt3bu3yxc5f9viatOmjb7++mt169ZNPXv21BdffOF0YnWHDh20fft2bdmyRffcc881+2vVqpW2b9+uxMRE9evX77piTU1N1csvv1yk95TEPdncTRWh9JEPhSutfGjWrJk6d+6sDRs2aPHixRoxYkSB29rtdvn6+hYpBhQP+VC40sqH5s2bq1OnTtq4caMWL16skSNHut0uISFBSUlJCg0NLXBk1tP4GVhBZWRkuAz355870rJlS8f5LI0bN5Ykbdy40WnbvXv3Ol2JV1ytWrXS119/LV9fX/Xs2dNpP2PHjpWPj4/Gjx+vI0eOuD2GHTt2OF4PHTpUkjRz5kydP3/e0Z6WllbgL+CC5J/TUpTFiuTkZH344YfKyclxWfevf/1L//M//yNJ6tSpU5HixfUhHwpXWvkgSfPmzZO/v7/GjRunpUuXut0mMTFRd999d5FiRvGRD4Ur7Xzw9fXV+PHjtWbNGpf1ycnJjifLPP/886pevXqRYi8rjDyWosJuxSBJU6dOddyWoKTFxMTovffeU1JSkjp27KjU1FR9+umn8vf3dxQwktS+fXu1b99ey5YtU3p6ujp27KgjR45o1apV6t27t5YvX37dsURFRTl+Yd53331au3atYmJi1LJlS7377rv6j//4D91yyy3q1auXmjZtqnPnzungwYP69ttvFRcXp/fff1+S1LVrV40YMUKLFi1SZGSk+vbtK7vdrqVLl6pjx45uE7GsHT9+XMOHD9e4cePUuXNn3XrrrfLx8dHhw4e1Zs0aZWdnq3fv3howYICnQy1z5MNllSkfJKl169ZavXq1Bg4cqEGDBmnmzJnq3LmzatWqpTNnzmjTpk3as2ePmjVr5ulQyxT5cFlly4e2bdvqs88+06BBg3T//fcrOjpa0dHRjscTrlu3Tnl5eRoxYoQmTZrk6XALVkpXcVdqVm7FIMmcPXvW8R5JJjY2tsC+3N1iIP92Ai+99JLb7f/3f//X9OrVywQHB5uAgADTvXt3t7dgOHnypBk5cqQJDw83fn5+JjIy0rzzzjvm4MGDbvfduHFj07hx4wKP391NYI0xZs+ePaZu3bomICDAfPvtt4725ORkM2jQIBMeHm6qVatmQkNDTdu2bc3UqVPNvn37nPq4dOmSmTNnjrnppptM9erVzU033WRmz55tfv755yLdiqG0ZGVlmfj4eDN06FDTokULU7NmTePj42Pq1KljunXrZhYsWHDNm8NWNORD5c2Hq50+fdrMmjXLdOzY0dxwww3Gx8fH1K5d23Tp0sW8+eabJjs729MhlgnygXwwxpjjx4+bZ555xrRo0cIEBAQ4/u4BAQFmyZIlng7vmmzGlJPr0QEAACqhvLw89e3bV6tWrdJbb72lcePGeTqkQlE8AgAAeFh2drY6deqk3bt3a/HixY7zOMsjznkEAADwsMDAQK1evVoLFizQkSNH3F4RX14w8ggAAADLuFUPAAAALKN4BAAAgGXlvnh85ZVXZLPZ1LJlS5d13333nTp16qQaNWqofv36mjBhgrKzsz0QJQAAQOVQrovHY8eOafbs2QoICHBZt3PnTnXr1k2//vqrXn/9dY0aNUrz588v8s2XjTHKysoq0h3igYqMnACckROAs3J9tfWUKVPUsWNH5ebm6tSpU07rnn/+ed1www1av3694wHqERERGj16tP75z3/q3nvvtbSPc+fOKSQkRJmZmY5+gMqMnACckROAs3I78rhhwwYtX75cb7zxhsu6rKwsffXVVxoyZIhTIg8bNkyBgYFatmxZGUYKAABQeZTL4jE3N1fjx4/XqFGjFBkZ6bJ+z549unTpku644w6n9urVq6t169ZOD0sHAABAySmX09bvv/++Dh8+rHXr1rldn56eLkkKCwtzWRcWFqbExMQC+7bb7bLb7Y7XWVlZ1xkt4N3ICcAZOQEUrtyNPJ4+fVr/+Z//qenTp6tOnTput7lw4YIkydfX12Wdn5+fY707c+bMUUhIiGNp2LBhyQQOeClyAnBGTgCFK3fF44svvqhatWpp/PjxBW7j7+8vSU6/DPPl5OQ41rszbdo0ZWZmOpajR49ef9CAFyMnAGfenBPGGGVnZzsWrhBHaShX09Y//fST5s+frzfeeEPHjx93tOfk5Oi3335TamqqgoODHdPV+dPXV0tPT1d4eHiB+/D19XU7YglUVuQE4Mybc+L8+fN68MEHHa9XrlxZbp+PDO9VrkYe09LSlJeXpwkTJqhJkyaOJSkpSSkpKWrSpIlmzpypli1bysfHR1u3bnV6/8WLF7Vz5061bt3aMwcAAABQwZWrkceWLVvq888/d2l/8cUXde7cOc2bN09NmzZVSEiIunfvrvj4eE2fPl1BQUGSpI8++kjZ2dlFvlE4AAAArClXxWNoaKgeeughl/b8ez1eve6VV17RnXfeqdjYWI0ZM0bHjh3T3Llzde+996pnz55lEzAAAEAlU66mrYuibdu2Wrdunfz9/TVp0iTNnz9fjz/+uJYvX+7p0ACUES4OAICyV65GHguyfv16t+2dOnXSpk2byjYYAOUGFwcAQNnz2pFHAAAAlD2KRwAAAFhG8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAs8/F0AAC8U7tnPvR0CLJduqiQq153mb5Exqe6x+KRpG2vDfPo/gGgtFE8AgDcMsbo/PnzjtcBAQGy2WwejAhAeUDxCABw6/z583rwwQcdr1euXKnAwEAPRgSgPOCcRwAAAFjGyKOXYRoJAAB4EsWjl2EaCQAAeBLT1gAAALCM4hEAAACWUTwCAADAMs55BK7CBUkAABSO4hG4ChckASgunrrkHk9dqngoHi0qD/8UJP4xAAAAz+KcRwAAAFhG8QgAAADLmLYG4LVM1WrKjHrU6TUAoHRRPALwXjabx8/5LS3l4Tzr8niOtcR51oCnMW0NAAAAyxh59DJM0wEAAE+iePQ2FXSarjxM0Unlc5qOKToAQHlC8QgAAGABTyG7jOIRAADAAp5CdhkXzAAAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACy7rqutd+zYob/+9a/av3+/fv31V61bt06SdPjwYSUlJal79+6qVatWiQQKlAVuwg4AQOGKXTw+++yzmjt3rowxkuR0nyNjjB577DHNnTtXEydOvP4ogbJSQW/CDgBASSnWtPWiRYv0pz/9SX369NHu3bs1bdo0p/URERFq3769Vq1aVSJBAgDKXv5IfP7CSDwAqZgjj++++65uu+02ffbZZ/Lx8VH16q4jNbfeeqtjGhsA4IUYiQfgRrFGHn/44Qfdc8898vEpuPasV6+eTp48WezAAAAAUP4Uq3j08fHRxYsXC93m+PHjlfKRPQAAABVZsYrHyMhIff3118rNzXW7Pv/K63bt2l1XcAAAAChfilU8jhw5UikpKfr3f/932e12p3VZWVmKi4vTiRMnNHr06BIJEgAAAOVDsS6YGTlypNatW6cFCxZo6dKlqlmzpiSpffv22rdvn86fP6+4uDj179+/JGMFAACAhxX7CTOffPKJ/vznP6tJkyZKS0uTMUZbt25Vo0aN9N5772nhwoUlGScAAADKget6wszo0aM1evRoXbhwQWfPnlVwcDAXyQAAgBLX7pkPPR2CbJcuKuSq112mL/H47ay2vTaszPd5XcVjPn9/f/n7+5dEVwAAACjHij1tXVq+//57jRs3Ti1atFBAQIAaNWqkgQMHKiUlxWXbffv2qWfPngoMDFStWrU0dOhQ/etf//JA1AAAAJVDsUYeq1Sp4vQsa3dsNpuCg4N1yy23qG/fvho/fryl0ck//vGP2rRpkwYMGKCoqCidOHFCb7/9ttq2bastW7aoZcuWkqRjx46pc+fOCgkJ0ezZs5Wdna0//elP2rNnj5KTk90+9QYAAADXp1jFY+fOnZWZmaldu3apatWqatSokerVq6dffvlFR44cUW5urqKiopSbm6vdu3crOTlZH3/8sRITExUcHFxo35MnT9Ynn3ziVPw98sgjioyM1Kuvvqr4+HhJ0uzZs3X+/Hlt27ZNjRo1knT5au977rlHH3zwgcaMGVOcQwMAwGvlP4/86tdASSvWtHV8fLzOnj2rYcOG6dChQzpw4IC+++47HThwQKmpqRo+fLgyMjL0xRdf6JdfftHo0aO1Z88ezZ49+5p933nnnS6jhs2bN1eLFi20b98+R9tnn32mPn36OApHSerevbtuvvlmLVu2rDiHBQCAd/v/55HnL7rGLCFQHMUqHqdMmaLw8HB98MEHuvHGG53WNWjQQIsWLVJ4eLimTJmiwMBAvfvuu7r99tv1+eefFytIY4x++eUXhYaGSpLS0tJ08uRJ3XHHHS7btm/fXjt27CjWfgAAAFC4YhWP69atU9euXQvdJjY2VuvWrbu8kypVFBMToyNHjhRnd/r444+VlpamRx55RJKUnp4uSQoLC3PZNiwsTGfOnHF58k0+u92urKwspwWozMgJwBk5ARSuWMVjTk6Oo4ArSHp6ui5cuOB4HRQUJB+fop9iuX//fj355JOKjo7W8OHDJcnRr6+vr8v2fn5+Ttv83pw5cxQSEuJYGjZsWOSYgIqEnACckRNA4YpVPLZt21ZLlizR5s2b3a5PSkrS0qVL1a5dO0fbwYMHVa9evSLt58SJE+rdu7dCQkK0fPlyVa1aVZIcV227G13Myclx2ub3pk2bpszMTMdy9OjRIsUEVDTkBOCMnAAKV6yrrWfNmqV77rlHMTExeuCBB3TXXXepbt26OnnypDZt2qTVq1erSpUqmjlzpiQpOztbX375pQYOHGh5H5mZmbrvvvuUkZGhxMREhYeHO9blT1e7G/1MT09XrVq13I5KSpdHKwtaB1RG5ATgjJwACles4jE2NlZr1qzRmDFjtGLFCq1YsUI2m03GGElSo0aN9P777ys2NlbS5XMeN27cqAYNGljqPycnR/fff79SUlK0bt063X777U7rGzRooDp16mjr1q0u701OTlbr1q2Lc1gAAAC4hmI/nvDee+/VwYMHtXHjRu3atUtZWVkKDg5Wq1at1KlTJ1WpUkV2u12+vr6qUaOGWrVqZanf3NxcPfLII9q8ebNWrlyp6Ohot9s9/PDDWrx4sY4ePeo4HyUhIUEpKSmaNGlScQ8LAAAAhbiuZ1tXqVJFnTt3VufOnZ3at2/frgULFmjJkiU6ffp0kfp8+umntWrVKt1///06c+aM46bg+YYMGSJJev755/Xpp5+qa9eumjhxorKzs/Xaa68pMjJSI0aMuJ7DAgAAQAGuq3i8WkZGhuLj47VgwQLt3r1bxhhLjyP8vZ07d0qSVq9erdWrV7uszy8eGzZsqG+//VaTJ0/W1KlTVb16dfXu3Vtz587lXBUAAIBSct3F47p167RgwQKtXLlSdrtdxhhFR0drxIgRjvsyFsX69estb9uiRQt9+eWXRd4HAABAUfH4x8uKVTwePXpUixYt0qJFi3TkyBEZY9SgQQOlpaUpLi5OCxcuLOk4AQAAPOv/H/9Y2VkuHn/77TetWLFCCxYsUEJCgnJzcxUQEKDBgwdr2LBhuvvuu+Xj41OsG4EDAADAO1iu9MLDw3XmzBnZbDZ17dpVw4YNU79+/RQQEFCa8QEAAKAcsVw8nj59WlWqVNGkSZP07LPPqk6dOqUZFwAAAMohy48njIuLk7+/v15//XXdeOONeuCBB/Tpp5/q4sWLpRkfAAAAyhHLxePChQuVnp6uP//5z2rbtq3WrFmjQYMGqV69enriiSe0cePG0owTAAAA5YDl4lGSAgMDNWrUKG3evFl79+7VU089perVq+svf/mLYmNjZbPZ9OOPP+rw4cOlFS8AAAA8qEjF49Vuu+02zZ07V2lpaVq2bJnuvfde2Ww2JSYmqmnTpurWrZs++uijkowVAAAAHlbs4jGfj4+P+vfvry+++EKpqal6+eWX1bhxY33zzTeKi4srgRABAABQXlx38Xi1G2+8UdOnT9eBAwf01VdfadCgQSXZPQAAADys1O7o3a1bN3Xr1q20ugcAAIAHlOjIIwAAACo2ikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMq8uHu12u5577jmFh4fL399fHTp00FdffeXpsAAAACosry4e4+Li9Prrr2vw4MGaN2+eqlatql69emnjxo2eDg0AAKBC8vF0AMWVnJysJUuW6LXXXtOUKVMkScOGDVPLli317LPP6rvvvvNwhAAAABWP1448Ll++XFWrVtWYMWMcbX5+fnr88ce1efNmHT161IPRAQAAVExeWzzu2LFDN998s4KDg53a27dvL0nauXOnB6ICAACo2Lx22jo9PV1hYWEu7fltx48fd/s+u90uu93ueJ2ZmSlJysrKKnR/ufYLxQ21wrvWZ2cFn2/BrH6+QUFBstlsRe6fnChZJZEPEp9vYcgJ70JOlK7Szge3jJe66aabzH333efSfuDAASPJ/Pd//7fb97300ktGEgtLhVsyMzOLlUvkBEtFXcgJFpYrS3HzwR2bMcbIC7Vs2VL16tVTQkKCU/sPP/ygFi1a6P3339cTTzzh8r7f/6LMy8vTmTNnVLt27ZKryEtZVlaWGjZsqKNHj7pM2+P6eevnW1KjLN6WE9769/IW3vz5khPe9zfzBt76+ZbkyKPXTluHhYUpLS3NpT09PV2SFB4e7vZ9vr6+8vX1dWqrWbNmicdXFoKDg73qi+ttKsvnW1FyorL8vTylMn2+5ASsqMyfr9deMNO6dWulpKS4zPUnJSU51gMAAKBkeW3x2L9/f+Xm5mr+/PmONrvdrkWLFqlDhw5q2LChB6MDAAComLx22rpDhw4aMGCApk2bppMnT6pZs2ZavHixUlNTtWDBAk+HV6p8fX310ksvuUyroGTw+XoX/l6li8/X+/A3K118vpLXXjAjSTk5OZo+fbri4+N19uxZRUVFadasWerRo4enQwMAAKiQvLp4BAAAQNny2nMeAQAAUPYoHgEAAGAZxaOXsNvteu655xQeHi5/f3916NBBX331lafDqjCys7P10ksvqWfPnqpVq5ZsNps++OADT4eFQpATpYuc8D7kROkiJ66gePQScXFxev311zV48GDNmzdPVatWVa9evbRx40ZPh1YhnDp1SjNnztS+ffvUqlUrT4cDC8iJ0kVOeB9yonSRE1cpsQcdotQkJSUZSea1115ztF24cME0bdrUREdHezCyiiMnJ8ekp6cbY4z5/vvvjSSzaNEizwaFApETpY+c8C7kROkjJ65g5NELLF++XFWrVtWYMWMcbX5+fnr88ce1efNmHT161IPRVQy+vr6qX7++p8OAReRE6SMnvAs5UfrIiSsoHr3Ajh07dPPNN7s8Q7N9+/aSpJ07d3ogKsBzyAnAGTmBskTx6AXS09MVFhbm0p7fdvz48bIOCfAocgJwRk6gLFE8eoELFy64fQySn5+fYz1QmZATgDNyAmWJ4tEL+Pv7y263u7Tn5OQ41gOVCTkBOCMnUJYoHr1AWFiY0tPTXdrz28LDw8s6JMCjyAnAGTmBskTx6AVat26tlJQUZWVlObUnJSU51gOVCTkBOCMnUJYoHr1A//79lZubq/nz5zva7Ha7Fi1apA4dOqhhw4YejA4oe+QE4IycQFny8XQAuLYOHTpowIABmjZtmk6ePKlmzZpp8eLFSk1N1YIFCzwdXoXx9ttvKyMjw3FV4urVq3Xs2DFJ0vjx4xUSEuLJ8HAVcqJskBPeg5woG+TEZTZjjPF0ELi2nJwcTZ8+XfHx8Tp79qyioqI0a9Ys9ejRw9OhVRgRERE6fPiw23WHDh1SRERE2QaEQpETpY+c8C7kROkjJy6jeAQAAIBlnPMIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB5RpiIiIsrV45vKWzyofMrbd7C8xYPKpbx9/8pbPOUFxWMFcP78ec2ePVtt27ZVYGCgfH19deONNyomJkbTpk3TgQMHPB0iUKbICeAK8gElzcfTAeD6nDt3Tp06ddLu3bvVrFkzDRkyRLVr19apU6eUnJysV199VU2bNlXTpk09HaokKSEhwdMhoIIjJ4AryAeUBopHL/fGG29o9+7dGjVqlObPny+bzea0/tChQ7Lb7R6KzlV5+QeFioucAK4gH1AamLb2cps3b5YkPfnkky7/FCSpSZMmuvXWWx2vbTabunTp4rYvd+d2xMXFyWaz6eDBg5o7d65uv/12+fr6Ki4uTrNmzZLNZtOHH37otr+//e1vstlseuGFFwrcR3H6kC7/wxs1apQaNWokX19fhYWFKS4uTocPH3bbz8qVK/Vv//Zv8vf3V7169TR69GidPXvW7bbwbuQEOYEryAfyoTRQPHq52rVrS5JSUlJKdT/jx4/X7Nmzdccdd+ipp55SZGSkhgwZIpvNpvj4eLfv+eijjyRJQ4cOLbDf4vSRlJSkNm3aaPHixWrXrp0mTpyomJgYffzxx2rfvr0OHjzo1MeHH36ohx56SCkpKRo6dKiGDx+uTZs2qXv37rp48WKRPgeUf+QEOYEryAfyoVQYeLWVK1caSSYoKMg8/fTT5ssvvzSnTp0qcHtJJjY21u26xo0bm8aNGzu1DR8+3EgyN954ozl8+LDLezp16mSqVq1qjh8/7tR++vRpU716dXPHHXdccx9F6ePixYsmIiLCBAUFme3btzttn5iYaKpWrWr69OnjaMvMzDTBwcEmICDA/Pjjj079dO7c2UhyiQfejZy4gpwA+XAF+VByGHn0cg888IDmzp0rY4zmzp2rHj16KDQ0VM2aNdO4ceP0008/lch+nnnmGTVq1MilfejQocrNzdVf//pXp/alS5fq4sWLGjJkyDX7Lkofa9asUWpqqp555hm1adPGaftOnTrpwQcf1Nq1a5WVlSVJWrFihbKysjRy5EjdfPPNjm2rVaumV1555doHDq9DTlxBToB8uIJ8KDkUjxXA5MmTdfz4cS1btkxPPfWUOnXqpCNHjuidd95RVFSUVq1add37aN++vdv2gQMHytfX1zF1kC8+Pl4+Pj569NFHr9l3UfrYsmWLJOnHH3/UjBkzXJYTJ04oLy/PMUWza9cuSVJMTIzLfqOjo+XjwzVjFRE5QU7gCvKBfChxHh75RCnJyMgwY8eONZJMaGiosdvtxpjiT0kcPHiwwH09/PDDRpLZu3evMcaYn3/+2UgyvXr1srSPovQxatQoI+may/r1640xxjz++ONOr3+vXr16TElUEuQEOYEryAfy4Xow8lhBhYSE6O2331bjxo116tQp7dmzR9LlK+kuXbrk9j2ZmZkF9ufuKr18+Scq5/8qzD+xubCToIvbR3BwsCRp9erVMsYUuMTGxkq6/DlI0smTJ132mZubq9OnT1uOEd6NnCAncAX5QD5cD4rHCsxmsykgIMCp7YYbblBaWprLtqmpqcrIyCjWfnr16qXatWvrk08+UV5enj7++GMFBQXpwQcfLPE+OnToIOnK7SeupVWrVpKkxMREl3WbN28u8J8kKiZygpzAFeQD+VBsZTrOiRL3/vvvm+TkZLfrPv/8c2Oz2UzNmjVNTk6OMcaYHj16uAzR2+1207dvX7dXleVPSRw6dKjQOPKnP+bMmWMkmbi4OLfbFTQlYbWPnJwc06hRI+Pn52e+/fZbl/UXL140iYmJjtcZGRkFXkkXGxvLlXQVEDnhjJyo3MgHZ+RDybAZY0zZlaooaQ899JBWrlypZs2a6a677lJ4eLjOnz+vHTt2KDExUVWqVFF8fLzjhOJ//vOf6tmzp/z9/fXoo4+qRo0a+uqrr1SzZk0dPnxY1atXV2pqqqP/uLg4LV68WIcOHSr04fBbtmxRdHS0qlWrpt9++00JCQm6++67XbbL7+PqfRS1j++//1733XefTp8+rbvvvluRkZGy2Ww6fPiwEhMTVbt2be3fv9+x/eLFixUXF6fg4GANGjRIISEhWrNmjfz9/ZWenu5yzPBu5AQ5gSvIB/KhVHi6esX12b9/v/mv//ovc88995gmTZoYPz8/4+fnZ5o2bWqGDx9utm7d6vKeTz/91ERGRprq1aub+vXrm/Hjx5tz584VejL0tX5VGmNM8+bNHff7ys3NdbtNYb8qrfZhjDHHjh0zEydONM2bNze+vr4mODjY3HbbbWbUqFEmISHBZfvPP//ctGvXzvj6+pq6deuaUaNGmTNnzlwzHngfcoKcwBXkA/lQGhh5BAAAgGVcMAMAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsOz/AL7dnLES32soAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB6AAAADmCAYAAAB79ZvfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAwklEQVR4nO3deXhU5f2/8feQkBASEkQQEggJgigKyCaLAkFBRFuNFkEpEKIs/toqoAKKlaIoS8tutbUWDCBaZBFT+dYFKCAiIiC4tAhUFiEEKUtWspDw/P6gGTIkIcnJkDPL/bquuS7mzJmZTya5E5Jn5ozDGGMEAAAAAAAAAAAAAEAV1bB7AAAAAAAAAAAAAACAb2ABGgAAAAAAAAAAAADgFixAAwAAAAAAAAAAAADcggVoAAAAAAAAAAAAAIBbsAANAAAAAAAAAAAAAHALFqABAAAAAAAAAAAAAG7BAjQAAAAAAAAAAAAAwC1YgAYAAAAAAAAAAAAAuAUL0AAAAAAAAAAAAAAAt2AB2kf06tVLDoejwvtv3LhRDodDL7zwwpUbCvAS9ANUDQ0BlUc3QNXQEGAd/QBVQ0NA1dAQYB39wJuwAF2Ndu7cqeHDh+u6665TaGioQkJC1Lx5cw0dOlRr1661e7wqKSgo0NKlSxUfH6/GjRsrODhYoaGhatmypYYMGaLVq1fr/Pnzdo9pu0WLFsnhcFTo1KtXL7vH9Sj0Qz/FnT17VvPnz9ftt9+uBg0aqGbNmqpXr566d++uGTNm6L///a/dI3ocGqIhSUpMTCz358+iRYvsHtNj0A3dFJeTk6M//elPuuuuu9SoUSMFBQWpTp06at26tUaOHKl169bZPaLHoSEakkr+7AkMDNRVV12lG2+8UYMHD9bKlSuVn59v95geh37o51KHDx9WQECAHA6HZs6cafc4Ho+GaEgq/fefwMBANWrUSPHx8dq8ebPdI3osGqIhqfy/IYwdO9buET0S/fh3Py+88EKF14B8/ckBDmOMsXsIX3f+/HmNGzdOc+fOVWBgoO644w61bt1aNWvW1IEDB7Ru3TqdOXNGU6ZM0aRJkyzdR69evbRp0yZV9NN59uxZ/fjjj6pfv77q169v6T6LHD58WA888IB27dql+vXrq3fv3oqJidH58+d18OBBbdy4UadOndL999+v1atXV+m+vN3u3bv1/vvvX3af1157TSdPntSvf/1rvfbaa9UzmAejH/q51Ndff634+HgdPnxYMTEx6t27txo2bKiMjAx98cUX2rlzp8LDw3Xs2DGFhobaPa7taIiGiktMTNTixYs1fPhwNWnSpNR97r//frVr1656B/MwdEM3l/r666/1wAMP6ODBg2rSpIluv/12NW7cWHl5edq/f782bdqkzMxMjR07VnPnzrV7XNvREA0Vd+nPHmOMMjIytH//fn366afKzMxUq1attGzZMrVt29bucW1HP/RTlsmTJ2vKlClyOBy6/vrrtWfPHrtH8kg0REPFlfb7T05Ojvbs2aMPP/xQ58+f1+rVq3XffffZPKnnoCEaKq68vyF07dpV/fr1s2Eyz0Q/9CNdeNX5xo0bXbbt3r1bycnJiouLK/HCw169evnuixENrriJEycaSaZdu3bmP//5T4nLz549a/7whz+YZ555xvJ9xMXFGTs+nenp6eb66683ksyECRPM2bNnS+yTn59vFi1aZPr371/t83mbWbNmGUmmY8eOJicnx+5xPAL90E9xR44cMddcc42pUaOGmT17tikoKCixz1dffWVuvfVWc+bMmeof0APREA0VN2zYMCPJbN261e5RPBrd0E1xRT97AgICzJw5c8y5c+dK7JOVlWXmzp1rfvWrX9kwoeehIRoq7nI/ezIyMsyTTz5pJJmGDRualJQUGyb0LPRDP6UpLCw0TZs2NfXr1zeJiYlGktmyZYvdY3kkGqKh4i73M2j58uVGkunRo4cNk3kuGqKh4vgbQuXQD/2UJSkpyUgykydPtnuUasUC9BW2f/9+ExAQYK6++mpz/Pjxy+6bm5vr/PfevXvN+PHjTfv27U29evVMcHCwue6668wzzzxjMjMzS1y36BtPTk6OeeaZZ0x0dLQJDg42N9xwg3nllVfM+fPnXfbfsGFDqV/wMTExJiYmxmRmZprRo0ebyMhIExQUZNq0aWNWrFhR4n6ff/55I8kMGzas3Mfi0j/WTZ482UgyGzZsMElJSaZ9+/YmJCTExMXFlbj8UkXBJiUlObcdPHjQOct3331n7rnnHhMREWFCQ0PNnXfeaXbs2FHujHZau3atCQgIMNdcc4358ccf7R7HI9DPRfRzQUJCgpFknn/++cvud+7cOVNYWFhNU3kuGrqIhi7gl8fy0c1FdHPBkCFDKvyLYmmL0/6Ghi6ioQsq8rOnaEHN35/EQT8X0Y+rjz76yEgyjz/+uNm8ebORZB599FG7x/I4NHQRDV1Q3pOgJJlWrVrZMJlnoqGLaOgC/oZQcfRzEf2U5K8L0IGlvSoa7rNo0SIVFhbqscceU8OGDS+7b3BwsPPf7733nhYuXKjbb79dvXr10vnz5/XFF1/o97//vTZt2qRPP/1UNWvWLHEbAwcO1K5du9S/f39J0qpVqzR69GgdOnRIs2fPrtDM586dU9++fXXmzBn1799fZ8+e1bJlyzRw4EB99NFH6tu3r3PfpKQkSarQISMCA0v/cps5c6Y2bNig+Ph49e3bVwEBARWasywHDhzQbbfdpg4dOuhXv/qVDh8+rBUrVqhnz5765z//qS5dulTp9q+EAwcO6KGHHpLD4dCKFSsUHR1t90gegX4uoh85H8uQkBCNGzfusvuW9Xj5Gxq6iIZQUXRzEd1c+Nnz7rvvKiQkRE8//XS5+/Pzh4aKo6GKmzRpkhYtWqTly5frtddek8PhsHskW9DPRfTjauHChZKkhIQE3XLLLbr22mu1fPlyzZ8/X2FhYTZP5zlo6CIaKt8nn3wiSerQoYPNk3gOGrqIhlBZ9HMR/aAIfyG5wrZs2SJJuuOOOyp1vaFDh+qpp55SUFCQy/YpU6Zo8uTJWr58uQYPHlzievv27dN3332niIgISdKLL76oLl26aO7cuRo0aJA6depU7n0fO3ZMt9xyizZu3Oi8/1/+8pfq06eP5syZ4/zG8+OPPyolJUXR0dFq3rx5pT6+4jZt2qRt27apTZs2lm+juM2bN+vZZ5/V9OnTnduGDRumfv36aeTIkfrmm2/KvY20tDTNmzevUvc7duxY1a1bt5LTStnZ2br//vt1+vRp/fGPf1TPnj0rfRu+in7K50/9bN++Xfn5+erevbvzc4TLo6Hy+VNDxS1YsEAfffRRqZc9++yzqlWrVqXu35fQTfn8qZsdO3bo3Llz6tq1q+rUqVOp2/dXNFQ+f2qooq699lpFR0fryJEjOnjwoK699lq33K63oZ/y+WM/p06dUnJysm644QbdcsstkqQhQ4ZoypQpevfddzV8+PBK3bcvo6Hy+WNDkuvvPzk5Odq7d6/+8Y9/qEOHDpo2bVql7tuX0VD5aOiiWrVq6dlnn63U/foy+imfv/bjz1iAvsKOHz8uSWrSpEmlrte4ceNStz/++OOaPHmy1q1bV+o3nkmTJrkszEREROj555/X0KFDtXjx4gp945GkuXPnunzTK3pD+e3btzu3FX1sUVFRpd7GvHnzlJaW5rKttDhHjRrltm86klS3bl399re/ddl21113qXfv3lq/fr127typjh07XvY20tLS9OKLL1bqfhMTEy1940lMTNS3336rRx55RI8//nilr+/L6CfNZZu/92P168Gf0VCayzZ/b6i4olfRlGbs2LF+vQBNN2ku2/y9m/IesxdeeKFC2/wJDaW5bPP3hiojKipKR44c0cmTJ/12AZp+0ly20c8Fb731lvLz8zV06FDntoSEBE2ZMkULFy5kAboYGkpz2UZDF5X2+0/9+vU1aNCgMh9Tf0RDaS7baOii0hqKiIhgAboY+klz2UY/kFiA9ljGGCUlJWnRokX67rvvlJ6ervPnzzsvP3bsWKnX69GjR5nbdu3aVaH7rlu3rpo1a1Zie5MmTbR169YK3YZ04RvP4cOHXbaVFmfnzp0rfJsV0b59+1IPQdWjRw+tX79eu3btKvcbT2xsrIwxbp2rNFOnTtXKlSvVpUsX/fnPf77i9+cv6Mc6b+oHVw4NWectDW3dulVdu3a9ovfhb+jGOm/ppjSl/aLq7wvQVtGQdd7cENyDfqzzhn4WLlwoh8OhIUOGOLc1b95ct956qz7//HPt2bNHrVq1umL37w9oyDpvaEhy/f0nPz9fhw4d0vz58zV+/Hht3bpVq1atuqL37+toyDpvbAjuRT/WeUs//owF6CusUaNG+v7775WSkqLrr7++wtcbPXq0Xn31VUVHR+u+++5TZGSk870BXnzxReXl5ZV6vdLeX6BoW3p6eoXuu6xD2wYGBrp88yu63bK+CR46dMj57379+unjjz+u8MxVUdbtVfZxuNL+7//+T7/73e/UqFEjrVq1yuW9H3AB/VxAPxc0atRIkpSSkmLbDN6Ghi6gIVQG3VxAN64zlPWYFf9F9YYbbtDevXurZS5PRkMX0FDlFT2uDRo0sHkS+9DPBfRz0bZt2/Tdd9/p9ttvV9OmTV0uS0hI0Oeff64333xTM2fOtGlCz0JDF9DQ5QUFBally5Z67bXX9PXXX+u9997Tli1bdNttt9k9mu1o6AIaghX0cwH9oDgWoK+w2267TRs3btT69esrfPz/EydO6LXXXlPbtm21detW1a5d23nZ8ePHL3tIgJ9++qnELyU//fSTpLK/oVgVExOjxo0b68iRI/rhhx8sH//f4XCUur1GjRqSpIKCghKXXe6bR9HHW9b2ijwOV/rY//v27dPgwYMVGBiolStXlnmoDX9HP+Xzp35uueUWBQUFaceOHcrIyFB4eHil7sMf0VD5/KkhVAzdlM+fuunUqZNq1qypnTt3KjMzk/eBrgAaKp8/NVRRBw4c0JEjR9SgQQPFxsa65Ta9Ef2Uz9/6KTrk6YYNG8r82JcsWaJp06apZs2alZrBF9FQ+fytofJ06dJFW7Zs0fbt21mAFg1VBA2hLPRTPvrxPyxAX2GJiYmaMWOG3njjDY0dO/ayz+bOy8tTcHCwDhw4IGOM+vTp4/JNR7rwxuqXs3nz5hLvCVB0nfbt21v8KMr2yCOP6OWXX9bUqVP15ptvuvW2r7rqKkmlv9rxcoeR2LVrl7KyskocfqEyj8OVPPZ/RkaG4uPjlZ6ertdff53/4F4G/Vjni/3Url1bDz/8sJYsWaLZs2df9j4KCgpUo0YN539g/BUNWeeLDaFi6MY6X+wmNDRUDz30kJYuXaq5c+fqd7/7XaXuwx/RkHW+2FBFvfTSS5Kkhx56qMw/TPkD+rHOF/vJzs7WsmXLVLt2bQ0aNKjUfbZv365vvvlGa9as0QMPPFCpGXwRDVnniw1VxJkzZyTJ5ZV+/oyGrPPXhnAR/VhHP77Lv/8yXw1atGihCRMm6OTJk7r77rt18ODBEvvk5uZqzpw5zveLi4mJkSR9/vnnLv8BOnr0qCZOnHjZ+3vppZdcnhWSnp6ul19+WQ6HQ8OGDXPDR+Rq/PjxatmypZKSkjRx4kTl5uaW2KegoEDZ2dmVvu1bbrlF0oVn8xZ/HLZu3aq33367zOulpaVp6tSpLts+/vhjrV+/Xq1bty73uP/SxWP/V+ZUkWfqG2M0ZMgQff/99xo1apQee+yxcq/jz+iHfi41depUNWjQQFOnTtUrr7xS6i+J33zzjXr16qWMjIwK3aYvoyEaQuXRDd1catq0aWrQoIGmTJmi+fPnq7CwsMQ+ubm5ZR4azd/QEA1VRlZWlp5++mktWrRIkZGReu6556p8m96MfuinuBUrVigzM1MPPvigFixYUOqp6NDbRa+U9nc0REOVcejQIb333nuSpJ49e1b59nwBDdEQrKMf+kFJvAK6Grz88svKzc3V3Llzdf311+uOO+5Q69atVbNmTR08eFDr1q3TqVOn9PLLL0uSIiMj1b9/f61atUqdOnVS79699dNPP2nNmjXq3bu3fvjhhzLvq2XLlmrdurX69+8vSVq1apWOHj2qp556Sp06dXL7xxYeHq5PPvlE999/v2bMmKEFCxaoT58+iomJUUFBgVJTU7V+/Xr99NNPat26daWeGdK1a1fddttt+uc//6lu3bqpZ8+eOnz4sJKTk3Xvvfdq9erVpV6vR48e+vOf/6xt27apa9euOnTokFasWKGQkBAtWLDATR+5NbNmzdIHH3ygoKAgXX311c4fNmUp73J/QD/0U1yTJk2cj9mYMWM0d+5c9e7dWw0bNlRGRoa+/PJLbd++XeHh4RyC7n9oiIZKs2DBAn300UelXta1a1f169evmifyLHRDN8VFR0dr7dq1euCBBzR27FjNmjVLd9xxhxo3bqycnBylpKRo7dq1SktLU/fu3e0e1yPQEA2VpuhnjzFGmZmZ2r9/vzZt2qTMzEzddNNNWrZsmSIjI+0e03b0Qz9FihaVH3nkkTL36dOnj5o0aaKPPvpIx44dU1RUVHWN57FoiIZKU/z3n3PnzunQoUN6//33dfbsWY0aNeqKfL68FQ3REKyjH/rBJQyqzfbt282jjz5qWrRoYUJCQkxwcLCJjY01v/zlL83atWtd9s3MzDRPP/20iY2NNcHBwea6664zL730ksnPzzeSTFxcnMv+cXFxRpLJyckxEyZMMNHR0SYoKMhcf/315pVXXjHnz5932X/Dhg1Gkpk8ebLL9piYGBMTE1Pq/EX3UZpz586ZJUuWmJ///OcmMjLSBAUFmdq1a5vmzZubhx9+2KxevdoUFBS4XGfy5MlGktmwYUOZj9nJkydNQkKCqVevngkJCTFdu3Y1H3/8sUlKSjKSTFJSknPfgwcPGklm2LBh5rvvvjP33HOPCQ8PN6GhoaZPnz5mx44dZd5PdRk2bJiRVOETLqIf+ikuOzvbzJs3z8TFxZn69eubwMBAU7duXdOtWzczdepUc/LkSbtH9Dg0REPGVOzn0JgxY+we02PQDd0Ud/bsWfPqq6+aPn36mGuuucYEBgaasLAw06pVK/PII4+U+JoADdHQBZf+7AkICDB169Y1N954oxk8eLBZsWKFyc/Pt3tMj0M//t3P999/bySZZs2alfh8XOq3v/2tkWSmTp1aTdN5Bxry74aKlPb7j8PhMFdddZXp1auXeeutt+we0WPREA0Zc7GhrVu32j2KV6Ef+rlU0cdx6efB1zmMMaZCK9WAhzt06JCaNWumYcOGadGiRXaPA3gV+gGqhoaAyqMboGpoCLCOfoCqoSGgamgIsI5+vAfvAQ0AAAAAAAAAAAAAcAsWoAEAAAAAAAAAAAAAbsECNAAAAAAAAAAAAADALXgPaAAAAAAAAAAAAACAW/AKaAAAAAAAAAAAAACAW7AADQAAAAAAAAAAAABwC79fgDbGKCMjQxyJHLCGhgDr6Aewjn4A6+gHsI5+AOvoB6gaGgKsox+g+vn9AnRmZqYiIiKUmZlp9yiAV6IhwDr6AayjH8A6+gGsox/AOvoBqoaGAOvoB6h+fr8ADQAAAAAAAAAAAABwDxagAQAAAAAAAAAAAABu4bEL0F999ZXuu+8+1atXT7Vr11br1q31yiuvuOzz+eefq3v37qpdu7YaNWqk0aNHKysry6aJAQAAAAAAAAAAAMC/Bdo9QGk++eQT3XvvvWrfvr0mTZqksLAw/fDDDzp69Khzn927d6t3795q1aqV5syZo6NHj2rWrFnav3+/PvzwQxunBwAAAAAAAAAAAAD/5HEL0BkZGUpISNDPfvYzrVy5UjVqlP4i7eeee05XXXWVNm7cqPDwcElSbGysRo4cqU8++UR9+/atzrEBAAAAAAA8kjFG2dnZzvOhoaFyOBw2TgQAAADAl3ncIbjfeecd/fTTT5o6dapq1Kih7OxsnT9/3mWfjIwMrV27VkOGDHEuPktSQkKCwsLCtHz58uoeGwAAAAAAwCNlZ2crPj7eeSq+GA0AAAAA7uZxC9Dr1q1TeHi4UlJSdP311yssLEzh4eH61a9+pdzcXEnSt99+q4KCAnXq1MnlukFBQWrXrp127dplx+gAAAAAAAAAAAAA4Nc87hDc+/fvV0FBgeLj4zV8+HBNnz5dGzdu1B//+EelpaXpb3/7m1JTUyVJkZGRJa4fGRmpzZs3l3n7eXl5ysvLc57PyMhw/wcB+DAaAqyjH8A6+gGsox/AOvoBrKMfoGpoCLCOfgD7edwroLOysnT27FklJCTolVde0S9+8Qu98soreuyxx7Rs2TLt379fOTk5kqTg4OAS169Vq5bz8tJMnz5dERERzlN0dPQV+1gAX0RDgHX0A1hHP4B19ANYRz+oCmOMsrKynCdjjN0jVSv6AaqGhgDr6Aewn8N42P9+W7durX/961/atGmTevbs6dz+6aefKi4uTosXL1bt2rU1YMAAffrpp+rRo4fL9QcOHKjNmzc7XyV9qdKe+RIdHa309HSX95MGUDoaAqyjH8A6+gGsox/AOl/pJysrS/Hx8c7zycnJCgsLs3Ei/+Dvj7uv9APYhYYA6+gHsJ/HHYI7KipK//rXv9SwYUOX7ddcc40k6cyZM2revLkklbrInJqaqqioqDJvPzg4uNRXTgOoGBoCrKMfwDr6AayjH8A6+gGsox+gamgIsI5+APt53CG4O3bsKElKSUlx2X7s2DFJUoMGDdS6dWsFBgZqx44dLvvk5+dr9+7dateuXbXMCgAAAAAAAAAAAAC4yOMWoAcOHChJWrhwocv2BQsWKDAwUL169VJERIT69OmjpUuXKjMz07nPW2+9paysLA0YMKBaZwYAAAAAAAAAAAAAeOAhuNu3b69HH31Ub775pgoKChQXF6eNGzdqxYoVmjhxovPw2lOnTtWtt96quLg4jRo1SkePHtXs2bPVt29f9evXz+aPAgAA32WMUXZ2tvN8aGioHA6HjRMBAAAAAAAAADyFxy1AS9Lrr7+upk2bKikpSatXr1ZMTIzmzp2rsWPHOvfp0KGD1q1bp2eeeUZPPvmk6tSpo+HDh2v69On2DQ4AgB/Izs5WfHy883xycrLCwsJsnAgAAAAAAAAA4Ck8cgG6Zs2amjx5siZPnnzZ/bp3764tW7ZU01QAAAAAAAAAAAAAgMvxyAVoAAAAAAAAALAbb0EEAABQeSxAAwAAAAAAAEApeAsiAACAyqth9wAAAAAAAAAAAAAAAN/AAjQAAAAAAAAAAAAAwC1YgAYAAAAAAAAAAAAAuAUL0AAAAAAAAAAAAAAAt2ABGgAAAAAAAAAAAADgFixAAwAAAAAAAAAAAADcItDuAQAAwOV1HL/E7hFcOAryFVHsfK9Jy2QCg2ybp7idMxPsHgEAAAAAAAAA/BoL0AAAAAAAj2eMUXZ2tvN8aGioHA6HjRMBAAAAAIDSsAANAAAAAPB42dnZio+Pd55PTk5WWFiYjRMBAAAAAIDS8B7QAAAAAAAAAAAAAAC3YAEaAAAAAAAAAAAAAOAWLEADAAAAAAAAAAAAANyCBWgAAAAAAAAAAAAAgFuwAA0AAAAAAAAAAAAAcAsWoAEAAAAAAAAAAAAAbsECNAAAAAAAAAAAAADALQLtHgAAAHgXE1BT6W0HuZwHAAAAAAAAAEBiARoAAFSWwyETGGT3FAAAAAAAAAAAD8QCNAAAAAAAgJt1HL/E7hGcHAX5iih2vtekZR71hMKdMxPsHgEAAACAG/Ee0AAAAAAAAAAAAAAAt+AV0AD8kjFG2dnZzvOhoaFyOBw2TgQAAAAAAAAAAOD9WIAG4Jeys7MVHx/vPJ+cnKywsDAbJwIAAAA8D0/cBGAHDmFfcRzCHgDcx5N+/ng6fv6gPCxAAwAAAACAUvHETQAAAABAZfEe0AAAAAAAAAAAAAAAt+AV0AAAAAAAAPAJnnToTA7dDAAAAH/FK6ABAAAAAAAAAAAAAG7h8QvQU6dOlcPhUOvWrUtc9vnnn6t79+6qXbu2GjVqpNGjRysrK8uGKQEAAAAAAAAAAAAAHn0I7qNHj2ratGkKDQ0tcdnu3bvVu3dvtWrVSnPmzNHRo0c1a9Ys7d+/Xx9++KEN0wIAAAAAAAAAAACAf/PoBehx48apa9euKiws1MmTJ10ue+6553TVVVdp48aNCg8PlyTFxsZq5MiR+uSTT9S3b187RgYAAAAAAAAAAAAAv+Wxh+D+9NNPtXLlSs2bN6/EZRkZGVq7dq2GDBniXHyWpISEBIWFhWn58uXVOCkAAAAAAAAAAAAAQPLQV0AXFhbqiSee0IgRI9SmTZsSl3/77bcqKChQp06dXLYHBQWpXbt22rVrV3WNCgAAAAA+qeP4JXaP4MJRkK+IYud7TVomExhk2zyX2jkzwe4RAAAAAADwCB65AP3666/r8OHDWrduXamXp6amSpIiIyNLXBYZGanNmzeXedt5eXnKy8tzns/IyKjitIB/oSFUhTFG2dnZzvOhoaFyOBw2TlS96Aewjn4A6+gHsI5+AOvoB6gaX2nI3/8WBHv4Sj+AN6vSIbh37dqlCRMm6L777lOfPn2c2w8fPqzly5fr9OnTlb7NU6dO6Xe/+50mTZqkBg0alLpPTk6OJCk4OLjEZbVq1XJeXprp06crIiLCeYqOjq70jIA/oyFURXZ2tuLj452n4r+A+AP6AayjH8A6+gGsox/AOvoBqsZXGvL3vwXBHr7SD+DNLC9AT5gwQZ06ddKsWbO0Zs0abdiwwXmZMUa//OUv9dZbb1X6dp9//nnVq1dPTzzxRJn7hISESJLLM1iK5ObmOi8vzcSJE5Wenu48HTlypNIzAv6MhgDr6Aewjn4A6+gHsI5+AOvoB6gaGgKsox/AfpYOwZ2UlKRZs2bp3nvv1dSpU/W3v/1NM2bMcF4eGxurzp076+9//7vGjBlT4dvdv3+/3njjDc2bN0/Hjh1zbs/NzdW5c+d06NAhhYeHOw+9XXQo7uJSU1MVFRVV5n0EBweX+sppABVDQ4B19ANYRz+AdfQDWEc/gHX0A1QNDQHW0Q9gP0sL0H/605/UqlUrrVq1SoGBgQoKCiqxzw033FDmeziXJSUlRefPn9fo0aM1evToEpc3a9ZMY8aM0YsvvqjAwEDt2LFDAwcOdF6en5+v3bt3u2wD4Bk6jl9i9wguHAX5iih2vtekZTKBJb+X2WHnzAS7RwAAAICNPOn/zp78/2aJ/zsDAAAAgCeytAD973//WyNHjlRgYNlXb9iwoU6cOFGp223durVWr15dYvvzzz+vzMxMzZ8/X82bN1dERIT69OmjpUuXatKkSapTp44k6a233lJWVpYGDBhQuQ8IAADAwxljXN4rKzQ0VA6Hw8aJAAAAAAAAAKAkSwvQgYGBys/Pv+w+x44dU1hYWKVut379+rr//vtLbJ83b54kuVw2depU3XrrrYqLi9OoUaN09OhRzZ49W3379lW/fv0qdb8AAACeLjs7W/Hx8c7zycnJlf6/FgAAAAB4C56ECwCA97K0AN2mTRv985//VGFhoQICAkpcfvbsWa1bt04dO3as8oBl6dChg9atW6dnnnlGTz75pOrUqaPhw4dr+vTpV+w+AQAAAAAAAABXHk/CBQDAe1lagH700Uc1YsQI/b//9//06quvulyWkZGhESNG6Pjx45o/f75bhty4cWOp27t3764tW7a45T4AAAAAAAAAAAAAAFVjeQF63bp1Wrhwod59913VrVtXktS5c2ft2bNH2dnZSkxM1IMPPujOWQEAAAAAAAAAAAAAHqyG1Su+8847+stf/qJmzZopJSVFxhjt2LFDTZs21Z///Ge9+eab7pwTAAAAAAAAAAAAAODhLL0CusjIkSM1cuRI5eTk6MyZMwoPD+d9OAAAAAAAAAD4BBNQU+ltB7mcBwAAwOVVaQG6SEhIiEJCQtxxUwAAAAAAAADgGRwOmcAgu6cAAADwKm5ZgAYAeKaO45fYPYILR0G+Ioqd7zVpmcf8Ir9zZoLdIwAAAABXBK/gBAAAAFCdLL0HdI0aNRQQEHDZU2BgoOrVq6du3brpD3/4g3Jyctw9OwAAAAAAAMrzv1dwFp3kcNg9EQAAAAAfZmkBumfPnmrbtq2MMapRo4ZiY2PVpUsXxcbGqkaNGjLGqE2bNmrSpIm++eYbTZw4UV27dlVGRoa75wcAAAAAAAAAAAAAeAhLh+BeunSpunfvroSEBL388stq0qSJ87KUlBQ9//zz2rhxoz777DNFRERo3LhxeuONNzRt2jTNmDHDbcMDAABcKRzCvnI4jD0AAAAAAAAAyeIroMeNG6eoqCgtWrTIZfFZkho3bqykpCRFRUVp3LhxCgsL05/+9CfdeOONWr16tVuGBgAAAAAAAAAAAAB4HkuvgF63bp0ee+yxy+4TFxenv/71r5IuvGd0jx49tGjRIit3BwAAAAAAbGACaiq97SCX8wAA38RRoCqOI0ABAHB5lhagc3NzlZqaetl9UlNTlZOT4zxfp04dBQZaujuUwhij7Oxs5/nQ0FA5HA4bJwIAAAAA+ByHw2P+2A8AAAAA8A6WVoQ7dOigZcuWaeTIkerWrVuJy7dt26Z3331Xt9xyi3PbgQMH1LBhQ+uTwkV2drbi4+Od55OTkxUWFmbjRIB34ZUcAAAAAAAA8DW8kr3ieCU7AFw5lhagX3rpJd15553q0aOH7rvvPt1222265pprdOLECW3ZskUffPCBatSooSlTpkiSsrKy9PHHH2vgwIFuHR4ALOOVHAAAAAAAAAAAAG5naQE6Li5Oa9as0ahRo/T+++/r/fffl8PhkDFGktS0aVO9/vrriouLk3ThPaA/++wzNW7c2H2TAwAAAF6Gt1EBAAAAAACAr7P8psx9+/bVgQMH9Nlnn+nrr79WRkaGwsPDdfPNN6t79+6qUaOG8vLyFBwcrNq1a+vmm29259wAAACA1+FtVAAAAAAAAODrLC9ASxde2dyzZ0/17NnTZftXX32lhQsXatmyZTp16lSVBvQknvT+GZ783hkS758BAAAAAAAAAAAA+KMqLUAXl5aWpqVLl2rhwoX65ptvZIxRSEiIu24eAOADTEBNpbcd5HIeAACgIvh/BAAAAAAA3qHKC9Dr1q3TwoULlZycrLy8PBlj1K1bNz3yyCN66KGH3DEjAMBXOBwedbQGAADgRfh/BAAAAAAAXsHSAvSRI0eUlJSkpKQk/fjjjzLGqHHjxkpJSVFiYqLefPNNd88JeAxjjLKzs53nQ0ND5XA4bJwIAOAPeOUfAAAAAAAAAG9Q4QXoc+fO6f3339fChQu1fv16FRYWKjQ0VIMHD1ZCQoLuuOMOBQYGKjDQbUf1BjxSdna24uPjneeTk5MVFhZm40QAAL/AK/8AAAAAAAAAeIEKrxZHRUXp9OnTcjgcuv3225WQkKBf/OIXCg0NvZLzoQy8CgoAAAAAAMBz8bcbAAAA+KsKL0CfOnVKNWrU0JNPPqkJEyaoQYMGV3IulIdXQQEAAAAAAHgu/nYDVAlP4gAAwHvVqOiOiYmJCgkJ0Zw5c9SkSRPdd999WrFihfLz86/kfAAAAAAAAAAAf/O/J3EUneRw2D0RAACooAovQL/55ptKTU3VX/7yF3Xo0EFr1qzRww8/rIYNG+qxxx7TZ599diXnBAAAAABLjDHKyspynowxdo8EAAAAAADgsyp8CG5JCgsL04gRIzRixAjt2bNHCxYs0NKlS/XXv/5VCxYskMPh0N69e3X48GHFxMRcqZnhZzqOX2L3CC4cBfmKKHa+16RlHnNIrZ0zE+weAQAAwONkZ2crPj7eeT45OVlhYWE2TgQAAAAAV44xRtnZ2c7zoaGhcnAUAQDVqMKvgL5Uq1atNHv2bKWkpGj58uXq27evHA6HNm/erObNm6t3795666233DkrAAAAAAAAAAAALqPoSbhFp+KL0QBQHSwvQBcJDAzUgw8+qA8//FCHDh3Siy++qJiYGG3YsEGJiYluGBEAAAAAAAAAAAAA4A2qvABdXJMmTTRp0iT98MMPWrt2rR5++GF33jwAAAAAAAAAAAAAwIO5dQG6uN69e+vtt9+u9PW2b9+uxx9/XDfddJNCQ0PVtGlTDRw4UPv27Sux7549e9SvXz+FhYWpXr16Gjp0qP773/+6Y3wAAAAAAAAAAAAAQCUF2j3ApX7/+99ry5YtGjBggNq2bavjx4/r1VdfVYcOHfTFF1+odevWkqSjR4+qZ8+eioiI0LRp05SVlaVZs2bp22+/1ZdffqmgoCCbPxIAAAAAAAAAAAAA8C8etwD91FNP6Z133nFZQH7ooYfUpk0bzZgxQ0uXLpUkTZs2TdnZ2dq5c6eaNm0qSercubPuvPNOLVq0SKNGjbJlfvg+E1BT6W0HuZwHAAAAAAAAAAAAcAUPwW3VrbfeWuLVy9ddd51uuukm7dmzx7lt1apV+vnPf+5cfJakPn36qGXLllq+fHm1zQs/5HDIBAY5T3I47J4IAAAAAAAAAAAA8Age9wro0hhj9NNPP+mmm26SJKWkpOjEiRPq1KlTiX07d+6sf/zjH9U9IgAAAAAAAAAAKIajSQKAf/KKBei3335bKSkpmjJliiQpNTVVkhQZGVli38jISJ0+fVp5eXkKDg4ucXleXp7y8vKc5zMyMq7Q1IBvoiHAOvoBrKMfwDr6AayjH8A6+gGqxmca+t/RJIHq5DP9AF7M4w7Bfanvv/9ev/nNb9StWzcNGzZMkpSTkyNJpS4w16pVy2WfS02fPl0RERHOU3R09BWaHPBNNARYRz+AdfQDWEc/gHX0A1hHP0DV0BBgHf0A9vPoBejjx4/rZz/7mSIiIrRy5UoFBARIkkJCQiTJ5RksRXJzc132udTEiROVnp7uPB05cuQKTQ/4JhoCrKMfwDr6AayjH8A6+gGsox+gamgIsI5+APt57CG409PTdffddystLU2bN29WVFSU87KiQ28XHYq7uNTUVNWrV6/UV0dLF141XdZlAMpHQ4B19ANYRz+AdfQDWEc/gHX0A1QNDQHW0Q9gP49cgM7NzdW9996rffv2ad26dbrxxhtdLm/cuLEaNGigHTt2lLjul19+qXbt2lXTpAAAAAAAAAAAAACAIh53CO7CwkI99NBD2rp1q1asWKFu3bqVul///v21Zs0al0MnrF+/Xvv27dOAAQOqa1wAAAAAAAAAAAAAwP943Cugn376af3973/Xvffeq9OnT2vp0qUulw8ZMkSS9Nxzz2nFihW6/fbbNWbMGGVlZWnmzJlq06aNHnnkETtGBwAAAAAAAAAAAAC/5nEL0Lt375YkffDBB/rggw9KXF60AB0dHa1Nmzbpqaee0rPPPqugoCD97Gc/0+zZszm2PwAAAAAAAAAAAADYwOMWoDdu3FjhfW+66SZ9/PHHV24YAAAAAAAAAAAAAECFedx7QAMAAAAAAAAAAAAAvJPHvQIaAAAAcJeO45fYPYILR0G+Ioqd7zVpmUxgkG3zXGrnzAS7RwAAAAAAAICX4xXQAAAAAAAAAAAAAAC3YAEaAAAAAAAAAAAAAOAWHIIbAAAAgFtx6PPK4dDnAAAAAADAl7AADQAAAAAAAAAAYBFPwq04noAL+AcOwQ0AAAAAAAAAAAAAcAsWoAEAAAAAAAAAAAAAbsECNAAAAAAAAAAAAADALViABgAAAAAAAAAAAAC4BQvQAAAAAAAAAAAAAAC3YAEaAAAAAAAAAAAAAOAWLEADAAAAAAAAAAAAANyCBWgAAAAAAAAAAAAAgFuwAA0AAAAAAAAAAAAAcAsWoAEAAAAAAAAAAAAAbsECNAAAAAAAAAAAAADALViABgAAAAAAAAAAAAC4BQvQAAAAAAAAAAAAAAC3YAEaAAAAAAAAAAAAAOAWLEADAAAAAAAAAAAAANyCBWgAAAAAAAAAAAAAgFuwAA0AAAAAAAAAAAAAcAsWoAEAAAAAAAAAAAAAbsECNAAAAAAAAAAAAADALQLtHgAAAAAAAAAAAADuYQJqKr3tIJfzAFCdWIAGAAAAAAAAAADwFQ6HTGCQ3VMA8GMsQAMAAADwaTz7HwAAAAAAoPp49XtA5+Xl6ZlnnlFUVJRCQkLUpUsXrV271u6xAAAAAHiS/z37v+gkh8PuiQAAAAAAAHyWVy9AJyYmas6cORo8eLDmz5+vgIAA3XPPPfrss8/sHg0AAAAAAAAAAAAA/I7XHoL7yy+/1LJlyzRz5kyNGzdOkpSQkKDWrVtrwoQJ+vzzz22eEAAAAAAAAAAAAAD8i9e+AnrlypUKCAjQqFGjnNtq1aql4cOHa+vWrTpy5IiN0wEAAAAAAAAAAACA//HaV0Dv2rVLLVu2VHh4uMv2zp07S5J2796t6OhoO0YDAAAASmUCaiq97SCX8wAAAAAAAIAv8doF6NTUVEVGRpbYXrTt2LFjpV4vLy9PeXl5zvPp6emSpIyMjHLvszAvx8qofqkij2dF8bhXXGUe9zp16sjhcFT6Pqw2xOex4ujHHvTjG+jHPhV97OnnEoWFdk/gwl0Nefzj7mHoxzfwM8gentqPxOexMujHHlf6dyD6qR70Yw/+huAb6Mce9OMb3NkPrgyr/biN8VLXXnutufvuu0ts/+GHH4wkM3fu3FKvN3nyZCOJEye/P6Wnp1tqj4Y4caIfTpyqcqIfTpysn+iHEyfrJ/rhxKlqJysN0Q8nThdO/AzixMn6iX44cbJ+stqPuziMMUZeqHXr1mrYsKHWr1/vsv3f//63brrpJr3++ut67LHHSlzv0me+nD9/XqdPn9bVV19t7zMBLMjIyFB0dLSOHDlS4lDkuLJ84bF317PHaAiV5QuPO/34xufRG/nC404/vvF59Ea+8LjTj298Hr2RLzzu9OMbn0dv5CuPuzteAU0/sMIXHnt+BvnG59Eb+cLjTj++8Xn0Rr7wuNv9CmivPQR3ZGSkUlJSSmxPTU2VJEVFRZV6veDgYAUHB7tsq1u3rtvnq07h4eFeG4C388fHnobgLv74uNMP3MUfH3f6gbv44+NOP3AXf3zc6Qfu4o+PO/3AnfzxsachuIs/Pu70A3fhcbeuht0DWNWuXTvt27evxHHmt23b5rwcAAAAAAAAAAAAAFB9vHYB+sEHH1RhYaHeeOMN57a8vDwlJSWpS5cuio6OtnE6AAAAAAAAAAAAAPA/XnsI7i5dumjAgAGaOHGiTpw4oRYtWmjx4sU6dOiQFi5caPd41SI4OFiTJ08ucSgJXHk89r6Bz6M9eNx9A59He/C4+wY+j/bgcfcNfB7twePuG/g82oPH3TfwebQPj71v4PNoDx5338Dn0R487lXnMMYYu4ewKjc3V5MmTdLSpUt15swZtW3bVi+99JLuuusuu0cDAAAAAAAAAAAAAL/j1QvQAAAAAAAAAAAAAADP4bXvAQ0AAAAAAAAAAAAA8CwsQAMAAAAAAAAAAAAA3IIFaC+Ul5enZ555RlFRUQoJCVGXLl20du1au8fyeVlZWZo8ebL69eunevXqyeFwaNGiRXaPBQtoqPrRj++gH3vQkG+gH3vQj2+gH3vQj2+gH3vQj2+gH3vQj2+gH3vQj++gIXvQkPuwAO2FEhMTNWfOHA0ePFjz589XQECA7rnnHn322Wd2j+bTTp48qSlTpmjPnj26+eab7R4HVUBD1Y9+fAf92IOGfAP92IN+fAP92IN+fAP92IN+fAP92IN+fAP92IN+fAcN2YOG3MjAq2zbts1IMjNnznRuy8nJMc2bNzfdunWzcTLfl5uba1JTU40xxmzfvt1IMklJSfYOhUqjIXvQj2+gH/vQkPejH/vQj/ejH/vQj/ejH/vQj/ejH/vQj/ejH/vQj2+gIfvQkPvwCmgvs3LlSgUEBGjUqFHObbVq1dLw4cO1detWHTlyxMbpfFtwcLAaNWpk9xioIhqyB/34BvqxDw15P/qxD/14P/qxD/14P/qxD/14P/qxD/14P/qxD/34BhqyDw25DwvQXmbXrl1q2bKlwsPDXbZ37txZkrR7924bpgK8Bw0B1tEPYB39ANbRD2Ad/QDW0Q9gHf0AVUND8AUsQHuZ1NRURUZGlthetO3YsWPVPRLgVWgIsI5+AOvoB7COfgDr6Aewjn4A6+gHqBoagi9gAdrL5OTkKDg4uMT2WrVqOS8HUDYaAqyjH8A6+gGsox/AOvoBrKMfwDr6AaqGhuALWID2MiEhIcrLyyuxPTc313k5gLLREGAd/QDW0Q9gHf0A1tEPYB39ANbRD1A1NARfwAK0l4mMjFRqamqJ7UXboqKiqnskwKvQEGAd/QDW0Q9gHf0A1tEPYB39ANbRD1A1NARfwAK0l2nXrp327dunjIwMl+3btm1zXg6gbDQEWEc/gHX0A1hHP4B19ANYRz+AdfQDVA0NwRewAO1lHnzwQRUWFuqNN95wbsvLy1NSUpK6dOmi6OhoG6cDPB8NAdbRD2Ad/QDW0Q9gHf0A1tEPYB39AFVDQ/AFgXYPgMrp0qWLBgwYoIkTJ+rEiRNq0aKFFi9erEOHDmnhwoV2j+fzXn31VaWlpenYsWOSpA8++EBHjx6VJD3xxBOKiIiwczxUAA3Zh368H/3Yi4a8G/3Yi368G/3Yi368G/3Yi368G/3Yi368G/3Yi368Hw3Zi4bcw2GMMXYPgcrJzc3VpEmTtHTpUp05c0Zt27bVSy+9pLvuusvu0XxebGysDh8+XOplBw8eVGxsbPUOBEtoyB704xvoxz405P3oxz704/3oxz704/3oxz704/3oxz704/3oxz704xtoyD405B4sQAMAAAAAAAAAAAAA3IL3gAYAAAAAAAAAAAAAuAUL0AAAAAAAAAAAAAAAt2ABGgAAAAAAAAAAAADgFixAAwAAAAAAAAAAAADcggVoAAAAAAAAAAAAAIBbsAANAAAAAAAAAAAAAHALFqABAAAAAAAAAAAAAG7BAjQAAAAAAAAAAAAAwC1YgAYAAAAAAAAAAAAAuAUL0PAIsbGxio2NtXsMJ0+bB7gcT/t69bR5gMvxtK9XT5sHKI+nfc162jzA5Xja16unzQNcjqd9vXraPMDleNrXq6fNA1yOp329eto8wOV42terp83ji1iA9mHZ2dmaNm2aOnTooLCwMAUHB6tJkybq0aOHJk6cqB9++MHuEQGPRT+AdfQDVA0NAdbRD2Ad/QDW0Q9gHf0A1tEPPFmg3QPgysjMzFT37t31zTffqEWLFhoyZIiuvvpqnTx5Ul9++aVmzJih5s2bq3nz5naPKklav3693SMATvQDWEc/QNXQEGAd/QDW0Q9gHf0A1tEPYB39wNOxAO2j5s2bp2+++UYjRozQG2+8IYfD4XL5wYMHlZeXZ9N0JXnKN0FAoh+gKugHqBoaAqyjH8A6+gGsox/AOvoBrKMfeDoOwe2jtm7dKkn6zW9+U+IbjyQ1a9ZMN9xwg/O8w+FQr169Sr2t0o6Fn5iYKIfDoQMHDmj27Nm68cYbFRwcrMTERL300ktyOBxasmRJqbf33nvvyeFw6Le//W2Z92HlNqQL31RHjBihpk2bKjg4WJGRkUpMTNThw4dLvZ3k5GTdcsstCgkJUcOGDTVy5EidOXOm1H3hP+iHfmAd/dAPqoaGaAjW0Q/9wDr6oR9YRz/0A+voh35gHf3Qj6djAdpHXX311ZKkffv2XdH7eeKJJzRt2jR16tRJY8eOVZs2bTRkyBA5HA4tXbq01Ou89dZbkqShQ4eWebtWbmPbtm1q3769Fi9erI4dO2rMmDHq0aOH3n77bXXu3FkHDhxwuY0lS5bo/vvv1759+zR06FANGzZMW7ZsUZ8+fZSfn1+pxwG+hX7oB9bRD/2gamiIhmAd/dAPrKMf+oF19EM/sI5+6AfW0Q/9eDwDn5ScnGwkmTp16pinn37afPzxx+bkyZNl7i/JxMXFlXpZTEyMiYmJcdk2bNgwI8k0adLEHD58uMR1unfvbgICAsyxY8dctp86dcoEBQWZTp06lXsflbmN/Px8Exsba+rUqWO++uorl/03b95sAgICzM9//nPntvT0dBMeHm5CQ0PN3r17XW6nZ8+eRlKJeeA/6Oci+kFl0c9F9AMraOgiGkJl0c9F9IPKop+L6AeVRT8X0Q8qi34uoh9UFv1cRD+eiVdA+6j77rtPs2fPljFGs2fP1l133aX69eurRYsWevzxx7V//3633M/48ePVtGnTEtuHDh2qwsJC/e1vf3PZ/u677yo/P19Dhgwp97Yrcxtr1qzRoUOHNH78eLVv395l/+7duys+Pl7/+Mc/lJGRIUl6//33lZGRoUcffVQtW7Z07luzZk1NnTq1/A8cPo1+LqIfVBb9XEQ/sIKGLqIhVBb9XEQ/qCz6uYh+UFn0cxH9oLLo5yL6QWXRz0X045lYgPZhTz31lI4dO6bly5dr7Nix6t69u3788Ue99tpratu2rf7+979X+T46d+5c6vaBAwcqODjYeZiEIkuXLlVgYKAGDRpU7m1X5ja++OILSdLevXv1wgsvlDgdP35c58+fdx6O4uuvv5Yk9ejRo8T9duvWTYGBgeXOB99GP/QD6+iHflA1NERDsI5+6AfW0Q/9wDr6oR9YRz/0A+voh348mm2vvYYt0tLSzK9//WsjydSvX9/k5eUZY6wffuHAgQNl3lf//v2NJPOvf/3LGGPMf/7zHyPJ3HPPPRW6j8rcxogRI4ykck8bN240xhgzfPhwl/OXatiwIYdfQAn0Qz+wjn7oB1VDQzQE6+iHfmAd/dAPrKMf+oF19EM/sI5+6MdT8ApoPxMREaFXX31VMTExOnnypL799ltJksPhUEFBQanXSU9PL/P2HA5HmZcVvTl80bNXit5M/nJvPG/1NsLDwyVJH3zwgYwxZZ7i4uIkXXgcJOnEiRMl7rOwsFCnTp2q8IzwH/RDP7COfugHVUNDNATr6Id+YB390A+sox/6gXX0Qz+wjn7ox1OwAO2HHA6HQkNDXbZdddVVSklJKbHvoUOHlJaWZul+7rnnHl199dV65513dP78eb399tuqU6eO4uPj3X4bXbp0kSRt3bq1Qrd78803S5I2b95c4rKtW7eW+Y0YoB/6gXX0Qz+oGhqiIVhHP/QD6+iHfmAd/dAPrKMf+oF19EM/HsENr6KGB3r99dfNl19+Weplq1evNg6Hw9StW9fk5uYaY4y56667ShyOIC8vzzzwwANGUpmHXzh48OBl5yg61MP06dONJJOYmFjqfmUdfqGit5Gbm2uaNm1qatWqZTZt2lTi8vz8fLN582bn+bS0NBMeHm5CQ0PN3r17XfaLi4sr9WOG/6AfV/SDyqAfV/SDyqIhVzSEyqAfV/SDyqAfV/SDyqAfV/SDyqAfV/SDyqAfV/TjeRzGGGN9+Rqe6v7771dycrJatGih2267TVFRUcrOztauXbu0efNm1ahRQ0uXLnW+ifsnn3yifv36KSQkRIMGDVLt2rW1du1a1a1bV4cPH1ZQUJAOHTrkvP3ExEQtXrxYBw8eVGxsbJlzfPHFF+rWrZtq1qypc+fOaf369brjjjtK7Fd0G8Xvo7K3sX37dt199906deqU7rjjDrVp00YOh0OHDx/W5s2bdfXVV+v777937r948WIlJiYqPDxcDz/8sCIiIrRmzRqFhIQoNTW1xMcM/0E/9APr6Id+UDU0REOwjn7oB9bRD/3AOvqhH1hHP/QD6+iHfjye3SvguDK+//5784c//MHceeedplmzZqZWrVqmVq1apnnz5mbYsGFmx44dJa6zYsUK06ZNGxMUFGQaNWpknnjiCZOZmXnZN6Av79kvxhhz3XXXGUmmSZMmprCwsNR9Lvfsl4rehjHGHD161IwZM8Zcd911Jjg42ISHh5tWrVqZESNGmPXr15fYf/Xq1aZjx44mODjYXHPNNWbEiBHm9OnT5c4D30Y/9APr6Id+UDU0REOwjn7oB9bRD/3AOvqhH1hHP/QD6+iHfjwdr4AGAAAAAAAAAAAAALhFDbsHAAAAAAAAAAAAAAD4BhagAQAAAAAAAAAAAABuwQI0AAAAAAAAAAAAAMAtWIAGAAAAAAAAAAAAALgFC9AAAAAAAAAAAAAAALdgARoAAAAAAAAAAAAA4BYsQAMAAAAAAAAAAAAA3IIFaAAAAAAAAAAAAACAW7AADQAAAAAAAAAAAABwCxagAQAAAAAAAAAAAABuwQI0AAAAAAAAAAAAAMAtWIAGAAAAAAAAAAAAALgFC9AAAAAAAAAAAAAAALf4/2yhxvRi5kcpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmYElEQVR4nO3de3xNd77/8fdOIheJRKkhQTAuj3G/No5xCUNRvdApNZSIa8+ZGaPVtHNMqzVajCpTj9PTYqpBU1V0SjmjLQ4dlNCWcqaUIkFEFZFIyE7sfH9/+GWzuyOWXPbOTl7Px2P9sb7ru7/rkxWf+Ozvd629bcYYIwAAAMACP28HAAAAAN9B8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxWIX17t1bNpvN22EAFQY5AdxEPuB2KB4ruJSUFNlsNpctMDBQDRs21MiRI3Xw4EFvh1gpJCUl6cknn1SXLl0UFBQkm82mZcuWeTssFIGcKH9paWl6/fXX1b9/f0VHRyswMFD16tXTY489puTkZG+Hh1uQD+UvNzdXU6dOVa9evRQVFaXg4GDVq1dP3bt3V2JiovLz870doscFeDsAWNO0aVONGjVKkpSdna09e/bo/fff19///ndt3bpV3bt393KEvu2FF15Qamqq7r33XkVGRio1NdXbIeEOyIny81//9V+aO3eumjZtqv79+6tOnTo6duyY1q1bp3Xr1mnlypUaPny4t8PELciH8pOdna233npLMTExevDBB1WnTh1lZGRo06ZNGjdunFatWqVNmzbJz68KzccZVGgnT540ksyAAQPcjj3//PNGkomNjS3R2LGxsYZ/Ajds3rzZpKSkGGOMmTNnjpFkEhMTvRsUikROlL8PP/zQbN++3a39n//8p6lWrZq55557TG5urhciw0+RD+XP4XAYu93u1p6fn2969+5tJJmNGzd6ITLvqUJlcuUzefJkSdK+fftc2vPy8vTXv/5V9913n2rUqKGwsDC1atVKU6dOVUZGRrFjZmZmau7cuYqNjVVUVJQCAwMVFRWluLg4HT9+3K1/bm6u5s+fr/bt2ysiIkKhoaFq3LixHn/8cX3zzTfOfgUFBXr77bcVExOjWrVqKSQkRA0aNNDDDz+s7du3l/5ilFK/fv3UqFEjb4eBUiInysavf/1rxcbGurX37NlTffr0UUZGhg4dOuSFyHA3yIey4efnp8DAQLf2gIAAPfroo5Kk77//3tNheRXL1pXArTc0X7t2Tffff7927dql5s2ba+zYsQoKCtKxY8e0ePFixcXF6Z577rntWIcPH9aLL76oPn366NFHH1VoaKiOHDmilStX6n/+53/09ddfuxRZY8aM0erVq9WuXTvnuU6fPq1t27Zp3759at++vSRp2rRpevXVV9W0aVONHDlSNWrUUFpamnbu3KktW7aod+/e5XZ9UPWQE+WnWrVqkm78xwnfQD6Uj4KCAn3yySeSpDZt2ng5Gs8i+33Ym2++KUmKiYlxtk2fPl27du3S6NGjlZiYKH9/f+exzMxMl/2itGzZUunp6apVq5ZL+7Zt29SvXz+98sor+tvf/uYcb82aNercubOSk5NdxnY4HLpy5Ypz/+2331ZUVJQOHjyo6tWru4x96dIlSz/vunXrdODAAUt9JalDhw4aMmSI5f7wfeRE8UqbE6dOndKWLVsUGRmptm3blngceAb5ULy7zYe8vDzNnj1bxhhdvHhRW7du1ZEjRzR27Fj17dvX8jiVAcWjj/j+++81Y8YMSVJOTo6Sk5O1Y8cOBQcHa9asWZKk69eva8mSJYqIiNDChQvd/ghERETc8Ty369OnTx+1bt1aW7ZscbbZbDYZYxQcHOx2o7C/v79q1qzp0hYYGFjkH6af/hG6nXXr1mn58uWW+ko33vFSPFZe5IRncyI/P1+jR4+W3W7X3Llz71hkwLPIh/LPh7y8PP35z3927ttsNiUkJGjOnDmWx6g0vHvLJe6k8GboW7dq1aqZBg0amJEjR5qDBw86+x46dMhIMv369bM09u1uht62bZsZPHiwqVevngkICHA5d2BgoEvfQYMGGUmmQ4cOZtasWWbXrl0mLy/Pbczf/va3RpJp1qyZeeGFF8zWrVvN1atX7/JqeAYPzFRs5ITnORwOM3LkSCPJTJw40dvh4Bbkg+c5HA5z+vRp8+abb5qaNWua7t27m8zMTG+H5VEUjxVccU/S/dTOnTuNJDNmzBhLYxf1h2H16tXGZrOZGjVqmKFDh5qEhATz4osvmpdeesk0atTIrX9OTo55/vnnTZMmTZx/PMLDw82UKVNMTk6Os19+fr6ZN2+eadWqlbNfcHCwiYuLMz/++KOleD2F4rFiIyc8y+FwmDFjxhhJZtSoUcbhcHg7JNyCfPCu1atXG0nmueee83YoHsWydSVSuASQlpZW4jFmzJih4OBgffXVV2revLnLsVWrVrn1r169ul555RW98sorOnnypLZt26ZFixZp4cKFunbtmhYvXizpxs31CQkJSkhI0NmzZ/X5558rMTFRK1as0Llz5/Tpp5/eMTbuecTdIidc3W1OFBQUaOzYsVqxYoVGjBihZcuWVa3PsqtkyAdXZfF/RP/+/SXJ60+Ee5y3q1cU727eVebn55vw8HATERFhLl26dMf+Rb2rDAoKMp06dXLre/bsWVOtWjVLn/l19epVExYWZurVq1dsP4fDYZo1a2b8/PwsLU8Uzn5Y3ay+u/4pZh4rNnLipvLMCYfDYeLi4owkM3z4cHP9+nXLr4XnkA83eer/iFt9++23RpLp3r17qcfyJbyFrEQCAgL05JNPKjMzU1OmTJHD4XA5npmZqezs7GLHaNSokb7//nv98MMPzrbc3Fz9x3/8h9tXMP3444/6v//7P7cxMjIyZLfbFRwcLEmy2+364osv3Prl5OQoOztb1apVszSbsWzZMpkbt1pY2vh6QZATJcuJgoICjRs3TitWrNCwYcOUlJTEAzKVAPlQsnz49ttvdfXqVbf2q1evaurUqZKkQYMGWRqrsmDZupKZOXOm9uzZo3fffVd79uzRAw88oKCgIJ04cUKffPKJdu7cqQ4dOtz29ZMnT9bkyZPVsWNHDR06VNevX9fmzZtljFH79u1dPtQ1LS1NHTt2VPv27dWuXTvVr19fFy9e1Pr165Wfn6+EhARJNz5XrHv37mrRooU6d+6s6OhoZWdna+PGjTp37pwSEhIUFBRU3pemWG+//bZ27twpSc4PP3777bedSxE9evTQhAkTvBUeSoGcuHszZ87U8uXLFRYWphYtWuiVV15x6zNkyJBirxsqJvLh7q1evVoLFixQjx491LhxY4WHhystLU2bNm3SxYsX1bNnTz399NNei88ryndiE6V1N0sShXJzc81rr71mOnToYEJCQkxYWJhp1aqVeeaZZ0xGRoazX1FLEgUFBWbRokWmdevWJjg42NSrV8+MHz/enD9/3q1/RkaGmTFjhunVq5eJjIw0gYGBJioqygwcONBs2rTJ2S8vL8/MnTvX9O/f3zRo0MAEBgaaunXrml69epmVK1eagoKCkl+gMnKn5Y6yWN5A2SAnyp+V5T9u66gYyIfyt2/fPjNx4kTTunVrU7NmTRMQEGBq165t+vTpYxYvXmzy8/O9Gp832IwxxnOlKgAAAHwZ9zwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZVW+eDTGKCsrS3xiEXADOQG4IicAV1W+eLxy5YoiIiJ05coVb4cCVAjkBOCKnABcVfniEQAAANZRPAIAAMAyikcAAABYRvEIAAAAywK8HQDujjFGOTk5zv3Q0FDZbDYvRgQAAKoSikcfk5OTo8GDBzv3169fr7CwMC9GBAAAqhKWrQEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACzj6wkt6vzsCm+HIEmyXc9TxC37vaevkgkI9Fo8kvTVvDivnh8AAHgOM48AAACwjOIRAAAAllE8AgAAwLIKXzzOmjVLNptNbdq0cTv2xRdfqEePHqpevbrq1aunP/zhD8rOzvZClAAAAFVDhX5g5syZM5o9e7ZCQ0Pdjh04cEB9+/ZVy5YttWDBAp05c0avvfaajh07pk2bNnkhWgAAgMqvQhePCQkJ+rd/+zc5HA5duHDB5dif/vQn3XPPPdq+fbvCw8MlSY0bN9bEiRP12WefqX///t4IGQAAoFKrsMvW//znP7V27Vq9/vrrbseysrK0efNmjRo1ylk4SlJcXJzCwsK0evVqD0YKAABQdVTI4tHhcGjy5MmaMGGC2rZt63b80KFDun79urp06eLSHhgYqA4dOmj//v2eChUAAKBKqZDL1osWLVJqaqq2bNlS5PH09HRJUmRkpNuxyMhI7dix47Zj2+122e12535WVlYpowV8GzkBuCIngOJVuJnHixcv6sUXX9T06dNVp06dIvtcu3ZNkhQUFOR2LDg42Hm8KHPmzFFERIRza9iwYdkEDvgocgJwRU4AxatwxeMLL7ygWrVqafLkybftExISIkku7wwL5ebmOo8XZdq0acrMzHRup0+fLn3QgA8jJwBX5ARQvAq1bH3s2DEtWbJEr7/+us6ePetsz83NVX5+vlJSUhQeHu5cri5cvr5Venq6oqKibnuOoKCgImcsfYXxr6bMdiNc9oHS8PWcAMoaOQEUr0LNPKalpamgoEB/+MMf1KRJE+eWnJyso0ePqkmTJpo5c6batGmjgIAAffnlly6vz8vL04EDB9ShQwfv/ACeYLPJBAQ6N9ls3o4IAABUIRVq5rFNmzb66KOP3NpfeOEFXblyRQsXLlTTpk0VERGhfv36KSkpSdOnT1eNGjUkSe+++66ys7M1bNgwT4eOSsIYo5ycHOd+aGiobBToAAA4Vaji8d5779WQIUPc2gs/6/HWY7NmzdIvf/lLxcbGatKkSTpz5ozmz5+v/v37a+DAgZ4JGJVOTk6OBg8e7Nxfv369wsLCvBgRAAAVS4Vatr4bnTp10pYtWxQSEqKnn35aS5Ys0fjx47V27VpvhwYAAFBpVaiZx9vZvn17ke09evTQrl27PBsMAABAFeazM48AAADwPJ+YeQSAovCAEwB4HsUjAJ/FA04A4HksWwMAAMAyZh5RIXR+doW3Q5Ak2a7nKeKW/d7TV934MHYv+mpenFfPDwDArZh5BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMh6YAVAiFeEhJx5wAgDPY+YRAAAAllE8AgAAwDKKRwAAAFjGPY/ALYx/NWW2G+GyDwAAbqJ4BG5ls3n9gQsAACoylq0BAABgWalmHvfv36/3339fR44c0dWrV7VlyxZJUmpqqpKTk9WvXz/VqlWrTAIFAACA95W4eHzuuec0f/58GWMkSTabzXnMGKORI0dq/vz5mjJlSumjBIAicI8qAHheiZatExMT9dprr+mhhx7SwYMHNW3aNJfjjRs3VkxMjD7++OMyCRIAivT/71Et3HTLm1gAQPko0czjm2++qZYtW+rDDz9UQECAAgPdHzD4xS9+4VzGBgD4HmOMcnJynPuhoaEuq0wAqqYSFY/ffvutJk6cqICA27+8bt26On/+fIkDAwB4V05OjgYPHuzcX79+vcLCwrwYEYCKoETL1gEBAcrLyyu2z9mzZ/kjAwAAUMmUaOaxbdu2+t///V85HA75+/u7HS988rpz586lDhAAAFjDrQbwhBLNPI4bN05Hjx7Vv//7v8tut7scy8rKUnx8vM6dO6eJEyeWSZAAAODOCm81KNxuLSSBslKimcdx48Zpy5YtWrp0qT744APVrFlTkhQTE6PDhw8rJydH8fHxGjp0aFnGCgAAAC8r8TfMrFy5UosXL1aTJk2UlpYmY4y+/PJLRUdH66233tI777xTlnECAACgAijVN8xMnDhREydO1LVr15SRkaHw8HAekgEAAKjESlU8FgoJCVFISEhZDAUAAIAKrEyKRwAAqrrOz67wdgiyXc9TxC37vaevuvHtS1701bw4r54fZa9E9zz6+fnJ39+/2C0gIEC1atVSt27d9Oqrr+ratWtlHTsAAAA8rEQzj7169VJmZqa++eYb+fv7Kzo6WnXr1tUPP/ygU6dOyeFwqF27dnI4HDp48KD27t2r9957Tzt27FB4eHhZ/wwAUOkwi3V7zGQB3lWimcekpCRlZGQoLi5OJ0+e1PHjx/XFF1/o+PHjSklJ0ZgxY3T58mVt2rRJP/zwgyZOnKhDhw5p9uzZZR0/AAAAPKhExWNCQoKioqK0bNkyNWjQwOVY/fr1lZiYqKioKCUkJCgsLExvvvmmWrVqpY8++qhMggYAAIB3lKh43LJli/r06VNsn9jYWG3ZsuXGSfz81LNnT506daokpwMAAEAFUaJ7HnNzc5Wenl5sn/T0dJeHZGrUqKGAAB7uBgCgvBj/aspsN8JlHyhrJZp57NSpk1atWqXdu3cXeTw5OVkffPCBOnfu7Gw7ceKE6tatW7IoAQDAndlsMgGBzk02m7cjqlSMMcrOznZuxhhvh+QVJZoKfPnll3X//ferZ8+eeuSRR9S9e3f97Gc/0/nz57Vr1y5t2LBBfn5+mjlzpiQpOztbn376qR5//PEyDR4AAMBTcnJyNHjwYOf++vXrq+Q365WoeIyNjdXGjRs1adIkrVu3TuvWrZPNZnNW4NHR0Vq0aJFiY2Ml3bjncefOnapfv37ZRQ4AAACPK/FNiP3799eJEye0c+dOffPNN8rKylJ4eLjat2+vHj16yM/PT3a7XUFBQapevbrat29flnEDAADAC0r1BIufn5969eqlXr16ubR//fXXWrp0qVatWqWLFy+WKkAAAABUHCV6YKYoly9f1htvvKGOHTvqvvvu01tvvaXc3Ny7Hmffvn36/e9/r9atWys0NFTR0dF6/PHHdfToUbe+hw8f1sCBAxUWFqZatWpp9OjR+vHHH8vixwGAKq/wyd3CjSd3AUilnHmUbnzm49KlS7V+/XrZ7XYZY9StWzeNHTtWw4cPv+vx5s6dq127dmnYsGFq166dzp07pzfeeEOdOnXSnj171KZNG0nSmTNn1KtXL0VERGj27NnKzs7Wa6+9pkOHDmnv3r0KDPT+V2gBgE/7/0/uAsCtSlQ8nj59WomJiUpMTNSpU6dkjFH9+vWVlpam+Ph4vfPOOyUOaOrUqVq5cqVL8Td8+HC1bdtWf/nLX5SUlCRJmj17tnJycvTVV18pOjpakhQTE6P7779fy5Yt06RJk0ocAwAAAIpmedk6Pz9fa9as0cCBA/Xzn/9cM2bM0IULF/TEE0/os88+U2pqqiSV+oPAf/nLX7rNGjZv3lytW7fW4cOHnW0ffvihHnroIWfhKEn9+vVTixYttHr16lLFAAAAgKJZrvSioqJ06dIl2Ww29enTR3Fxcfr1r3+t0NDQ8oxP0o0P5fzhhx/UunVrSVJaWprOnz+vLl26uPWNiYnRP/7xj3KPCQAAeE7nZ1d4OwTZrucp4pb93tNXef3Wjq/mxXn8nJaLx4sXL8rPz09PP/20nnvuOdWpU6c843Lx3nvvKS0tzfmh44VfjRgZGenWNzIyUpcuXXJ+TNBP2e122e12535WVlY5RQ34BnICcEVOAMWzvGwdHx+vkJAQLViwQA0aNNAjjzyiNWvWKC8vrzzj05EjR/S73/1O3bp105gxYyTJ+Z3ZRRWHwcHBLn1+as6cOYqIiHBuDRs2LKfIAd9ATgCuyAmgeJaLx3feeUfp6elavHixOnXqpI0bN+o3v/mN6tatqyeffFI7d+4s8+DOnTunBx98UBEREVq7dq38/f0lSSEhIZLk8s6wUOHHAxX2+alp06YpMzPTuZ0+fbrM4wZ8CTkBuCIngOLd1ec8hoWFacKECdq9e7f+9a9/6amnnlJgYKD+9re/KTY2VjabTd99953z4ZnSyMzM1AMPPKDLly/rk08+UVRUlPNY4XJ14fL1rdLT01WrVq0iZyWlG7OV4eHhLhtQlZETgCtyAiheiT8kvGXLlpo/f77S0tK0evVq9e/fXzabTTt27FDTpk3Vt29fvfvuuyUaOzc3Vw8//LCOHj2qjRs3qlWrVi7H69evrzp16ujLL790e+3evXvVoUOHEp0XAAAAxSv1N8wEBARo6NCh2rRpk1JSUvTnP/9ZjRo10rZt2xQfH3/X4zkcDg0fPly7d+/WmjVr1K1btyL7PfbYY9q4caPLcsLWrVt19OhRDRs2rKQ/DgAAAIpR6m+YuVWDBg00ffp0TZ8+XVu3bi3Rh4U/88wz+vjjj/Xwww/r0qVLzg8FLzRq1ChJ0p/+9CetWbNGffr00ZQpU5Sdna158+apbdu2Gjt2bJn8PAAAAHBVpsXjrfr27au+ffve9esOHDggSdqwYYM2bNjgdryweGzYsKE+//xzTZ06Vf/5n/+pwMBAPfjgg5o/f/5t73cEAABA6ZRb8VhS27dvt9y3devW+vTTT8svGAAAALiocMUjAABARWT8qymz3QiX/aqI4hEAAMAKm83rX0dYEZT6aWsAAABUHRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLfLp4tNvt+uMf/6ioqCiFhISoa9eu2rx5s7fDAgAAqLR8uniMj4/XggUL9MQTT2jhwoXy9/fXoEGDtHPnTm+HBgAAUCkFeDuAktq7d69WrVqlefPmKSEhQZIUFxenNm3a6LnnntMXX3zh5QgBAAAqH5+deVy7dq38/f01adIkZ1twcLDGjx+v3bt36/Tp016MDgAAoHLy2eJx//79atGihcLDw13aY2JiJEkHDhzwQlQAAACVm88uW6enpysyMtKtvbDt7NmzRb7ObrfLbrc79zMzMyVJWVlZxZ7PYb9W0lArvTtdOyu4vrdn9frWqFFDNpvtrscnJ8pWWeSDxPUtDjnhW8iJ8lXe+VAk46N+/vOfmwceeMCt/fjx40aS+etf/1rk61566SUjiY2t0m2ZmZklyiVygq2ybuQEG9vNraT5UBSbMcbIB7Vp00Z169bV1q1bXdq//fZbtW7dWosWLdKTTz7p9rqfvqMsKCjQpUuXVLt27bKryMtZVlaWGjZsqNOnT7st26P0fPX6ltUsi6/lhK/+vnyFL19fcsL3fme+wFevb1nOPPrssnVkZKTS0tLc2tPT0yVJUVFRRb4uKChIQUFBLm01a9Ys8/g8ITw83Kf+4fqaqnJ9K0tOVJXfl7dUpetLTsCKqnx9ffaBmQ4dOujo0aNua/3JycnO4wAAAChbPls8Dh06VA6HQ0uWLHG22e12JSYmqmvXrmrYsKEXowMAAKicfHbZumvXrho2bJimTZum8+fPq1mzZlq+fLlSUlK0dOlSb4dXroKCgvTSSy+5LaugbHB9fQu/r/LF9fU9/M7KF9dX8tkHZiQpNzdX06dPV1JSkjIyMtSuXTu9/PLLGjBggLdDAwAAqJR8ungEAACAZ/nsPY8AAADwPIpHAAAAWEbx6CPsdrv++Mc/KioqSiEhIeratas2b97s7bAqjezsbL300ksaOHCgatWqJZvNpmXLlnk7LBSDnChf5ITvISfKFzlxE8Wjj4iPj9eCBQv0xBNPaOHChfL399egQYO0c+dOb4dWKVy4cEEzZ87U4cOH1b59e2+HAwvIifJFTvgecqJ8kRO3KLMvOkS5SU5ONpLMvHnznG3Xrl0zTZs2Nd26dfNiZJVHbm6uSU9PN8YYs2/fPiPJJCYmejco3BY5Uf7ICd9CTpQ/cuImZh59wNq1a+Xv769JkyY524KDgzV+/Hjt3r1bp0+f9mJ0lUNQUJDq1avn7TBgETlR/sgJ30JOlD9y4iaKRx+wf/9+tWjRwu07NGNiYiRJBw4c8EJUgPeQE4ArcgKeRPHoA9LT0xUZGenWXth29uxZT4cEeBU5AbgiJ+BJFI8+4Nq1a0V+DVJwcLDzOFCVkBOAK3ICnkTx6ANCQkJkt9vd2nNzc53HgaqEnABckRPwJIpHHxAZGan09HS39sK2qKgoT4cEeBU5AbgiJ+BJFI8+oEOHDjp69KiysrJc2pOTk53HgaqEnABckRPwJIpHHzB06FA5HA4tWbLE2Wa325WYmKiuXbuqYcOGXowO8DxyAnBFTsCTArwdAO6sa9euGjZsmKZNm6bz58+rWbNmWr58uVJSUrR06VJvh1dpvPHGG7p8+bLzqcQNGzbozJkzkqTJkycrIiLCm+HhFuSEZ5ATvoOc8Axy4gabMcZ4OwjcWW5urqZPn66kpCRlZGSoXbt2evnllzVgwABvh1ZpNG7cWKmpqUUeO3nypBo3buzZgFAscqL8kRO+hZwof+TEDRSPAAAAsIx7HgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIzyqcePGFerrmypaPKh6Ktq/wYoWD6qWivbvr6LFU1FQPFYCOTk5mj17tjp16qSwsDAFBQWpQYMG6tmzp6ZNm6bjx497O0TAo8gJ4CbyAWUtwNsBoHSuXLmiHj166ODBg2rWrJlGjRql2rVr68KFC9q7d6/+8pe/qGnTpmratKm3Q5Ukbd261dshoJIjJ4CbyAeUB4pHH/f666/r4MGDmjBhgpYsWSKbzeZy/OTJk7Lb7V6Kzl1F+QOFyoucAG4iH1AeWLb2cbt375Yk/e53v3P7oyBJTZo00S9+8Qvnvs1mU+/evYscq6h7O+Lj42Wz2XTixAnNnz9frVq1UlBQkOLj4/Xyyy/LZrNpxYoVRY7397//XTabTc8///xtz1GSMaQbf/AmTJig6OhoBQUFKTIyUvHx8UpNTS1ynPXr1+u+++5TSEiI6tatq4kTJyojI6PIvvBt5AQ5gZvIB/KhPFA8+rjatWtLko4ePVqu55k8ebJmz56tLl266KmnnlLbtm01atQo2Ww2JSUlFfmad999V5I0evTo245bkjGSk5PVsWNHLV++XJ07d9aUKVPUs2dPvffee4qJidGJEydcxlixYoWGDBmio0ePavTo0RozZox27dqlfv36KS8v766uAyo+coKcwE3kA/lQLgx82vr1640kU6NGDfPMM8+YTz/91Fy4cOG2/SWZ2NjYIo81atTINGrUyKVtzJgxRpJp0KCBSU1NdXtNjx49jL+/vzl79qxL+8WLF01gYKDp0qXLHc9xN2Pk5eWZxo0bmxo1apivv/7apf+OHTuMv7+/eeihh5xtmZmZJjw83ISGhprvvvvOZZxevXoZSW7xwLeREzeREyAfbiIfyg4zjz7ukUce0fz582WM0fz58zVgwADde++9atasmX7/+9/r2LFjZXKeZ599VtHR0W7to0ePlsPh0Pvvv+/S/sEHHygvL0+jRo2649h3M8bGjRuVkpKiZ599Vh07dnTp36NHDw0ePFj/+Mc/lJWVJUlat26dsrKyNG7cOLVo0cLZt1q1apo1a9adf3D4HHLiJnIC5MNN5EPZoXisBKZOnaqzZ89q9erVeuqpp9SjRw+dOnVK//3f/6127drp448/LvU5YmJiimx//PHHFRQU5Fw6KJSUlKSAgACNGDHijmPfzRh79uyRJH333XeaMWOG23bu3DkVFBQ4l2i++eYbSVLPnj3dztutWzcFBPDMWGVETpATuIl8IB/KnJdnPlFOLl++bH77298aSebee+81drvdGFPyJYkTJ07c9lyPPfaYkWT+9a9/GWOM+f77740kM2jQIEvnuJsxJkyYYCTdcdu+fbsxxpjx48e77P9U3bp1WZKoIsgJcgI3kQ/kQ2kw81hJRURE6I033lCjRo104cIFHTp0SNKNJ+muX79e5GsyMzNvO15RT+kVKrxRufBdYeGNzcXdBF3SMcLDwyVJGzZskDHmtltsbKykG9dBks6fP+92TofDoYsXL1qOEb6NnCAncBP5QD6UBsVjJWaz2RQaGurSds899ygtLc2tb0pKii5fvlyi8wwaNEi1a9fWypUrVVBQoPfee081atTQ4MGDy3yMrl27Srr58RN30r59e0nSjh073I7t3r37tn8kUTmRE+QEbiIfyIcS8+g8J8rcokWLzN69e4s89tFHHxmbzWZq1qxpcnNzjTHGDBgwwG2K3m63m0cffbTIp8oKlyROnjxZbByFyx9z5swxkkx8fHyR/W63JGF1jNzcXBMdHW2Cg4PN559/7nY8Ly/P7Nixw7l/+fLl2z5JFxsby5N0lRA54YqcqNrIB1fkQ9mwGWOM50pVlLUhQ4Zo/fr1atasmbp3766oqCjl5ORo//792rFjh/z8/JSUlOS8ofizzz7TwIEDFRISohEjRqh69eravHmzatasqdTUVAUGBiolJcU5fnx8vJYvX66TJ08W++Xwe/bsUbdu3VStWjXl5+dr69at+tWvfuXWr3CMW89xt2Ps27dPDzzwgC5evKhf/epXatu2rWw2m1JTU7Vjxw7Vrl1bR44ccfZfvny54uPjFR4ert/85jeKiIjQxo0bFRISovT0dLefGb6NnCAncBP5QD6UC29XryidI0eOmFdffdXcf//9pkmTJiY4ONgEBwebpk2bmjFjxpgvv/zS7TVr1qwxbdu2NYGBgaZevXpm8uTJ5sqVK8XeDH2nd5XGGNO8eXPn5305HI4i+xT3rtLqGMYYc+bMGTNlyhTTvHlzExQUZMLDw03Lli3NhAkTzNatW936f/TRR6Zz584mKCjI/OxnPzMTJkwwly5dumM88D3kBDmBm8gH8qE8MPMIAAAAy3hgBgAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABg2f8DZfhIGPqbmY8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAk9ElEQVR4nO3deVhU9f4H8PcBZEA2AzdAEEPNDTVRzFJQk9y1ci8RVNR7M/ey9P56aHlCTfHWvbao1wVzN7e0xZve9HFH0tJbGqWAihgKsgqD4ef3h5fRcQaFYXBmzrxfz3Men/me73zPZ8bP4TNnV0REQEREpCIOlg6AiIjI3FjciIhIdVjciIhIdVjciIhIdVjciIhIdVjciIhIdVjciIhIdVjciIhIdVjciIhIdVjcyC4FBQUhKCjI0mGQSiQnJyMyMhL16tWDoiho3769pUOqMrWtE06WDsCeFRUV4aOPPsIXX3yBlJQU3Lp1C/Xq1UOTJk3QtWtXxMbGIjg42NJhEj2Qvedxfn4++vfvj5KSEkRFRaFu3bpo2LChpcOyeyxuFlJQUICuXbvi9OnTaNq0KUaPHg0fHx9cv34dSUlJmD9/PoKDg1X9R4FsH/MYSEpKQlZWFt5//33MnTvX0uHQ/7C4WciHH36I06dPIzY2FsuWLYOiKHrzU1NTodVqLRQdUeUwj4ErV64AAPz8/CwcCd2Lx9ws5OjRowCAyZMnG/xBAIAmTZqgRYsWBu1ZWVmYMWMGmjZtCo1Gg7p162LIkCH473//q+sjIujXrx8URcGmTZv03i8i6Nu3r9F5j1r37t2hKAq0Wi3mzp2LwMBAuLq6IjQ0FHv37gUA5OXlYfLkyfDz84OLiwu6dOmCpKQkg7G+//57jBs3Dk888QTc3d3h7u6Ojh07YtmyZVWKSUSwcuVKPPPMM/D09ETt2rXRsWNHrFy50iyfWW3sPY8VRUF0dDQAYOzYsVAUBYqiYPXq1bo+BQUFiIuLQ+vWreHq6oo6deqgd+/eOHTokMF4XCfMSMgiRo8eLQBk06ZNlX7P77//Lo0aNRIA8txzz8msWbMkKipKateuLW5ubnLs2DFd36tXr0r9+vXFy8tL0tLSdO2LFy8WABITE2PWz2OKiIgIASCDBw+Wxx9/XCZPnizjxo0TjUYjGo1GkpOTpUOHDtKmTRuZOnWqjBo1ShwcHOSxxx6T3NxcvbF69+4twcHB8vLLL8sbb7whkyZNksaNGwsAmTlzpsGyGzduLI0bN9Zru337towaNUoASLNmzWTSpEkyZcoUadGihQCQWbNm1eTXYZPsPY/j4uJk8ODBujyOi4uTuLg4OXXqlIiIZGdnS+vWrQWAPPPMMzJ9+nQZN26c+Pj4iJOTk2zfvl1vPK4T5sPiZiE7d+4UAOLh4SGzZs2SPXv2yPXr1x/4nqefflocHR3l22+/1Wv/9ddfxcPDQ0JCQvTav/nmG1EURZ5++mn5888/5dSpU+Ls7CzNmjWTgoKCSsV548YN3Qpb2enGjRuVGrt8Re7atasUFhbq2jdt2iQApE6dOjJs2DC5deuWbt6CBQsEgCQkJOiNdeHCBYPxb926JZGRkeLo6Cjp6el684ytyMuWLRMAMnbsWCktLdW1a7VaGThwoACQ5OTkSn02e8E8Flm1apUAkFWrVhnMe+mllwSALF++XK/9jz/+kICAAKlXr54UFxfr2rlOmA+LmwUlJCSIu7u7ANBNwcHBMnnyZElJSdHre/LkSQEg48aNMzrWzJkzBYCcOXNGr3369OkCQF577TVp0aKF1KpVq0rJmJqaqhdfZabU1NRKjV2+Ih84cECvvaysTGrVqiUADFbAixcvCgAZM2ZMpZaxdetWASCrV6/Waze2Irdt21bc3Nzk5s2bBuOcPn3a6n+pWoq953FFxe3atWvi6OgoPXv2NPq+f/zjHwJAdu3apWvjOmE+PKHEgmbOnIkJEybg22+/xZEjR5CcnIzjx4/j448/xooVK7Bp0yYMGjQIAHDs2DEAwB9//IG3337bYKxz587p/m3Tpo2uff78+di/fz8WLVoEAFiwYAFCQ0MrHWNQUBCkhh/Wfv81QQ4ODqhfvz5u3ryJwMBAvXm+vr4A7h7EL1dQUIBFixZhx44dOH/+PIqKivTm39//fjdv3sSZM2fg5+eHBQsWGMy/desWgLvfM93FPDbuxIkTKCsrg1arNfpZf/vtNwB3PuuAAQP05nGdqD4WNwvz8PDAsGHDMGzYMAB3DhbPnTsXn3zyCcaPH4+MjAw4OzsjJycHAPDVV1/hq6++qnC8+xNYo9Ggb9+++PHHH+Hi4oLY2Nia+zAm8vT0NGhzcnKqsB24u2IBQGlpKbp3746TJ0/iySefRFRUFHx8fODk5IS0tDQkJiY+9Iy9GzduQESQkZGBd955p8J+93+/dAfz2FD5Zz18+DAOHz5cYT9jOcV1ovpY3KyMl5cXlixZgq+++grp6ek4c+YMQkNDdUn9z3/+E6+++mqlxzt+/DgWLlwIHx8fZGdn469//WuVzi7Lzc3Fhx9+WKXPMH36dNSpU6dK76mOnTt34uTJkxg/fjz+9a9/6c3buHEjEhMTHzpG+fcbGhqK5OTkGonTnjCP7+bUrFmzdFucjwrXCRY3q6QoCtzc3PTaOnfuDODOqdeV/aNQUFCAl156CU5OTti/fz/efvttbN68Gb1798a4ceMqNUZubu4Df7UZExMT80iL2/nz5wEAgwcPNph38ODBSo3h4eGBli1b4uzZs8jNzX2k8auVvedxp06doCiK7nKJR4nrBK9zs5ilS5fixIkTRuft2LEDZ8+eRZ06dXTHHcLCwtC5c2ds2LDB6C/W27dv48CBA3ptr7zyCi5cuIBFixahTZs2WL58OQICAjB16lSkpKRUKs7yYxVVmR71/ekaN24MAAbXDR04cADLly+v9DhTp07FzZs3MWHCBKO7WlJTU5GWllatWNWGeVyxhg0bYvjw4Thy5AgWLlxo9Jjf8ePHcfPmzWotxxiuE+B1bpZSfm1M06ZNJTo6WubMmSNTp06Vbt26CQBxcHCQ9evX673nwoULuutUnnrqKXnllVdk1qxZMmzYMGnUqJFoNBpd388//1wAyMCBA/XGOHDggDg4OEhoaKjeqb2WUH5mmDHGztwqB0AiIiJ0rwsKCiQoKEgASL9+/WT27NkyePBgcXR0lKFDhwoAiYuLe+j4t2/flujoaAEgvr6+EhUVJW+88YbExMTIU089JYqiyIYNG6rxidWHefzgSwGys7Olffv2AkBCQkJk4sSJMnv2bBk1apQ0a9ZMAEhmZqauP9cJ82Fxs5Bz587JBx98IJGRkdKkSRNxcXERFxcXCQ4Olujo6ApPc87JyZH/+7//kzZt2oirq6u4u7tLs2bN5KWXXpJt27aJyJ0/Hp6enuLr6yvXrl0zGONvf/ub7rRqSzLXiixy5zMPGTJE6tWrJ7Vr15ZOnTrJxo0b5fvvv6/0ilxu06ZN0qtXL3nsscekVq1a4u/vL927d5eEhASj36c9Yx4/uLiJiNy8eVM++OADCQ0NFTc3N3F1dZUmTZrI888/L2vWrNG7Zo3rhPkoIo/4/FgiIqIaxmNuRESkOixuRESkOixuRESkOixuRESkOixuRESkOixuRESkOnZf3EQE+fn5j/yO4USWwHwne2H3xa2goABeXl4oKCiwdChENY75TvbC7osbERGpD4sbERGpDosbERGpDosbERGpDh9WagNERO9ZSm5ublAUxYIRERFZNxY3G1BUVKT3RN2dO3fC3d3dghEREVk37pYkIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXEjIiLV4dmSlRT6+hqLLVv5sxRe97zu/tZGiJOzxeL5YeEYiy2biKgyrG7L7eeff8awYcPw+OOPo3bt2qhbty7Cw8Oxa9cug75nz55Fnz594O7uDm9vb0RFReHatWsWiJqIyDqJCAoLC3WTvTwRwuq23NLT01FQUIDo6Gj4+fnh5s2b2Lp1KwYNGoSlS5di4sSJAIDLly8jPDwcXl5eiI+PR2FhIRYtWoQzZ84gKSkJzs6W27Ih68aL4sme2Ot1slZX3Pr164d+/frptb366qsIDQ3F4sWLdcUtPj4eRUVF+OGHHxAYGAgACAsLQ2RkJFavXq3rR3Q/e13ZieyJ1e2WNMbR0REBAQHIzc3VtW3duhUDBgzQFTYA6NWrF5o3b47NmzdbIEoiIrIWVrflVq6oqAjFxcXIy8vDl19+iW+++QYjRowAAGRkZCArKwsdO3Y0eF9YWBi+/vrrRx0uERFZEastbrNmzcLSpUsBAA4ODnjxxRexZMkSAEBmZiYAwNfX1+B9vr6+yMnJgVarhUajMZiv1Wqh1Wp1r/Pz82sifCKrwHwne2W1uyWnT5+O7777DomJiejbty/KyspQWloKACguLgYAo8XLxcVFr8/95s2bBy8vL90UEBBQQ5+AyPKY72SvrLa4tWjRAr169cKYMWOwe/duFBYWYuDAgRARuLq6AoDeL9JyJSUlAKDrc785c+YgLy9PN126dKnmPoSZiGMt5LUdpZvEsZalQyIbYYv5TmQOVrtb8n5Dhw7FpEmTkJKSotsdWb578l6ZmZnw9vY2ulUH3Nnaq2ie1VIUi160TbbLJvOdyAysdsvtfuW7GfPy8uDv74969eohOTnZoF9SUhLat2//iKMjIiJrYnVbbllZWahfv75e261bt7BmzRq4urqiVatWAIAhQ4YgMTERly5d0h1H2LdvH1JSUjBjxoxHHjcRmYfaLrK35K37AOu6fd+jvHWf1RW3SZMmIT8/H+Hh4fD398fVq1exbt06nDt3DgkJCbqLbefOnYstW7agR48emDZtGgoLC7Fw4UKEhIRg7NixFv4URGQqXmRP5mB1xW3EiBFYsWIFPv30U2RnZ8PDwwOhoaFYsGABBg0apOsXEBCAAwcOYObMmXjzzTfh7OyM/v37IyEhgccYiIjsnNUVt5EjR2LkyJGV6tu6dWvs2bOnhiMiIiJbYzMnlBAREVUWixsREamO1e2WJPvAh7/exYe/Epkft9yIiEh1WNyIiEh1WNyIiEh1eMyNiEjFym+8fu9re8DiRkSkZnZ643XuliQiItVhcSMiItVhcSMiItXhMTciMsCL7O/iRfa2iVtuRESkOixuRESkOixuRESkOixuRESkOixuRESkOjxbkuyOvd6OiMiesLiR/bHT2xER2RPuliQiItVhcSMiItVhcSMiItVhcSMiItVhcSMiItWpVnE7deoUZs+ejUGDBqFXr1669vT0dGzevBk5OTlVHvPEiRN49dVX0bp1a7i5uSEwMBDDhw9HSkqKQd+zZ8+iT58+cHd3h7e3N6KionDt2rXqfCQiIlIBky8FmD17NhISEiAiAABFUXTzRAQvvfQSEhISMG3atCqNu2DBAhw+fBjDhg1D27ZtcfXqVSxZsgQdOnTAsWPH0KZNGwDA5cuXER4eDi8vL8THx6OwsBCLFi3CmTNnkJSUBGdnnupNRGSvTCpuq1atwqJFizBw4EC8//772LBhA+bPn6+bHxQUhLCwMHz55ZdVLm4zZ87E+vXr9YrTiBEjEBISgvnz52Pt2rUAgPj4eBQVFeGHH35AYGAgACAsLAyRkZFYvXo1Jk6caMpHIyIL40X2ZA4m7Zb85JNP0LJlS2zduhVt2rQxupXUokUL/Pbbb1Ue++mnnzYYr1mzZmjdujXOnj2ra9u6dSsGDBigK2wA0KtXLzRv3hybN2+u8nKJyEr87yL78gn37BUiqiyTitsvv/yCyMhIODlVvOHXoEEDZGVlmRzYvUQEf/zxB+rWrQsAyMjIQFZWFjp27GjQNywsDKdOnTLLcomIyDaZtFvSyckJpaWlD+xz5coVuLu7mxTU/datW4eMjAy8++67AIDMzEwAgK+vr0FfX19f5OTkQKvVQqPRGMzXarXQarW61/n5+WaJkcgaMd/JXpm05RYSEoL//Oc/KCsrMzr/5s2b2Lt3L0JDQ6sVHACcO3cOkydPRpcuXRAdHQ0AKC4uBgCjxcvFxUWvz/3mzZsHLy8v3RQQEFDtGImsFfOd7JVJxW3cuHFISUnBX/7yF71fhcCdX4YxMTG4evUqJkyYUK3grl69iv79+8PLywtffPEFHB0dAQCurq4AYLBsACgpKdHrc785c+YgLy9PN126dKlaMRJZM+Y72SuTdkuOGzcOe/fuxYoVK7Bp0ybUqVMHwJ3jXWfPnkVRURFiYmIwdOhQkwPLy8tD3759kZubi4MHD8LPz083r3x3ZPnuyXtlZmbC29vb6FYdcGdrr6J5RGrDfCd7ZfJF3OvXr8fSpUvRpEkTZGRkQESQnJyMwMBAfPrpp1i5cqXJQZWUlGDgwIFISUnB7t270apVK735/v7+qFevHpKTkw3em5SUhPbt25u8bCIisn3Vep7bhAkTMGHCBBQXF+PGjRvw9PSs9kkkZWVlGDFiBI4ePYqdO3eiS5cuRvsNGTIEiYmJuHTpku44wr59+5CSkoIZM2ZUKwYiIrJtZnlYqaura4XHuKpq1qxZ+PLLLzFw4EDk5OToLtouN3r0aADA3LlzsWXLFvTo0QPTpk1DYWEhFi5ciJCQEIwdO9YssRARkW2yuidx//jjjwCAXbt2YdeuXQbzy4tbQEAADhw4gJkzZ+LNN9+Es7Mz+vfvj4SEBB5jICKycyYVNwcHB717SRqjKAo8PT3xxBNP4IUXXsCUKVMqtXW3f//+SsfRunVr7Nmzp9L9iYjIPph0Qkl4eDjatm0LEYGDgwOCgoLQuXNnBAUFwcHBASKCkJAQNGrUCKdPn8acOXPw1FNP8QJSIiJ6JEwqbmvXrsWNGzcwZswYpKam4vz58zhy5AjOnz+PtLQ0REdHIzc3F9988w3++OMPTJgwAWfOnEF8fLy54yciIjJgUnF77bXX4Ofnh9WrV6NRo0Z68/z9/bFq1Sr4+fnhtddeg7u7Oz755BO0atUK27dvN0vQRERED2JScdu7dy969OjxwD4RERHYu3fvnYU4OKBbt264ePGiKYsjIiKqEpOKW0lJidG7g9wrMzNT7/6OHh4eD3yKABERkbmYVNw6dOiAjRs34ujRo0bnHz9+HJs2bdK7cfKFCxfQoEED06IkIiKqApM2pd577z1ERkaiW7duGDRoEJ555hnUr18fWVlZOHz4MHbt2gUHBwfdI2oKCwuxZ88eDB8+3KzBExERGWNScYuIiMDu3bsxceJE7NixAzt27ICiKBARAEBgYCA+++wzREREALhzzO3QoUPw9/c3X+REREQVMPkg2HPPPYcLFy7g0KFD+Omnn5Cfnw9PT0+0a9cOXbt2hYODg+6BobVr10a7du3MGTcREVGFqnWGh4ODA8LDwxEeHq7XfvLkSaxYsQIbN25EdnZ2tQIkIiKqKrOdvpibm4u1a9dixYoVOH36NETEbDdTJiIiqopqF7fyh5bu3LkTWq0WIoIuXbpg7NixGDFihDliJCIiqhKTitulS5ewatUqrFq1ChcvXoSIwN/fHxkZGYiJianWg0qJiIiqq9LF7datW9ixYwdWrFiBffv2oaysDG5ubnj55ZcxZswY9OzZE05OTrxQm4iILK7SlcjPzw85OTlQFAU9evTAmDFj8OKLL8LNza0m4yMiIqqyShe37OxsODg4YMaMGZg9ezbq1atXk3ERERGZrNK334qJiYGrqysWL16MRo0aYdCgQdiyZQtKS0trMj4iIqIqq3RxW7lyJTIzM7F06VJ06NABu3fvxsiRI9GgQQNMmjQJhw4dqsk4iYiIKq1KN052d3dHbGwsjh49ip9//hnTp0+Hs7Mzli9fjoiICCiKgl9//RXp6ek1FS8REdFDmfRUAABo2bIlEhISkJGRgc2bN+O5556Doig4ePAggoOD8eyzz+Lzzz83Z6xERESVYnJxK+fk5IShQ4fim2++QVpaGt555x00btwY33//PWJiYswQIhERUdVUu7jdq1GjRnjrrbdw/vx5fPfddxg5cqQ5hyciIqqUGrvi+tlnn8Wzzz5bU8MTERFVyKxbbkRERNaAxY2IiFTH6opbYWEh4uLi0KdPH3h7e0NRFKxevdpo37Nnz6JPnz5wd3eHt7c3oqKicO3atUcbMBERWR2ru8vx9evX8e677yIwMBDt2rXD/v37jfa7fPkywsPD4eXlhfj4eBQWFmLRokU4c+YMkpKS4Ozs/GgDJyIiq2F1xc3X1xeZmZlo2LAhkpOT0alTJ6P94uPjUVRUhB9++AGBgYEAgLCwMERGRmL16tWYOHHiowybiIisiNXtltRoNGjYsOFD+23duhUDBgzQFTYA6NWrF5o3b47NmzfXZIhERGTlrK64VUZGRgaysrLQsWNHg3lhYWE4deqUBaIiIiJrYXW7JSsjMzMTwJ1dmPfz9fVFTk4OtFotNBqNwXytVgutVqt7nZ+fX3OBElkY853slU1uuRUXFwOA0eLl4uKi1+d+8+bNg5eXl24KCAiouUCJLIz5TvbKJoubq6srAOj9Ii1XUlKi1+d+c+bMQV5enm66dOlSzQVKZGHMd7JXNrlbsnx3ZPnuyXtlZmbC29vb6FYdcGdrr6J5RGrDfCd7ZZNbbv7+/qhXrx6Sk5MN5iUlJaF9+/aPPigiIrIaNlncAGDIkCHYvXu33m6Wffv2ISUlBcOGDbNgZEREZGlWuVtyyZIlyM3NxZUrVwAAu3btwuXLlwEAU6ZMgZeXF+bOnYstW7agR48emDZtGgoLC7Fw4UKEhIRg7NixlgyfiIgszCqL26JFi5Cenq57vW3bNmzbtg0AMHr0aN1ZXwcOHMDMmTPx5ptvwtnZGf3790dCQgKPMRAR2TmrLG5paWmV6te6dWvs2bOnZoMhIiKbY7PH3IiIiCrC4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKrD4kZERKpj08VNq9XijTfegJ+fH1xdXdG5c2d89913lg6LiIgszKaLW0xMDBYvXoyXX34ZH330ERwdHdGvXz8cOnTI0qEREZEFOVk6AFMlJSVh48aNWLhwIV577TUAwJgxY9CmTRvMnj0bR44csXCERERkKTa75fbFF1/A0dEREydO1LW5uLhg/PjxOHr0KC5dumTB6IiIyJJstridOnUKzZs3h6enp157WFgYAODHH3+0QFRERGQNbHa3ZGZmJnx9fQ3ay9uuXLli9H1arRZarVb3Oi8vDwCQn5//wOWVaYtNDVV1HvZdVQa/z7sq8316eHhAUZQqj818r77q5ju/y7sq+12amu96xEY9/vjj0rdvX4P28+fPCwD5+9//bvR9cXFxAoATJ5ua8vLyTFpPmO+cbHEyNd/vpYiIwAa1adMGDRo0wL59+/Taf/nlF7Ru3RqfffYZJk2aZPC++3/J3r59Gzk5OfDx8an+L4UalJ+fj4CAAFy6dMlgVyxVna19n+bacmO+2ydb+z7NseVms7slfX19kZGRYdCemZkJAPDz8zP6Po1GA41Go9dWp04ds8dXUzw9PW0iOW2F2r9P5jvdy56+T5s9oaR9+/ZISUkx2Id7/Phx3XwiIrJPNlvchg4dirKyMixbtkzXptVqsWrVKnTu3BkBAQEWjI6IiCzJZndLdu7cGcOGDcOcOXOQlZWFpk2bIjExEWlpaVixYoWlwzM7jUaDuLg4g11MZBp+n9aN/z/mZY/fp82eUAIAJSUleOutt7B27VrcuHEDbdu2xXvvvYfevXtbOjQiIrIgmy5uRERExtjsMTciIqKKsLgREZHqsLhZOT6zzrwKCwsRFxeHPn36wNvbG4qiYPXq1ZYOi/6H+W4+9p7rLG5Wjs+sM6/r16/j3XffxdmzZ9GuXTtLh0P3Yb6bj93nerVv4EU15vjx4wJAFi5cqGsrLi6W4OBg6dKliwUjs10lJSWSmZkpIiInTpwQALJq1SrLBkUiwnw3N3vPdW65WTE+s878NBoNGjZsaOkwyAjmu3nZe66zuFkxPrOO7AnzncyJxc2KmfrMOiJbxHwnc2Jxs2LFxcVGb5fj4uKim0+kFsx3MicWNyvm6uqq9yyuciUlJbr5RGrBfCdzYnGzYr6+vrrn093rYc+sI7JFzHcyJxY3K8Zn1pE9Yb6TObG4WTE+s47sCfOdzMlmn+dmD+ztmXWPypIlS5Cbm6s7+27Xrl24fPkyAGDKlCnw8vKyZHh2i/lufvac63zkjZXjM+vMLygoCOnp6UbnpaamIigo6NEGRDrMd/Oy51xncSMiItXhMTciIlIdFjciIlIdFjciIlIdFjciIlIdFjciIlIdFjciIlIdFjciIlIdFjciIlIdFjciIlIdFjeqUUFBQVZ1ix9ri4fUw9pyy9riedRY3GxQUVER4uPj0aFDB7i7u0Oj0aBRo0bo1q0b5syZg/Pnz1s6RCKzYK6TqfhUABtTUFCArl274vTp02jatClGjx4NHx8fXL9+HUlJSZg/fz6Cg4MRHBxs6VABAPv27bN0CGSjmOtUHSxuNubDDz/E6dOnERsbi2XLlkFRFL35qamp0Gq1ForOkLX84SHbw1yn6uBuSRtz9OhRAMDkyZMNVnYAaNKkCVq0aKF7rSgKunfvbnQsY/vkY2JioCgKLly4gISEBLRq1QoajQYxMTF47733oCgK1qxZY3S8bdu2QVEU/O1vf6twGaaMAdz5QxYbG4vAwEBoNBr4+voiJiamwsd57Ny5E506dYKrqysaNGiACRMm4MaNG0b7knVirjPXq4PFzcb4+PgAAFJSUmp0OVOmTEF8fDw6duyI6dOnIyQkBKNHj4aiKFi7dq3R93z++ecAgKioqArHNWWM48eP48knn0RiYiJCQ0Mxbdo0dOvWDevWrUNYWBguXLigN8aaNWvw/PPPIyUlBVFRUYiOjsbhw4fRq1cvlJaWVul7IMthrjPXq0XIpuzcuVMAiIeHh8yaNUv27Nkj169fr7A/AImIiDA6r3HjxtK4cWO9tujoaAEgjRo1kvT0dIP3dO3aVRwdHeXKlSt67dnZ2eLs7CwdO3Z86DKqMkZpaakEBQWJh4eHnDx5Uq//wYMHxdHRUQYMGKBry8vLE09PT3Fzc5Nff/1Vb5zw8HABYBAPWSfm+l3M9arjlpuNGTRoEBISEiAiSEhIQO/evVG3bl00bdoUr776Kn777TezLOf1119HYGCgQXtUVBTKysqwYcMGvfZNmzahtLQUo0ePfujYVRlj9+7dSEtLw+uvv44nn3xSr3/Xrl0xePBgfP3118jPzwcA7NixA/n5+Rg3bhyaN2+u61urVi28//77D//gZDWY63cx16uOxc0GzZw5E1euXMHmzZsxffp0dO3aFRcvXsTHH3+Mtm3b4ssvv6z2MsLCwoy2Dx8+HBqNRrdLpdzatWvh5OSEUaNGPXTsqoxx7NgxAMCvv/6Kt99+22C6evUqbt++rdt19dNPPwEAunXrZrDcLl26wMmJ51DZEuY6c91klt50JPPIzc2VV155RQBI3bp1RavViojpu2ouXLhQ4bKGDBkiAOTnn38WEZHff/9dAEi/fv0qtYyqjBEbGysAHjrt379fRETGjx+v9/p+DRo0sOtdNWrAXGeuVwa33FTCy8sLS5YsQePGjXH9+nWcOXMGwJ0zyP7880+j78nLy6twPGNnp5UrPwBe/mu0/ID5gw6umzqGp6cnAGDXrl0QkQqniIgIAHe+BwDIysoyWGZZWRmys7MrHSNZJ+Y6c70yWNxURFEUuLm56bU99thjyMjIMOiblpaG3Nxck5bTr18/+Pj4YP369bh9+zbWrVsHDw8PDB482OxjdO7cGcDd08Ifpl27dgCAgwcPGsw7evRohX/8yLYw15nrD2WJzUUy3WeffSZJSUlG523fvl0URZE6depISUmJiIj07t3bYNeFVquVF154wejZVOW7alJTUx8YR/luoXnz5gkAiYmJMdqvol01lR2jpKREAgMDxcXFRQ4cOGAwv7S0VA4ePKh7nZubW+EZZBEREXZ/BpktYa7rY65XjSIi8uhLKpnq+eefx86dO9G0aVM888wz8PPzQ1FREU6dOoWDBw/CwcEBa9eu1R2o/ve//40+ffrA1dUVo0aNQu3atfHdd9+hTp06SE9Ph7OzM9LS0nTjx8TEIDExEampqQ+86eqxY8fQpUsX1KpVC7du3cK+ffvQs2dPg37lY9y7jKqOceLECfTt2xfZ2dno2bMnQkJCoCgK0tPTcfDgQfj4+ODcuXO6/omJiYiJiYGnpydGjhwJLy8v7N69G66ursjMzDT4zGSdmOvM9WqxdHWlqjl37px88MEHEhkZKU2aNBEXFxdxcXGR4OBgiY6OluTkZIP3bNmyRUJCQsTZ2VkaNmwoU6ZMkYKCggceZH/Yr1kRkWbNmumuEyorKzPa50G/Zis7hojI5cuXZdq0adKsWTPRaDTi6ekpLVu2lNjYWNm3b59B/+3bt0toaKhoNBqpX7++xMbGSk5OzkPjIevBXGeuVwe33IiISHV4QgkREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREakOixsREanO/wPPK6oz8x6UQgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for SibSp,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAy1UlEQVR4nO3deVhUZf8/8PewzQwgqKAGxaICZSFCGqiBoGYQaGqKmQuS29ODa2oqmlcuJfZwWZlbWai4pYaVij6V4oYbpOLy9M0wETXAUFYhGBLu3x/+GJtmgBkEZmDer+uaP8597nOfzxk/0WfOfRaJEEKAiIiIiEgLJvoOgIiIiIiaDxaPRERERKQ1Fo9EREREpDUWj0RERESkNRaPRERERKQ1Fo9EREREpDUWj0RERESkNRaPRERERKQ1Fo9EREREpDUWj4TMzExIJBJERkbqLYagoCBIJJIm3achHDfplyHkAHOfmpoh/Psz75s3Fo8Gojqpa/u4urrqO0xqRAcOHEBYWBjat28Pc3Nz2Nvbw9PTE+PHj8fevXv1HV6jYe4TABQUFOD9999Hr169YGdnB3Nzc7Rr1w4vvfQSVq9ejZKSEn2H2KCY9wQAd+7cwbx58+Dl5YVWrVrB0tISTz/9NKZNm4YbN27oO7wamek7AFLVuXNnjBkzRuO61q1bN20w1GSWLFmCxYsXw9LSEgMHDoSrqysePHiAn3/+Gbt27UJ6ejoGDx6s7zAbFXPfeCUlJWHEiBHIz89Hly5dEB4eDjs7O+Tl5eHEiROYPn06PvnkE1y/fl3foTY45r3xOnjwIEaOHIn79++jZ8+emDRpEszMzHDx4kWsW7cOX3zxBTZu3IhRo0bpO1Q1LB4NjJubGxYvXqzvMKgJZWZmYunSpXBycsLZs2fh6Oiosr6srAwpKSl6iq7pMPeN06VLlzBo0CAAwLZt2zB69Gi1PseOHUN0dHRTh9YkmPfG6fz583jttddgYmKC7777Tu3kwJkzZ/Dqq69i7NixcHBwQN++ffUUqWactm7GJBIJgoKCkJWVhVGjRsHe3h6tWrVCWFgYMjIyAAC//PILhgwZgrZt26JVq1YYPnw4/vjjjxrH/PnnnxEWFobWrVvD2toaL7/8Ms6fP6/W7/z585g6dSo8PT1ha2sLuVyOrl27YsWKFfjrr7/U+ru6usLV1RWFhYWYOnUqnJycYGZmhs2bN9d6jLt27YJUKkW3bt2Qk5OjbD9x4gQGDRoEe3t7SKVSuLu7491338Wff/6pNkZlZSU+/PBDuLm5QSaTwc3NDTExMaiqqqp1300lNTUVVVVVeO2119QKRwCQy+UICgpq+sAMGHO/ZeQ+AEyfPh1lZWVYvXq1xsIReHh93LFjx5o2MAPEvG85eT9jxgwoFAp8+umnGmeVevXqhR07dqCqqgpTpkyBEEIPUdZCkEG4ceOGACCCg4O13gaA8PLyEq6urqJnz55i1qxZYuDAgQKA6NSpk7hy5Ypo3bq16N+/v5g9e7YICgoSAETfvn017jsgIEDY2tqKvn37ivnz54s33nhDmJmZCUtLS3H27FmVbf71r38JR0dHMXLkSPHOO++IKVOmiOeee04AEK+99pparC4uLuKJJ54QPj4+wt3dXURFRYnp06eLgwcPCiGECAwMFP9Mx08//VRIJBLRp08fUVhYqGxft26dkEgkok2bNiIiIkLMmTNHeWy9e/cWCoVCZZzx48cLAKJjx45i1qxZIioqStjb2yu/q3Hjxmn9nTeGw4cPCwAiNDRUr3HoC3PfeHP/2rVrAoBwcnISlZWVeo2lqTHvjTfv09PTBQDx5JNPigcPHtTa18/PTwAQJ06caKLotMNpawPz22+/1TiF0bNnT4SEhKi0Xb58GW+//TY++ugjZVtUVBTWr1+PgIAALF68GDNmzAAACCEwcOBAHDx4EBcuXMDzzz+vMlZycjLmz5+PmJgYZdu4ceMQEhKCSZMm4fLly8r2BQsWYO3atTA1NVW2CSEwceJEbNy4EadOncKLL76oMv6dO3fQrVs3nDp1CnK5vNbvYeHChVi+fDmGDh2KHTt2QCaTAQD+7//+D9OnT4eXlxeSkpJgZ2en3GbFihWIjo7G6tWrMXv2bAAPp7s2btyo3K+VlZUyfm9v71pj+KfMzMw6fzX/kzbTUX5+fnB2dsbBgwcxcOBAjBw5Er6+vnB3d2/yuxH1ibn/kDHl/qlTpwAAgYGBMDExzokw5v1DxpT3p0+fBvDwjPrfv09N+vfvj5SUFJw6dQoBAQE6xdKo9Fm50iPVvwRr+8yYMUNlGwDC2tpalJaWqrSfOHFCABCdO3cWVVVVKuu2bNkiAIiNGzeq7bt169bi/v37arH1799fABDnzp2r8zjOnz8vAIjFixertLu4uAgA4tKlSxq3q/4V+uDBAzFhwgQBQEyaNEntV9n06dNr/BVWWVkp2rVrJ7p3765se/PNNwUAsWfPHrX+y5Yt0+lX6NGjR+v8N/rnR1sXLlxQ/oqv/tja2oqBAweKb775RutxmiPmvvHm/ooVKwQAMX/+fK36tyTMe+a9Nnm/fv16AUBMnTpVq7GbCs88Gpjg4GB8//33Wvd3d3eHpaWlSpuDgwMAwMvLS+3MVfW67OxstbF8fHxgbW2t1h4QEICkpCSkpaWhe/fuAICKigqsWbMGO3fuxNWrV1FSUqJyTYam8WUyGbp27Vrr8QwbNgx79+7FwoUL8f7776utP3v2LADghx9+QFJSktp6c3NzXL16Vbl86dIl5TFoOi5dBAUFNdp1Jz4+Prhy5QrOnDmDo0eP4vz58zh58iQSExORmJiI0aNHY+vWrS36TCRz3zhz39gx75n32jCk6zUB3m3d7NnY2Ki1mZmZ1blO0wXOHTp00LiP6vaioiJl2/Dhw7F//354eHjg9ddfVz6bsLCwEKtWrYJCoVAbp3379nUWPydOnIBMJkNoaKjG9fn5+QCADz74oNZxqhUVFcHExAT29vY1HpehkEgk6N27N3r37g3g4ZTQ3r17ERERge3bt2PYsGEYOnSonqM0HMz92jWH3H/iiScAAFlZWXqOpPlg3teuOeX97du36+xb3efJJ59s1Jh0xeKRlGq6I6+63dbWFgDw008/Yf/+/QgODsaBAwdUrtk4e/YsVq1apXEcbc6aJSUl4aWXXkJISAi+//57ZSFVrfqPY3FxMVq1alXneLa2tqiqqsK9e/fQrl07jcelrca6/qUmEokEQ4YMwdtvv42lS5fiyJEjLB4bCXO/do2V+9XXyB07dgxVVVVGe92jvjDva9dYeV99jMeOHUNlZWWt1z1Wn2199tlndYqjsbF4JKW0tDSUlJSoTWMkJycDeDjFAUD5oN6wsDC1pK/uW18+Pj44cuQI+vfvj5CQEPz3v/9VuQjbz88PFy5cwNmzZzFgwIA6x+vWrRsuXLiA5ORkvPbaa48Va2ZmJpYsWaLTNg3x/DZN00rUsJj7tWus3Hdzc0OfPn1w4sQJxMfH480336yxr0KhgFQq1SkGqh3zvnaNlffu7u7w9/fHyZMnER8fj/Hjx2vsl5SUhJSUFNjb29d4ZlZf+DOPlAoLC9WmBqqvM/H09FRe++Li4gIAOHnypErfn3/+WeWuvfrq1q0bjhw5AqlUipCQEJX9REVFwczMDNOmTcOtW7c0HkNaWppyeezYsQCApUuXorS0VNmelZVV46/lmlRf/6LLRxupqanYsmULysvL1dbdvXsXX375JQDA399fp3hJe8z92jVW7gPAqlWrIJfLMXXqVOzatUtjn+TkZPTr10+nmKluzPvaNXbeS6VSTJs2DYmJiWrrU1NTlW+WWbBgASwsLHSKvbHxzKOBqe2xDQAwf/585SMMGlpAQADWr1+PlJQU9OzZE5mZmfj6668hl8uVBQwA+Pr6wtfXF7t370ZOTg569uyJW7duYd++fQgLC0NCQsJjx+Ll5aX8NfrKK6/g4MGDCAgIgKenJ9atW4d///vfePrppxEaGorOnTvj/v37yMjIwPHjxxEZGYnPPvsMANC3b1+8+eab2LRpE7p27YqhQ4dCoVBg165d6Nmzp8b/aJtadnY2xo0bh6lTp6JPnz545plnYGZmhps3byIxMRElJSUICwtDeHi4vkNtVMz9h4wp9wHA29sb+/fvx4gRIzBy5EgsXboUffr0Qdu2bZGfn49Tp07hypUrcHNz03eojYJ5/5Cx5f3zzz+PPXv2YOTIkRg0aBB69eqFXr16KV9PePjwYVRVVeHNN9/E22+/re9w1TXSXdykI20e2wBAFBQUKLcBIAIDA2scS9PjCKofPfDee+9p7P+///1PhIaGChsbG2FlZSVeeukljY9ryM3NFePHjxeOjo5CJpOJrl27irVr14qMjAyN+3ZxcREuLi41Hr+mB8YKIcSVK1dE+/bthZWVlTh+/LiyPTU1VYwcOVI4OjoKc3NzYW9vL55//nkxf/588csvv6iM8eDBAxETEyM6deokLCwsRKdOncTy5cvFb7/9ptNjGxpLcXGx2LZtmxg7dqx47rnnROvWrYWZmZlo166d6N+/v4iLi6vzQbLNGXPfeHP/7/Ly8sSyZctEz549RZs2bYSZmZmws7MTQUFB4tNPPxUlJSX6DrFBMe+Z90IIkZ2dLd555x3x3HPPCSsrK+W/u5WVldi5c6e+w6uRRAgDuQ+diIiIyIhVVVVh6NCh2LdvH1avXo2pU6fqOySNWDwSERERGYiSkhL4+/vj8uXLiI+PV17HaUh4zSMRERGRgbC2tsb+/fsRFxeHW7duabwjXt945pGIiIiItMZH9RARERGR1lg8EhEREZHWWDwSERERkdZYPD4mIQSKi4t1erI8UUvA3CdjxvwnY8bi8THdv38ftra2uH//vr5DIWpSzH0yZsx/MmYsHomIiIhIayweiYiIiEhrLB6JiIiISGssHomIiIhIa3w9IRERUQslhEBpaaly2crKChKJRI8RUUvA4pGIiKiFKi0txeDBg5XLe/fuNbj3JFPzw2lrIiIiItIai0ciIiIi0hqLRyIiIiLSGotHIiIiItIai0ciIiIi0hqLRyIiIiLSmkEWjwqFAvPmzYOjoyPkcjn8/Pxw6NChOrdzdXWFRCLR+HF3d1fpW1O/FStWNNZhERERETV7Bvmcx8jISCQkJGDmzJlwd3fH5s2bERoaiqNHj8Lf37/G7T755BOUlJSotN28eRPvvvsuXn75ZbX+AwYMQEREhEqbj49PwxwEERERUQtkcMVjamoqdu7cidjYWMyZMwcAEBERAU9PT8ydOxenT5+ucdshQ4aotb3//vsAgNGjR6ut8/DwwJgxYxomcCIiIiIjYHDT1gkJCTA1NcXkyZOVbTKZDBMmTMCZM2dw+/ZtncbbsWMHOnbsiN69e2tcX1ZWhvLy8seKmYiIiMhYGFzxmJaWBg8PD9jY2Ki0+/r6AgAuXryo01i//PILRo0apXH95s2bYWVlBblcjmeffRY7duyod9yGTgiBkpIS5UcIoe+QiIiIqBkyuGnrnJwcODg4qLVXt2VnZ2s91vbt2wFonrLu3bs3RowYgY4dOyI7Oxtr167F6NGjUVRUhH//+981jqlQKKBQKJTLxcXFWsejT3y/KT2u5pr7RA2B+U/0iMGdeSwrK4NUKlVrl8lkyvXaqKqqws6dO+Hj44MuXbqorT916hRmzJiBV199FW+99RbOnz8PT09PLFiwoNZ9xMTEwNbWVvlxcnLS8siImjfmPhkz5j/RIwZXPMrlcpVfd9Wqr0uUy+VajXP8+HFkZWVpPOuoiYWFBaZOnYrCwkKcP3++xn7R0dEoKipSfnS9BpOouWLukzFj/hM9YnDT1g4ODsjKylJrz8nJAQA4OjpqNc727dthYmKCN954Q+t9V/+SzM/Pr7GPVCrVeGaUqKVj7pMxY/4TPWJwZx69vb2Rnp6udj1JSkqKcn1dFAoF9uzZg6CgIK2LTQDIyMgAALRr1077gImIiIiMiMEVj8OHD0dlZSU2bNigbFMoFNi0aRP8/PyUZwdv3bqFq1evahzj4MGDKCwsrHHK+u7du2pt9+/fxyeffAJ7e3t07969AY6EiIiIqOUxuGlrPz8/hIeHIzo6Grm5uXBzc0N8fDwyMzMRFxen7BcREYHjx49rfOTM9u3bIZVKMWzYMI37WLt2Lb777jsMGjQIzs7OyMnJwcaNG3Hr1i1s3boVFhYWjXZ8RERERM2ZwRWPALBlyxYsWrQIW7duRUFBAby8vJCYmIg+ffrUuW1xcTEOHDiAsLAw2Nraauzz4osv4vTp0/jyyy+Rl5cHKysr+Pr6YuPGjejXr19DHw4RERFRi2GQxaNMJkNsbCxiY2Nr7HPs2DGN7TY2NnU+zmfAgAEYMGDA44RIREREZJQM7ppHIiIiIjJcLB6JiIiISGssHomIiIhIayweiYiIiEhrLB6JiIiISGssHomIiIhIayweiYiIiEhrLB6JiIiISGssHomIiIhIayweiYiIiEhrLB6JiIiISGsG+W5rIiIybEIIlJaWKpetrKwgkUj0GBERNRUWj0REpLPS0lIMHjxYubx3715YW1vrMSIiaiosHptI93e26HX/kgcVsP3bctCinRBmFnqL53xshN723ZB49oWIiIwNi0eix8CzL0REZGx4wwwRERERaY3FIxERERFp7bGLx2+//RaDBw+Gs7MzbG1t4ezsjCFDhuC7775rgPCIiIiIyJDU+5rHBw8eYNSoUdizZw+EEDAzM4OdnR3u3LmDffv2Yf/+/Rg2bBh27NgBMzNeWklERETUEtT7zGNMTAwSEhIQEBCA5ORklJeXIycnB+Xl5Thx4gT8/f2xZ88erFixoiHjJSIiIiI9qnfxuGnTJjzzzDM4fPgwXnzxRZiYPBzKxMQE/v7+OHz4MDw8PLBx48YGC5aIiIiI9KvexWNOTg4GDRpU45S0ubk5Bg0ahJycnHoHR0RERESGpd7Fo5OTE0pKSmrtU1paCmdn5/rugoiIiIgMTL2Lx4kTJ2L37t01nlnMysrCrl27MHHixHoHR0RERGRIhBAoKSlRfoQQ+g6pydX7NugRI0bg1KlT8PHxwcyZM+Hv748OHTrgjz/+QHJyMlatWgV/f3+Eh4fj1q1bKtvybCQRERE1R3yz2GOceezUqRMSExORm5uLhQsXIjAwEM888wwCAwPx7rvvIjc3F/v370fnzp3RsWNH5adTp051jq1QKDBv3jw4OjpCLpfDz88Phw4dqnO7xYsXQyKRqH1kMpnG/nFxcejSpQtkMhnc3d2xevVqnb8HIiIiImNS7zOPERERkEgkDRmLUmRkJBISEjBz5ky4u7tj8+bNCA0NxdGjR+Hv71/n9uvXr1f5FWBqaqrW5/PPP8dbb72FYcOGYdasWUhOTsb06dPx559/Yt68eQ16PEREREQtRb2Lx82bNzdgGI+kpqZi586diI2NxZw5cwA8LFQ9PT0xd+5cnD59us4xhg8fDnt7+xrXl5WVYeHChQgLC0NCQgIAYNKkSaiqqsKyZcswefJktGnTpmEOiIiIiKgFMbh3WyckJMDU1BSTJ09WtslkMkyYMAFnzpzB7du36xxDCIHi4uIaL2I9evQo8vLyEBUVpdI+ZcoUlJaW4sCBA493EEREREQtVIO+N/DixYs4evQoAMDf3x8vvPCCzmOkpaXBw8MDNjY2Ku2+vr7KfTg5OdU6RqdOnVBSUgIrKysMGTIEK1euRIcOHVT2AQA9evRQ2a579+4wMTFBWloaxowZo3PsRERE1bq/s0XfIUDyoAK2f1sOWrQTwsxCb/Gcj43Q276p4ehUPJ44cQJffvkloqKi0LNnT5V17777LmJiYlTaoqKidL4JJScnBw4ODmrt1W3Z2dk1btumTRtMnToVvXr1glQqRXJyMtauXYvU1FScO3dOWZDm5OTA1NQU7du3V9newsICdnZ2te5DoVBAoVAol4uLi3U6PqLmirlPxoz5T/SITsXjrl278PXXX2PNmjUq7UePHsXy5cthZmaGUaNGwdraGl9//TXWrVuH/v37Y8iQIVrvo6ysDFKpVK29+o7psrKyGredMWOGyvKwYcPg6+uL0aNHY926dZg/f75yDAsLzb+8ZDJZrfuIiYnBkiVL6jwOopaGuW9Y9H1Wy9jOaDH/iR7RqXg8c+YMevfurTal/Pnnn0MikeCzzz7D+PHjAQAzZ86Ep6cnNm/erFPxKJfLVX7dVSsvL1eu18WoUaMwe/ZsHD58WFk8yuVyVFRUaOxfXl5e6z6io6Mxa9Ys5XJxcXGd0+jUOPT9P0/AuP4HytwnY8b8J3pEp+IxOzsbQUFBau1Hjx6FjY0NIiMjlW1ubm4IDQ1FamqqTgE5ODggKytLrb36TTaOjo46jQc8fJVifn6+yj4qKyuRm5urMnVdUVGBvLy8WvchlUo1nhklaumY+2TMmP9Ej+h0t3VBQYHaWblbt27h7t278Pf3h4mJ6nBubm64d++eTgF5e3sjPT1d7XqSlJQU5XpdCCGQmZmJdu3aqewDAM6dO6fS99y5c6iqqtJ5H0RERETGQqfisVWrVmpnBX/66ScAD+9U/qfa3u5Sk+HDh6OyshIbNmxQtikUCmzatAl+fn7KaYJbt27h6tWrKtvevXtXbbz169fj7t27CAkJUbb169cPbdu2xfr169X6WlpaIiwsTKeYmwNhao4irzeUH2Fqru+QiIiIqBnSadray8sLiYmJKC0thZWVFQDg22+/hUQiQZ8+fdT6X79+XedpZj8/P4SHhyM6Ohq5ublwc3NDfHw8MjMzERcXp+wXERGB48ePqzzL0cXFBa+//jq6du0KmUyGkydPYufOnfD29sa//vUvZT+5XI5ly5ZhypQpCA8PR3BwMJKTk7Ft2zZ88MEHaNu2rU4xNwsSiV6vxSMiIqKWQaficfz48YiIiEBgYCAiIiKQnp6Or776Cs7OzmrXQlZWVuLEiRPo27evzkFt2bIFixYtwtatW1FQUKAsWjUVqH83evRonD59Gnv27EF5eTlcXFwwd+5cLFy4EJaWlip9o6KiYG5ujpUrV2Lfvn1wcnLCxx9/rHbHNhERERE9olPxOGbMGCQlJSE+Ph5paWkQQsDGxgZxcXFq1zseOHAA9+7dQ3BwsM5ByWQyxMbGIjY2tsY+x44dU2v74osvdNrPpEmTMGnSJF3DIyIiIjJaOr9hZtOmTcpXBdrZ2SE4OBhPPvmkWj+pVIqPP/4YgwcPbpBAiYiIiEj/6vV6Qn9/f/j7+9faJzg4uF5nHYmIiIjIcDXYu60zMjJQVFQEW1tbdOrUqaGGJSIiIiIDotOjev6pqKgIM2bMQJs2beDu7o4ePXrA3d0dbdq0wcyZM1FUVNRQcRIRERGRAaj3mcfc3FwEBATg2rVraN26NQIDA9GhQwf88ccfuHjxIj799FP897//RXJysspbXIiIiIio+ar3mcfo6Ghcu3YN8+fPx+3bt3HkyBF89dVXOHLkCG7fvo158+bh2rVrWLBgQUPGS0RERER6VO8zj/v370e/fv2wfPlytXVWVlaIiYlBSkoK9u3b91gBEhEREZHhqPeZx9LSUvTs2bPWPr169cKff/5Z310QERERkYGpd/Ho6emJzMzMWvtkZmbC09OzvrsgIiIiIgNT7+JxwYIFSEhIwOHDhzWu//HHH5GQkICFCxfWOzgiIiIiMixaX/O4ZcsWtbaXX34ZwcHBGDBgAPz9/ZV3WycnJ+Pw4cMYOHAgCgoKGjRgIkMiTM1R5PWGyjIREVFLpnXxGBkZCYlEotImhADw8Czjjz/+qLbN/v37kZiYiIiIiMcMk8hASSQQZhb6joJqIYRAaWmpctnKykrtbxkREWlP6+Jx06ZNjRkHEVGjKC0txeDBg5XLe/fuhbW1tR4jIiJq3rQuHseNG9eYcRARUTPCSzaIjFeDvduaiIiMCC/ZIDJaj/VuayIiIiIyLloXjyYmJjAzM0N6erpy2dTUtM6PmRlPbhIRERG1FFpXdn369IFEIoGlpaXKMhEREREZD62Lx2PHjtW6TEREREQtX4POKT948ABXrlwB8PD1hebmvPuOiIiIqCXR6YaZjIwMbNy4UXnd498lJibiySefRI8ePdCjRw84ODhg9+7dDRYoEREREemfTsXjl19+iUmTJkEqlaq0//bbbxgxYgTu3r0LZ2dndOnSBQUFBRg9ejTS0tIaNGAiIiIi0h+dpq1PnjwJb29vuLi4qLSvWrUK5eXlmDJlClavXg0A+O677/Daa69hzZo1iIuLa7iIiYiIyGh1f2eLXvcveVAB278tBy3aqddnnp6PbfpXQOt05vHGjRvw9fVVa//+++9hYWGB5cuXK9uGDBmCgIAAJCcnP36URERERGQQdCoe7969C3t7e5W2/Px8XL9+HX5+fmjVqpXKOh8fH2RlZekclEKhwLx58+Do6Ai5XA4/Pz8cOnSozu2++eYbvP766+jUqRMsLS3x9NNPY/bs2SgsLFTr6+rqColEovZ56623dI6XiIiIyFjoNG1tbm6OvLw8lbbz588DAHr06KHW38rKql5BRUZGIiEhATNnzoS7uzs2b96M0NBQHD16FP7+/jVuN3nyZDg6OmLMmDFwdnbGlStXsGbNGhw8eBAXLlyAXC5X6e/t7Y3Zs2ertHl4eNQrZiIiIiJjoFPx6OHhgaSkJJW2H3/8ERKJBL1791brn52dDQcHB50CSk1Nxc6dOxEbG4s5c+YAACIiIuDp6Ym5c+fi9OnTNW6bkJCAoKAglbbu3btj3Lhx2L59OyZOnKiy7sknn8SYMWN0io+IiIjImOk0bT1s2DBcu3YNb731Fi5fvoyEhARs2LAB1tbWCAkJUet/6tQpuLm56RRQQkICTE1NMXnyZGWbTCbDhAkTcObMGdy+fbvGbf9ZOALA0KFDAQC//PKLxm0qKipQWlqqU4xERERExkqn4nHmzJno2rUrNmzYAB8fH7z++uu4f/8+lixZojZFfe7cOfz2228YMGCATgGlpaXBw8MDNjY2Ku3VN+pcvHhRp/Hu3LkDAGrXagLAkSNHYGlpCWtra7i6umLVqlU6jU1ERERkbHSatra0tMSpU6fw8ccf4+zZs7Czs0N4eDgGDRqk1vfChQsYPHgwXn31VZ0CysnJ0TjVXd2WnZ2t03gffvghTE1NMXz4cJV2Ly8v+Pv74+mnn0ZeXh42b96MmTNnIjs7Gx9++GGN4ykUCigUCuVycXGxTvEQNVfMfTJmzH+iR3R+PaG1tTUWLVpUZ7/JkyerTD1rq6ysTO0h5MDDqevq9drasWMH4uLiMHfuXLi7u6us27dvn8rym2++iVdeeQUfffQRpk2bhqeeekrjmDExMViyZInWMRC1FPXNfT6TTZU+nslGj49/+4ke0WnauinI5XKVX3fVysvLleu1kZycjAkTJiA4OBgffPBBnf0lEgnefvttPHjwAMeOHauxX3R0NIqKipSf2q7BJGpJmPtkzJj/RI/ofOaxsTk4OGh8NmROTg4AwNHRsc4xLl26hFdffRWenp5ISEiAmZl2h+nk5ATg4bMrayKVSjWeGSVq6Zj7ZMyY/0SPGNyZR29vb6Snp6tdT5KSkqJcX5vr168jJCQE7du3x8GDB2Ftba31vjMyMgAA7dq10y1oIiIiIiNhcMXj8OHDUVlZiQ0bNijbFAoFNm3aBD8/P+XZwVu3buHq1asq2965cwcvv/wyTExM8MMPP9RYBObn56OyslKl7a+//sKKFStgYWGBvn37NvBREREREbUMBjdt7efnh/DwcERHRyM3Nxdubm6Ij49HZmYm4uLilP0iIiJw/PhxCCGUbSEhIcjIyMDcuXNx8uRJnDx5UrmuQ4cOyscG7du3D++//z6GDx+Ojh07Ij8/Hzt27MD//vc/LF++HE888UTTHTARERFRM2JwxSMAbNmyBYsWLcLWrVtRUFAALy8vJCYmok+fPrVud+nSJQDAf/7zH7V1gYGByuKxa9euePbZZ7Ft2zbcvXsXFhYW8Pb2xu7duxEeHt7wB0RERETUQhhk8SiTyRAbG4vY2Nga+2i6I/rvZyFr0717d7VH9RARERFR3QyyeCQiIqLHJ0zNUeT1hsoy0eNi8UhERNRSSSR6fSg+tUwGd7c1ERERERkuFo9EREREpDUWj0RERESkNRaPRERERKQ1Fo9EREREpDUWj0RERESkNT6qh4haND7njoioYbF4JKKWjc+5IyJqUJy2JiIiIiKtsXgkIiIiIq2xeCQiIiIirbF4JCIiIiKtsXgkIiIiIq2xeCQiIiIirbF4JCIiIiKt8TmPRERERFriiwdYPBIRERFpjy8e4LQ1EREREWmPxSMRERERaY3FIxERERFpjcUjEREREWmNxSMRERERaY3FIxERERFpzSCLR4VCgXnz5sHR0RFyuRx+fn44dOiQVttmZWVhxIgRaN26NWxsbDB48GBkZGRo7BsXF4cuXbpAJpPB3d0dq1evbsjDICIiImpxDLJ4jIyMxEcffYTRo0dj1apVMDU1RWhoKE6ePFnrdiUlJejbty+OHz+OBQsWYMmSJUhLS0NgYCDy8vJU+n7++eeYOHEinnvuOaxevRq9evXC9OnT8eGHHzbmoRERERE1awb3kPDU1FTs3LkTsbGxmDNnDgAgIiICnp6emDt3Lk6fPl3jtuvWrcO1a9eQmpqKF154AQDwyiuvwNPTEytXrsTy5csBAGVlZVi4cCHCwsKQkJAAAJg0aRKqqqqwbNkyTJ48GW3atGnkIyUiIiJqfgzuzGNCQgJMTU0xefJkZZtMJsOECRNw5swZ3L59u9ZtX3jhBWXhCADPPPMM+vfvj927dyvbjh49iry8PERFRalsP2XKFJSWluLAgQMNeERERERELYfBFY9paWnw8PCAjY2NSruvry8A4OLFixq3q6qqwuXLl9GjRw+1db6+vrh+/Tru37+v3AcAtb7du3eHiYmJcj0RERERqTK4aeucnBw4ODiotVe3ZWdna9wuPz8fCoWizm2ffvpp5OTkwNTUFO3bt1fpZ2FhATs7uxr3ATy8mUehUCiXi4qKAADFxcW1HleloqzW9camru9LG/xO1WnzvbZq1QoSiUTnsZn7DaMhch/g9/pP2n6vTZn//DdSx7/9Da+xc18Tgysey8rKIJVK1dplMplyfU3bAdBq27KyMlhYaH6puUwmq3EfABATE4MlS5aotTs5OdW4DamzXf2WvkNokbT5XouKitTO7GuDud8wmPuNQ9vvlfmvX8z/htfYua+JwRWPcrlc5dddtfLycuX6mrYDoNW2crkcFRUVGscpLy+vcR8AEB0djVmzZimXq6qqkJ+fDzs7uwar6BtLcXExnJyccPv27QZLIGp+32urVq3qtR1zn/6pOX6vzP/m8e9k6Jrjd1rf3NfE4IpHBwcHZGVlqbXn5OQAABwdHTVu17ZtW0ilUmW/2rZ1cHBAZWUlcnNzVaauKyoqkJeXV+M+gIdnNv95drN169a1H5SBsbGxaTbJ3py09O+VuU81MYbvlflPmhjrd2pwN8x4e3sjPT1dbQ4/JSVFuV4TExMTdO3aFefOnVNbl5KSgk6dOimr7uox/tn33LlzqKqqqnEfRERERMbO4IrH4cOHo7KyEhs2bFC2KRQKbNq0CX5+fsrrS27duoWrV6+qbfvTTz+pFIW//vorjhw5gvDwcGVbv3790LZtW6xfv15l+/Xr18PS0hJhYWGNcWhEREREzZ7BTVv7+fkhPDwc0dHRyM3NhZubG+Lj45GZmYm4uDhlv4iICBw/fhxCCGVbVFQUvvjiC4SFhWHOnDkwNzfHRx99hA4dOmD27NnKfnK5HMuWLcOUKVMQHh6O4OBgJCcnY9u2bfjggw/Qtm3bJj3mpiKVSvHee+9pvKmI6o/fq+Hjv1Hj4PfaPPDfqeEZ+3cqEX+vvgxEeXk5Fi1ahG3btqGgoABeXl5YtmwZgoODlX2CgoLUikcA+P333/H222/jxx9/RFVVFYKCgvDxxx/Dzc1NbT9ffPEFVq5ciRs3bsDJyQlTp07FjBkzDP7iZyIiIiJ9McjikYiIiIgMk8Fd80hEREREhovFIxERERFpjcWjEVAoFJg3bx4cHR0hl8vh5+eHQ4cO6TusZq2kpATvvfceQkJC0LZtW0gkEmzevFnfYdE/MPcbHnO/eWDuNw7m/0MsHo1AZGQkPvroI4wePRqrVq2CqakpQkNDcfLkSX2H1mzdu3cPS5cuxS+//IJu3brpOxyqAXO/4TH3mwfmfuNg/v9/glq0lJQUAUDExsYq28rKykTnzp1Fr1699BhZ81ZeXi5ycnKEEEL89NNPAoDYtGmTfoMiFcz9xsHcN3zM/cbD/H+IZx5buISEBJiammLy5MnKNplMhgkTJuDMmTO4ffu2HqNrvqRSKZ544gl9h0G1YO43Dua+4WPuNx7m/0MsHlu4tLQ0eHh4qL1709fXFwBw8eJFPURF1PiY+2SsmPvU2Fg8tnA5OTlwcHBQa69uy87ObuqQiJoEc5+MFXOfGhuLxxaurKxM4+uTZDKZcj1RS8TcJ2PF3KfGxuKxhZPL5VAoFGrt5eXlyvVELRFzn4wVc58aG4vHFs7BwQE5OTlq7dVtjo6OTR0SUZNg7pOxYu5TY2Px2MJ5e3sjPT0dxcXFKu0pKSnK9UQtEXOfjBVznxobi8cWbvjw4aisrMSGDRuUbQqFAps2bYKfnx+cnJz0GB1R42Huk7Fi7lNjM9N3ANS4/Pz8EB4ejujoaOTm5sLNzQ3x8fHIzMxEXFycvsNr1tasWYPCwkLlnYv79+/H77//DgCYNm0abG1t9Rme0WPuNx7mvmFj7jcu5j8gEUIIfQdBjau8vByLFi3Ctm3bUFBQAC8vLyxbtgzBwcH6Dq1Zc3V1xc2bNzWuu3HjBlxdXZs2IFLD3G8czH3Dx9xvPMx/Fo9EREREpANe80hEREREWmPxSERERERaY/FIRERERFpj8UhEREREWmPxSERERERaY/FIRERERFpj8UhEREREWmPxSERERERaY/FIRERERFpj8UgGz9XV1aBe92Ro8VDLZWi5ZmjxUMtmaPlmaPHoE4tHI1VaWorly5fj+eefh7W1NaRSKZ566ikEBAQgOjoa169f13eIRI2CuU/GjPlPDcFM3wFQ07t//z78/f1x+fJluLm5YcyYMbCzs8O9e/eQmpqKFStWoHPnzujcubO+QwUAJCUl6TsEaiGY+2TMmP/UUFg8GqFPPvkEly9fxsSJE7FhwwZIJBKV9Tdu3IBCodBTdOoM5Q8ZNX/MfTJmzH9qKJy2NkJnzpwBAEyZMkXtjwcAdOzYEc8884xyWSKRICgoSONYmq4BiYyMhEQiQUZGBlauXIlnn30WUqkUkZGRWLZsGSQSCbZs2aJxvG+++QYSiQQLFy6scR/1GQN4+Idx4sSJcHZ2hlQqhYODAyIjI3Hz5k2N4+zduxcvvPAC5HI5OnTogEmTJqGgoEBjX2oemPvMfWPG/Gf+NxQWj0bIzs4OAJCent6o+5k2bRqWL1+OHj16YObMmejatSvGjBkDiUSCbdu2adxm69atAICxY8fWOG59xkhJSYGPjw/i4+PRvXt3zJgxAwEBAdi+fTt8fX2RkZGhMsaWLVswZMgQpKenY+zYsRg3bhxOnTqFl156CRUVFTp9D2Q4mPvMfWPG/Gf+NxhBRmfv3r0CgGjVqpWYPXu2+OGHH8S9e/dq7A9ABAYGalzn4uIiXFxcVNrGjRsnAIinnnpK3Lx5U20bf39/YWpqKrKzs1Xa8/LyhIWFhejRo0ed+9BljIqKCuHq6ipatWolLly4oNI/OTlZmJqaioEDByrbioqKhI2NjbCyshK//vqryjh9+vQRANTioeaBuf8Ic9/4MP8fYf4/Hp55NEKvvvoqVq5cCSEEVq5cieDgYNjb28PNzQ1Tp07FtWvXGmQ/77zzDpydndXax44di8rKSnz11Vcq7bt27UJFRQXGjBlT59i6jJGYmIjMzEy888478PHxUenv7++PwYMH4+DBgyguLgYAfPfddyguLsb48ePh4eGh7Gtubo4PPvig7gMng8Xcf4S5b3yY/48w/x8Pi0cjNWvWLGRnZ2P37t2YOXMm/P39cevWLaxduxZeXl7Yt2/fY+/D19dXY/uIESMglUqVUwzVtm3bBjMzM7zxxht1jq3LGGfPngUA/Prrr1i8eLHa586dO6iqqlJO5Vy6dAkAEBAQoLbfXr16wcyM95k1Z8x95r4xY/4z/xuEns98kgEpLCwUUVFRAoCwt7cXCoVCCFH/qYuMjIwa9zVs2DABQPz8889CCCF+++03AUCEhoZqtQ9dxpg4caIAUOfn2LFjQgghJkyYoLL8Tx06dODURQvD3GfuGzPmP/NfVzzzSEq2trZYs2YNXFxccO/ePVy5cgXAwzvuHjx4oHGboqKiGsfTdDdfteoLmqt/PVZfAF3bxdL1HcPGxgYAsH//fgghavwEBgYCePg9AEBubq7aPisrK5GXl6d1jNQ8MPeZ+8aM+c/81xWLR1IhkUhgZWWl0tamTRtkZWWp9c3MzERhYWG99hMaGgo7Ozvs2LEDVVVV2L59O1q1aoXBgwc3+Bh+fn4AHj2moi7dunUDACQnJ6utO3PmTI1/TKl5Y+4z940Z85/5r5MmPc9JBuGzzz4TqampGtd9++23QiKRiNatW4vy8nIhhBDBwcFqp/IVCoUYOnSoxrvPqqcubty4UWsc1dMkMTExAoCIjIzU2K+mqQttxygvLxfOzs5CJpOJ48ePq62vqKgQycnJyuXCwsIa77gLDAzkHXfNGHNfFXPfuDD/VTH/608ihBBNV6qSIRgyZAj27t0LNzc3vPjii3B0dERpaSnS0tKQnJwMExMTbNu2TXnh8Y8//oiQkBDI5XK88cYbsLS0xKFDh9C6dWvcvHkTFhYWyMzMVI4fGRmJ+Ph43Lhxo9aXyJ89exa9evWCubk5/vrrLyQlJaFfv35q/arH+Ps+dB3jp59+wiuvvIK8vDz069cPXbt2hUQiwc2bN5GcnAw7OztcvXpV2T8+Ph6RkZGwsbHByJEjYWtri8TERMjlcuTk5KgdMzUPzH3mvjFj/jP/G4y+q1dqelevXhX/+c9/xIABA0THjh2FTCYTMplMdO7cWYwbN06cO3dObZuvv/5adO3aVVhYWIgnnnhCTJs2Tdy/f7/Wi6br+vUphBDu7u7K54JVVlZq7FPbr09txxBCiN9//13MmDFDuLu7C6lUKmxsbESXLl3ExIkTRVJSklr/b7/9VnTv3l1IpVLRvn17MXHiRJGfn19nPGS4mPvMfWPG/Gf+NxSeeSQiIiIirfGGGSIiIiLSGotHIiIiItIai0ciIiIi0hqLRyIiIiLSGotHIiIiItIai0ciIiIi0hqLRyIiIiLSGotHIiIiItIai0ciIiIi0hqLRyIiIiLSGotHIiIiItIai0ciIiIi0hqLRyIiIiLS2v8D7WZFvn+KgMwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB6AAAADmCAYAAAB79ZvfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/HklEQVR4nO3de3gU5cH38d+SQBICCQgIQWKQsxYQ5KzhTAVpNVgQq0CIQvGp9UAriKgURUEtAmIBfSg0AalFDmIKbZWDgBEiJ4PWt3IQCCCJYBASCCQQcr9/8LCwbEKyw8Ls4fu5rr0ud3Z29s4s36zJnZlxGGOMAAAAAAAAAAAAAAC4ShXsHgAAAAAAAAAAAAAAIDAwAQ0AAAAAAAAAAAAA8AomoAEAAAAAAAAAAAAAXsEENAAAAAAAAAAAAADAK5iABgAAAAAAAAAAAAB4BRPQAAAAAAAAAAAAAACvYAIaAAAAAAAAAAAAAOAVTEADAAAAAAAAAAAAALyCCWgAAAAAAAAAAAAAgFcwAR3AunXrJofDUe71161bJ4fDoZdeeunaDQrwA7QDWEc/gOfoBrCOfgDr6Aewjn6Aq0NDgDW0A3/CBLTNtm3bpmHDhqlx48aKjIxURESEGjZsqCFDhmjVqlV2D++qFBUVacGCBUpISNBNN92ksLAwRUZGqkmTJho8eLCWLVum4uJiu4dpu5SUFDkcjnLdunXrZvdwfQbt0M6lTp06penTp6t79+6qVauWKlasqBtuuEHx8fF6/fXX9eOPP9o9RJ9CP/QjSUlJSWV+7qSkpNg9TJ9BN3RzqdOnT2vWrFnq3bu36tSpo0qVKqlq1apq3ry5fvOb32j16tV2D9Gn0A/9SO6fO6Ghoapevbpuu+02DRo0SEuWLNGZM2fsHqbPoR/6udz+/fsVEhIih8OhyZMn2z0cn0Y/9COV/HNPaGio6tSpo4SEBKWlpdk9RJ9FQzQklf27g5EjR9o9RJ9DO8HdzksvvVTu+Z5A/+MAhzHG2D2IYFRcXKxRo0Zp2rRpCg0NVY8ePdS8eXNVrFhRe/fu1erVq3Xs2DFNmDBB48aNs/Qa3bp10/r161Xet/jUqVM6cOCAatasqZo1a1p6zQv279+v+++/XxkZGapZs6Z69uypuLg4FRcXa9++fVq3bp2OHj2qfv36admyZVf1Wv5u+/bt+uijj664zsyZM5WTk6PHH39cM2fOvD4D81G0QzuX++qrr5SQkKD9+/crLi5OPXv2VO3atZWXl6cvvvhC27ZtU1RUlLKyshQZGWn3cG1FP/RzqaSkJM2bN0/Dhg1TvXr1SlynX79+atWq1fUdmI+hG7q53FdffaX7779f+/btU7169dS9e3fddNNNKiws1O7du7V+/XqdOHFCI0eO1LRp0+werq3oh34udfnnjjFGeXl52r17tz777DOdOHFCt956qxYuXKiWLVvaPVzb0Q/9lGb8+PGaMGGCHA6HmjZtqm+//dbuIfkc+qGfS5X0c8/p06f17bff6t///reKi4u1bNky3XfffTaP1HfQEA1dqqzfHXTs2FF9+vSxYWS+h3ZoRzp/1Pm6detclm3fvl2pqanq2rWr20GG3bp1C9wDDw1sMXbsWCPJtGrVynz33Xduj586dcr86U9/MmPGjLH8Gl27djV2vMW5ubmmadOmRpJ59tlnzalTp9zWOXPmjElJSTH9+/e/7uPzN2+++aaRZNq0aWNOnz5t93BsRzu0c6mDBw+aG2+80VSoUMFMmTLFFBUVua3z5ZdfmjvvvNMcO3bs+g/Qx9AP/Vxq6NChRpJJT0+3eyg+jW7o5lIXPndCQkLM1KlTzdmzZ93WOXnypJk2bZr57W9/a8MIfQv90M+lrvS5k5eXZ37/+98bSaZ27drm0KFDNozQt9AP/ZTk3Llz5uabbzY1a9Y0SUlJRpLZsGGD3cPyOfRDP5e60ufPokWLjCTTuXNnG0bmu2iIhi7F7w7Kj3ZopzTJyclGkhk/frzdQ7mumIC2we7du01ISIipUaOG+eGHH664bkFBgfO/d+7caUaPHm1at25tbrjhBhMWFmYaN25sxowZY06cOOH23AvfjE6fPm3GjBljYmNjTVhYmGnWrJl5++23TXFxscv6a9euLTGCuLg4ExcXZ06cOGGeeuopExMTYypVqmRatGhhFi9e7Pa6L774opFkhg4dWua+uPyXduPHjzeSzNq1a01ycrJp3bq1iYiIMF27dnV7/HIXIk5OTnYu27dvn3Ms33zzjenbt6+Jjo42kZGR5uc//7nZunVrmWO006pVq0xISIi58cYbzYEDB+weju1o5yLaOS8xMdFIMi+++OIV1zt79qw5d+7cdRqVb6Kfi+jnPH6ILBvdXEQ35w0ePLjcPzSWNDkdTOjnIvo5rzyfOxcm1IL9Dzjo5yL6cfXxxx8bSeaJJ54waWlpRpJ59NFH7R6WT6Gfi+jnvLL+AEqSufXWW20YmW+ioYto6Dx+d1A+tHMR7bgL1gno0JKOisa1lZKSonPnzumxxx5T7dq1r7huWFiY878//PBDzZ07V927d1e3bt1UXFysL774Qm+88YbWr1+vzz77TBUrVnTbxsCBA5WRkaH+/ftLkpYuXaqnnnpKmZmZmjJlSrnGfPbsWd199906duyY+vfvr1OnTmnhwoUaOHCgPv74Y919993OdZOTkyWpXKeRCA0t+Z/g5MmTtXbtWiUkJOjuu+9WSEhIucZZmr179+quu+7SHXfcod/+9rfav3+/Fi9erC5duujTTz9Vhw4drmr718LevXv14IMPyuFwaPHixYqNjbV7SLajnYtoR859GRERoVGjRl1x3dL2VzChn4voB+VFNxfRzfnPnQ8++EARERF65plnylw/2D976Oci+im/cePGKSUlRYsWLdLMmTPlcDjsHpIt6Oci+nE1d+5cSVJiYqLatWunBg0aaNGiRZo+fbqqVKli8+h8A/1cRD9lW7lypSTpjjvusHkkvoOGLqIheIJ2LqIdXBDcvxWxyYYNGyRJPXr08Oh5Q4YM0R/+8AdVqlTJZfmECRM0fvx4LVq0SIMGDXJ73q5du/TNN98oOjpakvTyyy+rQ4cOmjZtmh566CG1bdu2zNfOyspSu3bttG7dOufrP/zww+rVq5emTp3q/GZ04MABHTp0SLGxsWrYsKFHX9+l1q9fr02bNqlFixaWt3GptLQ0Pffcc3rttdecy4YOHao+ffroN7/5jb7++usyt3H8+HG99dZbHr3uyJEjVa1aNQ9HK+Xn56tfv3766aef9Oc//1ldunTxeBuBiHbKFkztbNmyRWfOnFF8fLzzPULp6KdswdTPpebMmaOPP/64xMeee+45hYeHe/T6gYRuyhZM3WzdulVnz55Vx44dVbVqVY+2H4zop2zB1E95NWjQQLGxsTp48KD27dunBg0aeGW7/oZ+yhaM/Rw9elSpqalq1qyZ2rVrJ0kaPHiwJkyYoA8++EDDhg3z6LUDFf2ULRj7kVx/7jl9+rR27typf/3rX7rjjjs0adIkj147kNFQ2WjoovDwcD333HMevW6gop2yBWs7wYwJaBv88MMPkqR69ep59LybbrqpxOVPPPGExo8fr9WrV5f4zWjcuHEukzPR0dF68cUXNWTIEM2bN69c34wkadq0aS7fCC9cZH7Lli3OZRe+trp165a4jbfeekvHjx93WVZSsCNGjPDaNyJJqlatml544QWXZb1791bPnj21Zs0abdu2TW3atLniNo4fP66XX37Zo9dNSkqy9M0oKSlJ//nPf/TII4/oiSee8Pj5gYp2jrssC/Z2rP57CFb0c9xlWbD3c6kLR9KUZOTIkUE9AU03x12WBXs3Ze2zl156qVzLggX9HHdZFuz9eKJu3bo6ePCgcnJygnYCmn6Ouyyjn/Pee+89nTlzRkOGDHEuS0xM1IQJEzR37lwmoP8P/Rx3WUY/F5X0c0/NmjX10EMPlbpPgxENHXdZRkMXldRQdHQ0E9D/h3aOuyyjHUhMQPsVY4ySk5OVkpKib775Rrm5uSouLnY+npWVVeLzOnfuXOqyjIyMcr12tWrVdMstt7gtr1evntLT08u1Den8N6P9+/e7LCsp2Pbt25d7m+XRunXrEk9H1blzZ61Zs0YZGRllfjOqX7++jDFeHVdJJk6cqCVLlqhDhw565513rvnrBQPasc6f2sG1QT/W+Us/6enp6tix4zV9jWBDN9b5SzclKemH1mCegLaKfqzz537gHfRjnT/0M3fuXDkcDg0ePNi5rGHDhrrzzju1ceNGffvtt7r11luv2esHOvqxzh/6kVx/7jlz5owyMzM1ffp0jR49Wunp6Vq6dOk1ff1AR0PW+WND8B7asc5f2glmTEDboE6dOtqxY4cOHTqkpk2blvt5Tz31lGbMmKHY2Fjdd999iomJcV4v4OWXX1ZhYWGJzyvpmgMXluXm5pbrtUs7vW1oaKjLN8QL2y3tG2NmZqbzv/v06aNPPvmk3GO+GqVtz9P9cK3985//1B//+EfVqVNHS5cudbkeBGjnAto5r06dOpKkQ4cO2TYGf0I/59EPPEE359GN6xhK22eX/tDarFkz7dy587qMy1fRz3n047kL+7VWrVo2j8Q+9HMe/Vy0adMmffPNN+revbtuvvlml8cSExO1ceNG/fWvf9XkyZNtGqHvoJ/z6OfKKlWqpCZNmmjmzJn66quv9OGHH2rDhg2666677B6a7WjoPBqCp2jnPNrBpZiAtsFdd92ldevWac2aNeW+JsCRI0c0c+ZMtWzZUunp6apcubLzsR9++OGKpwk4fPiw2w8ohw8fllT6Nxmr4uLidNNNN+ngwYPas2eP5WsCOByOEpdXqFBBklRUVOT22JW+oVz4ektbXp79cK2vB7Br1y4NGjRIoaGhWrJkSamn3whmtFO2YGqnXbt2qlSpkrZu3aq8vDxFRUV59BrBhn7KFkz9oHzopmzB1E3btm1VsWJFbdu2TSdOnOA60GWgn7IFUz/ltXfvXh08eFC1atVS/fr1vbJNf0Q/ZQu2fi6c9nTt2rWlfu3z58/XpEmTVLFiRY/GEGjop2zB1k9ZOnTooA0bNmjLli1MQIuGyoOGUBLaKRvtBB8moG2QlJSk119/XbNnz9bIkSOv+JfdhYWFCgsL0969e2WMUa9evVy+EUnnL7Z+JWlpaW7XCbjwnNatW1v8Kkr3yCOP6NVXX9XEiRP117/+1avbrl69uqSSj3i80qklMjIydPLkSbdTMniyH67l9QDy8vKUkJCg3Nxcvfvuu/wPbylox7pAbKdy5cr69a9/rfnz52vKlClXfI2ioiJVqFDB+T80wYh+rAvEflA+dGNdIHYTGRmpBx98UAsWLNC0adP0xz/+0aPXCDb0Y10g9lNer7zyiiTpwQcfLPUXVMGAfqwLxH7y8/O1cOFCVa5cWQ899FCJ62zZskVff/21VqxYofvvv9+jMQQa+rEuEPspj2PHjkmSy9F+wYyGrAvWhnAe7VhHO4EreH8Tb6NGjRrp2WefVU5Oju655x7t27fPbZ2CggJNnTrVed24uLg4SdLGjRtd/ofo+++/19ixY6/4eq+88orLX4rk5ubq1VdflcPh0NChQ73wFbkaPXq0mjRpouTkZI0dO1YFBQVu6xQVFSk/P9/jbbdr107S+b/svXQ/pKen629/+1upzzt+/LgmTpzosuyTTz7RmjVr1Lx58zKvBSBdvB6AJ7fy/NW+MUaDBw/Wjh07NGLECD322GNlPidY0Q7tXG7ixImqVauWJk6cqLfffrvEHxi//vprdevWTXl5eeXaZqCiH/qB5+iGbi43adIk1apVSxMmTND06dN17tw5t3UKCgpKPU1aMKEf+vHEyZMn9cwzzyglJUUxMTF6/vnnr3qb/ox+6OdSixcv1okTJzRgwADNmTOnxNuFU29fOFI6mNEP/XgiMzNTH374oSSpS5cuV729QEBDNARraId24I4joG3y6quvqqCgQNOmTVPTpk3Vo0cPNW/eXBUrVtS+ffu0evVqHT16VK+++qokKSYmRv3799fSpUvVtm1b9ezZU4cPH9aKFSvUs2dP7dmzp9TXatKkiZo3b67+/ftLkpYuXarvv/9ef/jDH9S2bVuvf21RUVFauXKl+vXrp9dff11z5sxRr169FBcXp6KiImVnZ2vNmjU6fPiwmjdv7tFfi3Ts2FF33XWXPv30U3Xq1EldunTR/v37lZqaqnvvvVfLli0r8XmdO3fWO++8o02bNqljx47KzMzU4sWLFRERoTlz5njpK7fmzTff1PLly1WpUiXVqFHD+QFUmrIeD3S0QzuXqlevnnOfPf3005o2bZp69uyp2rVrKy8vT5s3b9aWLVsUFRUV9Keik+iHfko2Z84cffzxxyU+1rFjR/Xp0+c6j8i30A3dXCo2NlarVq3S/fffr5EjR+rNN99Ujx49dNNNN+n06dM6dOiQVq1apePHjys+Pt7u4dqOfuinJBc+d4wxOnHihHbv3q3169frxIkT+tnPfqaFCxcqJibG7mHajn7o54ILk8qPPPJIqev06tVL9erV08cff6ysrCzVrVv3eg3PJ9EP/ZTk0p97zp49q8zMTH300Uc6deqURowYcU3eL39FQzQEa2iHdnAZA1tt2bLFPProo6ZRo0YmIiLChIWFmfr165uHH37YrFq1ymXdEydOmGeeecbUr1/fhIWFmcaNG5tXXnnFnDlzxkgyXbt2dVm/a9euRpI5ffq0efbZZ01sbKypVKmSadq0qXn77bdNcXGxy/pr1641ksz48eNdlsfFxZm4uLgSx3/hNUpy9uxZM3/+fPPLX/7SxMTEmEqVKpnKlSubhg0bml//+tdm2bJlpqioyOU548ePN5LM2rVrS91nOTk5JjEx0dxwww0mIiLCdOzY0XzyyScmOTnZSDLJycnOdfft22ckmaFDh5pvvvnG9O3b10RFRZnIyEjTq1cvs3Xr1lJf53oZOnSokVTuG86jHdq5VH5+vnnrrbdM165dTc2aNU1oaKipVq2a6dSpk5k4caLJycmxe4g+hX7ox5jyff48/fTTdg/TZ9AN3Vzq1KlTZsaMGaZXr17mxhtvNKGhoaZKlSrm1ltvNY888ojbv4lgRz/0Y4z7505ISIipVq2aue2228ygQYPM4sWLzZkzZ+weps+hn+DuZ8eOHUaSueWWW9zej8u98MILRpKZOHHidRqd76Of4O7ngpJ+7nE4HKZ69eqmW7du5r333rN7iD6LhmjImIsNpaen2z0Uv0E7tHO5C1/H5e9DoHMYY0y5ZqoBP5SZmalbbrlFQ4cOVUpKit3DAfwG7QDW0Q/gOboBrKMfwDr6AayjH+Dq0BBgDe34D64BDQAAAAAAAAAAAADwCiagAQAAAAAAAAAAAABewQQ0AAAAAAAAAAAAAMAruAY0AAAAAAAAAAAAAMArOAIaAAAAAAAAAAAAAOAVTEADAAAAAAAAAAAAALyCCehSGGOUl5cnzlAOeIZ2AOvoB7CGdgDr6Aewjn4Aa2gHsI5+AGtoB7j+mIAuxYkTJxQdHa0TJ07YPRTAr9AOYB39ANbQDmAd/QDW0Q9gDe0A1tEPYA3tANcfE9AAAAAAAAAAAAAAAK9gAhoAAAAAAAAAAAAA4BVMQAMAAAAAAAAAAAAAvIIJaAAAAAAAAAAAAACAV4TaPQAAAAAAAAAAAAB4jzFG+fn5zvuRkZFyOBw2jghAMGECGgAAAAAAAAAAIIDk5+crISHBeT81NVVVqlSxcUQAggmn4AYAAAAAAAAAAAAAeAUT0AAAAAAAAAAAAAAAr2ACGgAAAAAAAAAAAADgFUxAAwAAAAAAAAAAAAC8ggloAAAAAAAAAAAAAIBXMAENAAAAAAAAAAAAAPAKJqABAAAAAAAAAAAAAF7BBDQAAAAAAAAAAAAAwCuYgAYAAAAAAAAAAAAAeAUT0AAAAAAAAAAAAAAAr2ACGgAAAAAAAAAAAADgFUxAAwAAAAAAAAAAAAC8ggloAAAAAAAAAAAAAIBXMAENAAAAAAAAAAAAAPAKJqABAAAAAAAAAAAAAF7BBDQAAAAAAAAAAAAAwCuYgAYAAAAAAAAAAAAAeAUT0AAAAAAAAAAAAAAAr2ACGgAAAAAAAAAAAADgFUxAAwAAAAAAAAAAAAC8ggloAAAAAAAAAAAAAIBXMAENAAAAAAAAAAAAAPAKJqABAAAAAAAAAAAAAF7BBDQAAAAAAAAAAAAAwCuYgAYAAAAAAAAAAAAAeAUT0AAAAAAAAAAAAAAAr2ACGgAAAAAAAAAAAADgFUxAAwAAAAAAAAAAAAC8ggloAAAAAAAAAAAAAIBX+NwE9MmTJzV+/Hj16dNHN9xwgxwOh1JSUsr9/OPHj2vEiBGqVauWIiMj1b17d3355ZfXbsAAAAAAAAAAAAAAAEk+OAGdk5OjCRMm6Ntvv9Xtt9/u0XOLi4v1i1/8Qu+//76eeOIJ/elPf9KRI0fUrVs37d69+xqNGAAAAAAAAAAAAAAgSaF2D+ByMTExys7OVp06dbR161a1a9eu3M9dsmSJNm7cqMWLF2vAgAGSpIEDB6pJkyYaP3683n///Ws1bAAAAAAAAAAAAAAIej53BHRYWJjq1Klj6blLlixR7dq19atf/cq5rFatWho4cKBSU1NVWFjorWECAAAAAAAAAAAAAC7jcxPQVyMjI0N33HGHKlRw/bLat2+vU6dOadeuXTaNDAAAAHBljNHJkyedN2OM3UMKCux3AAAAAACAa8vnTsF9NbKzs9WlSxe35TExMZKkrKwstWjRosTnFhYWuhwhnZeXd20GCQQY2gGsox/AmkBpJz8/XwkJCc77qampqlKlio0jCg7Bvt8DpR/ADvQDWEM7gHX0A1hDO4D9AuoI6NOnTyssLMxteXh4uPPx0rz22muKjo523mJjY6/ZOIFAQjuAdfQDWEM7gHX0A1hHP4A1tANYRz+ANbQD2C+gJqAjIiJKvM5zQUGB8/HSjB07Vrm5uc7bwYMHr9k4gUBCO4B19ANYQzuAdfQDWEc/gDW0A1hHP4A1tAPY76pPwb1s2TKlpKQoIyNDubm5io6O1h133KGkpCT169fPC0Msv5iYGGVnZ7stv7Csbt26pT43LCysxKOnAVxZoLRjjFF+fr7zfmRkpBwOh40jQjAIlH6A6412AOvoB7COfgBraAewjn4Aa2gHsJ/lCeiioiI9/PDDWrp0qYwxCg0NVY0aNfTDDz/oH//4h5YvX67+/fvr/fffV2jo9bnUdKtWrZSWlqbi4mJVqHDx4O5NmzapcuXKatKkyXUZBwD/E+zXgwQAAAAAAAAAAPAGy6fgfu2117RkyRJ17txZaWlpKigoUHZ2tgoKCvTZZ58pPj5eS5cu1euvv+7N8TplZ2drx44dOnv2rHPZgAEDdPjwYX344YfOZTk5OVq8eLHuvfde/uIFAAAAAAAAAAAAAK4hy4cmJycnq1mzZlq9erXLEc4VKlRQfHy8Vq9erZYtW+qvf/2rXnzxRY+2PWPGDB0/flxZWVmSpOXLl+v777+XJD355JOKjo7W2LFjNW/ePO3bt0/169eXdH4CumPHjnrkkUf03//+VzVr1tSsWbN07tw5vfzyy1a/VAAAAAAAAAAAAABAOViegM7OztZTTz1V6um1K1asqHvvvVd//vOfPd72m2++qf379zvvf/jhh86jmgcPHqzo6OgSnxcSEqJ//etfGj16tN5++22dPn1a7dq1U0pKipo2berxOAAA1xbX3gYAAAAAAAAAILBYnoCOjY3VyZMnr7hOfn6+br75Zo+3nZmZWeY6KSkpSklJcVtevXp1zZkzR3PmzPH4dQEA1xfX3gYAAAAAAAAAILBYvgb08OHDtWjRImVnZ5f4+KFDh/TBBx9o+PDhlgcHAAAAAAAAAAAAAPAflo+AHjhwoDZs2KDWrVtr5MiRio+PV+3atXX48GGlpaVp+vTpio+P1wMPPKADBw64PNfKUdEAAAAAAAAAAAAAAN9meQK6QYMGcjgcMsbohRdecHvcGKPly5dr+fLlLssdDoeKioqsviwAAAAAAAAAAAAAwEdZnoBOTEyUw+Hw5lgAAAAAAAAAAAD8TpvR8+0eggtH0RlFX3K/27iFMqGVbBvPpbZNTrR7CACuMcsT0CkpKV4cBgAAAAAAAAAAAADA31WwewAAAAAAAAAAAAAAgMBg+Qjokmzfvl1r166VJMXHx6tdu3be3DwAAAAAAAAAAAAAwId5dAT0Z599psTERH3xxRduj7344otq06aNRo0apVGjRqljx4568sknvTZQAAAAAAAAAAAAAIBv82gC+oMPPtDixYt12223uSxfu3atJk2apJCQEA0ZMkS//e1vVbNmTc2aNUsfffSRN8cLAAAAAAAAAAAAAPBRHk1Ap6en684771RUVJTL8v/93/+Vw+HQu+++q5SUFM2YMUMbNmxQxYoVlZKS4s3xAgAAAAAAAAAAAAB8lEcT0FlZWbr99tvdlq9du1ZRUVFKSkpyLmvUqJH69u2rrVu3XvUgAQAAAAAAAAAAAAC+z6MJ6GPHjikiIsJl2YEDB/Tjjz8qPj5eFSq4bq5Ro0bKycm5+lECAAAAAAAAAAAAAHyeRxPQVatW1aFDh1yWbdmyRZLUpk0bt/UdDofCw8OvYngAAAAAAAAAAAAAAH8R6snKLVu21IoVK5Sfn6/IyEhJ0rJly+RwONSlSxe39ffs2aO6det6Z6QAAMAnGWOUn5/vvB8ZGSmHw2HjiAAAAAAAAAAAdvFoAvrRRx9VYmKiunbtqsTERO3atUt///vfdfPNN6tbt24u6547d06fffaZunfv7s3xAgAAH5Ofn6+EhATn/dTUVFWpUsXGEQEAAAAAAAAA7OLRBPTgwYO1Zs0azZs3TxkZGTLGKCoqSnPnznW7/vM///lP5eTkqHfv3l4dMAAAAAAAAAAAAADAN3k0AS1JycnJGjZsmNLT01WjRg317t1bN910k9t6YWFhmjZtmssRUQAAAAAAAAAAAACAwOXxBLQkxcfHKz4+/orr9O7dm6OfbcB1OAEAAAAAAAAAAADYxdIEdEn27t2r3NxcRUdHq0GDBt7aLDzEdTgBAAAAAAAAAAAA2KVC2auULjc3V08//bSqV6+uxo0bq23btmrcuLGqV6+ukSNHKjc311vjBAAAAAAANjLG6OTJk86bMcbuIQEAAAAAfJDlI6CPHDmizp07a/fu3apWrZq6du2q2rVr6/Dhw9q+fbvefvtt/fvf/1ZaWppuvPFGb44ZAAAAAABcZ5xxCwAAAABQHpaPgB47dqx2796t5557TgcPHtSnn36qv//97/r000918OBBjRkzRrt379bzzz/vzfECAAAAAAAAAAAAAHyU5SOgly9frh49emjSpEluj0VGRuq1117Tpk2b9I9//OOqBggAAAAAAAAAAAAA8A+Wj4DOz89Xx44dr7hOp06ddOrUKasvAQAAAAAAAAAAAADwI5aPgG7evLkyMzOvuE5mZqaaN29u9SUAAF7WZvR8u4fgwlF0RtGX3O82bqFMaCXbxnO5bZMT7R4CAAAAAABByxij/Px85/3IyEg5HA4bRwQAAMrD8gT0888/rwcffFBJSUnq1auX2+MrV67UkiVLtGTJkqsaIAAAAAAAAAAg+OTn5yshIcF5PzU1VVWqVLFxRAAAoDzKPQE9f777UXN33323evfurZ///OeKj49X7dq1dfjwYaWlpWn16tX65S9/qWPHjnl1wAAAAAAAAAAAAAAA31TuCeikpCS305sYYySdP9p55cqVbs9Zvny5VqxYocRETmEKwJ0vnQ6aU0EDAAAAAAAAAABcvXJPQCcnJ1/LcQAAAAAAAAAAAAAA/Fy5J6CHDh16LccBAAAAAAAAAAAAAPBz5Z6ARsl86RTCkm+fRjhQTyFsjFF+fr7zfmRkpNvp6gEAAAAAQHDi9wYAAAAINkxAA1cpPz9fCQkJzvupqamqUqWKjSMCAAAAAAC+gt8bAAAAINhUKPeKFSooNDRUu3btct4PCQkp8xYa6vkcd2FhocaMGaO6desqIiJCHTp00KpVq8p83ksvvSSHw+F2Cw8P93gMAAAAAAAAAAAAAADPlHt2uEuXLnI4HKpcubLL/WshKSlJS5Ys0ciRI9W4cWOlpKSob9++Wrt2reLj48t8/jvvvOPyl6QhISHXZJwAAAAAAAAAAAAAgIvKPQG9bt26K973ls2bN2vhwoWaPHmyRo0aJUlKTExU8+bN9eyzz2rjxo1lbmPAgAGqWbPmNRkfAAAAAAAAAAAAAKBk5T4Fd3kUFRUpIyNDGRkZOnv2rKVtLFmyRCEhIRoxYoRzWXh4uIYNG6b09HQdPHiwzG0YY5SXlydjjKUxAAAAAAAAAAAAAAA859EFmvfu3at169YpPj5eTZo0cXlsxYoVGjZsmHJyciRJ1atX16xZszRw4ECPBpSRkaEmTZooKirKZXn79u0lSdu3b1dsbOwVt9GgQQOdPHlSkZGR6tevn6ZMmaLatWt7NA4AAABfZoxRfn6+835kZOQ1uzwKAMAebUbPt3sILhxFZxR9yf1u4xbKhFaybTyX2jY50e4hAAAAAAD+j0cT0HPmzNEbb7yhvXv3uiz/7rvvNHDgQBUUFCguLk6RkZH69ttvNWjQIDVu3FitW7cu92tkZ2crJibGbfmFZVlZWaU+t3r16nriiSfUqVMnhYWFKS0tTTNnztTmzZu1detWt0ntSxUWFqqwsNB5Py8vr9xjBoIZ7QDW0Q+uRn5+vhISEpz3U1NTVaVKFRtHdP3QDmAd/QDW0Q9gDe0A1tEPYA3tAPbzaAL6888/V6tWrRQXF+eyfPr06SooKNDvfvc7/fnPf5YkffTRR/rVr36lGTNmaO7cueV+jdOnTyssLMxteXh4uPPx0jz99NMu9/v376/27dtr0KBBmjVrlp577rlSn/vaa6/p5ZdfLvc4AZxHO4B19ANYczXt+NLRhL58JKHk3aMJ2e/ld62P4uSzB7COfgBraAewjn4Aa2gHsJ9H14Det2+f81TYl/r4449VqVIlTZo0ybmsX79+6ty5s9LS0jwaUEREhMtfplxQUFDgfNwTDz/8sOrUqaPVq1dfcb2xY8cqNzfXeSvPtaYB0A5wNegHsIZ2AOvoB7COfgBraAewjn4Aa2gHsJ9HR0D/+OOPqlmzpsuyn376SXv27FHnzp1VtWpVl8dat26trVu3ejSgmJgYHTp0yG15dna2JKlu3boebU+SYmNj9dNPP11xnbCwsBKPvAZwZbQDWEc/gDW0A1hHP4B19ANYQzuAdfQDWEM7gP08OgK6YsWKOnr0qMuybdu2SZLatm3rtn5kZKTHA2rVqpV27drldk7+TZs2OR/3hDFGmZmZqlWrlsdjAQAAAAAAAAAAAACUn0dHQDdp0kRr1qxxWbZy5Uo5HA7deeedbutnZWUpJibGowENGDBAb775pmbPnq1Ro0ZJOn/B+OTkZHXo0EGxsbGSpAMHDujUqVNq1qyZ87k//vij20TzO++8ox9//FF9+vTxaBzwbVxHsPyu9XUEAQAAAAAAAAAAgAs8moDu37+/XnzxRf3P//yPHn/8ce3atUuzZ89WlSpVSpzg3bBhgxo1auTRgDp06KAHHnhAY8eO1ZEjR9SoUSPNmzdPmZmZmjt3rnO9xMRErV+/XsYY57K4uDg9+OCDatGihcLDw/X5559r4cKFatWqlR577DGPxuGvTEhF5bZ8yOU+AAAAAAAAAAAAAFwPHk1Ajxw5Uh988IFmz56tv/zlL5LOn+J66tSpbqfb3rp1q7777jtLE7/z58/XuHHj9N577+nYsWNq2bKlVqxYoS5dulzxeYMGDdLGjRu1dOlSFRQUKC4uTs8++6xeeOEFVa5c2eNx+CWHw6eOvgUAAAAAAAD8nTFG+fn5zvuRkZFyOBw2jggAAMB3eTQBXblyZW3YsEHTpk3TF198oRo1auiBBx7Qvffe67bul19+qYSEBN13330eDyo8PFyTJ0/W5MmTS11n3bp1bssuTIoDAAAAAAAAgLfk5+crISHBeT81NVVVqlSxcUTXhi9d9k7y7Uvfcdk7AABK59EEtCRVqVJF48aNK3O9ESNGaMSIEZYGBQAAAAAAAAAAAADwPxXsHgAAAAAAAAAAAAAAIDB4fAQ0AAAAAAB24jqcAAAAAAD4LiagAQC2MSEVldvyIZf7AAAAZQmW63ACAAAAAOCPmIAGANjH4ZAJrWT3KPxOm9Hz7R6CC0fRGUVfcr/buIU+875um5xo9xAAAAAAAAAAIKhwDWgAAAAAAAAAAAAAgFdwBDRwlTiFMAAAAAAAAADAl/B7awB2YgIauFqcQhgAAAAAAAAA4Ev4vTUAG3EKbgAAAAAAAAAAAACAVzABDQAAAAAAAAAAAADwCk7BDQDimigAAAAAAAAAAADewAQ0AEhcEwUAAAAoA3+0CQAAAAAoDyagAQAAyqHN6Pl2D8GFo+iMoi+5323cQp/5Q5ptkxPtHgIA4FrgjzbhR3zp/918+f/bJP7fDQAAAN7HNaABAAAAAAAAAAAAAF7BBDQAAAAAAAAAAAAAwCuYgAYAAAAAAAAAAAAAeAUT0AAAAAAAAAAAAAAArwi1ewAAAAAAAAAAAFzOhFRUbsuHXO4DAADfxwQ0AAAAAAAAAMD3OBwyoZXsHgUAAPAQp+AGAAAAAAAAAAAAAHgFE9AAAAAAAAAAAAAAAK9gAhoAAAAAAAAAAAAA4BVMQAMAAAAAAAAAAAAAvCLU7gEAAAAAAAAAwKXajJ5v9xBcOIrOKPqS+93GLZQJrWTbeC63bXKi3UMAAABw4ghoAAAAAAAAAAAAAIBXMAENAAAAAAAAAAAAAPAKJqABAAAAAAAAAAAAAF7BNaABAAAAAFfEdTjLj2twAgAAAACCHUdAAwAAAAAAAAAAAAC8giOgAQDAVTEhFZXb8iGX+7j22O8AAAAAAAAAfBET0AAA4Oo4HD5z2tOgwn4HAAAAAAAA4IM4BTcAAAAAAAAAAAAAwCuYgAYAAAAAAAAAAAAAeIVPTkAXFhZqzJgxqlu3riIiItShQwetWrWqXM89dOiQBg4cqGrVqikqKkoJCQnau3fvNR4xAAAAAAAAAAAAAMAnJ6CTkpI0depUDRo0SNOnT1dISIj69u2rzz///IrPO3nypLp3767169fr+eef18svv6yMjAx17dpVR48evU6jBwAAAAAAAAAAAIDgFGr3AC63efNmLVy4UJMnT9aoUaMkSYmJiWrevLmeffZZbdy4sdTnzpo1S7t379bmzZvVrl07SdI999yj5s2ba8qUKZo0adJ1+RoAAAAAAAAAAAAAIBj53BHQS5YsUUhIiEaMGOFcFh4ermHDhik9PV0HDx684nPbtWvnnHyWpGbNmqlnz55atGjRNR03AAAAAAAAAAAAAAQ7n5uAzsjIUJMmTRQVFeWyvH379pKk7du3l/i84uJiff3112rbtq3bY+3bt9eePXt04sQJr48XAAAAAAAAAAAAAHCez52COzs7WzExMW7LLyzLysoq8Xk//fSTCgsLy3xu06ZNS3x+YWGhCgsLnfdzc3MlSXl5eVcc77nC01d8HBeVtS89wX4vv/Lu96pVq8rhcHi8favtSLyPnvBWP+xzz/hqP7yP5cdnjz082e9W+gmUzx5H0RkVFRU5758rPC1z7pyNI3IVqP0Eyn4P9s8eX34fA7UdX3etP3ukq/v8wfXnS/348vcsic+e8gqU97EsvrbffRmfPbgc/ZSfr372AIHEaj9eY3xMgwYNzD333OO2fM+ePUaSmTZtWonPO3DggJFk3njjDbfH5s6daySZjIyMUl93/PjxRhI3bkF7y83NtdQs7XDjRj/cuF3NzUo/tMONG5893LhdzY1+uHGzdqMdbtys3+iHGzdrN9rhxs36zWo/3uIwxhj5kObNm6t27dpas2aNy/L//ve/+tnPfqZ3331Xjz32mNvzcnJyVKtWLU2YMEHjxo1zeWzWrFn63e9+px07dpT7COji4mL99NNPqlGjhr1/IWBBXl6eYmNjdfDgQbdTmePaCIR97q2/JqMdeCoQ9jv9BMb76I8CYb974who2oGnAmG/89kTGO+jPwqE/R7s/QTCe+iPAmG/B3s7UmC8j/4oEPY7/QTG++iP/H2/047/v4f+KhD2u91HQPvcKbhjYmJ06NAht+XZ2dmSpLp165b4vBtuuEFhYWHO9Tx5riSFhYUpLCzMZVm1atXKO2yfFBUV5bdh+Ktg3Oe0A28Jxv1OP/CWYNvvtANvCcb9Tj/wlmDc74HWTzC+h74gGPd7oLUjBef76AuCcb/TD7wl2PY77cBb2O/WVbB7AJdr1aqVdu3a5XYu/k2bNjkfL0mFChXUokULbd261e2xTZs2qUGDBqpatarXxwsAAAAAAAAAAAAAOM/nJqAHDBigc+fOafbs2c5lhYWFSk5OVocOHRQbGytJOnDggHbs2OH23C1btrhMQu/cuVOffvqpHnjggevzBQAAAAAAAAAAAABAkPK5U3B36NBBDzzwgMaOHasjR46oUaNGmjdvnjIzMzV37lzneomJiVq/fr0uvYT1448/rr/85S/6xS9+oVGjRqlixYqaOnWqateurWeeecaOL8cWYWFhGj9+vNspJnDtsM8DA++jPdjvgYH30R7sd//He2gP9ntg4H20B/vd//Ee2oP9Hhh4H+3Bfg8MvI/2YL/7P95De7Dfr57DXDqD6yMKCgo0btw4LViwQMeOHVPLli31yiuvqHfv3s51unXr5jYBLUnff/+9fv/732vlypUqLi5Wt27dNG3aNDVq1Oh6fxkAAAAAAAAAAAAAEFR8cgIaAAAAAAAAAAAAAOB/fO4a0AAAAAAAAAAAAAAA/8QENAAAAAAAAAAAAADAK5iADhCFhYUaM2aM6tatq4iICHXo0EGrVq2ye1gB7+TJkxo/frz69OmjG264QQ6HQykpKXYPCx6iH3vQT2Cgn+uPdgID7diDfgID/Vx/tBMYaMce9BMY6Of6o53AQDv2oJ/AQD/2oB/vYQI6QCQlJWnq1KkaNGiQpk+frpCQEPXt21eff/653UMLaDk5OZowYYK+/fZb3X777XYPBxbRjz3oJzDQz/VHO4GBduxBP4GBfq4/2gkMtGMP+gkM9HP90U5goB170E9goB970I8XGfi9TZs2GUlm8uTJzmWnT582DRs2NJ06dbJxZIGvoKDAZGdnG2OM2bJli5FkkpOT7R0UPEI/9qEf/0c/9qAd/0c79qEf/0c/9qAd/0c79qEf/0c/9qAd/0c79qEf/0c/9qEf7+EI6ACwZMkShYSEaMSIEc5l4eHhGjZsmNLT03Xw4EEbRxfYwsLCVKdOHbuHgatAP/ahH/9HP/agHf9HO/ahH/9HP/agHf9HO/ahH/9HP/agHf9HO/ahH/9HP/ahH+9hAjoAZGRkqEmTJoqKinJZ3r59e0nS9u3bbRgV4B/oB7COfgBraAewjn4Aa2gHsI5+AGtoB7COfhAImIAOANnZ2YqJiXFbfmFZVlbW9R4S4DfoB7COfgBraAewjn4Aa2gHsI5+AGtoB7COfhAImIAOAKdPn1ZYWJjb8vDwcOfjAEpGP4B19ANYQzuAdfQDWEM7gHX0A1hDO4B19INAwAR0AIiIiFBhYaHb8oKCAufjAEpGP4B19ANYQzuAdfQDWEM7gHX0A1hDO4B19INAwAR0AIiJiVF2drbb8gvL6tate72HBPgN+gGsox/AGtoBrKMfwBraAayjH8Aa2gGsox8EAiagA0CrVq20a9cu5eXluSzftGmT83EAJaMfwDr6AayhHcA6+gGsoR3AOvoBrKEdwDr6QSBgAjoADBgwQOfOndPs2bOdywoLC5WcnKwOHTooNjbWxtEBvo1+AOvoB7CGdgDr6AewhnYA6+gHsIZ2AOvoB4Eg1O4B4Op16NBBDzzwgMaOHasjR46oUaNGmjdvnjIzMzV37ly7hxfwZsyYoePHjysrK0uStHz5cn3//feSpCeffFLR0dF2Dg9loB970Y9/ox/70I5/ox170Y9/ox/70I5/ox170Y9/ox/70I5/ox170Y9/ox970Y93OIwxxu5B4OoVFBRo3LhxWrBggY4dO6aWLVvqlVdeUe/eve0eWsCrX7++9u/fX+Jj+/btU/369a/vgOAx+rEP/fg/+rEH7fg/2rEP/fg/+rEH7fg/2rEP/fg/+rEH7fg/2rEP/fg/+rEP/XgHE9AAAAAAAAAAAAAAAK/gGtAAAAAAAAAAAAAAAK9gAhoAAAAAAAAAAAAA4BVMQAMAAAAAAAAAAAAAvIIJaAAAAAAAAAAAAACAVzABDQAAAAAAAAAAAADwCiagAQAAAAAAAAAAAABewQQ0AAAAAAAAAAAAAMArmIAGAAAAAAAAAAAAAHgFE9AAAAAAAAAAAAAAAK9gAho+q379+qpfv77dw3DytfEAV+Jr/159bTxAaXzt36qvjQe4El/79+pr4wFK42v/Vn1tPMCV+Nq/V18bD1AaX/u36mvjAa7E1/69+tp4gCvxtX+vvjaeQMMEdJDJz8/XpEmTdMcdd6hKlSoKCwtTvXr11LlzZ40dO1Z79uyxe4iAz6IfwBraAayjH8Aa2gGsox/AGtoBrKMfwDr6ga8KtXsAuH5OnDih+Ph4ff3112rUqJEGDx6sGjVqKCcnR5s3b9brr7+uhg0bqmHDhnYPVZK0Zs0au4cAONEPYA3tANbRD2AN7QDW0Q9gDe0A1tEPYB39wJcxAR1E3nrrLX399dcaPny4Zs+eLYfD4fL4vn37VFhYaNPo3PnKN0VAoh/AKtoBrKMfwBraAayjH8Aa2gGsox/AOvqBL+MU3EEkPT1dkvS73/3O7RuRJN1yyy1q1qyZ877D4VC3bt1K3FZJ58ZPSkqSw+HQ3r17NWXKFN12220KCwtTUlKSXnnlFTkcDs2fP7/E7X344YdyOBx64YUXSn0NK9uQzn+THT58uG6++WaFhYUpJiZGSUlJ2r9/f4nbSU1NVbt27RQREaHatWvrN7/5jY4dO1biugge9EM/sIZ2aAfW0Q/9wBraoR1YRz/0A2toh3ZgHf3QD6yjH/rxZUxAB5EaNWpIknbt2nVNX+fJJ5/UpEmT1LZtW40cOVItWrTQ4MGD5XA4tGDBghKf895770mShgwZUup2rWxj06ZNat26tebNm6c2bdro6aefVufOnfW3v/1N7du31969e122MX/+fPXr10+7du3SkCFDNHToUG3YsEG9evXSmTNnPNoPCCz0Qz+whnZoB9bRD/3AGtqhHVhHP/QDa2iHdmAd/dAPrKMf+vFpBkEjNTXVSDJVq1Y1zzzzjPnkk09MTk5OqetLMl27di3xsbi4OBMXF+eybOjQoUaSqVevntm/f7/bc+Lj401ISIjJyspyWX706FFTqVIl07Zt2zJfw5NtnDlzxtSvX99UrVrVfPnlly7rp6WlmZCQEPPLX/7SuSw3N9dERUWZyMhIs3PnTpftdOnSxUhyGw+CB/1cRD/wBO1cRDvwFP1cRD/wBO1cRDvwFP1cRD/wBO1cRDvwFP1cRD/wFP1cRD++hyOgg8h9992nKVOmyBijKVOmqHfv3qpZs6YaNWqkJ554Qrt37/bK64wePVo333yz2/IhQ4bo3Llz+vvf/+6y/IMPPtCZM2c0ePDgMrftyTZWrFihzMxMjR49Wq1bt3ZZPz4+XgkJCfrXv/6lvLw8SdJHH32kvLw8Pfroo2rSpIlz3YoVK2rixIllf+EIaPRzEf3AE7RzEe3AU/RzEf3AE7RzEe3AU/RzEf3AE7RzEe3AU/RzEf3AU/RzEf34Hiagg8wf/vAHZWVladGiRRo5cqTi4+N14MABzZw5Uy1bttQ//vGPq36N9u3bl7h84MCBCgsLc5424YIFCxYoNDRUDz30UJnb9mQbX3zxhSRp586deumll9xuP/zwg4qLi52np/jqq68kSZ07d3Z73U6dOik0NLTM8SGw0Q/9wBraoR1YRz/0A2toh3ZgHf3QD6yhHdqBdfRDP7COfujHZ9l27DV8xvHjx83jjz9uJJmaNWuawsJCY4z10zHs3bu31Nfq37+/kWT+3//7f8YYY7777jsjyfTt27dcr+HJNoYPH24klXlbt26dMcaYYcOGudy/XO3atTkdA9zQD/3AGtqhHVhHP/QDa2iHdmAd/dAPrKEd2oF19EM/sI5+6McXcAQ0FB0drRkzZiguLk45OTn6z3/+I0lyOBwqKioq8Tm5ubmlbs/hcJT62IWLxV/4a5YLF5e/0oXorW4jKipKkrR8+XIZY0q9de3aVdL5/SBJR44ccXvNc+fO6ejRo+UeI4IH/dAPrKEd2oF19EM/sIZ2aAfW0Q/9wBraoR1YRz/0A+voh358ARPQkHT+G0hkZKTLsurVq+vQoUNu62ZmZur48eOWXqdv376qUaOG3n//fRUXF+tvf/ubqlatqoSEBK9vo0OHDpKk9PT0cm339ttvlySlpaW5PZaenl7qN2aAfugH1tAO7cA6+qEfWEM7tAPr6Id+YA3t0A6sox/6gXX0Qz+288JR1PAT7777rtm8eXOJjy1btsw4HA5TrVo1U1BQYIwxpnfv3m6nJygsLDT333+/kVTq6Rj27dt3xXFcOPXDa6+9ZiSZpKSkEtcr7XQM5d1GQUGBufnmm014eLhZv3692+NnzpwxaWlpzvvHjx83UVFRJjIy0uzcudNlva5du5b4NSN40I8r+kF50Y4r2oEn6McV/aC8aMcV7cAT9OOKflBetOOKduAJ+nFFP/AE/biiH9/iMMYY69PX8Cf9+vVTamqqGjVqpLvuukt169ZVfn6+MjIylJaWpgoVKmjBggXOi7qvXLlSffr0UUREhB566CFVrlxZq1atUrVq1bR//35VqlRJmZmZzu0nJSVp3rx52rdvn+rXr1/qOL744gt16tRJFStW1NmzZ7VmzRr16NHDbb0L27j0NTzdxpYtW3TPPffo6NGj6tGjh1q0aCGHw6H9+/crLS1NNWrU0I4dO5zrz5s3T0lJSYqKitKvf/1rRUdHa8WKFYqIiFB2drbb14zgQT/0A2toh3ZgHf3QD6yhHdqBdfRDP7CGdmgH1tEP/cA6+qEfn2b3DDiunx07dpg//elP5uc//7m55ZZbTHh4uAkPDzcNGzY0Q4cONVu3bnV7zuLFi02LFi1MpUqVTJ06dcyTTz5pTpw4ccUL0pf11zDGGNO4cWMjydSrV8+cO3euxHWu9Ncw5d2GMcZ8//335umnnzaNGzc2YWFhJioqytx6661m+PDhZs2aNW7rL1u2zLRp08aEhYWZG2+80QwfPtz89NNPZY4HgY1+6AfW0A7twDr6oR9YQzu0A+voh35gDe3QDqyjH/qBdfRDP76MI6ABAAAAAAAAAAAAAF5Rwe4BAAAAAAAAAAAAAAACAxPQAAAAAAAAAAAAAACvYAIaAAAAAAAAAAAAAOAVTEADAAAAAAAAAAAAALyCCWgAAAAAAAAAAAAAgFcwAQ0AAAAAAAAAAAAA8AomoAEAAAAAAAAAAAAAXsEENAAAAAAAAAAAAADAK5iABgAAAAAAAAAAAAB4BRPQAAAAAAAAAAAAAACvYAIaAAAAAAAAAAAAAOAVTEADAAAAAAAAAAAAALyCCWgAAAAAAAAAAAAAgFf8f/h8tfnebL6qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvXUlEQVR4nO3deVxU9d4H8M+wzYxsKppCgprATUPFi8JVUdBSTDPtEexJEcmtrubVlPSiWZoLGo+aT+aWBrhlhuWa5XLRwAWXNO25mStqgKGAIMgMOvyeP7yMjcNyBmeYgfm8X6/5Y37nd37ne47fpi/ndxaZEEKAiIiIiEgCG3MHQERERER1B4tHIiIiIpKMxSMRERERScbikYiIiIgkY/FIRERERJKxeCQiIiIiyVg8EhEREZFkLB6JiIiISDIWj0REREQkGYtHMkhoaChkMpm5wyCqdcx9smbMf/ozFo/1UEZGBmQymc7HwcEBnp6eGDZsGM6dO2fuEOuFjRs34q233kLnzp0hl8shk8mQmJho7rCsGnPf9DIzM/HJJ5+gb9++8PLygoODA5o3b44hQ4YgPT3d3OFZNea/6alUKkyZMgU9e/aEh4cHFAoFmjdvju7duyMhIQEPHjwwd4i1ws7cAZDptGnTBpGRkQCAoqIiHD9+HF9++SW++eYbHDx4EN27dzdzhHXb+++/j+vXr6NJkyZwd3fH9evXzR0S/Qdz33Q+/fRTLFq0CG3atEHfvn3RtGlTXLp0Cdu3b8f27duxefNmvP766+YO06ox/02nqKgIK1euRGBgIAYMGICmTZsiPz8fe/fuxahRo7Blyxbs3bsXNjb1/NycoHrn2rVrAoAICwvTWzZz5kwBQISEhNRo7JCQEMG0eWT//v0iIyNDCCFEXFycACASEhLMG5SVY+6b3rZt28ShQ4f02n/88Udhb28vGjVqJFQqlRkiI+a/6Wk0GqFWq/XaHzx4IEJDQwUAsXv3bjNEVrvqeWlMT5o4cSIA4OTJkzrtpaWlWLp0Kbp06QJnZ2c4OTmhXbt2mDJlCvLz86scs6CgAIsWLUJISAg8PDzg4OAADw8PREVF4cqVK3r9VSoVFi9ejI4dO8LV1RWOjo5o1aoVhg4dip9//lnbr6ysDGvXrkVgYCAaN24MpVKJFi1aYODAgTh06NDTH4yn9NJLL6Fly5bmDoMkYu4bx3/9138hJCREr71Hjx7o1asX8vPzcf78eTNERlVh/huHjY0NHBwc9Nrt7Ozw2muvAQAuX75c22HVOk5bW6k/X/hcUlKCPn364MiRI/Dx8cGbb74JuVyOS5cuYfXq1YiKikKjRo0qHevXX3/FBx98gF69euG1116Do6MjLly4gM2bN2PPnj346aefdIqskSNHYuvWrejQoYN2Wzdv3kRKSgpOnjyJjh07AgBiY2Px8ccfo02bNhg2bBicnZ2RmZmJtLQ0HDhwAKGhoSY7PlR/MfdNx97eHsCj/5GSZWL+m0ZZWRm+//57AICfn5+ZozE9/hduZVasWAEACAwM1LbNmjULR44cwYgRI5CQkABbW1vtsoKCAp3vFWnbti2ys7PRuHFjnfaUlBS89NJLmDdvHj7//HPteF9//TUCAgKQnp6uM7ZGo8G9e/e039euXQsPDw+cO3cODRo00Bk7Ly9P0v5u374dZ8+eldQXAPz9/TF48GDJ/anuYO5X7Wlz/8aNGzhw4ADc3d3Rvn37Go9DpsH8r5qh+V9aWooFCxZACIHc3FwcPHgQFy5cwJtvvokXX3xR8jh1FYvHeuzy5cuYPXs2AKC4uBjp6elITU2FQqHA/PnzAQAPHz7EmjVr4OrqimXLlun9WLi6ula7ncr69OrVCy+88AIOHDigbZPJZBBCQKFQ6F1QbGtri4YNG+q0OTg4VPgD9uSPVWW2b9+OpKQkSX2BR38Zs3is+5j7tZv7Dx48wIgRI6BWq7Fo0aJqiw4yLea/6fO/tLQUc+bM0X6XyWSIiYlBXFyc5DHqNPNeckmmUH7R9J8/9vb2okWLFmLYsGHi3Llz2r7nz58XAMRLL70kaezKLppOSUkRgwYNEs2bNxd2dnY623ZwcNDp279/fwFA+Pv7i/nz54sjR46I0tJSvTHHjx8vAAhvb2/x/vvvi4MHD4r79+8beDRqB2+YsQzM/dqn0WjEsGHDBAAxduxYc4dj1Zj/tU+j0YibN2+KFStWiIYNG4ru3buLgoICc4dlciwe66Gq7rh7UlpamgAgRo4cKWnsin5Atm7dKmQymXB2dhbh4eEiJiZGfPDBB+LDDz8ULVu21OtfXFwsZs6cKVq3bq39kXFxcRGTJk0SxcXF2n4PHjwQ8fHxol27dtp+CoVCREVFidu3b0uKt7aweLQMzP3apdFoxMiRIwUAERkZKTQajblDsmrMf/PaunWrACCmTZtm7lBMjtPWVq58qiAzM7PGY8yePRsKhQKnT5+Gj4+PzrItW7bo9W/QoAHmzZuHefPm4dq1a0hJScGqVauwbNkylJSUYPXq1QAeXXQfExODmJgYZGVl4fDhw0hISMD69etx69Yt/PDDD9XGxmseqTLMfV2G5n5ZWRnefPNNrF+/Hm+88QYSExPr/7Pt6hHmvy5j/Pb37dsXAMx+R3itMHf1SsZnyF+fDx48EC4uLsLV1VXk5eVV27+ivz7lcrn461//qtc3KytL2NvbS3o22P3794WTk5No3rx5lf00Go3w9vYWNjY2kqYxys+KSP1I/Sv8STzzaBmY+4+ZMvc1Go2IiooSAMTrr78uHj58KHldMh3m/2O19dv/Z//+978FANG9e/enHsvS8c9EK2dnZ4e33noLBQUFmDRpEjQajc7ygoICFBUVVTlGy5YtcfnyZfzxxx/aNpVKhb///e96r2q6ffs2fvnlF70x8vPzoVaroVAoAABqtRpHjx7V61dcXIyioiLY29tLOsuRmJgI8ejyDEkfvl7QejD3a5b7ZWVlGDVqFNavX4+IiAhs3LiRN8jUQcz/muX/v//9b9y/f1+v/f79+5gyZQoAoH///pLGqss4bU346KOPcPz4cWzYsAHHjx/Hyy+/DLlcjqtXr+L7779HWloa/P39K11/4sSJmDhxIjp16oTw8HA8fPgQ+/fvhxACHTt21Hn4a2ZmJjp16oSOHTuiQ4cOePbZZ5Gbm4sdO3bgwYMHiImJAfDo+WPdu3eHr68vAgIC4OXlhaKiIuzevRu3bt1CTEwM5HK5qQ9NldauXYu0tDQA0D4Uee3atdopi+DgYIwZM8Zc4ZEEzH3DffTRR0hKSoKTkxN8fX0xb948vT6DBw+u8riRZWD+G27r1q1YsmQJgoOD0apVK7i4uCAzMxN79+5Fbm4uevTogXfffdds8dUa057YJHMwZOqinEqlEv/zP/8j/P39hVKpFE5OTqJdu3Zi6tSpIj8/X9uvoqmLsrIysWrVKvHCCy8IhUIhmjdvLkaPHi1ycnL0+ufn54vZs2eLnj17Cnd3d+Hg4CA8PDxEv379xN69e7X9SktLxaJFi0Tfvn1FixYthIODg2jWrJno2bOn2Lx5sygrK6v5ATKS6qZFjDENQoZh7puelOlAXr5hHsx/0zt58qQYO3aseOGFF0TDhg2FnZ2dcHNzE7169RKrV68WDx48MGt8tUUmhBC1V6oSERERUV3Gax6JiIiISDIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgkY/FIRERERJKxeHxKQggUFhaCTzwia8PcJ2vG/CdrxuLxKd27dw+urq64d++euUMhqlXMfbJmzH+yZiweiYiIiEgyFo9EREREJBmLRyIiIiKSjMUjEREREUlmZ+4AiIiIyDSEECguLtZ+d3R0hEwmM2NEVB+weCQiIqqniouLMWjQIO33HTt2wMnJyYwRUX3AaWsiIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJLLJ4VKvVmD59Ojw8PKBUKhEUFIT9+/dXu16rVq0gk8kq/Pj4+Oj0razfwoULTbVbRERERHWeRT6qJzo6GsnJyZg8eTJ8fHyQmJiI/v37IyUlBcHBwZWu98knn6CoqEin7fr163j//ffRt29fvf59+vRBVFSUTlunTp2MsxNERERE9ZDFFY8nTpzAli1bEB8fj5iYGABAVFQU/Pz8MG3aNBw9erTSdQcPHqzXNm/ePADA8OHD9Zb5+voiMjLSOIETERERWQGLm7ZOTk6Gra0txo0bp21TKBQYPXo0jh07hps3bxo03ubNm9G6dWt069atwuUlJSVQqVRPFTMRERGRtbC44vHMmTPw9fWFi4uLTntgYCAA4OzZswaN9euvv2LYsGEVLk9MTISjoyOUSiXatWuHzZs31zhuIiIiImtgcdPW2dnZcHd312svb8vKypI81qZNmwBUPGXdrVs3DB06FK1bt0ZWVhY+++wzDB8+HAUFBfj73/9e6ZhqtRpqtVr7vbCwUHI8RHUZc5+sGfOf6DGLO/NYUlICuVyu165QKLTLpSgrK8OWLVvQqVMntG3bVm/5kSNHMGnSJLz66qt4++23cfr0afj5+WHGjBlVbiMuLg6urq7aj6enp8Q9I6rbmPtkzZj/RI9ZXPGoVCp1/rorV35dolKplDTO4cOHkZmZWeFZx4o4ODjgnXfewd27d3H69OlK+8XGxqKgoED7MfQaTKK6irlP1oz5T/SYxU1bu7u7IzMzU689OzsbAODh4SFpnE2bNsHGxgZvvPGG5G2X/yWZl5dXaR+5XF7hmVGi+o65T9aM+U/0mMWdefT398fFixf1ridJT0/XLq+OWq3Gtm3bEBoaKrnYBICrV68CAJo2bSo9YCIiIiIrYnHFY3h4ODQaDdasWaNtU6vVSEhIQFBQkPbs4I0bN3DhwoUKx/juu+9w9+7dSqesb9++rdd27949fPLJJ2jSpAkCAgKMsCdERERE9Y/FTVsHBQUhIiICsbGxyMnJgbe3N5KSkpCRkYF169Zp+0VFReHw4cMQQuiNsWnTJsjlcgwZMqTCbXz22WfYvn07Bg4cCC8vL2RnZ+OLL77AjRs3sGHDBjg4OJhs/4iIiIjqMosrHgFg/fr1mDVrFjZs2ID8/Hx06NABu3fvRs+ePatdt7CwEHv27MGAAQPg6upaYZ/u3bvj6NGjWLt2LXJzc+Ho6IjAwEB88cUX6N27t7F3h4iIiKjekImKTt2RZIWFhXB1dUVBQYHeg82J6jPmPlmzupL/RUVFGDRokPb7jh074OTkZMaIqD6wuGseiYiIiMhysXgkIiIiIslYPBIRERGRZCweiYiIiEgyi7zbmoiIqK4LeG+9uUOA7GEp/vzckdBZWyDszPc4utPxUWbbNhkPzzwSERERkWQsHomIiIhIMk5bExGRwYQQKC4u1n53dHSETCYzY0REVFtYPBIRkcGKi4v58GkiK8VpayIiIiKSjMUjEREREUnG4pGIiIiIJGPxSERERESSsXgkIiIiIsl4tzURERGRRHxMFYtHoqfCHxEiIuvCx1SxeCR6KvwRISIia8NrHomIiIhIsqcuHr/99lsMGjQIXl5ecHV1hZeXFwYPHozt27cbITwiIiIisiQ1nrZ++PAhhg0bhm3btkEIATs7O7i5ueHWrVvYuXMndu3ahSFDhmDz5s2ws+PsOBEREVF9UOMzj3FxcUhOTkaPHj2QmpoKlUqF7OxsqFQq/PjjjwgODsa2bduwcOFCY8ZLRERERGZU4+IxISEBzz//PA4cOIDu3bvDxubRUDY2NggODsaBAwfg6+uLL774wmjBEhEREZF51bh4zM7OxsCBAyudkra3t8fAgQORnZ1d4+CIiIiIyLLUuHj09PREUVFRlX2Ki4vh5eVV000QERERkYWpcfE4ZswYbN26tdIzi5mZmfjqq68wZsyYGgdHRERERJalxsXj0KFD0a1bN3Tq1AkLFy5EWloaLl26hLS0NMTFxSEgIADBwcGIiIjAjRs3dD7VUavVmD59Ojw8PKBUKhEUFIT9+/dXu97s2bMhk8n0PgqFosL+69atQ9u2baFQKODj44NPP/3U4ONAREREZE1q/Ayd5557DjKZDEIIzJw5U2+5EAK7du3Crl27dNplMhkePnxY5djR0dFITk7G5MmT4ePjg8TERPTv3x8pKSkIDg6uNraVK1fqvOXD1tZWr8/q1avx9ttvY8iQIZgyZQpSU1Pxj3/8A/fv38f06dOr3QYRERGRNapx8RgVFWWSd/ieOHECW7ZsQXx8PGJiYrTb8vPzw7Rp03D06NFqxwgPD0eTJk0qXV5SUoKZM2diwIABSE5OBgCMHTsWZWVlmDt3LsaNG4dGjRoZZ4eIiIiI6pEaF4+JiYlGDOOx5ORk2NraYty4cdo2hUKB0aNHY8aMGbh58yY8PT2rHEMIgcLCQjg7O1dY4KakpCA3Nxfjx4/XaZ8wYQI2bdqEPXv2IDIy0jg7RERERFSPWNy7rc+cOQNfX1+4uLjotAcGBgIAzp49W+0Yzz33HFxdXeHs7IzIyEj88ccfetsAgM6dO+u0BwQEwMbGRruciIioLhO29ijo8Ib2I2ztzR0S1QNGfW/g2bNnkZKSAgAIDg5Gly5dDB4jOzsb7u7ueu3lbVlZWZWu26hRI7zzzjvo2rUr5HI5UlNT8dlnn+HEiRM4deqUtiDNzs6Gra0tnnnmGZ31HRwc4ObmVuU21Go11Gq19nthYaFB+0dUVzH3yZrV2fyXySDsHMwdBdUzBhWPP/74I9auXYvx48fjb3/7m86y999/H3FxcTpt48ePN/gO5pKSEsjlcr328jumS0pKKl130qRJOt+HDBmCwMBADB8+HCtWrMA///lP7RgODhX/x6RQKKrcRlxcHObMmVPtfhDVN8x9smbMf6LHDCoev/rqK3z99ddYvny5TntKSgoWLFgAOzs7DBs2DE5OTvj666+xYsUKvPjiixg8eLDkbSiVSp2/7sqpVCrtckMMGzYMU6dOxYEDB7TFo1KpRGlpaYX9VSpVlduIjY3FlClTtN8LCwurvQaTTCPgvfXmDgGyh6Vw/dP30FlbzPpX/un4KJONzdy3LObOf2vKfYD5T/RnBhWPx44dQ7du3fSuR1y9ejVkMhlWrVqFUaNGAQAmT54MPz8/JCYmGlQ8uru7IzMzU6+9/GHkHh4ehoQM4NHbcPLy8nS2odFokJOTozN1XVpaitzc3Cq3IZfLKzwzSlTfMffJmjH/iR4z6IaZrKwsdOzYUa89JSUFLi4uiI6O1rZ5e3ujf//+OHXqlEEB+fv74+LFi3rXk6Snp2uXG0IIgYyMDDRt2lRnGwD0Yjt16hTKysoM3gYRERGRtTCoeMzPz9eb0r1x4wZu376N4OBg2NjoDuft7Y07d+4YFFB4eDg0Gg3WrFmjbVOr1UhISEBQUJB2muDGjRu4cOGCzrq3b9/WG2/lypW4ffs2+vXrp23r3bs3GjdujJUrV+r1bdCgAQYMGGBQzERERETWwqBpa2dnZ70p5ZMnTwJ49JibJ1X1asDKBAUFISIiArGxscjJyYG3tzeSkpKQkZGBdevWaftFRUXh8OHDEEJo21q2bInXX38d7du3h0KhQFpaGrZs2QJ/f3+89dZb2n5KpRJz587FhAkTEBERgbCwMKSmpmLjxo2YP38+GjdubFDMRERERNbCoOKxQ4cO2L17N4qLi+Ho6AgA+PbbbyGTydCzZ0+9/leuXKnRNYrr16/HrFmzsGHDBuTn52u3W9E2/mz48OE4evQotm3bBpVKhZYtW2LatGmYOXMmGjRooNN3/PjxsLe3x+LFi7Fz5054enpi6dKlendsExEREdFjBhWPo0aNQlRUFEJCQhAVFYWLFy/iyy+/hJeXF0JDQ3X6ajQa/Pjjj+jVq5fBQSkUCsTHxyM+Pr7SPocOHdJr+/zzzw3aztixYzF27FhDwyMiIiKyWgYVj5GRkTh48CCSkpJw5swZCCHg4uKCdevW6V3vuGfPHty5cwdhYWFGDZiIyBBCCBQXF2u/Ozo6VvjaUiIiksbgN8wkJCRg9OjROHbsGNzc3BAWFoZnn31Wr59cLsfSpUsxaNAgowRKRFQTxcXFOr9DO3bsgJOTkxkjIiKq22r0esLg4GAEBwdX2ScsLIxnHYmIiMio+IB8XaZ+QH5FjPZu66tXr6KgoACurq547rnnjDUsEREREVkQg57z+KSCggJMmjQJjRo1go+PDzp37gwfHx80atQIkydPRkFBgbHiJCIiIiILUOMzjzk5OejRowcuXbqEhg0bIiQkBM2aNcMff/yBs2fP4n//93+xd+9epKam6rwCkMyDNw0QERGRMdS4eIyNjcWlS5fwz3/+EzNnztQ+9xF4dIH6vHnzsGjRIsyYMQNr1641SrBUc7xpgIiIiIyhxsXjrl270Lt3byxYsEBvmaOjI+Li4pCeno6dO3c+VYBEREREZDlqfM1jcXEx/va3v1XZp2vXrrh//35NN0FEREREFqbGxaOfnx8yMjKq7JORkQE/P7+aboKIiIiILEyNi8cZM2YgOTkZBw4cqHD5vn37kJycjJkzZ9Y4OCIiIiKyLJKveVy/Xv+hnH379kVYWBj69OmD4OBg7d3WqampOHDgAF555RXk5+cbNWAiSyJs7VHQ4Q2d70RERPWZ5OIxOjpa79EuQggAj84y7tu3T2+dXbt2Yffu3YiKqv2nnxPVCpnMrG8WICIiqm2Si8eEhARTxkFEREREdYDk4nHkyJGmjIOIiIiI6oCnej0hEREREVmXGj8knIiIrBdvFiOyXpLPPNrY2MDOzg4XL17Ufre1ta32Y2fH+pSIqN75z81i5R88cUMlEdVfkiu7nj17QiaToUGDBjrfiYiIiMh6SC4eDx06VOV3IiIiIqr/jDqn/PDhQ5w/fx7Ao9cX2tvzGhgiaxfwnv4LBmqT7GEpXP/0PXTWFrM+m/N0PJ97S0R1m0F3W1+9ehVffPGF9rrHP9u9ezeeffZZdO7cGZ07d4a7uzu2bt1qtECJiIiIyPwMKh7Xrl2LsWPHQi6X67RfvnwZQ4cOxe3bt+Hl5YW2bdsiPz8fw4cPx5kzZ4waMBERERGZj0HFY1paGvz9/dGyZUud9mXLlkGlUmHChAm4du0afvnlF2zbtg0ajQbLly83asBEREREZD4GFY/Xrl1DYGCgXvv3338PBwcHLFiwQNs2ePBg9OjRA6mpqU8fJRERERFZBINumLl9+zaaNGmi05aXl4crV66gR48ecHZ21lnWqVMnnDp1yuCg1Go1PvjgA2zYsAH5+fno0KED5s2bhz59+lS53jfffIOvvvoKJ0+exK1bt+Dp6YlXXnkFs2bNQsOGDXX6tmrVCtevX9cb46233sKqVasMjrk6vGlAF28aICIiqpsMKh7t7e2Rm5ur03b69GkAQOfOnfX6Ozo61iio6OhoJCcnY/LkyfDx8UFiYiL69++PlJQUBAcHV7reuHHj4OHhgcjISHh5eeH8+fNYvnw5vvvuO/z0009QKpU6/f39/TF16lSdNl9f3xrFTERERPUf365kYPHo6+uLgwcP6rTt27cPMpkM3bp10+uflZUFd3d3gwI6ceIEtmzZgvj4eMTExAAAoqKi4Ofnh2nTpuHo0aOVrpucnIzQ0FCdtoCAAIwcORKbNm3CmDFjdJY9++yziIyMNCg+IiIismL/ebuSNTPomschQ4bg0qVLePvtt3Hu3DkkJydjzZo1cHJyQr9+/fT6HzlyBN7e3gYFlJycDFtbW4wbN07bplAoMHr0aBw7dgw3b96sdN0nC0cAeO211wAAv/76a4XrlJaWori42KAYiYiIiKyVQcXj5MmT0b59e6xZswadOnXC66+/jnv37mHOnDl6U9SnTp3C5cuXq71O8UlnzpyBr68vXFxcdNrLb9Q5e/asQePdunULAPSu1QSAf/3rX2jQoAGcnJzQqlUrLFu2zKCxiYiIiKyNQdPWDRo0wJEjR7B06VIcP34cbm5uiIiIwMCBA/X6/vTTTxg0aBBeffVVgwLKzs6ucKq7vC0rK8ug8RYtWgRbW1uEh4frtHfo0AHBwcH4y1/+gtzcXCQmJmLy5MnIysrCokWLKh1PrVZDrVZrvxcWFhoUD1Fdxdwna8b8J3rM4NcTOjk5YdasWdX2GzdunM7Us1QlJSV6DyEHHk1dly+XavPmzVi3bh2mTZsGHx8fnWU7d+7U+f7mm2/i5ZdfxpIlSzBx4kS0aNGiwjHj4uIwZ84cyTEQ1RfMfbJmzH+ixwyatq4NSqVS56+7ciqVSrtcitTUVIwePRphYWGYP39+tf1lMhneffddPHz4EIcOHaq0X2xsLAoKCrSfqq7BJKpPmPtkzZj/RI8ZfObR1Nzd3ZGZmanXnp2dDQDw8PCodoyff/4Zr776Kvz8/JCcnAw7O2m76enpCeDRsysrI5fLKzwzSlTfMffJmjH/iR6zuDOP/v7+uHjxot71JOnp6drlVbly5Qr69euHZ555Bt999x2cnJwkb/vq1asAgKZNmxoWNBEREZGVsLjiMTw8HBqNBmvWrNG2qdVqJCQkICgoSHt28MaNG7hw4YLOurdu3ULfvn1hY2ODH374odIiMC8vDxqNRqftwYMHWLhwIRwcHNCrVy8j7xURERFR/WBx09ZBQUGIiIhAbGwscnJy4O3tjaSkJGRkZGDdunXaflFRUTh8+DCEENq2fv364erVq5g2bRrS0tKQlpamXdasWTPtY4N27tyJefPmITw8HK1bt0ZeXh42b96MX375BQsWLEDz5s1rb4eJiIiI6hCLKx4BYP369Zg1a5bOu613796Nnj17Vrnezz//DAD4+OOP9ZaFhIRoi8f27dujXbt22LhxI27fvg0HBwf4+/tj69atiIiIMP4OEREREdUTFlk8KhQKxMfHIz4+vtI+Fd0R/eezkFUJCAjQe1QPEdVPfA8tEZFxWWTxSERkNHwPLRGRUVncDTNEREREZLlYPBIRERGRZCweiYiIiEgyFo9EREREJBlvmLESvOOUiIiIjIHFo7XgHadERERkBJy2JiIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJWDwSERERkWQWWTyq1WpMnz4dHh4eUCqVCAoKwv79+yWtm5mZiaFDh6Jhw4ZwcXHBoEGDcPXq1Qr7rlu3Dm3btoVCoYCPjw8+/fRTY+4GERERUb1jkcVjdHQ0lixZguHDh2PZsmWwtbVF//79kZaWVuV6RUVF6NWrFw4fPowZM2Zgzpw5OHPmDEJCQpCbm6vTd/Xq1RgzZgxeeOEFfPrpp+jatSv+8Y9/YNGiRabcNSIiIqI6zc7cATzpxIkT2LJlC+Lj4xETEwMAiIqKgp+fH6ZNm4ajR49Wuu6KFStw6dIlnDhxAl26dAEAvPzyy/Dz88PixYuxYMECAEBJSQlmzpyJAQMGIDk5GQAwduxYlJWVYe7cuRg3bhwaNWpk4j0lIiIiqnss7sxjcnIybG1tMW7cOG2bQqHA6NGjcezYMdy8ebPKdbt06aItHAHg+eefx4svvoitW7dq21JSUpCbm4vx48frrD9hwgQUFxdjz549RtwjIiIiovrD4orHM2fOwNfXFy4uLjrtgYGBAICzZ89WuF5ZWRnOnTuHzp076y0LDAzElStXcO/ePe02AOj1DQgIgI2NjXY5EREREemyuGnr7OxsuLu767WXt2VlZVW4Xl5eHtRqdbXr/uUvf0F2djZsbW3xzDPP6PRzcHCAm5tbpdsAHt3Mo1artd8LCgoAAIWFhVXul0ZdUuVya1Pd8ZKCx1SflOPq7OwMmUxm8NjMfeMwRu4DPK5PknpcazP/+W+kj7/9xmfq3K+IxRWPJSUlkMvleu0KhUK7vLL1AEhat6SkBA4ODhWOo1AoKt0GAMTFxWHOnDl67Z6enpWuQ/pcP33b3CHUS1KOa0FBgd6ZfSmY+8bB3DcNqceV+W9ezH/jM3XuV8TiikelUqnz1105lUqlXV7ZegAkratUKlFaWlrhOCqVqtJtAEBsbCymTJmi/V5WVoa8vDy4ubkZraI3lcLCQnh6euLmzZtGSyCqe8fV2dm5Rusx9+lJdfG4Mv/rxr+TpauLx7SmuV8Riyse3d3dkZmZqdeenZ0NAPDw8KhwvcaNG0Mul2v7VbWuu7s7NBoNcnJydKauS0tLkZubW+k2gEdnNp88u9mwYcOqd8rCuLi41Jlkr0vq+3Fl7lNlrOG4Mv+pItZ6TC3uhhl/f39cvHhRbw4/PT1du7wiNjY2aN++PU6dOqW3LD09Hc8995y26i4f48m+p06dQllZWaXbICIiIrJ2Flc8hoeHQ6PRYM2aNdo2tVqNhIQEBAUFaa8vuXHjBi5cuKC37smTJ3WKwt9++w3/+te/EBERoW3r3bs3GjdujJUrV+qsv3LlSjRo0AADBgwwxa4RERER1XkWN20dFBSEiIgIxMbGIicnB97e3khKSkJGRgbWrVun7RcVFYXDhw9DCKFtGz9+PD7//HMMGDAAMTExsLe3x5IlS9CsWTNMnTpV20+pVGLu3LmYMGECIiIiEBYWhtTUVGzcuBHz589H48aNa3Wfa4tcLseHH35Y4U1FVHM8rpaP/0amweNaN/Dfyfis/ZjKxJ+rLwuhUqkwa9YsbNy4Efn5+ejQoQPmzp2LsLAwbZ/Q0FC94hEAfv/9d7z77rvYt28fysrKEBoaiqVLl8Lb21tvO59//jkWL16Ma9euwdPTE++88w4mTZpk8Rc/ExEREZmLRRaPRERERGSZLO6aRyIiIiKyXCweiYiIiEgyFo9WQK1WY/r06fDw8IBSqURQUBD2799v7rDqtKKiInz44Yfo168fGjduDJlMhsTERHOHRU9g7hsfc79uYO6bBvP/ERaPViA6OhpLlizB8OHDsWzZMtja2qJ///5IS0szd2h11p07d/DRRx/h119/RceOHc0dDlWCuW98zP26gblvGsz//xBUr6WnpwsAIj4+XttWUlIi2rRpI7p27WrGyOo2lUolsrOzhRBCnDx5UgAQCQkJ5g2KdDD3TYO5b/mY+6bD/H+EZx7rueTkZNja2mLcuHHaNoVCgdGjR+PYsWO4efOmGaOru+RyOZo3b27uMKgKzH3TYO5bPua+6TD/H2HxWM+dOXMGvr6+eu/eDAwMBACcPXvWDFERmR5zn6wVc59MjcVjPZednQ13d3e99vK2rKys2g6JqFYw98laMffJ1Fg81nMlJSUVvj5JoVBolxPVR8x9slbMfTI1Fo/1nFKphFqt1mtXqVTa5UT1EXOfrBVzn0yNxWM95+7ujuzsbL328jYPD4/aDomoVjD3yVox98nUWDzWc/7+/rh48SIKCwt12tPT07XLieoj5j5ZK+Y+mRqLx3ouPDwcGo0Ga9as0bap1WokJCQgKCgInp6eZoyOyHSY+2StmPtkanbmDoBMKygoCBEREYiNjUVOTg68vb2RlJSEjIwMrFu3ztzh1WnLly/H3bt3tXcu7tq1C7///jsAYOLEiXB1dTVneFaPuW86zH3Lxtw3LeY/IBNCCHMHQaalUqkwa9YsbNy4Efn5+ejQoQPmzp2LsLAwc4dWp7Vq1QrXr1+vcNm1a9fQqlWr2g2I9DD3TYO5b/mY+6bD/GfxSEREREQG4DWPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0eyeK1atbKo1z1ZWjxUf1larllaPFS/WVq+WVo85sTi0UoVFxdjwYIF+Otf/wonJyfI5XK0aNECPXr0QGxsLK5cuWLuEIlMgrlP1oz5T8ZgZ+4AqPbdu3cPwcHBOHfuHLy9vREZGQk3NzfcuXMHJ06cwMKFC9GmTRu0adPG3KECAA4ePGjuEKieYO6TNWP+k7GweLRCn3zyCc6dO4cxY8ZgzZo1kMlkOsuvXbsGtVptpuj0WcoPGdV9zH2yZsx/MhZOW1uhY8eOAQAmTJig9+MBAK1bt8bzzz+v/S6TyRAaGlrhWBVdAxIdHQ2ZTIarV69i8eLFaNeuHeRyOaKjozF37lzIZDKsX7++wvG++eYbyGQyzJw5s9Jt1GQM4NEP45gxY+Dl5QW5XA53d3dER0fj+vXrFY6zY8cOdOnSBUqlEs2aNcPYsWORn59fYV+qG5j7zH1rxvxn/hsLi0cr5ObmBgC4ePGiSbczceJELFiwAJ07d8bkyZPRvn17REZGQiaTYePGjRWus2HDBgDAiBEjKh23JmOkp6ejU6dOSEpKQkBAACZNmoQePXpg06ZNCAwMxNWrV3XGWL9+PQYPHoyLFy9ixIgRGDlyJI4cOYKXXnoJpaWlBh0HshzMfea+NWP+M/+NRpDV2bFjhwAgnJ2dxdSpU8UPP/wg7ty5U2l/ACIkJKTCZS1bthQtW7bUaRs5cqQAIFq0aCGuX7+ut05wcLCwtbUVWVlZOu25ubnCwcFBdO7cudptGDJGaWmpaNWqlXB2dhY//fSTTv/U1FRha2srXnnlFW1bQUGBcHFxEY6OjuK3337TGadnz54CgF48VDcw9x9j7lsf5v9jzP+nwzOPVujVV1/F4sWLIYTA4sWLERYWhiZNmsDb2xvvvPMOLl26ZJTtvPfee/Dy8tJrHzFiBDQaDb788kud9q+++gqlpaWIjIysdmxDxti9ezcyMjLw3nvvoVOnTjr9g4ODMWjQIHz33XcoLCwEAGzfvh2FhYUYNWoUfH19tX3t7e0xf/786necLBZz/zHmvvVh/j/G/H86LB6t1JQpU5CVlYWtW7di8uTJCA4Oxo0bN/DZZ5+hQ4cO2Llz51NvIzAwsML2oUOHQi6Xa6cYym3cuBF2dnZ44403qh3bkDGOHz8OAPjtt98we/Zsvc+tW7dQVlamncr5+eefAQA9evTQ227Xrl1hZ8f7zOoy5j5z35ox/5n/RmHmM59kQe7evSvGjx8vAIgmTZoItVothKj51MXVq1cr3daQIUMEAPF///d/QgghLl++LACI/v37S9qGIWOMGTNGAKj2c+jQISGEEKNHj9b5/qRmzZpx6qKeYe4z960Z85/5byieeSQtV1dXLF++HC1btsSdO3dw/vx5AI/uuHv48GGF6xQUFFQ6XkV385Urv6C5/K/H8gugq7pYuqZjuLi4AAB27doFIUSln5CQEACPjgMA5OTk6G1To9EgNzdXcoxUNzD3mfvWjPnP/DcUi0fSIZPJ4OjoqNPWqFEjZGZm6vXNyMjA3bt3a7Sd/v37w83NDZs3b0ZZWRk2bdoEZ2dnDBo0yOhjBAUFAXj8mIrqdOzYEQCQmpqqt+zYsWOV/phS3cbcZ+5bM+Y/898gtXqekyzCqlWrxIkTJypc9u233wqZTCYaNmwoVCqVEEKIsLAwvVP5arVavPbaaxXefVY+dXHt2rUq4yifJomLixMARHR0dIX9Kpu6kDqGSqUSXl5eQqFQiMOHD+stLy0tFampqdrvd+/erfSOu5CQEN5xV4cx93Ux960L818X87/mZEIIUXulKlmCwYMHY8eOHfD29kb37t3h4eGB4uJinDlzBqmpqbCxscHGjRu1Fx7v27cP/fr1g1KpxBtvvIEGDRpg//79aNiwIa5fvw4HBwdkZGRox4+OjkZSUhKuXbtW5Uvkjx8/jq5du8Le3h4PHjzAwYMH0bt3b71+5WP8eRuGjnHy5Em8/PLLyM3NRe/evdG+fXvIZDJcv34dqampcHNzw4ULF7T9k5KSEB0dDRcXF/z3f/83XF1dsXv3biiVSmRnZ+vtM9UNzH3mvjVj/jP/jcbc1SvVvgsXLoiPP/5Y9OnTR7Ru3VooFAqhUChEmzZtxMiRI8WpU6f01vn6669F+/bthYODg2jevLmYOHGiuHfvXpUXTVf316cQQvj4+GifC6bRaCrsU9Vfn1LHEEKI33//XUyaNEn4+PgIuVwuXFxcRNu2bcWYMWPEwYMH9fp/++23IiAgQMjlcvHMM8+IMWPGiLy8vGrjIcvF3GfuWzPmP/PfWHjmkYiIiIgk4w0zRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkv0/N/0JYZr6e0IAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm3UlEQVR4nO3de1hUdf4H8Pfh4nAfDE2guChg1uItUNQwqc1Qy3BXsVURSdG2zCKvi24PWk9aeavW2g1LwCzFUDO0LdPUyAuI4OruL8UEvEEqyE2UUeH7+8OHqWkGmBlGZubM+/U88/TM93y/3/nM9Dl+OOd8Z44khBAgIiKSETtzB0BERGRqLG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7LG5EAAIDAxEYGGjuMMiK5efnY/jw4ejatSskSUK/fv3MHZLB5LQfOJg7APpVfX093nvvPWRlZaGoqAi3bt1C165d0b17d0RGRiIxMRFBQUHmDpNIi63nbm1tLZ566ik0NDRg8uTJ6NKlC7y9vc0dlk1jcbMQdXV1iIyMxPHjxxEcHIy4uDh4eXmhoqICeXl5eOuttxAUFCTrfyDIOjF3gby8PFy+fBlvvvkmFi5caO5wCCxuFuPdd9/F8ePHkZiYiNTUVEiSpLG9pKQEKpXKTNERtYy5C5SVlQEAfH19zRwJNeM1Nwtx6NAhAMDMmTO1/nEAgO7du6NXr15a7ZcvX8arr76K4OBgKBQKdOnSBWPHjsV///tfdR8hBEaNGgVJkpCZmakxXgiBkSNH6tzW0aKioiBJElQqFRYuXAh/f384OzsjLCwMu3fvBgDU1NRg5syZ8PX1hZOTEwYPHoy8vDytufbu3YupU6figQcegJubG9zc3BAeHo7U1FSDYhJCYN26dXjkkUfg4eEBFxcXhIeHY926dSZ5z3Jg67krSRKmTJkCAHjuuecgSRIkSUJ6erq6T11dHVJSUvCHP/wBzs7O8PT0RHR0NH788Uet+bgfmIggixAXFycAiMzMTL3H/Pzzz+L+++8XAMSTTz4p5syZIyZPnixcXFyEq6urOHz4sLrvL7/8Iu69916hVCpFaWmpun3VqlUCgEhISDDp+zHGsGHDBAARExMjevToIWbOnCmmTp0qFAqFUCgUIj8/Xzz88MMiNDRUvPzyy2LChAnCzs5OdO7cWVRXV2vMFR0dLYKCgsSkSZPEggULxPPPPy8CAgIEADF79myt1w4ICBABAQEabU1NTWLChAkCgAgJCRHPP/+8mDVrlujVq5cAIObMmXM3Pw6rYeu5m5KSImJiYtS5m5KSIlJSUkRhYaEQQojKykrxhz/8QQAQjzzyiEhKShJTp04VXl5ewsHBQWzbtk1jPu4HpsHiZiG2b98uAAh3d3cxZ84c8e2334qKiopWxwwZMkTY29uLb775RqP91KlTwt3dXfTu3Vuj/d///reQJEkMGTJE3L59WxQWFopOnTqJkJAQUVdXp1ecVVVV6p1X30dVVZVeczfv1JGRkeLatWvq9szMTAFAeHp6itjYWHHr1i31trffflsAECtXrtSYq7i4WGv+W7duieHDhwt7e3tx9uxZjW26durU1FQBQDz33HPi5s2b6naVSiVGjx4tAIj8/Hy93pucMXeFSEtLEwBEWlqa1raJEycKAGLt2rUa7ZcuXRJ+fn6ia9eu4saNG+p27gemweJmQVauXCnc3NwEAPUjKChIzJw5UxQVFWn0LSgoEADE1KlTdc41e/ZsAUCcOHFCoz0pKUkAEHPnzhW9evUSjo6OBiVmSUmJRnz6PEpKSvSau3mn3r9/v0Z7Y2OjcHR0FAC0dsZz584JACI+Pl6v19iyZYsAINLT0zXade3Uffr0Ea6uruL69eta8xw/ftyi/2rtaLaeuy0VtytXrgh7e3vx+OOP6xz3/vvvCwAiOztb3cb9wDS4oMSCzJ49G9OnT8c333yDgwcPIj8/H7m5ufjggw/wySefIDMzE8888wwA4PDhwwCAS5cuYfHixVpznTx5Uv3f0NBQdftbb72Fffv2YcWKFQCAt99+G2FhYXrHGBgYCHGXb97+++8H2dnZ4d5778X169fh7++vsc3HxwfArxf0m9XV1WHFihX48ssvcebMGdTX12ts/33/37t+/TpOnDgBX19fvP3221rbb926BeDXz9nWMXd1O3LkCBobG6FSqXS+19OnTwO4816ffvppjW3cD9qHxc3CuLu7IzY2FrGxsQDuXDheuHAhPvzwQ0ybNg0XL15Ep06dcPXqVQDAzp07sXPnzhbn+30yKxQKjBw5EseOHYOTkxMSExPv3psxkoeHh1abg4NDi+3ArzsZANy8eRNRUVEoKChA//79MXnyZHh5ecHBwQGlpaXIyMhoc/VeVVUVhBC4ePEilixZ0mK/33++toy5q635vR44cAAHDhxosZ+uPOJ+0D4sbhZOqVRizZo12LlzJ86ePYsTJ04gLCxMneD/+Mc/8NJLL+k9X25uLpYvXw4vLy9UVlbihRdeMGilWXV1Nd59912D3kNSUhI8PT0NGtMe27dvR0FBAaZNm4aPP/5YY9umTZuQkZHR5hzNn29YWBjy8/PvSpxyx9z9NY/mzJmjPuLsKLa+H7C4WQFJkuDq6qrRFhERAeDOMmx9/4Goq6vDxIkT4eDggH379mHx4sXYvHkzoqOjMXXqVL3mqK6ubvUvOF0SEhI6tLidOXMGABATE6O1LScnR6853N3d8eCDD+Knn35CdXV1h8YvJ7aeuwMGDIAkSeqvS3QkW98P+D03C/HRRx/hyJEjOrd9+eWX+Omnn+Dp6am+BjFw4EBERERg48aNOv96bWpqwv79+zXaXnzxRRQXF2PFihUIDQ3F2rVr4efnh5dffhlFRUV6xdl83cKQR0f/Vl1AQAAAaH2HaP/+/Vi7dq3e87z88su4fv06pk+frvO0S0lJCUpLS9sVqxwwd1vm7e2N8ePH4+DBg1i+fLnOa365ubm4fv16u15HF5vfDzpk2Qq1qfl7MsHBwWLKlCkiOTlZvPzyy2Lo0KECgLCzsxOff/65xpji4mL1d1YGDRokXnzxRTFnzhwRGxsr7r//fqFQKNR9P/30UwFAjB49WmOO/fv3Czs7OxEWFqaxzNccmleJ6aJrFVczAGLYsGHq53V1dSIwMFAAEKNGjRLz588XMTExwt7eXowbN04AECkpKW3O39TUJKZMmSIACB8fHzF58mSxYMECkZCQIAYNGiQkSRIbN25sxzuWB+Zu618FqKysFP369RMARO/evcWMGTPE/PnzxYQJE0RISIgAIMrLy9X9uR+YBoubhTh58qR45513xPDhw0X37t2Fk5OTcHJyEkFBQWLKlCktLnm+evWq+Pvf/y5CQ0OFs7OzcHNzEyEhIWLixIli69atQog7/5B4eHgIHx8fceXKFa05Fi1apF5ibU6m2qmFuPOex44dK7p27SpcXFzEgAEDxKZNm8TevXv13qmbZWZmiieeeEJ07txZODo6ivvuu09ERUWJlStX6vw8bQ1zt/XiJoQQ169fF++8844ICwsTrq6uwtnZWXTv3l2MGTNGrF+/XuM7a9wPTEMSooPXxhIREd1lvOZGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+LWAiEEamtrO/xXxIk6CnOc5IzFrQV1dXVQKpWoq6szdyhEdwVznOSMxY2IiGSHxY2IiGSHxY2IiGSHxY2IiGSHNyslIoskhNC4f5irqyskSTJjRGRNWNyIyCLV19dr3EV6+/btcHNzM2NEZE14WpKIiGSHxY2IiGSHxY2IiGSHxY2IiGTH4orbtWvXkJKSghEjRuCee+6BJElIT0/Xa2x6ejokSdL5+OWXX+5u4EREZDEsbrVkRUUFXn/9dfj7+6Nv377Yt2+fwXO8/vrr6N69u0abp6enaQIkIiKLZ3HFzcfHB+Xl5fD29kZ+fj4GDBhg8BwjR45EeHj4XYiOiIisgcWdllQoFPD29m73PHV1dWhsbDRBREREZG0srriZwmOPPQYPDw+4uLjgmWeewenTp80dEhERdSCLOy3ZHi4uLkhISFAXt6NHj2LVqlUYMmQICgoK4Ofn1+JYlUoFlUqlfl5bW9sRIRN1GOY42RJZHbmNHz8eaWlpiI+Px5gxY/DGG2/g22+/RWVlJd58881Wxy5btgxKpVL9aK0QElkj5jjZElkVN10iIyMRERGB3bt3t9ovOTkZNTU16sf58+c7KEKijsEcJ1siq9OSLfHz88OpU6da7aNQKKBQKDooIqKOxxwnWyL7IzcAKC4uRteuXc0dBhERdRCrLW7l5eU4efIkbt26pW67cuWKVr+vv/4aR48exYgRIzoyPCIiMiOLPC25Zs0aVFdXo6ysDACQnZ2NCxcuAABmzZoFpVKJ5ORkZGRkoKSkBIGBgQCAIUOGoH///ggPD4dSqURBQQHWrVsHPz8/LFy40Fxvh4iIOphFFrcVK1bg7Nmz6udbt27F1q1bAQBxcXFQKpU6xz377LPYuXMndu3ahevXr8PHxwfTp09HSkoKunXr1iGxExGR+UlCCGHuICxRbW0tlEolampq4OHhYe5wiEzO0nP82rVrvBM3Gc1qr7kRERG1hMWNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkxyJvVkpEliFs3nqzvbZ0+yZ+e1viqNc2QTh0MkssR5fHm+V1yXg8ciMiItlhcSMiItlhcSMiItlpd3Hbtm0bYmJi4O/vD6VSCX9/f4wZMwZffvmlCcIjIiIynNELSm7fvo2JEydiy5YtEELAwcEBXl5e+OWXX/DVV18hOzsbY8eOxeeffw4HB65bISKijmP0kduyZcuQlZWFoUOHIicnBw0NDSgvL0dDQwN++OEHREZGYsuWLXjrrbdMGS8REVGbjC5uaWlp6NWrF3bv3o1HHnkEdnZ3prKzs0NkZCR2796Nnj17Yt26dSYLloiISB9GF7fy8nKMHj26xVOOjo6OGD16NMrLy40OjoiIyBhGFzc/Pz9cu3at1T719fXw9/c39iWIiIiMYnRxS0xMxObNm1s8Mrt48SIyMzORmJho0LzXrl1DSkoKRowYgXvuuQeSJCE9PV3v8dXV1ZgxYwa6du0KV1dXPPbYYygoKDAoBiIism5GL2McP348Dhw4gP79+yMpKQmRkZHo1q0bLl26hJycHLz33nuIjIxEbGwszp07pzG2taO5iooKvP766/D390ffvn2xb98+vWNqamrCU089hf/85z+YN28eunTpgg8//BBRUVE4evQoQkJCjH27RERkRYwubj169IAkSRBCYNGiRVrbhRDIzs5Gdna2RrskSbh9+3aL8/r4+KC8vBze3t7Iz8/HgAED9I4pKysLBw8exBdffIFx48YBuFOEe/bsiZSUFHz++ed6z0VERNbL6OIWHx8PSZJMGQsAQKFQwNvb26ixWVlZ6NatG/785z+r27p27Yrx48djw4YNUKlUUCgUpgqViIgslNHFzZDrYB2lsLAQDz/8sPprCc0GDhyI1NRUFBUVoXfv3maKjoiIOoqsfluyvLwcPj4+Wu3NbWVlZS2OValUqK2t1XgQyQlznGyJSYvbsWPHsHr1aqxevRpHjhwx5dR6uXHjhs7Tjk5OTurtLVm2bBmUSqX64efnd9fiJDIH5jjZEoOK2w8//ID4+HgcPnxYa9vf//53hIWFYe7cuZg7dy4GDRqEWbNmmSxQfTg7O0OlUmm1NzQ0qLe3JDk5GTU1NerH+fPn71qcRObAHCdbYlBxy8zMxBdffIGHHnpIo33v3r1YunQp7O3tMXnyZLzwwgvqZfgdeXeA5pWWv9fc5uvr2+JYhUIBDw8PjQeRnDDHyZYYVNwOHTqEIUOGaO0UH330ESRJwr/+9S+kp6djzZo1OHDgABwdHTt04Um/fv1QUFCApqYmjfbc3Fy4uLigZ8+eHRYLERGZj0HFraysDH379tVq37t3Lzw8PJCQkKBuCw4OxqhRo5Cfn9/uIHUpLy/HyZMncevWLXXbuHHjcOnSJWzdulXdVlFRgS+++AKjR4/m1wCIiGyEQV8FqKqq0rpude7cOVy5cgVPPfWU1hL84OBgfP311wYHtWbNGlRXV6tXN2ZnZ+PChQsAgFmzZkGpVCI5ORkZGRkoKSlBYGAggDvFbdCgQXjuuefwf//3f+pTo42NjViyZInBcRARkXUyqLi5u7vj4sWLGm3NqyLDwsK0+kuSpF6paIgVK1bg7Nmz6udbt25VH43FxcVBqVTqHGdvb4+vv/4a8+bNw/vvv48bN25gwIABSE9PxwMPPGBwHEREZJ0MKm59+vTBjh07UF9fD1dXVwDAtm3bIEkSHn30Ua3+Z86caXURR0tKS0vb7JOenq7zel7nzp3x8ccf4+OPPzb4dYmISB4MuuY2depUXL16FcOGDcP777+Pl156CRs3boS/vz+ioqI0+jY2NuKHH37gL4IQEVGHM+jILS4uDnv27EFGRgYKCwshhICHhwc++eQTrettO3fuREVFBaKjo00aMBERUVsM/m3JtLQ0TJs2DYcOHYKXlxeio6Nx3333afVTKBRYvXo1YmJiTBIoERGRvoz64eTIyEhERka22ic6OppHbUREZBZG3xXg94qLi1FTUwOlUokePXqYaloiIiKDteuHk2tqavDKK6+gc+fOCAkJQXh4OEJCQtC5c2ckJSWhpqbGVHESERHpzegjt8uXL2Po0KE4ffo0PD09MWzYMHTr1g2XLl3CsWPH8P777+Pf//43cnJycO+995oyZiKyAcLeETV9Jmg8J9KX0UduycnJOH36NP72t7/h/Pnz+P7777Fx40Z8//33OH/+PBYsWIDTp09j4cKFpoyXiGyFJEE4dFI/IEnmjoisiNFHbtnZ2Xj88cexdOlSrW2urq5YtmwZcnNz8dVXX7UrQCIiIkMZfeRWX1+PQYMGtdpn8ODBuH79urEvQUREZBSji1toaGibP5NVWlqK0NBQY1+CiIjIKEYXt4ULFyIrKwu7d+/WuX3Xrl3IysrCokWLjA6OiIjIGHpfc1u/fr1W25NPPono6GgMHz4ckZGR6tWSOTk52L17N55++mlUVVWZNGAiIqK2SEIIoU9HOzs7SL9braTPUEmS0NjYaFx0ZlRbWwulUomamhqtO48TyYE+OR42T/uPWlt0dHm8uUMgA+l95JaWlnY34yAiIjIZvYvblClT7mYcREREJtOun98iIiKyRCxuREQkO3oXNzs7Ozg4OKCoqEj93N7evs2Hg4PJbjxARESkF70rz6OPPgpJkuDi4qLxnIiIyNLoXdz27dvX6nMiIiJLYdJzhrdv38aJEycA3Pl5LkdH3qKCiMichBCor69XP3d1dbWJs24GLSgpLi7GunXr1NfdfmvHjh247777EB4ejvDwcPj4+GDz5s0mC5SIiAxXX1+PmJgY9eO3hU7ODCpuH3/8MaZPnw6FQqHR/vPPP2P8+PG4cuUK/P398eCDD6KqqgqTJk1CYWGhSQMmIiJqi0HF7ccff0S/fv0QEBCg0f7ee++hoaEBM2fORElJCf773/9iy5YtaGxsxJo1a0waMBERUVsMKm4lJSUYOHCgVvs333yDTp06ady4dMyYMRg6dChycnIMDkqlUmHBggXw9fWFs7MzIiIi8N1337U5bvHixZAkSevh5ORkcAyWTgiBa9euqR96/kQoEZFNMGhByZUrV9ClSxeNtqtXr+LMmTMYOnQo3N3dNbb1798f+fn5BgeVkJCArKwsJCUlISQkBOnp6Rg1ahT27t2LyMjINsf/85//hJubm/q5vb29wTFYuubz6M22b9+u8Z6JiGyZQcXN0dERlZWVGm1Hjx4FAISHh2v1d3V1NTigvLw8bNq0CcuXL8fcuXMBAPHx8QgNDcX8+fNx8ODBNucYN26cVhEmIiLbYdBpyZ49e2LPnj0abbt27YIkSRgyZIhW/7KyMvj4+BgUUFZWFuzt7TFjxgx1m5OTE6ZNm4ZDhw7h/Pnzbc4hhEBtbS1P1VGbeHqXSJ4MKm5jx47F6dOn8de//hXHjx9HVlYWUlNT4ebmhhEjRmj1P3DgAIKDgw0KqLCwED179tS6v1Tztb5jx461OUePHj2gVCrh7u6OuLg4XLp0yaAYyHbY6jJpIrkz6LRkUlISMjMzkZqairVr1wK485fvqlWrtE5B5ufn4+eff8bzzz9vUEDl5eU6j/aa28rKyloc27lzZ7z00ksYPHgwFAoFcnJy8MEHHyAvLw/5+fmt3nRUpVJBpVKpn9fW1hoUN5GlY46bjzlv+irdvgnlb55HvbYJwqGTWWLpyJu+GlTcXFxccODAAaxevRqHDx+Gl5cXYmNjMXr0aK2+BQUFiImJwTPPPGNQQDdu3ND6Hh0A9YrHGzdutDj2lVde0Xg+duxYDBw4EJMmTcKHH36Iv/3tby2OXbZsGZYsWWJQrETWhDlOtsTgW964ubnhtddew86dO7F+/XqdhQ0AZsyYgW3btiEkJMSg+Z2dnTX+umzW0NCg3m6IiRMnwtvbG7t37261X3JyMmpqatQPfa7tEVkT5jjZEou7H42Pjw8uXryo1V5eXg4A8PX1NXhOPz8/XL16tdU+CoVC5xEjkVwwx8mWWNzNSvv164eioiKt6wG5ubnq7YYQQqC0tBRdu3Y1VYhERGThLK64jRs3Do2NjUhNTVW3qVQqpKWlISIiAn5+fgCAc+fO4eTJkxpjr1y5ojXfP//5T1y5ckXnak4iIpInizstGRERgdjYWCQnJ+Py5csIDg5GRkYGSktL8cknn6j7xcfHY//+/RrfSwoICMCzzz6L3r17w8nJCT/++CM2bdqEfv36GbxqUx9cAXVHR66AIiLSh8UVNwBYv349XnvtNXz66aeoqqpCnz59sGPHDjz66KOtjps0aRIOHjyILVu2oKGhAQEBAZg/fz4WLVqkvoM4ERHJn0UWNycnJyxfvhzLly9vsY+uO4E3f/eOiIhsm0UWNyIiMg1h74iaPhM0ntsCFjcyO167vIPXLumukCSz5bQ5WdxqSSIiovZicSMiItlhcSMiItlhcSMiItnhghIrZasroIiI9MHiZq1sdAUUEZE+eFqSiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh6slyabxKxVE8sTiRraNX6kgkiWeliQiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItlhcSMiItmxyOKmUqmwYMEC+Pr6wtnZGREREfjuu+/0Gnvx4kWMHz8enp6e8PDwQExMDIqLi+9yxEREZEkssrglJCRg1apVmDRpEt577z3Y29tj1KhR+PHHH1sdd+3aNTz22GPYv38/Fi5ciCVLlqCwsBDDhg1DZWVlB0VPRETmZnF3BcjLy8OmTZuwfPlyzJ07FwAQHx+P0NBQzJ8/HwcPHmxx7IcffojTp08jLy8PAwYMAACMHDkSoaGhWLlyJZYuXdoh74GIiMzL4o7csrKyYG9vjxkzZqjbnJycMG3aNBw6dAjnz59vdeyAAQPUhQ0AevXqhT/+8Y/YvHnzXY2biIgsh8UVt8LCQvTs2RMeHh4a7QMHDgQAHDt2TOe4pqYmHD9+HOHh4VrbBg4ciDNnzqCurs7k8RIRkeWxuNOS5eXl8PHx0WpvbisrK9M57urVq1CpVG2OfeCBB3SOV6lUUKlU6uc1NTUAgNra2hZjbVTdaHGbLWntM9IHP8c79Pkc3d3dIUmSUfMzx43HHDcNfT/H9uR5M4srbjdu3IBCodBqd3JyUm9vaRwAo8YCwLJly7BkyRKtdj8/v7aDtnHKf/zV3CHIgj6fY01NjdZZDX0xx43HHDcNfT/H9uR5M4srbs7Ozhp/XTZraGhQb29pHACjxgJAcnIyZs+erX7e1NSEq1evwsvLq91/QdwttbW18PPzw/nz59udCLbMmj5Hd3d3o8cyx22XtX2O7cnzZhZX3Hx8fHDx4kWt9vLycgCAr6+vznH33HMPFAqFup8hY4E7R3y/P+rz9PTUN2yz8vDwsIqEtXRy/xyZ42RLn6PFLSjp168fioqKtM7N5ubmqrfrYmdnh969eyM/P19rW25uLnr06GGSvwaIiMjyWVxxGzduHBobG5GamqpuU6lUSEtLQ0REhPr6wLlz53Dy5EmtsUeOHNEocKdOncL333+P2NjYjnkDRERkdhZ3WjIiIgKxsbFITk7G5cuXERwcjIyMDJSWluKTTz5R94uPj8f+/fshhFC3vfjii1i7di2eeuopzJ07F46Ojli1ahW6deuGOXPmmOPt3FUKhQIpKSk6F9GQ/vg5Wi7+vzENW/wcJfHb6mAhGhoa8Nprr2HDhg2oqqpCnz598MYbbyA6OlrdJyoqSqu4AcCFCxfw6quvYteuXWhqakJUVBRWr16N4ODgjn4bRERkJhZZ3IiIiNrD4q65ERERtReLGxERyQ6LmxVqz/3u6FfXrl1DSkoKRowYgXvuuQeSJCE9Pd3cYRGY46ZiyznO4maFjL3fHWmqqKjA66+/jp9++gl9+/Y1dzj0G8xx07DpHBdkVXJzcwUAsXz5cnXbjRs3RFBQkBg8eLAZI7M+DQ0Nory8XAghxJEjRwQAkZaWZt6giDluQrac4zxyszLtud8daVIoFPD29jZ3GPQ7zHHTseUcZ3GzMsbe747IWjDHyRRY3KyMsfe7I7IWzHEyBRY3K2Ps/e6IrAVznEyBxc3KGHu/OyJrwRwnU2BxszI+Pj5G37OOyBowx8kUWNysjLH3uyOyFsxxMgUWNyuj7/3uiKwVc5xMweLu50at0/d+d6SfNWvWoLq6Wr0CLzs7GxcuXAAAzJo1C0ql0pzh2STmuGnZao7zljdWSJ/73ZF+AgMDcfbsWZ3bSkpKEBgY2LEBEQDmuCnZao6zuBERkezwmhsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixt1mMDAQIv6qR9Li4fkwdLyytLi6Sgsblauvr4eS5cuxcMPPww3NzcoFArcf//9GDp0KJKTk3HmzBlzh0jUbsxzMhTvCmDF6urqEBkZiePHjyM4OBhxcXHw8vJCRUUF8vLy8NZbbyEoKAhBQUHmDhUAsGfPHnOHQFaIeU7GYHGzYu+++y6OHz+OxMREpKamQpIkje0lJSVQqVRmik6bpfzjQ9aFeU7G4GlJK3bo0CEAwMyZM7V2eADo3r07evXqpX4uSRKioqJ0zqXrvHxCQgIkSUJxcTFWrlyJhx56CAqFAgkJCXjjjTcgSRLWr1+vc76tW7dCkiQsWrSoxdcwZg7gzj9miYmJ8Pf3h0KhgI+PDxISElq8rcf27dsxYMAAODs7o1u3bpg+fTqqqqp09iXLwzxnnhuDxc2KeXl5AQCKioru6uvMmjULS5cuRXh4OJKSktC7d2/ExcVBkiRs2LBB55hPP/0UADB58uQW5zVmjtzcXPTv3x8ZGRkICwvDK6+8gqFDh+Kzzz7DwIEDUVxcrDHH+vXrMWbMGBQVFWHy5MmYMmUKDhw4gCeeeAI3b9406HMg82CeM8+NIshqbd++XQAQ7u7uYs6cOeLbb78VFRUVLfYHIIYNG6ZzW0BAgAgICNBomzJligAg7r//fnH27FmtMZGRkcLe3l6UlZVptFdWVopOnTqJ8PDwNl/DkDlu3rwpAgMDhbu7uygoKNDon5OTI+zt7cXTTz+tbqupqREeHh7C1dVVnDp1SmOeRx99VADQiocsD/P8V8xz/fHIzYo988wzWLlyJYQQWLlyJaKjo9GlSxcEBwfjpZdewunTp03yOvPmzYO/v79W++TJk9HY2IiNGzdqtGdmZuLmzZuIi4trc25D5tixYwdKS0sxb9489O/fX6N/ZGQkYmJi8PXXX6O2thYA8OWXX6K2thZTp05Fz5491X0dHR3x5ptvtv3GySIwz3/FPNcfi5uVmz17NsrKyrB582YkJSUhMjIS586dwwcffIA+ffrgq6++avdrDBw4UGf7+PHjoVAo1KdVmm3YsAEODg6YMGFCm3MbMsfhw4cBAKdOncLixYu1Hr/88guamprUp6/+85//AACGDh2q9bqDBw+GgwPXU1kL5jnz3GDmPnQk06uurhYvvviiACC6dOkiVCqVEML40zXFxcUtvtbYsWMFAPG///1PCCHEzz//LACIUaNG6fUahsyRmJgoALT52LdvnxBCiGnTpmk8/71u3brZ5OkauWCeM89bwyM3GVIqlVizZg0CAgJQUVGBEydOALiziuz27ds6x9TU1LQ4n64Vas2aL4I3/0XafNG8tQvsxs7h4eEBAMjOzoYQosXHsGHDANz5HADg8uXLWq/Z2NiIyspKvWMky8M8Z563hsVNpiRJgqurq0Zb586dcfHiRa2+paWlqK6uNup1Ro0aBS8vL3z++edoamrCZ599Bnd3d8TExJh8joiICAC/Lg1vS9++fQEAOTk5WtsOHTrU4j+AZD2Y58zzFpnjcJFM41//+pfIy8vTuW3btm1CkiTh6ekpGhoahBBCREdHa52+UKlU4k9/+pPOFVXNp2tKSkpajaP51NCyZcsEAJGQkKCzX0una/Sdo6GhQfj7+wsnJyexf/9+re03b94UOTk56ufV1dUtriIbNmyYza4iszbMc03Mc/1IQgjR8SWVTGHMmDHYvn07goOD8cgjj8DX1xf19fUoLCxETk4O7OzssGHDBvXF6l27dmHEiBFwdnbGhAkT4OLigu+++w6enp44e/YsOnXqhNLSUvX8CQkJyMjIQElJSas/vHr48GEMHjwYjo6OuHXrFvbs2YPHH39cq1/zHL99DUPnOHLkCEaOHInKyko8/vjj6N27NyRJwtmzZ5GTkwMvLy+cPHlS3T8jIwMJCQnw8PDAX/7yFyiVSuzYsQPOzs4oLy/Xes9keZjnzHOjmLu6kvFOnjwp3nnnHTF8+HDRvXt34eTkJJycnERQUJCYMmWKyM/P1xrzxRdfiN69e4tOnToJb29vMWvWLFFXV9fqhfa2/qIVQoiQkBD1d4UaGxt19mntL1p95xBCiAsXLohXXnlFhISECIVCITw8PMSDDz4oEhMTxZ49e7T6b9u2TYSFhQmFQiHuvfdekZiYKK5evdpmPGQZmOfMc2PwyI2IiGSHC0qIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2WNyIiEh2/h/frsv+CHSDngAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for Parch,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtmElEQVR4nO3deXxM9/4/8NdIYmZEFiRI2kgQy62IqMqglqiqCK2lKBeR2vq4aimxhetra9GmXFSXr9aSWC6t9l613LYaQhCJEsv1pSkRIYkqsjcZJJ/fH/nl1HQmyUkmmZnMvJ6Px/njfM7n8znvM7x5z9lGIYQQICIiIiKSoZ65AyAiIiKiuoPFIxERERHJxuKRiIiIiGRj8UhEREREsrF4JCIiIiLZWDwSERERkWwsHomIiIhINhaPRERERCQbi0ciIiIiko3Fo5VLTU2FQqFAWFiY2WIICgqCQqEw6T4t4bjJcljC3wfmAZmbJfx9YB5YBxaPJlD2F7eixcfHx9xhUi06dOgQBg0ahKZNm8LBwQFubm7w8/PDxIkTsX//fnOHZxLMAwKArKwsvPvuu+jevTuaNGkCBwcHuLu74+WXX8ZHH32E/Px8c4dYq5gHBAB3797FggUL4O/vDycnJzRo0ADt2rXDjBkzcPPmTXOHVyl7cwdgS1q3bo1x48YZ3Obq6mraYMhkli9fjmXLlqFBgwYYPHgwfHx88OTJE1y5cgV79+5FcnIyhgwZYu4wTYZ5YLtiYmIwatQoPHz4EH/5y18wcuRINGnSBA8ePMCJEycwc+ZMrF+/Hjdu3DB3qLWOeWC7Dh8+jNGjRyMvLw/dunXDlClTYG9vjwsXLuCTTz7B559/jq1bt+Kvf/2ruUMtF4tHE/L19cWyZcvMHQaZUGpqKlasWAEvLy+cOXMGnp6eOtsLCwuRkJBgpujMg3lgmy5evIhXX30VALBz506MHTtWr09sbCwiIiJMHZpZMA9s07lz5zB8+HDUq1cP//73v/VOHMTHx+O1117D+PHj4eHhgb59+5op0orxsrWFUigUCAoKQnp6Ov7617/Czc0NTk5OGDRoEFJSUgAAV69exdChQ9G4cWM4OTlhxIgR+PXXX8ud88qVKxg0aBBcXV3RsGFDvPLKKzh37pxev3PnzmH69Onw8/ODi4sL1Go1OnbsiDVr1uDx48d6/X18fODj44Ps7GxMnz4dXl5esLe3x/bt2ys8xr1790KpVKJTp07IzMyU2k+cOIFXX30Vbm5uUCqVaNOmDf7+97/j999/15ujuLgY77//Pnx9faFSqeDr64vVq1ejpKSkwn2bSmJiIkpKSjB8+HC9whEA1Go1goKCTB9YHcE8sI48AICZM2eisLAQH330kcHCESi9Hy42Nta0gdUBzAPryYNZs2ZBq9Vi48aNBq84de/eHbt370ZJSQnefvttCCHMEKUMgmrdzZs3BQAxYMAA2WMACH9/f+Hj4yO6desm5syZIwYPHiwAiFatWonLly8LV1dX0a9fPxEeHi6CgoIEANG3b1+D++7Vq5dwcXERffv2FQsXLhRjxowR9vb2okGDBuLMmTM6Y9566y3h6ekpRo8eLebNmyfefvtt0aFDBwFADB8+XC9Wb29v0bx5c9G5c2fRpk0bMW3aNDFz5kxx+PBhIYQQffr0EX/+q7Zx40ahUChE7969RXZ2ttT+ySefCIVCIRo1aiRCQ0PF3LlzpWPr0aOH0Gq1OvNMnDhRABAtW7YUc+bMEdOmTRNubm7SZzVhwgTZn3lt+PHHHwUAERISYtY4LAHzwHbz4JdffhEAhJeXlyguLjZrLObGPLDdPEhOThYAxDPPPCOePHlSYV+NRiMAiBMnTpgouqrhZWsTun79ermXKbp164bg4GCdtkuXLmH27NlYt26d1DZt2jR8+umn6NWrF5YtW4ZZs2YBAIQQGDx4MA4fPozz58/j+eef15krLi4OCxcuxOrVq6W2CRMmIDg4GFOmTMGlS5ek9kWLFuHjjz+GnZ2d1CaEwOTJk7F161acOnUKL774os78d+/eRadOnXDq1Cmo1eoKP4fFixdj1apVGDZsGHbv3g2VSgUA+L//+z/MnDkT/v7+iImJQZMmTaQxa9asQUREBD766COEh4cDKL3EtXXrVmm/jo6OUvwBAQEVxvBnqamplX4z/jM5l5w0Gg1atGiBw4cPY/DgwRg9ejQCAwPRpk0bkz9xaCmYB6VsKQ9OnToFAOjTpw/q1eMFL4B5UMaW8uD06dMASs+wP/15GtKvXz8kJCTg1KlT6NWrV5ViMQlzVq62ouzbXkXLrFmzdMYAEA0bNhQFBQU67SdOnBAAROvWrUVJSYnOtujoaAFAbN26VW/frq6uIi8vTy+2fv36CQDip59+qvQ4zp07JwCIZcuW6bR7e3sLAOLixYsGx5V903zy5ImYNGmSACCmTJmi981r5syZ5X7TKi4uFu7u7qJLly5S25tvvikAiK+//lqv/8qVK6v0TfPYsWOV/hn9eZHr/Pnz0jf1ssXFxUUMHjxYfPPNN7LnqeuYB7abB2vWrBEAxMKFC2X1t2bMA+aBnDz49NNPBQAxffp0WXObGs88mtCAAQPw3Xffye7fpk0bNGjQQKfNw8MDAODv76935qpsW0ZGht5cnTt3RsOGDfXae/XqhZiYGCQlJaFLly4AgEePHmHTpk3Ys2cPrl27hvz8fJ37LgzNr1Kp0LFjxwqP5/XXX8f+/fuxePFivPvuu3rbz5w5AwD4/vvvERMTo7fdwcEB165dk9YvXrwoHYOh46qKoKCgWru3pHPnzrh8+TLi4+Nx7NgxnDt3DidPnsTBgwdx8OBBjB07Fjt27LCZM5HMA9vMA9LFPGAeyGFJ92s+jcWjBXN2dtZrs7e3r3SboZuYmzVrZnAfZe05OTlS24gRI3DgwAG0bdsWb7zxhvRuwuzsbGzYsAFarVZvnqZNm1Za/Jw4cQIqlQohISEGtz98+BAA8N5771U4T5mcnBzUq1cPbm5u5R6XpVAoFOjRowd69OgBoPSyz/79+xEaGopdu3bh9ddfx7Bhw8wcpWViHlSsLuRB8+bNAQDp6elmjqTuYh5UrC7lwe3btyvtW9bnmWeeqdWYqovFo40o76m7snYXFxcAwNmzZ3HgwAEMGDAAhw4d0rkv48yZM9iwYYPBeeScNYuJicHLL7+M4OBgfPfdd1IhVabsH8Dc3Fw4OTlVOp+LiwtKSkpw//59uLu7GzwuuWrrHpfyKBQKDB06FLNnz8aKFStw9OhRFo8mwDyoWG3lQdk9cbGxsSgpKeF9j2bGPKhYbeVB2THGxsaiuLi4wvsey862Pvfcc1WKw1RYPNqIpKQk5Ofn612qiIuLA1B6GQOA9HLeQYMG6f3FLutbXZ07d8bRo0fRr18/BAcH4z//+Y/OjdYajQbnz5/HmTNn0L9//0rn69SpE86fP4+4uDgMHz7cqFhTU1OxfPnyKo2piXe0Gbp0RLWHeVCx2soDX19f9O7dGydOnEBUVBTefPPNcvtqtVoolcoqxUBVwzyoWG3lQZs2bdCzZ0+cPHkSUVFRmDhxosF+MTExSEhIgJubW7lnZs2NX/9sRHZ2tt7p/7J7Sfz8/KT7W7y9vQEAJ0+e1Ol75coVnSfzqqtTp044evQolEolgoODdfYzbdo02NvbY8aMGUhLSzN4DElJSdL6+PHjAQArVqxAQUGB1J6enl7uN+LylN3jUpVFjsTERERHR6OoqEhv22+//YYvvvgCANCzZ88qxUvVwzyoWG3lAQBs2LABarUa06dPx969ew32iYuLw0svvVSlmKnqmAcVq+08UCqVmDFjBg4ePKi3PTExUfplmUWLFqF+/fpVit1UeObRhCp6NQMALFy4UHpNQU3r1asXPv30UyQkJKBbt25ITU3FV199BbVaLRUwABAYGIjAwEB8+eWXyMzMRLdu3ZCWloZvv/0WgwYNwr59+4yOxd/fX/rGOXDgQBw+fBi9evWCn58fPvnkE/ztb39Du3btEBISgtatWyMvLw8pKSk4fvw4wsLC8NlnnwEA+vbtizfffBPbtm1Dx44dMWzYMGi1WuzduxfdunUzmJimlpGRgQkTJmD69Ono3bs32rdvD3t7e9y6dQsHDx5Efn4+Bg0ahJEjR5o7VJNhHpSypTwAgICAABw4cACjRo3C6NGjsWLFCvTu3RuNGzfGw4cPcerUKVy+fBm+vr7mDtUkmAelbC0Pnn/+eXz99dcYPXo0Xn31VXTv3h3du3eXfp7wxx9/RElJCd58803Mnj3b3OGWr5ae4qanyHk1AwCRlZUljQEg+vTpU+5chl45UPZ6gaVLlxrs/9///leEhIQIZ2dn4ejoKF5++WWDr2S4d++emDhxovD09BQqlUp07NhRfPzxxyIlJcXgvr29vYW3t3e5x2/opbBCCHH58mXRtGlT4ejoKI4fPy61JyYmitGjRwtPT0/h4OAg3NzcxPPPPy8WLlworl69qjPHkydPxOrVq0WrVq1E/fr1RatWrcSqVavE9evXq/RqhtqSm5srdu7cKcaPHy86dOggXF1dhb29vXB3dxf9+vUTW7ZsqfRlsdaCeWC7efC0Bw8eiJUrV4pu3bqJRo0aCXt7e9GkSRMRFBQkNm7cKPLz880dYq1iHjAPhBAiIyNDzJs3T3To0EE4OjpKf+6Ojo5iz5495g6vUgohLOR5dCIiIiIbVFJSgmHDhuHbb7/FRx99hOnTp5s7pAqxeCQiIiIys/z8fPTs2ROXLl1CVFSUdB+nJeI9j0RERERm1rBhQxw4cABbtmxBWlqawSfiLQXPPBIRERGRbHxVDxERERHJxuKRiIiIiGRj8UhEREREsrF4LIcQArm5uVV6czyRNWIuEDEPiJ7G4rEceXl5cHFxQV5enrlDITIr5gIR84DoaSweiYiIiEg2Fo9EREREJBuLRyIiIiKSjcUjEREREcnGnyckqoAQAgUFBdK6o6MjFAqFGSMiIiIyLxaPRBUoKCjAkCFDpPX9+/db7G+NEhERmQIvWxMRERGRbCweiYiIiEg2Fo9EREREJBuLRyIiIiKSjcUjEREREclmkcWjVqvFggUL4OnpCbVaDY1GgyNHjsgev3fvXnTv3h2Ojo5wdXVFjx49cPTo0VqMmIiIiMg2WGTxGBYWhnXr1mHs2LHYsGED7OzsEBISgpMnT1Y6dtmyZRgzZgy8vLywbt06vPvuu/D390d6eroJIiciIiKybhb3nsfExETs2bMHkZGRmDt3LgAgNDQUfn5+mD9/Pk6fPl3u2DNnzmDFihVYu3YtZs+ebaqQiYiIiGyGxZ153LdvH+zs7DB16lSpTaVSYdKkSYiPj8ft27fLHbt+/Xo0b94cs2bNghAC+fn5pgiZiIiIyGZYXPGYlJSEtm3bwtnZWac9MDAQAHDhwoVyx8bExKBr167YuHEj3N3d4eTkBA8PD2zatKk2QyYisnplX8jLFiGEuUMiIjOxuMvWmZmZ8PDw0Gsva8vIyDA4LisrC/fv38epU6dw9OhRLF26FC1atMC2bdswY8YMODg44K233ip3v1qtFlqtVlrPzc018kiI6ibmAhliaz/VyTwgKp/FnXksLCyEUqnUa1epVNJ2Q8ouUT948ABffPEF5s6di1GjRuHQoUN47rnn8O6771a439WrV8PFxUVavLy8jDwSorqJuUDEPCCqiMUVj2q1WufbXpmioiJpe3njAMDBwQEjRoyQ2uvVq4c33ngDd+7cQVpaWrn7jYiIQE5OjrRUdG8lkTVjLhAxD4gqYnGXrT08PAy+ViczMxMA4OnpaXBc48aNoVKp4OrqCjs7O51tTZs2BVB6abtFixYGxyuVSoNnPIlsDXOBiHlAVBGLO/MYEBCA5ORkvftLEhISpO2G1KtXDwEBAfjtt9/w6NEjnW1l90m6u7vXfMBERERENsTiiscRI0aguLgYmzdvltq0Wi22bdsGjUYj3XeSlpaGa9eu6Yx94403UFxcjKioKKmtqKgIu3btwnPPPVfuWUsiIiIiksfiLltrNBqMHDkSERERuHfvHnx9fREVFYXU1FRs2bJF6hcaGorjx4/rvC7irbfewhdffIG3334bycnJaNGiBXbs2IFbt27hwIED5jgcIiIiIqticcUjAERHR2PJkiXYsWMHsrKy4O/vj4MHD6J3794VjlOr1Th69Cjmz5+PrVu3oqCgAAEBATh06BAGDBhgouiJiIiIrJdFFo8qlQqRkZGIjIwst09sbKzB9qZNm2L79u21ExgREZGFE0KgoKBAWnd0dIRCoTBjRGRtLLJ4JCIiouqxtRe6k+lZ3AMzRERERGS5WDwSERERkWwsHomIiIhINt7zSBary7xoc4cAxZNHcHlqPWjJHgj7+maLBwDORYaadf9ERGTbeOaRiIiIiGRj8UhEREREsrF4JCIiIiLZWDwSERERkWwsHomIiIhINhaPRERERCQbi0ciIiIiko3FIxERERHJxuKRiIiIiGRj8UhEREREsrF4JCIiIiLZWDwSERERkWwsHomIiIhINhaPRERERCSbvbET/Pbbb9i2bRvOnj2L7OxsFBcX6/VRKBSIiYkxdldEREREZGZGFY+XLl3CSy+9hKysLAghyu2nUCiM2Q0RERERWQijisfw8HA8fPgQf//73zFp0iQ8++yzsLOzq6nYSAYhBAoKCqR1R0dHFutEVqbLvGhzhwDFk0dweWo9aMkeCPv6ZosHAM5Fhpp1/0S2yqjiMT4+HkOHDsWKFStqKh6qooKCAgwZMkRa379/Pxo2bGjGiIiIiMiaGfXATP369dG6deuaioWIiIiILJxRxWOfPn3w008/1VQsRERERGThjCoeP/zwQ/z3v//Fhx9+WFPxAAC0Wi0WLFgAT09PqNVqaDQaHDlypMrz9O/fHwqFAtOnT6/R+IiIiIhsVZXueZw4caJem5+fHxYsWIDPPvsMAQEBcHZ21uujUCiwZcsW2fsJCwvDvn378M4776BNmzbYvn07QkJCcOzYMfTs2VPWHN988w3i4+Nl75OIiIiIKlel4nH79u3lbktJSUFKSorBbVUpHhMTE7Fnzx5ERkZi7ty5AIDQ0FD4+flh/vz5OH36dKVzFBUVITw8HAsWLMD//M//yNovkSHCzgE5/mN01omIiGxZlYrHmzdv1lYckn379sHOzg5Tp06V2lQqFSZNmoRFixbh9u3b8PLyqnCODz74ACUlJZg7dy6LRzKOQmH215EQERFZkioVj97e3rUVhyQpKQlt27bVu/wdGBgIALhw4UKFxWNaWhrWrFmDrVu3Qq1W12qsRERERLbG6J8nrGmZmZnw8PDQay9ry8jIqHB8eHg4OnfujNGjR1dpv1qtFlqtVlrPzc2t0ngia8FcIGIeEFXEqKet165dCzc3t3ILuoyMDLi7u2Pjxo2y5ywsLIRSqdRrV6lU0vbyHDt2DF9//TXWr18ve39lVq9eDRcXF2mp7NI4kbViLhAxD4gqYlTx+NVXX6FTp07w9PQ0uN3T0xMBAQHYs2eP7DnVarXOt70yRUVF0nZDnjx5gpkzZ2L8+PHo2rWr7P2ViYiIQE5OjrTcvn27ynMQWQPmAhHzgKgiRl22/uWXXzB27NgK+3To0AG7du2SPaeHhwfS09P12jMzMwGg3EI1OjoaP//8M/73f/8XqampOtvy8vKQmpqKpk2bokGDBgbHK5VKg2c8iWwNc4GIeUBUEaPOPBYWFsLR0bHCPiqVCvn5+bLnDAgIQHJyst79JQkJCdJ2Q9LS0vD48WO8+OKLaNmypbQApYVly5Yt8cMPP8iOg4jqFiEE8vPzpUUIYe6QiIisklFnHlu0aFHpexfj4+Px7LPPyp5zxIgR+PDDD7F582bpPY9arRbbtm2DRqOR7jtJS0vD77//jvbt2wMARo8ebbCwHDZsGEJCQjBlyhRoNBrZcRBR3VJQUIAhQ4ZI6/v370fDhg3NGBERkXUyqngcNGgQ1q9fj61btxr89ZkvvvgCJ0+exKxZs2TPqdFoMHLkSERERODevXvw9fVFVFQUUlNTdV40HhoaiuPHj0tnF9q3by8Vkn/WsmVLDB06tGoHR0RERER6jCoeFy5ciH/+85+YMmUKdu7cif79++OZZ55Beno6fvjhB5w4cQKenp6IiIio0rzR0dFYsmQJduzYgaysLPj7++PgwYPo3bu3MeESERERkZGMKh7d3d1x7NgxjBs3DrGxsYiNjYVCoZDOBnbt2hW7du2Cu7t7leZVqVSIjIxEZGRkuX1iY2NlzcX7noiIiIhqjtEvCW/Xrh3Onj2Ls2fPIjExETk5OXB1dUVgYCBeeOGFmoiRiIiIiCyEUcXjxIkT0bFjR8yePRtdu3at1vsViYiIiKjuMKp43L17N2bPnl1TsdQ5XeZFmzsEKJ48gstT60FL9kDY1zdbPABwLjLUrPsnIiKi2mPUex5bt24tvbybiIiIiKyfUcXjxIkTcejQIYO/CENERERE1seoy9avv/46jh07hh49emD+/Pno2rUrmjVrBoVCode3RYsWxuyKiIiIiCyAUcVjq1atpFfzzJw5s9x+CoUCT548MWZXRERERGQBjCoeQ0NDDZ5lJCIiIiLrZFTxuH379hoKg4iIiIjqAqNfEk5ERNZP2Dkgx3+MzjoR2SYWj0REVDmFwuzvkCUiy2B08ZiXl4dNmzbhxx9/REZGBrRarV4fhUKBGzduGLsrIiIiIjIzo4rH3377DT169MCNGzfg7OyM3NxcuLi44NGjRygsLAQAeHp6wsGBlzeIiIiIrIFRLwlftmwZbty4gejoaGRlZQEAZs+ejYKCAiQkJCAwMBA+Pj64cuVKjQRLREREROZlVPF4+PBh9OvXD+PGjdN7ZU/Xrl3xn//8B6mpqVi+fLlRQRIRERGRZTCqeMzMzETnzp2ldTs7O+lyNQA0atQIAwcOxJdffmnMboiIiIjIQhh1z6OLiwseP34srTdq1Ah37tzR6ePs7Ixff/3VmN0QERHVCV3mRZs7BCiePILLU+tBS/aY/Un5c5GhZt0/1Syjzjy2atUKqamp0nrnzp1x5MgRPHjwAABQWFiIAwcO8HetiYiIiKyEUcXjK6+8gpiYGPz+++8AgLfeegv37t1Dp06dMHLkSPj5+eHGjRsICwuriViJiIiIyMyMKh7/9re/4fPPP5eKx+HDhyMyMhIFBQX4+uuvcffuXcyZMwfz5s2rkWCJiIiIyLyqdc9jfHw8Fi9ejLNnz0KhUECj0eC9995DYGAgwsPD8c477+D+/fto2rSp3lPYVLP4k2FERERkSlUuHi9fvox+/fqhqKhIaouJicHp06eRmJiIDh06wM7ODs2aNavRQKkc/MkwsgB8SMAwPiRARNaoypet16xZg6KiIixevBh3797F3bt3sWTJEhQWFuL999+vjRiJiIiIyEJU+cxjXFwcevbsiZUrV0pty5cvR2xsLI4fP16jwRERERGRZanymcdff/0V3bp102vXaDR8nyMRERGRlaty8fj48WM0bNhQr93R0VHnheHG0Gq1WLBgATw9PaFWq6HRaHDkyJFKx33zzTd444030KpVKzRo0ADt2rVDeHg4srOzayQuIiIiIltn1Kt6aktYWBjWrVuHsWPHYsOGDbCzs0NISAhOnjxZ4bipU6fi6tWrGDduHDZu3Ijg4GBs2rQJ3bt31/nZRCIiIiKqnmq9qmfnzp04c+aMTtv169cBACEhIXr9FQoFDh06JGvuxMRE7NmzB5GRkZg7dy4AIDQ0FH5+fpg/fz5Onz5d7th9+/YhKChIp61Lly6YMGECdu3ahcmTJ8uKgYiIiIgMq1bxeP36dalY/LPvvvtOr60q73rct28f7OzsMHXqVKlNpVJh0qRJWLRoEW7fvg0vLy+DY/9cOALAsGHDMGHCBFy9elV2DERERERkWJWLx5s3b9ZGHJKkpCS0bdsWzs7OOu2BgYEAgAsXLpRbPBpy9+5dAICbm1vNBUlERERko6pcPHp7e9dGHJLMzEx4eHjotZe1ZWRkVGm+999/H3Z2dhgxYkSF/bRaLbRarbSem5tbpf0QWQvmAhHzgKgiFvfATGFhIZRKpV67SqWStsu1e/dubNmyBeHh4WjTpk2FfVevXg0XFxdpqcrZTSJrwlwgYh4QVcTiike1Wq3zba9M2c8hqtVqWfPExcVh0qRJGDBgAN57771K+0dERCAnJ0dabt++XbXAiawEc4GIeUBUkWo9MFObPDw8kJ6erteemZkJAPD09Kx0josXL+K1116Dn58f9u3bB3v7yg9TqVQaPONJZGuYC0TMA6KKWNyZx4CAACQnJ+vdX5KQkCBtr8iNGzcQHByMpk2b4vDhwwZfaE5ERERE1WNxxeOIESNQXFyMzZs3S21arRbbtm2DRqOR7jtJS0vDtWvXdMbevXsXr7zyCurVq4fvv/8e7u7uJo2diIiIyNpZ3GVrjUaDkSNHIiIiAvfu3YOvry+ioqKQmpqKLVu2SP1CQ0Nx/PhxCCGktuDgYKSkpGD+/Pk4efKkzi/SNGvWDP379zfpsRARERFZG4srHgEgOjoaS5YswY4dO5CVlQV/f38cPHgQvXv3rnDcxYsXAQAffPCB3rY+ffqweCQiIiIykkUWjyqVCpGRkYiMjCy3T2xsrF7b02chiYiIiKjmWdw9j0RERERkuVg8EhEREZFsLB6JiIiISDYWj0REREQkG4tHIiIiIpKNxSMRERERycbikYiIiIhks8j3PBIRVZWwc0CO/xiddSIiqnksHonIOigUEPb1zR0FEZHV42VrIiIiIpKNxSMRERERycbikYiIiIhkY/FIRERERLKxeCQiIiIi2Vg8EhEREZFsLB6JiIiISDa+55GIiMiK8IX5VNtYPBIREVkTvjCfahkvWxMRERGRbCweiYiIiEg2Fo9EREREJBuLRyIiIiKSjcUjEREREcnG4pGIiIiIZGPxSERERESyWWTxqNVqsWDBAnh6ekKtVkOj0eDIkSOyxqanp2PUqFFwdXWFs7MzhgwZgpSUlFqOmIiIiMg2WGTxGBYWhnXr1mHs2LHYsGED7OzsEBISgpMnT1Y4Lj8/H3379sXx48exaNEiLF++HElJSejTpw8ePHhgouiJiIiIrJfF/cJMYmIi9uzZg8jISMydOxcAEBoaCj8/P8yfPx+nT58ud+wnn3yCX375BYmJiejatSsAYODAgfDz88PatWuxatUqkxwDERERkbWyuDOP+/btg52dHaZOnSq1qVQqTJo0CfHx8bh9+3aFY7t27SoVjgDQvn179OvXD19++WWtxk1ERERkCyyueExKSkLbtm3h7Oys0x4YGAgAuHDhgsFxJSUluHTpEl544QW9bYGBgbhx4wby8vJqPF4iIiIiW2Jxl60zMzPh4eGh117WlpGRYXDcw4cPodVqKx3brl07g+O1Wi20Wq20npOTAwDIzc0tN9ZibWG522xZRZ9ZVfDzNUzO5+vk5ASFQlGt+ZkLNYe5ULtqMxeqkwcA/6zKU1O5QNVnzP8LeoSFadWqlRg4cKBe+40bNwQA8Y9//MPguLS0NAFAvP/++3rbtmzZIgCIpKSkcve7dOlSAYALF6tYcnJyqpuCzAUuVrVUNxeYB1ysbTHm/4U/s7gzj2q1WufbXpmioiJpe3njAFRrLABERERgzpw50npJSQkePnyIJk2a1FylXktyc3Ph5eWF27dv613uJ+PVxc/Xycmp2mOZC1Seuvj5VjcX6nIeAHXzz6quqKufrTH/L/yZxRWPHh4eSE9P12vPzMwEAHh6ehoc17hxYyiVSqlfVcYCgFKphFKp1GlzdXWVG7ZFcHZ2rlN/kesaW/l8mQtUGVv4fK0hDwDb+LMyF1v+bC3ugZmAgAAkJyfr3R+RkJAgbTekXr166NixI3766Se9bQkJCWjVqlWNVt1EREREtsjiiscRI0aguLgYmzdvltq0Wi22bdsGjUYDLy8vAEBaWhquXbumN/bs2bM6BeTPP/+Mo0ePYuTIkaY5ACIiIiIrZnGXrTUaDUaOHImIiAjcu3cPvr6+iIqKQmpqKrZs2SL1Cw0NxfHjxyGEkNqmTZuGzz//HIMGDcLcuXPh4OCAdevWoVmzZggPDzfH4ZiEUqnE0qVL9S6xUM3g51t38M+qdvHzrTv4Z1V7+NkCCvF09WUhioqKsGTJEuzcuRNZWVnw9/fHypUrMWDAAKlPUFCQXvEIAHfu3MHs2bPxww8/oKSkBEFBQfjHP/4BX19fUx8GERERkdWxyOKRiIiIiCyTxd3zSERERESWi8UjEREREcnG4rEO02q1WLBgATw9PaFWq6HRaHDkyBFzh2UV8vPzsXTpUgQHB6Nx48ZQKBTYvn27ucOicjAXag9zoW5hLtQe5sIfWDzWYWFhYVi3bh3Gjh2LDRs2wM7ODiEhITh58qS5Q6vz7t+/jxUrVuDq1avo1KmTucOhSjAXag9zoW5hLtQe5sJTauyHDsmkEhISBAARGRkptRUWForWrVuL7t27mzEy61BUVCQyMzOFEEKcPXtWABDbtm0zb1BkEHOhdjEX6g7mQu1iLvyBZx7rqH379sHOzg5Tp06V2lQqFSZNmoT4+Hjcvn3bjNHVfUqlEs2bNzd3GCQDc6F2MRfqDuZC7WIu/IHFYx2VlJSEtm3b6v2uZmBgIADgwoULZoiKyPSYC0SlmAtkKiwe66jMzEx4eHjotZe1ZWRkmDokIrNgLhCVYi6QqbB4rKMKCwsN/jSSSqWSthPZAuYCUSnmApkKi8c6Sq1WQ6vV6rUXFRVJ24lsAXOBqBRzgUyFxWMd5eHhgczMTL32sjZPT09Th0RkFswFolLMBTIVFo91VEBAAJKTk5Gbm6vTnpCQIG0nsgXMBaJSzAUyFRaPddSIESNQXFyMzZs3S21arRbbtm2DRqOBl5eXGaMjMh3mAlEp5gKZir25A6Dq0Wg0GDlyJCIiInDv3j34+voiKioKqamp2LJli7nDswqbNm1Cdna29ITigQMHcOfOHQDAjBkz4OLiYs7w6P9jLtQ+5kLdwFyofcyFUgohhDB3EFQ9RUVFWLJkCXbu3ImsrCz4+/tj5cqVGDBggLlDswo+Pj64deuWwW03b96Ej4+PaQOicjEXahdzoe5gLtQu5kIpFo9EREREJBvveSQiIiIi2Vg8EhEREZFsLB6JiIiISDYWj0REREQkG4tHIiIiIpKNxSMRERERycbikYiIiIhkY/FIRERERLKxeCQiIiIi2Vg8kln5+PhY1M85WVo8ZDss7e+epcVDtsPS/u5ZWjyWgMWjFSooKMCqVavw/PPPo2HDhlAqlXj22WfRq1cvRERE4MaNG+YOkcgkmAtEpZgLVJPszR0A1ay8vDz07NkTly5dgq+vL8aNG4cmTZrg/v37SExMxJo1a9C6dWu0bt3a3KECAGJiYswdAlkp5gJRKeYC1TQWj1Zm/fr1uHTpEiZPnozNmzdDoVDobL958ya0Wq2ZotNnKf9YkfVhLhCVYi5QTeNlaysTHx8PAHj77bf1/oEAgJYtW6J9+/bSukKhQFBQkMG5DN3nERYWBoVCgZSUFKxduxbPPfcclEolwsLCsHLlSigUCkRHRxuc75tvvoFCocDixYvL3Ud15gBK//GbPHkyWrRoAaVSCQ8PD4SFheHWrVsG59m/fz+6du0KtVqNZs2aYcqUKcjKyjLYl+om5gJzgUoxF5gLNY3Fo5Vp0qQJACA5OblW9zNjxgysWrUKL7zwAt555x107NgR48aNg0KhwM6dOw2O2bFjBwBg/Pjx5c5bnTkSEhLQuXNnREVFoUuXLpg1axZ69eqFXbt2ITAwECkpKTpzREdHY+jQoUhOTsb48eMxYcIEnDp1Ci+//DIePXpUpc+BLBdzgblApZgLzIUaJ8iq7N+/XwAQTk5OIjw8XHz//ffi/v375fYHIPr06WNwm7e3t/D29tZpmzBhggAgnn32WXHr1i29MT179hR2dnYiIyNDp/3Bgweifv364oUXXqh0H1WZ49GjR8LHx0c4OTmJ8+fP6/SPi4sTdnZ2YvDgwVJbTk6OcHZ2Fo6OjuLnn3/Wmad3794CgF48VDcxF/7AXLBtzIU/MBdqBs88WpnXXnsNa9euhRACa9euxYABA+Dm5gZfX19Mnz4dv/zyS43sZ968eWjRooVe+/jx41FcXIx//vOfOu179+7Fo0ePMG7cuErnrsocBw8eRGpqKubNm4fOnTvr9O/ZsyeGDBmCw4cPIzc3FwDw73//G7m5uZg4cSLatm0r9XVwcMB7771X+YFTncFc+ANzwbYxF/7AXKgZLB6t0Jw5c5CRkYEvv/wS77zzDnr27Im0tDR8/PHH8Pf3x7fffmv0PgIDAw22jxo1CkqlUrqMUGbnzp2wt7fHmDFjKp27KnOcOXMGAPDzzz9j2bJlesvdu3dRUlIiXa65ePEiAKBXr156++3evTvs7fkMmTVhLjAXqBRzgblQo8x85pNMJDs7W0ybNk0AEG5ubkKr1Qohqn95IiUlpdx9vf766wKAuHLlihBCiOvXrwsAIiQkRNY+qjLH5MmTBYBKl9jYWCGEEJMmTdJZ/7NmzZrx8oSVYy4wF6gUc4G5UF0882gjXFxcsGnTJnh7e+P+/fu4fPkygNKn6p48eWJwTE5OTrnzGXpir0zZTctl3xDLbnKu6Ibo6s7h7OwMADhw4ACEEOUuffr0AVD6OQDAvXv39PZZXFyMBw8eyI6R6ibmAnOBSjEXmAvVxeLRhigUCjg6Ouq0NWrUCOnp6Xp9U1NTkZ2dXa39hISEoEmTJti9ezdKSkqwa9cuODk5YciQITU+h0ajAfDHqygq06lTJwBAXFyc3rb4+Phy/8Ek68JcYC5QKeYCc6FaTHqek2rdZ599JhITEw1u+9e//iUUCoVwdXUVRUVFQgghBgwYoHe6XqvVimHDhhl8wqzs8sTNmzcrjKPsUsjq1asFABEWFmawX3mXJ+TOUVRUJFq0aCFUKpU4fvy43vZHjx6JuLg4aT07O7vcp+r69OnDp+qsCHNBF3PBdjEXdDEXjKcQQgjTlapU24YOHYr9+/fD19cXL774Ijw9PVFQUICkpCTExcWhXr162Llzp3Rz8Q8//IDg4GCo1WqMGTMGDRo0wJEjR+Dq6opbt26hfv36SE1NleYPCwtDVFQUbt68WeEPxZ85cwbdu3eHg4MDHj9+jJiYGLz00kt6/crmeHofVZ3j7NmzGDhwIB48eICXXnoJHTt2hEKhwK1btxAXF4cmTZrg2rVrUv+oqCiEhYXB2dkZo0ePhouLCw4ePAi1Wo3MzEy9Y6a6ibnAXKBSzAXmQo0zd/VKNevatWvigw8+EP379xctW7YUKpVKqFQq0bp1azFhwgTx008/6Y356quvRMeOHUX9+vVF8+bNxYwZM0ReXl6FN0ZX9g1TCCHatGkjvfuruLjYYJ+KvmHKnUMIIe7cuSNmzZol2rRpI5RKpXB2dhZ/+ctfxOTJk0VMTIxe/3/961+iS5cuQqlUiqZNm4rJkyeLhw8fVhoP1R3MBeYClWIuMBdqGs88EhEREZFsfGCGiIiIiGRj8UhEREREsrF4JCIiIiLZWDwSERERkWwsHomIiIhINhaPRERERCQbi0ciIiIiko3FIxERERHJxuKRiIiIiGRj8UhEREREsrF4JCIiIiLZWDwSERERkWwsHomIiIhItv8HVVULuNPs2kMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB6AAAADmCAYAAAB79ZvfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5OElEQVR4nO3deZSU9Zno8adkabC1wYhBkE1xiRF3EXeImrjcSdBrEuOI0nHLyYxJjEaNYxwUozGDSszVOzm5GtBgxriGMcmYICOGKCI6GuNct8gSZdGgrC002+/+waWh7Yam+y14q6o/n3PqHOqt5X2o6m9vv663CimlFAAAAAAAAACQ0Q55DwAAAAAAAABAZbAADQAAAAAAAEBRWIAGAAAAAAAAoCgsQAMAAAAAAABQFBagAQAAAAAAACgKC9AAAAAAAAAAFIUFaAAAAAAAAACKwgI0AAAAAAAAAEVhARoAAAAAAACAorAAXeKGDRsWhUJhq68/ZcqUKBQKcf3112+7oaCMaAiy0xG0nX4gGw1BdjqC7HQE2ekIstEQ5cYCdBG8+OKLceGFF8Y+++wT1dXV0bVr1xg4cGCcd955MWnSpLzHy2TNmjUxYcKEGD58eOyxxx5RVVUV1dXVse+++8aIESPisccei3Xr1uU9Zu7Gjx8fhUJhq07Dhg3Le9ySoyENbeqjjz6KO+64Iz7zmc/EbrvtFp06dYpPfOITcdxxx8Utt9wSf/vb3/IesSTpSEcREbW1tS1+HRo/fnzeY5Yc/ehnUytWrIj//b//d5xyyimx++67R+fOnWPnnXeOQYMGxcUXXxxPPvlk3iOWHA1pKKLp16COHTvGLrvsEp/+9Kfj3HPPjYcffjhWrVqV95glS0c6+rg5c+ZEhw4dolAoxJgxY/IepyzoSEcRzf9M1LFjx9h9991j+PDhMXXq1LxHLGk60lFEy79buOyyy/IesWRpqH03dP3112/1OlF7+OOAQkop5T1EuVq3bl185zvfibFjx0bHjh3jxBNPjEGDBkWnTp1i5syZ8eSTT8aiRYti9OjRcd1117VpH8OGDYunn346tvZp+uijj+Kvf/1r9OjRI3r06NGmfW4wZ86cOPPMM+Oll16KHj16xEknnRT9+/ePdevWxaxZs2LKlCnxwQcfxBlnnBGPPfZYpn2Vu5dffjl+9atfbfE6d911VyxcuDD+4R/+Ie66667tM1iJ05CGPu5Pf/pTDB8+PObMmRP9+/ePk046KXr27BlLly6N5557Ll588cWoqamJefPmRXV1dd7jlgQd6WhTtbW1ce+998aFF14Yffr0afY6Z5xxRhxyyCHbd7ASpR/9fNyf/vSnOPPMM2PWrFnRp0+f+MxnPhN77LFH1NfXx1tvvRVPP/10LFu2LC677LIYO3Zs3uPmTkMa2tTHvwallGLp0qXx1ltvxR/+8IdYtmxZ7L///vHAAw/EQQcdlPe4JUNHOtqcUaNGxejRo6NQKMR+++0Xr732Wt4jlSwd6WhTzf1MtGLFinjttdfiP/7jP2LdunXx2GOPxRe+8IWcJy0tOtLRplr63cJRRx0Vp556ag6TlS4NaShi/avOp0yZ0mjbyy+/HBMnToyhQ4c2eXHisGHDKvsFi4k2u+aaa1JEpEMOOST95S9/aXL5Rx99lP7lX/4lXX311W3ex9ChQ1MeT9OSJUvSfvvtlyIiXXXVVemjjz5qcp1Vq1al8ePHp7POOmu7z1dubr311hQR6fDDD08rVqzIe5ySoSENbeqdd95Jn/zkJ9MOO+yQbrvttrRmzZom1/mv//qvdMwxx6RFixZt/wFLlI50tKmRI0emiEjTpk3Le5SyoB/9bGrD16EOHTqk22+/Pa1evbrJdZYvX57Gjh2bvv71r+cwYenRkIY2taWvQUuXLk3f/va3U0Sknj17prlz5+YwYWnSkY6as3bt2tSvX7/Uo0ePVFtbmyIiPfPMM3mPVbJ0pKNNbenr0YMPPpgiIh1//PE5TFbadKSjTfndQutpSEObM27cuBQRadSoUXmPst1ZgG6jt956K3Xo0CHtuuuuacGCBVu87sqVKxv+/cYbb6Qrr7wyHXrooekTn/hEqqqqSvvss0+6+uqr07Jly5rcdsMnlRUrVqSrr7469e3bN1VVVaVPfepT6cc//nFat25do+s/9dRTzX4w9+/fP/Xv3z8tW7YsffOb30y9evVKnTt3TgceeGB66KGHmuz3e9/7XoqINHLkyBYfi4//cm7UqFEpItJTTz2Vxo0blw499NDUtWvXNHTo0CaXf9yGGMeNG9ewbdasWQ2zvPrqq+n0009P3bp1S9XV1emzn/1seuGFF1qcMU+TJk1KHTp0SJ/85CfTX//617zHKRka2khD651//vkpItL3vve9LV5v9erVae3atdtpqtKmo410tJ4fEreefjbSz3ojRozY6h8Km1ucbm80tJGG1tuar0EbFtL8Ecd6OtpIR4098cQTKSLSpZdemqZOnZoiIl1wwQV5j1WSdLSRjtZr6Q+iIiLtv//+OUxWunS0kY7W87uF1tHQRhpqqj0vQHds7lXRtGz8+PGxdu3a+NrXvhY9e/bc4nWrqqoa/v3oo4/GPffcE5/5zGdi2LBhsW7dunjuuefihz/8YTz99NPxhz/8ITp16tTkPr785S/HSy+9FGeddVZERDzyyCPxzW9+M2bPnh233XbbVs28evXq+NznPheLFi2Ks846Kz766KN44IEH4stf/nI88cQT8bnPfa7huuPGjYuI2KrDQXTs2PyH0ZgxY+Kpp56K4cOHx+c+97no0KHDVs25OTNnzoxjjz02DjvssPj6178ec+bMiYceeihOOOGE+M///M8YMmRIpvvfFmbOnBlnn312FAqFeOihh6Jv3755j1QyNLSRhqLhsezatWt85zvf2eJ1N/d4tUc62khHtJZ+NtLP+q9Dv/zlL6Nr165xxRVXtHh9X4s0tCkNbb3rrrsuxo8fHw8++GDcddddUSgU8h4pVzraSEeN3XPPPRERcf7558fgwYNjr732igcffDDuuOOO2GmnnXKerrToaCMdtez3v/99REQcdthhOU9SWnS0kY5oCw1tpCE25TcnbfTMM89ERMSJJ57Yqtudd955cfnll0fnzp0bbR89enSMGjUqHnzwwTj33HOb3O7NN9+MV199Nbp16xYRETfccEMMGTIkxo4dG+ecc04cccQRLe573rx5MXjw4JgyZUrD/v/+7/8+Tj755Lj99tsbPqn89a9/jblz50bfvn1j4MCBrfr/berpp5+O6dOnx4EHHtjm+9jU1KlT47vf/W784Ac/aNg2cuTIOPXUU+Piiy+OV155pcX7WLx4cfzoRz9q1X4vu+yy6N69eyunjairq4szzjgjPvzww/hf/+t/xQknnNDq+6hkGmpZe2poxowZsWrVqjjuuOManiNapqOWtaeONnX33XfHE0880exl3/3ud6NLly6t2n8l0k/L2lM/L7zwQqxevTqOOuqo2HnnnVt1/+2VhlrWnhraWnvttVf07ds33nnnnZg1a1bstddeRbnfcqWjlrXHjj744IOYOHFifOpTn4rBgwdHRMSIESNi9OjR8ctf/jIuvPDCVu270umoZe2xo4jGPxOtWLEi3njjjfjtb38bhx12WNx8882t2nel01HLdLRRly5d4rvf/W6r9lvpNNSy9tpQe2cBuo0WLFgQERF9+vRp1e322GOPZrdfeumlMWrUqHjyySeb/aRy3XXXNVqU6datW3zve9+L8847L+69996t+qQSETF27NhGn9A2vFn8jBkzGrZt+L/17t272fv40Y9+FIsXL260rbnwLrnkkqJ9QomI6N69e1x77bWNtp1yyilx0kknxeTJk+PFF1+Mww8/fIv3sXjx4rjhhhtatd/a2to2fVKpra2NP//5z/HVr341Lr300lbfvtJpaHGjbe29obZ+PLR3OlrcaFt772hTG14105zLLrvMAnToRz+NtfSYXX/99Vu1rT3R0OJG29p7Q63Ru3fveOedd2LhwoXtfgFaR4sbbdPRej//+c9j1apVcd555zVsO//882P06NFxzz33WID+GB0tbrRNRxs19zNRjx494pxzztnsY9pe6Whxo2062qi5jrp162YB+mM0tLjRNg2xgQXo7SylFOPGjYvx48fHq6++GkuWLIl169Y1XD5v3rxmb3f88cdvdttLL720Vfvu3r177Lnnnk229+nTJ6ZNm7ZV9xGx/pPKnDlzGm1rLrwjjzxyq+9zaxx66KHNHmrq+OOPj8mTJ8dLL73U4ieVAQMGREqpqHM156abboqHH344hgwZEv/6r/+6zffXnmio7cqpIbYtHbVduXQ0bdq0OOqoo7bpPtor/bRdufTTnOZ+KG3vC9BtpaG2K+eGKC4dtV05dHTPPfdEoVCIESNGNGwbOHBgHHPMMfHss8/Ga6+9Fvvvv/822397oaO2K4eOIhr/TLRq1aqYPXt23HHHHXHllVfGtGnT4pFHHtmm+28PdNR25dgRxaehtiuXhto7C9BttPvuu8frr78ec+fOjf3222+rb/fNb34z7rzzzujbt2984QtfiF69ejUc9/+GG26I+vr6Zm/X3HsHbNi2ZMmSrdr35g5r27Fjx0af2Dbc7+Y+wc2ePbvh36eeemr87ne/2+qZs9jc/bX2cdjWfvOb38Q///M/x+677x6PPPJIo/d1YCMNraeh9XbfffeIiJg7d25uM5QjHa2nI9pCP+vpp/EMm3vMNv2h9FOf+lS88cYb22WuUqah9TTUehse19122y3nSfKno/V0tNH06dPj1Vdfjc985jPRr1+/Rpedf/758eyzz8bPfvazGDNmTE4Tlh4draejLevcuXPsu+++cdddd8Wf/vSnePTRR+OZZ56JY489Nu/RSoKO1tMRbaWh9TTEx1mAbqNjjz02pkyZEpMnT97qY/u///77cdddd8VBBx0U06ZNix133LHhsgULFmzx5f7vvfdekx8+3nvvvYjY/CeLturfv3/sscce8c4778Tbb7/d5mP7FwqFZrfvsMMOERGxZs2aJpdt6RPDhv/v5rZvzeOwrY/r/+abb8a5554bHTt2jIcffnizh9FAQ1ujPTU0ePDg6Ny5c7zwwguxdOnSqKmpadU+2isdtaw9dUTr6Kdl7amfI444Ijp16hQvvvhiLFu2zPtAbwUNtaw9NbS1Zs6cGe+8807stttuMWDAgKLcZznTUcvaW0cbDnX61FNPbfb/ft9998XNN98cnTp1atUMlUpHLWtvHbVkyJAh8cwzz8SMGTMsQP9/OmqZjtgSDbVMQ+2TBeg2qq2tjVtuuSV++tOfxmWXXbbFv96ur6+PqqqqmDlzZqSU4uSTT270CSVi/Zumb8nUqVObHO9/w20OPfTQNv4vNu+rX/1qfP/734+bbropfvaznxX1vnfZZZeIaP6Vjls6RMRLL70Uy5cvb3JohdY8DtvyuP5Lly6N4cOHx5IlS+InP/mJb2JboKG2q8SGdtxxx/jKV74S9913X9x2221b3MeaNWtihx12aPgGpT3TUdtVYke0jn7arhL7qa6ujrPPPjsmTJgQY8eOjX/+539u1T7aIw21XSU2tLVuvPHGiIg4++yzN/tLqPZER21XiR3V1dXFAw88EDvuuGOcc845zV5nxowZ8corr8Svf/3rOPPMM1s1Q6XSUdtVYkdbY9GiRRERjV7h197pqO3aa0c0pqG201Bl89v7Ntp7773jqquuioULF8Zpp50Ws2bNanKdlStXxu23397w/nD9+/ePiIhnn3220Tc57777blxzzTVb3N+NN97Y6C8+lixZEt///vejUCjEyJEji/A/auzKK6+MfffdN8aNGxfXXHNNrFy5ssl11qxZE3V1da2+78GDB0fE+r/a3fRxmDZtWtx///2bvd3ixYvjpptuarTtd7/7XUyePDkGDRrU4jH9IzYe1781p635y/yUUowYMSJef/31uOSSS+JrX/tai7dp7zSkoY+76aabYrfddoubbropfvzjHzf7w+Arr7wSw4YNi6VLl27VfVY6HemIttOPfj7u5ptvjt122y1Gjx4dd9xxR6xdu7bJdVauXLnZw6C1NxrSUGssX748rrjiihg/fnz06tUr/umf/inzfVYCHeloUw899FAsW7YsvvjFL8bdd9/d7GnDobc3vFIaHUXoqDVmz54djz76aEREnHDCCZnvr1LoSEdkoyEN0TyvgM7g+9//fqxcuTLGjh0b++23X5x44okxaNCg6NSpU8yaNSuefPLJ+OCDD+L73/9+RET06tUrzjrrrHjkkUfiiCOOiJNOOinee++9+PWvfx0nnXRSvP3225vd17777huDBg2Ks846KyIiHnnkkXj33Xfj8ssvjyOOOKLo/7eampr4/e9/H2eccUbccsstcffdd8fJJ58c/fv3jzVr1sT8+fNj8uTJ8d5778WgQYNa9VcfRx11VBx77LHxn//5n3H00UfHCSecEHPmzImJEyfG5z//+Xjssceavd3xxx8f//qv/xrTp0+Po446KmbPnh0PPfRQdO3aNe6+++4i/c/b5tZbb43HH388OnfuHLvuumvDF5LNaeny9kJDGtpUnz59Gh6zb33rWzF27Ng46aSTomfPnrF06dJ4/vnnY8aMGVFTU+Nwc5vQkY6ac/fdd8cTTzzR7GVHHXVUnHrqqdt5otKkH/1sqm/fvjFp0qQ488wz47LLLotbb701TjzxxNhjjz1ixYoVMXfu3Jg0aVIsXrw4jjvuuLzHLQka0lBzNnwNSinFsmXL4q233oqnn346li1bFgcccEA88MAD0atXr7zHLBk60tEGGxaVv/rVr272OieffHL06dMnnnjiiZg3b1707t17e41X0nSko+Zs+jPR6tWrY/bs2fGrX/0qPvroo7jkkku2yfNVznSkI7LRkIZoRiKzGTNmpAsuuCDtvffeqWvXrqmqqioNGDAg/f3f/32aNGlSo+suW7YsXXHFFWnAgAGpqqoq7bPPPunGG29Mq1atShGRhg4d2uj6Q4cOTRGRVqxYka666qrUt2/f1Llz57TffvulH//4x2ndunWNrv/UU0+liEijRo1qtL1///6pf//+zc6/YR/NWb16dbrvvvvS3/3d36VevXqlzp07px133DENHDgwfeUrX0mPPfZYWrNmTaPbjBo1KkVEeuqppzb7mC1cuDCdf/756ROf+ETq2rVrOuqoo9Lvfve7NG7cuBQRady4cQ3XnTVrVoqINHLkyPTqq6+m008/PdXU1KTq6up08sknpxdeeGGz+9leRo4cmSJiq080piENbaquri796Ec/SkOHDk09evRIHTt2TN27d09HH310uummm9LChQvzHrEk6UhHKW3d16NvfetbeY9ZcvSjn0199NFH6c4770wnn3xy+uQnP5k6duyYdtppp7T//vunr371q00+JtCQhtb7+NegDh06pO7du6dPf/rT6dxzz00PPfRQWrVqVd5jliwdte+OXn/99RQRac8992zyfHzctddemyIi3XTTTdtpuvKho/bd0QbN/UxUKBTSLrvskoYNG5Z+/vOf5z1iSdORjlLa2NG0adPyHqXsaEhDH7fh//Hx56E9KKSU0latVENOZs+eHXvuuWeMHDkyxo8fn/c4UHY0BNnpCNpOP5CNhiA7HUF2OoLsdATZaKi8eA9oAAAAAAAAAIrCAjQAAAAAAAAARWEBGgAAAAAAAICi8B7QAAAAAAAAABSFV0ADAAAAAAAAUBQWoAEAAAAAAAAoiopdgE4pxdKlS8MRxqFtNATZ6Qiy0RBkoyHITkeQjYYgGw1BdjqCfFTsAvSyZcuiW7dusWzZsrxHgbKkIchOR5CNhiAbDUF2OoJsNATZaAiy0xHko+QWoGfMmBGXXnppHHDAAVFdXR39+vWLL3/5y/Hmm2/mPRoAAAAAAAAAW9Ax7wE+7oc//GE888wz8aUvfSkOOuigWLBgQdx5551x2GGHxXPPPReDBg3Ke0QAAAAAAAAAmlFyC9CXX355/OIXv4jOnTs3bDv77LPjwAMPjFtuuSUmTJiQ43QAAAAAAAAAbE7JLUAfc8wxTbbts88+ccABB8Rrr72Ww0QAAAAAAAAAbI2Sew/o5qSU4r333osePXrkPQoAAFCiUkqxfPnyhlNKKe+RAAAAANqdknsFdHPuv//+mDt3bowePXqz16mvr4/6+vqG80uXLt0eo0HF0BBkpyPIRkNkVVdXF8OHD284P3HixNhpp51ynGj70hBkpyPIRkOQjYYgOx1BaSj5V0C//vrr8Y//+I9x9NFHx8iRIzd7vR/84AfRrVu3hlPfvn2345RQ/jQE2ekIstEQZKMhyE5HkI2GIBsNQXY6gtJQSCV8XLoFCxbEscceG6tXr47nnnsuevfuvdnrNvdXLX379o0lS5ZETU3N9hgXypqGIDsdQTYaIqvly5d7BbSGIBMdQTYagmw0BNnpCEpDyR6Ce8mSJXHaaafF4sWLY+rUqVtcfI6IqKqqiqqqqu00HVQeDUF2OoJsNATZaAiy0xFkoyHIRkOQnY6gNJTkAvTKlSvj85//fLz55pvx5JNPxqc//em8RwIAAAAAAACgBSW3AL127do4++yzY9q0aTFx4sQ4+uij8x4JAAAAAAAAgK1QcgvQV1xxRfz7v/97fP7zn48PP/wwJkyY0OjyESNG5DQZAAAAAAAAAFtScgvQL7/8ckREPP744/H44483udwCNAAAAAAAAEBpKrkF6ClTpuQ9AgAAAAAAAABtsEPeAwAAAAAAAABQGSxAAwAAAAAAAFAUFqABAAAAAAAAKAoL0AAAAAAAAAAUhQVoAAAAAAAAAIrCAjQAAAAAAAAARWEBGgAAAAAAAICisAANAAAAAAAAQFFYgAYAAAAAAACgKCxAAwAAAAAAAFAUFqABAAAAAAAAKAoL0AAAAAAAAAAUhQVoAAAAAAAAAIrCAjQAAAAAAAAARWEBGgAAAAAAAICisAANAAAAAAAAQFFYgAYAAAAAAACgKCxAAwAAAAAAAFAUFqABAAAAAAAAKAoL0AAAAAAAAAAUhQVoAAAAAAAAAIrCAjQAAAAAAAAARWEBGgAAAAAAAICisAANAAAAAAAAQFF0zHsAAACgPB1+5X15j9BIYc2q6LbJ+WHXPRCpY+fc5vm4F8ecn/cIAAAAANucV0ADAAAAAAAAUBQWoAEAAAAAAAAoCgvQAAAAAAAAABSFBWgAAAAAAAAAisICNAAAAAAAAABF0THrHfztb3+LcePGxYwZM2Lx4sWxdu3aJtcpFAoxefLkrLsCAAAAAAAAoIRlWoB+5ZVX4sQTT4xFixZFSmmz1ysUCll2AwAAAAAAAEAZyHQI7iuuuCI+/PDDuPbaa2PWrFmxevXqWLduXZNTc6+KBgAAAAAAAKCyZHoF9LRp0+KMM86I0aNHF2seAAAAAAAAAMpUpldAd+7cOQYOHFisWQAAAAAAAAAoY5kWoIcOHRovvPBCsWYBAAAAAAAAoIxlWoC+9dZb49VXX41bb721WPMAAAAAAAAAUKZa9R7QF1xwQZNtgwYNiquvvjp+8pOfxCGHHBI1NTVNrlMoFOKee+5p+5QAAAAAAAAAlLxWLUCPHz9+s5fNnDkzZs6c2exlFqABAAAAAAAAKl+rFqBnzZq1reYAAAAAAAAAoMy1agG6f//+22oOAAAAAAAAAMpcqxagAQAAAAAAtiSlFHV1dQ3nq6uro1Ao5DgRANvTDllufNttt0WPHj1i3rx5zV4+b9682G233eLHP/5xlt0AAAAAAABloq6uLoYPH95w2nQxGoDKl2kB+qGHHoqDDz44evfu3ezlvXv3jkMOOSQeeOCBLLsBAAAAAAAAoAxkWoB+66234oADDtjidQ444IB46623suwGAAAAAAAAgDKQaQF6xYoVUV1dvcXrdOnSJZYvX55lNwAAAAAAAACUgY5ZbtyvX7949tlnt3idadOmRZ8+fbLsBqBVUkqN3lemuro6CoVCjhMBAAAAAAC0D5leAf0//sf/iD/+8Y/xs5/9rNnL77777vjjH/8Yn//857PsBqBV6urqYvjw4Q2nTRejAQAAAAAA2HYyvQL6u9/9bvzbv/1bXHzxxTFhwoT47Gc/G3vssUfMnTs3fv/738cf/vCH6N27d1xzzTXFmhcAAAAAAACAEpVpAXq33XaLp556KkaMGBFTpkyJKVOmRKFQiJRSREQMHjw47r///thtt92KMiwAAAAAAAAApSvTAnRExH777RczZsyIGTNmxPPPPx9LliyJ7t27x5FHHhlHHHFEq+9v+fLlMWbMmJg+fXo8//zzsWjRohg3blzU1tZmHRUAAAAAAACAbSjTAvQFF1wQBx54YHz729+OwYMHx+DBgzMPtHDhwhg9enT069cvDj744JgyZUrm+wQAAAAAAABg29shy41/8YtfxPvvv1+sWSIiolevXjF//vyYM2dOjBkzpqj3DQAAAAAAAMC2k2kBeuDAgTF//vxizRIREVVVVbH77rsX9T4BAAAAAAAA2PYyLUBfcMEF8Zvf/Cbmzp1brHkAAABo51JKsXz58oZTSinvkQAAoOT5PhooFZneA/qss86Kp556Ko455pi46qqrYvDgwdGzZ88oFApNrtuvX78su2pRfX191NfXN5xfunTpNt0fVBoNQXY6gmw0BNlUUkN1dXUxfPjwhvMTJ06MnXbaKceJaC8qqSPIg4YgGw2Rle+jdQSlItMC9F577RWFQiFSSvHNb35zs9crFAqxZs2aLLtq0Q9+8IO44YYbtuk+oJJpCLLTEWTT1oYOv/K+bTBN5XpxzPl5j8A24usQZKcjyEZDZJVSirq6uobz1dXVzb7YqVJpCLLTEZSGQspwDIba2tqt/gZg3Lhxrb7/F154IQYPHhzjxo2L2traLV63ub9q6du3byxZsiRqampavW9obyqpoeXLl7f7v/QjH5XUEeShrQ1ZgG6dYi5Al9pjX1izKrq98m8N55ccdE6kjp1znKixbb34X0lfh3w/R14qqSPIg4bIqr1/D1BJDbX35zIvHvfK6gjKWaZXQI8fP75IY2RXVVUVVVVVeY8BZUtDkJ2OIBsNkVXq0CmWHHROo/PtiYYgOx1BNhqCbDQE2ekISkOmBWgAAICSUSiU1CueAQAAANqjHfIeAAAAAAAAAIDKkPkV0MuWLYs777wznnzyyZg3b16jY+tvUCgU4u23397q+7zzzjtj8eLFMW/evIiIePzxx+Pdd9+NiIhvfOMb0a1bt6xjAwAAAAAAAFBkmRag//a3v8UxxxwTb7/9dtTU1MTSpUujW7dusWrVqlixYkVERPTu3Ts6dWrde6/deuutMWfOnIbzjz76aDz66KMRETFixAgL0AAAAAAAAAAlKNMhuK+//vp4++2347777otFixZFRMS3v/3tqKuri+nTp8eRRx4ZAwYMiP/+7/9u1f3Onj07UkrNngYMGJBlZAAAAADYJlJKsXz58oZTSinvkQAAYLvLtAD929/+Nk466aQYMWJEFAqFRpcNHjw4/uM//iNmz54dN9xwQ6YhAQAAAKDU1dXVxfDhwxtOdXV1eY8EAADbXaYF6Pnz58ehhx7acL5Dhw4Nh96OiNhll13itNNOiwcffDDLbgAAAAAAAAAoA5kWoLt16xarV69uOL/LLrvEu+++2+g6NTU18d5772XZDQAAAAAAAABlINMC9F577RWzZ89uOH/ooYfGpEmT4oMPPoiIiBUrVsTjjz8e/fr1yzQkAAAAAAAAAKUv0wL05z73uZg8eXJ89NFHERHxta99Ld5///04+OCD40tf+lIMGjQo3n777aitrS3GrAAAAAAAAACUsEwL0F//+tfj//yf/9OwAP0//+f/jDFjxkRdXV088sgjsWDBgrj88svjyiuvLMqwAAAAAAAAAJSuNi1AT5s2LU488cTYZ5994uKLL45zzjknnn/++YiIuOKKK2LhwoUxf/78WL58eYwZMyY6dOhQ1KEBAAAAAAAAKD0dW3uDP//5z3HSSSfFypUrG7ZNnjw5nn322Xj++efjgAMOiA4dOkTPnj2LOigAAAAAAAAApa3Vr4C+5ZZbYuXKlXHttdfGggULYsGCBXHdddfFihUr4oc//OG2mBEAAAAAAACAMtDqV0BPnTo1jjvuuLjxxhsbtt1www0xZcqUePrpp4s6HAAAAAAAAADlo9WvgH7vvffiqKOOarJ9yJAh8d577xVlKAAAAAAAAADKT6sXoFevXh077bRTk+3V1dWxevXqogwFAAAAAAAAQPlp9SG4AQAAAAAof4dfeV/eIzRSWLMqum1yfth1D0Tq2Dm3eT7uxTHn5z0CAJSFNi1AT5gwIZ577rlG2/7yl79ERMTpp5/e5PqFQiF+85vftGVXAAAAAAAAAJSJNi1A/+Uvf2lYcP64J554osm2QqHQlt0AAAAAAAAAUEZavQA9a9asbTEHAGUupRR1dXUN56urq/0BEgAAAAAAtDOtXoDu37//tpgDcmfxrO28X1DrVOr7BdXV1cXw4cMbzk+cODF22mmnHCeC8uNrEQAAAJQPvxdtnUr9vSjQVJsOwQ2VyOIZAHnztQgAAAAAKHc75D0AAAAAAAAAAJXBAjQAAAAAAAAARWEBGgAAAAAAAICisAANAAAAAAAAQFF0zHsAAAAAAIBSkVKKurq6hvPV1dVRKBRynAgAoLxYgAYAAAAA+P/q6upi+PDhDecnTpwYO+20U44TAQCUFwvQAAAA7dzhV96X9wiNFNasim6bnB923QOROnbObZ6Pe3HM+XmPAAAAACXLe0ADAAAAAAAAUBReAU1uvMqidbzKAgAA2Ja85ykAAADFYAEaAAAA8J6nAAAAFIUF6BLjL84BAAAAAACAcmUBusT4i3MAAAAAAACgXFmABgAacTQOAAAAKC+HX3lf3iM0UlizKrptcn7YdQ9E6tg5t3k+7sUx5+c9AkBFswANADTiaBwAAAAAALSVBWiAMuUvW1vHX7bSHB21jo4AAIBtKXXoFEsOOqfReQCg/FiABgAAAAAgf4VCSf0RLgDQNjvkPQAAAAAAAAAAlaHdvwLaoTdbp5IPvekQPwAAAAAAAJBNu1+AhgYO8QMAAAAAAACZWIAGAAAAoCw5sl3rVPKR7QAAKB3eAxoAAAAAAACAorAADQAAAAAAAEBROAQ3AAAA5MChg1vHoYOhcvl82Do+HwIApc4roAEAAAAAAAAoCq+ALjGpQ6dYctA5jc4DraMjAAAAAKC98XtRoFRYgC41hUJJHdIHypKOAAAAAID2xu9FgRLhENwAAAAAAAAAFIUFaAAAAAAAAACKwgI0AAAAAAAAAEXhPaABKIrUoVMsOeicRueB1tERAAAAAFDuLEADUByFQqSOnfOeoiwdfuV9eY/QSGHNqui2yflh1z1QUs/ti2POz3uEbUdHAAAAAECZcwhuAAAAAAAAAIqiJBeg6+vr4+qrr47evXtH165dY8iQITFp0qS8xwIAAGA72PCWBBtO3pIAAAAAykdJLkDX1tbG7bffHueee27ccccd0aFDhzj99NPjj3/8Y96jAQAAsK39/7ck2HCKQiHviQAAAICtVHLvAf3888/HAw88EGPGjInvfOc7ERFx/vnnx6BBg+Kqq66KZ599NucJAQAAAAAAAGhOyS1AP/zww9GhQ4e45JJLGrZ16dIlLrzwwvinf/qneOedd6Jv3745TggAAACVZ8Ohzzc9DwAAAK1Vcofgfumll2LfffeNmpqaRtuPPPLIiIh4+eWXc5gKAAAAKpxDnwMAAFAEJfcK6Pnz50evXr2abN+wbd68ec3err6+Purr6xvOL1myJCIili5dusX9ra1f0dZR26WWHs/W8Ni3ztY+9jvvvHMU2vCLorY2FOG5bK1ideRxb53WPO7bu6NSey4La1bFmjVrGs6vrV8Rae3aHCdqzNei/JTq1yLPY+toKD+l2lCE57K1fD+Xj1L+fo78lFpHlfK9dHv/fq5SnsetUWqPfakr1YYiSu+5bC8dldrjXup8PwfbT1sbKppUYvbaa6902mmnNdn+9ttvp4hIY8eObfZ2o0aNShHh5NTuT0uWLGlTexpyctp40pGTU7aThpycsp005OSU/aQjJ6dsJw05OWU7acjJKftJR05O2U5tbahYCimlFCVk0KBB0bNnz5g8eXKj7f/3//7fOOCAA+InP/lJfO1rX2tyu4//Vcu6deviww8/jF133TXfFf42WLp0afTt2zfeeeedJociZ9uqhMe+WH8ZVs4NRVTGc1mOKuVx11HlPJflqBIeew1VxvNYrirhsdfQepXwXJajSnncdVQ5z2U5qoTHXkOV8TyWq0p47DW0XiU8l+WoUh53HVXOc1mOKuGxz/sV0CV3CO5evXrF3Llzm2yfP39+RET07t272dtVVVVFVVVVo23du3cv+nzbU01NTdl+YJe79vjYV2JDEe3zuSwF7fVxr8SO2utzWQra42OvIYqpPT72ldhQRPt8LktBe33cK7Gj9vpcloL2+NhriGJqj499JTYU0T6fy1LQXh/3SuyovT6XpcBj33Y75D3Axx1yyCHx5ptvNjke//Tp0xsuBwAAAAAAAKD0lNwC9Be/+MVYu3Zt/PSnP23YVl9fH+PGjYshQ4ZE3759c5wOAAAAAAAAgM0puUNwDxkyJL70pS/FNddcE++//37svffece+998bs2bPjnnvuyXu87aKqqipGjRrV5DARbHse+8rhucyHx71yeC7z47GvDJ7H/HjsK4fnMh8e98rhucyPx74yeB7z47GvHJ7LfHjcK4fnMj8e++wKKaWU9xAft3LlyrjuuutiwoQJsWjRojjooIPixhtvjFNOOSXv0QAAAAAAAADYjJJcgAYAAAAAAACg/JTce0ADAAAAAAAAUJ4sQAMAAAAAAABQFBagS0h9fX1cffXV0bt37+jatWsMGTIkJk2alPdY7cLy5ctj1KhRceqpp8YnPvGJKBQKMX78+LzHopU0lB8NVQ4d5UNDlUND+dFRZdBQfjRUOXSUDw1VDg3lR0eVQ0f50FDl0FA+NFRcFqBLSG1tbdx+++1x7rnnxh133BEdOnSI008/Pf74xz/mPVrFW7hwYYwePTpee+21OPjgg/MehzbSUH40VDl0lA8NVQ4N5UdHlUFD+dFQ5dBRPjRUOTSUHx1VDh3lQ0OVQ0P50FCRJUrC9OnTU0SkMWPGNGxbsWJFGjhwYDr66KNznKx9WLlyZZo/f35KKaUZM2akiEjjxo3LdyhaRUP50lBl0FF+NFQZNJQvHZU/DeVLQ5VBR/nRUGXQUL50VBl0lB8NVQYN5UdDxeUV0CXi4Ycfjg4dOsQll1zSsK1Lly5x4YUXxrRp0+Kdd97JcbrKV1VVFbvvvnveY5CBhvKlocqgo/xoqDJoKF86Kn8aypeGKoOO8qOhyqChfOmoMugoPxqqDBrKj4aKywJ0iXjppZdi3333jZqamkbbjzzyyIiIePnll3OYCsqHhiA7HUE2GoJsNATZ6Qiy0RBkpyPIRkNUCgvQJWL+/PnRq1evJts3bJs3b972HgnKioYgOx1BNhqCbDQE2ekIstEQZKcjyEZDVAoL0CVixYoVUVVV1WR7ly5dGi4HNk9DkJ2OIBsNQTYagux0BNloCLLTEWSjISqFBegS0bVr16ivr2+yfeXKlQ2XA5unIchOR5CNhiAbDUF2OoJsNATZ6Qiy0RCVwgJ0iejVq1fMnz+/yfYN23r37r29R4KyoiHITkeQjYYgGw1BdjqCbDQE2ekIstEQlcICdIk45JBD4s0334ylS5c22j59+vSGy4HN0xBkpyPIRkOQjYYgOx1BNhqC7HQE2WiISmEBukR88YtfjLVr18ZPf/rThm319fUxbty4GDJkSPTt2zfH6aD0aQiy0xFkoyHIRkOQnY4gGw1BdjqCbDREpeiY9wCsN2TIkPjSl74U11xzTbz//vux9957x7333huzZ8+Oe+65J+/x2oU777wzFi9eHPPmzYuIiMcffzzefffdiIj4xje+Ed26dctzPFqgofxpqPzpKF8aKn8ayp+OypuG8qeh8qejfGmo/GkofzoqfzrKl4bKn4bypaHiKaSUUt5DsN7KlSvjuuuuiwkTJsSiRYvioIMOihtvvDFOOeWUvEdrFwYMGBBz5sxp9rJZs2bFgAEDtu9AtJqG8qWhyqCj/GioMmgoXzoqfxrKl4Yqg47yo6HKoKF86agy6Cg/GqoMGsqPhorHAjQAAAAAAAAAReE9oAEAAAAAAAAoCgvQAAAAAAAAABSFBWgAAAAAAAAAisICNAAAAAAAAABFYQEaAAAAAAAAgKKwAA0AAAAAAABAUViABgAAAAAAAKAoLEADAAAAAAAAUBQWoAEAAAAAAAAoCgvQbFMDBgyIAQMG5D1Gg1KbB1pSah+zpTYPbI1S+7gttXmgJaX2MVtq80BLSu1jttTmga1Rah+3pTYPtKTUPmZLbR5oSal9zJbaPLA1Su3jttTmqUQWoMtQXV1d3HzzzXHYYYfFTjvtFFVVVdGnT584/vjj45prrom333477xGhpGkIstMRZKMhyEZDkJ2OIBsNQTYagux0RCnrmPcAtM6yZcviuOOOi1deeSX23nvvGDFiROy6666xcOHCeP755+OWW26JgQMHxsCBA/MeNSIiJk+enPcI0IiGIDsdQTYagmw0BNnpCLLREGSjIchOR5Q6C9Bl5kc/+lG88sorcdFFF8VPf/rTKBQKjS6fNWtW1NfX5zRdU6XyyQ020BBkpyPIRkOQjYYgOx1BNhqCbDQE2emIUucQ3GVm2rRpERHxj//4j00+oURE7LnnnvGpT32q4XyhUIhhw4Y1e1/NHeO+trY2CoVCzJw5M2677bb49Kc/HVVVVVFbWxs33nhjFAqFuO+++5q9v0cffTQKhUJce+21m91HW+4jYv0ny4suuij69esXVVVV0atXr6itrY05c+Y0ez8TJ06MwYMHR9euXaNnz55x8cUXx6JFi5q9Lu2LhjREdjrSEdloSENkoyENkZ2OdEQ2GtIQ2WhIQ2SnIx2VOgvQZWbXXXeNiIg333xzm+7nG9/4Rtx8881xxBFHxGWXXRYHHnhgjBgxIgqFQkyYMKHZ2/z85z+PiIjzzjtvs/fblvuYPn16HHrooXHvvffG4YcfHt/61rfi+OOPj/vvvz+OPPLImDlzZqP7uO++++KMM86IN998M84777wYOXJkPPPMM3HyySfHqlWrWvU4UHk0pCGy05GOyEZDGiIbDWmI7HSkI7LRkIbIRkMaIjsd6ajkJcrKxIkTU0SknXfeOV1xxRXpd7/7XVq4cOFmrx8RaejQoc1e1r9//9S/f/9G20aOHJkiIvXp0yfNmTOnyW2OO+641KFDhzRv3rxG2z/44IPUuXPndMQRR7S4j9bcx6pVq9KAAQPSzjvvnP7rv/6r0fWnTp2aOnTokP7u7/6uYduSJUtSTU1Nqq6uTm+88Uaj+znhhBNSRDSZh/ZFQxtpiLbS0UY6oi00tJGGaAsNbaQh2kpHG+mIttDQRhqiLTS0kYZoKx1tpKPS5BXQZeYLX/hC3HbbbZFSittuuy1OOeWU6NGjR+y9995x6aWXxltvvVWU/Vx55ZXRr1+/JtvPO++8WLt2bfzbv/1bo+2//OUvY9WqVTFixIgW77s19/HrX/86Zs+eHVdeeWUceuihja5/3HHHxfDhw+O3v/1tLF26NCIifvWrX8XSpUvjggsuiH333bfhup06dYqbbrqp5f84FU9DG2mIttLRRjqiLTS0kYZoCw1tpCHaSkcb6Yi20NBGGqItNLSRhmgrHW2ko9JkAboMXX755TFv3rx48MEH47LLLovjjjsu/vrXv8Zdd90VBx10UPz7v/975n0ceeSRzW7/8pe/HFVVVQ2HP9hgwoQJ0bFjxzjnnHNavO/W3Mdzzz0XERFvvPFGXH/99U1OCxYsiHXr1jUcZuJPf/pTREQcf/zxTfZ79NFHR8eOHVucj8qnIQ2RnY50RDYa0hDZaEhDZKcjHZGNhjRENhrSENnpSEclLbfXXlNUixcvTv/wD/+QIiL16NEj1dfXp5TafliFmTNnbnZfZ511VoqI9N///d8ppZT+8pe/pIhIp59++lbtozX3cdFFF6WIaPE0ZcqUlFJKF154YaPzH9ezZ0+HVaBZGtIQ2elIR2SjIQ2RjYY0RHY60hHZaEhDZKMhDZGdjnRUKrwCukJ069Yt7rzzzujfv38sXLgw/vznP0dERKFQiDVr1jR7myVLlmz2/gqFwmYv2/Cm7xv+KmXDm8Rv6Q3l23ofNTU1ERHx+OOPR0pps6ehQ4dGxPrHISLi/fffb7LPtWvXxgcffLDVM9K+aEhDZKcjHZGNhjRENhrSENnpSEdkoyENkY2GNER2OtJRqbAAXUEKhUJUV1c32rbLLrvE3Llzm1x39uzZsXjx4jbt5/TTT49dd901fvGLX8S6devi/vvvj5133jmGDx9e9PsYMmRIRERMmzZtq+734IMPjoiIqVOnNrls2rRpm/0ECxEaitAQ2elIR2SjIQ2RjYY0RHY60hHZaEhDZKMhDZGdjnRUEorwKmq2o5/85Cfp+eefb/ayxx57LBUKhdS9e/e0cuXKlFJKp5xySpPDDNTX16czzzwzRcRmD6swa9asLc6x4RAOP/jBD1JEpNra2mavt7nDKmztfaxcuTL169cvdenSJT399NNNLl+1alWaOnVqw/nFixenmpqaVF1dnd54441G1xs6dGiz/2faFw01piHaQkeN6YjW0lBjGqK1NNSYhmgLHTWmI1pLQ41piNbSUGMaoi101JiOSk8hpZTavnzN9nbGGWfExIkTY++9945jjz02evfuHXV1dfHSSy/F1KlTY4cddogJEyY0vDn773//+zj11FOja9eucc4558SOO+4YkyZNiu7du8ecOXOic+fOMXv27Ib7r62tjXvvvTdmzZoVAwYM2Owczz33XBx99NHRqVOnWL16dUyePDlOPPHEJtfbcB+b7qO19zFjxow47bTT4oMPPogTTzwxDjzwwCgUCjFnzpyYOnVq7LrrrvH66683XP/ee++N2traqKmpia985SvRrVu3+PWvfx1du3aN+fPnN/k/075oSENkpyMdkY2GNEQ2GtIQ2elIR2SjIQ2RjYY0RHY60lHJy3sFnNZ5/fXX07/8y7+kz372s2nPPfdMXbp0SV26dEkDBw5MI0eOTC+88EKT2zz00EPpwAMPTJ07d0677757+sY3vpGWLVu2xTeWb+mvWlJKaZ999kkRkfr06ZPWrl3b7HW29FctW3sfKaX07rvvpm9961tpn332SVVVVammpibtv//+6aKLLkqTJ09ucv3HHnssHX744amqqip98pOfTBdddFH68MMPW5yHyqchDZGdjnRENhrSENloSENkpyMdkY2GNEQ2GtIQ2elIR6XOK6ABAAAAAAAAKIod8h4AAAAAAAAAgMpgARoAAAAAAACAorAADQAAAAAAAEBRWIAGAAAAAAAAoCgsQAMAAAAAAABQFBagAQAAAAAAACgKC9AAAAAAAAAAFIUFaAAAAAAAAACKwgI0AAAAAAAAAEVhARoAAAAAAACAorAADQAAAAAAAEBRWIAGAAAAAAAAoCgsQAMAAAAAAABQFP8P9QgGIwJv0OoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuIUlEQVR4nO3de1xU5boH8N84MBdR8JoyiXgB2ioibhSOiaKWNzw7bQt1VETyVmnmjfSQudO8ZaTZsTJvcRGNY9TW8lKpG93gBbQ0be/MC6AEGAoIgjDg8J4/PIxOM+BCGGZgft/PZ/5Y73rX+z5r+UTPrNvIhBACREREREQSNLN0AERERETUeLB4JCIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4pFoZMmQIZDKZpcMganDMfbJlzH96GIvHJigjIwMymczgo1Ao4OLigokTJ+L8+fOWDrFJiIuLw8svv4x+/fpBqVRCJpMhOjra0mHZNOa++WVlZWHDhg0YMWIEOnfuDIVCgY4dO2L8+PFISUmxdHg2jflvfmVlZViwYAEGDx4MjUYDlUqFjh07YuDAgYiKikJFRYWlQ2wQdpYOgMyne/fuCAkJAQAUFxfj1KlT+Pzzz/HVV1/hyJEjGDhwoIUjbNzeeustXLt2De3atYOzszOuXbtm6ZDo/zH3zWfjxo1Yu3YtunfvjhEjRqB9+/a4fPky9uzZgz179mDXrl148cUXLR2mTWP+m09xcTE2bdoEX19fjBkzBu3bt0dBQQEOHjyIqVOnIj4+HgcPHkSzZk383JygJic9PV0AECNHjjRat2TJEgFABAQEPNbYAQEBgmlz36FDh0RGRoYQQog1a9YIACIqKsqyQdk45r75ffnll+Lo0aNG7f/85z+Fvb29aN26tSgrK7NAZMT8Nz+dTie0Wq1Re0VFhRgyZIgAIPbt22eByBpWEy+N6Y/mzJkDADh9+rRBe3l5OT744AP0798fLVu2RIsWLdCzZ08sWLAABQUFNY5ZWFiItWvXIiAgABqNBgqFAhqNBqGhobh69apR/7KyMqxbtw59+vSBk5MTHBwc0KVLF7zwwgv46aef9P0qKyuxbds2+Pr6ok2bNlCr1ejUqRP+8pe/4OjRo3U/GHX07LPPwtXV1dJhkETM/frx17/+FQEBAUbtgwYNwtChQ1FQUIALFy5YIDKqCfO/fjRr1gwKhcKo3c7ODs8//zwA4MqVKw0dVoPjZWsb9fCNz6WlpRg+fDiOHz8Od3d3vPTSS1Aqlbh8+TI2b96M0NBQtG7dutqxfvnlF/ztb3/D0KFD8fzzz8PBwQEXL17Erl27sH//fvz4448GRdaUKVOwe/dueHl56efKzMxEYmIiTp8+jT59+gAAIiIi8N5776F79+6YOHEiWrZsiaysLCQnJ+Pw4cMYMmSI2Y4PNV3MffOxt7cHcP9/pGSdmP/mUVlZiW+//RYA4OnpaeFozI//hduYTz75BADg6+urb1u6dCmOHz+OyZMnIyoqCnK5XL+usLDQYNmUHj16ICcnB23atDFoT0xMxLPPPouVK1di69at+vG++OIL+Pj4ICUlxWBsnU6HO3fu6Je3bdsGjUaD8+fPo3nz5gZj5+fnS9rfPXv24Ny5c5L6AoC3tzfGjRsnuT81Hsz9mtU1969fv47Dhw/D2dkZvXv3fuxxyDyY/zWrbf6Xl5dj9erVEEIgLy8PR44cwcWLF/HSSy/hmWeekTxOY8XisQm7cuUKli1bBgAoKSlBSkoKkpKSoFKpsGrVKgDAvXv3sGXLFjg5OeHDDz80+mPh5OT0yHmq6zN06FD06tULhw8f1rfJZDIIIaBSqYxuKJbL5WjVqpVBm0KhMPkH7I9/rKqzZ88exMTESOoL3P9mzOKx8WPuN2zuV1RUYPLkydBqtVi7du0jiw4yL+a/+fO/vLwcy5cv1y/LZDKEh4djzZo1ksdo1Cx7yyWZQ9VN0w9/7O3tRadOncTEiRPF+fPn9X0vXLggAIhnn31W0tjV3TSdmJgoxo4dKzp27Cjs7OwM5lYoFAZ9AwMDBQDh7e0tVq1aJY4fPy7Ky8uNxpw1a5YAINzc3MRbb70ljhw5Iu7evVvLo9Ew+MCMdWDuNzydTicmTpwoAIgZM2ZYOhybxvxveDqdTmRmZopPPvlEtGrVSgwcOFAUFhZaOiyzY/HYBNX0xN0fJScnCwBiypQpksY29Qdk9+7dQiaTiZYtW4qgoCARHh4u/va3v4m3335buLq6GvUvKSkRS5YsEV27dtX/kXF0dBRz584VJSUl+n4VFRUiMjJS9OzZU99PpVKJ0NBQcfPmTUnxNhQWj9aBud+wdDqdmDJligAgQkJChE6ns3RINo35b1m7d+8WAMSiRYssHYrZ8bK1jau6VJCVlfXYYyxbtgwqlQo//PAD3N3dDdbFx8cb9W/evDlWrlyJlStXIj09HYmJifj000/x4YcforS0FJs3bwZw/6b78PBwhIeHIzs7G8eOHUNUVBRiY2Nx48YNfPfdd4+Mjfc8UnWY+4Zqm/uVlZV46aWXEBsbiwkTJiA6Orrpv9uuCWH+G6qPv/0jRowAAIs/Ed4gLF29Uv2rzbfPiooK4ejoKJycnER+fv4j+5v69qlUKsWf//xno77Z2dnC3t5e0rvB7t69K1q0aCE6duxYYz+dTifc3NxEs2bNJF3GqDorIvUj9Vv4H/HMo3Vg7j9gztzX6XQiNDRUABAvvviiuHfvnuRtyXyY/w801N/+h/373/8WAMTAgQPrPJa149dEG2dnZ4eXX34ZhYWFmDt3LnQ6ncH6wsJCFBcX1ziGq6srrly5gt9//13fVlZWhldffdXop5pu3ryJn3/+2WiMgoICaLVaqFQqAIBWq8WJEyeM+pWUlKC4uBj29vaSznJER0dD3L89Q9KHPy9oO5j7j5f7lZWVmDp1KmJjYxEcHIy4uDg+INMIMf8fL////e9/4+7du0btd+/exYIFCwAAgYGBksZqzHjZmvDOO+/g1KlT2LFjB06dOoXRo0dDqVQiLS0N3377LZKTk+Ht7V3t9nPmzMGcOXPQt29fBAUF4d69ezh06BCEEOjTp4/By1+zsrLQt29f9OnTB15eXnjyySeRl5eHvXv3oqKiAuHh4QDuv39s4MCB8PDwgI+PDzp37ozi4mLs27cPN27cQHh4OJRKpbkPTY22bduG5ORkANC/FHnbtm36Sxb+/v6YPn26pcIjCZj7tffOO+8gJiYGLVq0gIeHB1auXGnUZ9y4cTUeN7IOzP/a2717N9avXw9/f3906dIFjo6OyMrKwsGDB5GXl4dBgwZh/vz5FouvwZj3xCZZQm0uXVQpKysT77//vvD29hZqtVq0aNFC9OzZUyxcuFAUFBTo+5m6dFFZWSk+/fRT0atXL6FSqUTHjh3FtGnTRG5urlH/goICsWzZMjF48GDh7OwsFAqF0Gg0YtSoUeLgwYP6fuXl5WLt2rVixIgRolOnTkKhUIgOHTqIwYMHi127donKysrHP0D15FGXRerjMgjVDnPf/KRcDuTtG5bB/De/06dPixkzZohevXqJVq1aCTs7O9G2bVsxdOhQsXnzZlFRUWHR+BqKTAghGq5UJSIiIqLGjPc8EhEREZFkLB6JiIiISDIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgkY/FYR0IIFBUVgW88IlvD3CdbxvwnW8bisY7u3LkDJycn3Llzx9KhEDUo5j7ZMuY/2TIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgks7N0AERE1PgIIVBSUqJfdnBwgEwms2BERNRQWDwSEVGtlZSUYOzYsfrlvXv3okWLFhaMiIgaCi9bExEREZFkLB6JiIiISDIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgks8riUavVYvHixdBoNFCr1fDz88OhQ4ceuV2XLl0gk8lMftzd3Q36Vtfv3XffNdduERERETV6Vvmex7CwMCQkJGDevHlwd3dHdHQ0AgMDkZiYCH9//2q327BhA4qLiw3arl27hrfeegsjRoww6j98+HCEhoYatPXt27d+doKIiIioCbK64jE1NRXx8fGIjIxEeHg4ACA0NBSenp5YtGgRTpw4Ue2248aNM2pbuXIlAGDSpElG6zw8PBASElI/gRMRERHZAKu7bJ2QkAC5XI6ZM2fq21QqFaZNm4aTJ08iMzOzVuPt2rULXbt2xdNPP21yfWlpKcrKyuoUMxEREZGtsLri8ezZs/Dw8ICjo6NBu6+vLwDg3LlztRrrl19+wcSJE02uj46OhoODA9RqNXr27Ildu3Y9dtxEREREtsDqLlvn5OTA2dnZqL2qLTs7W/JYO3fuBGD6kvXTTz+NF154AV27dkV2djY+/vhjTJo0CYWFhXj11VerHVOr1UKr1eqXi4qKJMdD1Jgx98mWMf+JHrC6M4+lpaVQKpVG7SqVSr9eisrKSsTHx6Nv377o0aOH0frjx49j7ty5eO655/DKK6/ghx9+gKenJ958880a51izZg2cnJz0HxcXF4l7RtS4MffJljH/iR6wuuJRrVYbfLurUnVfolqtljTOsWPHkJWVZfKsoykKhQKvvfYabt++jR9++KHafhERESgsLNR/ansPJlFjxdwnW8b8J3rA6i5bOzs7Iysry6g9JycHAKDRaCSNs3PnTjRr1gwTJkyQPHfVN8n8/Pxq+yiVSpNnRomaOuY+2TLmP9EDVnfm0dvbG5cuXTK6nyQlJUW//lG0Wi2+/PJLDBkyRHKxCQBpaWkAgPbt20sPmIiIiMiGWF3xGBQUBJ1Ohy1btujbtFotoqKi4Ofnpz87eP36dVy8eNHkGAcOHMDt27ervWR98+ZNo7Y7d+5gw4YNaNeuHXx8fOphT4iIiIiaHqu7bO3n54fg4GBEREQgNzcXbm5uiImJQUZGBrZv367vFxoaimPHjkEIYTTGzp07oVQqMX78eJNzfPzxx9izZw/+8pe/oHPnzsjJycFnn32G69evY8eOHVAoFGbbPyIiIqLGzOqKRwCIjY3F0qVLsWPHDhQUFMDLywv79u3D4MGDH7ltUVER9u/fjzFjxsDJyclkn4EDB+LEiRPYtm0b8vLy4ODgAF9fX3z22WcYNmxYfe8OERERUZMhE6ZO3ZFkRUVFcHJyQmFhodGLzYmaMua+bSsuLsbYsWP1y3v37kWLFi0sGFHDYv6TLbO6ex6JiIiIyHqxeCQiIiIiyVg8EhEREZFkLB6JiIiISDIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgks8pfmCEiopr5vBFr0fll98rx8G94DVkaD2FnuZ92/SEy1GJzE9kannkkIiIiIslYPBIRERGRZCweiYiIiEgyFo9EREREJBmLRyIiIiKSjMUjEREREUnG4pGIiIiIJON7HomIiIgkEkKgpKREv+zg4ACZTGbBiBoei0ciIiIiiUpKSjB27Fj98t69e9GiRQsLRtTw6lw83rx5E1FRUTh9+jRu374NnU5n1Ecmk+HIkSN1nYqIiIiILKxOxeP58+cxbNgwFBQUQAhRbT9bO51LRERE1FTV6YGZhQsXIj8/H0uWLEF6ejoqKipQWVlp9DF1NpKIiIiIGp86nXk8efIkxo0bh3feeae+4iEiIiIiK1anM48KhQLdu3evr1iIiIiIyMrVqXgMCAjAmTNn6isWIiIiIrJydSoe33//ffz88894//336yseAIBWq8XixYuh0WigVqvh5+eHQ4cOPXK7ZcuWQSaTGX1UKpXJ/tu3b0ePHj2gUqng7u6OjRs31ut+EBERETU1tbrncerUqUZtnp6eWLx4MT799FN4e3vD0dHRqI9MJsP27dslzxMWFoaEhATMmzcP7u7uiI6ORmBgIBITE+Hv7//I7Tdt2mTwziW5XG7UZ/PmzXjllVcwfvx4LFiwAElJSXj99ddx9+5dLF68WHKsRERERLakVsVjdHR0tevS0tKQlpZmcl1tisfU1FTEx8cjMjIS4eHhAIDQ0FB4enpi0aJFOHHixCPHCAoKQrt27apdX1paiiVLlmDMmDFISEgAAMyYMQOVlZVYsWIFZs6cidatW0uKl4iIiMiW1Kp4TE9PN1ccegkJCZDL5Zg5c6a+TaVSYdq0aXjzzTeRmZkJFxeXGscQQqCoqAgtW7Y0+Y7JxMRE5OXlYdasWQbts2fPxs6dO7F//36EhITUzw5Rk8afqSIiIltTq+LR1dXVXHHonT17Fh4eHkaXv319fQEA586de2Tx2K1bNxQXF8PBwQHjxo3DunXr0KFDB4M5AKBfv34G2/n4+KBZs2Y4e/Ysi0eShD9TRUREtsbqfts6JycHzs7ORu1VbdnZ2dVu27p1a7z22msYMGAAlEolkpKS8PHHHyM1NRVnzpzRF6Q5OTmQy+V44oknDLZXKBRo27ZtjXNotVpotVr9clFRUa32j6ixYu6TLWP+Ez1Qp6et161bh3bt2lVbbGVnZ6N9+/b4n//5H8ljlpaWQqlUGrVXPTFdWlpa7bZz587Fxo0bMXHiRIwfPx4bNmxATEwMLl++jE8++cRgDoVCYXIMlUpV4xxr1qyBk5OT/vOos6BETQVzn2wZ85/ogToVj1988QX69OkDjUZjcr1Go4G3tzfi4+Mlj6lWqw2+3VUpKyvTr6+NiRMnomPHjjh8+LDBHOXl5Sb7l5WV1ThHREQECgsL9Z/MzMxaxUPUWDH3yZYx/4keqNNl68uXL2PSpEk19unVqxd27twpeUxnZ2dkZWUZtefk5ABAtYVqTVxcXJCfn28wh06nQ25ursGl6/LycuTl5dU4h1KpNHlmlKipY+6TLWus+c+H+sgc6nTmsbS0FA4ODjX2UalUKC4uljymt7c3Ll26ZHQ/SUpKin59bQghkJGRgfbt2xvMAcDo13HOnDmDysrKWs9BRERkjaoe6qv6PFxIEj2uOhWPnTt3fuR7F0+ePIlOnTpJHjMoKAg6nQ5btmzRt2m1WkRFRcHPz09/n8n169dx8eJFg21v3rxpNN6mTZtw8+ZNjBo1St82bNgwtGnTBps2bTLq27x5c4wZM0ZyvERERES2pE6XrceMGYMNGzbgs88+M/nrM9u2bUNycjLmzp0reUw/Pz8EBwcjIiICubm5cHNzQ0xMDDIyMgxeNB4aGopjx45BCKFvc3V1xYsvvojevXtDpVIhOTkZ8fHx8Pb2xssvv6zvp1arsWLFCsyePRvBwcEYOXIkkpKSEBcXh1WrVqFNmzaPeUSIiGyDkNuj0GuCwTIR2YY6FY///d//jc8//xwzZsxAXFwchg8fjieffBJZWVn4/vvv8c9//hMajQYRERG1Gjc2NhZLly7Fjh07UFBQAC8vL+zbtw+DBw+ucbtJkybhxIkT+PLLL1FWVgZXV1csWrQIS5YsQfPmzQ36zpo1C/b29li3bh2+/vpruLi44IMPPqhVoduY8L4XIqpXMhmEnem3VhBR01an4rF9+/ZITExESEgIjh49iqNHj0Imk+nPBvbv3x87d+40uN9QCpVKhcjISERGRlbb5+jRo0ZtW7durdU8M2bMwIwZM2q1TWPFl1kTERFRfajzS8KfeuopnD59GqdPn0ZqaioKCwvRqlUr+Pr6Gv2CCxERERE1bnUqHqdOnYrevXtj/vz56N+/P/r3719fcRERERGRFarT09a7du1Cbm5ufcVCRERERFauTsVj9+7d9S/vJiIiIqKmr07F49SpU7F//36TvwhDRERERE1Pne55HD9+PBITE/H0009j0aJF6N+/Pzp06GDyFTCdO3euy1RERERE8Hkj1qLzy+6Vw+mh5SFL4y362qofIkMbfM46FY/dunXTv5rn9ddfr7afTCbDvXv36jIVEREREVmBOhWPoaGhfNE0ERERkQ2pU/EYHR1dT2EQERERUWNQ55eEE1mKpe97AXjvCxER2R4Wj0RERGbAL7jG+AW3aahz8Xjnzh189NFHOHz4MLKzs6HVao36yGQyXL16ta5TEREREZGF1al4vHnzJp5++mlcvXoVjo6OKCoqgpOTE8rLy1FaWgoA0Gg0sLe3r5dgiYiIiMiy6vSS8GXLluHq1auIjY1FQUEBAGD+/PkoKSlBSkoKfH190aVLF/zrX/+ql2CJiIiIyLLqVDweOHAAzzzzDEJCQoxe2dO/f38cPHgQGRkZWL58eZ2CJCIiIiLrUKfiMScnB3379tUvy+Vy/eVqAGjdujVGjx6N3bt312UaIiIiIrISdSoenZycUFFRoV9u3bo1fvvtN4M+jo6O+P333+syDRERERFZiToVj926dUNGRoZ+uW/fvjh06BDy8vIAAKWlpfjmm2/4u9ZERERETUSdiscRI0bgyJEjuHv3LgDg5ZdfRm5uLvr06YPg4GB4enri6tWrCAsLq49YiYiIiMjC6lQ8vvrqq9i6dau+ePzrX/+KyMhIlJSU4Msvv8SNGzewYMECvPHGG/USLBERERFZ1mMVjydPnsSwYcPg7u6OGTNmYMKECUhNTQUALFy4ELdu3UJOTg6Ki4sRGRkJuVxer0ETERERkWXU+iXhFy5cwDPPPIOysjJ925EjR3DixAmkpqaiV69ekMvl6NChQ70GSkRERESWV+szj++++y7KysqwZMkS3LhxAzdu3MDSpUtRWlqKtWvXmiNGIiIiIrIStT7zmJSUBH9/f6xYsULftnz5chw9ehTHjh2r1+CaEp83Yi06v+xeOZweWh6yNB7CTmGxeH6IDLXY3ERERPT4an3m8ffff8d//Md/GLX7+fnxfY5ERERETVyti8eKigq0aNHCqN3BwcHgheF1odVqsXjxYmg0GqjVavj5+eHQoUOP3O6rr77Ciy++iG7duqF58+Z46qmnsHDhQty+fduob5cuXSCTyYw+r7zySr3sAxEREVFTVOvL1g0hLCwMCQkJmDdvHtzd3REdHY3AwEAkJibC39+/2u1mzpwJjUaDkJAQdO7cGRcuXMBHH32EAwcO4Mcff4RarTbo7+3tjYULFxq0eXh4mGWfiIiIGpqQ26PQa4LBMlFdPVbxGBcXh1OnThm0XblyBQAQGBho1F8mk2H//v2Sxk5NTUV8fDwiIyMRHh4OAAgNDYWnpycWLVqEEydOVLttQkIChgwZYtDm4+ODKVOmYOfOnZg+fbrBuieffBIhISGS4iIiImp0ZDKL3t9OTdNjFY9XrlzRF4t/9O233xq1yWQyyWMnJCRALpdj5syZ+jaVSoVp06bhzTffRGZmJlxcXExu+8fCEQCef/55TJkyBb/88ovJbcrLy1FRUQEHBwfJMRIREZFt4tncxyge09PTzRGH3tmzZ+Hh4QFHR0eDdl9fXwDAuXPnqi0eTblx4wYAoF27dkbr/vGPf6B58+bQ6XRwdXXF/PnzMXfu3DpET7aGf0SIiGwMz+bWvnh0dXU1Rxx6OTk5cHZ2NmqvasvOzq7VeGvXroVcLkdQUJBBu5eXF/z9/fHUU08hLy8P0dHRmDdvHrKzs2t8X6VWq4VWq9UvFxUV1SoeamJs6I8Ic59sGfOf6AGre2CmtLQUSqXSqF2lUunXS7Vr1y5s374dixYtgru7u8G6r7/+2mD5pZdewujRo7F+/XrMmTMHnTp1MjnmmjVrsHz5cskxEDUVjTX3hRAoKSnRLzs4ONTqVhoioPHmP5E5PNZvW5uTWq02+HZXpernEP/4xHR1kpKSMG3aNIwcORKrVq16ZH+ZTIb58+fj3r17OHr0aLX9IiIiUFhYqP9kZmZKioeosWusuV9SUoKxY8fqPw8XkkRSNdb8JzIHqzvz6OzsjKysLKP2nJwcAIBGo3nkGD/99BOee+45eHp6IiEhAXZ20naz6l7K/Pz8avsolUqTZ0aJmjrmPtky5j/RA1Z35tHb2xuXLl0yup8kJSVFv74mV69exahRo/DEE0/gwIEDJl9oXp20tDQAQPv27WsXNBEREZGNsLriMSgoCDqdDlu2bNG3abVaREVFwc/PT3928Pr167h48aLBtjdu3MCIESPQrFkzfPfdd9UWgfn5+dDpdAZtFRUVePfdd6FQKDB06NB63isiIiKipsHqLlv7+fkhODgYERERyM3NhZubG2JiYpCRkYHt27fr+4WGhuLYsWMQQujbRo0ahbS0NCxatAjJyclITk7Wr+vQoQOGDx8O4P7DMitXrkRQUBC6du2K/Px87Nq1Cz///DNWr16Njh07NtwOExERETUiVlc8AkBsbCyWLl2KHTt2oKCgAF5eXti3bx8GDx5c43Y//fQTAOC9994zWhcQEKAvHnv37o2ePXsiLi4ON2/ehEKhgLe3N3bv3o3g4OD63yEiIiKiJsIqi0eVSoXIyEhERkZW28fUE9EPn4WsiY+Pj9GreoiIiIjo0azunkciIiIisl4sHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJrPIl4VT/hNwehV4TDJaJGoLPG7EWnV92rxxODy0PWRoPYaewWDw/RIZabG4iovrA4tFWyGQW/R8mERERNQ28bE1EREREkrF4JCIiIiLJWDwSERERkWQsHomIiIhIMhaPRERERCQZi0ciIiIikozFIxERERFJxuKRiIiIiCRj8UhEREREkrF4JCIiIiLJWDwSERERkWQsHomIiIhIMjtLB0BEZE5Cbo9CrwkGy0RE9PhYPBJR0yaTQdgpLB0FEVGTwcvWRERERCSZVRaPWq0WixcvhkajgVqthp+fHw4dOiRp26ysLLzwwgto1aoVHB0dMXbsWKSlpZnsu337dvTo0QMqlQru7u7YuHFjfe4GERERUZNjlcVjWFgY1q9fj0mTJuHDDz+EXC5HYGAgkpOTa9yuuLgYQ4cOxbFjx/Dmm29i+fLlOHv2LAICApCXl2fQd/PmzZg+fTp69eqFjRs3YsCAAXj99dexdu1ac+4aERERUaNmdfc8pqamIj4+HpGRkQgPDwcAhIaGwtPTE4sWLcKJEyeq3faTTz7B5cuXkZqaiv79+wMARo8eDU9PT6xbtw6rV68GAJSWlmLJkiUYM2YMEhISAAAzZsxAZWUlVqxYgZkzZ6J169Zm3lMiIiKixsfqzjwmJCRALpdj5syZ+jaVSoVp06bh5MmTyMzMrHHb/v376wtHAPjTn/6EZ555Brt379a3JSYmIi8vD7NmzTLYfvbs2SgpKcH+/fvrcY+IiIiImg6rKx7Pnj0LDw8PODo6GrT7+voCAM6dO2dyu8rKSpw/fx79+vUzWufr64urV6/izp07+jkAGPX18fFBs2bN9OuJiIiIyJDVXbbOycmBs7OzUXtVW3Z2tsnt8vPzodVqH7ntU089hZycHMjlcjzxxBMG/RQKBdq2bVvtHMD9h3m0Wq1+ubCwEABQVFRU437ptKU1rrc1jzpeUvCYGpNyXFu2bAmZTFbrsZn79aM+ch/gcf0jqce1IfOf/0bG+Le//pk7902xuuKxtLQUSqXSqF2lUunXV7cdAEnblpaWQqEw/d43lUpV7RwAsGbNGixfvtyo3cXFpdptyJjTxlcsHUKTJOW4FhYWGp3Zl4K5Xz+Y++Yh9bgy/y2L+V//zJ37plhd8ahWqw2+3VUpKyvTr69uOwCStlWr1SgvLzc5TllZWbVzAEBERAQWLFigX66srER+fj7atm1bbxW9uRQVFcHFxQWZmZn1lkDU+I5ry5YtH2s75j79UWM8rsz/xvHvZO0a4zF93Nw3xeqKR2dnZ2RlZRm15+TkAAA0Go3J7dq0aQOlUqnvV9O2zs7O0Ol0yM3NNbh0XV5ejry8vGrnAO6f2fzj2c1WrVrVvFNWxtHRsdEke2PS1I8rc5+qYwvHlflPptjqMbW6B2a8vb1x6dIlo2v4KSkp+vWmNGvWDL1798aZM2eM1qWkpKBbt276qrtqjD/2PXPmDCorK6udg4iIiMjWWV3xGBQUBJ1Ohy1btujbtFotoqKi4Ofnp7+/5Pr167h48aLRtqdPnzYoCn/99Vf84x//QHBwsL5t2LBhaNOmDTZt2mSw/aZNm9C8eXOMGTPGHLtGRERE1OhZ3WVrPz8/BAcHIyIiArm5uXBzc0NMTAwyMjKwfft2fb/Q0FAcO3YMQgh926xZs7B161aMGTMG4eHhsLe3x/r169GhQwcsXLhQ30+tVmPFihWYPXs2goODMXLkSCQlJSEuLg6rVq1CmzZtGnSfG4pSqcTbb79t8qEienw8rtaP/0bmwePaOPDfqf7Z+jGViYerLytRVlaGpUuXIi4uDgUFBfDy8sKKFSswcuRIfZ8hQ4YYFY8A8Ntvv2H+/Pn4/vvvUVlZiSFDhuCDDz6Am5ub0Txbt27FunXrkJ6eDhcXF7z22muYO3eu1d/8TERERGQpVlk8EhEREZF1srp7HomIiIjIerF4JCIiIiLJWDzaAK1Wi8WLF0Oj0UCtVsPPzw+HDh2ydFiNWnFxMd5++22MGjUKbdq0gUwmQ3R0tKXDoj9g7tc/5n7jwNw3D+b/fSwebUBYWBjWr1+PSZMm4cMPP4RcLkdgYCCSk5MtHVqjdevWLbzzzjv45Zdf0KdPH0uHQ9Vg7tc/5n7jwNw3D+b//xPUpKWkpAgAIjIyUt9WWloqunfvLgYMGGDByBq3srIykZOTI4QQ4vTp0wKAiIqKsmxQZIC5bx7MfevH3Dcf5v99PPPYxCUkJEAul2PmzJn6NpVKhWnTpuHkyZPIzMy0YHSNl1KpRMeOHS0dBtWAuW8ezH3rx9w3H+b/fSwem7izZ8/Cw8PD6Lc3fX19AQDnzp2zQFRE5sfcJ1vF3CdzY/HYxOXk5MDZ2dmovaotOzu7oUMiahDMfbJVzH0yNxaPTVxpaanJn09SqVT69URNEXOfbBVzn8yNxWMTp1arodVqjdrLysr064maIuY+2SrmPpkbi8cmztnZGTk5OUbtVW0ajaahQyJqEMx9slXMfTI3Fo9NnLe3Ny5duoSioiKD9pSUFP16oqaIuU+2irlP5sbisYkLCgqCTqfDli1b9G1arRZRUVHw8/ODi4uLBaMjMh/mPtkq5j6Zm52lAyDz8vPzQ3BwMCIiIpCbmws3NzfExMQgIyMD27dvt3R4jdpHH32E27dv659c/Oabb/Dbb78BAObMmQMnJydLhmfzmPvmw9y3bsx982L+AzIhhLB0EGReZWVlWLp0KeLi4lBQUAAvLy+sWLECI0eOtHRojVqXLl1w7do1k+vS09PRpUuXhg2IjDD3zYO5b/2Y++bD/GfxSERERES1wHseiYiIiEgyFo9EREREJBmLRyIiIiKSjMUjEREREUnG4pGIiIiIJGPxSERERESSsXgkIiIiIslYPBIRERGRZCweiYiIiEgyFo9k9bp06WJVP/dkbfFQ02VtuWZt8VDTZm35Zm3xWBKLRxtVUlKC1atX489//jNatGgBpVKJTp06YdCgQYiIiMDVq1ctHSKRWTD3yZYx/6k+2Fk6AGp4d+7cgb+/P86fPw83NzeEhISgbdu2uHXrFlJTU/Huu++ie/fu6N69u6VDBQAcOXLE0iFQE8HcJ1vG/Kf6wuLRBm3YsAHnz5/H9OnTsWXLFshkMoP16enp0Gq1ForOmLX8IaPGj7lPtoz5T/WFl61t0MmTJwEAs2fPNvrjAQBdu3bFn/70J/2yTCbDkCFDTI5l6h6QsLAwyGQypKWlYd26dejZsyeUSiXCwsKwYsUKyGQyxMbGmhzvq6++gkwmw5IlS6qd43HGAO7/YZw+fTo6d+4MpVIJZ2dnhIWF4dq1aybH2bt3L/r37w+1Wo0OHTpgxowZKCgoMNmXGgfmPnPfljH/mf/1hcWjDWrbti0A4NKlS2adZ86cOVi9ejX69euHefPmoXfv3ggJCYFMJkNcXJzJbXbs2AEAmDx5crXjPs4YKSkp6Nu3L2JiYuDj44O5c+di0KBB2LlzJ3x9fZGWlmYwRmxsLMaNG4dLly5h8uTJmDJlCo4fP45nn30W5eXltToOZD2Y+8x9W8b8Z/7XG0E2Z+/evQKAaNmypVi4cKH47rvvxK1bt6rtD0AEBASYXOfq6ipcXV0N2qZMmSIAiE6dOolr164ZbePv7y/kcrnIzs42aM/LyxMKhUL069fvkXPUZozy8nLRpUsX0bJlS/Hjjz8a9E9KShJyuVz853/+p76tsLBQODo6CgcHB/Hrr78ajDN48GABwCgeahyY+w8w920P8/8B5n/d8MyjDXruueewbt06CCGwbt06jBw5Eu3atYObmxtee+01XL58uV7meeONN9C5c2ej9smTJ0On0+Hzzz83aP/f//1flJeXIyQk5JFj12aMffv2ISMjA2+88Qb69u1r0N/f3x9jx47FgQMHUFRUBADYs2cPioqKMHXqVHh4eOj72tvbY9WqVY/ecbJazP0HmPu2h/n/APO/blg82qgFCxYgOzsbu3fvxrx58+Dv74/r16/j448/hpeXF77++us6z+Hr62uy/YUXXoBSqdRfYqgSFxcHOzs7TJgw4ZFj12aMU6dOAQB+/fVXLFu2zOhz48YNVFZW6i/l/PTTTwCAQYMGGc07YMAA2NnxObPGjLnP3LdlzH/mf72w8JlPsiK3b98Ws2bNEgBEu3bthFarFUI8/qWLtLS0aucaP368ACD+9a9/CSGEuHLligAgAgMDJc1RmzGmT58uADzyc/ToUSGEENOmTTNY/qMOHTrw0kUTw9xn7tsy5j/zv7Z45pH0nJyc8NFHH8HV1RW3bt3ChQsXANx/4u7evXsmtyksLKx2PFNP81WpuqG56ttj1Q3QNd0s/bhjODo6AgC++eYbCCGq/QQEBAC4fxwAIDc312hOnU6HvLw8yTFS48DcZ+7bMuY/87+2WDySAZlMBgcHB4O21q1bIysry6hvRkYGbt++/VjzBAYGom3btti1axcqKyuxc+dOtGzZEmPHjq33Mfz8/AA8eE3Fo/Tp0wcAkJSUZLTu5MmT1f4xpcaNuc/ct2XMf+Z/rTToeU6yCp9++qlITU01ue7vf/+7kMlkolWrVqKsrEwIIcTIkSONTuVrtVrx/PPPm3z6rOrSRXp6eo1xVF0mWbNmjQAgwsLCTPar7tKF1DHKyspE586dhUqlEseOHTNaX15eLpKSkvTLt2/frvaJu4CAAD5x14gx9w0x920L898Q8//xyYQQouFKVbIG48aNw969e+Hm5oaBAwdCo9GgpKQEZ8+eRVJSEpo1a4a4uDj9jcfff/89Ro0aBbVajQkTJqB58+Y4dOgQWrVqhWvXrkGhUCAjI0M/flhYGGJiYpCenl7jj8ifOnUKAwYMgL29PSoqKnDkyBEMGzbMqF/VGA/PUdsxTp8+jdGjRyMvLw/Dhg1D7969IZPJcO3aNSQlJaFt27a4ePGivn9MTAzCwsLg6OiI//qv/4KTkxP27dsHtVqNnJwco32mxoG5z9y3Zcx/5n+9sXT1Sg3v4sWL4r333hPDhw8XXbt2FSqVSqhUKtG9e3cxZcoUcebMGaNtvvjiC9G7d2+hUChEx44dxZw5c8SdO3dqvGn6Ud8+hRDC3d1d/14wnU5nsk9N3z6ljiGEEL/99puYO3eucHd3F0qlUjg6OooePXqI6dOniyNHjhj1//vf/y58fHyEUqkUTzzxhJg+fbrIz89/ZDxkvZj7zH1bxvxn/tcXnnkkIiIiIsn4wAwRERERScbikYiIiIgkY/FIRERERJKxeCQiIiIiyVg8EhEREZFkLB6JiIiISDIWj0REREQkGYtHIiIiIpKMxSMRERERScbikYiIiIgkY/FIRERERJKxeCQiIiIiyVg8EhEREZFk/wdFlLP8CrNEXAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjVklEQVR4nO3deVxU9f4/8NcRdUBkMUSFVFBw6QqKIaBGaZa5ZXhzuVdFJdx+uaXiEnp7oPUoF7RbXbOuZoKZexbXbDOvcjWV5atdresOuOKCyiLCSPD+/eGDqXEGnWFGZubwej4e8/Axn3PO53xmfB9ec5aZo4iIgIiISEXq2HoARERE1sZwIyIi1WG4ERGR6jDciIhIdRhuRESkOgw3IiJSHYYbERGpDsONiIhUh+FGRESqw3AjAuDv7w9/f39bD4McWGZmJnr37g1vb28oioKQkBBbD8lsatoO6tp6APS74uJivP/++9i2bRtOnTqFsrIyeHt7o1WrVoiMjMS4ceMQEBBg62ESGajttVtYWIgBAwagtLQUo0aNQuPGjdGsWTNbD6tWY7jZiaKiIkRGRuLo0aMIDAxEdHQ0vLy8kJeXh/T0dCxevBgBAQGq/gNBjom1C6Snp+PatWt4++23MW/ePFsPh8Bwsxvvvfcejh49inHjxmHVqlVQFEVvenZ2NrRarY1GR1Q11i5w+fJlAICvr6+NR0KVeM7NThw8eBAAMHnyZIM/DgDQqlUrtG/f3qD92rVrmDFjBgIDA6HRaNC4cWMMHjwYv/zyi24eEUH//v2hKAo2b96st7yIoF+/fkan1bSePXtCURRotVrMmzcPLVu2hIuLC0JDQ/Hjjz8CAAoKCjB58mT4+vrC2dkZ3bp1Q3p6ukFfe/bsQWxsLNq1a4eGDRuiYcOG6NKlC1atWmXWmEQEn376KZ566im4u7ujQYMG6NKlCz799FOrvGY1qO21qygKxowZAwB45ZVXoCgKFEVBUlKSbp6ioiIkJCSgQ4cOcHFxgaenJ/r06YP9+/cb9MftwEqE7EJ0dLQAkM2bN5u8zJkzZ6R58+YCQF544QWJi4uTUaNGSYMGDcTV1VUOHTqkm/fKlSvSpEkT8fDwkJycHF37u+++KwAkJibGqq+nOnr06CEAJCoqSlq3bi2TJ0+W2NhY0Wg0otFoJDMzU5588kkJCgqSadOmyfDhw6VOnTrSqFEjyc/P1+urT58+EhAQICNHjpS5c+fKxIkTxc/PTwDIzJkzDdbt5+cnfn5+em0VFRUyfPhwASBt2rSRiRMnytSpU6V9+/YCQOLi4h7l2+EwanvtJiQkSFRUlK52ExISJCEhQY4cOSIiIjdu3JAOHToIAHnqqadk+vTpEhsbK15eXlK3bl358ssv9frjdmAdDDc7kZKSIgDEzc1N4uLi5Pvvv5e8vLwHLtO9e3dxcnKS7777Tq/95MmT4ubmJsHBwXrt3377rSiKIt27d5fffvtNjhw5IvXr15c2bdpIUVGRSeO8deuWbuM19XHr1i2T+q7cqCMjI+X27du69s2bNwsA8fT0lKFDh0pZWZlu2pIlSwSALF++XK+vrKwsg/7Lysqkd+/e4uTkJOfOndObZmyjXrVqlQCQV155Re7evatr12q1MnDgQAEgmZmZJr02NWPtiqxdu1YAyNq1aw2mjRgxQgDI6tWr9dqvXr0qLVq0EG9vbykpKdG1czuwDoabHVm+fLk0bNhQAOgeAQEBMnnyZDl16pTevIcPHxYAEhsba7SvmTNnCgA5duyYXvv06dMFgMyaNUvat28v9erVM6sws7Oz9cZnyiM7O9ukvis36tTUVL328vJyqVevngAw2BjPnz8vAGT06NEmreOLL74QAJKUlKTXbmyj7tixo7i6usqdO3cM+jl69Khdf2qtabW9dqsKt+vXr4uTk5P06tXL6HIffPCBAJAdO3bo2rgdWAcvKLEjM2fOxPjx4/Hdd9/hwIEDyMzMRFpaGj788EOsWbMGmzdvxksvvQQAOHToEADg6tWrWLBggUFfJ06c0P0bFBSka1+8eDH27t2LZcuWAQCWLFmC0NBQk8fo7+8PecQ3b7//+0F16tRBkyZNcOfOHbRs2VJvmo+PD4DfT+hXKioqwrJly/DVV1/h7NmzKC4u1pt+//z3u3PnDo4dOwZfX18sWbLEYHpZWRmA39/n2o61a1xGRgbKy8uh1WqNvtbTp08DuPdaX3zxRb1p3A4sw3CzM25ubhg6dCiGDh0K4N6J43nz5mHlypUYO3YsLl26hPr16+PmzZsAgJ07d2Lnzp1V9nd/MWs0GvTr1w8///wznJ2dMW7cuEf3YqrJ3d3doK1u3bpVtgO/b2QAcPfuXfTs2ROHDx9G586dMWrUKHh5eaFu3brIyclBcnLyQ6/eu3XrFkQEly5dwsKFC6uc7/73tzZj7RqqfK0//fQTfvrppyrnM1ZH3A4sw3Czcx4eHlixYgV27tyJc+fO4dixYwgNDdUV+D/+8Q9MmTLF5P7S0tKQmJgILy8v3LhxA6+++qpZV5rl5+fjvffeM+s1TJ8+HZ6enmYtY4mUlBQcPnwYY8eOxSeffKI3bdOmTUhOTn5oH5Xvb2hoKDIzMx/JONWOtft7HcXFxen2OGtKbd8OGG4OQFEUuLq66rVFREQAuHcZtql/IIqKijBixAjUrVsXe/fuxYIFC7Blyxb06dMHsbGxJvWRn5//wE9wxsTExNRouJ09exYAEBUVZTBt3759JvXh5uaGJ554AsePH0d+fn6Njl9NanvthoWFQVEU3dclalJt3w74PTc78c9//hMZGRlGp3311Vc4fvw4PD09decgwsPDERERgY0bNxr99FpRUYHU1FS9tkmTJiErKwvLli1DUFAQVq9ejRYtWmDatGk4deqUSeOsPG9hzqOmf6vOz88PAAy+Q5SamorVq1eb3M+0adNw584djB8/3uhhl+zsbOTk5Fg0VjVg7VatWbNmGDZsGA4cOIDExESj5/zS0tJw584di9ZjTK3fDmrkshV6qMrvyQQGBsqYMWMkPj5epk2bJk8//bQAkDp16siGDRv0lsnKytJ9Z6Vr164yadIkiYuLk6FDh0rz5s1Fo9Ho5v3ss88EgAwcOFCvj9TUVKlTp46EhobqXeZrC5VXiRlj7CquSgCkR48euudFRUXi7+8vAKR///4yZ84ciYqKEicnJxkyZIgAkISEhIf2X1FRIWPGjBEA4uPjI6NGjZK5c+dKTEyMdO3aVRRFkY0bN1rwitWBtfvgrwLcuHFDQkJCBIAEBwfLhAkTZM6cOTJ8+HBp06aNAJDc3Fzd/NwOrIPhZidOnDghS5culd69e0urVq3E2dlZnJ2dJSAgQMaMGVPlJc83b96Uv/3tbxIUFCQuLi7SsGFDadOmjYwYMUK2b98uIvf+kLi7u4uPj49cv37doI/58+frLrG2JWtt1CL3XvPgwYPF29tbGjRoIGFhYbJp0ybZs2ePyRt1pc2bN8vzzz8vjRo1knr16snjjz8uPXv2lOXLlxt9P2sb1u6Dw01E5M6dO7J06VIJDQ0VV1dXcXFxkVatWsmgQYNk3bp1et9Z43ZgHYpIDV8bS0RE9IjxnBsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYblUQERQWFtb4r4gT1RTWOKkZw60KRUVF8PDwQFFRka2HQvRIsMZJzRhuRESkOgw3IiJSHYYbERGpDsONiIhUhzcrJSK7JCJ69w9zdXWFoig2HBE5EoYbEdml4uJivbtIp6SkoGHDhjYcETkSHpYkIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDciIlIdhhsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYbkREpDoMNyIiUh2GGxERqQ7DjYiIVIfhRkREqsNwIyIi1WG4ERGR6jDciIhIdRhuRESkOgw3IiJSHYYbERGpDsONiIhUh+FGRESqw3AjIiLVsbtwu337NhISEtC3b1889thjUBQFSUlJJi+fn5+PCRMmwNvbG66urnj22Wdx+PDhRzdgIiKyO3YXbnl5eXjzzTdx/PhxdOrUyaxlKyoqMGDAAGzYsAFTpkzB0qVLce3aNfTs2ROnT59+RCMmIiJ7U9fWA7ifj48PcnNz0axZM2RmZiIsLMzkZbdt24YDBw5g69atGDJkCABg2LBhaNu2LRISErBhw4ZHNWwiVQqdvc5m61Z+uwuPPzzv+cYmSN36NhnL/yWOtsl6qfrsbs9No9GgWbNm1Vp227ZtaNq0KV5++WVdm7e3N4YNG4aUlBRotVprDZOIiOyY3YWbJY4cOYInn3wSderov6zw8HDcuXMHp06dstHIiIioJqkq3HJzc+Hj42PQXtl2+fLlKpfVarUoLCzUexCpCWucahNVhVtJSQk0Go1Bu7Ozs256VRYtWgQPDw/do0WLFo9snES2wBqn2kRV4ebi4mL0vFppaaluelXi4+NRUFCge1y4cOGRjZPIFljjVJvY3dWSlqi80vJ+lW2+vr5VLqvRaIzu9RGpBWucahNV7bmFhITg8OHDqKio0GtPS0tDgwYN0LZtWxuNjIiIapLDhltubi5OnDiBsrIyXduQIUNw9epVbN++XdeWl5eHrVu3YuDAgfzUSkRUS9jlYckVK1YgPz9fd3Xjjh07cPHiRQDA1KlT4eHhgfj4eCQnJyM7Oxv+/v4A7oVb165d8corr+B///sfGjdujJUrV6K8vBwLFy601cshIqIaZpfhtmzZMpw7d073fPv27bq9sejoaHh4eBhdzsnJCd988w1mz56NDz74ACUlJQgLC0NSUhLatWtXI2MnIiLbU0RELOng+vXrWLt2LTIyMpCfn4/y8nLDlSgKdu/ebclqalxhYSE8PDxQUFAAd3d3Ww+HyOpMqXGb//zW0Y265wUdh/Pnt8hkFu25HT16FL169cKtW7fwoIxUFMWS1RAREZnFogtK4uLicPPmTcyfPx/Z2dkoKytDRUWFwcPY3hwREdGjYtGe28GDBzFo0CC8+eab1hoPERGRxSzac6tfvz4CAgKsNRYiIiKrsCjcevTogczMTGuNhYiIyCosCrdly5bhl19+wbJly6w1HiIiIouZdc4tNjbWoC0oKAhz587Fxx9/jJCQEKOXFCuKgjVr1lR/lERERGYwK9ySkpKqnJaVlYWsrCyj0xhuRERUk8wKt+zs7Ec1DiIiIqsxK9z8/Pwe1TiIiIisxmHvCkBERFQVi8Jt+fLlaNy4se7X++93+fJleHt744MPPrBkNURERGaxKNy2bt2KTp06VXmHa19fX4SEhGDTpk2WrIaIiMgsFoXb6dOn0aFDhwfO06FDB5w+fdqS1RAREZnFonArKSmBq6vrA+dxdnbG7du3LVkNERGRWSwKt5YtW+LAgQMPnOfgwYNo3ry5JashIiIyi0XhNmDAAOzfvx+ffvqp0emffPIJ9u/fj4EDB1qyGiIiIrNYdMub119/HRs3bsT48eOxfv169O7dG48//jguXbqEH374Af/5z3/g6+uL+Ph4a42XiIjooSwKN29vb+zZswfR0dHYu3cv9u7dC0VRdHflDgsLw+effw5vb2+rDJaIag9xqoeCjsP1nhOZyqJwA4B27dohIyMDGRkZSE9PR0FBATw9PREeHo4uXbpYY4xEVBspCqRufVuPghyUReEWGxuL4OBgzJgxA2FhYQgLC7PWuIiIiKrNogtKNmzYgGvXrllrLERERFZhUbgFBAQgNzfXWmMhIiKyCovCLTY2Fjt37sSlS5esNR4iIiKLWXTObfDgwdizZw+6d++OOXPmICwsDE2bNoWiKAbztmzZ0pJVERERmcyicGvdurXu0v9p06ZVOZ+iKPjtt98sWRUREZHJLAq30aNHG91LIyIi+yAiKC4u1j13dXWtFX+3LQq3pKQkKw2DiIgeheLiYkRFRemep6SkoGHDhjYcUc3gnbiJiEh1GG5ERKQ6Fv/8VlFREVasWIEff/wRly9fhlarNZhHURScPXvW0lURERGZxKJwu379Orp3746zZ8/C3d0dhYWF8PDwwN27d1FSUgIA8PX1Rb16/MFTIiKqORYdllywYAHOnj2LdevW4datWwCAGTNmoLi4GGlpaQgPD4e/vz9+/fVXqwyWiIjIFBaF2zfffIPnnnsO0dHRBpeWhoWF4dtvv0VOTg4WLlxo0SCJiIjMYVG45ebmonPnzrrnTk5OusORANCoUSP069cPW7ZsMatfrVaLuXPnwtfXFy4uLoiIiMCuXbseutyCBQugKIrBw9nZ2az1ExGRY7PonJuHhwfKysp0zxs1aoSLFy/qzePu7o6rV6+a1W9MTAy2bduG6dOno02bNkhKSkL//v2xZ88eREZGPnT5jz76SO97HE5OTmatn4iIHJvFP7+Vk5Oje965c2fs2rULN27cgJeXF0pKSrBjxw6zflcyPT0dmzZtQmJiImbNmgXg3i+hBAUFYc6cOThw4MBD+xgyZAgaN25s9ushIiJ1sOiw5AsvvIDdu3fjzp07AICJEyfi2rVr6NSpE4YOHYqgoCCcPXsWMTExJve5bds2ODk5YcKECbo2Z2dnjB07FgcPHsSFCxce2oeIoLCwECJi9msiIiLHZ1G4vfrqq1i9erUu3F5++WUkJiaiuLgYX3zxBa5cuYKZM2di9uzZJvd55MgRtG3bFu7u7nrt4eHhAICff/75oX20bt0aHh4ecHNzQ3R0tNmHRYmIyLFV67DkwYMHMX/+fGRkZEBRFERERODtt99GeHg44uLiMH36dOTl5aFJkyZm/0Bnbm4ufHx8DNor2y5fvlzlso0aNcKUKVPQrVs3aDQa7Nu3Dx9++CHS09ORmZlpEJh/pNVq9b6AXlhYaNa4iewda9x2Qmevs9m6ld/uwuMPz3u+sQlSt75NxvJ/iaNrbF1mh9uxY8fw3HPPobS0VNe2e/duHDhwAOnp6ejQoQOcnJzQtGnTag2opKQEGo3GoL3yisc/Xo15v9dee03v+eDBgxEeHo6RI0di5cqVeP3116tcdtGiRfzKAqkaa5xqE7MPSy5evBilpaWYP38+rly5gitXruCNN95ASUkJlixZYvGAXFxcjP6EV2WYuri4mNXfiBEj0KxZM/z4448PnC8+Ph4FBQW6hynn9sjxiQhu376te6j5PC1rnGoTs/fc9u3bh8jISLz11lu6toULF2Lv3r1ITU21eEA+Pj64dOmSQXtubi6Aez/nZa4WLVrg5s2bD5xHo9EY3WMkdatNtwNhjVNtYvae29WrV9G1a1eD9oiICKtcuBESEoJTp04ZnA9IS0vTTTeHiCAnJwfe3t4Wj42IiByD2eFWVlZm9JOtq6ur3he6q2vIkCEoLy/HqlWrdG1arRZr165FREQEWrRoAQA4f/48Tpw4obfs9evXDfr76KOPcP36dfTt29fisRERkWOw+JY31hYREYGhQ4ciPj4e165dQ2BgIJKTk5GTk4M1a9bo5hs9ejRSU1P1zpH4+fnhL3/5C4KDg+Hs7Iz9+/dj06ZNCAkJwcSJE23xcoiIyAaqFW7r16/HoUOH9NrOnDkDAOjfv7/B/IqiYOfOnSb3v27dOrzxxhv47LPPcOvWLXTs2BFff/01nnnmmQcuN3LkSBw4cABffPEFSktL4efnhzlz5mD+/Plo0KCByesnIiLHVq1wO3PmjC7M7vfdd98ZtJn7XTdnZ2ckJiYiMTGxynn27t1r0LZ69Wqz1kNEROpkdrhlZ2c/inEQERFZjdnh5ufn9yjGQUREZDV2d0EJERFZjzjVQ0HH4XrPawOGGxGRmimKzX5L0pYsuisAERGRPWK4ERGR6vCwJNkcbwdyT03eDoRI7bjnRkREqsNwIyIi1WG4ERGR6jDciIhIdRhuRESkOgw3IiJSHX4VwEGJCIqLi3XPXV1dzb77AhGRWjHcHFRxcTGioqJ0z1NSUozeIZ2IqDbiYUkiIlIdhhsREakOw42IiFSH4UZERKrDC0qoVqutN3IkUjuGG9VutfRGjkRqx3CzAG/Vcg9v1UJE9obn3IiISHUYbkREpDoMNyIiUh2GGxERqQ7DjYiIVIfhRkREqsOvAjgofvmYiKhqDDdHxS8fExFViYcliYhIdRhuRESkOgw3IiJSHYYbERGpDsONiIhUxy7DTavVYu7cufD19YWLiwsiIiKwa9cuk5a9dOkShg0bBk9PT7i7uyMqKgpZWVmPeMRERGRP7DLcYmJi8O6772LkyJF4//334eTkhP79+2P//v0PXO727dt49tlnkZqainnz5mHhwoU4cuQIevTogRs3btTQ6ImIyNbs7ntu6enp2LRpExITEzFr1iwAwOjRoxEUFIQ5c+bgwIEDVS67cuVKnD59Gunp6QgLCwMA9OvXD0FBQVi+fDneeeedGnkNRERkW3a357Zt2zY4OTlhwoQJujZnZ2eMHTsWBw8exIULFx64bFhYmC7YAKB9+/Z47rnnsGXLlkc6biIish92F25HjhxB27Zt4e7urtceHh4OAPj555+NLldRUYGjR4+iS5cuBtPCw8Nx9uxZFBUVWX28RERkf+zusGRubi58fHwM2ivbLl++bHS5mzdvQqvVPnTZdu3aGV1eq9VCq9XqnhcUFAAACgsLqxxrubakymm1yYPeI1PwfbzHlPfRzc0NiqJUq3/WePWxxq3D1PfRkjqvZHfhVlJSAo1GY9Du7Oysm17VcgCqtSwALFq0CAsXLjRob9GixcMHXct5/OP/2XoIqmDK+1hQUGBwVMNUrPHqY41bh6nvoyV1Xsnuws3FxUXv02Wl0tJS3fSqlgNQrWUBID4+HjNnztQ9r6iowM2bN+Hl5WXxJ4hHpbCwEC1atMCFCxcsLoTazJHeRzc3t2ovyxqvvRztfbSkzivZXbj5+Pjg0qVLBu25ubkAAF9fX6PLPfbYY9BoNLr5zFkWuLfHd/9en6enp6nDtil3d3eHKFh7p/b3kTVOtel9tLsLSkJCQnDq1CmDY7NpaWm66cbUqVMHwcHByMzMNJiWlpaG1q1bW+XTABER2T+7C7chQ4agvLwcq1at0rVptVqsXbsWERERuvMD58+fx4kTJwyWzcjI0Au4kydP4t///jeGDh1aMy+AiIhszu4OS0ZERGDo0KGIj4/HtWvXEBgYiOTkZOTk5GDNmjW6+UaPHo3U1FSIiK5t0qRJWL16NQYMGIBZs2ahXr16ePfdd9G0aVPExcXZ4uU8UhqNBgkJCUYvoiHT8X20X/y/sY7a+D4q8sd0sBOlpaV44403sH79ety6dQsdO3bEW2+9hT59+ujm6dmzp0G4AcDFixcxY8YM/PDDD6ioqEDPnj3x97//HYGBgTX9MoiIyEbsMtyIiIgsYXfn3IiIiCzFcCMiItVhuDkgS+53R7+7ffs2EhIS0LdvXzz22GNQFAVJSUm2HhaBNW4ttbnGGW4OqLr3uyN9eXl5ePPNN3H8+HF06tTJ1sOhP2CNW0etrnEhh5KWliYAJDExUddWUlIiAQEB0q1bNxuOzPGUlpZKbm6uiIhkZGQIAFm7dq1tB0WscSuqzTXOPTcHY8n97kifRqNBs2bNbD0Mug9r3Hpqc40z3BxMde93R+QoWONkDQw3B1Pd+90ROQrWOFkDw83BVPd+d0SOgjVO1sBwczDVvd8dkaNgjZM1MNwcjI+PT7XvWUfkCFjjZA0MNwdT3fvdETkK1jhZA8PNwZh6vzsiR8UaJ2uwu/u50YOZer87Ms2KFSuQn5+vuwJvx44duHjxIgBg6tSp8PDwsOXwaiXWuHXV1hrnLW8ckCn3uyPT+Pv749y5c0anZWdnw9/fv2YHRABY49ZUW2uc4UZERKrDc25ERKQ6DDciIlIdhhsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYbkREpDoMN6ox/v7+dvVTP/Y2HlIHe6srextPTWG4Obji4mK88847ePLJJ9GwYUNoNBo0b94cTz/9NOLj43H27FlbD5HIYqxzMhfvCuDAioqKEBkZiaNHjyIwMBDR0dHw8vJCXl4e0tPTsXjxYgQEBCAgIMDWQwUA7N6929ZDIAfEOqfqYLg5sPfeew9Hjx7FuHHjsGrVKiiKojc9OzsbWq3WRqMzZC9/fMixsM6pOnhY0oEdPHgQADB58mSDDR4AWrVqhfbt2+ueK4qCnj17Gu3L2HH5mJgYKIqCrKwsLF++HH/605+g0WgQExODt956C4qiYN26dUb72759OxRFwfz586tcR3X6AO79MRs3bhxatmwJjUYDHx8fxMTEVHlbj5SUFISFhcHFxQVNmzbF+PHjcevWLaPzkv1hnbPOq4Ph5sC8vLwAAKdOnXqk65k6dSreeecddOnSBdOnT0dwcDCio6OhKArWr19vdJnPPvsMADBq1Kgq+61OH2lpaejcuTOSk5MRGhqK1157DU8//TQ+//xzhIeHIysrS6+PdevWYdCgQTh16hRGjRqFMWPG4KeffsLzzz+Pu3fvmvU+kG2wzlnn1SLksFJSUgSAuLm5SVxcnHz//feSl5dX5fwApEePHkan+fn5iZ+fn17bmDFjBIA0b95czp07Z7BMZGSkODk5yeXLl/Xab9y4IfXr15cuXbo8dB3m9HH37l3x9/cXNzc3OXz4sN78+/btEycnJ3nxxRd1bQUFBeLu7i6urq5y8uRJvX6eeeYZAWAwHrI/rPPfsc5Nxz03B/bSSy9h+fLlEBEsX74cffr0QePGjREYGIgpU6bg9OnTVlnP7Nmz0bJlS4P2UaNGoby8HBs3btRr37x5M+7evYvo6OiH9m1OH19//TVycnIwe/ZsdO7cWW/+yMhIREVF4ZtvvkFhYSEA4KuvvkJhYSFiY2PRtm1b3bz16tXD22+//fAXTnaBdf471rnpGG4ObubMmbh8+TK2bNmC6dOnIzIyEufPn8eHH36Ijh074l//+pfF6wgPDzfaPmzYMGg0Gt1hlUrr169H3bp1MXz48If2bU4fhw4dAgCcPHkSCxYsMHhcuXIFFRUVusNX//3vfwEATz/9tMF6u3Xrhrp1eT2Vo2Cds87NZutdR7K+/Px8mTRpkgCQxo0bi1arFZHqH67Jysqqcl2DBw8WAPLrr7+KiMiZM2cEgPTv39+kdZjTx7hx4wTAQx979+4VEZGxY8fqPb9f06ZNa+XhGrVgnbPOH4R7birk4eGBFStWwM/PD3l5eTh27BiAe1eR/fbbb0aXKSgoqLI/Y1eoVao8CV75ibTypPmDTrBXtw93d3cAwI4dOyAiVT569OgB4N77AADXrl0zWGd5eTlu3Lhh8hjJ/rDOWecPwnBTKUVR4OrqqtfWqFEjXLp0yWDenJwc5OfnV2s9/fv3h5eXFzZs2ICKigp8/vnncHNzQ1RUlNX7iIiIAPD7peEP06lTJwDAvn37DKYdPHiwyj+A5DhY56zzKtlid5Gs4+OPP5b09HSj07788ktRFEU8PT2ltLRURET69OljcPhCq9XKn//8Z6NXVFUersnOzn7gOCoPDS1atEgASExMjNH5qjpcY2ofpaWl0rJlS3F2dpbU1FSD6Xfv3pV9+/bpnufn51d5FVmPHj1q7VVkjoZ1ro91bhpFRKTmI5WsYdCgQUhJSUFgYCCeeuop+Pr6ori4GEeOHMG+fftQp04drF+/Xney+ocffkDfvn3h4uKC4cOHo0GDBti1axc8PT1x7tw51K9fHzk5Obr+Y2JikJycjOzs7Af+8OqhQ4fQrVs31KtXD2VlZdi9ezd69eplMF9lH39ch7l9ZGRkoF+/frhx4wZ69eqF4OBgKIqCc+fOYd++ffDy8sKJEyd08ycnJyMmJgbu7u7461//Cg8PD3z99ddwcXFBbm6uwWsm+8M6Z51Xi63TlarvxIkTsnTpUundu7e0atVKnJ2dxdnZWQICAmTMmDGSmZlpsMzWrVslODhY6tevL82aNZOpU6dKUVHRA0+0P+wTrYhImzZtdN8VKi8vNzrPgz7RmtqHiMjFixfltddekzZt2ohGoxF3d3d54oknZNy4cbJ7926D+b/88ksJDQ0VjUYjTZo0kXHjxsnNmzcfOh6yD6xz1nl1cM+NiIhUhxeUEBGR6jDciIhIdRhuRESkOgw3IiJSHYYbERGpDsONiIhUh+FGRESqw3AjIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDciIlIdhhsREanO/wc7j3xNDaQ3xgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for Fare,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApD0lEQVR4nO3deXRUVbr38V9BSCUQEiBhSDQQJdiiECZNAAmDgGBAmRUHZrBXI4OoXEWuS4QWsGm8jaB4uY0KggKOAURsjSJhCjJzGRoRggzxIiIJiVBAst8/eFMaqxJOSCqVSn0/a521OPvs2uepYj9ZT52pbMYYIwAAAMCCSt4OAAAAAL6D4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIzi0Q+lp6fLZrNp6NChXouhY8eOstlsZbrP8vC+4X3lYR4w/+Et5WEeMP99H8Wjl+RP5KKWmJgYb4cJD/r000/Vo0cP1alTR1WqVFFERISaNGmi4cOHKzk52dvheRTzH5L0yy+/6K9//avatGmj8PBwValSRbVr11aXLl00d+5cZWdneztEj2D+Q5J+/PFHPfPMM4qLi1P16tVVtWpV/elPf9LYsWN19OhRb4dXpABvB+DvGjZsqEcffdTttho1apRtMCgzL774oqZMmaKqVauqZ8+eiomJ0ZUrV7Rv3z4tX75chw4dUq9evbwdpscx//1XSkqKHnjgAZ09e1aNGzfWgAEDFB4erp9//lnr16/XuHHj9I9//EPff/+9t0P1GOa//1qzZo0GDhyo8+fPq3Xr1ho1apQCAgK0a9cuvf766/qf//kfvfnmm3r44Ye9HapbFI9eFhsbqylTpng7DJSh9PR0TZ06VdHR0dqyZYuioqIKbL9w4YLS0tK8FF3ZYv77p927d+u+++6TJC1ZskSPPPKIS59169Zp0qRJZR1amWL++6ft27erb9++qlSpkj755BOXAwWbN2/W/fffr0GDBikyMlKdOnXyUqSF47S1D7HZbOrYsaNOnjyphx9+WBEREapevbp69OihI0eOSJIOHDig3r17q1atWqpevbr69++v//u//yt0zH379qlHjx6qUaOGQkJCdM8992j79u0u/bZv364xY8aoSZMmCgsLU3BwsJo2baqZM2fq8uXLLv1jYmIUExOjc+fOacyYMYqOjlZAQIDefvvtIt/j8uXLZbfb1axZM2VkZDjb169fr/vuu08RERGy2+1q1KiR/vM//1O//vqryxi5ubl6+eWXFRsbq6CgIMXGxmrGjBnKy8srct9lZevWrcrLy1Pfvn1dCkdJCg4OVseOHcs+sHKO+V8x5r8kjRs3ThcuXNDcuXPdFo7S1evi1q1bV7aBlWPM/4oz/8ePHy+Hw6FXX33V7RmmNm3a6N1331VeXp4ef/xxGWO8EOU1GHjF0aNHjSTTrVs3y6+RZOLi4kxMTIxp3bq1efLJJ03Pnj2NJHPzzTebvXv3mho1apjOnTubp556ynTs2NFIMp06dXK778TERBMWFmY6depknn32WfPQQw+ZgIAAU7VqVbNly5YCr/nzn/9soqKizMCBA83EiRPN448/bm6//XYjyfTt29cl1gYNGph69eqZFi1amEaNGpnRo0ebcePGmTVr1hhjjOnQoYP54/R79dVXjc1mM+3btzfnzp1ztr/++uvGZrOZmjVrmsGDB5unn37a+d7atm1rHA5HgXGGDx9uJJmbbrrJPPnkk2b06NEmIiLC+VkNGTLE8mfuCV9++aWRZJKSkrwahzcx//13/n/33XdGkomOjja5ublejcVbmP/+O/8PHTpkJJkbbrjBXLlypci+CQkJRpJZv359GUVnHaetvezw4cOFnrZo3bq1unfvXqBtz549mjBhgl555RVn2+jRozV//nwlJiZqypQpGj9+vCTJGKOePXtqzZo12rFjh1q2bFlgrNTUVD377LOaMWOGs23IkCHq3r27Ro0apT179jjbn3vuOb322muqXLmys80Yo5EjR+rNN9/Uxo0bdddddxUY/8cff1SzZs20ceNGBQcHF/k5TJ48WdOnT1efPn307rvvKigoSJK0f/9+jRs3TnFxcUpJSVF4eLjzNTNnztSkSZM0d+5cPfXUU5Kunup68803nfutVq2aM/7mzZsXGcMfpaenX/Ob8h9ZOQWVkJCg+vXra82aNerZs6cGDhyo+Ph4NWrUqMzvQPQ25v9V/jT/N27cKEnq0KGDKlXy75NfzP+r/Gn+b9q0SdLVI+u//zzd6dy5s9LS0rRx40YlJiYWKxaP82bl6s/yv/0VtYwfP77AaySZkJAQk5OTU6B9/fr1RpJp2LChycvLK7Bt8eLFRpJ58803XfZdo0YNc/78eZfYOnfubCSZbdu2XfN9bN++3UgyU6ZMKdDeoEEDI8ns3r3b7evyv3leuXLFjBgxwkgyo0aNcvkmNm7cuEK/eeXm5pratWubVq1aOduGDRtmJJkPP/zQpf+0adOK9c3z66+/vub/0R8Xq3bs2OH85p6/hIWFmZ49e5qPPvrI8ji+ivnvv/N/5syZRpJ59tlnLfWviJj/zH8r83/+/PlGkhkzZoylscsSRx69rFu3blq7dq3l/o0aNVLVqlULtEVGRkqS4uLiXI5c5W87deqUy1gtWrRQSEiIS3tiYqJSUlK0c+dOtWrVSpJ06dIlzZs3T8uWLdPBgweVnZ1d4DoMd+MHBQWpadOmRb6ffv36KTk5WZMnT9Zf//pXl+1btmyRJH3++edKSUlx2V6lShUdPHjQub57927ne3D3voqjY8eOHrvWpEWLFtq7d682b96sr7/+Wtu3b9eGDRu0evVqrV69Wo888ojeeeedCn8kkvnvn/MfVzH/mf9WlKfrNfNRPPqY0NBQl7aAgIBrbnN3UXPdunXd7iO/PTMz09nWv39/rVq1SrfccosefPBB57MJz507pzlz5sjhcLiMU6dOnWsWP+vXr1dQUJCSkpLcbj979qwk6aWXXipynHyZmZmqVKmSIiIiCn1f5YXNZlPbtm3Vtm1bSVdPAyUnJ2vw4MFaunSp+vXrpz59+ng5yvKF+V80X5j/9erVkySdPHnSy5H4HuZ/0Xxp/h8/fvyaffP73HDDDR6N6XpQPPqxwu7Cy28PCwuTJH377bdatWqVunXrpk8//bTAdRpbtmzRnDlz3I5j5ahZSkqKunTpou7du2vt2rXOQipf/h/ErKwsVa9e/ZrjhYWFKS8vT2fOnFHt2rXdvi+rPHXNS2FsNpt69+6tCRMmaOrUqfrqq68oHj2I+V80T83//Gvj1q1bp7y8PL+/7tFbmP9F89T8z3+P69atU25ubpHXPeYfbb3tttuKFUdZoHj0Yzt37lR2drbLqYvU1FRJV09rSHI+pLdHjx4uEz2/7/Vq0aKFvvrqK3Xu3Fndu3fXZ599VuDC64SEBO3YsUNbtmxR165drzles2bNtGPHDqWmpqpv374lijU9PV0vvvhisV5TGs9sc3cqCaWP+V80T83/2NhYtW/fXuvXr9eiRYs0bNiwQvs6HA7Z7fZixQBrmP9F89T8b9Sokdq1a6cNGzZo0aJFGj58uNt+KSkpSktLU0RERKFHZr2Jr3x+7Ny5cy6nA/KvLWnSpInzepcGDRpIkjZs2FCg7759+wrcqXe9mjVrpq+++kp2u13du3cvsJ/Ro0crICBAY8eO1Q8//OD2PezcudO5PmjQIEnS1KlTlZOT42w/efJkod+QC5N/zUtxFiu2bt2qxYsX6+LFiy7bfvrpJ/3zn/+UJLVr165Y8aJ4mP9F89T8l6Q5c+YoODhYY8aM0fLly932SU1N1d13312smGEd879onp7/drtdY8eO1erVq122b9261fnLMs8995wCAwOLFXtZ4MijlxX1qAZJevbZZ52PLShtiYmJmj9/vtLS0tS6dWulp6fr/fffV3BwsLOAkaT4+HjFx8drxYoVysjIUOvWrfXDDz9o5cqV6tGjhz744IMSxxIXF+f8BnrvvfdqzZo1SkxMVJMmTfT666/rL3/5i/70pz8pKSlJDRs21Pnz53XkyBF98803Gjp0qN544w1JUqdOnTRs2DC99dZbatq0qfr06SOHw6Hly5erdevWbhO1rJ06dUpDhgzRmDFj1L59e916660KCAjQsWPHtHr1amVnZ6tHjx4aMGCAt0P1OOb/Vf40/yWpefPmWrVqlR544AENHDhQU6dOVfv27VWrVi2dPXtWGzdu1N69exUbG+vtUD2K+X+Vv83/li1b6sMPP9TAgQN13333qU2bNmrTpo3z5wm//PJL5eXladiwYZowYYK3w3XPQ3dx4xqsPKpBkvnll1+cr5FkOnToUOhY7h5BkP+4gRdeeMFt///93/81SUlJJjQ01FSrVs106dLF7SMaTp8+bYYPH26ioqJMUFCQadq0qXnttdfMkSNH3O67QYMGpkGDBoW+f3cPiTXGmL1795o6deqYatWqmW+++cbZvnXrVjNw4EATFRVlqlSpYiIiIkzLli3Ns88+aw4cOFBgjCtXrpgZM2aYm2++2QQGBpqbb77ZTJ8+3Rw+fLhYj2rwlKysLLNkyRIzaNAgc/vtt5saNWqYgIAAU7t2bdO5c2ezcOHCaz481tcx//13/v/ezz//bKZNm2Zat25tatasaQICAkx4eLjp2LGjefXVV012dra3Q/QI5j/z3xhjTp06ZSZOnGhuv/12U61aNef/e7Vq1cyyZcu8HV6RbMaUk3vRAQAA/FReXp769OmjlStXau7cuRozZoy3QyoUxSMAAEA5kJ2drXbt2mnPnj1atGiR8zrO8oZrHgEAAMqBkJAQrVq1SgsXLtQPP/zg9o748oAjjwAAALCMR/UAAADAMopHAAAAWEbxCAAAAMsoHovBGKOsrKxiPUkeqEjIAfg7cgCgeCyW8+fPKywsTOfPn/d2KIBXkAPwd+QAQPEIAACAYih3xWN2drZeeOEFde/eXbVq1ZLNZtPbb7/ttu+BAwfUvXt3hYSEqFatWho0aJB++uknl355eXn629/+pptuuklBQUGKi4vTe++95+F3AgAAUPGUu+LxzJkzmjp1qg4cOKBmzZoV2u/EiRNq3769Dh8+rOnTp+vpp5/Wp59+qq5du+rSpUsF+k6ePFnPPPOMunbtqrlz56p+/fp6+OGHtWzZMk+/HQAAgAql3P3CTGRkpDIyMlSvXj1t27ZNd955p9t+06dPV05OjrZv36769etLkuLj49W1a1e9/fbbeuyxxyRJJ0+e1OzZs/X4449r3rx5kqSRI0eqQ4cOmjhxogYMGKDKlSuXzZsDAADwceXuyKPdble9evWu2e/DDz9Uz549nYWjJHXp0kW33HKLVqxY4WxLTk7W5cuXNXr0aGebzWbTX/7yF504cUKbN28u3TcAABWYMUbZ2dnOhbuOAf9T7opHK06ePKnTp0/rjjvucNkWHx+vnTt3Otd37typatWqqXHjxi798rcDAKzJyclRr169nEtOTo63QwJQxsrdaWsrMjIyJF09xf1HkZGROnv2rBwOh+x2uzIyMlS3bl3ZbDaXfpJ06tSpQvfjcDjkcDic61lZWaURPuAzyAH4O3IAcOWTRx4vXLgg6eop7j8KCgoq0OfChQuW+rkzY8YMhYWFOZfo6OgSxw74EnIA/o4cAFz5ZPEYHBwsSQW+Dea7ePFigT7BwcGW+rkzadIkZWZmOpfjx4+XOHbAl5AD8HfkAODKJ09b559yzj99/XsZGRmqVauW82hjZGSkvv76axljCpy6zn9tVFRUofux2+1uj1oC/oIcgL8jBwBXPnnk8YYbblDt2rW1bds2l21bt25V8+bNnevNmzfXr7/+qgMHDhTol5aW5twOAAAAa3yyeJSkfv36afXq1QVOIaSkpOjQoUMaMGCAs61Xr16qUqWKXn/9dWebMUZvvPGGbrjhBrVt27ZM4wYAAPBl5fK09bx583Tu3DnnndCrVq3SiRMnJEljx45VWFiYnnvuOb3//vvq1KmTxo8fr+zsbM2aNUtNmzbVsGHDnGPdeOONeuKJJzRr1ixdvnxZd955pz755BOlpqZq6dKlPCAcAACgGGymHD7hNSYmRseOHXO77ejRo4qJiZEk7du3T08++aQ2bNigwMBA9ejRQ7Nnz1bdunULvCYvL08vv/yy/vu//1sZGRlq1KiRJk2apEceeaRYcWVlZSksLEyZmZkKDQ29rvcG+DJyANnZ2erVq5dzPTk5WSEhIV6MqGyRA0A5LR7LK/5owN+RA6B4JAcAn73mEQAAAGWP4hEAAACWUTwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAlgV4OwAAgDWtJi72dgiyXbmksN+td3x+mUxAoNfi2T5rsNf2DfgrjjwCAADAMopHAAAAWEbxCAAAAMsoHgEAAGAZxSMAAAAso3gEAACAZRSPAAAAsIziEQAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwrFSLx7Nnz+r48eOlOSQAAADKkRIXj5mZmRo/frzq1q2r2rVr66abbnJuS0tLU1JSkrZv317S3QAAAKAcKFHxePbsWSUkJGju3LmKjo5W48aNZYxxbo+Li9PGjRu1dOnSEgcKAAAA7ytR8ThlyhQdOnRIy5Yt07Zt2zRgwIAC24ODg9WhQwd99dVXJQoSAAAA5UOJiseVK1eqZ8+eeuCBBwrtExMToxMnTpRkNwAAACgnSlQ8ZmRk6Lbbbiuyj91uV05OTkl2AwAAgHKiRMVjeHj4Ne+uPnjwoCIjI0uyGwAAAJQTJSoe27dvr+Tk5EJPS+/fv19r165Vly5dSrIbAAAAlBMlKh4nT56s3Nxc3XXXXVq6dKnOnDkjSTpw4IAWLlyou+++W3a7XRMnTiyVYAEAAOBdASV5cdOmTbV8+XINGjRIgwcPliQZY9SkSRMZY1S9enWtWLFCjRo1KpVgAQDeZSpXUWbcQwXWAfiXEhWPknT//ffr6NGjWrRokdLS0nT27FmFhoYqISFBw4YNU0RERGnECQAoD2w2mYBAb0cBwItKVDwuXrxYdevWVbdu3TRhwoTSigkAAADlVImueRwxYoTWrl1bWrEAAACgnCtR8RgZGakrV66UViwAAAAo50pUPN5///364osv5HA4SiseAAAAlGMlKh5feuklVatWTX379tW+fftKKyZL1q1bJ5vN5nbZsmVLgb6bNm1Su3btVLVqVdWrV0/jxo1TdnZ2mcYLAABQEZTohpkWLVrI4XBo165dWrt2rYKCglSnTh3ZbLYC/Ww2m77//vsSBVqYcePG6c477yzQFhsb6/z3rl271LlzZzVu3FivvPKKTpw4ob///e/67rvv9Nlnn3kkJgAAgIqqRMVjXl6eAgMDVb9+/QLtxpgi10tTYmKi+vfvX+j25557TjVr1tS6desUGhoqSYqJidGoUaP0r3/9S/fcc4/HYgMAAKhoSlQ8pqenl1IYJXP+/HkFBwcrIKDg28nKytIXX3yhCRMmOAtHSRo8eLAmTJigFStWUDwCAAAUQ4mueSwPhg0bptDQUAUFBalTp07atm2bc9vevXt15coV3XHHHQVeExgYqObNm2vnzp1lHS4AAIBPK/EvzHhLYGCg+vXrp6SkJEVERGj//v36+9//rsTERG3atEktWrRQRkaGpKuPFPqjyMhIpaamFrkPh8NR4E7yrKys0n0TQDlHDsDfkQOAq1IpHjdv3qwvv/xSp06dcvvYHpvNpoULF5bGrpzatm2rtm3bOtfvv/9+9e/fX3FxcZo0aZLWrl2rCxcuSJLsdrvL64OCgpzbCzNjxgy9+OKLpRo34EvIAfg7cgBwZTMluJvlypUreuihh/TRRx/JGCObzVbg5pj8dZvNptzc3FIJ+Fry4/n111/18ccfa8CAAVq/fr0SExML9HvggQeUmprqPDrpjrtvnNHR0crMzCxwDSVQUZED5UuriYu9HUK5s33WYI+OTw4Arkp0zePs2bP14YcfatiwYdq2bZuMMXriiSe0efNmvfzyy6pRo4YGDBjgscf0uBMdHa1Lly4pJyfHebraXYGYkZGhqKioIsey2+0KDQ0tsAD+xFdzwBij7Oxs5+LJJz6gYvPVHAA8qUTF49KlS9WkSRP985//VMuWLSVJNWrUUEJCgiZOnKj169dr9erV+vzzz0slWCuOHDmioKAghYSEqEmTJgoICChwE40kXbp0Sbt27VLz5s3LLC4AZScnJ0e9evVyLjk5Od4OCQAqjBIVj4cPH1bHjh2d6zabTZcvX3au33777brvvvs0f/78kuzGrZ9++smlbffu3Vq5cqXuueceVapUSWFhYerSpYuWLFmi8+fPO/u98847ys7O1oABA0o9LlRsHNECAPi7Et0wExgYqKpVqzrXQ0JCdPr06QJ9GjRooFWrVpVkN249+OCDCg4OVtu2bVWnTh3t379fCxYsUNWqVTVz5kxnv5deeklt27ZVhw4d9Nhjj+nEiROaPXu27rnnHnXv3r3U40LFln9EK19ycrJCQkK8GBEAAGWrREceo6Ojdfz4cef6rbfeqvXr1xc4GrNlyxbVqlWrJLtxq3fv3jpz5oxeeeUVjR49WsuXL1ffvn21bds2NW7c2NmvZcuW+vLLLxUcHKwJEyZowYIFGjFihD744INSjwkAAKCiK9GRxw4dOig5Odl5R/WDDz6op59+Wj179lRSUpI2bNigDRs2aPjw4aUVr9O4ceM0btw4S33btWunjRs3lnoMAAAA/qbYxWNWVpaCgoIUGBio4cOHKzc3VydPntSNN96osWPHat26dVq9erU+++wzSVJ8fHyB08gAAADwXcU+bV2zZk29/PLLkq6eEp4/f75OnjypV199VVWqVNHKlSu1detWvffee9q0aZM2bdqk8PDwUg8cAAAAZa/YxaMxxuUO07Vr12rChAnO9TvuuEMPPvigWrdurUqVfP7nswEAAPD/UdkBAADAMopHAAAAWEbxCAAAAMtK9KgeoCy1mrjY2yHIduWSwn633vH5ZTIBgV6LZ/uswV7bNwDAP11X8bhkyRJt2bLFuX748GFJUlJSktv+NptNn3766fXsCgAAAOXIdRWPhw8fdhaMv7d27Vq3/W022/XsBgAAAOVMsYvHo0ePeiIOAAAA+IBiF48NGjTwRBwAAADwAdwwA6DUefvmpvJ2Y5PEzU0AKg4e1QMAAADLKB4BAABgGcUjAAAALOOaR6AYTOUqyox7qMA6AAD+hOIRKA6bzes3XgAA4E2ctgYAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABgGc95rICMMcrJyXGuV6tWTTabzYsRAQCAioLisQLKyclRr169nOvJyckKCQnxYkRA2eKXgADAcygeAVQ8/BIQAHgM1zwCAADAMopHAAAAWMZpaw9oNXGxV/dvu3JJYb9b7/j8Mq+fwts+a7BX9w8AAEoHxSMAAIBFPNGE4hEAgAqHAsdzeKIJxSMAABUOBQ48iRtmAAAAYBlHHisgHpAMAAA8heKxIuIByQAAwEM4bQ0AAADLKB4BAABgGcUjAAAALOOaRwAAShm/NOaqNH5pzNufq1T+Pltv/IIbRx4BAABgGcUjAAAALKN4BAAAgGUUjwAAALCM4hEAAACWcbc1AAAVDD9TC0+ieAQAoKLhZ2o9hsKc4hEAAMA6CnOueQQAAIB1FI8AAACwzG+KR4fDoWeeeUZRUVEKDg5WQkKCvvjiC2+HBQAA4FP8pngcOnSoXnnlFT3yyCOaM2eOKleurKSkJG3YsMHboQEAAPgMv7hhZuvWrVq2bJlmzZqlp59+WpI0ePBgNWnSRP/xH/+hTZs2eTlCAAAA3+AXRx4/+OADVa5cWY899pizLSgoSCNGjNDmzZt1/PhxL0YHAADgO/yieNy5c6duueUWhYaGFmiPj4+XJO3atcsLUQEAAPgevzhtnZGRocjISJf2/LZTp065fZ3D4ZDD4XCuZ2ZmSpKysrKK3F+u48L1hlphXeszs4LP1ZXVz7V69eqy2WzFHp8cKD3kgGeQA76DHPAMT+eAW8YP3Hzzzebee+91af/++++NJPNf//Vfbl/3wgsvGEksLD6/ZGZmXlfukAMsFWUhB1j8fbneHHDHZowxquCaNGmiunXrKiUlpUD7/v37dfvtt+uNN97Qn//8Z5fX/fEbZ15ens6ePavw8PDSq949JCsrS9HR0Tp+/LjL6XqUjC9+tqV11IUcgOSbny054Bv/T77CFz/b0jzy6BenrSMjI3Xy5EmX9oyMDElSVFSU29fZ7XbZ7fYCbTVq1Cj1+DwpNDTUZya2r/GHz5YcQFH84bMlB1AUf/1s/eKGmebNm+vQoUMu1wWkpaU5twMAAODa/KJ47N+/v3Jzc7VgwQJnm8Ph0FtvvaWEhARFR0d7MToAAADf4RenrRMSEjRgwABNmjRJp0+fVmxsrBYtWqT09HQtXLjQ2+F5hN1u1wsvvOByugUlx2frG/h/8hw+W9/A/5Pn+Ptn6xc3zEjSxYsX9fzzz2vJkiX65ZdfFBcXp2nTpqlbt27eDg0AAMBn+E3xCAAAgJLzi2seAQAAUDooHgEAAGAZxWMF43A49MwzzygqKkrBwcFKSEjQF1984e2wfF52drZeeOEFde/eXbVq1ZLNZtPbb7/t7bDgBjngGeSA7yAHPIMc+A3FYwUzdOhQvfLKK3rkkUc0Z84cVa5cWUlJSdqwYYO3Q/NpZ86c0dSpU3XgwAE1a9bM2+GgCOSAZ5ADvoMc8Axy4HdK7YcO4XVpaWlGkpk1a5az7cKFC6Zhw4amTZs2XozM9128eNFkZGQYY4z59ttvjSTz1ltveTcouCAHPIcc8A3kgOeQA7/hyGMF8sEHH6hy5cp67LHHnG1BQUEaMWKENm/erOPHj3sxOt9mt9tVr149b4eBayAHPIcc8A3kgOeQA7+heKxAdu7cqVtuucXldzbj4+MlSbt27fJCVEDZIQfg78gBlAWKxwokIyNDkZGRLu35badOnSrrkIAyRQ7A35EDKAsUjxXIhQsX3P5UUlBQkHM7UJGRA/B35ADKAsVjBRIcHCyHw+HSfvHiRed2oCIjB+DvyAGUBYrHCiQyMlIZGRku7fltUVFRZR0SUKbIAfg7cgBlgeKxAmnevLkOHTqkrKysAu1paWnO7UBFRg7A35EDKAsUjxVI//79lZubqwULFjjbHA6H3nrrLSUkJCg6OtqL0QGeRw7A35EDKAsB3g4ApSchIUEDBgzQpEmTdPr0acXGxmrRokVKT0/XwoULvR2ez5s3b57OnTvnvFtx1apVOnHihCRp7NixCgsL82Z4EDngaeRA+UcOeBY5cJXNGGO8HQRKz8WLF/X8889ryZIl+uWXXxQXF6dp06apW7du3g7N58XExOjYsWNutx09elQxMTFlGxDcIgc8hxzwDeSA55ADV1E8AgAAwDKueQQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABgGcUjAAAALKN4BAAAgGUUjyh3YmJiytVPPJW3eFDxlbc5V97iQcVX3uZceYvH2yge/UROTo6mT5+uli1bKiQkRHa7XTfeeKMSExM1adIkff/9994OEfAocgD+jhxAaQnwdgDwvPPnz6tdu3bas2ePYmNj9eijjyo8PFxnzpzR1q1bNXPmTDVs2FANGzb0dqiSpJSUFG+HgAqGHIC/IwdQmige/cA//vEP7dmzRyNHjtSCBQtks9kKbD969KgcDoeXonNVXv54oeIgB+DvyAGUJk5b+4HNmzdLkh5//HGXPxiSdNNNN+nWW291rttsNnXs2NHtWO6u+xg6dKhsNpuOHDmi2bNn67bbbpPdbtfQoUM1bdo02Ww2LV682O14H330kWw2myZPnlzoPq5nDOnqH8ORI0eqfv36stvtioyM1NChQ3Xs2DG34yQnJ+vOO+9UcHCw6tatq1GjRumXX35x2xe+hRwgB/wdOUAOlCaKRz8QHh4uSTp06JBH9zN27FhNnz5dd9xxh5544gk1bdpUjz76qGw2m5YsWeL2Ne+8844kadCgQYWOez1jpKWlqUWLFlq0aJFatWql8ePHKzExUUuXLlV8fLyOHDlSYIzFixerd+/eOnTokAYNGqQhQ4Zo48aN6tKliy5dulSszwHlDzlADvg7coAcKFUGFV5ycrKRZKpXr26eeuop8/nnn5szZ84U2l+S6dChg9ttDRo0MA0aNCjQNmTIECPJ3HjjjebYsWMur2nXrp2pXLmyOXXqVIH2n3/+2QQGBpo77rjjmvsozhiXLl0yMTExpnr16mbHjh0F+qempprKlSubnj17OtsyMzNNaGioqVatmvn3v/9dYJz27dsbSS7xwLeQA78hB/wTOfAbcqDkOPLoB+6//37Nnj1bxhjNnj1b3bp1U0REhGJjYzVmzBh99913pbKfiRMnqn79+i7tgwYNUm5urt57770C7cuXL9elS5f06KOPXnPs4oyxevVqpaena+LEiWrRokWB/u3atVOvXr20Zs0aZWVlSZI++eQTZWVlafjw4brlllucfatUqaKXXnrp2m8c5R458BtywD+RA78hB0qO4tFPPPnkkzp16pRWrFihJ554Qu3atdMPP/yg1157TXFxcVq5cmWJ9xEfH++2/YEHHpDdbneeVsi3ZMkSBQQE6KGHHrrm2MUZY8uWLZKkf//735oyZYrL8uOPPyovL895+mb37t2SpMTERJf9tmnTRgEB3FdWEZAD5IC/IwfIgVLj5SOf8KJz586Z0aNHG0kmIiLCOBwOY8z1n644cuRIofvq16+fkWT27dtnjDHm8OHDRpJJSkqytI/ijDFy5Egj6ZrLunXrjDHGjBgxosD6H9WtW5fTFRUUOUAO+DtygBy4Hhx59GNhYWGaN2+eGjRooDNnzmjv3r2Srt5ld+XKFbevyczMLHQ8d3fw5cu/iDn/G2P+Rc9FXSB9vWOEhoZKklatWiVjTKFLhw4dJF39HCTp9OnTLvvMzc3Vzz//bDlG+BZygBzwd+QAOXA9KB79nM1mU7Vq1Qq01axZUydPnnTpm56ernPnzl3XfpKSkhQeHq53331XeXl5Wrp0qapXr65evXqV+hgJCQmSfns0xbU0a9ZMkpSamuqybfPmzYX+AUXFQA6QA/6OHCAHiq1Mj3PCK9544w2zdetWt9s+/vhjY7PZTI0aNczFixeNMcZ069bN5fC9w+Ewffr0cXvHWf7piqNHjxYZR/6pkRkzZhhJZujQoW77FXa6wuoYFy9eNPXr1zdBQUHmm2++cdl+6dIlk5qa6lw/d+5coXfZdejQgbvsKgByoCBywP+QAwWRAyVjM8aYsitV4Q29e/dWcnKyYmNjdddddykqKko5OTnauXOnUlNTValSJS1ZssR5sfG//vUvde/eXcHBwXrooYdUtWpVffHFF6pRo4aOHTumwMBApaenO8cfOnSoFi1apKNHjxb5w/FbtmxRmzZtVKVKFV2+fFkpKSm6++67Xfrlj/H7fRR3jG+//Vb33nuvfv75Z919991q2rSpbDabjh07ptTUVIWHh+vgwYPO/osWLdLQoUMVGhqqgQMHKiwsTKtXr1ZwcLAyMjJc3jN8CzlADvg7coAcKFXerl7heQcPHjR/+9vfTNeuXc1NN91kgoKCTFBQkGnYsKEZMmSI2bZtm8tr3n//fdO0aVMTGBho6tWrZ8aOHWvOnz9f5IXS1/rGaYwxjRo1cj4LLDc3122for5xWh3DGGNOnDhhxo8fbxo1amTsdrsJDQ01jRs3NiNHjjQpKSku/T/++GPTqlUrY7fbTZ06dczIkSPN2bNnrxkPyj9ygBzwd+QAOVCaOPIIAAAAy7hhBgAAAJZRPAIAAMAyikcAAABYRvEIAAAAyygeAQAAYBnFIwAAACyjeAQAAIBlFI8AAACwjOIRAAAAllE8AgAAwDKKRwAAAFhG8QgAAADLKB4BAABg2f8Dnc2/ezAcNTsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB6AAAADmCAYAAAB79ZvfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABANElEQVR4nO3de1hUdeLH8c8IMiAIXlNUvOQlLTU1FTPNa2n+3LA1K8sLptnT3S5WbutamubmrVqttkdXNP1lXqPa1jJXXVfRxNXaNlPzlgrVkgqIAgrf3x/+GB0BgcPImcv79Tzz7J4zZ875zuAbgu+cMw5jjBEAAAAAAAAAAAAAAOVUye4BAAAAAAAAAAAAAAD8AxPQAAAAAAAAAAAAAACPYAIaAAAAAAAAAAAAAOARTEADAAAAAAAAAAAAADyCCWgAAAAAAAAAAAAAgEcwAQ0AAAAAAAAAAAAA8AgmoAEAAAAAAAAAAAAAHsEENAAAAAAAAAAAAADAI5iABgAAAAAAAAAAAAB4BBPQAaZnz55yOByl3n7jxo1yOBx6+eWXr96gAC9HN4B19AOUHd0A1tAOYA3tANbQDlA+NASUHd3AlzAB7YV27typ0aNHq3nz5goPD1dYWJiaNm2q4cOHa926dXYPr1zOnz+vJUuWKC4uTvXr15fT6VR4eLhatGihYcOGac2aNcrPz7d7mLZLSEiQw+Eo1a1nz552D9cr0A3dXOrMmTN688031atXL9WuXVuVK1dWjRo11K1bN02fPl3//e9/7R6iV6Ef+pGk+Pj4En/mJCQk2D1Mr0E3dHOps2fP6u2331a/fv1Ut25dhYSEqGrVqmrdurUeeughffnll3YP0WvQDu1IhX/mBAcHq3r16rr++uv1wAMPaOXKlcrNzbV7mF6FdmjnckeOHFFQUJAcDodmzJhh93C8Fu3QjlT07zrBwcGqW7eu4uLitHnzZruH6LVoiIakkv9eMG7cOLuH6FXoJrC7efnll0s9t+Pvbw5wGGOM3YPABfn5+Xruuec0Z84cBQcHq3fv3mrdurUqV66sgwcP6ssvv9TJkyc1efJkTZw40dIxevbsqU2bNqm0X/YzZ87oxx9/VK1atVSrVi1Lxyxw5MgR3XXXXdq1a5dq1aqlPn36qFGjRsrPz9ehQ4e0ceNG/frrrxo0aJDWrFlTrmP5ut27d+ujjz664jbz5s1TWlqaHn30Uc2bN69iBuaF6IZuLvf1118rLi5OR44cUaNGjdSnTx/VqVNHGRkZ2rZtm3bu3KnIyEilpKQoPDzc7uHain7o51Lx8fFatGiRRo8erQYNGhS5zaBBg9SuXbuKHZiXoRu6udzXX3+tu+66S4cOHVKDBg3Uq1cv1a9fXzk5Odq/f782bdqkzMxMjRs3TnPmzLF7uLahHdq51OU/c4wxysjI0P79+/WPf/xDmZmZatWqlZYtW6a2bdvaPVxb0Q7tFGfSpEmaPHmyHA6HrrvuOu3Zs8fuIXkV2qGdSxX1u87Zs2e1Z88e/e1vf1N+fr7WrFmjO++80+aReg8aoqFLlfT3gi5duqh///42jMy70A3dSBfOOt+4caPbut27dysxMVE9evQodEJhz549/fckQwOvMWHCBCPJtGvXzvzwww+F7j9z5ox5/fXXzQsvvGD5GD169DB2fNnT09PNddddZySZ559/3pw5c6bQNrm5uSYhIcEMHjy4wsfna2bOnGkkmZtuusmcPXvW7uHYim7o5lJHjx4111xzjalUqZKZNWuWOX/+fKFt/vWvf5muXbuakydPVvwAvQz90M+lRo4caSSZpKQku4fi1eiGbi5V8HMnKCjIzJ4925w7d67QNqdPnzZz5swxjzzyiA0j9B60QzuXutLPnIyMDPP0008bSaZOnTrm+PHjNozQe9AO7RQlLy/PNGzY0NSqVcvEx8cbSWbLli12D8ur0A7tXOpKP3eWL19uJJnu3bvbMDLvRUM0dCn+XlA6dEM3xVm4cKGRZCZNmmT3UCoUE9BeYv/+/SYoKMjUrFnT/PTTT1fcNjs72/X/9+7da8aPH2/at29vatSoYZxOp2nevLl54YUXTGZmZqHHFnyDOnv2rHnhhRdMTEyMcTqdpmXLluatt94y+fn5bttv2LChyDAaNWpkGjVqZDIzM82TTz5poqOjTUhIiGnTpo1ZsWJFoeP+/ve/N5LMyJEjS3wtLv/D3aRJk4wks2HDBrNw4ULTvn17ExYWZnr06FHo/ssVhL1w4ULXukOHDrnG8u2335oBAwaYqKgoEx4ebm677TaTnJxc4hjttG7dOhMUFGSuueYa8+OPP9o9HFvRzUV0c8GIESOMJPP73//+itudO3fO5OXlVdCovBP9XEQ/F/ALZcno5iK6uWDYsGGl/iWyqMnpQEE7F9HOBaX5mVMwqRbIb96gnYtox93atWuNJPP444+bzZs3G0nmwQcftHtYXoN2LqKdC0p645Mk06pVKxtG5p1o6CIauoC/F5SMbi6im8ICdQI6uKizolHxEhISlJeXp4cfflh16tS54rZOp9P1/1evXq0FCxaoV69e6tmzp/Lz87Vt2zb98Y9/1KZNm/SPf/xDlStXLrSPe+65R7t27dLgwYMlSatWrdKTTz6pw4cPa9asWaUa87lz53T77bfr5MmTGjx4sM6cOaNly5bpnnvu0dq1a3X77be7tl24cKEklerSEsHBRf+znDFjhjZs2KC4uDjdfvvtCgoKKtU4i3Pw4EHdcsst6tChgx555BEdOXJEK1as0K233qq///3vio2NLdf+r4aDBw/q3nvvlcPh0IoVKxQTE2P3kGxFNxfRjVyvZVhYmJ577rkrblvc6xVI6Oci+kFp0c1FdHPh586HH36osLAwPfvssyVuH8g/e2jnItopvYkTJyohIUHLly/XvHnz5HA47B5ShaOdi2jH3YIFCyRJI0aMUKdOnXTttddq+fLlevPNNxUREWHz6OxHOxfRTsm++OILSVKHDh1sHon3oKGLaAilRTcX0Q0KBO5fQbzMli1bJEm9e/cu0+OGDx+uZ555RiEhIW7rJ0+erEmTJmn58uV64IEHCj1u3759+vbbbxUVFSVJeuWVVxQbG6s5c+Zo6NCh6tixY4nHTklJUadOnbRx40bX8e+//3717dtXs2fPdn2D+vHHH3X8+HHFxMSoadOmZXp+l9q0aZO2b9+uNm3aWN7HpTZv3qwXX3xRr732mmvdyJEj1b9/fz300EP65ptvStzHqVOn9MYbb5TpuOPGjVO1atXKOFopKytLgwYN0okTJ/SnP/1Jt956a5n34W/opmSB1M2OHTuUm5urbt26ub5GKB79lCyQ+rnU/PnztXbt2iLve/HFFxUaGlqm4/sTuilZIHWTnJysc+fOqUuXLqpatWqZ9h9oaKdkgdROaV177bWKiYnR0aNHdejQIV177bUe2a8voZ2SBWI7v/76qxITE9WyZUt16tRJkjRs2DBNnjxZH374oUaPHl2mY/sj2ilZILYjuf+uc/bsWe3du1efffaZOnTooGnTppXp2P6MhkpGQxeFhobqxRdfLNNx/RHdlCxQuwlkTEB7iZ9++kmS1KBBgzI9rn79+kWuf/zxxzVp0iR9+eWXRX6DmjhxotsETVRUlH7/+99r+PDhWrRoUam+QUnSnDlz3L45Fnzw/I4dO1zrCp5bvXr1itzHG2+8oVOnTrmtKyrisWPHeuybkyRVq1ZNL730ktu6fv36qU+fPlq/fr127typm2666Yr7OHXqlF555ZUyHTc+Pt7SN6j4+Hj9+9//1qhRo/T444+X+fH+iG5Oua0L9G6s/nsIVPRzym1doPdzqYIzaooybty4gJ6ApptTbusCvZuSXrOXX365VOsCAe2cclsX6O2URb169XT06FGlpaUF5AQ07ZxyW0c7F7z//vvKzc3V8OHDXetGjBihyZMna8GCBUxAi3Zop3hF/a5Tq1YtDR06tNjXNBDR0Cm3dTR0UVENRUVFMQEtuqEbFIUJaB9njNHChQuVkJCgb7/9Vunp6crPz3fdn5KSUuTjunfvXuy6Xbt2lerY1apVU5MmTQqtb9CggZKSkkq1D+nCN6gjR464rSsq4s6dO5d6n6XRvn37Ii9N1b17d61fv167du0q8RtU48aNZYzx6LiKMnXqVK1cuVKxsbF65513rvrx/B3dWOdL3eDqoB/rfKWfpKQkdenS5aoeI9DQjXW+0k1RivolNlAnoK2iHet8uR2UH+1Y5wvtLFiwQA6HQ8OGDXOta9q0qbp27aqtW7dqz549atWq1VU7vj+jHet8oR3J/Xed3NxcHT58WG+++abGjx+vpKQkrVq16qoe39/RkHW+2BA8g26s85VuAhkT0F6ibt26+v7773X8+HFdd911pX7ck08+qblz5yomJkZ33nmnoqOjXZ8h8MorrygnJ6fIxxX1OQQF69LT00t17OIucRscHOz2TbJgv8V9szx8+LDr//fv31+ff/55qcdcHsXtr6yvw9X217/+VX/4wx9Ut25drVq1yu0zIgId3VxANxfUrVtXknT8+HHbxuBL6OcC+kFZ0M0FdOM+huJes0t/iW3ZsqX27t1bIePyRrRzAe2UXcHrWrt2bZtHYg/auYB2Ltq+fbu+/fZb9erVSw0bNnS7b8SIEdq6dav+8pe/aMaMGTaN0DvQzgW0c2UhISFq0aKF5s2bp6+//lqrV6/Wli1bdMstt9g9NNvR0AU0hLKgmwvoBpdiAtpL3HLLLdq4caPWr19f6s8J+OWXXzRv3jy1bdtWSUlJqlKliuu+n3766YqXDvj5558L/bLy888/Syr+G49VjRo1Uv369XX06FEdOHDA8ucEOByOItdXqlRJknT+/PlC913pm0zB8y1ufWleh6v9GQH79u3TAw88oODgYK1cubLYS3IEKropWSB106lTJ4WEhCg5OVkZGRmKjIws0zECDf2ULJD6QenQTckCqZuOHTuqcuXK2rlzpzIzM/kc6CugnZIFUjuldfDgQR09elS1a9dW48aNPbJPX0M7JQu0dgoufbphw4Zin/vixYs1bdo0Va5cuUxj8Ce0U7JAa6cksbGx2rJli3bs2MEEtGioNGgIl6ObktFN4GEC2kvEx8dr+vTpeu+99zRu3LgrvsM7JydHTqdTBw8elDFGffv2dfvmJF34APYr2bx5c6HPDih4TPv27S0+i+KNGjVKr776qqZOnaq//OUvHt139erVJRV91uOVLjexa9cunT59utBlGsryOlzNzwjIyMhQXFyc0tPT9e677/IfwEWgG+v8sZsqVarovvvu0+LFizVr1qwrHuP8+fOqVKmS6z9wAhH9WOeP/aB06MY6f+wmPDxc9957r5YsWaI5c+boD3/4Q5mOEUhoxzp/bKe0pkyZIkm69957i/1jlb+jHev8sZ2srCwtW7ZMVapU0dChQ4vcZseOHfrmm2/06aef6q677irTGPwJ7Vjnj+2UxsmTJyXJ7Yy/QEZD1gVqQ6Cb8qAb/xW4f3n3Ms2aNdPzzz+vtLQ03XHHHTp06FChbbKzszV79mzXZ8c1atRIkrR161a3/0A6duyYJkyYcMXjTZkyxe3dI+np6Xr11VflcDg0cuRIDzwjd+PHj1eLFi20cOFCTZgwQdnZ2YW2OX/+vLKyssq8706dOkm68C7fS1+HpKQkLV26tNjHnTp1SlOnTnVb9/nnn2v9+vVq3bp1iZ8PIF38jICy3Erz7n1jjIYNG6bvv/9eY8eO1cMPP1ziYwIR3dDN5aZOnaratWtr6tSpeuutt4r85fGbb75Rz549lZGRUap9+iv6oR+UHd3QzeWmTZum2rVra/LkyXrzzTeVl5dXaJvs7OxiL5sWKGiHdsri9OnTevbZZ5WQkKDo6Gj97ne/K/c+fRXt0M6lVqxYoczMTN19992aP39+kbeCS28XnCkdqGiHdsri8OHDWr16tSTp1ltvLff+/AEN0RDKjm7oBoVxBrQXefXVV5Wdna05c+bouuuuU+/evdW6dWtVrlxZhw4d0pdffqlff/1Vr776qiQpOjpagwcP1qpVq9SxY0f16dNHP//8sz799FP16dNHBw4cKPZYLVq0UOvWrTV48GBJ0qpVq3Ts2DE988wz6tixo8efW2RkpL744gsNGjRI06dP1/z589W3b181atRI58+fV2pqqtavX6+ff/5ZrVu3LtM7SLp06aJbbrlFf//733XzzTfr1ltv1ZEjR5SYmKjf/OY3WrNmTZGP6969u9555x1t375dXbp00eHDh7VixQqFhYVp/vz5Hnrm1sycOVOffPKJQkJCVLNmTdcPpeKUdL8/oxu6uVSDBg1cr9lTTz2lOXPmqE+fPqpTp44yMjL01VdfaceOHYqMjAzoS9IVoB/6Kcr8+fO1du3aIu/r0qWL+vfvX8Ej8i50QzeXiomJ0bp163TXXXdp3Lhxmjlzpnr37q369evr7NmzOn78uNatW6dTp06pW7dudg/XVrRDO0Up+JljjFFmZqb279+vTZs2KTMzUzfccIOWLVum6Ohou4dpK9qhnQIFk8qjRo0qdpu+ffuqQYMGWrt2rVJSUlSvXr2KGp7XoR3aKcqlv+ucO3dOhw8f1kcffaQzZ85o7NixV+Xr5atoiIZQdnRDN7iMgdfZsWOHefDBB02zZs1MWFiYcTqdpnHjxub+++8369atc9s2MzPTPPvss6Zx48bG6XSa5s2bmylTppjc3FwjyfTo0cNt+x49ehhJ5uzZs+b55583MTExJiQkxFx33XXmrbfeMvn5+W7bb9iwwUgykyZNclvfqFEj06hRoyLHX3CMopw7d84sXrzYDBw40ERHR5uQkBBTpUoV07RpU3PfffeZNWvWmPPnz7s9ZtKkSUaS2bBhQ7GvWVpamhkxYoSpUaOGCQsLM126dDGff/65WbhwoZFkFi5c6Nr20KFDRpIZOXKk+fbbb82AAQNMZGSkCQ8PN3379jXJycnFHqeijBw50kgq9Q10QzfusrKyzBtvvGF69OhhatWqZYKDg021atXMzTffbKZOnWrS0tLsHqJXoR/6MaZ0P3ueeuopu4fpNeiGbi515swZM3fuXNO3b19zzTXXmODgYBMREWFatWplRo0aVejfRCCjHdoxpvDPnKCgIFOtWjVz/fXXmwceeMCsWLHC5Obm2j1Mr0I7gd3O999/bySZJk2aFPp6XO6ll14ykszUqVMraHTejXYCu50CRf2u43A4TPXq1U3Pnj3N+++/b/cQvRYN0ZAxFxtKSkqyeyg+gW7o5nIFz+Pyr4O/cxhjTKlmqgE/cfjwYTVp0kQjR45UQkKC3cMBfALdANbRD1B2dANYQzuANbQDWEM7QPnQEFB2dOM7+AxoAAAAAAAAAAAAAIBHMAENAAAAAAAAAAAAAPAIJqABAAAAAAAAAAAAAB7BZ0ADAAAAAAAAAAAAADyCM6ABAAAAAAAAAAAAAB7BBDQAAAAAAAAAAAAAwCOYgC4DY4wyMjLEVcuBsqEdwBraAayhHcAa2gGsoR3AGtoBrKEdwBraASoWE9BlkJmZqaioKGVmZto9FMCn0A5gDe0A1tAOYA3tANbQDmAN7QDW0A5gDe0AFYsJaAAAAAAAAAAAAACARzABDQAAAAAAAAAAAADwCCagAQAAAAAAAAAAAAAewQQ0AAAAAAAAAAAAAMAjgu0eAAAAAAAAAAAARTHGKCsry7UcHh4uh8Nh44gAAEBJmIAGAAAAAAAAAHilrKwsxcXFuZYTExMVERFh44gAAEBJuAQ3AAAAAAAAAAAAAMAjmIAGAAAAAAAAAAAAAHgEE9AAAAAAAAAAAAAAAI9gAhoAAAAAAAAAAAAA4BFMQAMAAAAAAAAAAAAAPIIJaAAAAAAAAAAAAACARzABDQAAAAAAAAAAAADwCCagAQAAAAAAAAAAAAAewQQ0AAAAAAAAAAAAAMAjmIAGAAAAAAAAAAAAAHgEE9AAAAAAAAAAAAAAAI/wugno06dPa9KkSerfv79q1Kghh8OhhISEQtvFx8fL4XAUurVs2bLQtvn5+Xr99dfVpEkThYaGqm3btvrggw8q4NkAAAAAAAAAAAAAQOAItnsAl0tLS9PkyZPVsGFD3Xjjjdq4cWOx2zqdTs2fP99tXVRUVKHtXnrpJU2fPl0PPfSQOnXqpMTERN1///1yOBy67777PP0UAAAAAAAAAAAAACAged0EdHR0tFJTU1W3bl0lJyerU6dOxW4bHBysYcOGXXF/x48f16xZs/TYY49p7ty5kqQxY8aoR48eGj9+vIYMGaKgoCCPPgcAAAAAAAAAAAAACERedwlup9OpunXrlnr7vLw8ZWRkFHt/YmKizp07p0cffdS1zuFw6JFHHtGxY8eUlJRUrvECAAAAAAAAAAAAAC7wugnosjhz5owiIyMVFRWlGjVq6LHHHtPp06fdttm1a5fCw8PVqlUrt/WdO3d23Q8AAAAAAAAAAAAAKD+vuwR3aUVHR+v5559Xhw4dlJ+fr7Vr1+rtt9/W119/rY0bNyo4+MJTS01NVZ06deRwOAo9XpJSUlKKPUZOTo5ycnJcy1c60xrARbQDWEM7gDW0A1hDO4A1tANYQzuANbQDWEM7gL189gzo1157TdOnT9c999yj++67TwkJCZo6daq2bNmilStXurY7e/asnE5noceHhoa67r/SMaKioly3mJgYzz8RwA/RDmAN7QDW0A5gDe0A1tAOYA3tANbQDmAN7QD2chhjjN2DKE5ycrI6deqkhQsXKj4+vsTtz549q4iICI0aNUrz58+XJA0cOFB79uzRgQMH3LY9c+aMwsPD9eKLL+q1114rcn9FvUMmJiZG6enpioyMtP7EAD9HO4A1tANYQzuANbQDWEM7gDW0A6tOnz6tuLg413JiYqIiIiJsHFHFoh3AGtoB7OWzl+AuSlhYmGrWrKkTJ0641kVHR2vDhg0yxrhdhjs1NVWSVK9evWL353Q6izx7GsCV0Q5gDe0A1tAOYA3tANbQDmAN7QDW0A5gDe0A9vLZS3AXJTMzU2lpaapdu7ZrXbt27XTmzBnt2bPHbdvt27e77gcAAAAAAAAAAAAAlJ9PTkBnZ2crMzOz0PopU6bIGKP+/fu71sXFxaly5cp6++23XeuMMXr33XdVv359de3atULGDAAAAAAAAAAAAAD+zisvwT137lydOnVKKSkpkqRPPvlEx44dkyQ98cQTOnnypNq3b6+hQ4eqZcuWkqTPP/9cn332mfr37+/2mSANGjTQuHHjNGPGDJ07d06dOnXSRx99pM2bN2vp0qUKCgqq+CcIAAAAAAAAAAAAAH7IKyegZ86cqSNHjriWV69erdWrV0uShg0bpmrVqmngwIFat26dFi1apLy8PDVr1kzTpk3Tc889p0qV3E/snj59uqpXr64///nPSkhIUPPmzbVkyRLdf//9Ffq8AAAAAAAAAAAAAMCfeeUE9OHDh0vc5v333y/1/ipVqqQJEyZowoQJ5RgVAAAAAAAAAAAAAOBKfPIzoAEAAAAAAAAAAAAA3ocJaAAAAAAAAAAAAACARzABDQAAAAAAAAAAAADwCK/8DGgA8AbGGGVlZbmWw8PD5XA4bBwRAAAAAAAAAACAd2MCGgCKkZWVpbi4ONdyYmKiIiIibBwRAAAAAAAAAACAd2MCGgAAAAAAAADgctP4xXYPwcVxPldRlyz3nLhMJjjEtvFcbueMEXYPAQAAr8NnQAMAAAAAAAAAAAAAPIIJaAAAAAAAAAAAAACARzABDQAAAAAAAAAAAADwCCagAQAAAAAAAAAAAAAewQQ0AAAAAAAAAAAAAMAjmIAGAAAAAAAAAAAAAHhEsN0DAACggDFGWVlZruXw8HA5HA4bRwQAAAAAAAAAAMqCCWgAgNfIyspSXFycazkxMVERERE2jggAAAAAAAAAAJQFl+AGAAAAAAAAAAAAAHgEE9AAAAAAAAAAAAAAAI9gAhoAAAAAAAAAAAAA4BFMQAMAAAAAAAAAAAAAPMKjE9AnTpzQ0aNHPblLAAAAAAAAAAAAAICPKPcEdHp6up566inVqVNHtWvXVpMmTVz3bd++XQMGDNDOnTvLexgAAAAAAAAAAAAAgJcr1wT0iRMnFBsbqz/96U+KiYlRq1atZIxx3d+2bVtt2bJFS5cuLfdAAQAAAAAAAAAAAADerVwT0C+//LL27dunZcuWKTk5WUOGDHG7PywsTD169NDf//73cg0SAAAAAAAAAAAAAOD9yjUB/fHHH2vgwIG65557it2mcePGOnbsWHkOAwAAAAAAAAAAAADwAeWagE5NTdX1119/xW2cTqeysrJKvc/Tp09r0qRJ6t+/v2rUqCGHw6GEhIQit92zZ4/69++viIgI1ahRQ8OHD9d///vfQtvl5+fr9ddfV5MmTRQaGqq2bdvqgw8+KPWYAAAAAAAAAAAAAAAlK9cEdM2aNXX06NErbvP9998rOjq61PtMS0vT5MmTtWfPHt14443Fbnfs2DHdeuut+uGHHzRt2jQ999xz+utf/6rbbrtNubm5btu+9NJLeuGFF3TbbbfpT3/6kxo2bKj7779fy5YtK/W4AAAAAAAAAAAAAABXFlyeB996661KTEzUsWPH1KBBg0L3f/fdd1q7dq1GjRpV6n1GR0crNTVVdevWVXJysjp16lTkdtOmTVNWVpZ27typhg0bSpI6d+6s2267TQkJCRo7dqwk6fjx45o1a5Yee+wxzZ07V5I0ZswY9ejRQ+PHj9eQIUMUFBRU1qcOAAAAAAAAAAAAALhMuc6Afumll5SXl6dbbrlFS5cuVVpamqQLl8ZesGCBevfuLafTqfHjx5d6n06nU3Xr1i1xu1WrVmngwIGuyWdJ6tu3r1q0aKHly5e71iUmJurcuXN69NFHXescDoceeeQRHTt2TElJSaUeGwAAAAAAAAAAAACgeOU6A7pNmzb68MMPNXz4cI0YMUKSZIxR69atZYxR1apVtXz5cjVv3twjgy1w/Phx/fLLL+rYsWOh+zp37qzPPvvMtbxr1y6Fh4erVatWhbYruL9bt24eHR8AAAAAAAAAAAAABKJyTUBL0p133qlDhw5p0aJF2r59u06cOKHIyEjFxsZq1KhRqlWrlifG6SY1NVWSivxs6ejoaJ04cUI5OTlyOp1KTU1VnTp15HA4Cm0nSSkpKcUeJycnRzk5Oa7ljIwMTwwf8Hu0A1hDO4A1tANYQzuANbQDWEM7gDW0A1hDO4C9yjUBvXjxYtWpU0f9+vXT008/7akxlejs2bOSLlyu+3KhoaGubZxOp+t/r7RdcV577TW98sornhgyEFCstnPT+MVXYTTWOc7nKuqS5Z4Tl8kEh9g2nkvtnDHCY/vyptfdm19zybOve1H4uQNYQzuANbQDWEM7gDX+0o4xRllZWa7l8PDwQie+AJ7kL+0AFY12AHuV6zOgR48erbVr13pqLKUWFhYmSW7vXimQnZ3ttk1YWFiptivKhAkTlJ6e7rodPXq03GMHAgHtANbQDmAN7QDW0A5gDe0A1vhLO1lZWYqLi3PdLp2MBq4Gf2kHqGi0A9irXGdAR0dH6/z5854aS5mOK128FPelUlNTVaNGDddZz9HR0dqwYYOMMW7vRix4bL169Yo9jtPpLPLsaQBXRjuANbQDWEM7gDW0A1hDO4A1tAOrTFBlpbcd6rYcSGgHsIZ2AHuV6wzoO++8U+vWrSvyDOOrqX79+qpdu7aSk5ML3ffVV1+pXbt2ruV27drpzJkz2rNnj9t227dvd90PAAAAAAAAAPBCDodMcIjrJi55DgCA1yvXBPTUqVMVHh6u3/72t/rPf/7jqTGVyuDBg/Xpp5+6XTZh/fr12rdvn4YMGeJaFxcXp8qVK+vtt992rTPG6N1331X9+vXVtWvXCh03AAAAAAAAAAAAAPircl2Cu3379srJydHu3bu1du1ahYaG6pprrnG71LUkORwOHThwoNT7nTt3rk6dOqWUlBRJ0ieffKJjx45Jkp544glFRUXpd7/7nVasWKFevXrpqaee0unTpzVjxgy1adNGo0aNcu2rQYMGGjdunGbMmKFz586pU6dO+uijj7R582YtXbpUQUFB5XkJAAAAAAAAAAAAAAD/r1wT0Pn5+QoJCVHDhg3d1htjrrhckpkzZ+rIkSOu5dWrV2v16tWSpGHDhikqKkoxMTHatGmTnnnmGb344osKCQnR//zP/2jWrFmFrus/ffp0Va9eXX/+85+VkJCg5s2ba8mSJbr//vvLNC4AAAAAAAAAAAAAQPHKNQF9+PBhDw3D2n5vuOEGff755yVuV6lSJU2YMEETJkwo58gAAAAAAAAAAAAAAMUp12dAAwAAAAAAAAAAAABQgAloAAAAAAAAAAAAAIBHlOsS3AWSkpL05ZdfKiUlRTk5OYXudzgcWrBggScOBQAAAAAAAAAAAADwUuWagD5//ryGDh2q1atXyxgjh8MhY4zr/oJlJqABAAAAAAAAAAAAwP+V6xLcs2bN0qpVqzRq1CglJyfLGKNx48YpKSlJf/zjH1WtWjUNGTJEBw4c8NR4AQAAAAAAAAAAAABeqlxnQC9dulStW7fW/PnzXeuqVaum2NhYxcbGasCAAercubN69+6thx9+uNyDBQAAAAAAAAAAAAB4r3KdAf3DDz+oZ8+ermWHw6Fz5865lm+44Qb95je/0TvvvFOewwAAAAAAAAAAAAAAfEC5JqBDQkJUpUoV13JERIR++eUXt20aNWqk/fv3l+cwAAAAAAAAAAAAAAAfUK5LcMfExOjo0aOu5ZYtW+of//iHjDFyOBySpG3btqlGjRrlGyUAICCYoMpKbzvUbRkAAAAAAAAAAPiOcp0B3aNHD9eEsyTde++92rt3rwYOHKh58+Zp6NCh+uc//6n+/ft7ZLAAAD/ncMgEh7hu+v83MwEAABTHGKPTp0+7bgW/nwIAAAAAAHuU+QzojIwMhYaGKiQkRA8++KDy8vJ0/PhxNWjQQE888YQ2btyoTz/9VH/7298kSZ07d9b06dM9PnAAAAAAALKyshQXF+daTkxMVEREhI0jAgAAAAAgsJX5DOjq1avrj3/8oySpQ4cOeuedd3T8+HG99dZbqly5sj7++GN99dVX+uCDD7R161Zt3bpVNWvW9PjAAQAAAAAAAAAAAADepcwT0MaYQpc0W7t2rZ5++mnXcseOHXXvvfeqS5cuqlSpXFf5BgAAAAAAAAAAAAD4iDJfghsAAAAAAAQuY4yysrJcy+Hh4XI4HDaOCAAAAADgTZiABgAAAAAApcbnbgMAAAAAroTrYwMAAAAAAAAAAAAAPIIzoAGgGCaostLbDnVbBgAAAAAAAAAAQPEsTUAvWbJE27Ztcy3/8MMPkqQBAwYUub3D4dBf//pXK4cCAPs4HDLBIXaPAgAAAAAAAAAAwGdYmoD+4YcfXJPOl1q7dm2R2zscDiuHAQAAQCkYY5SVleVaDg8P57+/AAAAAAAAANiizBPQhw4duhrjAAAAgEVZWVmKi4tzLScmJioiIsLGEQEAAAAAAAAIVGWegG7UqNHVGAcAAPATnI0LAAAAFMZ/JwMAACBQWLoENwAAQHE4GxcAAAAojP9OBgAAQKCoZPcAAAAAAAAAAAAAAAD+wWfPgN64caN69epV5H1JSUnq0qWLa3nr1q16/vnn9a9//UuRkZG65557NG3aNN5lCgAAAADwCTeNX2z3EFwc53MVdclyz4nLZIJDbBvP5XbOGGH3EAAAAAAgoPnsBHSBJ598Up06dXJb16xZM9f/3717t/r06aNWrVpp9uzZOnbsmGbOnKn9+/frb3/7W0UPFwAAAAAAAEApedMbcCTvfhMOb8ABAADewucnoLt3766777672Pt/97vfqXr16tq4caMiIyMlSY0bN9ZDDz2kL774QrfffntFDRUAAAAAAAAAAAAA/JrPT0BLUmZmpsLCwhQc7P50MjIytG7dOj399NOuyWdJGjFihJ5++mktX76cCWgAAAAAKAPORCs9zkQDAAAAAASiSnYPoLxGjRqlyMhIhYaGqlevXkpOTnbd9+9//1vnz59Xx44d3R4TEhKidu3aadeuXRU9XAAAAAAAAAAAAADwWz57BnRISIgGDx6sAQMGqFatWvruu+80c+ZMde/eXVu3blX79u2VmpoqSYqOji70+OjoaG3evPmKx8jJyVFOTo5rOSMjw7NPAvBTtANYQzuANbQDWEM7gDW0A1hDO4A1tANYQzuAvXz2DOiuXbtq5cqVevDBB3XnnXfqxRdf1LZt2+RwODRhwgRJ0tmzZyVJTqez0ONDQ0Nd9xfntddeU1RUlOsWExPj+ScC+CHaAayhHcAa2gGsoR3AGtoBrKEdwBraAayhHcBePjsBXZRmzZopLi5OGzZsUF5ensLCwiTJ7V0uBbKzs133F2fChAlKT0933Y4ePXpVxg34G9oBrKEdwBraAayhHcAaf2nHGKPTp0+7bsYYu4cEP+cv7QAVjXYAa2gHsJfPXoK7ODExMcrNzVVWVpbr0tsFl+K+VGpqqurVq3fFfTmdziLPngZwZbQDWEM7vuWm8YvtHoKL43yuoi5Z7jlxmUxwiG3judzOGSOu6v5pB7CGdgBr/KWdrKwsxcXFuZYTExMVERFh44jg7/ylHaCi0Q5gDe0A9vKrM6Al6eDBgwoNDVVERIRat26t4OBgJScnu22Tm5ur3bt3q127dvYMEgAAAAAAH2WCKiu97VDXzQRVtntIAAAAAAAv4rNnQP/3v/9V7dq13dZ9/fXX+vjjj3XHHXeoUqVKioqKUt++fbVkyRJNnDhRVatWlSS9//77On36tIYMGWLH0AEAAAAA8F0Oh1ddaQO4Eq5aU3pX+6o1AAAACBw+OwF97733KiwsTF27dtU111yj7777Tu+9956qVKmi6dOnu7abOnWqunbtqh49emjs2LE6duyYZs2apdtvv139+/e38RkAAOAZ3vRHNcm7/7DGH9UAAAAAAAAA4Ory2UtwDxo0SGlpaZo9e7YeffRRffjhh/rtb3+r5ORktWrVyrVdhw4d9OWXXyosLExPP/203nvvPY0ePVorV660cfQAAAAAAAAAAAAA4H989gzoJ598Uk8++WSptu3WrZu2bNlylUcEAAAAAAAAAAAAAIHNZ8+ABgAAAAAAAAAAAAB4FyagAQAAAAAAAAAAAAAewQQ0AAAAAAAAAAAAAMAjfPYzoAFvZoxRVlaWazk8PFwOh8PGEQEAAAAA7HTT+MV2D8GN43yuoi5Z7jlxmUxwiG3judTOGSPsHgIAAAhQ3vbfbN6M/2bDlTABDVwFWVlZiouLcy0nJiYqIiLCxhEBAAAAAAAAAAIFJ0kBsBMT0AAAAAAAAAAAAH6Ek6QA2IkJaAAAAB9ngiorve1Qt2UACBR8DwTgK/h+BQAAgEDBBDQAAICvczi85jMbAaDC8T0QgK/g+xUAAAACRCW7BwAAAAAAAAAAAAAA8A+cAQ0AADyKSwsCAAAAAAAAQOBiAhp+46bxi+0egovjfK6iLlnuOXGZV11ma+eMEXYPAYA/49KCAAAAAPwUb7gFAAAoGRPQAAAAAAAAAFAavOEWAACgRExAAwAAAAAAAAAAlBNX6Sw9rtIJ+DcmoAOAMUZZWVmu5fDwcDkcDhtHBAAAAAAAAAAIFPyNGgACCxPQASArK0txcXGu5cTEREVERNg4IgAAAAAAYCc+xxYAUJH4GzUABBYmoAEAAAAAAAINn2MLAAAA4CphAhq4CngnOQAAQNG86TPRvB2fiQYAAAAAAHwRE9BXgbf9Uc1xPldRlyz3nLjMa97l7Ld/VOOd5AAAAAAAAAAAAAhAleweAAAAAAAAAAAAAADAP3AGNAAAAAAAAAAAgB/hYyIB2IkJ6ADADxoAAAAAAAAACBx8TGTp8TGRAOB5TEAHAn7QAAAAFOJtf5DxZn77BxkAAAAAAAB4HJ8BDQAAAAAAAAAAAADwiICZgM7JydELL7ygevXqKSwsTLGxsVq3bp3dwwIAAAAAAAAAAAAAvxEwE9Dx8fGaPXu2HnjgAb355psKCgrSgAED9M9//tPuoQEAAAAAAAAAAACAXwiIz4D+6quvtGzZMs2YMUPPPfecJGnEiBFq3bq1nn/+eW3dutXmEQIAAAAAAAAA4J9MUGWltx3qtgwA8F8BcQb0ypUrFRQUpLFjx7rWhYaGavTo0UpKStLRo0dtHB0AAAAAAAAAAH7M4ZAJDnHd5HDYPSIAwFUUEBPQu3btUosWLRQZGem2vnPnzpKk3bt32zAqAAAAAAAAAAAAAPAvAXEJ7tTUVEVHRxdaX7AuJSWlyMfl5OQoJyfHtZyeni5JysjIuOLx8nLOWh1qwCnptSwLXvfSK+3rXrVqVTksvBuRdq4+2rEH7fg+2rEH7fg+2rEH7fg+2rEH7fg+2rEH7fg+2rEH7fg+2rEH7fg+T7YDz7PajseYAHDttdeaO+64o9D6AwcOGElmzpw5RT5u0qRJRhI3bgF7S09Pt9Qc7XAL9BvtcONm7UY73LhZu9EON27WbrTDjZu1G+1w42btRjvcuFm70Q43btZuVtvxFIcxxsjPtW7dWnXq1NH69evd1n/33Xe64YYb9O677+rhhx8u9LjL3yGTn5+vEydOqGbNmva+a8CCjIwMxcTE6OjRo4UuRY6rwx9ec0+9u4x2UBb+8JrTjn98HX2NP7zmtOMfX0df4w+vOe34x9fR1/jDa047/vF19DX+8JrTjn98HX2NP7zmtOMfX0df4w+vOe34x9fR1/jDa273GdABcQnu6OhoHT9+vND61NRUSVK9evWKfJzT6ZTT6XRbV61aNY+PryJFRkb6bCy+KhBfc9qBJwTia0478IRAfM1pB54QiK857cATAvE1px14QiC+5rQDTwjE15x24AmB+JrTDjyB19y6SnYPoCK0a9dO+/btK3Q9+u3bt7vuBwAAAAAAAAAAAACUT0BMQN99993Ky8vTe++951qXk5OjhQsXKjY2VjExMTaODgAAAAAAAAAAAAD8Q0Bcgjs2NlZDhgzRhAkT9Msvv6hZs2ZatGiRDh8+rAULFtg9vArhdDo1adKkQpecwNXDa+4f+DpWPF5z/8DXseLxmvsHvo4Vj9fcP/B1rHi85v6Br2PF4zX3D3wdKx6vuX/g61jxeM39A1/HisdrXn4OY4yxexAVITs7WxMnTtSSJUt08uRJtW3bVlOmTFG/fv3sHhoAAAAAAAAAAAAA+IWAmYAGAAAAAAAAAAAAAFxdAfEZ0AAAAAAAAAAAAACAq48JaAAAAAAAAAAAAACARzAB7edycnL0wgsvqF69egoLC1NsbKzWrVtn97D82unTpzVp0iT1799fNWrUkMPhUEJCgt3DQhnRTsWjHf9AOxWPdvwD7VQ82vEPtFPxaMc/0E7Fox3/QDsVj3Z8H93Yg3Z8H+3Yg3Y8hwloPxcfH6/Zs2frgQce0JtvvqmgoCANGDBA//znP+0emt9KS0vT5MmTtWfPHt144412DwcW0U7Fox3/QDsVj3b8A+1UPNrxD7RT8WjHP9BOxaMd/0A7FY92fB/d2IN2fB/t2IN2PMjAb23fvt1IMjNmzHCtO3v2rGnatKm5+eabbRyZf8vOzjapqanGGGN27NhhJJmFCxfaOyiUCe3Yg3Z8H+3Yg3Z8H+3Yg3Z8H+3Yg3Z8H+3Yg3Z8H+3Yg3Z8G93Yh3Z8G+3Yh3Y8hzOg/djKlSsVFBSksWPHutaFhoZq9OjRSkpK0tGjR20cnf9yOp2qW7eu3cNAOdCOPWjH99GOPWjH99GOPWjH99GOPWjH99GOPWjH99GOPWjHt9GNfWjHt9GOfWjHc5iA9mO7du1SixYtFBkZ6ba+c+fOkqTdu3fbMCrA+9EOYA3tANbQDmAN7QDW0A5gDe0AZUc3gDW0A3/ABLQfS01NVXR0dKH1BetSUlIqekiAT6AdwBraAayhHcAa2gGsoR3AGtoByo5uAGtoB/6ACWg/dvbsWTmdzkLrQ0NDXfcDKIx2AGtoB7CGdgBraAewhnYAa2gHKDu6AayhHfgDJqD9WFhYmHJycgqtz87Odt0PoDDaAayhHcAa2gGsoR3AGtoBrKEdoOzoBrCGduAPmID2Y9HR0UpNTS20vmBdvXr1KnpIgE+gHcAa2gGsoR3AGtoBrKEdwBraAcqObgBraAf+gAloP9auXTvt27dPGRkZbuu3b9/uuh9AYbQDWEM7gDW0A1hDO4A1tANYQztA2dENYA3twB8wAe3H7r77buXl5em9995zrcvJydHChQsVGxurmJgYG0cHeC/aAayhHcAa2gGsoR3AGtoBrKEdoOzoBrCGduAPgu0eAK6e2NhYDRkyRBMmTNAvv/yiZs2aadGiRTp8+LAWLFhg9/D82ty5c3Xq1CmlpKRIkj755BMdO3ZMkvTEE08oKirKzuGhBLRjH9rxbbRjH9rxbbRjH9rxbbRjH9rxbbRjH9rxbbRjH9rxXXRjL9rxXbRjL9rxDIcxxtg9CFw92dnZmjhxopYsWaKTJ0+qbdu2mjJlivr162f30Pxa48aNdeTIkSLvO3TokBo3blyxA0KZ0Y49aMf30Y49aMf30Y49aMf30Y49aMf30Y49aMf30Y49aMe30Y19aMe30Y59aMczmIAGAAAAAAAAAAAAAHgEnwENAAAAAAAAAAAAAPAIJqABAAAAAAAAAAAAAB7BBDQAAAAAAAAAAAAAwCOYgAYAAAAAAAAAAAAAeAQT0AAAAAAAAAAAAAAAj2ACGgAAAAAAAAAAAADgEUxAAwAAAAAAAAAAAAA8ggloAAAAAAAAAAAAAIBHMAENAAAAAAAAAAAAAPAIJqDhUxo3bqzGjRvbPQwXbxsPUBxv+7fqbeMBiuNt/1a9bTxAcbzt36q3jQcojrf9W/W28QDF8bZ/q942HqA43vZv1dvGAxTH2/6tett4gOJ4279VbxuPv2ECGsrKytK0adPUoUMHRUREyOl0qkGDBurevbsmTJigAwcO2D1EwCvRDmAN7QDW0A5gDe0A1tAOYA3tANbQDmAN7cBbBds9ANgrMzNT3bp10zfffKNmzZpp2LBhqlmzptLS0vTVV19p+vTpatq0qZo2bWr3UCVJ69evt3sIgCTaAayiHcAa2gGsoR3AGtoBrKEdwBraAayhHXgzJqAD3BtvvKFvvvlGY8aM0XvvvSeHw+F2/6FDh5STk2PT6Arzlm+UAO0A1tAOYA3tANbQDmAN7QDW0A5gDe0A1tAOvBmX4A5wSUlJkqTHHnus0DcnSWrSpIlatmzpWnY4HOrZs2eR+yrqevnx8fFyOBw6ePCgZs2apeuvv15Op1Px8fGaMmWKHA6HFi9eXOT+Vq9eLYfDoZdeeqnYY1jZh3ThG++YMWPUsGFDOZ1ORUdHKz4+XkeOHClyP4mJierUqZPCwsJUp04dPfTQQzp58mSR2yIw0A7twBraoR1YQzu0A2toh3ZgDe3QDqyhHdqBNbRDO7CGdmjHmzEBHeBq1qwpSdq3b99VPc4TTzyhadOmqWPHjho3bpzatGmjYcOGyeFwaMmSJUU+5v3335ckDR8+vNj9WtnH9u3b1b59ey1atEg33XSTnnrqKXXv3l1Lly5V586ddfDgQbd9LF68WIMGDdK+ffs0fPhwjRw5Ulu2bFHfvn2Vm5tbptcB/oN2aAfW0A7twBraoR1YQzu0A2toh3ZgDe3QDqyhHdqBNbRDO17NIKAlJiYaSaZq1arm2WefNZ9//rlJS0srdntJpkePHkXe16hRI9OoUSO3dSNHjjSSTIMGDcyRI0cKPaZbt24mKCjIpKSkuK3/9ddfTUhIiOnYsWOJxyjLPnJzc03jxo1N1apVzb/+9S+37Tdv3myCgoLMwIEDXevS09NNZGSkCQ8PN3v37nXbz6233mokFRoPAgPtXEQ7KAvauYh2UBa0cxHtoCxo5yLaQVnQzkW0g7KgnYtoB2VBOxfRDsqCdi6iHe/DGdAB7s4779SsWbNkjNGsWbPUr18/1apVS82aNdPjjz+u/fv3e+Q448ePV8OGDQutHz58uPLy8vTBBx+4rf/www+Vm5urYcOGlbjvsuzj008/1eHDhzV+/Hi1b9/ebftu3bopLi5On332mTIyMiRJH330kTIyMvTggw+qRYsWrm0rV66sqVOnlvzE4bdo5yLaQVnQzkW0g7KgnYtoB2VBOxfRDsqCdi6iHZQF7VxEOygL2rmIdlAWtHMR7XgfJqChZ555RikpKVq+fLnGjRunbt266ccff9S8efPUtm1bffzxx+U+RufOnYtcf88998jpdLoupVBgyZIlCg4O1tChQ0vcd1n2sW3bNknS3r179fLLLxe6/fTTT8rPz3ddsuLrr7+WJHXv3r3QcW+++WYFBweXOD74L9qhHVhDO7QDa2iHdmAN7dAOrKEd2oE1tEM7sIZ2aAfW0A7teC3bzr2GVzt16pR59NFHjSRTq1Ytk5OTY4yxfomGgwcPFnuswYMHG0nmP//5jzHGmB9++MFIMgMGDCjVMcqyjzFjxhhJJd42btxojDFm9OjRbsuXq1OnDpdogBvaoR1YQzu0A2toh3ZgDe3QDqyhHdqBNbRDO7CGdmgH1tAO7XgDzoBGkaKiojR37lw1atRIaWlp+ve//y1JcjgcOn/+fJGPSU9PL3Z/Doej2PsKPkC+4B0uBR84f6UPp7e6j8jISEnSJ598ImNMsbcePXpIuvA6SNIvv/xS6Jh5eXn69ddfSz1GBAbaoR1YQzu0A2toh3ZgDe3QDqyhHdqBNbRDO7CGdmgH1tAO7XgDJqBRLIfDofDwcLd11atX1/Hjxwtte/jwYZ06dcrScQYMGKCaNWvqf//3f5Wfn6+lS5eqatWqiouL8/g+YmNjJUlJSUml2u+NN94oSdq8eXOh+5KSkor9Zo3ARju0A2toh3ZgDe3QDqyhHdqBNbRDO7CGdmgH1tAO7cAa2qEd23ngLGr4sHfffdd89dVXRd63Zs0a43A4TLVq1Ux2drYxxph+/foVumRBTk6Oueuuu4ykYi/RcOjQoSuOo+ByEK+99pqRZOLj44vcrrhLNJR2H9nZ2aZhw4YmNDTUbNq0qdD9ubm5ZvPmza7lU6dOmcjISBMeHm727t3rtl2PHj2KfM4IDLTjjnZQWrTjjnZQWrTjjnZQWrTjjnZQWrTjjnZQWrTjjnZQWrTjjnZQWrTjjna8i8MYY6xPX8PXDRo0SImJiWrWrJluueUW1atXT1lZWdq1a5c2b96sSpUqacmSJa4Pev/iiy/Uv39/hYWFaejQoapSpYrWrVunatWq6ciRIwoJCdHhw4dd+4+Pj9eiRYt06NAhNW7cuNhxbNu2TTfffLMqV66sc+fOaf369erdu3eh7Qr2cekxyrqPHTt26I477tCvv/6q3r17q02bNnI4HDpy5Ig2b96smjVr6vvvv3dtv2jRIsXHxysyMlL33XefoqKi9OmnnyosLEypqamFnjMCA+3QDqyhHdqBNbRDO7CGdmgH1tAO7cAa2qEdWEM7tANraId2vJrdM+Cw1/fff29ef/11c9ttt5kmTZqY0NBQExoaapo2bWpGjhxpkpOTCz1mxYoVpk2bNiYkJMTUrVvXPPHEEyYzM/OKH1Jf0jtkjDGmefPmRpJp0KCBycvLK3KbK71DprT7MMaYY8eOmaeeeso0b97cOJ1OExkZaVq1amXGjBlj1q9fX2j7NWvWmJtuusk4nU5zzTXXmDFjxpgTJ06UOB74L9qhHVhDO7QDa2iHdmAN7dAOrKEd2oE1tEM7sIZ2aAfW0A7teDPOgAYAAAAAAAAAAAAAeEQluwcAAAAAAAAAAAAAAPAPTEADAAAAAAAAAAAAADyCCWgAAAAAAAAAAAAAgEcwAQ0AAAAAAAAAAAAA8AgmoAEAAAAAAAAAAAAAHsEENAAAAAAAAAAAAADAI5iABgAAAAAAAAAAAAB4BBPQAAAAAAAAAAAAAACPYAIaAAAAAAAAAAAAAOARTEADAAAAAAAAAAAAADyCCWgAAAAAAAAAAAAAgEcwAQ0AAAAAAAAAAAAA8AgmoAEAAAAAAAAAAAAAHvF/OX2xF/YXt4kAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo8AAADmCAYAAAC09G/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlf0lEQVR4nO3deXhU9b3H8c+QZGZCQsKikkTWS+Ape9iSR1kCls3UCirohbKD+tReRGmopdTCRRYRoeVqFSk+LAZFVEoUL1jggrIGsCDcAgVkKSTxIhASEsgkJL/7hw+jcQIcSCaTmXm/nmeex3POb8755ug3fnJ+58zYjDFGAAAAgAU1fF0AAAAA/AfhEQAAAJYRHgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHgEAAGAZ4RE31bNnT9lsNl+XAfgMPYBgRw/gxwiPAeDUqVOy2WxlXna7XQ0bNtTQoUN14MABX5cYENLS0vT000+rc+fOcjgcstlsWrp0qa/LguiBqpCZmak//elP6tu3rxo1aiS73a6YmBg99thjysjI8HV5QY8e8L7CwkJNnDhRPXr0UFxcnJxOp2JiYtS1a1ctWbJExcXFvi6xyoT6ugBUnmbNmmnYsGGSpPz8fO3atUvvvfeeVq9erU2bNqlr164+rtC//f73v9fp06d11113KTY2VqdPn/Z1SfgResB7XnvtNc2ZM0fNmjVT3759dffdd+vYsWNas2aN1qxZo3fffVdPPPGEr8sMevSA9+Tn5+vNN99UYmKifvazn+nuu+9WTk6O1q1bpzFjxmjlypVat26datQIgutyBn7v5MmTRpLp16+fx7YpU6YYSSY5OfmO9p2cnGz4z+Q7GzZsMKdOnTLGGDN79mwjySxZssS3RcEYQw9UhY8++shs2bLFY/0XX3xhwsLCTJ06dUxhYaEPKoMx9EBVKCkpMS6Xy2N9cXGx6dmzp5Fk1q5d64PKql4QxOPgNn78eEnSnj17yqwvKirSH//4R3Xp0kW1atVSZGSkWrVqpYkTJyonJ+em+8zNzdWcOXOUnJysuLg42e12xcXFacSIEfr66689xhcWFmrevHlq3769oqOjFRERoSZNmujxxx/XV1995R5XWlqqxYsXKzExUXXr1lV4eLgaNGign//859qyZUvFT0YF9e7dW40bN/Z1GbhN9EDlePTRR5WcnOyxvnv37urVq5dycnJ08OBBH1SGW6EHKkeNGjVkt9s91oeGhuqRRx6RJB0/fryqy/IJpq2DxA9vdr569ar69Omj7du3q3nz5ho9erQcDoeOHTumt956SyNGjFCdOnVuuK/Dhw/rD3/4g3r16qVHHnlEEREROnLkiN599119+umn+vvf/14mZI0cOVKrVq1Su3bt3Mc6c+aMNm/erD179qh9+/aSpMmTJ+uVV15Rs2bNNHToUNWqVUuZmZnatm2bNm7cqJ49e3rt/CDw0QPeExYWJum7/4mi+qIHvKO0tFTr16+XJLVp08bH1VQNOj3AvfHGG5KkxMRE97oXX3xR27dv1/Dhw7VkyRKFhIS4t+Xm5pZZLk/Lli2VnZ2tunXrllm/efNm9e7dWzNmzNBf/vIX9/4++OADderUSRkZGWX2XVJSosuXL7uXFy9erLi4OB04cEA1a9Yss++LFy9a+nnXrFmj/fv3WxorSQkJCRo4cKDl8fA/9MDNVbQH/vWvf2njxo2KjY1V27Zt73g/8B564OZutweKioo0a9YsGWN04cIFbdq0SUeOHNHo0aP105/+1PJ+/BnhMYAcP35c06ZNkyQVFBQoIyNDW7duldPp1MyZMyVJ165d06JFixQdHa0FCxZ4/IKIjo6+5XFuNKZXr15q3bq1Nm7c6F5ns9lkjJHT6fS4iTgkJES1a9cus85ut5f7S+vHv6BuZM2aNVq2bJmlsdJ3fw0THgMHPVC1PVBcXKzhw4fL5XJpzpw5twwc8D56wPs9UFRUpP/8z/90L9tsNqWmpmr27NmW9+H3fHvLJSrD9Rulf/gKCwszDRo0MEOHDjUHDhxwjz148KCRZHr37m1p3ze6UXrz5s1mwIABJiYmxoSGhpY5tt1uLzM2JSXFSDIJCQlm5syZZvv27aaoqMhjn88884yRZOLj483vf/97s2nTJnPlypXbPBtVgwdmqhd6oOqVlJSYoUOHGknmySef9HU5QY8eqHolJSXmzJkz5o033jC1a9c2Xbt2Nbm5ub4uq0oQHgPAzZ6y+7Ft27YZSWbkyJGW9l3eL41Vq1YZm81matWqZQYNGmRSU1PNH/7wBzN16lTTuHFjj/EFBQVmypQppmnTpu5fLFFRUWbChAmmoKDAPa64uNjMnTvXtGrVyj3O6XSaESNGmG+//dZSvVWF8Fi90ANVq6SkxIwcOdJIMsOGDTMlJSW+Lino0QO+tWrVKiPJ/OY3v/F1KVWCaesgc316IDMz8473MW3aNDmdTn355Zdq3rx5mW0rV670GF+zZk3NmDFDM2bM0MmTJ7V582YtXLhQCxYs0NWrV/XWW29J+u5m+9TUVKWmpiorK0uff/65lixZouXLl+ubb77RZ599dsvauOcRt0IPlHW7PVBaWqrRo0dr+fLlGjJkiJYuXRocn2sXQOiBsirj/wN9+/aVJJ8/EV5lfJ1eUXG38xdncXGxiYqKMtHR0ebixYu3HF/eX5wOh8N07NjRY2xWVpYJCwuz9HlgV65cMZGRkSYmJuam40pKSkx8fLypUaOGpamL61dDrL6s/uX9Y1x5rF7oge95swdKSkrMiBEjjCTzxBNPmGvXrll+L7yLHvheVf1/4IcOHTpkJJmuXbtWeF/+gD8Xg0xoaKiefvpp5ebmasKECSopKSmzPTc3V/n5+TfdR+PGjXX8+HH93//9n3tdYWGhfvnLX3p8PdO3336r//3f//XYR05Ojlwul5xOpyTJ5XJpx44dHuMKCgqUn5+vsLAwS1c3li5dKvPd7RiWXny9YPChB+6sB0pLSzVmzBgtX75cgwcPVlpaGg/I+Cl64M564NChQ7py5YrH+itXrmjixImSpJSUFEv78ndMWweh6dOna9euXXrnnXe0a9cuPfjgg3I4HDpx4oTWr1+vbdu2KSEh4YbvHz9+vMaPH68OHTpo0KBBunbtmjZs2CBjjNq3b1/mA18zMzPVoUMHtW/fXu3atdO9996rCxcuKD09XcXFxUpNTZX03WeOde3aVS1atFCnTp3UqFEj5efna+3atfrmm2+Umpoqh8Ph7VNzU4sXL9a2bdskyf1hyIsXL3ZPU3Tr1k3jxo3zVXm4DfTA7Zs+fbqWLVumyMhItWjRQjNmzPAYM3DgwJueN1Qf9MDtW7VqlebPn69u3bqpSZMmioqKUmZmptatW6cLFy6oe/fuev75531WX5Xy7oVNVIXbma64rrCw0Lz66qsmISHBhIeHm8jISNOqVSvz61//2uTk5LjHlTddUVpaahYuXGhat25tnE6niYmJMWPHjjXnzp3zGJ+Tk2OmTZtmevToYWJjY43dbjdxcXGmf//+Zt26de5xRUVFZs6cOaZv376mQYMGxm63m/r165sePXqYd99915SWlt75Caokt5oKqYypD9wZesD7rEwFchuH79AD3rdnzx7z5JNPmtatW5vatWub0NBQU69ePdOrVy/z1ltvmeLiYp/WV5VsxhhTdVEVAAAA/ox7HgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHm+DMUZ5eXni040QrOgBBDt6ACA83pbLly8rOjpaly9f9nUpgE/QAwh29ABAeAQAAMBtIDwCAADAMsIjAAAALCM8AgAAwLJQXxcA+BNjjAoKCtzLERERstlsPqwIAICqRXgEbkNBQYEGDBjgXk5PT1dkZKQPKwIAoGoxbQ0AAADLCI8AAACwjPAIAAAAywiPAAAAsIzwCAAAAMuqXXjMz8/X1KlT1b9/f9WtW1c2m01Lly4td+zhw4fVv39/RUZGqm7duho+fLi+/fZbj3GlpaV65ZVX1LRpUzmdTrVr107vvfeel38SAACAwFPtwuP58+c1ffp0HT58WO3bt7/huLNnz6pHjx46fvy4Zs2apdTUVH366afq06ePioqKyoydMmWKXnjhBfXp00evvfaaGjVqpKFDh2rlypXe/nEAAAACSrX7nMfY2FhlZ2crJiZGe/fuVZcuXcodN2vWLBUUFOjLL79Uo0aNJEmJiYnq06ePli5dqqeeekqSlJmZqXnz5ulXv/qVXn/9dUnSuHHjlJycrEmTJmnw4MEKCQmpmh8OAADAz1W7K48Oh0MxMTG3HPfRRx/poYcecgdHSerdu7datGihVatWudelp6eruLhYzzzzjHudzWbTL3/5S509e1Y7d+6s3B8AAAAggFW78GhFZmamzp07p86dO3tsS0xM1L59+9zL+/btU0REhFq2bOkx7vp2AAAAWFPtpq2tyM7OlvTdFPePxcbG6uLFi3K5XHI4HMrOzlb9+vU9vn/4+nuzsrJueByXyyWXy+VezsvLq4zyAb9BDyDY0QOAJ7+88nj16lVJ301x/5jT6Swz5urVq5bGlWf27NmKjo52vxo2bFjh2gF/Qg8g2NEDgCe/DI/h4eGSVOavwesKCwvLjAkPD7c0rjyTJ09Wbm6u+3XmzJkK1w74E3oAwY4eADz55bT19Snn69PXP5Sdna26deu6rzbGxsZq8+bNMsaUmbq+/t64uLgbHsfhcJR71RIIFvQAgh09AHjyyyuP9957r+6++27t3bvXY9vu3buVkJDgXk5ISNCVK1d0+PDhMuMyMjLc2wEAAGCNX4ZHSXrssce0du3aMlMImzZt0tGjRzV48GD3ugEDBigsLExvvPGGe50xRgsXLtS9996r+++/v0rrBgAA8GfVctr69ddf16VLl9xPQn/yySc6e/asJGn8+PGKjo7W7373O33wwQfq1auXJkyYoPz8fM2dO1dt27bV6NGj3ftq0KCBnnvuOc2dO1fFxcXq0qWL1qxZo61bt2rFihV8QLgf6TRpua9LkO1akaJ/sNzzxZUyoXaf1fPl3BE+OzYAIDhVy/D46quv6vTp0+7l1atXa/Xq1ZKkYcOGuZ94+/zzzzVx4kT99re/ld1u189+9jPNmzfP4/6Ul19+WXXq1NFbb72lpUuXqnnz5kpLS9PQoUOr9OcCAADwd9UyPJ46dcrSuNatW+uzzz675bgaNWpo8uTJmjx5cgUrAwAACG5+e88jAAAAqh7hEQAAAJYRHgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHgEAAGBZqK8LAPyJCQlTbrshZZYBAAgmhMcAZIxRQUGBezkiIkI2m82HFQUQm00m1O7rKgAA8BnCYwAqKCjQgAED3Mvp6emKjIz0YUUAACBQcM8jAAAALCM8AgAAwDLCIwAAACwjPAIAAMAywiMAAAAsIzwCAADAskoNjxcvXtSZM2cqc5cAAACoRiocHnNzczVhwgTVr19fd999t5o2berelpGRoZSUFH355ZcVPQwAAACqgQqFx4sXLyopKUmvvfaaGjZsqJYtW8oY497erl07bd++XStWrKhwoQAAAPC9CoXHadOm6ejRo1q5cqX27t2rwYMHl9keHh6u5ORk/c///E+FigQAAED1UKHw+PHHH+uhhx7S448/fsMxTZo00dmzZytyGAAAAFQTFQqP2dnZatWq1U3HOBwOFRQUVOQwAAAAqCYqFB7r1at3y6erjxw5otjY2IocBgAAANVEhcJjjx49lJ6efsNp6UOHDmn9+vXq3bt3RQ4DAACAaqJC4XHKlCkqKSlR165dtWLFCp0/f16SdPjwYb399tt64IEH5HA4NGnSpEopFgAAAL4VWpE3t23bVu+//76GDx+uESNGSJKMMWrTpo2MMapVq5ZWrVql5s2bV0qx/qLTpOU+Pb7tWpGif7Dc88WVMqF2n9UjSV/OHeHT4wMAgMpRofAoSQ8//LBOnjypZcuWKSMjQxcvXlRUVJSSkpI0evRo3XXXXZVRJwAAAKqBCoXH5cuXq379+urXr5+ef/75yqoJAAAA1VSF7nkcO3as1q9fX1m1AAAAoJqrUHiMjY3VtWvXKqsWAAAAVHMVCo8PP/ywNmzYIJfLVVn1AAAAoBqrUHicOXOmIiIi9Oijj+of//hHZdUEAACAaqpCD8x06NBBLpdL+/fv1/r16+V0OnXPPffIZrOVGWez2fT1119XqFAAAAD4XoXCY2lpqex2uxo1alRmvTHmpssAAADwTxUKj6dOnaqkMgAAAOAPKnTPIwAAAIKL34bHLVu2yGazlfvatWtXmbE7duxQt27dVLNmTcXExOjZZ59Vfn6+jyoHAADwXxX+ekJJ2rlzpzZu3KisrKxyP7bHZrPp7bffroxDeXj22WfVpUuXMuvi4+Pd/7x//3799Kc/VcuWLTV//nydPXtWr776qo4dO6Z169Z5pSYAAIBAVaHweO3aNQ0ZMkSrV6+WMUY2m63MwzHXl70ZHrt3765BgwbdcPvvfvc71alTR1u2bFFUVJQkqUmTJnryySf1t7/9TX379vVKXQAAAIGoQtPW8+bN00cffaTRo0dr7969Msboueee086dOzVnzhzVrl1bgwcP9vrH9Fy+fLncb7rJy8vThg0bNGzYMHdwlKQRI0YoMjJSq1at8mpdAAAAgaZC4XHFihVq06aNFi9erI4dO0qSateuraSkJE2aNElffPGF1q5dq88++6xSii3P6NGjFRUVJafTqV69emnv3r3ubQcPHtS1a9fUuXPnMu+x2+1KSEjQvn37vFYXAABAIKpQeDx+/Lh69uzpXrbZbCouLnYvt27dWj//+c/15ptvVuQw5bLb7Xrssce0YMECpaena8aMGTp48KC6d+/uDoXZ2dmSvvsO7h+LjY1VVlbWTY/hcrmUl5dX5gUEE3oAwY4eADxVKDza7XbVrFnTvRwZGalz586VGdO4cWMdO3asIocp1/33368PP/xQY8aM0cMPP6zf/va32rVrl2w2myZPnixJunr1qiTJ4XB4vN/pdLq338js2bMVHR3tfjVs2LDSfw5vMCFhym03xP0yIWG+Lgl+yl97AKgs9ADgqULhsWHDhjpz5ox7+Sc/+Ym++OKLMg/N7Nq1S3Xr1q3IYSyLj4/XgAEDtHnzZpWUlCg8PFySyn0CvLCw0L39RiZPnqzc3Fz364c/a7Vms8mE2t0v/ejrIgGr/LYHgEpCDwCeKvS0dXJystLT091PVD/xxBNKTU3VQw89pJSUFG3btk3btm3TmDFjKqveW2rYsKGKiopUUFDgnq6+Pn39Q9nZ2YqLi7vpvhwOR7lXLYFgQQ8g2NEDgKfbDo95eXlyOp2y2+0aM2aMSkpKlJmZqQYNGmj8+PHasmWL1q5d6/4MxcTERL388suVXviNnDhxQk6nU5GRkWrTpo1CQ0O1d+9ePf744+4xRUVF2r9/f5l1AAAAuLXbnrauU6eO5syZI0nq2LGj3nzzTWVmZuq//uu/FBYWpo8//li7d+/We++9px07dmjHjh2qV69epRf+7bffeqz76quv9PHHH6tv376qUaOGoqOj1bt3b6Wlpeny5cvuce+8847y8/M1ePDgSq8LAAAgkN32lUdjTJl7GiVp/fr1mj59up599llJUufOnT0+HqeyPfHEEwoPD9f999+ve+65R4cOHdKiRYtUs2bNMlc6Z86cqfvvv1/Jycl66qmndPbsWc2bN099+/ZV//79vVojAABAoPHb77YeOHCgzp8/r/nz5+uZZ57R+++/r0cffVR79+5Vy5Yt3eM6duyojRs3Kjw8XM8//7wWLVqksWPH6sMPP/Rh9QAAAP6pUr7b2heeffZZ95XOW+nWrZu2b9/u5YoAAAACn99eeQQAAEDVIzwCAADAsjuatk5LS9OuXbvcy8ePH5ckpaSklDveZrPp008/vZNDAQAAoBq5o/B4/Phxd2D8ofXr15c73sY3nAAAAASE2w6PJ0+e9EYdAAAA8AO3HR4bN27sjToAAADgB3hgBgAAAJYRHgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHgEAAGAZ4REAAACWER4BAABgGeERAAAAlhEeAQAAYBnhEQAAAJYRHgEAAGBZqK8LAAD4D2OMCgoK3MsRERGy2Ww+rAhAVSM8AgAsKygo0IABA9zL6enpioyM9GFFAKoa4RFAwOHqGAB4D+ERQMDh6hgAeA8PzAAAAMAyrjwCgJ/oNGm5r0uQ7VqRon+w3PPFlTKhdp/V8+XcET47NhCsuPIIAAAAywiPAAAAsIxpawCVztfTq9VtalViehVA4CA8AgAsMyFhym03pMwygOBCeAQAWGez+fwqLgDfIjwCABBg+KB87+HcEh4BAAg4fFC+93BuCY8AAhD35QGA9xAeAQQe7ssDAK8hPAIAUMn4uCpPlfFxVb4+r1L1O7e++BgwPiQcAAAAlhEeAQAAYBnT1gAABBgeGoM3ER4BAAg0PDTmNQRzwiMAAIB1BHPueQQAAIB1hEcAAABYRngEAACAZYRHAAAAWBY04dHlcumFF15QXFycwsPDlZSUpA0bNvi6LAAAAL8SNOFx1KhRmj9/vn7xi19owYIFCgkJUUpKirZt2+br0gAAAPxGUHxUz+7du7Vy5UrNnTtXqampkqQRI0aoTZs2+s1vfqMdO3b4uEIAAAD/EBRXHj/88EOFhIToqaeecq9zOp0aO3asdu7cqTNnzviwOgAAAP8RFOFx3759atGihaKiosqsT0xMlCTt37/fB1UBAAD4n6CYts7OzlZsbKzH+uvrsrKyyn2fy+WSy+VyL+fm5kqS8vLybnq8EtfVOy01YN3qnFnBefVk9bzWqlVLNpvttvdPD1QeesA76AH/QQ94h7d7oFwmCPzbv/2befDBBz3Wf/3110aS+eMf/1ju+6ZOnWok8eLl96/c3Nw76h16gFegvOgBXsH+utMeKI/NGGMU4Nq0aaP69etr06ZNZdYfOnRIrVu31sKFC/X00097vO/Hf3GWlpbq4sWLqlevXuWldy/Jy8tTw4YNdebMGY/pelSMP57byrrqQg9A8s9zSw/4x78nf+GP57YyrzwGxbR1bGysMjMzPdZnZ2dLkuLi4sp9n8PhkMPhKLOudu3alV6fN0VFRfnNf9j+JhjOLT2AmwmGc0sP4GaC9dwGxQMzCQkJOnr0qMd9ARkZGe7tAAAAuLWgCI+DBg1SSUmJFi1a5F7ncrm0ZMkSJSUlqWHDhj6sDgAAwH8ExbR1UlKSBg8erMmTJ+vcuXOKj4/XsmXLdOrUKb399tu+Ls8rHA6Hpk6d6jHdgorj3PoH/j15D+fWP/DvyXuC/dwGxQMzklRYWKgXX3xRaWlpysnJUbt27fTSSy+pX79+vi4NAADAbwRNeAQAAEDFBcU9jwAAAKgchEcAAABYRngMMC6XSy+88ILi4uIUHh6upKQkbdiwwddl+b38/HxNnTpV/fv3V926dWWz2bR06VJfl4Vy0APeQQ/4D3rAO+iB7xEeA8yoUaM0f/58/eIXv9CCBQsUEhKilJQUbdu2zdel+bXz589r+vTpOnz4sNq3b+/rcnAT9IB30AP+gx7wDnrgByrtiw7hcxkZGUaSmTt3rnvd1atXTbNmzcx9993nw8r8X2FhocnOzjbGGLNnzx4jySxZssS3RcEDPeA99IB/oAe8hx74HlceA8iHH36okJAQPfXUU+51TqdTY8eO1c6dO3XmzBkfVuffHA6HYmJifF0GboEe8B56wD/QA95DD3yP8BhA9u3bpxYtWnh8z2ZiYqIkaf/+/T6oCqg69ACCHT2AqkB4DCDZ2dmKjY31WH99XVZWVlWXBFQpegDBjh5AVSA8BpCrV6+W+1VJTqfTvR0IZPQAgh09gKpAeAwg4eHhcrlcHusLCwvd24FARg8g2NEDqAqExwASGxur7Oxsj/XX18XFxVV1SUCVogcQ7OgBVAXCYwBJSEjQ0aNHlZeXV2Z9RkaGezsQyOgBBDt6AFWB8BhABg0apJKSEi1atMi9zuVyacmSJUpKSlLDhg19WB3gffQAgh09gKoQ6usCUHmSkpI0ePBgTZ48WefOnVN8fLyWLVumU6dO6e233/Z1eX7v9ddf16VLl9xPK37yySc6e/asJGn8+PGKjo72ZXkQPeBt9ED1Rw94Fz3wHZsxxvi6CFSewsJCvfjii0pLS1NOTo7atWunl156Sf369fN1aX6vSZMmOn36dLnbTp48qSZNmlRtQSgXPeA99IB/oAe8hx74DuERAAAAlnHPIwAAACwjPAIAAMAywiMAAAAsIzwCAADAMsIjAAAALCM8AgAAwDLCIwAAACwjPAIAAMAywiMAAAAsIzyi2mnSpEm1+oqn6lYPAl91+2+uutWDwFfd/purbvX4GuExSBQUFGjWrFnq2LGjIiMj5XA41KBBA3Xv3l2TJ0/W119/7esSAa+iBxDs6AFUllBfFwDvu3z5srp166YDBw4oPj5ew4YNU7169XT+/Hnt3r1bL7/8spo1a6ZmzZr5ulRJ0qZNm3xdAgIMPYBgRw+gMhEeg8Cf/vQnHThwQOPGjdOiRYtks9nKbD958qRcLpePqvNUXX55IXDQAwh29AAqE9PWQWDnzp2SpF/96lcevzAkqWnTpvrJT37iXrbZbOrZs2e5+yrvvo9Ro0bJZrPpxIkTmjdvnlq1aiWHw6FRo0bppZdeks1m0/Lly8vd3+rVq2Wz2TRlypQbHuNO9iF998tw3LhxatSokRwOh2JjYzVq1CidPn263P2kp6erS5cuCg8PV/369fXkk08qJyen3LHwL/QAPRDs6AF6oDIRHoNAvXr1JElHjx716nHGjx+vWbNmqXPnznruuefUtm1bDRs2TDabTWlpaeW+55133pEkDR8+/Ib7vZN9ZGRkqEOHDlq2bJk6deqkCRMmqHv37lqxYoUSExN14sSJMvtYvny5Bg4cqKNHj2r48OEaOXKktm/frt69e6uoqOi2zgOqH3qAHgh29AA9UKkMAl56erqRZGrVqmV+/etfm88++8ycP3/+huMlmeTk5HK3NW7c2DRu3LjMupEjRxpJpkGDBub06dMe7+nWrZsJCQkxWVlZZdZfuHDB2O1207lz51se43b2UVRUZJo0aWJq1apl/v73v5cZv3XrVhMSEmIeeugh97rc3FwTFRVlIiIizD//+c8y++nRo4eR5FEP/As98D16IDjRA9+jByqOK49B4OGHH9a8efNkjNG8efPUr18/3XXXXYqPj9d//Md/6NixY5VynEmTJqlRo0Ye64cPH66SkhK99957Zda///77Kioq0rBhw26579vZx9q1a3Xq1ClNmjRJHTp0KDO+W7duGjBggP77v/9beXl5kqQ1a9YoLy9PY8aMUYsWLdxjw8LCNHPmzFv/4Kj26IHv0QPBiR74Hj1QcYTHIDFx4kRlZWVp1apVeu6559StWzf961//0p///Ge1a9dOH3/8cYWPkZiYWO76xx9/XA6Hwz2tcF1aWppCQ0M1ZMiQW+77dvaxa9cuSdI///lPTZs2zeP1zTffqLS01D1989VXX0mSunfv7nHc++67T6GhPFcWCOgBeiDY0QP0QKXx8ZVP+NClS5fMM888YySZu+66y7hcLmPMnU9XnDhx4obHeuyxx4wk849//MMYY8zx48eNJJOSkmLpGLezj3HjxhlJt3xt2bLFGGPM2LFjyyz/WP369ZmuCFD0AD0Q7OgBeuBOcOUxiEVHR+v1119X48aNdf78eR08eFDSd0/ZXbt2rdz35Obm3nB/5T3Bd931m5iv/8V4/abnm90gfaf7iIqKkiR98sknMsbc8JWcnCzpu/MgSefOnfM4ZklJiS5cuGC5RvgXeoAeCHb0AD1wJwiPQc5msykiIqLMujp16igzM9Nj7KlTp3Tp0qU7Ok5KSorq1aund999V6WlpVqxYoVq1aqlAQMGVPo+kpKSJH3/0RS30r59e0nS1q1bPbbt3Lnzhr9AERjoAXog2NED9MBtq9LrnPCJhQsXmt27d5e77a9//aux2Wymdu3aprCw0BhjTL9+/Twu37tcLvPII4+U+8TZ9emKkydP3rSO61Mjs2fPNpLMqFGjyh13o+kKq/soLCw0jRo1Mk6n03z++ece24uKiszWrVvdy5cuXbrhU3bJyck8ZRcA6IGy6IHgQw+URQ9UjM0YY6ouqsIXBg4cqPT0dMXHx6tr166Ki4tTQUGB9u3bp61bt6pGjRpKS0tz32z8t7/9Tf3791d4eLiGDBmimjVrasOGDapdu7ZOnz4tu92uU6dOufc/atQoLVu2TCdPnrzpF8fv2rVL9913n8LCwlRcXKxNmzbpgQce8Bh3fR8/PMbt7mPPnj168MEHdeHCBT3wwANq27atbDabTp8+ra1bt6pevXo6cuSIe/yyZcs0atQoRUVF6d///d8VHR2ttWvXKjw8XNnZ2R4/M/wLPUAPBDt6gB6oVL5Or/C+I0eOmFdeecX06dPHNG3a1DidTuN0Ok2zZs3MyJEjzd69ez3e88EHH5i2bdsau91uYmJizPjx483ly5dveqP0rf7iNMaY5s2buz8LrKSkpNwxN/uL0+o+jDHm7NmzZsKECaZ58+bG4XCYqKgo07JlSzNu3DizadMmj/F//etfTadOnYzD4TD33HOPGTdunLl48eIt60H1Rw/QA8GOHqAHKhNXHgEAAGAZD8wAAADAMsIjAAAALCM8AgAAwDLCIwAAACwjPAIAAMAywiMAAAAsIzwCAADAMsIjAAAALCM8AgAAwDLCIwAAACwjPAIAAMAywiMAAAAsIzwCAADAsv8HXPM2qQR4B8wAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAks0lEQVR4nO3de1hUdf4H8PcRZECuiqiQCISaJpiKiRqGayqKF9oMi/KCiPqUSV66rJqrW+stxcxscy1TvOQlzcjaLHXDzAtI6uqWhhcwQcxV5KoMAp/fH/6YnGZQcEZmOPN+Pc95fOZ7znzPZ8bv4T3nzJlzFBEREBERqUgDSxdARERkbgw3IiJSHYYbERGpDsONiIhUh+FGRESqw3AjIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDeySf7+/vD397d0GaQS6enp6NevH7y8vKAoCjp16mTpkmpNbduEvaULsGUlJSV49913sXXrVmRkZODmzZvw8vJCQEAAwsLCEB8fj8DAQEuXSXRHtj6OCwsLMWjQIJSWlmLkyJFo2rQpWrRoYemybB7DzUKKiooQFhaG48ePo3Xr1hgxYgQ8PT1x5coVpKWlYcGCBQgMDFT1HwWq/ziOgbS0NFy+fBlz587FjBkzLF0O/T+Gm4UsXboUx48fR3x8PFauXAlFUfTmZ2ZmQqvVWqg6oprhOAYuXrwIAPDx8bFwJXQ7fudmIQcPHgQATJw40eAPAgAEBASgXbt2Bu2XL1/GlClT0Lp1a2g0GjRt2hTDhg3Df//7X90yIoLIyEgoioLNmzfrPV9EMHDgQKPz6lrv3r2hKAq0Wi1mzJiBVq1awcnJCSEhIdi9ezcAoKCgABMnToSPjw8cHR3Ro0cPpKWlGfT13XffIS4uDg899BBcXFzg4uKCrl27YuXKlbWqSUTw8ccf47HHHoObmxsaNWqErl274uOPPzbLa1YbWx/HiqJg9OjRAIAxY8ZAURQoioI1a9bolikqKsLs2bPRoUMHODk5wcPDAxEREfjhhx8M+uM2YUZCFjFixAgBIJs3b67xc86cOSMtW7YUANK/f3+ZNm2ajBw5Uho1aiTOzs5y6NAh3bKXLl2SZs2aibu7u2RlZenalyxZIgAkNjbWrK/nXoSHhwsAiYqKkgcffFAmTpwocXFxotFoRKPRSHp6unTp0kWCgoIkISFBYmJipEGDBtK4cWPJz8/X6ysiIkICAwPl+eefl9dff10mTJggfn5+AkCmTp1qsG4/Pz/x8/PTa6usrJSYmBgBIG3atJEJEybIpEmTpF27dgJApk2bdj/fjnrJ1sfx7NmzJSoqSjeOZ8+eLbNnz5ajR4+KiMjVq1elQ4cOAkAee+wxmTx5ssTFxYmnp6fY29vL9u3b9frjNmE+DDcLSU5OFgDi6uoq06ZNk2+++UauXLlyx+f07NlT7OzsZOfOnXrtv/zyi7i6ukpwcLBe+9dffy2KokjPnj2lvLxcjh49Kg4ODtKmTRspKiqqUZ3Xrl3TbbA1na5du1ajvqs25LCwMCkuLta1b968WQCIh4eHREdHy82bN3XzFi5cKAAkMTFRr69z584Z9H/z5k3p16+f2NnZyfnz5/XmGduQV65cKQBkzJgxUlZWpmvXarUyZMgQASDp6ek1em22guNYZPXq1QJAVq9ebTDvueeeEwDy4Ycf6rX/9ttv4uvrK15eXnLjxg1dO7cJ82G4WVBiYqK4uLgIAN0UGBgoEydOlIyMDL1ljxw5IgAkLi7OaF9Tp04VAHLixAm99smTJwsAeeWVV6Rdu3bSsGHDWg3GzMxMvfpqMmVmZtao76oNee/evXrtFRUV0rBhQwFgsAH++uuvAkBGjRpVo3Vs27ZNAMiaNWv02o1tyB07dhRnZ2e5fv26QT/Hjx+3+k+qlmLr47i6cPvf//4ndnZ20qdPH6PPW7ZsmQCQHTt26Nq4TZgPTyixoKlTp2LcuHHYuXMnDhw4gPT0dKSmpuL999/HqlWrsHnzZgwdOhQAcOjQIQDAb7/9hjlz5hj0derUKd2/QUFBuvYFCxYgJSUFixcvBgAsXLgQISEhNa7R398fcp9v1v7H3wQ1aNAAzZo1w/Xr19GqVSu9ed7e3gB+/xK/SlFRERYvXozPP/8cZ8+eRUlJid78Py7/R9evX8eJEyfg4+ODhQsXGsy/efMmgN/fZ/odx7Fxhw8fRkVFBbRardHXevr0aQC3XuvgwYP15nGbMB3DzcJcXV0RHR2N6OhoALe+LJ4xYwb+8Y9/YOzYscjJyYGDgwPy8vIAAF999RW++uqravv74wDWaDQYOHAgjh07BkdHR8THx9+/F3OP3NzcDNrs7e2rbQd+37AAoKysDL1798aRI0fQuXNnjBw5Ep6enrC3t0dWVhaSkpLuesbetWvXICLIycnB3/72t2qX++P7S7dwHBuqeq379+/H/v37q13O2JjiNmE6hpuVcXd3x/Lly/HVV1/h/PnzOHHiBEJCQnSD+r333sNLL71U4/5SU1OxaNEieHp64urVq3jhhRdqdXZZfn4+li5dWqvXMHnyZHh4eNTqOaZITk7GkSNHMHbsWHz00Ud68zZt2oSkpKS79lH1/oaEhCA9Pf2+1GlLOI5/H1PTpk3T7XHWFW4TDDerpCgKnJ2d9dpCQ0MB3Dr1uqZ/FIqKivDcc8/B3t4eKSkpmDNnDrZs2YKIiAjExcXVqI/8/Pw7fmozJjY2tk7D7ezZswCAqKgog3n79u2rUR+urq5o3749Tp48ifz8/DqtX61sfRw/+uijUBRF93OJusRtgr9zs5h//vOfOHz4sNF5n3/+OU6ePAkPDw/d9w7dunVDaGgoNm7caPQTa2VlJfbu3avX9uKLL+LcuXNYvHgxgoKC8OGHH8LX1xcJCQnIyMioUZ1V31XUZqrr69P5+fkBgMHvhvbu3YsPP/ywxv0kJCTg+vXrGDdunNFDLZmZmcjKyjKpVrXhOK5eixYtMHz4cBw4cACLFi0y+p1famoqrl+/btJ6jOE2Af7OzVKqfhvTunVrGT16tEyfPl0SEhKkV69eAkAaNGggn3zyid5zzp07p/udSvfu3eXFF1+UadOmSXR0tLRs2VI0Go1u2XXr1gkAGTJkiF4fe/fulQYNGkhISIjeqb2WUHVmmDHGztyqAkDCw8N1j4uKisTf318ASGRkpLz22msSFRUldnZ28vTTTwsAmT179l37r6yslNGjRwsA8fb2lpEjR8rrr78usbGx0r17d1EURTZu3GjCK1YfjuM7/xTg6tWr0qlTJwEgwcHBMn78eHnttdckJiZG2rRpIwAkNzdXtzy3CfNhuFnIqVOn5O2335Z+/fpJQECAODo6iqOjowQGBsro0aOrPc05Ly9P3njjDQkKChInJydxcXGRNm3ayHPPPSefffaZiNz64+Hm5ibe3t7yv//9z6CPmTNn6k6rtiRzbcgit17zsGHDxMvLSxo1aiSPPvqobNq0Sb777rsab8hVNm/eLH379pXGjRtLw4YN5YEHHpDevXtLYmKi0ffTlnEc3zncRESuX78ub7/9toSEhIizs7M4OTlJQECAPPnkk7J27Vq936xxmzAfRaSOz48lIiK6z/idGxERqQ7DjYiIVIfhRkREqsNwIyIi1WG4ERGR6jDciIhIdWw+3EQEhYWFdX7FcCJL4HgnW2Hz4VZUVAR3d3cUFRVZuhSi+47jnWyFzYcbERGpD8ONiIhUx2rD7ciRIxg6dCiaNGmCRo0aISgoCMuWLdNb5sCBAwgLC0OjRo3QokULJCQkoLi42EIVExGRtbDK+7l9++23GDJkCDp37oxZs2bBxcUFZ8+eRXZ2tm6ZY8eO4YknnkD79u2xZMkSZGdnY/HixTh9+jS+/vprC1ZPRESWZnXhVlhYiFGjRmHQoEHYunUrGjQwvnM5Y8YMNG7cGCkpKbo7xvr7+2PcuHH49ttv0b9//7osm4jIKomI3r3YnJ2doSiKBSuqG1Z3WPKTTz7Bb7/9hrlz56JBgwYoKSlBZWWl3jKFhYXYtWsXRowYoQs2ABg1ahRcXFywZcuWui6biMgqlZSUICoqSjcZu+moGllduO3evRtubm7IycnBQw89BBcXF7i5ueGFF15AaWkpAODEiRMoLy9H165d9Z7r4OCATp064ejRo5YonYiIrITVhdvp06dRXl6OqKgoREREYNu2bYiLi8OKFSswZswYAEBubi4AwNvb2+D53t7euHjxYrX9a7VaFBYW6k1EasXxTrbK6sKtuLgY169fx6hRo7Bs2TI89dRTWLZsGSZMmIBNmzbh9OnTuHHjBgBAo9EYPN/R0VE335j58+fD3d1dN/n6+t6310JkaRzvZKusLtycnJwAADExMXrtzz33HADg4MGDumW0Wq3B80tLS3XzjZk+fToKCgp004ULF8xVOpHV4XgnW2V1Z0v6+Pjgp59+QvPmzfXamzVrBgC4du0aAgMDAfx+ePJ2ubm58PHxqbZ/jUZjdI+PSI043slWWd2eW0hICAAgJydHr73qezQvLy8EBQXB3t4e6enpesuUlZXh2LFj6NSpU53USkRE1snqwm348OEAgFWrVum1f/TRR7C3t0fv3r3h7u6Ovn37Yv369XoXgF23bh2Ki4sRHR1dpzUTEZF1sbrDkp07d0ZcXBw+/vhjlJeXIzw8HCkpKfj0008xffp03SHHuXPnomfPnggPD8f48eORnZ2NxMRE9O/fHwMGDLDwqyAiIkuyunADgBUrVqBVq1ZYvXo1tm/fDj8/P7zzzjuYPHmybpkuXbpg9+7deP311zFlyhS4urpi7NixmD9/vuUKJyIiq6CIjd+1sLCwEO7u7igoKNC72gmRGnG8257i4mJERUXpHicnJ8PFxcWCFdUNq9xzI7qfbPVae0S2hOFGNqfqWntVbOWTLJEtsbqzJYmIiEzFcCMiItVhuBERkeow3IiISHUYbkREpDoMNyIiUh2GGxERqQ5/50ZEdB+FvLrWoutXysvgftvj3rM2QewdLFLLj4tG1dm6uOdGRESqw3AjIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDciIlIdhhsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYbkREpDoMNyIiUh2GGxERqQ7DjYiIVIfhRkREqsM7cRMRqZjYNURBxxi9x7bA6vfc5s6dC0VREBQUZDDvwIEDCAsLQ6NGjdCiRQskJCSguLjYAlUSEVkpRYHYO+gmKIqlK6oTVr3nlp2djXnz5sHZ2dlg3rFjx/DEE0+gffv2WLJkCbKzs7F48WKcPn0aX3/9tQWqJSIia2HV4fbKK6+ge/fuqKiowJUrV/TmzZgxA40bN0ZKSgrc3NwAAP7+/hg3bhy+/fZb9O/f3xIlExGRFbDaw5Lff/89tm7diqVLlxrMKywsxK5duzBixAhdsAHAqFGj4OLigi1bttRhpUREZG2scs+toqICkyZNQnx8PIKDgw3mnzhxAuXl5ejatateu4ODAzp16oSjR4/WVal0j0JeXWuxdSvlZXC/7XHvWZtufRdhIT8uGmWxdROplVnDLS8vDyUlJfD19TWpnxUrVuD8+fPYvXu30fm5ubkAAG9vb4N53t7e2LdvX7V9a7VaaLVa3ePCwkKTaiWyZhzvZKtMPixZUFCAl19+Gc2bN4eXlxcCAgJ081JTUxEZGYkff/yxxv1dvXoVf/3rXzFr1ix4eXkZXebGjRsAAI1GYzDP0dFRN9+Y+fPnw93dXTeZGsRE1ozjnWyVSeGWl5eH0NBQvPfee/D19UX79u0hIrr5HTt2xP79+7Fhw4Ya9/nGG2+gSZMmmDRpUrXLODk5AYDeJ9IqpaWluvnGTJ8+HQUFBbrpwoULNa6NqL7heCdbZVK4zZkzBxkZGdi0aRPS09MRHR2tN9/JyQnh4eH497//XaP+Tp8+jZUrVyIhIQEXL15EVlYWsrKyUFpaips3byIrKwt5eXm6w5FVhydvl5ubCx8fn2rXodFo4ObmpjcRqRXHO9kqk8Ltiy++wODBgzF8+PBql/H390d2dnaN+svJyUFlZSUSEhIQEBCgm1JTU5GRkYGAgAC8+eabCAoKgr29PdLT0/WeX1ZWhmPHjqFTp06mvCwiIqrnTDqhJDc3F88+++wdl9FoNCgpKalRf0FBQdi+fbtB+xtvvIGioiK8++67CAwMhLu7O/r27Yv169dj1qxZcHV1BQCsW7cOxcXFBnuQRERkW0wKN09Pz7sewz916pTRsxqNadq0KZ588kmD9qrfut0+b+7cuejZsyfCw8Mxfvx4ZGdnIzExEf3798eAAQNq+hKIiEiFTDos+fjjjyM5Obnaw44///wzdu7cib59+5qyGqO6dOmC3bt3w8nJCVOmTMHKlSsxduxYbN261ezrIiKi+sWkPbeZM2ciOTkZjz32GObNm6e7RNbJkydx4MABzJw5ExqNBq+++qpJRaakpBhtDwsLw/79+03qm4iI1MekcAsODsbmzZsxcuRIjBp16yoLIoKgoCCICFxdXbFlyxa0adPGLMUSERHVhMlXKBk6dCgyMzORlJSE1NRU5OXlwc3NDaGhoRgzZgyaNm1qjjqJiIhqzKRwW7t2LZo3b46IiAhMmTLFXDURERGZxKQTSsaOHYudO3eaqxYiIiKzMCncvL29UV5ebq5aiIiIzMKkcBs6dCh27dpl9BqPRERElmJSuM2dOxfOzs546qmn8NNPP5mrJiIiIpOYdEJJ586dodVqcezYMezcuROOjo5o1qwZFEXRW05RFJw9e9akQomIiGrKpHCrrKyEg4MDWrVqpdd++21vjD0mIiK6n0wKt6ysLDOVQUREZD4m34mbiIjI2jDciIhIdUy+/BYAHDx4ELt378bFixeN/ixAURSsWrXKHKsiIpUTEb17QDo7OxucpEZ0NyaFW3l5OWJiYvDZZ59BRKAoit7JI1WPGW5EVFMlJSWIiorSPU5OToaLi4sFK6L6yKTDkomJidi2bRvGjBmD9PR0iAgmT56MgwcPYuHChfDw8EB0dDR/BkBERHXKpD23DRs2ICgoCB999JGuzcPDA6GhoQgNDUVkZCS6deuGPn36YMKECSYXS0REVBMm7bmdOXMGvXv31j1WFAU3b97UPe7QoQOGDBmCDz74wJTVEJmV2DVEQccY3SR2DS1dEhGZmUnh5uDggEaNGukeu7i44PLly3rL+Pn54fTp06ashsi8FAVi76CbwJMViFTHpHDz9fXFhQsXdI/btWuH77//Xu+kkkOHDqFJkyamrIaIiKhWTAq38PBwvTB75pln8Msvv2Dw4MF4//33ERMTgx9++AEDBgwwS7FEREQ1UesTSgoLC+Ho6AgHBwfExcWhoqICOTk5aNmyJSZNmoSUlBR8+eWX+PrrrwEA3bp1w4IFC8xeOBERUXVqvefWuHFjLFy4EADQpUsXfPDBB8jJycGyZcvQsGFDfPHFF0hLS8PGjRtx4MABHDhwAJ6enmYv3JaICIqLi3UTL0RNRHRntd5zExGDP647d+7Em2++iYSEBABA165d0bVrV/NUSPxRKxFRLfHakkREpDoMNyIiUh2GGxERqQ7DjYiIVOeeri25fv16HDp0SPf4zJkzAIDIyEijyyuKgq+++upeVkVEFhDy6lqLrVspL4P7bY97z9p060oyFvLjolEWWzfdu3sKtzNnzugC7XY7d+40unxt7sV0+PBhJCUl4bvvvkNWVhY8PT3RvXt3/P3vf0fbtm31lj158iSmTJmCH374AQ4ODhg0aBCWLFkCLy+v2r0gIiJSlVqHW2Zm5v2oQ2fhwoXYv38/oqOj0bFjR1y6dAnLly9Hly5dcOjQIQQFBQEAsrOz8fjjj8Pd3R3z5s1DcXExFi9ejBMnTiAtLQ0ODpb7pEdERJZV63Dz8/O7H3XoTJ06FZ988oleOD3zzDMIDg7GggULsH79egDAvHnzUFJSgh9//BGtWrUCcOtqKP369cOaNWswfvx4s9bFwzS/42EaIrJ2VndCSc+ePQ32utq0aYMOHTrg5MmTurZt27Zh8ODBumADgL59+6Jt27bYsmVLndVLRETWx+rCzRgRwW+//YamTZsCAHJycnD58mWjV0Hp1q0bjh49WtclEhGRFTHpTtx1ZcOGDcjJycGbb74JAMjNzQUAeHt7Gyzr7e2NvLw8aLVaaDQag/larRZarVb3uLCw8D5VTWR5HO9kq6x+z+3UqVOYOHEievTogdGjRwMAbty4AQBGw8vR0VFvmT+aP38+3N3ddZOvr+99qpzI8jjeyVZZdbhdunQJgwYNgru7O7Zu3Qo7OzsAgJOTEwDofSKtUlpaqrfMH02fPh0FBQW66fabrRKpDcc72SqrPSxZUFCAgQMHIj8/H/v27YOPj49uXtXhyKrDk7fLzc1FkyZNjO7VAbf29qqbR6Q2HO9kq6wy3EpLSzFkyBBkZGRg9+7dePjhh/XmP/DAA/Dy8kJ6errBc9PS0tCpU6c6qpSIiKyR1YVbRUUFnnnmGRw8eBDJycno0aOH0eWGDRuGpKQkXLhwQfc9wp49e5CRkYEpU6bUZcn3ndg1REHHGL3HRERUPasLt2nTpuGLL77AkCFDkJeXp/vRdpURI0YAAGbMmIFPP/0Uf/rTn/Dyyy+juLgYixYtQnBwMMaMGWOJ0u8fRbHoj7aJ6hI/zJE5WF24HTt2DACwY8cO7Nixw2B+Vbj5+vpi7969mDp1Kv7yl7/ori2ZmJjI7xiI6jN+mCMzsLpwS0lJqfGyHTp0wDfffHP/iiEionrJqn8KQEREdC8YbkREpDoMNyIiUh2GGxERqQ7DjYiIVIfhRkREqsNwIyIi1WG4ERGR6jDciIhIdRhuRESkOgw3IiJSHYYbERGpDsONiIhUh+FGRESqw3AjIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDciIlIdhhsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYbkREpDoMNyIiUh2GGxERqU69DjetVovXX38dPj4+cHJyQmhoKHbt2mXpsoiIyMLqdbjFxsZiyZIleP755/Huu+/Czs4OkZGR+OGHHyxdGhERWZC9pQu4V2lpadi0aRMWLVqEV155BQAwatQoBAUF4bXXXsOBAwcsXCEREVlKvd1z27p1K+zs7DB+/Hhdm6OjI8aOHYuDBw/iwoULFqyOiIgsqd6G29GjR9G2bVu4ubnptXfr1g0AcOzYMQtURURE1qDeHpbMzc2Ft7e3QXtV28WLF40+T6vVQqvV6h4XFBQAAAoLC++4vgrtjXstVXXu9l7VBN/P39Xk/XR1dYWiKLXum+PddKaOd76Xv6vpe3mv412P1FMPPvigDBw40KD97NmzAkDeeecdo8+bPXu2AODEqV5NBQUF97SdcLxzqo/TvY732ykiIqiHgoKC0Lx5c+zZs0ev/eeff0aHDh2wYsUKTJgwweB5f/wkW1lZiby8PHh6epr+SeE+KiwshK+vLy5cuGBwKJZqr769n+bac+N4t0317f00x55bvT0s6e3tjZycHIP23NxcAICPj4/R52k0Gmg0Gr02Dw8Ps9d3v7i5udWLwVlfqP395Hin29nS+1lvTyjp1KkTMjIyDI7hpqam6uYTEZFtqrfh9vTTT6OiogIrV67UtWm1WqxevRqhoaHw9fW1YHVERGRJ9fawZGhoKKKjozF9+nRcvnwZrVu3RlJSErKysrBq1SpLl2d2Go0Gs2fPNjjERPeG76d14/+Pedni+1lvTygBgNLSUsyaNQvr16/HtWvX0LFjR7z11luIiIiwdGlERGRB9TrciIiIjKm337kRERFVh+FGRESqw3CzcrxnnXkVFxdj9uzZGDBgAJo0aQJFUbBmzRpLl0X/j+PdfGx9rDPcrBzvWWdeV65cwZtvvomTJ0/ikUcesXQ59Acc7+Zj82Pd5At40X2TmpoqAGTRokW6ths3bkhgYKD06NHDgpXVX6WlpZKbmysiIocPHxYAsnr1assWRSLC8W5utj7WuedmxXjPOvPTaDRo0aKFpcsgIzjezcvWxzrDzYrxnnVkSzjeyZwYblbsXu9ZR1QfcbyTOTHcrNiNGzeMXi7H0dFRN59ILTjeyZwYblbMyclJ715cVUpLS3XzidSC453MieFmxby9vXX3p7vd3e5ZR1QfcbyTOTHcrBjvWUe2hOOdzInhZsV4zzqyJRzvZE719n5utsDW7llXV5YvX478/Hzd2Xc7duxAdnY2AGDSpElwd3e3ZHk2i+Pd/Gx5rPOWN1aO96wzP39/f5w/f97ovMzMTPj7+9dtQaTD8W5etjzWGW5ERKQ6/M6NiIhUh+FGRESqw3AjIiLVYbgREZHqMNyIiEh1GG5ERKQ6DDciIlIdhhsREakOw42IiFSH4Ub3lb+/v1Vd4sfa6iH1sLaxZW311DWGWz1UUlKCefPmoUuXLnBxcYFGo0HLli3Rq1cvTJ8+HWfPnrV0iURmwbFO94p3BahnioqKEBYWhuPHj6N169YYMWIEPD09ceXKFaSlpWHBggUIDAxEYGCgpUsFAOzZs8fSJVA9xbFOpmC41TNLly7F8ePHER8fj5UrV0JRFL35mZmZ0Gq1FqrOkLX84aH6h2OdTMHDkvXMwYMHAQATJ0402NgBICAgAO3atdM9VhQFvXv3NtqXsWPysbGxUBQF586dQ2JiIh5++GFoNBrExsbirbfegqIoWLt2rdH+PvvsMyiKgpkzZ1a7jnvpA7j1hyw+Ph6tWrWCRqOBt7c3YmNjq72dR3JyMh599FE4OTmhefPmGDduHK5du2Z0WbJOHOsc66ZguNUznp6eAICMjIz7up5JkyZh3rx56Nq1KyZPnozg4GCMGDECiqJg/fr1Rp+zbt06AMDIkSOr7fde+khNTUXnzp2RlJSEkJAQvPzyy+jVqxc2bNiAbt264dy5c3p9rF27Fk8++SQyMjIwcuRIjB49Gvv370ffvn1RVlZWq/eBLIdjnWPdJEL1SnJysgAQV1dXmTZtmnzzzTdy5cqVapcHIOHh4Ubn+fn5iZ+fn17b6NGjBYC0bNlSzp8/b/CcsLAwsbOzk4sXL+q1X716VRwcHKRr1653XUdt+igrKxN/f39xdXWVI0eO6C2/b98+sbOzk8GDB+vaCgoKxM3NTZydneWXX37R6+fxxx8XAAb1kHXiWP8dx3rtcc+tnhk6dCgSExMhIkhMTERERASaNm2K1q1b46WXXsLp06fNsp5XX30VrVq1MmgfOXIkKioqsHHjRr32zZs3o6ysDCNGjLhr37Xp48svv0RWVhZeffVVdO7cWW/5sLAwREVF4V//+hcKCwsBAJ9//jkKCwsRFxeHtm3b6pZt2LAh5s6de/cXTlaDY/13HOu1x3Crh6ZOnYqLFy9iy5YtmDx5MsLCwvDrr7/i/fffR8eOHfHFF1+YvI5u3boZbR8+fDg0Go3ukEqV9evXw97eHjExMXftuzZ9HDp0CADwyy+/YM6cOQbTpUuXUFlZqTt09Z///AcA0KtXL4P19ujRA/b2PIeqPuFY51i/Z5bedSTzyM/PlxdffFEASNOmTUWr1YrIvR+qOXfuXLXrGjZsmACQn376SUREzpw5IwAkMjKyRuuoTR/x8fEC4K5TSkqKiIiMHTtW7/EfNW/e3KYP1agBxzrHek1wz00l3N3dsXz5cvj5+eHKlSs4ceIEgFtnkJWXlxt9TkFBQbX9GTs7rUrVF+BVn0arvjC/05fr99qHm5sbAGDHjh0QkWqn8PBwALfeBwC4fPmywTorKipw9erVGtdI1oljnWO9JhhuKqIoCpydnfXaGjdujJycHINls7KykJ+ff0/riYyMhKenJz755BNUVlZiw4YNcHV1RVRUlNn7CA0NBfD7aeF388gjjwAA9u3bZzDv4MGD1f7xo/qFY51j/a4ssbtI927FihWSlpZmdN727dtFURTx8PCQ0tJSERGJiIgwOHSh1Wrlz3/+s9GzqaoO1WRmZt6xjqrDQvPnzxcAEhsba3S56g7V1LSP0tJSadWqlTg6OsrevXsN5peVlcm+fft0j/Pz86s9gyw8PNzmzyCrTzjW9XGs144iIlL3kUr36sknn0RycjJat26Nxx57DD4+PigpKcHRo0exb98+NGjQAOvXr9d9Uf3tt99iwIABcHJyQkxMDBo1aoRdu3bBw8MD58+fh4ODA7KysnT9x8bGIikpCZmZmXe86OqhQ4fQo0cPNGzYEDdv3sSePXvQp08fg+Wq+rh9HbXt4/Dhwxg4cCCuXr2KPn36IDg4GIqi4Pz589i3bx88PT1x6tQp3fJJSUmIjY2Fm5sbnn32Wbi7u+PLL7+Ek5MTcnNzDV4zWSeOdY51k1g6Xal2Tp06JW+//bb069dPAgICxNHRURwdHSUwMFBGjx4t6enpBs/59NNPJTg4WBwcHKRFixYyadIkKSoquuOX7Hf7NCsi0qZNG93vhCoqKowuc6dPszXtQ0QkOztbXn75ZWnTpo1oNBpxc3OT9u3bS3x8vOzZs8dg+e3bt0tISIhoNBpp1qyZxMfHS15e3l3rIevBsc6xbgruuRERkerwhBIiIlIdhhsREakOw42IiFSH4UZERKrDcCMiItVhuBERkeow3IiISHUYbkREpDoMNyIiUh2GGxERqQ7DjYiIVIfhRkREqsNwIyIi1fk/I4WfXETmpHwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 22 s (started: 2024-10-26 13:18:20 +00:00)\n" ] } ], "source": [ "da.plotTargetForNumCatsPairs(df,nums,cats,\"Survived\",2.4,0.9)" ] }, { "cell_type": "markdown", "metadata": { "id": "DNcB997kejvn" }, "source": [ "Son olarak da targetın diğer kategoriler bazında ortalama numerik değerlerine bakalım" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "executionInfo": { "elapsed": 16293, "status": "ok", "timestamp": 1729948739541, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "klcw-_WEejvo", "outputId": "9245d42d-abee-4278-de90-69573c4cc093" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Plots for Age,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoD0lEQVR4nO3deVhTZ74H8G8ACcgSBnFhxwVrWVUsai0IFTdQu0HFjkq0KtPF2lqng87tY6+9A22V3nrr2Doz1qV2rkuxVaxWW2xRFKV6GWVcSmVTMZYqQgAlKLz3jw4ZY4KyBJIcvp/nOc9j3vPmPb+Dv/DjvGeJTAghQEREJCFWpg6AiIjI2FjciIhIcljciIhIcljciIhIcljciIhIcljciIhIcljciIhIcljciIhIcljciIhIcljcSIefnx/8/PxMHYaWucVD0mJu+WVu8VgyFrdOVldXh9TUVAwfPhyOjo6Qy+Xw8vJCREQEli5diqKiIlOHSK3U1NSEDz/8EMHBwbC3t0fv3r0xY8YMFBcXmzo0s8F8l4aKigqkpaUhPj4e/fv3h0wmg0wmM3VYbWJj6gCkrKamBo899hhOnz6NQYMGYebMmejVqxeuXbuGvLw8vPPOOxg4cCAGDhxo6lC1srKyTB2C2UpOTsbf/vY3BAYG4pVXXsGVK1ewfft2HDhwAMeOHYO/v7+pQzQp5rt0nD17FsuWLYNMJoO/vz969uyJmzdvmjqsthHUaVasWCEAiHnz5ommpia99cXFxeLcuXMmiMxy+Pr6Cl9fX1OHIQ4ePCgAiMjISKHRaLTte/fuFQDEhAkTTBideWC+d5y55PvVq1dFdna2UKvVQgghHnroIWFp5YLTkp0oNzcXAPDSSy8ZPKTv378/hgwZotMmk8kQFRVlcDxD8/FKpRIymQzFxcVIT09HQEAA5HI5lEol3n77bchkMmzevNngeDt37oRMJsMf//jHFrfRnjEAoKSkBPPmzYOPjw/kcjnc3d2hVCpRVlZmcJxdu3bhkUcegb29Pfr27Yv58+fjxo0bBvuawl//+lcAv/48bG1tte2TJ09GVFQUDhw4gIsXL5oqPLPAfJdOvvft2xeRkZFwcnIydSjtxuLWiXr16gUAKCws7PRtLVy4EKmpqRgxYgReffVVBAcHY+bMmZDJZNiyZYvB93z66acAgFmzZrU4bnvGOH78OIYNG4ZNmzYhLCwMixYtQkREBD777DOEh4frnaPavHkznnzySRQWFmLWrFlISkrCkSNHEBMTg4aGhjb9HDrL999/DwcHB4wZM0Zv3cSJEwEA2dnZXR2WWWG+SyffpYDn3DpRQkICtmzZgnnz5iEvLw8TJkxAWFiY9peAMZ0+fRr5+fnw8fHRaR8zZgwOHjwIlUoFd3d3bXtlZSX27t2LESNG6P01fbf+/fu3aYzbt28jMTERTU1NyMvLw7Bhw7T9c3JyEBUVhUWLFiEzMxMAoFarsXDhQjg4OOCHH37A4MGDAQB/+tOfEBMTA5VKBV9f31b/HN56661W9wV+PRJ40NVpdXV1UKlUCAoKgrW1td765nNtP/30U5u2LTXMd2nku2SYel5U6tLT04Wjo6MAoF0GDhwoXnrpJVFYWKjXH4AYO3aswbEMzccnJSUJAGL16tUG37Nu3ToBQKSnp+u0r127VgAQH3zwwQO30ZYxdu7cKQCIFStWGIzn6aefFlZWVqK6uloIIcSmTZsEALFw4UK9vocPHxYA2nQO4u6fc2uW77777oFjlpeXCwBizJgxBtcfOHBAABCvvPJKq+OUKua7LkvMd0N4zo30LF68WHtV3auvvorHHnsMFy9exJ///GeEhIRg9+7dRtlOeHi4wfZnn30WcrlcO53SbMuWLbCxscGMGTMeOHZbxjh27BgA4Mcff8Rbb72lt1y9ehVNTU3aqatTp04BACIiIvS2O3r0aNjYtG1yQQjRpqWl8z3UPsx35ru54LRkF3ByckJCQgISEhIAANXV1Vi2bBnWrl2L559/HuXl5ToXKbRH3759Dba7uLhgypQpyMjIwNmzZxEQEICioiIcPXoUsbGx6NOnzwPHbssYlZWVAIDPPvvsvmPW1dUB+PVnAcBgHNbW1p0ypdVWCoUCwL9jvZdardbp190x3/VZUr5LBYubCSgUCqxZswZfffUVysrKUFBQgLCwMAC/Xj12584dg++rrq5u8Rfo/W6wnDVrFjIyMvDpp58iLS1Ne7L8fifW2zuGs7MzACAzMxNTpkx54LjN+1NRUaG3rrGxEdevX4enp2er4+yMcxAODg5wd3dHSUkJGhsb9c67NZ9r6+73ubWE+f5vlpDvktF1M6B0r4CAAAFAnDhxQtvm6uoq/Pz89PqWlJQYnI9vPgdRUlLS4nYaGhpEr169hI+Pj2hsbBT+/v7CyclJ3Lx5U69vS/fZtHaMbdu2CQBi2bJl99/5f7GUcxCJiYkCgMjOztZbFxUVJQCI0tLSVsfZHTHfLSff72WJ59wsK1oL8/HHH4u8vDyD67744gshk8mEi4uLqK+v17ZPnDhRABDff/+9tk2j0Yinnnqq3R92IYR48cUXBQCRlpYmAAilUmmw3/1uIm3NGPX19cLHx0fY2dkZLAQNDQ3i8OHD2tdVVVXC2dlZODg4iB9//FGn39ixY9v8Ye8svIn7wZjv0sn3e1licZMJIYSxjgJJ15NPPoldu3Zh0KBBGDNmDDw8PFBXV4f8/HwcPnwYVlZW2LJli84J6gMHDmDSpEmwt7fHjBkz0LNnT3zzzTdwcXFBWVkZbG1tUVpaqu2vVCqxadMmlJSU3He64dixYxg9ejR69OiB27dvIysrC48//rhev+Yx7t5GW8f44YcfMHnyZFy/fh2PP/44goODIZPJUFZWhsOHD6NXr144f/68tv+mTZugVCrh7OyMxMREKBQK7NmzB/b29lCpVHr7bCrz58/XPn4rLi4OKpUK27Ztg6OjI3Jzc7WXdXdXzHdp5btSqdT++4svvoBarUZSUpK2LSUl5b63VZicqaurlJ0/f1689957Yvz48aJ///7Czs5O2NnZiYEDB4qkpCSd6Zm77dixQwQHBwtbW1vRr18/sXDhQlFTU3PfS6Mf9JesEEL4+/sLAMLLy0s0NjYa7POgx/+0ZgwhhLh8+bJYtGiR8Pf3F3K5XDg7O4uHH35YzJs3T2RlZen1/+KLL0RYWJiQy+WiT58+Yt68eaKystJsHkckhBCNjY1i9erVIjAwUMjlctGrVy8xffp0ceHCBVOHZhaY79LKd3TSFGdX4ZEbERFJDu9zIyIiyWFxIyIiyWFxIyIiyWFxIyIiyWFxIyIiyWFxIyIiyen2xU0IAbVaDd4RQd0B8526i25f3GpqaqBQKFBTU2PqUIg6HfOduotuX9yIiEh6WNyIiEhyWNyIiEhyWNyIiEhy+E3cZDRCCNTV1WlfOzg43Pcbky2N1PePSEpY3Mho6urq8MQTT2hf79q1C46OjiaMyLikvn9EUsJpSSIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhx+n1s3Fvb7zUYdT3anAYq7Xke9uRXCxtZo459cOdtoYxGRtPHIjYiIJIdHbkRE7SCEQF1dnfa1g4MDZDKZCSOiu7G4ERG1Q11dHZ544gnt6127dsHR0dGEEdHdOC1JRESSwyO3LsRpDCKirmF2R25nzpxBQkICBgwYgJ49e8LNzQ2RkZHIzMzU63vu3DlMmjQJjo6OcHV1xaxZs/DLL7+YIOrWaZ7GaF7uLnRERGQ8ZnfkVlZWhpqaGiQlJcHDwwM3b95ERkYGpk2bhnXr1mHBggUAgMuXLyMyMhIKhQKpqamora3FqlWrUFBQgLy8PNjaGu8SdCIisixmV9xiY2MRGxur0/byyy8jLCwM77//vra4paamoq6uDidPnoSPjw8AIDw8HOPHj8fGjRu1/YiIqPsxu2lJQ6ytreHt7Y2qqiptW0ZGBqZMmaItbAAQExODwYMHY/v27SaIkoiIzIXZHbk1q6urw61bt1BdXY3du3dj3759mD59OgCgvLwcFRUVGDFihN77wsPDsXfv3q4Ol4juwQuoyJTMtri9/vrrWLduHQDAysoKTz/9NNasWQMAUKlUAAB3d3e997m7u6OyshIajQZyuVxvvUajgUaj0b5Wq9UtxmBpj6cC+Iiqu1na/19n/N+1Jd+NjfeBkSmZ7bTkq6++im+++QabNm3C5MmT0djYiIaGBgDArVu3AMBg8bKzs9Ppc6+0tDQoFArt4u3t3Ul7QGR6zHfqrsy2uA0ZMgQxMTGYPXs29uzZg9raWkydOhVCCNjb2wOAzl+kzerr6wFA2+deS5cuRXV1tXa5dOlS5+0EkYkx36m7MttpyXvFx8cjOTkZhYWF2unI5unJu6lUKri6uho8qgN+PdpraR2R1DDfqbuymOLWPM1YXV2Nhx56CL1798aJEyf0+uXl5WHo0KFdHB0BgLDugeqQGTqvicwFz8F2L2Y3LVlRUaHXdvv2bWzevBn29vYICAgAADzzzDPYs2ePzjRLVlYWCgsLkZCQ0GXx0l1kMggbW+0CXhlHRCZidkduycnJUKvViIyMhKenJ65evYrPPvsM58+fR3p6uvZqq2XLlmHHjh2Ijo7GokWLUFtbi5UrVyI4OBhz5swx8V4QEZEpmV1xmz59OtavX4+PPvoI169fh5OTE8LCwvDuu+9i2rRp2n7e3t7Izs7G4sWLkZKSAltbW8TFxSE9Pd1szzFw2o7MmaVN2wGcuqOWmV1xS0xMRGJiYqv6BgYGYv/+/Z0ckRH9a9qOiMjcWfpN+GZX3IiIyPQs/SZ8s7ughIiIqKNY3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHJ4KwARdQo+tIBMicWNiDqHxB9awOJt3jpU3PLz8/G///u/OH/+PG7evIlvv/0WAFBWVobjx48jJiYGrq6uRgmUiMisSLx4W7p2F7c33ngD6enpEEIAgM5jWYQQeO6555Ceno5FixZ1PEoiIqI2aNcFJRs2bMCqVaswZcoUnD59GkuXLtVZ7+fnh/DwcOzevdsoQRIREbVFu47c1q5di4cffhgZGRmwsbGBra3+ofmQIUO005RERERdqV1HbmfPnsX48eNhY9Nybezbt6/BLx4lIiLqbO0qbjY2NmhoaLhvnytXrljUE6SJiEg62lXcgoODcfDgQTQ2Nhpc33zlZFhYWIeCIyIiao92Fbe5c+eisLAQv/vd76DRaHTWqdVqKJVKXL16FfPnzzdKkERERG3RrgtK5s6di2+//Rbr16/Htm3b4OLiAgAIDw/HuXPnUFdXB6VSifj4eGPGSkRELQj7/Wajjie70wDFXa+j3txq1Pv6Tq6cbbSxDGn3syX//ve/Y926dejfvz/Ky8shhMCJEyfg4+ODjz76CJ988okx4yQiImq1Dj04ef78+Th16hRqa2tx+fJlqNVqnDlzBsnJye0e84cffsDLL7+MwMBAODg4wMfHB88++ywKCwv1+p47dw6TJk2Co6MjXF1dMWvWLPzyyy8d2SUiIpIAozxb0t7eHvb29sYYCu+++y6OHDmChIQEhISE4OrVq1izZg2GDx+OY8eOISgoCABw+fJlREZGQqFQIDU1FbW1tVi1ahUKCgqQl5dn8N47oo7gswSJLIfZPTh58eLF+Pvf/65TnKZPn47g4GC888472LJlCwAgNTUVdXV1OHnyJHx8fAD8es5v/Pjx2LhxIxYsWGCS+EnC+CxBIovRrmlJKysrWFtb33exsbGBq6srRo8ejffeew+3bt1q1diPPvqo3lGXv78/AgMDce7cOW1bRkYGpkyZoi1sABATE4PBgwdj+/bt7dktIiKSiHYVt8jISISEhEAIASsrK/j5+WHkyJHw8/ODlZUVhBAIDg6Gl5eX9tmTo0aNglqtbleQQgj8/PPPcHNzAwCUl5ejoqICI0aM0OsbHh6O/Pz8dm2HiIikoV3FbcuWLbhx4wZmz56NkpISFBUV4ejRoygqKkJpaSmSkpJQVVWFffv24eeff8b8+fNRUFCA1NTUdgX52Wefoby8HNOnTwcAqFQqAIC7u7teX3d3d1RWVurdf9dMo9FArVbrLERSxXyn7qpdxW3JkiXw8PDAxo0b4eXlpbPO09MTGzZsgIeHB5YsWQJHR0esXbsWAQEB+OKLL9q8rfPnz+Oll17C6NGjkZSUBADaKU65XK7X387OTqfPvdLS0qBQKLSLt7d3m2MishTMd+qu2lXcvv32W0RHR9+3z9ixY7XfCmBlZYWIiAhcvHixTdu5evUq4uLioFAo8Pnnn8Pa2hoAtFdmGjo6q6+v1+lzr6VLl6K6ulq7XLp0qU0xEVkS5jt1V+26WrK+vl47NdgSlUqlc/Tk5OR0328RuFd1dTUmT56MqqoqHD58GB4eHtp1zdORhmJQqVRwdXU1eFQH/Hq019I6IqlhvlN31a4jt+HDh2Pr1q3Izc01uP748ePYtm2bzoOTi4uL0bdv31aNX19fj6lTp6KwsBB79uxBQECAznpPT0/07t0bJ06c0HtvXl4ehg4d2vqdISIiyWnXkdvbb7+N8ePHIyIiAtOmTcOYMWPQp08fVFRU4MiRI8jMzISVlRVWrFgBAKitrcX+/fvx7LPPPnDsxsZGTJ8+Hbm5udi1axdGjx5tsN8zzzyDTZs24dKlS9rzCFlZWSgsLMRrr73Wnt0iIiKJaFdxGzt2LPbs2YMFCxbgyy+/xJdffgmZTAYhBADAx8cHH3/8McaOHQvg13NuOTk58PT0fODYr7/+Onbv3o2pU6eisrJSe9N2s5kzZwIAli1bhh07diA6OhqLFi1CbW0tVq5cieDgYMyZM6c9u0VERBLR7ieUTJgwAcXFxcjJycGpU6egVqvh7OyM0NBQPPbYY7CysoJGo4FcLkfPnj0RGhraqnH/8Y9/AAAyMzORmZmpt765uHl7eyM7OxuLFy9GSkoKbG1tERcXh/T0dJ5jICLq5jr0+C0rKytERkYiMjJSp/3//u//sH79emzduhXXr19v05jff/99q/sGBgZi//79bRqfiIikz2jPlqyqqsKWLVuwfv16nD59GkIIoz1MmYiIqC06XNyav7R0165d0Gg0EEJg9OjRmDNnjvaJIkRERF2pXcXt0qVL2LBhAzZs2ICLFy9CCAFPT0+Ul5dDqVTyi0qJiCycpX/FU6uL2+3bt/Hll19i/fr1yMrKQmNjIxwcHPDb3/4Ws2fPxuOPPw4bG5s23ahNRERmysK/4qnVlcjDwwOVlZWQyWSIjo7G7Nmz8fTTT8PBwaEz4yMiImqzVhe369evw8rKCq+99hreeOMN9O7duzPjIiIiardWP35LqVTC3t4e77//Pry8vDBt2jTs2LEDDQ0NnRkfERFRm7W6uH3yySdQqVRYt24dhg8fjj179iAxMRF9+/ZFcnIycnJyOjNOIiKiVmvTg5MdHR0xb9485Obm4syZM3j11Vdha2uLv/71rxg7dixkMhl+/PFHlJWVdVa8RERED9SubwUAgIcffhjp6ekoLy/H9u3bMWHCBMhkMhw+fBgDBw7EuHHj8OmnnxozViIiolZpd3FrZmNjg/j4eOzbtw+lpaX4z//8T/j6+uK7776DUqk0QohERERt0+HidjcvLy+8+eabKCoqwjfffIPExERjDk9ERNQqnXbH9bhx4zBu3LjOGp6IiKhFRj1yIyIiMgcsbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDlmV9xqa2uxfPlyTJo0Ca6urpDJZNi4caPBvufOncOkSZPg6OgIV1dXzJo1C7/88kvXBkxERGbH7L42+9q1a1ixYgV8fHwQGhqK77//3mC/y5cvIzIyEgqFAqmpqaitrcWqVatQUFCAvLw82Npa7jfIEhFRx5hdcXN3d4dKpUK/fv1w4sQJPPLIIwb7paamoq6uDidPnoSPjw8AIDw8HOPHj8fGjRuxYMGCrgybiIjMiNlNS8rlcvTr1++B/TIyMjBlyhRtYQOAmJgYDB48GNu3b+/MEImIyMyZXXFrjfLyclRUVGDEiBF668LDw5Gfn2+CqIiIyFyY3bRka6hUKgC/TmHey93dHZWVldBoNJDL5XrrNRoNNBqN9rVare68QIlMjPlO3ZVFHrndunULAAwWLzs7O50+90pLS4NCodAu3t7enRcokYkx36m7ssjiZm9vDwA6f5E2q6+v1+lzr6VLl6K6ulq7XLp0qfMCJTIx5jt1VxY5Ldk8Hdk8PXk3lUoFV1dXg0d1wK9Hey2tI5Ia5jt1VxZ55Obp6YnevXvjxIkTeuvy8vIwdOjQrg+KiIjMhkUWNwB45plnsGfPHp1plqysLBQWFiIhIcGEkRERkamZ5bTkmjVrUFVVhStXrgAAMjMzcfnyZQDAwoULoVAosGzZMuzYsQPR0dFYtGgRamtrsXLlSgQHB2POnDmmDJ+IiEzMLIvbqlWrUFZWpn29c+dO7Ny5EwAwc+ZM7VVf2dnZWLx4MVJSUmBra4u4uDikp6fzHAMRUTdnlsWttLS0Vf0CAwOxf//+zg2GiIgsjsWecyMiImoJixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUkOixsREUmORRc3jUaDP/zhD/Dw8IC9vT1GjhyJb775xtRhERGRiVl0cVMqlXj//ffx29/+FqtXr4a1tTViY2ORk5Nj6tCIiMiEbEwdQHvl5eVh69atWLlyJZYsWQIAmD17NoKCgvDGG2/g6NGjJo6QiIhMxWKP3D7//HNYW1tjwYIF2jY7Ozs8//zzyM3NxaVLl0wYHRERmZLFFrf8/HwMHjwYzs7OOu3h4eEAgH/84x8miIqIiMyBxU5LqlQquLu767U3t125csXg+zQaDTQajfZ1dXU1AECtVuv1bdTcMkaoXcrQfrTE0vavLfsGSGv/nJycIJPJ2jwm8/3fLG3/mO9tz3cdwkINGDBATJ48Wa+9qKhIABD//d//bfB9y5cvFwC4cLGopbq6ul2fE+Y7F0tc2pvvd5MJIQQsUFBQEPr27YusrCyd9rNnzyIwMBAff/wxkpOT9d5371+yTU1NqKysRK9evTr+l0IrqNVqeHt749KlS3pTqlLA/escxjpyY74bF/evcxjjyM1ipyXd3d1RXl6u165SqQAAHh4eBt8nl8shl8t12lxcXIwe34M4OztL8sPQjPtnHpjvXYP7Z34s9oKSoUOHorCwUG/e9vjx49r1RETUPVlscYuPj0djYyP+8pe/aNs0Gg02bNiAkSNHwtvb24TRERGRKVnstOTIkSORkJCApUuXoqKiAoMGDcKmTZtQWlqK9evXmzq8FsnlcixfvlxvqkgquH90N6n/vLh/5stiLygBgPr6erz55pvYsmULbty4gZCQELz99tuYOHGiqUMjIiITsujiRkREZIjFnnMjIiJqCYsbERFJDotbFykoKEB8fDx8fX1hZ2cHT09PjB8/Hh9++KGpQzOaoqIiJCcnY8CAAbCzs4OzszPGjBmD1atX49Yty3o00L3OnDmDmTNnwtPTE3K5HB4eHpg5cybOnj1r6tDMEvOd+W5qPOfWBY4ePYro6Gj4+PggKSkJ/fr1w6VLl3Ds2DEUFRXhwoULpg6xw7766iskJCRALpdrv3qooaEBOTk5yMjIgFKp1Lltw5Ls3LkTM2bMgKurK55//nn0799fe1VuZWUltm3bhieeeMLUYZoN5jvz3Sx0+AFe9ECxsbGid+/e4saNG3rrfv75564PyMiKi4uFo6OjGDJkiLhy5Yre+p9++kl88MEHJois4y5cuCB69uwphgwZIioqKnTW/fLLL2LIkCHC0dFRFBcXmyhC88N8Z76bAxa3LvDQQw+JqKgoU4fRaX73u98JAOLIkSOmDsXokpOTBQBx6NAhg+uzs7MFAPHCCy90cWTmi/luuaSU75yW7AITJ05Ebm4ujh49iqCgIFOHY3ReXl6Qy+UoKioydShG5+npCVtbW5SUlLTYp3///rhz5w6/IPdfmO+WS0r5zgtKusCSJUtw8+ZNDB06FI8++ij+8Ic/4MCBA7h9+7apQ+swtVqN8vJyBAcHmzoUo6uursaVK1cQGhp6334hISG4fPkyampquigy88Z8t0xSy3cWty4wfvx45ObmYtq0aTh16hTee+89TJw4EZ6enti9e7epw+uQ5gdXOzk5mTgS42v+8D5o35rXm/uHvasw3y2T1PKdxa2LPPLII9i5cydu3LiBvLw8LF26FDU1NYiPj7eoy2vv1fw1GOae6O3R2g9xTU0NZDIZ3NzcuiIsi8B8tzxSy3cWty5ma2uLRx55BKmpqfjoo49w+/Zt7Nixw9RhtZuzszM8PDzwz3/+09ShGJ1CoYCHhwdOnz59336nT5+Gl5cXbG1tuygyy8F8txxSy3cWNxMaMWIEgH9/waqlmjJlCoqKipCbm2vqUIxu6tSpKCkpQU5OjsH1hw8fRmlpKRISEro4MsvDfDd/ksp3U1+u2R0cPHhQNDU16bW/++67AoB4//33TRCV8Vy4cEE4ODiIgIAAcfXqVYPrLfW+n59++kn07NlTBAQEiGvXrumsu379uggICBDOzs4Wcd9PV2G+M9/NAW8F6AJBQUG4efMmnnrqKQwZMgQNDQ04evQotm3bBm9vb+Tn58PFxcXUYXbI7t27MX36dNjb2+s8seHo0aPYsWMHlEol1q1bZ+ow2yUjIwMzZsyAm5ub3hMbbty4ga1bt2LatGmmDtNsMN+Z72bB1NW1O9i3b5+YO3eu9u5+W1tbMWjQILFw4UJJPLGhWWFhoZg/f77w8/MTtra2wsnJSYwZM0Z8+OGHor6+3tThdUhBQYF47rnnRL9+/YSVlZUAIOzs7MSZM2dMHZrZYb4z380Bj9yI2mHz5s1QKpWYOXMmNm/ebOpwiDqVJea7jakDILJEs2fPhkqlQkpKCry8vJCammrqkIg6jSXmO4/ciIhIcngrABERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LG+koLS2FTCaDUqk0WQxRUVGQyWRduk1z2G/qeubw/8587xwsbmaqOfnut/j5+Zk6TCKjYL6TsfHxW2Zu4MCBmDlzpsF1lv5kdaJ7Md/JWFjczNygQYPw1ltvmToMoi7BfCdj4bSkRMhkMkRFRaG8vBzPPfcc3Nzc4OTkhLi4OBQXFwMAzp07hyeffBKurq5wcnJCfHw8fv755xbHPHPmDOLi4uDi4gJHR0dMmDABJ0+e1Ot38uRJvPzyywgKCoJCoYC9vT2Cg4Pxzjvv4Pbt23r9/fz84Ofnh6qqKrz88svw9vaGjY0NNm7ceN993LZtG+RyOUJDQ3W+zfnQoUOYOnUq3NzcIJfL4e/vj//4j//AzZs39cZobGzEu+++i0GDBsHOzg6DBg1CWloampqa7rttMi/Md+b7A5n2G3eoJSUlJQKAmDhxYqv6AxAhISHCz89PjBo1SixevFhMmTJFABADBgwQBQUFwsXFRYwbN068/vrrIioqSgAQ0dHRBrcbEREhFAqFiI6OFikpKWLGjBnCxsZG9OzZUxw7dkznPcnJycLDw0MkJiaK3//+9+Kll14SgYGBAoB4+umn9WL19fUV/fr1E8OGDRP+/v7ixRdfFK+88orYu3evEEKIsWPHintT83/+53+ETCYTkZGRoqqqStu+du1aIZPJxG9+8xsxe/ZssWTJEu2+Pfroo0Kj0eiMM3fuXAFA9O/fXyxevFi8+OKLws3NTfuzSkpKatXPm4yL+c58NzYWNzPV/KEbOHCgWL58ucFl37592v4ABADx2muv6YzzwgsvCADCxcVFfPDBB9r2pqYmERsbKwCIkydP6m0XgEhJSdEZ6+uvvxYARHBwsE57WVmZuHPnjk5bU1OT9oOVk5Ojs87X11f7i+zmzZt6+37vh33ZsmUCgHjqqafErVu3tO1nzpwRNjY2IjQ0VFy7dk1njLS0NAFArFq1Stv23XffCQAiNDRU1NbWatsvX74s3NzcJP9hN2fMd+a7sbG4mam7P3QtLYsWLdL2ByAcHR1FXV2dzjiHDh3S/tJoamrSWbd582YBQHzyySd623VxcRE1NTV6cY0bN04AECdOnHjgPpw8eVIAEG+99ZZOe/OH/dSpUwbf1/xhv3Pnjnj++ecFADF//ny9XyivvPKKACAOHTqkN0ZjY6Po3bu3CAsL07bNmTNHABAZGRl6/d9++23Jf9jNGfOd+W5svKDEzE2cOBFff/11q/r6+/ujZ8+eOm3u7u4AgJCQEL17aZrXXblyRW+sYcOGwdHRUa89IiICWVlZyM/PR1hYGACgoaEBa9aswdatW3H+/HnU1tZC3PU1gYbGt7OzQ3Bw8H3355lnnsGuXbvwxz/+Ef/1X/+lt/7YsWMAgP379yMrK0tvfY8ePXD+/Hnt61OnTmn3wdB+kekx35nvxsLiJiHOzs56bTY2Ng9cZ+gkeN++fQ1uo7m9urpa2xYfH4/MzEwMHjwY06dPR58+fdCjRw9UVVVh9erV0Gg0euP06dPngTeuHjp0CHZ2doiNjTW4vrKyEgDwpz/96b7jNKuuroaVlRXc3Nxa3C+yHMz3++vu+c7iRga1dFVZc7tCoQAA/PDDD8jMzMTEiRPx1VdfwdraWtv32LFjWL16tcFxWvNEhqysLMTExGDSpEn4+uuv8eijj+qsb/4Fplar4eTk9MDxFAoFmpqacO3aNfTu3dvgflH3xHyXHt4KQAbl5+ejtrZWr/3w4cMAfp3GAYCioiIAQFxcnM4H/e6+7TVs2DAcPHgQtra2mDRpEo4cOaKzfuTIkQD+PV3zIKGhoS3G1dFYybIx36WHxY0Mqqqq0pv+aJ7rDwoK0p5/8PX1BQDk5OTo9D1z5gzS0tI6HEdoaCgOHjwIuVyOSZMm6WznxRdfhI2NDRYuXIiLFy8a3If8/Hzt61mzZgEAVqxYgbq6Om17eXl5i39xU/fAfJceTkuauQsXLtz3iQ0pKSmws7Mz+nYjIiLw0Ucf4fjx4xg1ahRKS0uxY8cO2Nvb429/+5u2X3h4OMLDw7F9+3aoVCqMGjUKFy9exO7duxEXF4fPP/+8w7GEhITg4MGDGDduHCZPnoy9e/ciIiICQUFBWLt2LV544QU89NBDiI2NxcCBA1FTU4Pi4mJkZ2dDqVTi448/BgBER0djzpw52LBhA4KDg/HUU09Bo9Fg27ZtGDVqFPbs2dPhWKljmO/Md6Mx9eWaZFhrLo0GIG7cuCGE+PXS6LFjx7Y4jqFLfpvvg1m+fLnB/v/85z9FbGyscHZ2Fg4ODiImJsbgJdEVFRVi7ty5wsPDQ9jZ2Yng4GDx5z//WRQXFxvctq+vr/D19W1x3w3d1CqEEAUFBaJPnz7CwcFBZGdna9vz8vJEYmKi8PDwED169BBubm5i+PDhIiUlRZw7d05njDt37oi0tDQxYMAAYWtrKwYMGCBSU1PFhQsXJH9ptDljvjPfjU0mxF3XsBIREUkAz7kREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHk/D9vTJLAVVo5twAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtgUlEQVR4nO3deXxM5/4H8M8kkckepUQisjRiTVRQW5AgglqvWltLWkF7VbS9SrlcW9FbQrWqtIglcVOx1HLrIiGufemN0toiG4mgtmxkf35/+GVqzCRmJpPMzMnn/Xqd16vznHOe853pN77nPGeTCSEEiIiIJMTM0AEQERHpG4sbERFJDosbERFJDosbERFJDosbERFJDosbERFJDosbERFJDosbERFJDosbERFJDosbKfHw8ICHh4ehw1AwtnhIWowtv4wtHlPG4lbF8vLysHjxYrRp0wZ2dnaQy+VwdXVF165dMXPmTCQlJRk6RNJQaWkpvvnmG/j6+sLa2hr16tXDqFGjkJycbOjQjAbzXRru3buHJUuWYOjQofD09IRMJoNMJjN0WFqxMHQAUpaTk4MuXbrg4sWLaNy4MUaPHo26devi/v37OHv2LL744gt4eXnBy8vL0KEqxMXFGToEozVp0iSsW7cOLVu2RFhYGG7fvo1t27bh4MGDOH36NLy9vQ0dokEx36Xj8uXLmDVrFmQyGby9vWFjY4MnT54YOiztCKoyCxYsEABEaGioKC0tVZmfnJwsrly5YoDITIe7u7twd3c3dBji8OHDAoDo1q2bKCgoULT//PPPAoAIDg42YHTGgfleecaS73fu3BFHjx4V2dnZQgghmjZtKkytXHBYsgqdOnUKADB58mS1h/Senp5o1qyZUptMJkNgYKDa/tSNx4eEhEAmkyE5ORnh4eFo0aIF5HI5QkJCsHDhQshkMmzevFltfzt37oRMJsPf//73crehSx8AkJKSgtDQULi5uUEul8PZ2RkhISFIS0tT28/u3bvxxhtvwNraGk5OTpgwYQIePXqkdllD+OGHHwA8+z0sLS0V7X379kVgYCAOHjyImzdvGio8o8B8l06+Ozk5oVu3brC3tzd0KDpjcatCdevWBQBcv369yrc1ZcoULF68GO3atcNHH30EX19fjB49GjKZDJGRkWrX2bJlCwBgzJgx5farSx9nzpyBn58fNm3ahLZt22Lq1Kno2rUroqKi0L59e5VzVJs3b8bgwYNx/fp1jBkzBuPGjcOJEycQFBSEwsJCrX6HqhIfHw9bW1v4+/urzOvduzcA4OjRo9UdllFhvksn36WA59yq0LBhwxAZGYnQ0FCcPXsWwcHBaNu2reIfAX26ePEiEhIS4ObmptTu7++Pw4cPIzMzE87Ozor2hw8f4ueff0a7du1U9qaf5+npqVUfRUVFGDlyJEpLS3H27Fn4+fkplj9+/DgCAwMxdepU7N27FwCQnZ2NKVOmwNbWFufOnUOTJk0AAIsWLUJQUBAyMzPh7u6u8e8wb948jZcFnh0JvOzqtLy8PGRmZsLHxwfm5uYq88vOtSUmJmq1balhvksj3yXD0OOiUhceHi7s7OwEAMXk5eUlJk+eLK5fv66yPAAREBCgti914/Hjxo0TAMTKlSvVrrN27VoBQISHhyu1r169WgAQX3311Uu3oU0fO3fuFADEggUL1MYzZMgQYWZmJrKysoQQQmzatEkAEFOmTFFZ9tixYwKAVucgnv+dNZmOHDny0j4zMjIEAOHv7692/sGDBwUAERYWpnGcUsV8V2aK+a4Oz7mRik8++URxVd1HH32ELl264ObNm/j222/RqlUr7NmzRy/bad++vdr24cOHQy6XK4ZTykRGRsLCwgKjRo16ad/a9HH69GkAwLVr1zBv3jyV6c6dOygtLVUMXf36668AgK5du6pst1OnTrCw0G5wQQih1VTe+R7SDfOd+W4sOCxZDezt7TFs2DAMGzYMAJCVlYVZs2Zh9erVGD9+PDIyMpQuUtCFk5OT2vbatWujf//+2LFjBy5fvowWLVogKSkJJ0+exJtvvon69eu/tG9t+nj48CEAICoqqsI+8/LyADz7LQCojcPc3LxKhrS05ejoCODPWF+UnZ2ttFxNx3xXZUr5LhUsbgbg6OiIVatW4d///jfS0tJw6dIltG3bFsCzq8eKi4vVrpeVlVXuP6AV3WA5ZswY7NixA1u2bMGSJUsUJ8srOrGuax8ODg4AgL1796J///4v7bfs+9y7d09lXklJCR48eICGDRtqHGdVnIOwtbWFs7MzUlJSUFJSonLerexcW02/z608zPc/mUK+S0b1jYDSi1q0aCEAiPPnzyva6tSpIzw8PFSWTUlJUTseX3YOIiUlpdztFBYWirp16wo3NzdRUlIivL29hb29vXjy5InKsuXdZ6NpHz/++KMAIGbNmlXxl/9/pnIOYuTIkQKAOHr0qMq8wMBAAUCkpqZqHGdNxHw3nXx/kSmeczOtaE3MmjVrxNmzZ9XO27Vrl5DJZKJ27doiPz9f0d67d28BQMTHxyvaCgoKxF/+8hed/9iFEOKvf/2rACCWLFkiAIiQkBC1y1V0E6kmfeTn5ws3NzdhZWWlthAUFhaKY8eOKT4/fvxYODg4CFtbW3Ht2jWl5QICArT+Y68qvIn75Zjv0sn3F5licZMJIYS+jgJJ2eDBg7F79240btwY/v7+cHFxQV5eHhISEnDs2DGYmZkhMjJS6QT1wYMH0adPH1hbW2PUqFGwsbHBoUOHULt2baSlpcHS0hKpqamK5UNCQrBp0yakpKRUONxw+vRpdOrUCbVq1UJRURHi4uLQo0cPleXK+nh+G9r2ce7cOfTt2xcPHjxAjx494OvrC5lMhrS0NBw7dgx169bF1atXFctv2rQJISEhcHBwwMiRI+Ho6Ih9+/bB2toamZmZKt/ZUCZMmKB4/Fa/fv2QmZmJH3/8EXZ2djh16pTisu6aivkurXwPCQlR/PeuXbuQnZ2NcePGKdo+++yzCm+rMDhDV1cpu3r1qvjyyy9Fr169hKenp7CyshJWVlbCy8tLjBs3Tml45nkxMTHC19dXWFpaigYNGogpU6aInJycCi+NftmerBBCeHt7CwDC1dVVlJSUqF3mZY//0aQPIYRIT08XU6dOFd7e3kIulwsHBwfRvHlzERoaKuLi4lSW37Vrl2jbtq2Qy+Wifv36IjQ0VDx8+NBoHkckhBAlJSVi5cqVomXLlkIul4u6deuKESNGiBs3bhg6NKPAfJdWvqOKhjirC4/ciIhIcnifGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSU6NL25CCGRnZ4N3RFBNwHynmqLGF7ecnBw4OjoiJyfH0KEQVTnmO9UUNb64ERGR9LC4ERGR5Bhtcfvf//6HgQMHok6dOrCxsYGPjw++/vprpWVOnjyJLl26wMbGBg0aNEBYWBhyc3MNFDERERkLo3xZ6cGDBzFgwAD4+flhzpw5sLOzQ1JSEtLT0xXLXLhwAT179kTz5s2xfPlypKenY9myZUhMTMT+/fsNGD0RERma0RW37OxsjB07Fv369cP27dthZqb+4HLWrFl45ZVXEB8fr3gbroeHByZMmICDBw8iODi4OsMmPRNCIC8vT/HZ1ta2wrcvExE9z+iGJbdu3Yq7d+9i0aJFMDMzQ15eHkpLS5WWyc7OxqFDhzB69GhFYQOAsWPHws7ODtu2bavusEnP8vLyMGjQIMX0fKEjInoZoytusbGxcHBwQEZGBpo2bQo7Ozs4ODjggw8+QH5+PgDg0qVLKC4uRrt27ZTWtbS0ROvWrZGQkGCI0ImIyEgY3bBkYmIiiouLMWjQIIwfPx5LlixBfHw8vvnmGzx+/Bj/+te/kJmZCQBwdnZWWd/Z2RnHjh0rt/+CggIUFBQoPmdnZ+v/SxAZCea7aeAwvP4ZXXHLzc3FkydP8P777yuujhwyZAgKCwuxdu1aLFiwAE+fPgUAyOVylfWtrKwU89VZsmQJ5s+fXzXBExkZ5rtpKBuGL7N7927Y2dkZMCLTZ3TDktbW1gCAUaNGKbW//fbbAIBTp04plnl+j7RMfn6+Yr46M2fORFZWlmK6deuWvkInMjrMd6qpjO7IzcXFBb///jucnJyU2uvXrw8AePToEby8vABAMTz5vMzMTLi4uJTbv1wuV3vERyRFzHeqqYzuyK1t27YAgIyMDKX227dvAwDq1asHHx8fWFhY4Pz580rLFBYW4sKFC2jdunW1xEpERMbJ6Irb8OHDAQDr169Xal+3bh0sLCwQGBgIR0dHBAUFITIyUukBsFu2bEFubi6GDRtWrTETEZFxMbphST8/P7z33nvYsGEDiouLERAQgPj4eMTExGDmzJmKIcdFixahc+fOCAgIwMSJE5Geno7w8HAEBwejT58+Bv4WVY9XVxERlc/oihsArFmzBm5uboiIiMCuXbvg7u6OFStW4KOPPlIs06ZNG8TGxmLGjBn4+OOPYW9vr7h1oCbg1VVEROUzyuJWq1YtzJ07F3Pnzq1wuS5duuDEiRPVFBUREZkKozvnRkREVFksbkREJDksbkREJDlGec6NSF94VSlRzcTiRpLGq0qJaiYOSxIRkeTwyI30hkOARGQsWNxIbzgESETGgsXNyLX9dLPadllxIRyf+xw4JxrCwlJpmV+Wjq3CyIiIjBfPuRERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeTwCSUmSpjXQlarUUqfiYjoGRY3UyWTqTxui4iInmFxI4PiszOJqCqwuFUjvhKGiKh6sLhVI74ShoioerC4kWSoG+LUZHgTqLohzvKGXTXBYVci3bG4ERHpgKcZjBuLGxGRDniawbixuBERVRNeHVx9+IQSIiKSHKMvbosWLYJMJoOPj4/KvJMnT6JLly6wsbFBgwYNEBYWhtzcXANESURExsSohyXT09OxePFi2Nraqsy7cOECevbsiebNm2P58uVIT0/HsmXLkJiYiP379xsgWiIiMhZGXdymTZuGjh07oqSkBPfv31eaN2vWLLzyyiuIj4+Hg4MDAMDDwwMTJkzAwYMHERwcbIiQiYjICBjtsOR///tfbN++HV999ZXKvOzsbBw6dAijR49WFDYAGDt2LOzs7LBt27ZqjJSIiIyNUR65lZSUYMqUKQgNDYWvr6/K/EuXLqG4uBjt2rVTare0tETr1q2RkJBQXaHWWMZ4wzQRURmjLG5r1qxBWloaYmNj1c7PzMwEADg7O6vMc3Z2xrFjx8rtu6CgAAUFBYrP2dnZlYyWagpTvGnXkPluir8XSUeliltCQgL+9a9/4erVq3jy5ImiGKWlpeHMmTMICgpCnTp1tOrzwYMH+Mc//oE5c+agXr16apd5+vQpAEAul6vMs7KyUsxXZ8mSJZg/f75WMREBpnnTriHz3RR/L5IOnc+5TZ8+He3atcOyZcuwb98+HDlyRDFPCIG3334bW7Zs0brf2bNno06dOpgyZUq5y1hbWwOA0h5pmfz8fMV8dWbOnImsrCzFdOvWLa1jJDIVzHeqqXQqbhEREVi2bBn69++PixcvYubMmUrzPTw80L59e+zZs0erfhMTE/H9998jLCwMt2/fRmpqKlJTU5Gfn4+ioiKkpqbi4cOHiuHIsuHJ52VmZsLFxaXcbcjlcjg4OChNRFLFfKeaSqdhydWrV6N58+bYsWMHLCwsYGmpetFAs2bNyj1nVp6MjAyUlpYiLCwMYWFhKvM9PT0xdepUzJ8/HxYWFjh//jyGDx+umF9YWIgLFy4otRkKL7ggkg5d/575t2w4OhW3y5cvY8KECbCwKH91Jycn3Lt3T6t+fXx8sGvXLpX22bNnIycnBytXroSXlxccHR0RFBSEyMhIzJkzB/b29gCALVu2IDc3F8OGDdPuCxGRUePFKaQtnYqbhYUFCgsLK1zm9u3bWp88fvXVVzF48GCV9rJ73Z6ft2jRInTu3BkBAQGYOHEi0tPTER4ejuDgYPTp00er7RKRcePFKZrhTsCfdCpuvr6+OHz4MEpKSmBubq4yv+zKybZt21Y6wPK0adMGsbGxmDFjBj7++GPY29tj/PjxWLJkSZVtk4jImHEn4E86Fbf33nsPoaGheP/997Fq1SqlednZ2QgNDcWdO3ewcuVKvQQZHx+vtr1Lly44ceKEXrZBRETSoXNxi42Nxfr16/Hjjz+idu3aAID27dvjypUryMvLQ0hICIYOHarPWImIiDSi831uW7duxdq1a+Hp6YmMjAwIIXD+/Hm4ubnhu+++w4YNG/QZJxERkcYq9YSSCRMmYMKECXj69CkePXoEBweHGju+S8ZJmNdCVqtRSp+JSPr08mxJa2vrCp8KQmQwMpnaewmJSNqM8sHJRDziMi18aAEZG53OuZmZmcHc3LzCycLCAnXq1EGnTp3w5ZdfVvgwYyIV/3/EVTahht6rQ0S60am4devWDa1atYIQAmZmZvDw8ECHDh3g4eEBMzMzCCHg6+sLV1dXxbMnO3bsyNfLEBFRtdBpWDIyMhJdunTB2LFj8fnnn8PV1VUxLyMjA7Nnz0Z8fDyOHz8OR0dHTJs2Dd9//z0WL16ML774Qm/BE5G0qBveBPgcR9KeTkdu06ZNg4uLCzZu3KhU2ACgYcOGiIiIgIuLC6ZNmwY7OzusXr0aLVq0UPvcSCIiU1R2Xrhs4nlh46LTkVtsbCwmTZpU4TIBAQH44YcfADw7R9e1a1ds3LhRl80RERkfA1+Jy4t4KqZTccvPz1f7LrXnZWZmKl1EYm9vX+FbBIyZvh5GyisAiYiqh07Vpk2bNoiOjsaECRPQqVMnlflnzpzBjz/+iDfeeEPRlpycDCcnJ90jNSC9PYyU91yZDL6/i8i06VTcFi5ciF69eqFr164YOHAg/P39Ub9+fdy7dw8nTpzA3r17YWZmhgULFgAAcnNzceDAAaN4iSgREUmfTsUtICAA+/btw8SJE/HTTz/hp59+gkwmgxACAODm5oY1a9YgICAAwLNzbsePH0fDhg31FznpDd8BRURSo/NJsODgYCQnJ+P48eP49ddfkZ2dDQcHB7z++uvo0qULzMzMUFBQALlcDhsbG7z++uv6jJv0iO+AIiKpqdQVHmZmZujWrRu6deum1P6///0P69evR3R0NB48eFCpAKsT77Eh0h9eQEWGpLfLFx8/fozIyEisX78eFy9ehBCCD1OuYfiPGSnhBVRkQJUubmUvLd29ezcKCgoghECnTp3w7rvvYsSIEfqIkUwF/zGTBGM8B8sdJ9KWTsXt1q1biIiIQEREBG7evAkhBBo2bIiMjAyEhITwRaVEJswoz8Fyx4m0pHFxKyoqwk8//YT169cjLi4OJSUlsLW1xTvvvIOxY8eiR48esLCwMNkbtYmIDIVHpvqncSVycXHBw4cPIZPJ0L17d4wdOxZDhgyBra1tVcZnFJh4RFSleGSqdxoXtwcPHsDMzAwff/wxpk+fjnr16lVlXMaFiUdEJoA74n/S+K0AISEhsLa2xvLly+Hq6oqBAwciJiYGhYWFVRkfERFpii/5VdC4uG3YsAGZmZlYu3Yt2rRpg3379mHkyJFwcnLCpEmTcPz48aqMk4io0oQQyM3NVUxlT1UiVab+W2l19YednR1CQ0MRGhqKK1euYN26dYiMjMQPP/yAdevWQSaT4dq1a0hLS4O7u3tVxUxEelATH1pglFeCGilT/610elkpADRv3hzh4eHIyMjAtm3bEBwcDJlMhmPHjsHLyws9e/bEli1b9BkrERGRRnQubmUsLCwwdOhQ7N+/H6mpqZg/fz7c3d1x5MgRhISE6CFEIiIi7VS6uD3P1dUVc+bMQVJSEg4dOoSRI0fqs3siIiKN6LW4Pa9nz56IiorSer1z587hww8/RMuWLWFraws3NzcMHz4c169fV1n2ypUr6NOnD+zs7FCnTh2MGTMGf/zxhz7CJyIiE2Z0jxP55z//iRMnTmDYsGFo1aoV7ty5g1WrVqFNmzY4ffo0fHx8AADp6eno1q0bHB0dsXjxYuTm5mLZsmW4dOkSzp49C0tL3pdGRFRTGV1x++STT7B161al4jRixAj4+vriiy++QGRkJABg8eLFyMvLwy+//AI3NzcAQPv27dGrVy9s3LgREydONEj8RKaONwKTFFTZsKSuOnfurHLU5e3tjZYtW+LKlSuKth07dqB///6KwgYAQUFBaNKkCbZt21Zt8RJJDm8EJgkwuiM3dYQQuHv3Llq2bAkAyMjIwL1799CuXTuVZdu3b4+ff/65ukOkGoBHNESmwySKW1RUFDIyMrBgwQIAQGZmJgDA2dlZZVlnZ2c8fPgQBQUFkMvlKvMLCgpQUFCg+JydnV1FUZPkmOAzRpnvVFMZ3bDki65evYrJkyejU6dOGDduHADg6dOnAKC2eFlZWSkt86IlS5bA0dFRMTVq1KiKIicyPOY71VRGXdzu3LmDfv36wdHREdu3b4e5uTkAwNraGgCU9kjL5OfnKy3zopkzZyIrK0sx3bp1q4qiJzI85jvVVEY7LJmVlYW+ffvi8ePHOHbsGFxcXBTzyoYjy4Ynn5eZmYk6deqoPaoDnh3tlTePSGqY71RTGWVxy8/Px4ABA3D9+nXExsaiRYsWSvMbNmyIevXq4fz58yrrnj17Fq1bt66mSImIyBgZ3bBkSUkJRowYgVOnTiEmJgadOnVSu9xbb72Fffv2KQ2zxMXF4fr16xg2bFh1hUtEREbI6I7c/va3v2HPnj0YMGAAHj58qLhpu8zo0aMBALNmzUJMTAy6d++OqVOnIjc3F0uXLoWvry/effddQ4RORERGwuiK24ULFwAAe/fuxd69e1XmlxW3Ro0a4ejRo/jkk0/w2WefwdLSEv369UN4eDjPMRAR1XBGV9zi4+M1XrZly5Y4cOBA1QVDREQmyejOuREREVWW0R25UdVp++lmte2y4kI4Pvc5cE60ypM4flk6tgojIyLSLx65ERGR5LC4ERGR5HBYkogkSd0wvCZD8ACH4aWAxY2IqAaT6rl4DksSEZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHksLgREZHkWBg6ACKi6iLMayGr1SilzyRNJn3kVlBQgBkzZsDFxQXW1tbo0KEDDh06ZOiwiMhYyWQQFpaKCTKZoSOiKmLSxS0kJATLly/HO++8g5UrV8Lc3Bxvvvkmjh8/bujQiIjIgEx2WPLs2bOIjo7G0qVLMW3aNADA2LFj4ePjg+nTp+PkyZMGjpCIyHSZ+hCuyR65bd++Hebm5pg4caKizcrKCuPHj8epU6dw69YtA0ZHRGTiTHwI12SP3BISEtCkSRM4ODgotbdv3x4AcOHCBTRq1MgQoZkcU99DIyJ6kckWt8zMTDg7O6u0l7Xdvn1b7XoFBQUoKChQfM7KygIAZGdno6Tgqc7xZGdnK33WV18GiamkRH99vSQuY/zNK9NXVcVkb28PmQ57zsx3w/ZljDG92Jc+Y9IXXfNdiTBRr732mujbt69Ke1JSkgAgVqxYoXa9uXPnCgCcOJnUlJWVpdPfCfOdkylOuub782RCCAET5OPjAycnJ8TFxSm1X758GS1btsSaNWswadIklfVe3JMtLS3Fw4cPUbdu3Qr3FLKzs9GoUSPcunVLZShUG/rqx1j7YkxV05e+jtyY78YZkz77kkJM+jhyM9lhSWdnZ2RkZKi0Z2ZmAgBcXFzUrieXyyGXy5XaateurfF2HRwcKp0w+uzHWPtiTIbp60XM96rvx1j7knpML2OyV0u2bt0a169fVxnzPXPmjGI+ERHVTCZb3IYOHYqSkhJ8//33iraCggJERESgQ4cOvFKSiKgGM9lhyQ4dOmDYsGGYOXMm7t27h8aNG2PTpk1ITU3F+vXr9b49uVyOuXPnqgzxGKofY+2LMRmmL32T8m9vjDHpsy+px6Qpk72gBADy8/MxZ84cREZG4tGjR2jVqhUWLlyI3r17Gzo0IiIyIJMubkREROqY7Dk3IiKi8rC4ERGR5LC4VUAmk710mjdvnsb9JSUlYdKkSXjttddgZWUFBwcH+Pv7Y+XKlXj6VLNH4GzcuLHCeE6fPq3Vd0xJScGHH36IJk2awMbGBjY2NmjRogUmT56Mixcvah2PlZUVXFxc0Lt3b3z99dfIycnRKp4yq1evhkwmQ4cOHXRaX93vVL9+fXTv3h379+/XS39l02efffbS9TXJJZlMhvj4eB2+rX4w35nvFfVnavlusldLVoctW7aUO2/evHlISkrSOBn//e9/Y9iwYZDL5YpX8xQWFuL48eP49NNP8fvvvyvd1vAyCxYsgKenp0p748aNNe5j3759GDFiBCwsLPDOO+/g9ddfh5mZGa5evYqdO3fiu+++Q0pKCtzd3TWOp6ioCHfu3EF8fDw++ugjLF++HHv27EGrVq00jgsAoqKi4OHhgbNnz+LGjRtafS91cQkhcPfuXWzcuBFvvvkm9u7di/79++vc3/N8fHxeut6LubR582YcOnRIpb158+Zax6QvzHfme3n9Pc9k8r3SD/CqgX744QcBQEyZMkWj5ZOTk4WdnZ1o1qyZuH37tsr8xMRE8dVXX2nUV0REhAAgzp07p1XML7px44awtbUVzZs3VxtTUVGRWLlypbh586bO8cTFxQlra2vh7u4unjx5onFsycnJAoDYuXOnqFevnpg3b57G674srocPH4patWqJt99+Wy/96Wry5MnCVP78mO+axcN8L58h8p3Dklr6/fffERYWBj8/PyxdulSjdb788kvk5uZi/fr1at9k0LhxY0ydOlXfob40pry8PERERKiNycLCAmFhYZW6Gb5Hjx6YM2cO0tLSEBkZqfF6UVFReOWVV9CvXz8MHToUUVFROsfwotq1a8Pa2hoWFhy00ATzXXPMd+PC4qaFJ0+eYPjw4TA3N0d0dLTGNyTu3bsXr732Gjp37qy3WLKysnD//n2l6cGDBxqvv2/fPjRu3FjnMX5NjRkzBgBw8OBBjdeJiorCkCFDYGlpiVGjRiExMRHnzp3Taftlv9Mff/yB33//HR988AFyc3MxevToSvX3/CRVzHftMd+NR80r55UwZcoUXL58GZs2bUKTJk00Wic7OxsZGRkYNGiQXmMJCgpSaZPL5cjPz9coptu3b2Pw4MEq8x4/fozi4mLFZ1tbW1hbW+scp6urKxwdHZGUlKTR8r/88guuXr2Kb775BgDQpUsXuLq6IioqCm+88YbW23/xd5LL5diwYQN69eqldV/q+gMAIdFbRZnv2mO+Gw8WNw1t3boVGzZswJgxYzB27FiN1yt7sLO9vb1e4/n2229V/sExNzfXKiY7OzuVeYGBgfj1118Vn5cuXYpp06ZVItJn29H0KrKoqCg4OTmhe/fuAJ5ddTVixAhERkYiPDxc4+9Y5vnf6e7du4iMjERoaCjs7e0xZMgQ7b4I1P/uUsR81x3z3TiwuGkgMTER77//Ppo0aYLVq1drtW7Z6x10vUS4PO3bt0e7du10WrfsH57c3FyVeWvXrkVOTg7u3r2r81DGi3Jzc1G/fv2XLldSUoLo6Gh0794dKSkpivYOHTogPDwccXFxCA4O1mrbL/5Oo0aNgp+fHz788EP0798flpaWlepPipjvlcN8Nw4sbi9RUFCAESNGoLCwENHR0Wr3/iri4OAAFxcX/Pbbb1UUofYcHR3h7OysNqaycxKpqal62VZ6ejqysrI0urT58OHDyMzMRHR0NKKjo1XmR0VFaf3H/iIzMzN0794dK1euRGJiIlq2bFmp/qSG+V45zHfjwQtKXmLatGlISEjAl19+CT8/P5366N+/P5KSknDq1Ck9R6e7fv364caNGzh79myVbqfsvhZNHmYdFRWF+vXrIyYmRmUaNWoUdu3apfHNvxUpO8eibk++pmO+Vw7z3YhU640HJmbnzp0CgBg4cGCl+im7x6ZFixbizp07audX930/169fFzY2NqJly5ZqYyq792bp0qU6x1N234+np6d4+vRphf08efJE2Nvbi/fee0/t/BMnTggAIjo6usJ+XhZXYWGh8Pb2FpaWliIrK0ujvirqT1fGeJ8b8535/rL+dGWIfOewZDkyMzMxfvx4mJubo2fPnuXet+Ll5YVOnTpV2JeXlxe2bt2KESNGoHnz5kpPbDh58iRiYmIQEhKiVXz79+/H1atXVdo7d+6M11577aXre3t7Y+vWrRg1ahSaNm2qeGKDEAIpKSnYunUrzMzM4OrqqlU8xcXFuHv3Lg4fPoxDhw7B3d0de/bsgZWVVYXr79mzBzk5ORg4cKDa+R07dkS9evUQFRWFESNGaBTT83EBwL1797B161YkJibis88+q7bX3ZsC5jvzXXKqtZSakCNHjggAL53GjRuncZ/Xr18XEyZMEB4eHsLS0lLY29sLf39/8c0334j8/HyN+ijboypvioiI0Op73rhxQ3zwwQeicePGwsrKSlhbW4tmzZqJ999/X1y4cEHreCwtLUWDBg1Er169xMqVK0V2drZGcQwYMEBYWVmJvLy8cpcJCQkRtWrVEvfv39c6LgDCyspKtG7dWnz33XeitLRUo7he7M+U92Qrwnxnvqvrz5Tzne9zIyIiyeEFJUREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbjVMYGAgZDKZxsvHx8dDJpNh3rx5VRcUURVgrtdsLG5G6pdffsH48ePh7e0NW1tbWFtbw8vLC2PGjMGhQ4cMHZ7OiouLERkZiUGDBqFhw4aQy+WwtbVFkyZNMHr0aOzatQulpaWGDpOqEXOdqgKfLWlkSktLMW3aNKxYsQIWFhbo0aMHfHx8UKtWLSQnJyM2NhaPHj3CggULMGfOHK37DwwMxNGjR6Hp//YnT57g5s2bePXVV/Hqq69qvb3npaWl4S9/+QsSEhLw6quvomfPnnB3d0dpaSlSUlIQHx+PBw8eYPDgwdi1a1eltkXGj7nOXK9KfOWNkZk9ezZWrFiB1q1bY/v27fDy8lKa//TpU6xatQoPHjyolnhsbGzQrFmzSveTnZ2N3r1749q1a5g+fTrmzZsHa2trpWWKioqwdetW7N27t9LbI+PHXGeuV6lqfQcBVSgxMVGYm5uLunXrqn2h4vPKXhly7do18emnnwo/Pz9Rp04dIZfLhbe3t5gxY4bIyclRWS8gIEAAEE+fPhUzZswQjRo1EnK5XDRr1kx8/fXXKq/GKHsVyty5c5Xa3d3dhbu7u8jJyRFhYWHC2dlZWFpaCl9fXxETE6Oy3dmzZ2v8ypSioiKlz3PnzhUAxJEjR0RERITw8/MT1tbWIiAgQGX+i8pe3fH8q1FSUlIUsfz222/izTffFI6OjsLW1lb06tVLnD9//qUxUuUw159hrlcdHrkZkY0bN6KkpASTJk2Ck5NThcvK5XIAwM6dO7F+/Xp0794dgYGBKC0txenTp/HPf/4TR48exX//+1/UqlVLZf3hw4cjISEBb731FgBgx44dCAsLQ2pqKsLDwzWKt6ioCMHBwXj06BHeeustPHnyBNHR0Rg+fDj+85//IDg4WLFsREQEAGg0vGRhoT4tly5diiNHjmDQoEEIDg6Gubm5RnGWJzk5Gf7+/mjTpg0++OADpKWlISYmBt26dcPhw4fRoUOHSvVP5WOuP8Ncr0KGrq70p8DAQAFAxMbGarxOenq6KCgoUGmfP3++ACAiIyOV2sv2Zps2bSoeP36saH/8+LFo2rSpkMlkSi8orGhvFoAYNGiQ0vZjY2MFANG7d29FW1pamgAgGjVqpPH3el7Z3qqtra24ePFiufO13ZsFID777DOl5f/zn/8IAMLX11enWEkzzHX1mOv6w6sljcidO3cAQONX3QNAw4YNYWlpqdL+4YcfAgBiY2PVrjdnzhw4OjoqPjs6OmL27NkQQmDTpk0ab3/FihVK2y87cX7u3DlFW9n3cnFxUdvHV199hXnz5ilNjx8/Vllu4sSJ8PX11Ti2l6lduzb+/ve/K7X17t0bPXv2xKVLl/DLL7/obVukjLnOXK9qHJY0cUIIREREYOPGjfjtt9+QlZWldHnx7du31a7XtWvXctsSEhI02nbt2rXh6emp0u7q6opTp05p1Afw7A8+LS1NqS0kJAS1a9dWamvfvr3GfWrCz88PdnZ2Ku1du3ZFXFwcEhIS0LZtW71uk3THXNddTcx1Fjcj0qBBA1y9ehUZGRlo2rSpRuuEhYVh1apVaNSoEQYOHAhnZ2fFOYr58+ejoKBA7XrqznOUtWVlZWm07ef3hp9nYWGh9I9OWb/l/eOTmpqq+O8+ffrgwIEDGsdcGeX1p+3vQNpjrjPXqxqLmxHx9/dHfHw84uLi0KNHj5cuf+/ePXz77bdo1aoVTp06BRsbG8W8O3fuYP78+eWue/fuXbi5uam0AeX/IevK3d0dDRs2xK1bt5CUlKRyybemynvahJnZs9H14uJilXkV/dGWfd/y2vX9O9CfmOsVY65XHs+5GZGQkBCYm5vj+++/xx9//FHhsgUFBUhOToYQAkFBQUp/7ABw7NixCtdXN7+szc/PT8vIX+7dd98FACxatEjvfb/yyisAgIyMDJV5FQ07JSQkIDc3V6W9Kn8Heoa5rhvmuuZY3IxI48aNMX36dNy/fx99+/ZFSkqKyjL5+flYvnw55s2bB3d3dwDAyZMnlYZG0tPTMXPmzAq3tXDhQqU9vaysLHz++eeQyWQYN26cnr7Rnz799FM0adIEERERmDlzJvLz81WWKS4uRl5entZ9v/HGGwCAzZs3K/0Op06dQlRUVLnrPX78WOUfoAMHDiAuLg4+Pj6SOwdhTJjrzPWqxmFJI/P5558jPz8fK1asQNOmTZUeSZSSkoLY2Fg8ePAAn3/+OZydnfHWW29hx44daNeuHXr27Im7d+9i37596NmzJ5KSksrdTpMmTeDj46N07096ejo++eQTtGvXTu/fy8HBAQcPHsTgwYPxxRdfYN26dQgKCoK7uzuKi4uRmZmJuLg43L17Fz4+Pion2CvSsWNH+Pv74/Dhw+jUqRO6deuGtLQ07N69GwMGDCj38UZdu3bFd999hzNnzqBjx45ITU1FTEwMrK2tsW7dOj19cyoPc525XqUMeR8Cle/cuXPivffeE40bNxbW1tZCLpcLDw8P8fbbb4tDhw4plsvJyRF/+9vfhIeHh+KJDQsXLhSFhYUCgOLJBmWef2rD9OnTRaNGjYSlpaVo2rSpTk9tUKdsG+oUFRWJzZs3i/79+yue9GBjYyO8vLzEyJEjxa5du0RxcbHSOhXd21Pm/v37YuzYsaJOnTrC2tpadOzYURw4cEDjpzY4ODgIW1tbERQUJOmnNhgj5vqfmOv6wwcnU42TmpoKT09PjBs3Dhs3bjR0OERVpibnOs+5ERGR5LC4ERGR5LC4ERGR5PCcGxERSQ6P3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHJY3IiISHL+D3oiclEX6SuYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNUlEQVR4nO3de3RM5/oH8O8kkUnkMhptIxGRNELliihVJFQERbU9CaokaQXnVIPi9Fd3SxeqpK11HAetuoXWrRq0WhLiSAjRQ2nRKBFEIiU3GTK5vb8/nMwxZkIyJpmZPd/PWnutzN7vvPvZs57JM/vdN5kQQoCIiEhCrIwdABERkaGxuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuBERkeSwuJEGLy8veHl5GTsMNVOLh6TF1PLL1OIxZyxujUypVGLRokXo0qULHB0dIZfL4eHhgd69e2PGjBm4dOmSsUOkeqqpqcE//vEPBAYGwt7eHs888wzefPNNXL582dihmQzmuzQUFBRg8eLFiIyMhLe3N2QyGWQymbHDahAbYwcgZXfu3EGvXr1w5swZtGvXDqNHj0bLli1x69YtnDhxAh9//DF8fHzg4+Nj7FDVUlJSjB2CyZowYQK+/PJL+Pv7Y9KkSbhx4wa2bduG/fv3IyMjA76+vsYO0aiY79Jx7tw5zJw5EzKZDL6+vmjevDnu3r1r7LAaRlCjWbBggQAg4uLiRE1Njdbyy5cvi/PnzxshMvPRtm1b0bZtW2OHIQ4ePCgAiNDQUKFSqdTzf/jhBwFAREREGDE608B8f3Kmku/5+fni8OHDorS0VAghRIcOHYS5lQsOSzaiY8eOAQAmTpyoc5fe29sbzz//vMY8mUyGPn366OxP13h8bGwsZDIZLl++jISEBPj5+UEulyM2NhYfffQRZDIZNm7cqLO/b7/9FjKZDLNmzapzHfr0AQDZ2dmIi4uDp6cn5HI53NzcEBsbi5ycHJ39JCUl4YUXXoC9vT1cXV0xbtw4FBUV6WxrDF988QWA+5+Hra2tev6gQYPQp08f7N+/H1evXjVWeCaB+S6dfHd1dUVoaCicnJyMHYreWNwaUcuWLQEAWVlZjb6u+Ph4LFq0CF27dsWUKVMQGBiI0aNHQyaTITExUed7Nm3aBAAYM2ZMnf3q08fx48fRuXNnbNiwASEhIZg8eTJ69+6NzZs3o1u3blrHqDZu3IjXXnsNWVlZGDNmDGJiYpCeno7w8HBUVFQ06HNoLKmpqXBwcEDPnj21lg0YMAAAcPjw4aYOy6Qw36WT71LAY26NKCoqComJiYiLi8OJEycQERGBkJAQ9T8BQzpz5gxOnToFT09Pjfk9e/bEwYMHkZeXBzc3N/X8wsJC/PDDD+jatavWr+kHeXt7N6iPyspKjBw5EjU1NThx4gQ6d+6sbp+WloY+ffpg8uTJ2LNnDwCgtLQU8fHxcHBwQGZmJtq3bw8AWLhwIcLDw5GXl4e2bdvW+3OYP39+vdsC9/cEHnd2mlKpRF5eHgICAmBtba21vPZY28WLFxu0bqlhvksj3yXD2OOiUpeQkCAcHR0FAPXk4+MjJk6cKLKysrTaAxBhYWE6+9I1Hh8TEyMAiOXLl+t8z+rVqwUAkZCQoDF/5cqVAoD4/PPPH7uOhvTx7bffCgBiwYIFOuN54403hJWVlSgpKRFCCLFhwwYBQMTHx2u1PXLkiADQoGMQD37O9ZkOHTr02D5zc3MFANGzZ0+dy/fv3y8AiEmTJtU7Tqlivmsyx3zXhcfcSMvUqVPVZ9VNmTIFvXr1wtWrV/HPf/4TQUFB2L17t0HW061bN53zhw8fDrlcrh5OqZWYmAgbGxu8+eabj+27IX1kZGQAAH7//XfMnz9fa8rPz0dNTY166OqXX34BAPTu3VtrvT169ICNTcMGF4QQDZrqOt5D+mG+M99NBYclm4CTkxOioqIQFRUFACgpKcHMmTOxcuVKjB07Frm5uRonKejD1dVV5/wWLVpgyJAh2LlzJ86dOwc/Pz9cunQJR48exSuvvIJnn332sX03pI/CwkIAwObNmx/Zp1KpBHD/swCgMw5ra+tGGdJqKIVCAeB/sT6stLRUo52lY75rM6d8lwoWNyNQKBRYsWIFvv/+e+Tk5ODs2bMICQkBcP/ssaqqKp3vKykpqfMf6KMusBwzZgx27tyJTZs2YfHixeqD5Y86sK5vH87OzgCAPXv2YMiQIY/tt3Z7CgoKtJZVV1fj9u3baN26db3jbIxjEA4ODnBzc0N2djaqq6u1jrvVHmuz9Ovc6sJ8/x9zyHfJaLoRUHqYn5+fACBOnjypnufi4iK8vLy02mZnZ+scj689BpGdnV3neioqKkTLli2Fp6enqK6uFr6+vsLJyUncvXtXq21d19nUt4+tW7cKAGLmzJmP3vj/MpdjECNHjhQAxOHDh7WW9enTRwAQV65cqXecloj5bj75/jBzPOZmXtGamVWrVokTJ07oXLZr1y4hk8lEixYtRHl5uXr+gAEDBACRmpqqnqdSqcTrr7+u95ddCCHeffddAUAsXrxYABCxsbE62z3qItL69FFeXi48PT2FnZ2dzkJQUVEhjhw5on5dXFwsnJ2dhYODg/j999812oWFhTX4y95YeBH34zHfpZPvDzPH4iYTQghD7QWSptdeew1JSUlo164devbsCXd3dyiVSpw6dQpHjhyBlZUVEhMTNQ5Q79+/HwMHDoS9vT3efPNNNG/eHAcOHECLFi2Qk5MDW1tbXLlyRd0+NjYWGzZsQHZ29iOHGzIyMtCjRw80a9YMlZWVSElJwcsvv6zVrraPB9fR0D4yMzMxaNAg3L59Gy+//DICAwMhk8mQk5ODI0eOoGXLlrhw4YK6/YYNGxAbGwtnZ2eMHDkSCoUCe/fuhb29PfLy8rS22VjGjRunvv3W4MGDkZeXh61bt8LR0RHHjh1Tn9ZtqZjv0sr32NhY9d+7du1CaWkpYmJi1PM+/PDDR15WYXTGrq5SduHCBfHJJ5+I/v37C29vb2FnZyfs7OyEj4+PiImJ0RieedD27dtFYGCgsLW1Fa1atRLx8fHizp07jzw1+nG/ZIUQwtfXVwAQHh4eorq6Wmebx93+pz59CCHE9evXxeTJk4Wvr6+Qy+XC2dlZdOzYUcTFxYmUlBSt9rt27RIhISFCLpeLZ599VsTFxYnCwkKTuR2REEJUV1eL5cuXC39/fyGXy0XLli3FiBEjxB9//GHs0EwC811a+Y5GGuJsKtxzIyIiyeF1bkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDkWX9yEECgtLQWviCBLwHwnS2Hxxe3OnTtQKBS4c+eOsUMhanTMd7IUFl/ciIhIeljciIhIcljciIhIcljciIhIcvgk7iYkhFA/bh64/4TnRz1RmIiI9MPi1oSUSiWGDRumfp2UlARHR0cjRkREJE0cliQiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIsnhHUoeIeTvGw3an6yqAooHXveZ8w2Eja1B1/Hz0miD9kdEZI6450ZERJLD4kZERJLD4kZERJJj8sVt4cKFkMlkCAgI0Fp29OhR9OrVC82bN0erVq0wadIklJWVGSFKIiIyJSZ9Qsn169exaNEiODg4aC07ffo0+vXrh44dO+LTTz/F9evXsWzZMly8eBH79u0zQrRERGQqTLq4TZ8+HS+++CKqq6tx69YtjWUzZ87EU089hdTUVDg7OwMAvLy8MG7cOOzfvx8RERHGCJmIiEyAyQ5L/vvf/8aOHTvw+eefay0rLS3FgQMHMHr0aHVhA4Do6Gg4Ojpi27ZtTRgpERGZGpMsbtXV1YiPj0dcXBwCAwO1lp89exZVVVXo2rWrxnxbW1t06tQJp06daqpQiYjIBJnksOSqVauQk5OD5ORkncvz8vIAAG5ublrL3NzccOTIkTr7VqlUUKlU6telpaVPGC2R6WK+k6UyuT2327dvY+7cuZgzZw6eeeYZnW3u3bsHAJDL5VrL7Ozs1Mt1Wbx4MRQKhXpq06aNYQInMkHMd7JUJlfcZs+eDRcXF8THx9fZxt7eHgA0fpHWKi8vVy/XZcaMGSgpKVFP165de/KgiUwU850slUkNS168eBFr1qzB559/jhs3bqjnl5eXo7KyEleuXIGzs7N6OLJ2ePJBeXl5cHd3r3Mdcrlc5x5fUxDWzVAS9KbGa6LGZMx8JzImk9pzy83NRU1NDSZNmgRvb2/1dPz4cWRlZcHb2xsLFixAQEAAbGxscPLkSY33V1RU4PTp0+jUqZNxNuBxZDIIG1v1BJnM2BEREUmSSe25BQQEYNeuXVrzZ8+ejTt37mD58uXw8fGBQqFAeHg4EhMTMWfOHDg5OQEANm3ahLKyMkRFRTV16ET0ECEElEql+rWDgwNk/EFHTcSkitvTTz+N1157TWt+7bVuDy5buHAhXnrpJYSFhWH8+PG4fv06EhISEBERgYEDBzZNwERUJ6VSiWHDhqlfJyUlwdHR0YgRkSUxqWHJhujSpQuSk5Nhb2+P999/H2vWrMHYsWOxY8cOY4dGRERGZlJ7bnVJTU3VOb9Xr15IT09v2mCIiMjkmUVxI/PAYyxEZCpY3MhgeIyFiEyF2R5zIyIiqguLGxERSQ6LGxERSQ6PuRERACDk7xsN2p+sqgKKB173mfPN/TvzGNDPS6MN2h9JB/fciIhIcljciIhIcljciIhIcljciIhIcnhCiQUztxMIePIAEdUX99yIiEhyWNyIiEhyWNyIiEhyeMyNiBqFsG6GkqA3NV4TNRUWNyJqHDKZwe9IQlRfHJYkIiLJeaI9t1OnTuHrr7/GhQsXcPfuXSQnJwMAcnJycPz4cYSHh8PFxcUggRIREdWX3sXtgw8+QEJCAoQQAKDxxGUhBEaNGoWEhARMnjz5yaMks8BjLERkKvQally3bh2WLVuGIUOG4MyZM5gxY4bGci8vL3Tr1g27d+82SJBkJv57jKV2wgM/eIiImpJee24rV65Ex44dsXPnTtjY2MDWVvug8fPPP68epiQiImpKeu25nTt3Dv3794eNTd210dXVFQUFBXoHRkRkyoQQKCsrU0+1h2jINOi152ZjY4OKiopHtrlx4wYcHR31CoqIyNQplUoMGzZM/TopKYn/80yIXsUtMDAQBw8eRHV1NaytrbWW1545GRIS8sQBEpkKIQSUSqX6tYODg8aJVERkOvQalnznnXeQlZWFv/71r1CpVBrLSktLERsbi/z8fIwbN84gQRKZgtpf6rXTg4WOiEyLXntu77zzDpKTk7F27Vps3boVLVq0AAB069YN58+fh1KpRGxsLCIjIw0ZKxERUb3ofYeSLVu2YPXq1fD29kZubi6EEDh58iQ8PT3xr3/9C1999ZUh4yQiIqq3J7pDybhx4zBu3Djcu3cPRUVFcHZ25gFVIiIyOoPcONne3h729vaG6IqIiOiJ8akAJFkhf99o0P5kVRVQPPC6z5xvDHrX+5+XRhusLyJLp1dxs7Kyeuwp0DKZDM7OzujQoQNef/11xMfHc++OiIyGP3Ysi14nlISGhiIoKAhCCFhZWcHLywvdu3eHl5cXrKysIIRAYGAgPDw81PeefPHFF1FaWmro+ImIiLToVdwSExNRVFSE6OhoZGdn49KlSzh69CguXbqEK1euICYmBsXFxdi3bx9u3ryJcePG4ezZs1i0aJGh4yciItKiV3GbPn063N3dsX79enh4eGgsa926NdatWwd3d3dMnz4djo6OWLlyJfz8/LBr1y6DBE1ERPQoehW35ORk9O3b95FtwsLC1E8FsLKyQu/evXH16lV9VkdERNQgep1QUl5ejry8vEe2ycvLw71799SvnZycHvkUASJTx4exkiUx93up6rXn1qVLF3zzzTc4duyYzuXHjx/H1q1bNW6cfPnyZbi6uuoXJZEp4MNYyYKY+71U9dqV+uijj9C/f3/07t0br776Knr27Ilnn30WBQUFSE9Px549e2BlZYUFCxYAAMrKyvDTTz9h+PDhBg2eiIhIF72KW1hYGPbu3Yvx48fju+++w3fffQeZTKZ+WJ+npydWrVqFsLAwAPePuaWlpaF169aGi5yIiKgOeh8Ei4iIwOXLl5GWloZffvkFpaWlcHZ2RnBwMHr16gUrKyuoVCrI5XI0b94cwcHBhoybiIioTno/FQC4v0cWGhqK+Ph4zJo1C/Hx8QgNDcXp06cxceJEuLu7N7jPzMxMvPfee/D394eDgwM8PT0xfPhwZGVlabU9f/48Bg4cCEdHR7i4uGDMmDH4888/n2STiIhIAgx2+mJxcTESExOxdu1anDlzBkIIvW63tWTJEqSnpyMqKgpBQUHIz8/HihUr0KVLF2RkZCAgIAAAcP36dYSGhkKhUGDRokUoKyvDsmXLcPbsWZw4cQK2toa7DQ4R0cN49qxpe+LiVvvQ0qSkJKhUKggh0KNHD7z99tsYMWJEg/ubOnUqtmzZolGcRowYgcDAQHz88cdITEwEACxatAhKpRI///wzPD09Adx/WGr//v2xfv16jB8//kk3jYiobv89e5ZMk17F7dq1a1i3bh3WrVuHq1evQgiB1q1bIzc3F7GxsU/0oNKXXnpJa56vry/8/f1x/vx59bydO3diyJAh6sIGAOHh4Wjfvj22bdvG4kZEZMHqfcytsrIS27dvx8CBA/Hcc89h/vz5uHXrFt566y3s378fOTk5ANAoF2oLIXDz5k08/fTTAIDc3FwUFBSga9euWm27deuGU6dOGTwGIiIyH/WuRO7u7igsLIRMJkPfvn0RHR2NN954Aw4ODo0ZHwBg8+bNyM3NVV83V3t3FDc3N622bm5uKCwsVJ+p+TCVSgWVSqV+zScVkJQx3y0HH+mjqd57brdv34ZMJsP777+PLVu2YMyYMU1S2C5cuICJEyeiR48eiImJAQD1bb10FS87OzuNNg9bvHgxFAqFemrTpk0jRU5kfMx3slT1Lm6xsbGwt7fHp59+Cg8PD7z66qvYvn07KioqGi24/Px8DB48GAqFAjt27IC1tTUAqM/CfPAXaa3y8nKNNg+bMWMGSkpK1NO1a9caKXoi42O+k6Wqd3H76quvkJeXh9WrV6NLly7Yu3cvRo4cCVdXV0yYMAFpaWkGDaykpASDBg1CcXExfvzxR41r5mqHI3XdvDkvLw8uLi469+qA+3t7zs7OGhORVDHfyVI16CJuR0dHxMXF4dixY/jtt98wZcoU2Nra4osvvkBYWBhkMhl+//139ckl+iovL8fQoUORlZWFvXv3ws/PT2N569at8cwzz+DkyZNa7z1x4gQ6der0ROsnIiLzpvcdSjp27IiEhATk5uZi27ZtiIiIgEwmw5EjR+Dj44N+/fph06ZNDe63uroaI0aMwLFjx7B9+3b06NFDZ7u//OUv2Lt3r8YwS0pKCrKyshAVFaXvZhERkQQ88Xn7NjY2iIyMRGRkJK5fv45169Zh/fr1OHToEFJTUzFmzJgG9Tdt2jTs3r0bQ4cORWFhofqi7VqjR48GAMycORPbt29H3759MXnyZJSVlWHp0qUIDAzE22+//aSbRUREZsygF6V5eHhgzpw5mDNnDlJSUvS6mPv06dMAgD179mDPnj1ay2uLW5s2bXD48GFMnToVH374IWxtbTF48GAkJCTUebyNiIgsQ6M9Grtfv37o169fg9+Xmppa77b+/v746aefGrwOIiKStkYrbkREZL7M/cbQLG5ERKTNzG8M/UTPcyMiIjJFLG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5Zl3cVCoV/u///g/u7u6wt7dH9+7dceDAAWOHRURERmbWxS02Nhaffvop3nrrLSxfvhzW1tZ45ZVXkJaWZuzQiIjIiGyMHYC+Tpw4gW+++QZLly7F9OnTAQDR0dEICAjABx98gKNHjxo5QiIiMhaz3XPbsWMHrK2tMX78ePU8Ozs7jB07FseOHcO1a9eMGB0RERmT2Ra3U6dOoX379nB2dtaY361bNwDA6dOnjRAVERGZArMdlszLy4Obm5vW/Np5N27c0Pk+lUoFlUqlfl1SUgIAKC0t1WpbrbpniFCblK7tqIu5bV9Dtg2Q1vY5OTlBJpM1uE/m+/+Y2/Yx3xue7xqEmXruuefEoEGDtOZfunRJABCfffaZzvfNmzdPAODEyaymkpISvb4nzHdO5jjpm+8PkgkhBMxQQEAAXF1dkZKSojH/3Llz8Pf3x6pVqzBhwgSt9z38S7ampgaFhYVo2bLlk/9SqIfS0lK0adMG165d0xpSlQJuX+Mw1J4b892wuH2NwxB7bmY7LOnm5obc3Fyt+Xl5eQAAd3d3ne+Ty+WQy+Ua81q0aGHw+B7H2dlZkl+GWtw+08B8bxrcPtNjtieUdOrUCVlZWVrjtsePH1cvJyIiy2S2xS0yMhLV1dVYs2aNep5KpcK6devQvXt3tGnTxojRERGRMZntsGT37t0RFRWFGTNmoKCgAO3atcOGDRtw5coVrF271tjh1Ukul2PevHlaQ0VSwe2jB0n98+L2mS6zPaEEAMrLyzFnzhwkJiaiqKgIQUFB+OijjzBgwABjh0ZEREZk1sWNiIhIF7M95kZERFQXFjciIpIcFrcmUlZWhnnz5mHgwIFwcXGBTCbD+vXrjR2WQWRmZuK9996Dv78/HBwc4OnpieHDhyMrK8vYoRnEb7/9hqioKDz33HNo3rw5nn76aYSGhmLPnj3GDs1kMd/Nl1Ty3WzPljQ3t27dwoIFC+Dp6Yng4GCkpqYaOySDWbJkCdLT0xEVFYWgoCDk5+djxYoV6NKlCzIyMhAQEGDsEJ9ITk4O7ty5g5iYGLi7u+Pu3bvYuXMnXn31VaxevVrjyRR0H/PdfEkm35/4Bl5UL+Xl5SIvL08IIURmZqYAINatW2fcoAwkPT1dqFQqjXlZWVlCLpeLt956y0hRNa6qqioRHBwsOnToYOxQTBLzXVrMMd85LNlE5HI5WrVqZewwGsVLL70EW1tbjXm+vr7w9/fH+fPnjRRV47K2tkabNm1QXFxs7FBMEvNdWswx3zksSY1CCIGbN2/C39/f2KEYjFKpxL1791BSUoLdu3dj3759GDFihLHDIhPAfDc9LG7UKDZv3ozc3FwsWLDA2KEYzLRp07B69WoAgJWVFd544w2sWLHCyFGRKWC+mx4WNzK4CxcuYOLEiejRowdiYmKMHY7BTJkyBZGRkbhx4wa2bduG6upqVFRUGDssMjLmu2niMTcyqPz8fAwePBgKhQI7duyAtbW1sUMymOeffx7h4eGIjo7G3r17UVZWhqFDh0LwJj8Wi/luuljcyGBKSkowaNAgFBcX48cff6zzmXpSERkZiczMTMlc30QNw3w3bRyWJIMoLy/H0KFDkZWVheTkZPj5+Rk7pEZ37949APf/yZFlYb6bPu650ROrrq7GiBEjcOzYMWzfvh09evQwdkgGVVBQoDWvsrISGzduhL29vUX8Y6P/Yb6bR75zz60JrVixAsXFxbhx4wYAYM+ePbh+/ToAID4+HgqFwpjh6W3atGnYvXs3hg4disLCQiQmJmosHz16tJEiM4wJEyagtLQUoaGhaN26NfLz87F582ZcuHABCQkJcHR0NHaIJon5bp4kk+/GvYbcsrRt21YA0DllZ2cbOzy9hYWF1bldUkixr7/+WoSHhwtXV1dhY2MjnnrqKREeHi6SkpKMHZpJY76bJ6nkO5/nRkREksNjbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbqS3Pn36QCaTGTsMoibBfDcvLG4W4MqVK5DJZBqTra0t2rRpg1GjRuHMmTPGDpHIYJjvBPCpABbFx8dHfcfysrIyZGRk4Ouvv8a3336LlJQU9OzZ08gREhkO892ysbhZkHbt2mH+/Pka82bPno2FCxdi1qxZSE1NNUpcRI2B+W7ZOCxp4eLj4wEAmZmZ6nkVFRX47LPP8MILL8DJyQmOjo7w8/PD1KlTUVRU9Mj+SkpKsGTJEoSFhcHd3R22trZwd3dHdHQ0Ll26pNW+vLwcCQkJCA4OhkKhgIODA7y8vDB8+HD88ssv6nY1NTX48ssv0a1bN7i4uMDe3h4eHh4YOnQo/0lRvTHfLQf33AgA1AfK7927h/79+yM9PR2+vr54++23IZfLcfHiRaxevRrR0dF46qmn6uzn/PnzmDt3Lvr27YvXX38dDg4OuHDhArZs2YLvv/8e//nPf9C2bVt1+5iYGGzbtg1BQUHqdV27dg2HDh1CZmYmgoODAQAzZszAJ598Ah8fH4waNQpOTk7Izc1FWloakpOT0adPn0b9fEhamO8WwNgPlKPGl52dLQCIAQMGaC2bO3euACD69u0rhBBi2rRpAoAYM2aMqKqq0mhbXFws7ty5o35d+9DGh9vcvn1baz0HDx4UVlZWIi4uTqOtTCYTISEhWuuqqqoSRUVF6tcuLi7C3d1dKJVKrb51rY8sF/OdhBCCe24W5I8//lAfg1AqlTh+/DiOHDkCOzs7LFy4EFVVVVizZg0UCgWWL18Oa2trjfcrFIrHrqOuNn379oW/vz+Sk5PV82QyGYQQsLOzg5WV5gi5tbU1WrRooTHP1tZWKyYAcHFxeWxcZHmY7xbO2NWVGl/tL9kHp2bNmgkPDw8xatQocebMGSGEEGfPnhUARHh4eL361fVLVgghDh06JIYNGyZatWolbGxsNNZra2ur0faVV14RAESnTp3EwoULRXp6uqioqNDq89133xUARLt27cTs2bNFSkqKuHv3rh6fBkkd852EEILFzQI8apjmQWlpaQKAiImJqVe/ur7s27ZtEzKZTDg5OYnIyEgxffp0MXfuXDFv3jzRtm1brfZKpVLMmjVLeHt7q/8hODs7i8mTJ2sMyVRWVoqlS5cKPz8/dTs7OzsRHR0t/vzzz/p9EGQRmO8kBIubRajvl/3XX3994l+yfn5+wt7eXmRlZWm179Chg85fvrUuX74s1q5dK1544QUBQIwfP15nu9zcXLFlyxbRv39/AUBERETUK16yDMx3EoLFzSLU98teWVkpnJ2dhUKhEIWFhY/tV9eXXS6Xiy5dumi1vXHjhmjWrNkjv+y17t69KxwdHUWrVq0e2a66ulq0a9dOWFlZcciG1JjvJIQQvM6N1GxsbDBhwgSUlJRg8uTJqK6u1lheUlKCsrKyR/bRtm1b/PHHH7h586Z6Xnl5Of72t7+hsrJSo+2ff/6JX3/9VauPoqIiqFQq2NnZAQBUKhWOHj2q1U6pVKKsrAzNmjXTOkBP9DjMd2nj2ZKkYcGCBcjIyMCmTZuQkZGBQYMGQS6X4/Lly/jxxx+RlpaGTp061fn++Ph4xMfHo3PnzoiMjERVVRUOHDgAIQSCg4M1LlTNzc1F586dERwcjKCgILRu3Rq3b99GUlISKisrMX36dAD3r0Xq2bMn2rdvj5CQEHh6eqKsrAx79+5Ffn4+pk+fDrlc3tgfDUkQ813CjL3rSI2vvsM0tcrLy8WyZctEp06dhL29vXB0dBR+fn5i2rRpGtfi6BqmqampEatWrRL+/v7Czs5OtGrVSowdO1YUFBRotS8qKhLz588XoaGhws3NTdja2gp3d3cxcOBAsW/fPnW7iooKsWTJEhERESE8PDyEra2tcHV1FaGhoWLLli2ipqbmyT4gkhTmOwkhhEwIIYxZXImIiAyNA7dERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5/w+ueRRg7ZXSUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAn70lEQVR4nO3deVQUZ7o/8G+B0iBLGwgSVjWAGhBjhMFxATdwA50kbuiodOI2E8clxnjVuY7GzEWN4kzOGKLJJYpiropgVCYZjUYNjkQkIcFMVBIVVAJBQValUXx/f/ijY9uNsnTb3cX3c06dk37rraqnKk/7UG9VV0lCCAEiIiIZsTJ1AERERIbG4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZaunTpgi5dupg6DA1zi4fkxdzyy9zisWQsbkZWU1ODuLg49OnTBw4ODlAoFPDy8kJYWBiWLVuGixcvmjpEaqJ79+7hH//4B4KCgmBnZwdXV1dMnjwZly5dMnVoZoP5Lg8lJSVYs2YNxo8fj65du0KSJEiSZOqwmqWdqQOQs6qqKgwcOBC5ubnw8/PD1KlT4eLighs3biArKwtr166Fr68vfH19TR2qxtGjR00dgtmaM2cO/vd//xeBgYGYP38+fv75Z+zZsweHDx/GV199BX9/f1OHaFLMd/n44YcfsHz5ckiSBH9/f3To0AG3bt0ydVjNI8hoVq9eLQCImTNninv37unMv3Tpkjh37pwJIrMcnTt3Fp07dzZ1GOKLL74QAER4eLhQq9Wa9k8//VQAEMOHDzdhdOaB+d565pLvxcXF4sSJE6KyslIIIUT37t2FpZULDksaUWZmJgBg7ty5ek/pu3btih49emi1SZKEwYMH612fvvF4lUoFSZJw6dIlxMfHIyAgAAqFAiqVCm+//TYkScL27dv1ri8tLQ2SJOHPf/5zo9toyToA4PLly5g5cyZ8fHygUCjg7u4OlUqFgoICvevZv38/fvOb38DOzg5ubm6YNWsWbt68qbevKXz44YcA7h8PGxsbTfuoUaMwePBgHD58GFeuXDFVeGaB+S6ffHdzc0N4eDgcHR1NHUqLsbgZkYuLCwAgLy/P6NuaN28e4uLiEBISgoULFyIoKAhTp06FJElITk7Wu8yOHTsAANOmTWt0vS1Zx+nTp/HCCy8gKSkJwcHBWLBgAcLCwrBz506EhobqXKPavn07XnzxReTl5WHatGmIjY3Fv//9b0RERKCurq5Zx8FYjh8/Dnt7ewwYMEBn3ogRIwAAJ06ceNJhmRXmu3zyXQ54zc2IJkyYgOTkZMycORNZWVkYPnw4goODNf8IGFJubi5ycnLg4+Oj1T5gwAB88cUXKCoqgru7u6a9rKwMn376KUJCQnT+mn5Q165dm7WOO3fuICYmBvfu3UNWVhZeeOEFTf+TJ09i8ODBWLBgAQ4ePAgAqKysxLx582Bvb48zZ86gW7duAID/+Z//QUREBIqKitC5c+cmH4dVq1Y1uS9w/0zgcXen1dTUoKioCD179oS1tbXO/IZrbT/++GOzti03zHd55LtsmHpcVO7i4+OFg4ODAKCZfH19xdy5c0VeXp5OfwBi0KBBetelbzw+NjZWABDvvvuu3mW2bNkiAIj4+Hit9oSEBAFA/P3vf3/sNpqzjrS0NAFArF69Wm88L7/8srCyshIVFRVCCCGSkpIEADFv3jydvhkZGQJAs65BPHicmzIdO3bssessLCwUAMSAAQP0zj98+LAAIObPn9/kOOWK+a7NEvNdH15zIx2LFi3S3FW3cOFCDBw4EFeuXMF7772HXr164cCBAwbZTmhoqN72iRMnQqFQaIZTGiQnJ6Ndu3aYPHnyY9fdnHV89dVXAIALFy5g1apVOlNxcTHu3bunGbr67rvvAABhYWE62+3Xrx/atWve4IIQollTY9d7qGWY78x3c8FhySfA0dEREyZMwIQJEwAAFRUVWL58ORISEjBjxgwUFhZq3aTQEm5ubnrbO3bsiOjoaKSmpuKHH35AQEAALl68iFOnTmH06NHo1KnTY9fdnHWUlZUBAHbu3PnIddbU1AC4fywA6I3D2traKENazaVUKgH8GuvDKisrtfq1dcx3XZaU73LB4mYCSqUSmzZtwj//+U8UFBTg7NmzCA4OBnD/7rG7d+/qXa6ioqLRf0Af9QPLadOmITU1FTt27MCaNWs0F8sfdWG9petwcnICABw8eBDR0dGPXW/D/pSUlOjMq6+vR2lpKTw9PZscpzGuQdjb28Pd3R2XL19GfX29znW3hmttbf13bo1hvv/KEvJdNp7cCCg9LCAgQAAQ2dnZmjZnZ2fRpUsXnb6XL1/WOx7fcA3i8uXLjW6nrq5OuLi4CB8fH1FfXy/8/f2Fo6OjuHXrlk7fxn5n09R17N69WwAQy5cvf/TO/3+Wcg0iJiZGABAnTpzQmTd48GABQOTn5zc5zraI+W45+f4wS7zmZlnRWpjNmzeLrKwsvfP27dsnJEkSHTt2FLW1tZr2ESNGCADi+PHjmja1Wi1eeumlFn/ZhRDitddeEwDEmjVrBAChUqn09nvUj0ibso7a2lrh4+MjbG1t9RaCuro6kZGRoflcXl4unJychL29vbhw4YJWv0GDBjX7y24s/BH34zHf5ZPvD7PE4iYJIYShzgJJ24svvoj9+/fDz88PAwYMgIeHB2pqapCTk4OMjAxYWVkhOTlZ6wL14cOHMXLkSNjZ2WHy5Mno0KEDPv/8c3Ts2BEFBQWwsbFBfn6+pr9KpUJSUhIuX778yOGGr776Cv369UP79u1x584dHD16FEOHDtXp17COB7fR3HWcOXMGo0aNQmlpKYYOHYqgoCBIkoSCggJkZGTAxcUF58+f1/RPSkqCSqWCk5MTYmJioFQqkZ6eDjs7OxQVFenss6nMmjVL8/itqKgoFBUVYffu3XBwcEBmZqbmtu62ivkur3xXqVSa/963bx8qKysRGxuraVu6dOkjf1ZhcqaurnJ2/vx58c4774jIyEjRtWtXYWtrK2xtbYWvr6+IjY3VGp55UEpKiggKChI2NjbimWeeEfPmzRNVVVWPvDX6cX/JCiGEv7+/ACC8vLxEfX293j6Pe/xPU9YhhBDXrl0TCxYsEP7+/kKhUAgnJyfx3HPPiZkzZ4qjR4/q9N+3b58IDg4WCoVCdOrUScycOVOUlZWZzeOIhBCivr5evPvuuyIwMFAoFArh4uIiJk2aJH766SdTh2YWmO/yyncYaYjzSeGZGxERyQ5/50ZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLD4kZERLLT5oubEAKVlZXgLyKoLWC+U1vR5otbVVUVlEolqqqqTB0KkdEx36mtaPPFjYiI5IfFjYiIZIfFjYiIZIfFjYiIZIdv4rYAQgjNa+qB+2+GftSbiImI2joWNwtQU1OD3/3ud5rP+/fvh4ODgwkjIiIybxyWJCIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2TG7nwL85z//wapVq/D111+juLgYHTp0QEBAAN58802MGTNGq++5c+fw+uuv4+TJk7CxsUFUVBQ2btwIV1dXg8cV/OZ2g6+zqaS7dVA+8Hnwil0Q7WxMFs/X66ebbNtERE1hdsWtoKAAVVVViI2NhYeHB27duoXU1FSMHTsWW7ZswezZswEA165dQ3h4OJRKJeLi4lBdXY0NGzbg7NmzyMrKgo2N6f7xJyIyF231IRBmV9xGjx6N0aNHa7X96U9/QnBwMDZu3KgpbnFxcaipqcHXX38NHx8fAEBoaCgiIyOxbds2TT8isixt9R9jY2mrD4GwiGtu1tbW8Pb2Rnl5uaYtNTUV0dHRmsIGABEREejWrRv27NljgiiJyBAa/jFumB4sdERNZXZnbg1qampw+/ZtVFRU4MCBA/jss88wadIkAEBhYSFKSkoQEhKis1xoaCg+/fTTJx0uERGZEbMtbm+88Qa2bNkCALCyssLLL7+MTZs2AQCKiooAAO7u7jrLubu7o6ysDGq1GgqFQme+Wq2GWq3WfK6srDRG+ERmgflObZXZDksuXLgQn3/+OZKSkjBq1CjU19ejrq4OAHD79m0A0Fu8bG1ttfo8bM2aNVAqlZrJ29vbSHtAZHrMd2qrzLa49ejRAxEREZg+fTrS09NRXV2NMWPGQAgBOzs7AND6i7RBbW0tAGj6PGzZsmWoqKjQTFevXjXeThiIsG6Pil6TNZOwbm/qkMhCWGK+ExmC2Q5LPmz8+PGYM2cO8vLyNMORDcOTDyoqKoKzs7Peszrg/tleY/PMliSZ9HdtZLksMt+JDMBsz9we1jDMWFFRAU9PT7i6uiI7O1unX1ZWFnr37v2EoyMiInNidmduJSUl6NSpk1bbnTt3sH37dtjZ2SEgIAAAMG7cOCQlJeHq1aua6whHjx5FXl4eXn/99SceN1kO/o6KniRTPt0IMK8nHD3JpxuZXXGbM2cOKisrER4eDk9PTxQXF2Pnzp04f/484uPjNT8+XL58OVJSUjBkyBAsWLAA1dXVWL9+PYKCgvDKK6+YeC/InLXVH7UStSVmV9wmTZqExMREvP/++ygtLYWjoyOCg4Oxbt06jB07VtPP29sbJ06cwKJFi7B06VLNsyXj4+N5jYGIqI0zu+IWExODmJiYJvUNDAzEoUOHjBwRERFZGou5oYSIiKipWNyIiEh2zG5YkohMj+8v/BXfX2iZeOZGRESyw+JGRESyw+JGRESyw2tuREQy1vDg9Qc/twUsbkREctZGH7zOYUkiIpIdFjciIpIdFjciIpIdXnMjk+CPhH/FHwkTGR7P3IiISHZY3IiISHZY3IiISHZY3IiISHZ4QwkRmZW2+kQNMiwWNyIyL230iRpkWByWJCIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WnVTwFycnLwf//3fzh//jxu3bqFI0eOAAAKCgpw+vRpREREwNnZ2SCBEhERNVWLz9yWLFmCkJAQbNiwAenp6Th27JhmnhACU6ZMwY4dO5q93jNnzuBPf/oTAgMDYW9vDx8fH0ycOBF5eXk6fc+dO4eRI0fCwcEBzs7OmDZtGq5fv97SXSIiIploUXHbunUrNmzYgOjoaOTm5mLZsmVa87t06YLQ0FAcOHCg2etet24dUlNTMWzYMLz77ruYPXs2vvzyS/Tp0wfff/+9pt+1a9cQHh6On376CXFxcVi8eDH++c9/IjIyEnV1dS3ZLWojGp6A0TDxCRhE8tOiYcmEhAQ899xzSE1NRbt27WBjo/s0gR49emiGKZtj0aJF+Pjjj7XWOWnSJAQFBWHt2rVITk4GAMTFxaGmpgZff/01fHx8AAChoaGIjIzEtm3bMHv27JbsGrUFfAIGkey16Mzthx9+QGRkJNq1a7w2urm5oaSkpNnr7t+/v06x9Pf3R2BgIM6dO6dpS01NRXR0tKawAUBERAS6deuGPXv2NHu7REQkHy0qbu3atXvs0N/PP/8MBweHFgX1MCEEfvnlFzz99NMAgMLCQpSUlCAkJESnb2hoKHJycgyyXSIiskwtGpYMCgrCF198gfr6elhbW+vMb7hzMjg4uNUBAsDOnTtRWFiI1atXAwCKiooAAO7u7jp93d3dUVZWBrVaDYVCoTNfrVZDrVZrPldWVhokRiJzxHyntqpFZ26vvvoq8vLy8Ic//EHriwPc//KoVCoUFxdj1qxZrQ7w/PnzmDt3Lvr164fY2FgAwO3btwFAb/GytbXV6vOwNWvWQKlUaiZvb+9Wx0hkrpjv1Fa1uLjFxMQgMTERrq6uSExMBHB/SNDT0xN79+5FbGwsxo8f36rgiouLERUVBaVSib1792rOEu3s7ABAp7ACQG1trVafhy1btgwVFRWa6erVq62KkcicMd+prWrxj7g//vhjDBkyBJs2bcL3338PIQSys7Px3HPPYf78+ZgzZ06rAquoqMCoUaNQXl6OjIwMeHh4aOY1DEc2DE8+qKioCM7OznrP6oD7Z3uNzSOSG+Y7tVWtekLJrFmzMGvWLNy+fRs3b96Ek5OTQW4iqa2txZgxY5CXl4cjR44gICBAa76npydcXV2RnZ2ts2xWVhZ69+7d6hiIiMhyGeTZknZ2dvDw8DBIYauvr8ekSZOQmZmJlJQU9OvXT2+/cePGIT09XWuY5ejRo8jLy8OECRNaHQcREVmuVp25GcMbb7yBAwcOYMyYMSgrK9P8aLvB1KlTAQDLly9HSkoKhgwZggULFqC6uhrr169HUFAQXnnlFVOETkREZqJFxc3KygqSJD2yjyRJcHJyQvfu3fHSSy9h3rx5jd7k8aBvv/0WAHDw4EEcPHhQZ35DcfP29saJEyewaNEiLF26FDY2NoiKikJ8fDyvMRARtXEtKm7h4eGoqKjAd999B2tra/j4+MDNzQ2//PILrly5gvr6evTq1Qv19fXIzc1FVlYWdu7ciYyMDDg5OT1y3cePH29yHIGBgTh06FBLdoGIiGSsRdfckpOTcfPmTUyfPh2XL1/GxYsXcerUKVy8eBH5+fmIjY1FeXk5PvvsM/zyyy+YNWsWzp49i7i4OEPHT0REpKNFxW3x4sXw8PDAtm3b4OXlpTXP09MTW7duhYeHBxYvXgwHBwckJCQgICAA+/btM0jQREREj9Ki4nbkyBEMGTLkkX0GDRqkeSuAlZUVwsLCcOXKlZZsjoiIqFlaVNxqa2v1/oD6QUVFRVqPwHJ0dHzkWwSIiIgMpUXFrU+fPti1axcyMzP1zj99+jR2796t9eDkS5cuwc3NrWVREhERNUOLTqXefvttREZGIiwsDGPHjsWAAQPQqVMnlJSU4N///jcOHjwIKysrzVP8q6urcejQIUycONGgwRMREenTouI2aNAgpKenY/bs2fjkk0/wySefQJIkCCEAAD4+Pti8eTMGDRoE4P41t5MnT8LT09NwkRMRETWixRfBhg8fjkuXLuHkyZP47rvvUFlZCScnJzz//PMYOHAgrKysNO9U69ChA55//nlDxk1ERNSoVt3hYWVlhfDwcISHh2u1f/PNN0hMTMSuXbtQWlraqgCJiIiay2C3L5aXlyM5ORmJiYnIzc2FEKJJj9siIiIytFYXtyNHjiAxMRH79++HWq2GEAL9+vXDK6+8gkmTJhkiRiIiomZpUXG7evUqtm7diq1bt+LKlSsQQsDT0xOFhYVQqVT46KOPDB0nERFRkzW5uN25cweffPIJEhMTcfToUdTX18Pe3h6///3vMX36dAwdOhTt2rXjD7WJiMjkmlyJPDw8UFZWBkmSMGTIEEyfPh0vv/wy7O3tjRkfERFRszW5uJWWlsLKygqvv/46lixZAldXV2PGRURE1GJNfvyWSqWCnZ0dNm7cCC8vL4wdOxYpKSmoq6szZnxERETN1uTi9tFHH6GoqAhbtmxBnz59kJ6ejpiYGLi5uWHOnDk4efKkMeMkIiJqsmY9ONnBwQEzZ85EZmYm/vOf/2DhwoWwsbHBhx9+iEGDBkGSJFy4cAEFBQXGipeIiOixWvRWAAB47rnnEB8fj8LCQuzZswfDhw+HJEnIyMiAr68vhg0bhh07dhgyViIioiZpcXFr0K5dO4wfPx6fffYZ8vPz8dZbb6Fz5844duwYVCqVAUIkIiJqnlYXtwd5eXlhxYoVuHjxIj7//HPExMQYcvVERERNYrRfXA8bNgzDhg0z1uqJiIgaZdAzNyIiInPA4kZERLJjdsWturoaK1euxMiRI+Hs7AxJkrBt2za9fc+dO4eRI0fCwcEBzs7OmDZtGq5fv/5kAyYiIrNjdk85vnHjBlavXg0fHx88//zzOH78uN5+165dQ3h4OJRKJeLi4lBdXY0NGzbg7NmzyMrKgo2NzZMNnIiIzIbZFTd3d3cUFRXhmWeeQXZ2Nn7zm9/o7RcXF4eamhp8/fXX8PHxAQCEhoYiMjIS27Ztw+zZs59k2EREZEbMblhSoVDgmWeeeWy/1NRUREdHawobAERERKBbt27Ys2ePMUMkIiIzZ3bFrSkKCwtRUlKCkJAQnXmhoaHIyckxQVRERGQuzG5YsimKiooA3B/CfJi7uzvKysqgVquhUCh05qvVaqjVas3nyspK4wVKZGLMd2qrLPLM7fbt2wCgt3jZ2tpq9XnYmjVroFQqNZO3t7fxAiUyMeY7tVUWWdzs7OwAQOsv0ga1tbVafR62bNkyVFRUaKarV68aL1AiE2O+U1tlkcOSDcORDcOTDyoqKoKzs7Peszrg/tleY/OI5Ib5Tm2VRZ65eXp6wtXVFdnZ2TrzsrKy0Lt37ycfFBERmQ2LLG4AMG7cOKSnp2sNsxw9ehR5eXmYMGGCCSMjIiJTM8thyU2bNqG8vBw///wzAODgwYO4du0aAGDevHlQKpVYvnw5UlJSMGTIECxYsADV1dVYv349goKC8Morr5gyfCIiMjGzLG4bNmxAQUGB5nNaWhrS0tIAAFOnTtXc9XXixAksWrQIS5cuhY2NDaKiohAfH89rDEREbZxZFrf8/Pwm9QsMDMShQ4eMGwwREVkci73mRkRE1BgWNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh0WNyIikh2LLm5qtRr/9V//BQ8PD9jZ2aFv3774/PPPTR0WERGZmEUXN5VKhY0bN+L3v/893n33XVhbW2P06NE4efKkqUMjIiITamfqAFoqKysLu3btwvr167F48WIAwPTp09GzZ08sWbIEp06dMnGERERkKhZ75rZ3715YW1tj9uzZmjZbW1vMmDEDmZmZuHr1qgmjIyIiU7LY4paTk4Nu3brByclJqz00NBQA8O2335ogKiIiMgcWOyxZVFQEd3d3nfaGtp9//lnvcmq1Gmq1WvO5oqICAFBZWfnI7dWrb7c0VNl53LFqCh7PXzXleDo6OkKSpGavm/neeq3Ndx7LXzX1WLY037UIC/Xss8+KUaNG6bRfvHhRABB/+9vf9C63cuVKAYATJ4uaKioqWvQ9Yb5zssSppfn+IEkIIWCBevbsCTc3Nxw9elSr/YcffkBgYCA2b96MOXPm6Cz38F+y9+7dQ1lZGVxcXFr/l4IRVVZWwtvbG1evXtUZiqXms7TjaagzN+Z722Rpx9MQZ24WOyzp7u6OwsJCnfaioiIAgIeHh97lFAoFFAqFVlvHjh0NHp+xODk5WURyWgq5H0/mOz2oLR1Pi72hpHfv3sjLy9MZwz19+rRmPhERtU0WW9zGjx+P+vp6fPDBB5o2tVqNrVu3om/fvvD29jZhdEREZEoWOyzZt29fTJgwAcuWLUNJSQn8/PyQlJSE/Px8JCYmmjo8g1MoFFi5cqXOEBO1DI+neeP/H8Nqi8fTYm8oAYDa2lqsWLECycnJuHnzJnr16oW3334bI0aMMHVoRERkQhZd3IiIiPSx2GtuREREjWFxkwlJkrBq1SpTh2EQZ86cQf/+/WFvbw9JkszyUWpdunSBSqUydRhtFvP9ybLEfLfYG0pInu7cuYMJEybA1tYWf/vb39ChQwd07tzZ1GERGQXz3XhY3MisXLx4EQUFBfjwww8xc+ZMU4dDZFTMd+PhsCSZlZKSEgCW9RQNopZivhsPi5uRrVq1CpIkIS8vD1OnToVSqYSrqytWrFgBIQSuXr2K3/3ud3BycsIzzzyD+Ph4zbJ1dXX4y1/+guDgYCiVStjb2yMsLAzHjh1r0rYLCwvx6quvws3NDQqFAoGBgfjoo4+MtautplKpMGjQIADAhAkTIEkSBg8eDAA4f/48xo8fD2dnZ9ja2iIkJAQHDhzQWn7btm2QJAknT57E/Pnz4erqio4dO2LOnDmoq6tDeXk5pk+fjqeeegpPPfUUlixZgodvFt6wYQP69+8PFxcX2NnZITg4GHv37m1S/OXl5Vi4cCG8vb2hUCjg5+eHdevW4d69e60/OBaC+d50zHcja/Wjl+mRGp7K3rt3bzF58mSRkJAgoqKiBACxceNG0b17d/HHP/5RJCQkiAEDBggA4sSJE0IIIa5fvy7c3d3FokWLxPvvvy/eeecd0b17d9G+fXuRk5OjtR0AYuXKlZrPxcXFwsvLS3h7e4vVq1eL999/X4wdO1YAjb8xwdROnTolli9fLgCI+fPnix07dojDhw+L77//XiiVShEQECDWrVsnNm3aJMLDw4UkSSItLU2z/NatWzXHeuTIkeK9994T06ZNEwDEkiVLxMCBA8WUKVNEQkKCiI6OFgBEUlKSVgxeXl7itddeE5s2bRIbN24UoaGhAoBIT0/X6te5c2cRGxur+VxTUyN69eolXFxcxPLly8XmzZvF9OnThSRJYsGCBcY8bGaF+d50zHfjYnEzsoYv++zZszVtd+/eFV5eXkKSJLF27VpN+82bN4WdnZ0mie7evSvUarXW+m7evCnc3NzEq6++qtX+8Jd9xowZwt3dXdy4cUOrX0xMjFAqleLWrVsG2kPDOnbsmAAgUlJSNG3Dhg0TQUFBora2VtN279490b9/f+Hv769pa/iyjxgxQty7d0/T3q9fPyFJkvjDH/6gaWv4fzBo0CCt7T98XOrq6kTPnj3F0KFDtdof/rK//fbbwt7eXuTl5Wn1W7p0qbC2thZXrlxp+kGwYMz35mG+Gw+HJZ+QBy8WW1tbIyQkBEIIzJgxQ9PesWNHdO/eHZcuXdL0s7GxAfDrq0ru3r2LkJAQfPPNN41uSwiB1NRUjBkzBkII3LhxQzONGDECFRUVj1zenJSVleGLL77AxIkTUVVVpdmP0tJSjBgxAj/++KPO2yFmzJih9bqMvn376hzrhv8HDce6gZ2dnea/b968iYqKCoSFhT32eKWkpCAsLAxPPfWU1vGOiIhAfX09vvzyy9YcBovDfG8Z5rvh8G7JJ8THx0frs1KphK2tLZ5++mmd9tLSUs3npKQkxMfH4/z587hz546mvWvXro1u6/r16ygvL8cHH3yg9WDpBzVcyDZ3P/30E4QQWLFiBVasWKG3T0lJCTw9PTWf9R1rADoP01Yqlbh586ZWW3p6Ov7617/i22+/1XoP2uPeLfXjjz8iNzcXrq6ujcbYljDfW4b5bjgsbk+ItbV1k9oAaC76JicnQ6VS4cUXX8Sbb76JTp06wdraGmvWrMHFixcb3VbDBd2pU6ciNjZWb59evXo1dxdMomFfFi9e3OgzQ/38/LQ+N3Zc9bWLBy6wZ2RkYOzYsQgPD0dCQgLc3d3Rvn17bN26FR9//PFj44yMjMSSJUv0zu/Wrdsjl5cb5nvLMN8Nh8XNjO3duxfPPvss0tLStP6SWrly5SOXc3V1haOjI+rr6xEREWHsMI3q2WefBQC0b9/e6PuSmpoKW1tbHDp0SOvp6Vu3bn3ssr6+vqiurrb4421KzHfmuyHxmpsZa/jL68G/tk6fPo3MzMzHLjdu3Dikpqbi+++/15l//fp1wwZqRJ06dcLgwYOxZcsWzVvWH2TIfbG2toYkSaivr9e05efn45NPPnnsshMnTkRmZiYOHTqkM6+8vBx37941WJxyxXxnvhsSz9zMWHR0NNLS0vDSSy8hKioKly9fxubNmxEQEIDq6upHLrt27VocO3YMffv2xaxZsxAQEICysjJ88803OHLkCMrKyp7QXrTee++9h4EDByIoKAizZs3Cs88+i19++QWZmZm4du0avvvuO4NsJyoqChs3bsTIkSMxZcoUlJSU4L333oOfnx9yc3Mfueybb76JAwcOIDo6GiqVCsHBwaipqcHZs2exd+9e5Ofn61xvIm3M9/uY74bB4mbGVCoViouLsWXLFhw6dAgBAQFITk5GSkoKjh8//shl3dzckJWVhdWrVyMtLQ0JCQlwcXFBYGAg1q1b92R2wEACAgKQnZ2Nt956C9u2bUNpaSk6deqEF154AX/5y18Mtp2hQ4ciMTERa9euxcKFC9G1a1esW7cO+fn5j/2yd+jQASdOnEBcXBxSUlKwfft2ODk5oVu3bnjrrbc0F/mpccz3+5jvhsH3uRERkezwmhsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixsREckOixvpVVNTg7i4OPTp0wcODg5QKBTw8vJCWFgYli1b9sj3axFZGua7/PDByaSjqqoKAwcORG5uLvz8/DB16lS4uLjgxo0byMrKwtq1a+Hr6wtfX19Th0rUasx3eWJxIx1///vfkZubi5kzZ+KDDz7QeeX85cuXtV5JT2TJmO/yxGFJ0tHwcsi5c+fqfNEBoGvXrujRo4dWW0lJCV5//XX4+flBoVDg6aefxrhx47ReHimEwOjRoyFJEnbv3q21vBACo0aN0juPyJiY7zIliB4ydepUAUDs3r27Sf1/+ukn4eXlJQCI4cOHizfeeENMmzZNdOjQQdjb24uvvvpK07e4uFh06tRJKJVKkZ+fr2nfuHGjACBUKpXB94foUZjv8sTiRjr2798vAAhHR0fxxhtviEOHDokbN2402r9///7C2tpa/Otf/9Jqv3DhgnB0dBRBQUFa7Z999pmQJEn0799f3L17V+Tk5AgbGxvh7+8vqqqqjLJPRI1hvssTixvpFR8fLxwcHAQAzeTr6yvmzp0r8vLyNP2++eYbAUC8+uqretezaNEiAUCcPXtWq33hwoUCgFi8eLHo0aOHaN++vcjOzjbqPhE1hvkuP3wTNzWqqqoK//rXv3Dq1ClkZ2fj9OnTuHPnDmxtbbF7926MHTsW77//Pl577TVERUUhJCREZx1nzpzBp59+ipSUFIwfP17Trlar8dvf/hbffvstAGDdunVYsmTJk9o1Ih3Md5kxdXUly1FeXi5ee+01AUA8/fTTQq1Wi7/+9a9af+02Nm3btk1nfcuWLRMAhK2trSgtLTXBHhE1jvlu2Xi3JDWZUqnEpk2b0LlzZ9y4cQNnz56Fk5MTAOAf//gHxP1hbr1TbGys1rpOnz6N9evXw8XFBbW1tfjjH/9oil0iahTz3bKxuFGzSJIEe3t7zee+ffsC+PV26qaoqqrClClT0K5dOxw/fhzjxo3Dnj178NFHHxk8XqLWYL5bMFOcLpJ527x5s8jKytI7b9++fUKSJNGxY0dRW1srhBCib9++QpIksWvXLp3+9fX14vjx41ptDbdeb9q0SQghRFlZmfD29hb29vbiwoULBt4bokdjvssTbyghHS+++CL2798PPz8/DBgwAB4eHqipqUFOTg4yMjJgZWWF5ORkTJ48GcD9JzgMGTIEBQUF+O1vf4s+ffrAzs4OV65cQWZmJq5fv47a2loAQHJyMqZNm4YxY8bgwIEDmm1++eWXGDJkCF544QVkZmaiffv2Jtl3anuY7zJl6upK5uf8+fPinXfeEZGRkaJr167C1tZW2NraCl9fXxEbG6v3FuaysjLx3//936Jnz57Czs5OODg4CH9/fzFlyhSRlpYmhBDi0qVLwsnJSbi7u4vr16/rrOPPf/6z5nZpoieF+S5PPHMjIiLZ4Q0lREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkO/8PlJsOiCa3EoMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for SibSp,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAADmCAYAAAC58KAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvFklEQVR4nO3deVxU9f4/8NcAMjPsKi6ggguoGbhcFEpR0VIMNPUKmolIrqm5ZF7XeqQtovG1Mre03Jerhnpd87qGKCpqZGaZCiIGmAYIijAofH5/+GOu0wzLwMAcjq/n48Hj0XzO53zO+9DbeXM+Z1MIIQSIiIhkwsLcARAREZkSCxsREckKCxsREckKCxsREckKCxsREckKCxsREckKCxsREckKCxsREckKCxsREckKCxtVWNOmTdG0aVNzh6EltXioZpFa/kgtnpqEhU1CcnNzsWDBAvzjH/+AnZ0dlEolGjdujK5du2L27NlITEw0d4hUTkVFRVi6dCm8vb2hVqtRr149DB06FElJSeYOrdown+Xh7t27iIyMREhICJo1awaFQgGFQmHusEplZe4A6KkHDx7A398fP//8Mzw8PBAWFoa6devir7/+Qnx8PBYuXIgWLVqgRYsW5g5V69ixY+YOQbLGjRuHb7/9Fi+++CImT56MtLQ07NixA4cPH8bZs2fh6elp7hCrFPNZPn799VfMmTMHCoUCnp6esLGxwaNHj8wdVukEScJHH30kAIjRo0eLoqIiveVJSUnit99+M0NkNYe7u7twd3c3dxji+PHjAoDo1q2b0Gg02vaDBw8KAKJ3795mjK56MJ8rTyr5fOfOHRETEyNycnKEEEK0atVKSL10cCpSIs6cOQMAmDhxosHD/GbNmqF169Y6bQqFAgEBAQbHMzQ/HxERAYVCgaSkJCxevBht2rSBUqlEREQEPv74YygUCmzcuNHgeLt27YJCocDcuXNL3EZFxgCAmzdvYvTo0XBzc4NSqYSLiwsiIiJw69Ytg+Ps2bMHnTp1glqtRoMGDTBmzBhkZWUZ7GsO33zzDYCnvw9ra2tt+2uvvYaAgAAcPnwYKSkp5gqvWjCf5ZPPDRo0QLdu3WBvb2/uUMqNhU0i6tatCwC4du1alW9r0qRJWLBgATp27IipU6fC29sbYWFhUCgU2Lx5s8F1Nm3aBAAYPnx4ieNWZIxz586hQ4cO2LBhA3x8fDBlyhR07doVW7Zsga+vr945qY0bN2LAgAG4du0ahg8fjhEjRuD06dN49dVXUVBQYNTvoar88MMPsLW1RZcuXfSWBQYGAgBiYmKqO6xqxXyWTz7XRDzHJhGhoaHYvHkzRo8ejfj4ePTu3Rs+Pj7aLwhT+vnnn5GQkAA3Nzed9i5duuD48eNIT0+Hi4uLtj0zMxMHDx5Ex44d9f7KflazZs2MGuPx48d44403UFRUhPj4eHTo0EHb/9SpUwgICMCUKVOwb98+AEBOTg4mTZoEW1tbnD9/Hi1btgQAfPrpp3j11VeRnp4Od3f3cv8e5s2bV+6+wNMjhLKuUsvNzUV6ejq8vLxgaWmpt7z43Nr169eN2nZNw3yWRz7XWOaeC6X/Wbx4sbCzsxMAtD8tWrQQEydOFNeuXdPrD0B0797d4FiG5udHjBghAIglS5YYXGfVqlUCgFi8eLFO+4oVKwQA8eWXX5a5DWPG2LVrlwAgPvroI4Px/POf/xQWFhYiOztbCCHEhg0bBAAxadIkvb6xsbECgFHnJJ79PZfn58SJE2WOmZqaKgCILl26GFx++PBhAUBMnjy53HHWVMxnXTUxnw3hOTYyyrRp07RXz02dOhX+/v5ISUnB8uXL0bZtW+zdu9ck2/H19TXYPnjwYCiVSu0US7HNmzfDysoKQ4cOLXNsY8Y4e/YsAOD333/HvHnz9H7u3LmDoqIi7XTWpUuXAABdu3bV2+7LL78MKyvjJiCEEEb9lHT+hwxjPjOfzYVTkRJjb2+P0NBQhIaGAgCys7MxZ84crFixAqNGjUJqaqrOBQkV0aBBA4PtTk5O6Nu3L3bu3Ilff/0Vbdq0QWJiIuLi4hAUFIT69euXObYxY2RmZgIAtmzZUuqYubm5AJ7+LgAYjMPS0rJKprmM5ejoCOB/sf5dTk6OTj+5Yz7rq0n5XFOxsEmco6Mjli1bhgMHDuDWrVu4fPkyfHx8ADy9iuzJkycG18vOzi7xy7O0myuHDx+OnTt3YtOmTYiMjNSeOC/tJHtFx3BwcAAA7Nu3D3379i1z3OL9uXv3rt6ywsJCZGRkoFGjRuWOsyrOSdja2sLFxQU3b95EYWGh3nm24nNrcr+PrSTM5/+pCflcY1XfrCdVRps2bQQAceHCBW1bnTp1RNOmTfX63rx50+D8fPE5iZs3b5a4nYKCAlG3bl3h5uYmCgsLhaenp7C3txePHj3S61vSfTblHWP79u0CgJgzZ07pO///1ZRzEm+88YYAIGJiYvSWBQQECAAiOTm53HHKEfO55uTz39WEc2zSju458vXXX4v4+HiDy3bv3i0UCoVwcnIS+fn52vbAwEABQPzwww/aNo1GIwYOHFjhLwIhhJgwYYIAICIjIwUAERERYbBfaTeQlmeM/Px84ebmJlQqlcEiUFBQIGJjY7Wf79+/LxwcHIStra34/fffdfp1797d6C+CqsIbtJnPcsrnv6sJhU0hhBCmOvqjihswYAD27NkDDw8PdOnSBa6ursjNzUVCQgJiY2NhYWGBzZs365ysPnz4MPr06QO1Wo2hQ4fCxsYGR44cgZOTE27dugVra2skJydr+0dERGDDhg24efNmqVMQZ8+excsvv4xatWrh8ePHOHbsGHr27KnXr3iMZ7dh7Bjnz5/Ha6+9hoyMDPTs2RPe3t5QKBS4desWYmNjUbduXVy9elXbf8OGDYiIiICDgwPeeOMNODo6Yv/+/VCr1UhPT9fbZ3MZM2aM9pFawcHBSE9Px/bt22FnZ4czZ85oL+2WK+azvPI5IiJC+9+7d+9GTk4ORowYoW2bNWtWqbdOVDtzV1Z66urVq+Kzzz4TvXr1Es2aNRMqlUqoVCrRokULMWLECJ0pm2d99913wtvbW1hbW4uGDRuKSZMmiQcPHpR6eXRZf+EKIYSnp6cAIBo3biwKCwsN9inrkT/lGUMIIf744w8xZcoU4enpKZRKpXBwcBAvvPCCGD16tDh27Jhe/927dwsfHx+hVCpF/fr1xejRo0VmZqZkHkEkhBCFhYViyZIl4sUXXxRKpVLUrVtXDBkyRNy4ccPcoVUL5rO88hlVNK1ZVXjERkREssL72IiISFZY2IiISFZY2IiISFZY2IiISFZY2IiISFZY2IiISFZY2CpJCIGcnBzwrgmSA+YzyQELWyU9ePAAjo6OePDggblDIao05jPJAQsbERHJCgsbERHJCgsbERHJCgsbERHJCt+gTWRCQgjk5uZqP9va2pb6hmciMj0WNiITys3NRf/+/bWf9+zZAzs7OzNGRPT84VQkERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJCgsbERHJiiQLm0ajwcyZM+Hq6gq1Wg0/Pz8cOXKkzPWaNm0KhUJh8MfT01Onb0n9Fi5cWFW7RURE1UCST/ePiIhAdHQ0pk6dCk9PT6xfvx5BQUE4ceIE/P39S1zvyy+/xMOHD3Xabt26hffffx+9e/fW69+rVy+Eh4frtHXo0ME0O0FERGYhucIWHx+Pbdu2ISoqCtOnTwcAhIeHw8vLCzNmzEBcXFyJ6w4YMECv7ZNPPgEADBs2TG9Zy5YtERYWZprAiYhIEiQ3FRkdHQ1LS0uMHTtW26ZSqTBq1CicOXMGt2/fNmq8rVu3olmzZujcubPB5Xl5ecjPz69UzEREJB2SK2wJCQlo2bIlHBwcdNp9fX0BAD/99JNRY/3222948803DS5fv349bG1toVar0aZNG2zdurXCcRMRkTRIbioyPT0dLi4ueu3FbWlpaeUea8uWLQAMT0N27twZgwcPRrNmzZCWlobly5dj2LBhyM7Oxvjx40scU6PRQKPRaD/n5OSUO57KEEIgNzdX+9nW1hYKhaJatk3yZa58JqpKkitseXl5UCqVeu0qlUq7vDyKioqwbds2dOjQAS+88ILe8tOnT+t8HjlyJHx8fDBnzhxERERArVYbHDcyMhLz588vVwymlJubi/79+2s/79mzB3Z2dtUeB8mLufKZqCpJbipSrVbr/AVZrPg8WEkF5+9iYmKQmppq8GjNEGtra7zzzju4f/8+Ll68WGK/2bNnIzs7W/tj7Dk/IilhPpMcSe6IzcXFBampqXrt6enpAABXV9dyjbNlyxZYWFhg6NCh5d52kyZNAACZmZkl9lEqlQaPKIlqIuYzyZHkjtjat2+Pa9eu6c31nzt3Tru8LBqNBjt37kRAQEC5CyEAJCUlAQDq1atX/oCJiEhSJFfYQkJCUFhYiNWrV2vbNBoN1q1bBz8/P+1RVUpKCq5evWpwjIMHD+L+/fslTkPeu3dPr+3Bgwf48ssv4ezsDB8fHxPsCRERmYPkpiL9/PwQGhqK2bNn4+7du/Dw8MCGDRuQnJyMNWvWaPuFh4cjJiYGQgi9MbZs2QKlUolBgwYZ3Mby5cvxn//8B/369YObmxvS09Oxdu1apKSkYNOmTbC2tq6y/SMioqolucIGABs3bsQHH3yATZs2ISsrC23btsX+/fvRrVu3MtfNycnBgQMHEBwcDEdHR4N9unTpgri4OHz77bfIyMiAra0tfH19sXbtWvTs2dPUu0NERNVIkoVNpVIhKioKUVFRJfb54YcfDLY7ODiUeUtAr1690KtXr8qESEREEiW5c2xERESVwcJGRESywsJGRESywsJGRESywsJGRESywsJGRESywsJGRESywsJGRESywsJGRESywsJGRESyIslHahER1TRCCOTm5mo/29raQqFQmDGi51elj9h2796N/v37w83NDY6OjnBzc8OAAQPwn//8xwThERHVDLm5uejfv7/259kiR9WrwkdsT548wZtvvomdO3dCCAErKyvUrVsXd+7cwd69e7Fv3z4MGjQIW7duhZXV83dg6POvjSYdT/GkAM++qyDgg20QVqZ5vc7FqHCTjENUXjy6oapU4SO2yMhIREdHo2vXroiNjUV+fj7S09ORn5+PkydPwt/fHzt37sTChQtNGS8RyQCPbqgqVbiwrVu3Dq1bt8bRo0fRpUsXWFg8HcrCwgL+/v44evQoWrZsibVr15osWCIiorJUuLClp6ejX79+JU4z1qpVC/369UN6enqFgyMiIjJWhQtbkyZN8PDhw1L75Obmws3NraKbICIiMlqFC9vo0aOxY8eOEo/IUlNTsX37dowePbrCwRERERmrwpcrDh48GKdPn0aHDh0wdepU+Pv7o0GDBvjzzz8RGxuLJUuWwN/fH6GhoUhJSdFZl0dxRERUVSpc2Jo3bw6FQgEhBObOnau3XAiBffv2Yd++fTrtCoUCT548qehmiYiISlXhwhYeHs77ToiISHIqXNjWr19vwjCIiEhqauqN9JJ8CLJGo8HMmTPh6uoKtVoNPz8/HDlypMz15s2bB4VCofejUqkM9l+zZg1eeOEFqFQqeHp6YunSpabeFSKiGqum3khv0mdd/fTTTzhx4gQAwN/fH506darQOBEREYiOjsbUqVPh6emJ9evXIygoCCdOnIC/v3+Z669cuRJ2dnbaz5aWlnp9Vq1ahbfffhuDBg3CtGnTEBsbi8mTJ+PRo0eYOXNmheImIiLzM6qwnTx5Et9++y0mTJiAl156SWfZ+++/j8jISJ22CRMmGH0UFB8fj23btiEqKgrTp08H8PR8npeXF2bMmIG4uLgyxwgJCYGzs3OJy/Py8jB37lwEBwcjOjoaADBmzBgUFRXh448/xtixY1G7dm2j4iYiImkwaipy+/bt+O6779CmTRud9hMnTmDBggWwtLTE8OHDMX78eDg7O2PFihVGP+U/OjoalpaWGDt2rLZNpVJh1KhROHPmDG7fvl3mGEII5OTkQAhhcPmJEyeQkZGBCRMm6LRPnDgRubm5OHDggFExExGRdBhV2M6cOYPOnTvDwcFBp33VqlVQKBT4+uuvsX79eixbtgynT59GrVq1jL7IJCEhAS1bttTbhq+vL4Cn051lad68ORwdHWFvb4+wsDD8+eefetsAgI4dO+q0+/j4wMLCQruciIhqHqOmItPS0hAQEKDXfuLECTg4OCAiIkLb5uHhgaCgIMTHxxsVUHp6OlxcXPTai9vS0tJKXLd27dp455138PLLL0OpVCI2NhbLly9HfHw8Lly4oC2W6enpsLS0RP369XXWt7a2Rt26dUvdhkajgUaj0X7Oyckxav9Iekz5iqGa9noh5jPJkVGFLSsrC2q1WqctJSUF9+7dQ3BwsPYJ/8U8PDxw8OBBowLKy8uDUqnUay++sjEvL6/EdadMmaLzedCgQfD19cWwYcOwYsUKzJo1SzuGtbXhLxuVSlXqNiIjIzF//vwy94OoJmA+kxwZVdjs7e2Rmpqq03b+/HkAT6fx/q60S+1Lolardf6CLJafn69dbow333wT7733Ho4ePaotbGq1GgUFBQb75+fnl7qN2bNnY9q0adrPOTk5aNKkiVExEUlFefNZji/OleM+0VNGFba2bdti//79yM3Nha2tLQBg9+7dUCgU6Natm17/xMREuLq6GhWQi4uLXvEEoH3YsrHjAU/fRJCZmamzjcLCQty9e1dnOrKgoAAZGRmlbkOpVBo8oiSqiZjPJEdGXTwycuRIZGZmonv37vjqq6/wzjvv4N///jfc3Nz0zr0VFhbi5MmT8Pb2Niqg9u3b49q1a3pz/efOndMuN4YQAsnJyahXr57ONgDgwoULOn0vXLiAoqIio7dBRETSYVRhCwsLw4gRI/Djjz/i3XffxYoVK2Bvb481a9bonV87cOAA/vrrLwQGBhoVUEhICAoLC7F69Wptm0ajwbp16+Dn56edJklJScHVq1d11r13757eeCtXrsS9e/fQp08fbVvPnj1Rp04drFy5Uq+vjY0NgoODjYqZiIikw+gnj6xbt057T1ndunURGBiIRo0a6fVTKpX44osv0L9/f6PG9/PzQ2hoKGbPno27d+/Cw8MDGzZsQHJyMtasWaPtFx4ejpiYGJ171dzd3TFkyBB4e3tDpVLh1KlT2LZtG9q3b49x48Zp+6nVanz88ceYOHEiQkNDERgYiNjYWGzevBmffvop6tSpY+yvpcoJy1rIbjtU5zMREemr0CO1/P39y3y0VWBgoNFHa8U2btyIDz74AJs2bUJWVpb23J6h83jPGjZsGOLi4rBz507k5+fD3d0dM2bMwNy5c2FjY6PTd8KECahVqxYWL16MvXv3okmTJvjiiy/0rqyUDIXCZCeiiYjkzGTPikxKSkJ2djYcHR3RvHnzSo2lUqkQFRWFqKioEvv88MMPem3ffPONUdsZM2YMxowZY2x4REQkYZV6un92djamTJmC2rVrw9PTEx07doSnpydq166NqVOnIjs721RxEhERlUuFj9ju3r2Lrl274vr163ByckL37t3RoEED/Pnnn/jpp5/w1Vdf4fvvv0dsbKzeEz6IiIiqSoWP2GbPno3r169j1qxZuH37No4fP45///vfOH78OG7fvo2ZM2fi+vXrmDNnjinjJSIiKlWFj9j27duHnj17YsGCBXrLbG1tERkZiXPnzmHv3r2VCpCIiMgYFT5iy83N1Xsn29+9/PLLePToUUU3QUREZLQKFzYvLy8kJyeX2ic5ORleXl4V3QQREZHRKlzY5syZg+joaBw9etTg8sOHDyM6Ohpz586tcHBERETGKvc5to0b9Z+E3bt3bwQGBqJXr17w9/fXXhUZGxuLo0ePom/fvsjKyjJpwERERKUpd2GLiIiAQqHQaSt+nNXhw4dx+PBhvXX27duH/fv3Izycr1wgov/hI+KoKpW7sK1bt64q4yCi5wkfEUdVqNyFbcSIEVUZBxERkUmY7FmRRMYSQiA3N1f72dbWVm+6m6im4PSqdLCwkdnk5ubqvNZoz549sLOzM2NERJXA6VXJKPfl/hYWFrCyssK1a9e0ny0tLcv8sbJi7SQioupT7qrTrVs3KBQK7XvNij8TERFJSbkL29/ff2bofWhERETmZtJ5widPnuDy5csAnj5yq1YtnjwlIqLqZdQjtZKSkrB27VrtebZn7d+/H40aNULHjh3RsWNHuLi4YMeOHSYLlIiIqDyMKmzffvstxowZA6VSqdN+48YNDB48GPfu3YObmxteeOEFZGVlYdiwYUhISDBpwERERKUxqrCdOnUK7du3h7u7u077kiVLkJ+fj4kTJ+LmzZv45ZdfsHPnThQWFmLZsmUmDZiIiKg0RhW2mzdvwtfXV6/90KFDsLa21nnp6IABA9C1a1fExsZWPkoiIqJyMqqw3bt3D87OzjptmZmZSExMhJ+fH+zt7XWWdejQAampqZWPkoiIqJyMuiqyVq1ayMjI0Gm7ePEiAKBjx456/W1tbSsRGhERGcvnX/qvGKsoxZMCOD7zOeCDbSZ7usrFqKp764tRR2wtW7bEsWPHdNoOHz4MhUKBzp076/VPS0uDi4uL0UFpNBrMnDkTrq6uUKvV8PPzw5EjR8pcb9euXRgyZAiaN28OGxsbtGrVCu+99x7u37+v17dp06ZQKBR6P2+//bbR8RIRkXQYdcQ2aNAgvP/++3j77bcxYcIEXLt2DatXr4adnR369Omj1//06dPw8PAwOqiIiAhER0dj6tSp8PT0xPr16xEUFIQTJ07A39+/xPXGjh0LV1dXhIWFwc3NDZcvX8ayZctw8OBB/Pjjj1Cr1Tr927dvj/fee0+nrWXLlkbHS0RE0mFUYZs6dSq2b9+O1atX45tvvgHw9Antn3/+ud6044ULF3Djxg2MGzfOqIDi4+Oxbds2REVFYfr06QCA8PBweHl5YcaMGYiLiytx3ejoaAQEBOi0+fj4YMSIEdiyZQtGjx6ts6xRo0YICwszKj4iIpI2o6YibWxscPr0acyfPx99+vTBsGHDsGfPHkydOlWv748//oj+/fvj9ddfNyqg6OhoWFpaYuzYsdo2lUqFUaNG4cyZM7h9+3aJ6/69qAHAwIEDAQC//fabwXUKCgp0Xp1CREQ1m9GP1LKzs8MHH3xQZr+xY8fqFKfySkhIQMuWLeHg4KDTXnybwU8//YQmTZqUe7w7d+4AgN7VnABw/Phx2NjYoLCwEO7u7nj33XcxZcoUo2MmIiLpkNw7ZdLT0w1ecFLclpaWZtR4ixYtgqWlJUJCQnTa27ZtC39/f7Rq1QoZGRlYv349pk6dirS0NCxatKjE8TQaDTQajfZzTk6OUfEQSQnzmeRIcoUtLy9P75FdwNPpyOLl5bV161asWbMGM2bMgKenp86yvXv36nx+66238Nprr+Hzzz/HpEmT0LhxY4NjRkZGYv78+eWOQW54KbG8PO/5TPJk1Dm26qBWq3X+giyWn5+vXV4esbGxGDVqFAIDA/Hpp5+W2V+hUODdd9/FkydPSn0lz+zZs5Gdna39Ke2cH5HUMZ9JjiR3xObi4mLwaSXp6ekAAFdX1zLHuHTpEl5//XV4eXkhOjq63G/xLj53l5mZWWIfpVJp8IiSqCZiPpMcSe6IrX379rh27ZreXP+5c+e0y0uTmJiIPn36oH79+jh48CDs7OzKve2kpCQAQL169YwLmoiIJENyhS0kJASFhYVYvXq1tk2j0WDdunXw8/PTHlWlpKTg6tWrOuveuXMHvXv3hoWFBf773/+WWKAyMzNRWFio0/b48WMsXLgQ1tbW6NGjh4n3ioiIqovkpiL9/PwQGhqK2bNn4+7du/Dw8MCGDRuQnJyMNWvWaPuFh4cjJiYGQghtW58+fZCUlIQZM2bg1KlTOHXqlHZZgwYN0KtXLwBPLxz55JNPEBISgmbNmiEzMxNbt27FL7/8ggULFqBhw4bVt8NERGRSkitsALBx40Z88MEH2LRpE7KystC2bVvs378f3bp1K3W9S5cuAQA+++wzvWXdu3fXFjZvb2+0adMGmzdvxr1792BtbY327dtjx44dCA0NNf0OERFRtZFkYVOpVIiKikJUVFSJfQxdufjs0VtpfHx89C73JyIieZBkYSOqqYRlLWS3HarzmYiqFwsbkSkpFCa7yZyIKkZyV0USERFVBgsbERHJCgsbERHJCgsbERHJCgsbERHJCq+KJLPhpfFEVBVY2Mh8eGk8EVUBTkUSEZGssLAREZGssLAREZGssLAREZGssLAREZGssLAREZGssLAREZGs8D42IiIyqKY+RIGFjYiIDKuhD1HgVCQREckKCxsREckKCxsREckKCxsREckKCxsREcmKJAubRqPBzJkz4erqCrVaDT8/Pxw5cqRc66ampmLw4MFwcnKCg4MD+vfvj6SkJIN916xZgxdeeAEqlQqenp5YunSpKXeDiIjMQJKFLSIiAp9//jmGDRuGJUuWwNLSEkFBQTh16lSp6z18+BA9evRATEwM5syZg/nz5yMhIQHdu3dHRkaGTt9Vq1Zh9OjRePHFF7F06VK8/PLLmDx5MhYtWlSVu0ZERFVMcvexxcfHY9u2bYiKisL06dMBAOHh4fDy8sKMGTMQFxdX4rorVqzA9evXER8fj06dOgEAXnvtNXh5eWHx4sVYsGABACAvLw9z585FcHAwoqOjAQBjxoxBUVERPv74Y4wdOxa1a9eu4j0lIqKqILkjtujoaFhaWmLs2LHaNpVKhVGjRuHMmTO4fft2qet26tRJW9QAoHXr1njllVewY8cObduJEyeQkZGBCRMm6Kw/ceJE5Obm4sCBAybcIyIiqk6SK2wJCQlo2bIlHBwcdNp9fX0BAD/99JPB9YqKivDzzz+jY8eOest8fX2RmJiIBw8eaLcBQK+vj48PLCwstMuJiKjmkdxUZHp6OlxcXPTai9vS0tIMrpeZmQmNRlPmuq1atUJ6ejosLS1Rv359nX7W1taoW7duidsAnl7YotFotJ+zs7MBADk5OTr9CjV5JY4hNX+PvTQ1Zb+et32yt7eHQqEwesznOZ/luE9Azdmvkvaporn8LMkVtry8PCiVSr12lUqlXV7SegDKtW5eXh6srQ0//0ylUpW4DQCIjIzE/Pnz9dqbNGlS4jpS57j0bXOHYHLP2z5lZ2frzXKUB/O5Znie9qmiufwsyRU2tVqt8xdksfz8fO3yktYDUK511Wo1CgoKDI6Tn59f4jYAYPbs2Zg2bZr2c1FRETIzM1G3bt1K/5VRlpycHDRp0gS3b9+u9P94qeA+mYa9vX2F1mM+mxb3qfIqmsvPklxhc3FxQWpqql57eno6AMDV1dXgenXq1IFSqdT2K21dFxcXFBYW4u7duzrTkQUFBcjIyChxG8DTI8K/HxU6OTmVvlMm5uDgIJt/NMW4T+bBfK4a3CfzktzFI+3bt8e1a9f05l/PnTunXW6IhYUFvL29ceHCBb1l586dQ/PmzbV/CRSP8fe+Fy5cQFFRUYnbICIi6ZNcYQsJCUFhYSFWr16tbdNoNFi3bh38/Py0c/8pKSm4evWq3rrnz5/XKVi///47jh8/jtDQUG1bz549UadOHaxcuVJn/ZUrV8LGxgbBwcFVsWtERFQdhASFhoYKKysr8a9//UusWrVKdO7cWVhZWYmYmBhtn+7du4u/h5+TkyNatGgh6tevLz777DPxxRdfiCZNmghXV1dx9+5dnb7Lly8XAERISIj45ptvRHh4uAAgPv3002rZx4rIz88XH374ocjPzzd3KCbDfXp+yfH3xH2SBkkWtry8PDF9+nTRsGFDoVQqRadOncShQ4d0+hgqbEIIcfv2bRESEiIcHByEnZ2d6Nu3r7h+/brB7axevVq0atVKWFtbixYtWogvvvhCFBUVVck+ERFR9VAIIYR5jxmJiIhMR3Ln2IiIiCqDhY2IiGSFha0GuHz5MkJCQuDu7g6VSoVGjRqhV69eNf79cYmJiRg3bhyaN28OlUoFBwcHdOnSBUuWLCn16S9SdeXKFYSFhaFRo0ZQKpVwdXVFWFgYfv31V3OHJhlyzWWA+SwlPMcmcXFxcejRowfc3NwwYsQINGzYELdv38bZs2eRmJiIGzdumDvECjlw4ABCQ0OhVCq1ryUqKCjAqVOnsHPnTkREROjc8iF1u3btwtChQ1GnTh2MGjUKzZo1Q3JyMtasWYPMzExs374d/fv3N3eYZiXXXAaYz5Jj3mtXqCxBQUGiXr16IisrS2/Zn3/+Wf0BmUBSUpKws7MTrVu3FmlpaXrLr1+/Lr788kszRFYxN27cEDY2NqJ169Z6t5Xcu3dPtG7dWtjZ2YmkpCQzRSgNcsxlIZjPUsTCJnGtWrUSAQEB5g7DpN5++20BQJw+fdrcoZjEuHHjBABx8uRJg8tjYmIEADF+/Phqjkxa5JjLQjCfpYhTkRIXGBiIM2fOIC4uDl5eXuYOxyQaN24MpVKJxMREc4diEo0aNYK1tTVu3rxZYp9mzZrhyZMnpb4oV+7kmMsA81mKePGIxE2fPh2PHj1C+/bt0blzZ8ycOROHDx/G48ePzR1aheTk5CA1NRXe3t7mDsUksrOzkZaWhnbt2pXar23btvjjjz+0L7t9HsktlwHms1TzmYVN4nr16oUzZ87g9ddfx6VLl/DZZ58hMDAQjRo1wt69e80dntGKH25tildTSEHxP+yy9qd4uVS/CKqD3HIZYD5LNZ9Z2GqATp06YdeuXcjKykJ8fDxmz56NBw8eICQkpEZcevus4tdeSPUfhLHK+w/8wYMHUCgUcHZ2ro6wJEtOuQwwn6WazyxsNYi1tTU6deqEBQsWYOXKlXj8+DG+++47c4dlFAcHB7i6uuKXX34xdygm4ejoCFdXV/z888+l9vv555/RuHHjEt/c/ryRQy4DzGep5jMLWw3VsWNHADD4YlWp69u3LxITE3HmzBlzh2IS/fr1w82bN3Hq1CmDy2NjY5GcnKzz6iT6n5qcywDzWZLMfVkmle748eMG3ziwaNEiAUB8/vnnZoiqcm7cuCFsbW1FmzZtxJ07dwwur0n3/Vy/fl3Y2NiINm3aiL/++ktnWUZGhmjTpo1wcHCQ9H0/1UGOuSwE81mKeLm/xHl5eeHRo0cYOHAgWrdujYKCAsTFxWH79u1o0qQJEhIS4OTkZO4wjbZ3714MGTIEarVa50kNcXFx+O677xAREYFVq1aZO8xy27lzJ4YOHQpnZ2e9JzVkZWVh27ZteP31180dplnJNZcB5rPkmLuyUum+//57MXLkSO3d/tbW1sLDw0NMmjSpRj+tQQghrl27JsaMGSOaNm0qrK2thb29vejSpYtYunRpjXqpYbHLly+LN998UzRs2FBYWFgIAEKlUokrV66YOzRJkHMuC8F8lhIesRFVkY0bNyIiIgJhYWHYuHGjucMhqpSalM9W5g6ASK7Cw8ORnp6OWbNmoXHjxliwYIG5QyKqsJqUzzxiIyIiWeHl/kREJCssbEREJCssbEREJCssbEREJCssbEREJCssbEREJCssbEREJCssbFQpycnJUCgUiIiIMFsMAQEBUCgU1bpNKew3mZYU/p8yl02DhU0mipOztJ+mTZuaO0yiMjGXqbL4SC2ZadGiBcLCwgwuq6lPTqfnE3OZKoqFTWY8PDwwb948c4dBVGnMZaooTkU+pxQKBQICApCamoo333wTzs7OsLe3R3BwMJKSkgAAv/32GwYMGIA6derA3t4eISEh+PPPP0sc88qVKwgODoaTkxPs7OzQu3dvXLx4Ua/fxYsX8c4778DLywuOjo5Qq9Xw9vbGwoUL8fjxY73+TZs2RdOmTXH//n288847aNKkCaysrLB+/fpS93H79u1QKpVo166dztuZT548iX79+sHZ2RlKpRKenp54//338ejRI70xCgsLsWjRInh4eEClUsHDwwORkZEoKioqddtUfZjLzGU95n1rDpnKzZs3BQARGBhYrv4ARNu2bUXTpk3FSy+9JKZNmyb69u0rAIjmzZuLy5cvCycnJ/HKK6+I9957TwQEBAgAokePHga327VrV+Ho6Ch69OghZs2aJYYOHSqsrKyEjY2NOHv2rM4648aNE66uruKNN94Q//rXv8TEiRPFiy++KACIf/7zn3qxuru7i4YNG4oOHToIT09PMWHCBDF58mRx8OBBIYQQ3bt3F39P5a+++kooFArRrVs3cf/+fW37ihUrhEKhELVr1xbh4eFi+vTp2n3r3Lmz0Gg0OuOMHDlSABDNmjUT06ZNExMmTBDOzs7a39WIESPK9fum8mMuM5cri4VNJor/UbZo0UJ8+OGHBn++//57bX8AAoB49913dcYZP368ACCcnJx0XmdfVFQkgoKCBABx8eJFve0CELNmzdIZ69ChQwKA8Pb21mm/deuWePLkiU5bUVGR9h/eqVOndJa5u7trv+gePXqkt+9//zKYM2eOACAGDhwo8vLytO1XrlwRVlZWol27dnqvvI+MjBQAxP/93/9p206cOCEAiHbt2omHDx9q2//44w/h7Owsuy8DqWAuM5cri4VNJp79R1nSz5QpU7T9AQg7OzuRm5urM87Jkye1XypFRUU6yzZu3CgAiLVr1+pt18nJSTx48EAvrldeeUUAEBcuXChzHy5evCgAiHnz5um0F38ZXLp0yeB6xV8GT548EaNGjRIAxJgxY/S+cCZPniwAiJMnT+qNUVhYKOrVqyd8fHy0bW+99ZYAIHbu3KnX/+OPP5bdl4FUMJeZy5XFi0dkJjAwEIcOHSpXX09PT9jY2Oi0ubi4AADatm2rdz9N8bK0tDS9sTp06AA7Ozu99q5du+LYsWNISEiAj48PAKCgoADLli3Dtm3bcPXqVTx8+BDimdcCGhpfpVLB29u71P0ZNGgQ9uzZg7lz5+KTTz7RW3727FkAwH//+18cO3ZMb3mtWrVw9epV7edLly5p98HQflHVYi4zlyuKhe055uDgoNdmZWVV5jJDJ8UbNGhgcBvF7dnZ2dq2kJAQ7Nu3Dy1btsSQIUNQv3591KpVC/fv38eSJUug0Wj0xqlfv36ZN66ePHkSKpUKQUFBBpdnZmYCAD799NNSxymWnZ0NCwsLODs7l7hfJA3M5dI9b7nMwkYmUdIVZsXtjo6OAIDz589j3759CAwMxIEDB2Bpaante/bsWSxZssTgOOV5GsOxY8fw6quvok+fPjh06BA6d+6ss7z4Cy4nJwf29vZljufo6IiioiL89ddfqFevnsH9IvlhLtd8vNyfTCIhIQEPHz7Ua4+NjQXwdHoHABITEwEAwcHBOl8Ez/atqA4dOuD48eOwtrZGnz59cPr0aZ3lfn5+AP43jVOWdu3alRhXZWMl6WIu13wsbGQS9+/f15sWKZ7/9/Ly0p6TcHd3BwCcOnVKp++VK1cQGRlZ6TjatWuH48ePQ6lUok+fPjrbmTBhAqysrDBp0iSkpKQY3IeEhATt5+HDhwMAPvroI+Tm5mrbU1NTS/xrnGo+5nLNx6lImblx40apT2uYNWsWVCqVybfbtWtXrFy5EufOncNLL72E5ORkfPfdd1Cr1fj222+1/Xx9feHr64sdO3YgPT0dL730ElJSUrB3714EBwcjOjq60rG0bdsWx48fxyuvvILXXnsNBw8eRNeuXeHl5YUVK1Zg/PjxaNWqFYKCgtCiRQs8ePAASUlJiImJQUREBL7++msAQI8ePfDWW29h3bp18Pb2xsCBA6HRaLB9+3a89NJL2L9/f6VjpZIxl5nLFWbuyzLJNMpziTQAkZWVJYR4eol09+7dSxzH0KW/xffCfPjhhwb7//LLLyIoKEg4ODgIW1tb8eqrrxq8NPru3bti5MiRwtXVVahUKuHt7S2WL18ukpKSDG7b3d1duLu7l7jvhm5qFUKIy5cvi/r16wtbW1sRExOjbY+PjxdvvPGGcHV1FbVq1RLOzs7iH//4h5g1a5b47bffdMZ48uSJiIyMFM2bNxfW1taiefPmYsGCBeLGjRuyu0RaKpjLzOXKUgjxzLWpRERENRzPsRERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaywsBERkaz8P1+19jagQMRRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAufUlEQVR4nO3dd1RUZ/4/8PdIGZqAoiIqolI0Bo1E7KBYsetaMMbGRmOStX6zRkXjsSWaxKixRDdGBYy4GBFXMQ3FEqyowTVNRZoKWLBQBQWe3x/+mGUyA8wMAzNc3q9z7jnOc+/z3M+d85HP3C4TQggQERFJSD1DB0BERKRvLG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5ERCQ5LG5UoVatWqFVq1aGDkPB2OKh2s/YcsrY4qmtWNxqWF5eHtasWYPXX38dNjY2kMvlaNGiBXx9fREUFITExERDh0gaKikpwZYtW9ChQwdYWlqicePGmDhxIpKSkgwdmkExx6XhwYMHWLt2LcaNG4fWrVtDJpNBJpMZOiyNmRo6gLokJycHPj4+uHbtGtzc3DB58mQ4ODggMzMTcXFx+OSTT+Dq6gpXV1dDh6oQExNj6BCM1jvvvIOdO3fi1Vdfxdy5c5Geno5vv/0W0dHRuHDhAtzd3Q0dYo1jjkvHH3/8gSVLlkAmk8Hd3R1WVlbIz883dFiaE1RjVq1aJQCIGTNmiJKSEpX5SUlJ4s8//zRAZLWHi4uLcHFxMXQY4sSJEwKA6N27tygsLFS0f//99wKAGDRokAGjMxzmeNUZS47fu3dPnD59WmRnZwshhGjbtq2oTSWDhyVr0Pnz5wEAs2bNUrt737p1a7Rr106pTSaTwc/PT+146o7NBwYGQiaTISkpCevXr0f79u0hl8sRGBiI1atXQyaTYc+ePWrHi4yMhEwmw9KlS8tdhy5jAEBycjJmzJiBli1bQi6Xw8nJCYGBgUhNTVU7zuHDh9GlSxdYWlrC0dERb7/9Np48eaJ2WUP4+uuvAbz8PszNzRXtQ4YMgZ+fH6Kjo3H79m1DhWcwzHHp5LijoyN69+6N+vXrGzoUnbC41SAHBwcAwM2bN6t9XXPmzMGaNWvg7e2N+fPno0OHDpg8eTJkMhn27t2rts8333wDAJgyZUq54+oyxsWLF+Hl5YXQ0FB07twZ8+bNg6+vL8LCwtC1a1eVc1R79uzB6NGjcfPmTUyZMgXTpk3D2bNnMWDAADx//lyr76G6nDp1CtbW1ujVq5fKPH9/fwDA6dOnazosg2OOSyfHazuec6tB48ePx969ezFjxgzExcVh0KBB6Ny5s+IPgj5du3YN8fHxaNmypVJ7r169cOLECWRkZMDJyUnR/vjxY3z//ffw9vZW+WVdVuvWrbUa48WLF3jjjTdQUlKCuLg4eHl5KZY/c+YM/Pz8MG/ePERFRQEAsrOzMWfOHFhbW+PSpUvw8PAAAHz88ccYMGAAMjIy4OLiovH3sGLFCo2XBV7uFVR2pVpeXh4yMjLg6ekJExMTlfml59oSEhK0WrcUMMelkeOSYOjjonXN+vXrhY2NjQCgmFxdXcWsWbPEzZs3VZYHIPr06aN2LHXH5qdNmyYAiE2bNqnt89VXXwkAYv369Urt27ZtEwDEF198Uek6tBkjMjJSABCrVq1SG8+YMWNEvXr1RFZWlhBCiNDQUAFAzJkzR2XZ2NhYAUCr8xFlv2dNppMnT1Y6ZlpamgAgevXqpXZ+dHS0ACDmzp2rcZxSwhxXVhtzXB2ec6MKvf/++4qr6ubPnw8fHx/cvn0bX375JTp27IgjR47oZT1du3ZV2x4QEAC5XK44tFJq7969MDU1xcSJEysdW5sxLly4AAC4ceMGVqxYoTLdu3cPJSUlisNY//3vfwEAvr6+Kuvt0aMHTE21O9gghNBqKu/cD2mOOc4cNwY8LGkA9evXx/jx4zF+/HgAQFZWFpYsWYJt27Zh+vTpSEtLU7pIQReOjo5q2+3t7TF8+HAcPHgQf/zxB9q3b4/ExEScO3cOQ4cORZMmTSodW5sxHj9+DAAICwurcMy8vDwAL78LAGrjMDExqZbDW9qys7MD8L9Y/yo7O1tpubqIOa6qNuW4FLC4GQE7Ozts3boV3333HVJTU/Hrr7+ic+fOAF5eSVZUVKS2X1ZWVrl/QCu62XLKlCk4ePAgvvnmG6xdu1Zx4ryik+y6jmFrawsAiIqKwvDhwysdt3R7Hjx4oDKvuLgYjx49QvPmzTWOszrOR1hbW8PJyQnJyckoLi5WOe9Weq6tLt7nVh7m+P/UhhyXhJo7AkqVad++vQAgLl++rGhr2LChaNWqlcqyycnJao/Nl56PSE5OLnc9z58/Fw4ODqJly5aiuLhYuLu7i/r164v8/HyVZcu750bTMfbv3y8AiCVLllS88f9fbTkf8cYbbwgA4vTp0yrz/Pz8BACRkpKicZx1BXO89uT4X9W2c261J1IJ+Ne//iXi4uLUzjt06JCQyWTC3t5eFBQUKNr9/f0FAHHq1ClFW2Fhofjb3/6m8398IYT4xz/+IQCItWvXCgAiMDBQ7XIV3VCqyRgFBQWiZcuWwsLCQm0heP78uYiNjVV8fvr0qbC1tRXW1tbixo0bSsv16dNH6//41YU3cavHHJdOjv9VbStuMiGE0NdeIFVs9OjROHz4MNzc3NCrVy80a9YMeXl5iI+PR2xsLOrVq4e9e/cqnayOjo7G4MGDYWlpiYkTJ8LKygrHjh2Dvb09UlNTYW5ujpSUFMXygYGBCA0NRXJycoWHHi5cuIAePXrAzMwML168QExMDPr166eyXOkYZdeh7RiXLl3CkCFD8OjRI/Tr1w8dOnSATCZDamoqYmNj4eDggOvXryuWDw0NRWBgIGxtbfHGG2/Azs4OR48ehaWlJTIyMlS22VDefvttxeO3hg0bhoyMDOzfvx82NjY4f/684hLvuoQ5Lq0cDwwMVPz70KFDyM7OxrRp0xRtixcvrvC2CoMydHWtS65fvy4+++wzMXDgQNG6dWthYWEhLCwshKurq5g2bZrSoZqyDhw4IDp06CDMzc1F06ZNxZw5c0ROTk6Fl0lX9qtWCCHc3d0FANGiRQtRXFysdpnKHgWkyRhCCHH37l0xb9484e7uLuRyubC1tRWvvPKKmDFjhoiJiVFZ/tChQ6Jz585CLpeLJk2aiBkzZojHjx8bzaOJhBCiuLhYbNq0Sbz66qtCLpcLBwcHMWHCBHHr1i1Dh2YwzHFp5Tiq6RBnTeCeGxERSQ7vcyMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSMiIslhcSuHEALZ2dngnRIkVcxxkjIWt3Lk5OTAzs4OOTk5hg6FqFowx0nKjK645ebmYvny5Rg8eDAaNmwImUyGkJAQjfqGhIRAJpOpne7du1e9gRMRkdEwulfeZGZmYtWqVWjZsiVee+01nDp1SusxVq1ahdatWyu12dvb6ydAIiIyekZX3JycnJCRkYGmTZvi8uXL6NKli9ZjDBkyBN7e3tUQHRER1QZGd1hSLpejadOmVR4nJycHxcXFeoiIiIhqG6MrbvrQt29f2NrawsrKCiNHjlS8GZmIiDQjhEBubq5iqm1X1RrdYcmqsLKyQmBgoKK4XblyBRs2bEDPnj3xyy+/wNnZudy+hYWFKCwsVHzOzs6uiZCJagxznLSRl5eHUaNGKT4fPnwYNjY2BoxIO5LacwsICEBwcDCmTp2K0aNHY/Xq1fjpp5/w6NEjfPzxxxX2Xbt2Lezs7BRTRYWQqDZijlNdIqnipo6Pjw+6deuG48ePV7hcUFAQsrKyFNOdO3dqKEKimsEcp7pEUocly+Ps7IwbN25UuIxcLodcLq+hiIhqHnOc6hLJ77kBQFJSEho3bmzoMIiIqIbU2uKWkZGB69ev48WLF4q2hw8fqiz3/fff48qVKxg8eHBNhkdERAZklIclt27diqdPnyI9PR0AEBUVhbt37wIA5syZAzs7OwQFBSE0NBTJyclo1aoVAKBnz57w8vKCt7c37Ozs8Msvv2D37t1wdnbGkiVLDLU5RERUw4yyuH3++edITU1VfI6MjERkZCQAYPLkybCzs1Pbb8KECfjuu+8QHR2N/Px8ODk54e2338by5cvh6OhYI7ETEZHhyURtuzOvhmRnZ8POzg5ZWVmwtbU1dDhEesccp4rk5ubyPjciIiJjwuJGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSY3TFLTc3F8uXL8fgwYPRsGFDyGQyhISEaNz/6dOnmDlzJho3bgxra2v07dsXv/zyS/UFTERERqfKxe3QoUMYNWoUWrZsCTs7O7Rs2RKjR4/Gf/7zH53Gy8zMxKpVq/Dnn3/itdde06pvSUkJhg0bhn379mH27Nn47LPP8ODBA/j5+SEhIUGneIiIqPYx1bVjUVER3nzzTRw8eBBCCJiamsLBwQH37t3DkSNHEBUVhbFjx2Lfvn0wNdV8NU5OTsjIyEDTpk1x+fJldOnSReO+EREROHfuHA4cOIBx48YBAAICAuDh4YHly5dj3759Wm8nERHVPjrvua1duxYRERHw9fVFbGwsCgoKkJGRgYKCAvz888/w8fHBwYMH8cknn2g1rlwuR9OmTXWKKSIiAo6OjhgzZoyirXHjxggICMDhw4dRWFio07hERFS76FzcgoOD0a5dOxw/fhy9evVCvXovh6pXrx58fHxw/PhxeHh4YPfu3XoLtjLx8fF4/fXXFbGU6tq1K/Lz83Hz5s0ai6U2E0IgNzdXMQkhDB0SkV4xx6VP58OSGRkZmDt3brmHHM3MzDBixAhs2bJF5+B0ial3794q7U5OTgCA9PR0dOjQQW3fwsJCpT277Ozs6gmyFsjLy8OoUaMUnw8fPgwbGxsDRkT6wBz/H+a49Om85+bs7Izc3NwKl8nLy0PLli11XYXWnj17BrlcrtJuYWGhmF+etWvXws7OTjE5OztXW5xEhsAcp7pE5+I2Y8YMfPvtt8jIyFA7Py0tDfv378eMGTN0Dk5blpaWas+rFRQUKOaXJygoCFlZWYrpzp071RYnkSEwx6ku0fmwZEBAAM6ePQsvLy/Mnz8fPj4+cHR0xP379xEbG4tNmzbBx8cH48ePx+3bt5X6VtfeXOmVln9V2tasWbNy+8rlcrV7fdVNCIG8vDzFZ2tra8hkshqPg6TPUDlOZAg6F7c2bdpAJpNBCIGlS5eqzBdCICoqClFRUUrtMpkMRUVFuq62Qp06dUJsbCxKSkqULiq5ePEirKys4OHhUS3rrQoe+yep4w84MgSdi9vUqVMNmqAZGRnIysqCq6srzMzMAADjxo1DREQEIiMjFfe5ZWZm4sCBAxgxYgR/tRIZAH/AkSHoXNy0eSSWtrZu3YqnT58iPT0dABAVFYW7d+8CAObMmQM7OzsEBQUhNDQUycnJaNWqFYCXxa179+74+9//jj/++AONGjXCtm3bUFxcjJUrV1ZbvEREZFx0Lm7V6fPPP0dqaqric2RkJCIjIwEAkydPhp2dndp+JiYm+P777/HBBx9g8+bNePbsGbp06YKQkBC0bdu2RmInIiLD02txu3r1Kk6ePAkA8PHx0erRWWWlpKRUukxISIjavccGDRpg586d2Llzp07rJiKi2k+rWwF+/vlnTJ06FRcuXFCZ9+GHH6Jz585YsGABFixYgO7du2POnDl6C5SIiEhTWhW3/fv348CBA2jfvr1S+8mTJ7FmzRqYmJhgypQpeO+99xTnu3R9OwAREZGutCpu58+fR8+ePWFra6vU/tVXX0Emk+Ff//oXQkJCsHXrVpw9exZmZmbVeuEJERGROlqdc0tPT4efn59K+8mTJ2Fra4vAwEBFm5ubG4YOHYq4uLiqxkhERNWo8wd7VNpkRc9R9tI9v2XhEKbmSstcWTe1miPTnVZ7bk+ePFF5hNXt27fx8OFD+Pj4qDyN383NDZmZmVWPkoiISAtaFbf69esjLS1Nqe3SpUsAgM6dO6ssL5PJFA8tJiIiqilaFbeOHTvi6NGjSo/SOXToEGQymdpXzSQmJlb4PEciIqLqoFVxe+utt/D48WP06dMHmzdvxuzZs/Hvf/8bLVu2VDkXV1xcjJ9//rnc96cRERFVF60uKJk8eTJiYmIQGhqK+Ph4CCFga2uLXbt2qZxv++6775CZmQl/f3+9BkxERFQZrZ9QEhwcjOnTp+P8+fNwcHCAv78/mjdvrrKcXC7Hxo0blR6YSkREVBN0evyWj48PfHx8KlzG39+fe21ERGQQenu2ZFJSErKysmBnZ4c2bdroa1giIiKtaXVByV9lZWVh3rx5aNCgAdzd3eHt7Q13d3c0aNAA8+fPR1ZWlr7ipEoIIZCbm6uYhBCGDomIyGB03nN78OABfH19kZCQAHt7e/Tp0weOjo64f/8+rl69is2bN+OHH35AbGwsmjRpos+YSQ2+EJKI6H903nMLCgpCQkICFi9ejDt37uDEiRP497//jRMnTuDOnTtYtGgREhISsGTJEn3GazS4p0RE/DtgvHTec4uKikK/fv2wZs0alXnW1tZYu3YtLl68iCNHjlQpQGPFPSUi4t8B46XznlteXh66d+9e4TI9evRAfn6+rqsgIiLSic7FzdPTs9I3ZqekpMDT01PXVRAREelE5+K2ZMkSRERE4Pjx42rnR0dHIyIiAkuXLtU5OCIiIl1ofM5tzx7V9/0MGjQI/v7+GDhwIHx8fBRXS8bGxuL48eMYPnw4njx5oteAiYiIKqNxcQsMDIRMJlNqK70yKDo6GtHR0Sp9oqKicPToUUydarwvtCMiIunRuLgFBwdXZxxERER6o3FxmzZtWnXGQUQS0PkD1dMXsqLnsCvz2W9ZOISpucpyV9bxCI8+CCGU3rlpbW2tctStLtDbsyWJiMjweO/dSyxuNUjXX7X8RUtEpB2NbwWoV68eTE1NcfPmTcVnExOTSidTU9ZPIiKqWRpXnt69e0Mmk8HKykrpMxERkbHRuLidOnWqws9ERKQ7XgiiX3o9ZlhUVIRff/0VwMvHc5mZmelzeIPo/eG/YSK3VGnnuTKSOv6xrVm8EES/tHr8VlJSEnbv3q0471bW0aNH0bx5c3h7e8Pb2xtOTk749ttvdQqqsLAQixYtQrNmzWBpaYlu3brh2LFjlfZbsWIFZDKZymRhYaFTHER1Wekf29KpbKEjMnZa7bnt3LkTn376KZKSkpTab926hYCAABQUFMDFxQXW1tb4888/MWnSJLi7u8PLy0uroAIDAxEREYH58+fD3d0dISEhGDp0KE6ePAkfH59K+2/fvl3pF4+JiYlW6yciotpNq+J25swZdOrUCS4uLkrtmzZtQkFBAWbNmoUtW7YAAP7zn/9gzJgx2Lp1K3bt2qXxOuLi4hAeHo5169ZhwYIFAICpU6fC09MTCxcuxLlz5yodY9y4cWjUqJEWW0ZERFKi1WHJ5ORkdO3aVaX9xx9/hLm5udKLS0ePHg1fX1/ExsZqFVBERARMTEwwc+ZMRZuFhQWmT5+O8+fP486dO5WOIYRAdnY234pLRFRHabXn9vDhQ5U9osePHyMxMRG+vr6oX7++0jwvLy9cvnxZq4Di4+Ph4eEBW1tbpfbSonr16lU4OztXOEabNm2Qm5sLa2trjB49GuvXr4ejo6NWcRARlcVHi9UuWhU3MzMzPHr0SKntypUrAABvb2+V5a2trbUOKCMjA05OTirtpW3p6enl9m3QoAFmz56NHj16QC6XIzY2Fl9++SXi4uJw+fJllYJZVmFhIQoLCxWfs7OztY6dyJgxx6ku0aq4eXh4ICYmRqktOjoaMpkMPXv2VFk+PT1dbaGqyLNnzyCXy1XaS694fPbsWbl9582bp/R57Nix6Nq1KyZNmoRt27Zh8eLF5fZdu3YtVq5cqVWstZ26X6IAb3OQqrqY4wAfe1dXaXXObezYsUhISMC7776La9euISIiAjt27ICNjQ0GDx6ssvzZs2fh5uamVUCWlpZKvy5LFRQUKOZr480330TTpk3LfWN4qaCgIGRlZSkmTc7tEdUmzHGqS7Tac5s/fz7279+PHTt24Ouvvwbw8uKNDRs2qByCvHz5Mm7duoV33nlHq4CcnJyQlpam0p6RkQEAaNasmVbjAYCzszMeP35c4TJyuVztHiORVEghx3ljOWlKq+JmZWWFs2fPYuPGjbhw4QIcHBwwfvx4jBgxQmXZX375BaNGjcLIkSO1CqhTp044efIksrOzlc6RXbx4UTFfG0IIpKSkaH2vHREZHz7FgzSl9eO3bGxssGzZskqXmzlzptLl/JoaN24cPv/8c+zYsUNxn1thYSGCg4PRrVs3xZWSt2/fRn5+Ptq1a6fo+/DhQzRu3FhpvO3bt+Phw4dqD5sS0Us8L0VSY3Tvo+nWrRvGjx+PoKAgPHjwAG5ubggNDUVKSorSzeBTp07F6dOnle5lc3FxwYQJE9ChQwdYWFjgzJkzCA8PR6dOnbQ+PFoZYWKGrI4TlT6T8eNhLaK6weiKGwDs2bMHy5YtwzfffIMnT56gY8eOOHr0KHr37l1hv0mTJuHcuXM4ePCg4lFgCxcuxNKlSxWv6tEbmUzt/Sxk3HhYi6SEe9zlM8riZmFhgXXr1mHdunXlLqPulTulF7kQEVHdZpTFjYikg4fwyRBY3Kja8PwWAeAhfDIIFjeqNjy/RUSGwuJWC/EBrkREFdPq8VtERES1AffciIhIRW2/EIjFjYjUqu1/3GqCpL+jWn4hEIsbEalXy/+41Qh+R0aLxc3AJP3Lj4jIQFjcDI2//IiI9I7FjYiMjpTfEi/lbTMmvBWAiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh7cCEBFJCB8M8RKLGxGRlPDBEAB4WJKIiCSIxY2IiCSHhyVJkviII6K6jXtuREQkOSxuREQkOTwsSXqh7jAgDwESkaFwz42IiCSHe24SwRs3qS5gnpOmWNykgjduUl3APCcN8bAkERFJjlEWt8LCQixatAjNmjWDpaUlunXrhmPHjmnUNy0tDQEBAbC3t4etrS1GjRqFpKSkao6YiIiMiVEWt8DAQGzYsAGTJk3Cpk2bYGJigqFDh+LMmTMV9svNzUXfvn1x+vRpLFmyBCtXrkR8fDz69OmDR48e1VD0RERkaEZ3zi0uLg7h4eFYt24dFixYAACYOnUqPD09sXDhQpw7d67cvtu2bUNCQgLi4uLQpUsXAMCQIUPg6emJ9evXY82aNTWyDUREZFhGt+cWEREBExMTzJw5U9FmYWGB6dOn4/z587hz506Ffbt06aIobADQrl079O/fH99++221xk1ERMbD6IpbfHw8PDw8YGtrq9TetWtXAMDVq1fV9ispKcG1a9fg7e2tMq9r165ITExETk6O3uMlIiLjY3SHJTMyMuDk5KTSXtqWnp6utt/jx49RWFhYad+2bduq7V9YWIjCwkLF56ysLABA8fNn2m1AGdnZ2Uqfiwt1G0tf4/x1rPLGkRU9R1FRkdJyorhY65h0GUdf9LltxqR+/fqQyWQ69S0vx7Ozs2tNbuorJn3luC4xVff/O23j0ec4+lKVPFcQRqZNmzZiyJAhKu2JiYkCgNi4caPafrdv3xYAxKeffqoyb9euXQKAiI+PL3e9y5cvFwA4cTLqKSsrS9f/WsxxTrVmqkqelzK6PTdLS0ulX5elCgoKFPPL6wdAp74AEBQUhPfff1/xuaSkBI8fP4aDg0O5vyCys7Ph7OyMO3fuqBxG1YaxjWOMMXHbXqpfv77O65FCjhtjTNw2/Y9TlTwvZXTFzcnJCWlpaSrtGRkZAIBmzZqp7dewYUPI5XLFctr0BQC5XA65XK7UZm9vr1HMtra2VU5qYxxHn2MZ2zj6HMvYximPlHJcn2MZ2zj6HEuq42jC6C4o6dSpE27evKlyLPfixYuK+erUq1cPHTp0wOXLl1XmXbx4EW3atNHLrwEiIjJ+Rlfcxo0bh+LiYuzYsUPRVlhYiODgYHTr1g3Ozs4AgNu3b+P69esqfS9duqRU4G7cuIETJ05g/PjxNbMBRERkcEZ3WLJbt24YP348goKC8ODBA7i5uSE0NBQpKSnYtWuXYrmpU6fi9OnTEEIo2v7xj3/g66+/xrBhw7BgwQKYmZlhw4YNcHR0xD//+U+9xyqXy7F8+XKVQz21fRxjjInbZhjGuI3GFhO3rebG0YZMlK0ORqKgoADLli3D3r178eTJE3Ts2BGrV6+Gv7+/Yhk/Pz+V4gYAd+/exf/93/8hOjoaJSUl8PPzw8aNG+Hm5lbTm0FERAZilMWNiIioKozunBsREVFVsbgREZHksLhpSSaTVTqtWLFC4/ESExPxzjvvoE2bNrCwsICtrS169eqFTZs24dkzzR6JExISUmE8Fy5c0Die5ORkzJ49Gx4eHrCysoKVlRXat2+PWbNm4dq1a1rHYmFhgWbNmsHf3x+bN2/W+fme27Ztg0wmQ7du3XTqr+47atKkCfr27YsffvihymOVTosXL660vyY5JJPJcOrUKZ22taqY49rFwhxXZQw5bnRXSxq7b775ptx5K1asQGJiosbJ+d1332H8+PGQy+WK1/o8f/4cZ86cwQcffIDff/9d6ZaIyqxatQqtW7dWadf0YpqjR49iwoQJMDU1xaRJk/Daa6+hXr16uH79OiIjI7F9+3YkJyfDxcVF41hevHiBe/fu4dSpU5g/fz42bNiAI0eOoGPHjhpvFwCEhYWhVatWiIuLw61bt3S+QKg0LiEE7t+/j5CQEAwdOhRRUVEYPny4TmOV5enpWWm/v+bQnj17cOzYMZX2V155Rat49IU5zhz/61hl1Zocr/IDvEgIIcTXX38tAIg5c+ZotHxSUpKwsbER7dq1E+np6SrzExISxBdffKHRWMHBwQKAuHTpklYxl3Xr1i1hbW0tXnnlFbXxvHjxQmzatEncvn1b51hiYmKEpaWlcHFxEfn5+RrHlpSUJACIyMhI0bhxY7FixQqN+1YW1+PHj4WZmZl48803qzyWrmbNmiVqw39F5njlsTDH1TNEjvOwpB78/vvvmDt3Lry8vLBu3TqN+nz22WfIzc3Frl271L7JwM3NDfPmzdN3qBXGk5eXh+DgYLXxmJqaYu7cuYqb6HXRr18/LFu2DKmpqdi7d6/G/cLCwtCgQQMMGzYM48aNQ1hYmM4x/JW9vT0sLS1hasqDGBVhjmuGOW48WNyqKD8/HwEBATAxMUF4eLjGNylGRUWhTZs26Nmzp95iycrKQmZmptL06NEjjfoePXoUbm5uOh/v19SUKVMAANHR0Rr3CQsLw5gxY2Bubo6JEyciISEBly5d0mn9pd/Rw4cP8fvvv+O9995Dbm4uJk+erPNYZScpYo5rhzluHOpWKa8Gc+bMwR9//IHQ0FB4eHho1Cc7OxtpaWkYNWqUXmMZMGCASptcLle8FaGieNLT0zF69GiVeU+fPlV6x5S1tXWFb1eoTIsWLWBnZ4fExESNlr9y5QquX7+OLVu2AAB8fHzQokULhIWFKb1xXVN//Y7kcjl2796NgQMHVnksACoPFZAC5rh2mOPGgcWtCvbt24fdu3djypQpmDp1qsb9Sh8Kre8HOX/55Zcqf3xMTEw0jsfGxkZlnp+fH/773/8qPq9btw4LFiyoUpw2NjYaX1EWFhYGR0dH9O3bF8DLq7AmTJiAvXv3Yv369RptX1llv6P79+9j7969mDFjBurXr48xY8boPJZUMcd1wxw3PBY3HSUkJODdd9+Fh4cHtm3bplXf0lc+6HrJcHm6du0Kb29vrfuV/gHKzc1VmffVV18hJycH9+/f1+mwhjq5ublo0qRJpcsVFxcjPDwcffv2RXJysqK9W7duWL9+PWJiYjBo0CCt1v3X72jixInw8vLC7NmzMXz4cJibm+s8ltQwx3XHHDc8FjcdFBYWYsKECXj+/DnCw8PV/hqsiK2tLZo1a4bffvutmiLUjp2dHZycnNTGU3p+IiUlRS/runv3LrKysjS6zPnEiRPIyMhAeHg4wsPDVeaHhYVp/R//r+rVq4e+ffti06ZNSEhIwKuvvlql8aSCOa475rhx4AUlOliwYAHi4+Px2WefwcvLS6cxhg8fjsTERJw/f17P0elm2LBhuHXrFuLi4qp1PaX3uZR9CHZ5wsLC0KRJExw4cEBlmjhxIg4dOqTxTcAVKT3fou5XfV3FHNcdc9xI1OiNBxIQGRkpAIiRI0dWaZzSe27at28v7t27p3Z+Td4DdPPmTWFlZSVeffVVtfGU3oezbt06nWMpvQeodevW4tmzZxWOk5+fL+rXry/eeusttfPPnj0rAIjw8PAKx6ksrufPnwt3d3dhbm4usrKyqjSWroztPjfmOHNcCjnOw5JayMjIwPTp02FiYoL+/fuXex+Lq6srevToUeFYrq6u2LdvHyZMmIBXXnlF6ekN586dw4EDBxAYGKhVfD/88IPKC1wBoGfPnmjTpk2Ffd3d3bFv3z5MnDgRbdu2VTy9QQiB5ORk7Nu3D/Xq1UOLFi20iqWoqAj379/HiRMncOzYMbi4uODIkSOwsLCosP+RI0eQk5ODkSNHqp3fvXt3NG7cGGFhYZgwYYJGMZWNCwAePHiAffv2ISEhAYsXL1acJ6rLmOPMccmo0VJay508eVIAqHSaNm2axmPevHlTvP3226JVq1bC3Nxc1K9fX/Tq1Uts2bJFFBQUaDRG6a+s8qbg4GCN47l165Z47733hJubm7CwsBCWlpaiXbt24t133xVXr17VOhZzc3PRtGlTMXDgQLFp0yaRnZ2tURwjRowQFhYWIi8vr9xlAgMDhZmZmcjMzNQ6LgDCwsJCdOrUSWzfvl2UlJRoFFfZsWrzr9ryMMeZ42XHqs05zve5ERGR5PCCEiIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWtzrMz88PMplM4+VPnToFmUyGFStWVF9QRHrGPK+bWNxqgStXrmD69Olwd3eHtbU1LC0t4erqiilTpuDYsWOGDk9nRUVF2Lt3L0aNGoXmzZtDLpfD2toaHh4emDx5Mg4dOoSSkhJDh0k1hHlO+sRnSxqxkpISLFiwABs3boSpqSn69esHT09PmJmZISkpCcePH8eTJ0+watUqLFu2TOvx/fz8cPr0aWiaAvn5+bh9+zYaNWqERo0aab2+slJTU/G3v/0N8fHxaNSoEfr37w8XFxeUlJQgOTkZp06dwqNHjzB69GgcOnSoSusi48Y8Z55XB77yxoh9+OGH2LhxIzp16oSIiAi4uroqzX/27Bm2bt2KR48e1Ug8VlZWaNeuXZXHyc7Ohr+/P27cuIGFCxdixYoVsLS0VFrmxYsX2LdvH6Kioqq8PjJuzHPmebWo0XcQkMYSEhKEiYmJcHBwUPtixbJKXxty48YN8cEHHwgvLy/RsGFDIZfLhbu7u1i0aJHIyclR6denTx8BQDx79kwsWrRIODs7C7lcLtq1ayc2b96s8oqM0tehLF++XKndxcVFuLi4iJycHDF37lzh5OQkzM3NRYcOHcSBAwdU1vvhhx9q/NqUFy9eKH1evny5ACBOnjwpgoODhZeXl7C0tBR9+vRRmf9Xpa/xKPt6lOTkZEUsv/32mxg6dKiws7MT1tbWYuDAgeLy5cuVxki6Y56/xDzXP+65GamQkBAUFxfjnXfegaOjY4XLyuVyAEBkZCR27dqFvn37ws/PDyUlJbhw4QI+/fRTnD59Gj///DPMzMxU+gcEBCA+Ph5jx44FABw8eBBz585FSkoK1q9fr1G8L168wKBBg/DkyROMHTsW+fn5CA8PR0BAAH788UcMGjRIsWxwcDAAaHSIydRUfYquW7cOJ0+exKhRozBo0CCYmJhoFGd5kpKS0KtXL7z++ut47733kJqaigMHDqB37944ceIEunXrVqXxST3m+UvM82pg6OpK6vn5+QkA4vjx4xr3uXv3rigsLFRpX7lypQAg9u7dq9Re+ou2bdu24unTp4r2p0+firZt2wqZTKb0ssKKftECEKNGjVJa//HjxwUA4e/vr2hLTU0VAISzs7PG21VW6S9Wa2trce3atXLna/uLFoBYvHix0vI//vijACA6dOigU6xUOea5eszzquPVkkbq3r17AKDxK+8BoHnz5jA3N1dpnz17NgDg+PHjavstW7YMdnZ2is92dnb48MMPIYRAaGioxuvfuHGj0vpLT55funRJ0Va6Xc2aNVM7xhdffIEVK1YoTU+fPlVZbubMmejQoYPGsVXG3t4eS5cuVWrz9/dH//798euvv+LKlSt6Wxf9D/OceV5deFhSQoQQCA4ORkhICH777TdkZWUpXWKcnp6utp+vr2+5bfHx8Rqt297eHq1bt1Zpb9GiBc6fP6/RGMDL//SpqalKbYGBgbC3t1dq69q1q8ZjasLLyws2NjYq7b6+voiJiUF8fDw6d+6s13WSbpjnuqtLec7iZqSaNm2K69evIy0tDW3bttWoz9y5c7F161Y4Oztj5MiRcHJyUpynWLlyJQoLC9X2U3euo7QtKytLo3WX/UVclqmpqdIfntJxy/sDlJKSovj34MGD8dNPP2kcc1WUN5623wNph3nOPK8uLG5GqlevXjh16hRiYmLQr1+/Spd/8OABvvzyS3Ts2BHnz5+HlZWVYt69e/ewcuXKcvvev38fLVu2VGkDyv/PrCsXFxc0b94cd+7cQWJiospl35oq74kT9eq9PNJeVFSkMq+i/7il21teu76/B3qJeV4x5rnueM7NSAUGBsLExAQ7duzAw4cPK1y2sLAQSUlJEEJgwIABSv/hASA2NrbC/urml7Z5eXlpGXnl/v73vwMAPv74Y72P3aBBAwBAWlqayryKDj3Fx8cjNzdXpb06vwdinuuKeV45Fjcj5ebmhoULFyIzMxNDhgxBcnKyyjIFBQXYsGEDVqxYARcXFwDAuXPnlA6P3L17F0FBQRWua/Xq1Uq/9rKysvDRRx9BJpNh2rRpetqi//nggw/g4eGB4OBgBAUFoaCgQGWZoqIi5OXlaT12ly5dAAB79uxR+h7Onz+PsLCwcvs9ffpU5Y/QTz/9hJiYGHh6ekrmPISxYZ4zz6sLD0sasY8++ggFBQXYuHEj2rZtq/RYouTkZBw/fhyPHj3CRx99BCcnJ4wdOxYHDx6Et7c3+vfvj/v37+Po0aPo378/EhMTy12Ph4cHPD09le7/uXv3Lt5//314e3vrfbtsbW0RHR2N0aNH45NPPsHOnTsxYMAAuLi4oKioCBkZGYiJicH9+/fh6empcpK9It27d0evXr1w4sQJ9OjRA71790ZqaioOHz6MESNGlPuII19fX2zfvh0XL15E9+7dkZKSggMHDsDS0hI7d+7U05aTOsxz5nm1MOR9CKSZS5cuibfeeku4ubkJS0tLIZfLRatWrcSbb74pjh07plguJydH/POf/xStWrVSPLVh9erV4vnz5wKA4ukGpco+uWHhwoXC2dlZmJubi7Zt2+r05AZ1StehzosXL8SePXvE8OHDFU97sLKyEq6uruKNN94Qhw4dEkVFRUp9Krq/p1RmZqaYOnWqaNiwobC0tBTdu3cXP/30k8ZPbrC1tRXW1tZiwIABknxyg7Finv8P87zq+OBkqtNSUlLQunVrTJs2DSEhIYYOh6ha1MU85zk3IiKSHBY3IiKSHBY3IiKSHJ5zIyIiyeGeGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSQ6LGxERSc7/Axkx1ecLw8qVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAADmCAYAAAC58KAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsRUlEQVR4nO3deVRUV7o28KcAa5BJxaiggAOgIioGlasioNd5iKYFTRyAjqgdjZGrtgaHRE2UGK5tvE7RaJyNGoztmFwnNDiiicbkRoOKUzOIAQQpoRDY3x9+VKesAqoAreLw/NaqtXL22Xuf9+BOvXX2mWRCCAEiIiKJsDJ3AERERNWJiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY0qrXnz5mjevLm5w9CytHioZrG08WNp8dQkTGwWRK1WY8mSJXj99ddhZ2cHhUKBZs2aoWfPnoiOjsbt27fNHSIZqaSkBCtXrkT79u2hUqnw2muv4e2330ZycrK5Q3tlOJ6lISMjAzExMQgJCUGLFi0gk8kgk8nMHVa5bMwdAD335MkTBAQE4Nq1a/Dw8MDYsWPh5OSEP/74A4mJifj000/RqlUrtGrVytyhap04ccLcIVisSZMmYcOGDWjXrh3ef/99pKamYs+ePTh69CguXLgAT09Pc4f4UnE8S8dvv/2GOXPmQCaTwdPTE3Xr1sXTp0/NHVb5BFmERYsWCQAiMjJSlJSU6K1PTk4W169fN0NkNYe7u7twd3c3dxji5MmTAoAIDAwUGo1GW37kyBEBQPTr18+M0b0aHM9VZynjOT09XZw+fVrk5uYKIYRo3bq1sPTUwalIC3H+/HkAwJQpUwwe5rdo0QJt2rTRKZPJZAgODjbYn6H5+YiICMhkMiQnJ2PZsmXw9vaGQqFAREQEPv74Y8hkMmzdutVgf99++y1kMhnmzp1b5jYq0wcA3LlzB5GRkXBzc4NCoYCzszMiIiJw7949g/3s378fXbp0gUqlQuPGjTFhwgRkZ2cbrGsOX375JYDnfw+5XK4tHzhwIIKDg3H06FHcv3/fXOG9EhzP0hnPjRs3RmBgIOzt7c0ditGY2CyEk5MTACApKemlb2vq1KlYsmQJOnfujKioKLRv3x5jx46FTCbD9u3bDbbZtm0bAGDcuHFl9luZPi5evIhOnTphy5Yt8PPzw7Rp09CzZ0/s2LEDXbt21TsntXXrVgwfPhxJSUkYN24cwsPDcfbsWfTp0weFhYUm/R1ellOnTsHW1hY9evTQW9e/f38AwOnTp191WK8Ux7N0xnNNxHNsFiI0NBTbt29HZGQkEhMT0a9fP/j5+Wm/IKrTtWvXcOXKFbi5uemU9+jRAydPnkRaWhqcnZ215VlZWThy5Ag6d+6s9yv7z1q0aGFSH8+ePcNbb72FkpISJCYmolOnTtr6Z86cQXBwMKZNm4aDBw8CAHJzczF16lTY2tri0qVL8PLyAgAsXrwYffr0QVpaGtzd3Y3+OyxYsMDousDzI4SKrlJTq9VIS0uDj48PrK2t9daXnlu7efOmSduuaTiepTGeayxzz4XSvy1btkzY2dkJANpPq1atxJQpU0RSUpJefQAiKCjIYF+G5ufDw8MFALFixQqDbdatWycAiGXLlumUr1mzRgAQn3/+eYXbMKWPb7/9VgAQixYtMhjPX/7yF2FlZSVycnKEEEJs2bJFABBTp07Vq5uQkCAAmHRO4s9/Z2M+8fHxFfaZkpIiAIgePXoYXH/06FEBQLz//vtGx1lTcTzrqonj2RCeYyOTTJ8+XXv1XFRUFAICAnD//n2sXr0aHTp0wIEDB6plO127djVYPnLkSCgUCu0US6nt27fDxsYGb7/9doV9m9LHhQsXAAC///47FixYoPdJT09HSUmJdjrr559/BgD07NlTb7vdunWDjY1pExBCCJM+ZZ3/IcM4njmezYVTkRbG3t4eoaGhCA0NBQDk5ORgzpw5WLNmDcaPH4+UlBSdCxIqo3HjxgbL69WrhyFDhmDv3r347bff4O3tjdu3b+PcuXMYNGgQGjVqVGHfpvSRlZUFANixY0e5farVagDP/xYADMZhbW39Uqa5TOXo6Ajg37G+KDc3V6ee1HE866tJ47mmYmKzcI6Ojli1ahUOHz6Me/fu4ZdffoGfnx+A51eRFRUVGWyXk5NT5pdneTdXjhs3Dnv37sW2bdsQExOjPXFe3kn2yvbh4OAAADh48CCGDBlSYb+l+5ORkaG3rri4GJmZmWjatKnRcb6McxK2trZwdnbGnTt3UFxcrHeerfTcmtTvYysLx/O/1YTxXGO9ullPqgpvb28BQFy+fFlb1qBBA9G8eXO9unfu3DE4P196TuLOnTtlbqewsFA4OTkJNzc3UVxcLDw9PYW9vb14+vSpXt2y7rMxto/du3cLAGLOnDnl7/z/V1POSbz11lsCgDh9+rTeuuDgYAFA3L171+g4pYjjueaM5xfVhHNslh1dLfLFF1+IxMREg+v27dsnZDKZqFevnigoKNCW9+/fXwAQp06d0pZpNBrx5ptvVvqLQAghJk+eLACImJgYAUBEREQYrFfeDaTG9FFQUCDc3NyEUqk0mAQKCwtFQkKCdvnx48fCwcFB2Nrait9//12nXlBQkMlfBC8Lb9DmeJbSeH5RTUhsMiGEqK6jP6q84cOHY//+/fDw8ECPHj3g4uICtVqNK1euICEhAVZWVti+fbvOyeqjR49iwIABUKlUePvtt1G3bl0cO3YM9erVw7179yCXy3H37l1t/YiICGzZsgV37twpdwriwoUL6NatG+rUqYNnz57hxIkT6N27t1690j7+vA1T+7h06RIGDhyIzMxM9O7dG+3bt4dMJsO9e/eQkJAAJycn3LhxQ1t/y5YtiIiIgIODA9566y04Ojri0KFDUKlUSEtL09tnc5kwYYL2kVqDBw9GWloadu/eDTs7O5w/f157abdUcTxLazxHRERo/3vfvn3Izc1FeHi4tuyDDz4o99aJV87cmZWeu3Hjhvjss89E3759RYsWLYRSqRRKpVK0atVKhIeH60zZ/Nk333wj2rdvL+RyuWjSpImYOnWqePLkSbmXR1f0C1cIITw9PQUA0axZM1FcXGywTkWP/DGmDyGE+Ne//iWmTZsmPD09hUKhEA4ODqJt27YiMjJSnDhxQq/+vn37hJ+fn1AoFKJRo0YiMjJSZGVlWcwjiIQQori4WKxYsUK0a9dOKBQK4eTkJEaNGiVu3bpl7tBeCY5naY1nvKRpzZeFR2xERCQpvI+NiIgkhYmNiIgkhYmNiIgkhYmNiIgkhYmNiIgkhYmNiIgkhYmtioQQyM3NBe+aICngeCYpYGKroidPnsDR0RFPnjwxdyhEVcbxTFLAxEZERJLCxEZERJLCxEZERJLCxEZERJLCN2gTVSMhBNRqtXbZ1ta23Dc8E1H1Y2IjqkZqtRrDhg3TLu/fvx92dnZmjIio9uFUJBERSQoTGxERSQoTGxERSQoTGxERSQoTGxERSQoTGxERSYpFJjaNRoPZs2fDxcUFKpUK/v7+OHbsWIXtmjdvDplMZvDj6empU7esep9++unL2i0iInoFLPI+toiICMTFxSEqKgqenp7YvHkzBg0ahPj4eAQEBJTZ7vPPP0deXp5O2b179zBv3jz069dPr37fvn0RFhamU9apU6fq2QkiIjILi0tsiYmJ2LVrF2JjYzFz5kwAQFhYGHx8fDBr1iycO3euzLbDhw/XK/vkk08AAGPGjNFb5+XlhbFjx1ZP4EREZBEsbioyLi4O1tbWmDhxorZMqVRi/PjxOH/+PB48eGBSfzt37kSLFi3QvXt3g+vz8/NRUFBQpZiJiMhyWFxiu3LlCry8vODg4KBT3rVrVwDA1atXTerr+vXrGD16tMH1mzdvhq2tLVQqFby9vbFz585Kx01ERJbB4qYi09LS4OzsrFdeWpaammp0Xzt27ABgeBqye/fuGDlyJFq0aIHU1FSsXr0aY8aMQU5ODt59990y+9RoNNBoNNrl3Nxco+MhsjQczyRFFpfY8vPzoVAo9MqVSqV2vTFKSkqwa9cudOrUCW3bttVbf/bsWZ3ld955B35+fpgzZw4iIiKgUqkM9hsTE4OFCxcaFQORpeN4JimyuKlIlUql8wuyVOl5sLISzotOnz6NlJQUg0drhsjlcrz33nt4/PgxfvzxxzLrRUdHIycnR/sx9ZwfkSXheCYpsrgjNmdnZ6SkpOiVp6WlAQBcXFyM6mfHjh2wsrLC22+/bfS2XV1dAQBZWVll1lEoFAaPKIlqIo5nkiKLO2Lz9fVFUlKS3lz/xYsXtesrotFosHfvXgQHBxudCAEgOTkZAPDaa68ZHzAREVkUi0tsISEhKC4uxvr167VlGo0GmzZtgr+/v/ao6v79+7hx44bBPo4cOYLHjx+XOQ356NEjvbInT57g888/R8OGDeHn51cNe0JEROZgcVOR/v7+CA0NRXR0NDIyMuDh4YEtW7bg7t272Lhxo7ZeWFgYTp8+DSGEXh87duyAQqHAiBEjDG5j9erV+Oc//4mhQ4fCzc0NaWlp+Oqrr3D//n1s27YNcrn8pe0fERG9XBaX2ABg69atmD9/PrZt24bs7Gx06NABhw4dQmBgYIVtc3NzcfjwYQwePBiOjo4G6/To0QPnzp3Dhg0bkJmZCVtbW3Tt2hVfffUVevfuXd27Q0REr5BMGDrkIaPl5ubC0dEROTk5ejeVU+2Tl5eHYcOGaZf3798POzs7M0ZkGo5nkgKLO8dGRERUFUxsREQkKUxsREQkKUxsREQkKRZ5VSTRq+T3963V1pesqBB/vhY3eP4uCJvquX3kx9iwiisREY/YiIhIWpjYiIhIUpjYiIhIUniOjYioGgghoFartcu2traQyWRmjKj2YmIjIqoGarW6Rj91Rko4FUlERJLCxEZERJLCxEZERJLCxEZERJLCi0eI6JXjFYQ1Q039d2JiI6JXjlcQ1gw19d+JU5FERCQpVU5s+/btw7Bhw+Dm5gZHR0e4ublh+PDh+Oc//1kN4REREZmm0lORRUVFGD16NPbu3QshBGxsbODk5IT09HQcOHAABw8exIgRI7Bz507Y2HDGk4iIXo1KH7HFxMQgLi4OPXv2REJCAgoKCpCWloaCggL88MMPCAgIwN69e/Hpp59WZ7xERETlqnRi27RpE9q0aYPjx4+jR48esLJ63pWVlRUCAgJw/PhxeHl54auvvqq2YImIiCpS6cSWlpaGoUOHljnNWKdOHQwdOhRpaWmVDo6IiMhUlU5srq6uyMvLK7eOWq2Gm5tbZTdBRERkskontsjISOzZs6fMI7KUlBTs3r0bkZGRlQ6OiIjIVJW+XHHkyJE4e/YsOnXqhKioKAQEBKBx48Z4+PAhEhISsGLFCgQEBCA0NBT379/XacujOCIielkqfcTWsmVLHDp0CBkZGZg7dy6CgoLQpk0bBAUFYd68ecjIyMDBgwfRqlUrtGjRQvtp2bJlhX1rNBrMnj0bLi4uUKlU8Pf3x7Fjxypst2DBAshkMr2PUqk0WH/jxo1o27YtlEolPD09sXLlSpP/DkREZFkqfcQWFhb20p4ZFhERgbi4OERFRcHT0xObN2/GoEGDEB8fj4CAgArbr127VuexL9bW1np11q1bh7/97W8YMWIEpk+fjoSEBLz//vt4+vQpZs+eXa37Q0REr06lE9vmzZurMYx/S0xMxK5duxAbG4uZM2cCeJ5EfXx8MGvWLJw7d67CPkJCQtCwYcMy1+fn52Pu3LkYPHgw4uLiAAATJkxASUkJPv74Y0ycOBH169evnh0iIqJXyuKeFRkXFwdra2tMnDhRW6ZUKjF+/HicP38eDx48qLAPIQRyc3MhhDC4Pj4+HpmZmZg8ebJO+ZQpU6BWq3H48OGq7QQREZlNtSa2q1evYvny5Vi+fDkuXbpUqT6uXLkCLy8vODg46JR37dpVu42KtGzZEo6OjrC3t8fYsWPx8OFDvW0AQOfOnXXK/fz8YGVlpV1PREQ1j0lTkT/88AM2bNiAyZMn4z/+4z901s2bNw8xMTE6ZZMnTzb5goy0tDQ4OzvrlZeWpaamltm2fv36eO+999CtWzcoFAokJCRg9erVSExMxOXLl7XJMi0tDdbW1mjUqJFOe7lcDicnp3K3odFooNFotMu5ubkm7R9Jm7Cug5wOb+ssWzKOZ5Iik47Ydu/ejW+++Qbe3t465fHx8ViyZAmsra0xbtw4vPvuu2jYsCHWrFlj8lP+8/PzoVAo9MpLr2zMz88vs+20adOwcuVKjB49GiNGjMDnn3+OLVu24ObNm1izZo3ONuRyucE+lEpluduIiYmBo6Oj9uPq6mrsrlFtIJNB2Mi1H1j4Sxk5nkmKTDpiO3/+PLp37643Tbhu3TrIZDJ88cUXeOeddwAAUVFR8PHxwebNmzF8+HCjt6FSqXR+QZYqKCjQrjfF6NGjMWPGDBw/fhwffPCBto/CwkKD9QsKCsrdRnR0NKZPn65dzs3N5ZcB1VjGjme/v2+t1u3Kigrh+Kfl4Pm7nv8QqAY/xoYZVU+K+0TPmZTYUlNTERwcrFceHx8PBwcHREREaMs8PDwwaNAgJCYmmhSQs7MzUlJS9MpLn3Di4uJiUn/A88d/ZWVl6WyjuLgYGRkZOtORhYWFyMzMLHcbCoXC4BElUU3E8UxSZNJUZHZ2tt7RzP379/Ho0SMEBARon/BfysPDA3/88YdJAfn6+iIpKUlvrv/ixYva9aYQQuDu3bt47bXXdLYBAJcvX9ape/nyZZSUlJi8DSIishwmJTZ7e3u9o6nSqx/9/Pz06pf31I+yhISEoLi4GOvXr9eWaTQabNq0Cf7+/tppkvv37+PGjRs6bR89eqTX39q1a/Ho0SMMGDBAW9a7d280aNAAa9eu1atbt25dDB482KSYiYjIcpg0FdmhQwccOnQIarUatra2AIB9+/ZBJpMhMDBQr/7t27dNnjr09/dHaGgooqOjkZGRAQ8PD2zZsgV3797Fxo0btfXCwsJw+vRpnXvV3N3dMWrUKLRv3x5KpRJnzpzBrl274Ovri0mTJmnrqVQqfPzxx5gyZQpCQ0PRv39/JCQkYPv27Vi8eDEaNGhgUsxERGQ5TEps77zzDsLCwhAUFISwsDAkJSXh66+/hpubm965t+LiYvzwww/o1auXyUFt3boV8+fPx7Zt25Cdna1NqIaS55+NGTMG586dw969e1FQUAB3d3fMmjULc+fORd26dXXqTp48GXXq1MGyZctw4MABuLq6Yvny5Zg2bZrJ8RIRkeUwKbGNHTsWJ06cwJYtW3DlyhUIIeDg4ICNGzfqnV87fPgw/vjjD/Tv39/koJRKJWJjYxEbG1tmnVOnTumVffnllyZtZ8KECZgwYYKp4RERkQUz+VmRmzZt0j7eysnJCf3790fTpk316ikUCixfvhzDhg2rlkBJeoQQUKvV2mVbW9uX9mBtIqo9KvUQ5ICAgAqfst+/f/9KHa1R7aFWq3V++Ozfv1/nrQxEZLrqvD+vpt6bV+mn+78oOTkZOTk5cHR0NOqda0RERC9DlR6CnJOTg2nTpqF+/frw9PRE586d4enpifr16yMqKgo5OTnVFWetJ4RAXl6e9lPWmwuIiGq7Sh+xZWRkoGfPnrh58ybq1auHoKAgNG7cGA8fPsTVq1fxP//zP/juu++QkJCg97BhMh2n7YiIjFPpI7bo6GjcvHkTH3zwAR48eICTJ0/i66+/xsmTJ/HgwQPMnj0bN2/exJw5c6ozXiIionJV+ojt4MGD6N27N5YsWaK3ztbWFjExMbh48SIOHDhQpQCJiIhMUekjNrVarfdOthd169YNT58+rewmiIiITFbpxObj44O7d++WW+fu3bvw8fGp7CaIiIhMVunENmfOHMTFxeH48eMG1x89ehRxcXGYO3dupYMjIiIyldHn2LZu1b/pr1+/fujfvz/69u2LgIAA7VWRCQkJOH78OIYMGYLs7OxqDZiIiKg8Rie2iIgIvccdld5LdfToURw9elSvzcGDB3Ho0CGEhfHtr0T0b8K6DnI6vK2zTFRdjE5smzZteplxEFFtIpNV26OZiF5kdGILDw9/mXEQERFViyo9UouIiMjSMLEREZGkGD0VaWVlBSsrK/z222/w8vKClZWVUe/OkslkKCoqqlKQRESWjhfEWA6jE1tgYCBkMhnq1q2rs0xEROAFMRbE6MR26tSpcpeJiIgsQbW9aBQAioqK8MsvvwB4/sitOnV4KC41fDsvEVk6ky4eSU5OxldffYWkpCS9dYcOHULTpk3RuXNndO7cGc7OztizZ0+1BUpERGQMkxLbhg0bMGHCBCgUCp3yW7duYeTIkXj06BHc3NzQtm1bZGdnY8yYMbhy5Uq1BkxERFQekxLbmTNn4OvrC3d3d53yFStWoKCgAFOmTMGdO3fw66+/Yu/evSguLsaqVauqNWAiIqLymJTY7ty5g65du+qVf//995DL5TovHR0+fDh69uyJhISEqkdJRERkJJMuHnn06BEaNmyoU5aVlYXbt2+jZ8+esLe311nXqVMnXL582eSgNBoNPvzwQ2zbtg3Z2dno0KEDPvnkE/Tt27fcdt9++y12796NS5cuIT09Ha6urhgyZAjmz5+PevXq6dRt3rw57t27p9fHpEmT8MUXX5gc84uq8yILgBdaEBEZy6TEVqdOHWRmZuqU/fjjjwCAzp0769W3tbWtVFARERGIi4tDVFQUPD09sXnzZgwaNAjx8fEICAgos93EiRPh4uKCsWPHws3NDb/88gtWrVqFI0eO4KeffoJKpdKp7+vrixkzZuiUeXl5VSpmIiKpqak3nZuU2Ly8vHDixAmdsqNHj0Imk6F79+569VNTU+Hs7GxSQImJidi1axdiY2Mxc+ZMAEBYWBh8fHwwa9YsnDt3rsy2cXFxCA4O1inz8/NDeHg4duzYgcjISJ11TZs2xdixY02Kj4io1qihN52bdI5txIgRuHnzJv72t7/h2rVriIuLw/r162FnZ4cBAwbo1T979iw8PDxMCiguLg7W1taYOHGitkypVGL8+PE4f/48Hjx4UGbbF5MaALz55psAgOvXrxtsU1hYCLVabVKMRERkuUxKbFFRUWjfvj3Wr1+PTp06YdSoUXjy5AkWLlyoN+14+fJl3Lp1q8LzYi+6cuUKvLy84ODgoFNeetHK1atXTeovPT0dAPTODQLAyZMnUbduXdjZ2aF58+ZYsWKFSX0TEZHlMWkqsm7dujh79iyWL1+OCxcuwMnJCaGhoRg6dKhe3Z9++gnDhg3DG2+8YVJAaWlpBqcvS8tSU1NN6m/p0qWwtrZGSEiITnmHDh0QEBCA1q1bIzMzE5s3b0ZUVBRSU1OxdOnSMvvTaDTQaDTa5dzcXJPiIbIkHM8kRSY/UsvOzg7z58+vsN7EiRN1phONlZ+fr3cDOPB8OrJ0vbF27tyJjRs3YtasWfD09NRZd+DAAZ3lv/71rxg4cCD+8Y9/YOrUqWjWrJnBPmNiYrBw4UKjYyCyZBzPJEUW9z42lUql8wuyVEFBgXa9MRISEjB+/Hj0798fixcvrrC+TCbDf/3Xf6GoqKjcBzxHR0cjJydH+ynvnB+RpeN4Jimq1ocgVwdnZ2ekpKTolaelpQEAXFxcKuzj559/xhtvvAEfHx/ExcXBxsa43XR1dQXw/N68sigUCoNHlEQ1EcczSZHFHbH5+voiKSlJb67/4sWL2vXluX37NgYMGIBGjRrhyJEjsLOzM3rbycnJAIDXXnvNtKCJiMhiWFxiCwkJQXFxMdavX68t02g02LRpE/z9/bVHVffv38eNGzd02qanp6Nfv36wsrLC//7v/5aZoLKyslBcXKxT9uzZM3z66aeQy+Xo1atXNe8VERG9KhY3Fenv74/Q0FBER0cjIyMDHh4e2LJlC+7evYuNGzdq64WFheH06dMQQmjLBgwYgOTkZMyaNQtnzpzBmTNntOsaN26svfXgwIED+OSTTxASEoIWLVogKysLO3fuxK+//oolS5agSZMmr26HiYioWllcYgOArVu3Yv78+TrPijx06BACAwPLbffzzz8DAD777DO9dUFBQdrE1r59e3h7e2P79u149OgR5HI5fH19sWfPHoSGhlb/DhER0StjkYlNqVQiNjYWsbGxZdYxdOXin4/eyuPn56d3uT+9ejX1OXREZNksMrFRLVFDn0NHRJbN4i4eISIiqgomNiIikhQmNiIikhQmNiIikhQmNiIikhReFVlD8NJ4IiLjMLHVFLw0nojIKJyKJCIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSWFiIyIiSbHIxKbRaDB79my4uLhApVLB398fx44dM6ptSkoKRo4ciXr16sHBwQHDhg1DcnKywbobN25E27ZtoVQq4enpiZUrV1bnbhARkRlYZGKLiIjAP/7xD4wZMwYrVqyAtbU1Bg0ahDNnzpTbLi8vD7169cLp06cxZ84cLFy4EFeuXEFQUBAyMzN16q5btw6RkZFo164dVq5ciW7duuH999/H0qVLX+auERHRS2Zj7gBelJiYiF27diE2NhYzZ84EAISFhcHHxwezZs3CuXPnymy7Zs0a3Lx5E4mJiejSpQsAYODAgfDx8cGyZcuwZMkSAEB+fj7mzp2LwYMHIy4uDgAwYcIElJSU4OOPP8bEiRNRv379l7ynRET0MljcEVtcXBysra0xceJEbZlSqcT48eNx/vx5PHjwoNy2Xbp00SY1AGjTpg3+8z//E3v27NGWxcfHIzMzE5MnT9ZpP2XKFKjVahw+fLga94iIiF4li0tsV65cgZeXFxwcHHTKu3btCgC4evWqwXYlJSW4du0aOnfurLeua9euuH37Np48eaLdBgC9un5+frCystKuJyKimsfipiLT0tLg7OysV15alpqaarBdVlYWNBpNhW1bt26NtLQ0WFtbo1GjRjr15HI5nJycytwG8PzCFo1Go13OyckBAOTm5urUK9bkl9mHpXkx9vLUlP2qbftkb28PmUxmcp+1eTxLcZ+AmrNfZe1TZcfyn1lcYsvPz4dCodArVyqV2vVltQNgVNv8/HzI5XKD/SiVyjK3AQAxMTFYuHChXrmrq2uZbSyd48q/mTuEalfb9iknJ0dvlsMYHM81Q23ap8qO5T+zuMSmUql0fkGWKigo0K4vqx0Ao9qqVCoUFhYa7KegoKDMbQBAdHQ0pk+frl0uKSlBVlYWnJycqvwroyK5ublwdXXFgwcPqvwPbym4T9XD3t6+Uu04nqsX96nqKjuW/8ziEpuzszNSUlL0ytPS0gAALi4uBts1aNAACoVCW6+8ts7OziguLkZGRobOdGRhYSEyMzPL3Abw/IjwxaPCevXqlb9T1czBwUEy/9OU4j6ZB8fzy8F9Mi+Lu3jE19cXSUlJevOvFy9e1K43xMrKCu3bt8fly5f11l28eBEtW7bU/hIo7ePFupcvX0ZJSUmZ2yAiIstncYktJCQExcXFWL9+vbZMo9Fg06ZN8Pf31879379/Hzdu3NBre+nSJZ2E9fvvv+PkyZMIDQ3VlvXu3RsNGjTA2rVrddqvXbsWdevWxeDBg1/GrhER0asgLFBoaKiwsbERf//738W6detE9+7dhY2NjTh9+rS2TlBQkHgx/NzcXNGqVSvRqFEj8dlnn4nly5cLV1dX4eLiIjIyMnTqrl69WgAQISEh4ssvvxRhYWECgFi8ePEr2cfKKCgoEB999JEoKCgwdyjVhvtUe0nx78R9sgwWmdjy8/PFzJkzRZMmTYRCoRBdunQR33//vU4dQ4lNCCEePHggQkJChIODg7CzsxNDhgwRN2/eNLid9evXi9atWwu5XC5atWolli9fLkpKSl7KPhER0ashE0II8x4zEhERVR+LO8dGRERUFUxsREQkKUxsFi4vLw8fffQRBgwYgAYNGkAmk2Hz5s3mDqtKLl26hPfeew/t2rWDra0t3NzcMHLkSCQlJZk7tEr7v//7P4SGhqJly5aoW7cuGjZsiMDAQBw8eNDcoVkUjueaoaaPZ4u7QZt0/fHHH1i0aBHc3NzQsWNHnDp1ytwhVdnSpUtx9uxZhIaGokOHDkhPT8eqVavw+uuv48KFC/Dx8TF3iCa7d+8enjx5gvDwcLi4uODp06fYu3cv3njjDaxbt07nbRW1GcdzzVDjx7O5r16h8hUUFIi0tDQhhBCXLl0SAMSmTZvMG1QVnT17Vmg0Gp2ypKQkoVAoxJgxY8wUVfUrKioSHTt2FK1btzZ3KBaD47nmqknjmVORFk6hUKBJkybmDqNade/eXe8h1J6enmjXrh2uX79upqiqn7W1NVxdXfH48WNzh2IxOJ5rrpo0njkVSRZBCIGHDx+iXbt25g6lStRqNfLz85GTk4MDBw7gu+++w6hRo8wdFr1iHM/mxcRGFmHHjh1ISUnBokWLzB1KlcyYMQPr1q0D8Pz5pX/5y1+watUqM0dFrxrHs3kxsZHZ3bhxA1OmTEG3bt0QHh5u7nCqJCoqCiEhIUhNTcWePXtQXFxc5iuSSJo4ns2P59jIrNLT0zF48GA4OjoiLi4O1tbW5g6pStq0aYM+ffogLCwMhw4dQl5eHoYOHQrBB/zUChzPloGJjcwmJycHAwcOxOPHj/H999+X+x68mqr0jRM1+Z4mMg7Hs+XgVCSZRUFBAYYOHYqkpCQcP34c3t7e5g7ppcjPzwfw/EuPpIvj2bLwiI1eueLiYowaNQrnz5/HN998g27dupk7pCrLyMjQK3v27Bm2bt0KlUol2S864ni2RDxiqwFWrVqFx48fIzU1FQBw8OBB/Otf/wIATJ06FY6OjuYMz2QzZszAgQMHMHToUGRlZWH79u0668eOHWumyCpv0qRJyM3NRWBgIJo2bYr09HTs2LEDN27cwLJly2BnZ2fuEC0Gx7Plq/Hj2bz3h5Mx3N3dBQCDnzt37pg7PJOVvkuvrE9N9PXXX4s+ffqIxo0bCxsbG1G/fn3Rp08fsX//fnOHZnE4ni1fTR/PfB8bERFJCs+xERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCx0SsTHBwMmUxm7jCIqgXHs+ViYiM9d+/ehUwm0/nI5XK4urpi9OjRuHbtmrlDJDIax3Ptw6f7U5latWqlfTJ5Xl4eLly4gK+//hrffvstTpw4gR49epg5QiLjcTzXHkxsVCYPDw8sWLBAp2zevHlYvHgx5s6di1OnTpklLqLK4HiuPTgVSSaZOnUqAODSpUvassLCQixfvhxdunSBvb097Ozs4O3tjenTpyM7O7vc/nJycrB06VIEBQXBxcUFcrkcLi4uCAsLw+3bt/XqFxQUYNmyZejYsSMcHR1ha2uL5s2bY+TIkfj555+19UpKSrBhwwZ07doVDRo0gEqlQrNmzTB06FB+gZEWx7M08YiNKqX0pHl+fj769u2Ls2fPwtPTE3/961+hUChw8+ZNrFu3DmFhYahfv36Z/Vy/fh0ffvghevXqhTfffBO2tra4ceMGdu7cicOHD+Onn36Cu7u7tn54eDj27NmDDh06aLf14MEDxMfH49KlS+jYsSMAIDo6Gp999hlatWqF0aNHw97eHikpKThz5gyOHz+O4ODgl/r3oZqF41lizP1COLI8d+7cEQBE//799dZ9+OGHAoDo1auXEEKIGTNmCABi3LhxoqioSKfu48ePxZMnT7TLpS9kfLFOZmam3nZOnjwprKysRGRkpE5dmUwm/Pz89LZVVFQksrOztcsNGjQQLi4uQq1W6/VtaHskXRzPtQ+P2KhMt27d0p6TUKvVuHjxIhISEqBUKrF48WIUFRVh/fr1cHR0xIoVK2Btba3T3tHRscJtlFWnV69eaNeuHY4fP64tk8lkEEJAqVTCykp3Ft3a2hr16tXTKZPL5XoxAUCDBg0qjIukh+O5FjF3ZiXLU/oL98+fOnXqiGbNmonRo0eLa9euCSGE+OWXXwQA0adPH6P6NfQLVwgh4uPjxbBhw0STJk2EjY2NznblcrlO3UGDBgkAwtfXVyxevFicPXtWFBYW6vU5efJkAUB4eHiIefPmiRMnToinT59W4q9BNR3Hc+3DxEZ6ypu6+bMzZ84IACI8PNyofg19EezZs0fIZDJhb28vQkJCxMyZM8WHH34oPvroI+Hu7q5XX61Wi7lz54oWLVpovywcHBzEtGnTdKZpnj17JmJjY4W3t7e2nlKpFGFhYeLRo0fG/SFIEjieax8mNtJj7BfBr7/+WuVfuN7e3kKlUomkpCS9+q1btzb4i7hUcnKy2Lhxo+jSpYsAICZOnGiwXkpKiti5c6fo27evACD69etnVLwkDRzPtQ8TG+kx9ovg2bNnwsHBQTg6OoqsrKwK+zX0RaBQKMTrr7+uVzc1NVXUqVOn3C+CUk+fPhV2dnaiSZMm5dYrLi4WHh4ewsrKitM4tQjHc+3D+9io0mxsbDBp0iTk5ORg2rRpKC4u1lmfk5ODvLy8cvtwd3fHrVu38PDhQ21ZQUEB3n33XTx79kyn7qNHj/Drr7/q9ZGdnQ2NRgOlUgkA0Gg0OHfunF49tVqNvLw81KlTR+9kPRHHs3TwqkiqkkWLFuHChQvYtm0bLly4gIEDB0KhUCA5ORnff/89zpw5A19f3zLbT506FVOnTkWnTp0QEhKCoqIiHDt2DEIIdOzYUecm1ZSUFHTq1AkdO3ZEhw4d0LRpU2RmZmL//v149uwZZs6cCeD5vUg9evSAl5cX/Pz84Obmhry8PBw6dAjp6emYOXMmFArFy/7TUA3E8SwR5j5kJMtj7NRNqYKCAvHf//3fwtfXV6hUKmFnZye8vb3FjBkzdO7FMTR1U1JSIr744gvRrl07oVQqRZMmTcT48eNFRkaGXv3s7GyxYMECERgYKJydnYVcLhcuLi5iwIAB4rvvvtPWKywsFEuXLhX9+vUTzZo1E3K5XDRu3FgEBgaKnTt3ipKSkqr9gahG4XiufWRCCGHOxEpERFSdODFLRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESSwsRGRESS8v8AXiWOCrPagT8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp00lEQVR4nO3deVQUV/o38G+J2OyNIiJGwAXUMWI0oLiAopMEd51RTDSITEST6BiZRE3QcVwyIxqjjgmiMYmCYTIuiOMSJxJ3VBRRjObkp7iAKyoIAqK0Avf9w5ceO91ANzZ0U3w/59Q5qVv3Vj1VefDpWrpLEkIIEBERyUgjUwdARERkbCxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuREQkOyxuVKU2bdqgTZs2pg5DzdziofrP3HLK3OKpr1jc6lhxcTEWL16MV199FXZ2dlAoFGjdujUCAgIQGRmJK1eumDpE0lN5eTm+/PJLeHt7w9raGs7Ozhg3bhyuXr1q6tBMijkuD/fu3UNUVBTGjBmDtm3bQpIkSJJk6rD01tjUATQkRUVF8Pf3x7lz5+Dp6YmQkBA4OTkhNzcXqampWLJkCdq3b4/27dubOlS1/fv3mzoEs/Xuu+/im2++wcsvv4wPPvgAt2/fxpYtW5CUlIQTJ07Ay8vL1CHWOea4fPz666+YM2cOJEmCl5cXbGxs8OjRI1OHpT9BdWbRokUCgAgPDxfl5eVay69evSr+7//+zwSR1R8eHh7Cw8PD1GGIAwcOCACiX79+QqVSqdv37NkjAIg33njDhNGZDnP8xZlLjt+5c0ccPnxYFBYWCiGE6Nixo6hPJYOXJetQSkoKAGDatGk6T+/btm2LTp06abRJkoTAwECd69N1bT4sLAySJOHq1atYvnw5OnfuDIVCgbCwMHz66aeQJAkbN27Uub7ExERIkoS5c+dWuo2arAMAMjMzER4eDnd3dygUCri6uiIsLAzXrl3TuZ4dO3agR48esLa2houLCyZPnoz8/HydfU3h66+/BvDseDRp0kTdPnjwYAQGBiIpKQnXr183VXgmwxyXT467uLigX79+sLe3N3UoNcLiVoecnJwAABkZGbW+renTp2Px4sXw9fVFREQEvL29ERISAkmSEB8fr3PMd999BwCYMGFCpeutyTpOnjyJ7t27Iy4uDj4+PpgxYwYCAgLwr3/9Cz179tS6R7Vx40aMGjUKGRkZmDBhAiZOnIhjx47htddew5MnTww6DrXl0KFDsLW1Rd++fbWWBQUFAQAOHz5c12GZHHNcPjle3/GeWx0KDg5GfHw8wsPDkZqaijfeeAM+Pj7qfxCM6dy5c0hPT4e7u7tGe9++fXHgwAFkZ2fD1dVV3Z6Xl4c9e/bA19dX65P189q2bWvQOp4+fYq33noL5eXlSE1NRffu3dX9jx49isDAQMyYMQO7du0CABQWFmL69OmwtbXFqVOn0KFDBwDAP/7xD7z22mvIzs6Gh4eH3sdhwYIFevcFnp0VVPekWnFxMbKzs9GlSxdYWFhoLa+413bp0iWDti0HzHF55LgsmPq6aEOzfPlyYWdnJwCop/bt24tp06aJjIwMrf4ARP/+/XWuS9e1+YkTJwoAYtWqVTrHfPXVVwKAWL58uUZ7TEyMACD++c9/VrsNQ9aRmJgoAIhFixbpjOePf/yjaNSokSgoKBBCCBEXFycAiOnTp2v1TU5OFgAMuh/x/HHWZzp48GC167x165YAIPr27atzeVJSkgAgPvjgA73jlBPmuKb6mOO68J4bVenDDz9UP1UXEREBf39/XL9+HatXr0bXrl2xc+dOo2ynZ8+eOtvHjh0LhUKhvrRSIT4+Ho0bN8a4ceOqXbch6zhx4gQA4OLFi1iwYIHWdOfOHZSXl6svY/38888AgICAAK3t9u7dG40bG3axQQhh0FTZvR/SH3OcOW4OeFnSBOzt7REcHIzg4GAAQEFBAebMmYOYmBhMmjQJt27d0nhIoSZcXFx0tjs6OmLYsGHYtm0bfv31V3Tu3BlXrlzB8ePHMWTIELRo0aLadRuyjry8PADAv/71ryrXWVxcDODZsQCgMw4LC4taubxlKKVSCeB/sf5WYWGhRr+GiDmurT7luBywuJkBpVKJ6Oho/PDDD7h27RrOnz8PHx8fAM+eJCstLdU5rqCgoNJ/QKv6suWECROwbds2fPfdd4iKilLfOK/qJntN1+Hg4AAA2LVrF4YNG1bteiv25969e1rLysrKcP/+fbz00kt6x1kb9yNsbW3h6uqKzMxMlJWVad13q7jX1hC/51YZ5vj/1Iccl4W6uwJK1encubMAINLS0tRtzZo1E23atNHqm5mZqfPafMX9iMzMzEq38+TJE+Hk5CTc3d1FWVmZ8PLyEvb29uLRo0dafSv7zo2+69i8ebMAIObMmVP1zv9/9eV+xFtvvSUAiMOHD2stCwwMFABEVlaW3nE2FMzx+pPjv1Xf7rnVn0hlYO3atSI1NVXnsu3btwtJkoSjo6MoKSlRtwcFBQkA4tChQ+o2lUol/vCHP9T4D18IIaZOnSoAiKioKAFAhIWF6exX1RdK9VlHSUmJcHd3F1ZWVjoLwZMnT0RycrJ6/sGDB8LBwUHY2tqKixcvavTr37+/wX/4tYVf4taNOS6fHP+t+lbcJCGEMNZZIFVt1KhR2LFjBzw9PdG3b1+0atUKxcXFSE9PR3JyMho1aoT4+HiNm9VJSUkYNGgQrK2tMW7cONjY2OCnn36Co6Mjrl27hiZNmiArK0vdPywsDHFxccjMzKzy0sOJEyfQu3dvWFpa4unTp9i/fz8GDhyo1a9iHc9vw9B1nDp1CoMHD8b9+/cxcOBAeHt7Q5IkXLt2DcnJyXBycsKFCxfU/ePi4hAWFgYHBwe89dZbUCqV2L17N6ytrZGdna21z6YyefJk9c9vDR06FNnZ2di8eTPs7OyQkpKifsS7IWGOyyvHw8LC1P+9fft2FBYWYuLEieq2Tz75pMqvVZiUqatrQ3LhwgXx2Wefiddff120bdtWWFlZCSsrK9G+fXsxceJEjUs1z9u6davw9vYWTZo0ES1bthTTp08XRUVFVT4mXd2nWiGE8PLyEgBE69atRVlZmc4+1f0UkD7rEEKImzdvihkzZggvLy+hUCiEg4OD+N3vfifCw8PF/v37tfpv375d+Pj4CIVCIVq0aCHCw8NFXl6e2fw0kRBClJWViVWrVomXX35ZKBQK4eTkJN58801x+fJlU4dmMsxxeeU4aukSZ13gmRsREckOv+dGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JWCSEECgsLwW9KkFwxx0nOWNwqUVRUBKVSiaKiIlOHQlQrmOMkZyxuREQkOyxuREQkOyxuREQkOyxuREQkO3wTNzVoQggUFxer521tbat8wzMR1Q8sbtSgFRcXY+TIker5HTt2wM7OzoQREZEx8LIkERHJDosbERHJDosbERHJjtkVt4cPH2L+/PkYNGgQmjVrBkmSEBsbq9fY2NhYSJKkc7pz507tBk5ERGbD7B4oyc3NxaJFi+Du7o5XXnkFhw4dMngdixYtQtu2bTXaHB0djRMgERGZPbMrbq6ursjOzkbLli2RlpaGHj16GLyOwYMHw9fXtxaiIyKi+sDsLksqFAq0bNnyhddTVFSEsrIyI0RERET1jdkVN2MYMGAAHBwcYGNjgxEjRuDSpUumDomIiOqQ2V2WfBE2NjYICwtTF7fTp09jxYoV6NOnD86cOQM3N7dKx6pUKqhUKvV8YWFhXYRMVGeY49SQyOrMbezYsdiwYQNCQ0MxatQofPrpp9i7dy/u37+Pf/zjH1WOjYqKglKpVE9VFUKi+og5Tg2JrIqbLv7+/vDz88O+ffuq7BcZGYmCggL1dOPGjTqKkKhuMMepIZHVZcnKuLm54eLFi1X2USgUUCgUdRQRUd1jjlNDIvszNwC4evUqnJ2dTR0GERHVkXpb3LKzs3HhwgU8ffpU3ZaTk6PVb8+ePTh9+jQGDRpUl+EREZEJmeVlyejoaDx48AC3b98GAOzatQs3b94EAEyfPh1KpRKRkZGIi4tDZmYm2rRpAwDo06cPunfvDl9fXyiVSpw5cwbr16+Hm5sb5syZY6rdISKiOmaWxe3zzz/HtWvX1POJiYlITEwEAISEhECpVOoc9+abb+KHH35AUlISHj16BFdXV0yePBnz58+Hi4tLncRORESmJwkhhKmDMEeFhYVQKpUoKCiAg4ODqcOhWvLw4cMG+7JS5jjJWb2950ZERFQZFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIdFjciIpIds3xZKTUsPrM2mmzbUukTPP/q28B5myAaNzFJLKeXhZpku0RyxDM3IiKSHRY3IiKSHRY3IiKSHRY3IiKSnRcubtu3b8fIkSPh7u4OpVIJd3d3jBo1Cv/5z3+MEB4REZHhavy0ZGlpKcaPH49t27ZBCIHGjRvDyckJd+7cwc6dO7Fr1y6MHj0a33//PRo35kOZRERUd2p85hYVFYWEhAQEBAQgOTkZJSUlyM7ORklJCY4cOQJ/f39s27YNS5YsMWa8RERE1apxcduwYQM6deqEffv2oW/fvmjU6NmqGjVqBH9/f+zbtw8dOnTA+vXrjRYsERGRPmpc3LKzszF8+PBKLzlaWlpi+PDhyM7OrnFwRERENVHj4ubm5oaHDx9W2ae4uBju7u413QQREVGN1Li4hYeHY8uWLZWemd26dQubN29GeHi4Qet9+PAh5s+fj0GDBqFZs2aQJAmxsbF6j3/w4AGmTJkCZ2dn2NraYsCAAThz5oxBMRARUf1W48cYx44di2PHjqF79+6IiIiAv78/XFxccPfuXSQnJ2PVqlXw9/dHcHAwrl+/rjG2qrO53NxcLFq0CO7u7njllVdw6NAhvWMqLy/H0KFD8fPPP2PWrFlo3rw5YmJiEBgYiNOnT8PLy6umu0tERPVIjYtbu3btIEkShBCYO3eu1nIhBHbt2oVdu3ZptEuShNLS0krX6+rqiuzsbLRs2RJpaWno0aOH3jElJCTg+PHj2Lp1K8aMGQPgWRHu0KED5s+fj++//17vdRERUf1V4+IWGhoKSZKMGQsAQKFQoGXLljUam5CQABcXF/zxj39Utzk7O2Ps2LGIj4+HSqWCQqEwVqhERGSmalzcDLkPVlfS09Px6quvqr+WUKFnz55Yt24dMjIy4O3tbaLoiIiorsjqtyWzs7Ph6uqq1V7Rdvv27UrHqlQqFBYWakxEcsIcp4bEqMXt7NmzWLlyJVauXIlTp04Zc9V6efz4sc7LjlZWVurllYmKioJSqVRPbm5utRYnkSkwx6khMai4HTlyBKGhoThx4oTWsr/+9a/w8fHBzJkzMXPmTPTq1QvTp083WqD6sLa2hkql0movKSlRL69MZGQkCgoK1NONGzdqLU4iU2COU0NiUHHbvHkztm7dis6dO2u0Hzx4EIsXL4aFhQUmTJiA999/X/0Yfl2+HaDiScvfqmhr1apVpWMVCgUcHBw0JiI5YY5TQ2JQcUtJSUGfPn20/ii++uorSJKEtWvXIjY2FtHR0Th27BgsLS3r9MGTbt264cyZMygvL9doP3nyJGxsbNChQ4c6i4WIiEzHoOJ2+/ZtvPLKK1rtBw8ehIODA8LCwtRtnp6eGDJkCNLS0l44SF2ys7Nx4cIFPH36VN02ZswY3L17F4mJieq23NxcbN26FcOHD+fXAIiIGgiDvgqQn5+vdd/q+vXryMnJwdChQ7Uewff09MSePXsMDio6OhoPHjxQP924a9cu3Lx5EwAwffp0KJVKREZGIi4uDpmZmWjTpg2AZ8WtV69e+NOf/oRff/1VfWm0rKwMCxcuNDgOIiKqnwwqbvb29rh165ZGW8VTkT4+Plr9JUlSP6loiM8//xzXrl1TzycmJqrPxkJCQqBUKnWOs7CwwJ49ezBr1ix88cUXePz4MXr06IHY2Fh07NjR4DiIiKh+Mqi4de3aFbt370ZxcTFsbW0BANu3b4ckSejXr59W/ytXrlT5EEdlsrKyqu0TGxur835e06ZN8c033+Cbb74xeLtERCQPBt1ze+edd5CXl4f+/fvjiy++wJ///Gf8+9//hru7OwIDAzX6lpWV4ciRI/xFECIiqnMGnbmFhIRg//79iIuLQ3p6OoQQcHBwwLfffqt1v+2HH35Abm4ugoKCjBowERFRdQz+bckNGzZg0qRJSElJgZOTE4KCgvDSSy9p9VMoFFi5ciVGjhxplECJiIj0VaMfTvb394e/v3+VfYKCgnjWRkREJlHjtwL81tWrV1FQUAClUol27doZa7VEtUpYWKKg6ziNeSKq/17oh5MLCgowY8YMNG3aFF5eXvD19YWXlxeaNm2KiIgIFBQUGCtOotohSRCNm6gn1MI7Como7tX4zO3evXsICAjApUuX4OjoiP79+8PFxQV3797F2bNn8cUXX+C///0vkpOT0aJFC2PGTEREVKUan7lFRkbi0qVL+OSTT3Djxg0cOHAA//73v3HgwAHcuHEDH3/8MS5duoQ5c+YYM14iIqJq1fjMbdeuXRg4cCAWL16stczW1hZRUVE4efIkdu7c+UIBEhERGarGZ27FxcXo1atXlX169+6NR48e1XQTRERENVLj4talS5dqfyYrKysLXbp0qekmiIiIaqTGxW3OnDlISEjAvn37dC5PSkpCQkIC5s6dW+PgiIiIakLve24bN27UanvjjTcQFBSE119/Hf7+/uqnJZOTk7Fv3z4MGzYM+fn5Rg2YiIioOpIQQujTsVGjRpB+8x0gfYZKkoSysrKaRWdChYWFUCqVKCgo0HrzOBmXzyztD04N0elloXW6PeY4yZneZ24bNmyozTiIiIiMRu/iNnHixNqMg4iIyGhe6Oe3iIiIzBGLGxERyY7exa1Ro0Zo3LgxMjIy1PMWFhbVTo0bG+3FA0RERHrRu/L069cPkiTBxsZGY56IiMjc6F3cDh06VOU8ERGRuTDqNcPS0lKcP38ewLOf57K05IsfiYhMSQiB4uJi9bytrW2DuOpm0AMlV69exfr169X33Z63e/duvPTSS/D19YWvry9cXV2xZcsWowVKRESGKy4uxsiRI9XT84VOzgwqbt988w0mT54MhUKh0X758mWMHTsWOTk5cHd3x+9+9zvk5+fj7bffRnp6ulEDJiIiqo5Bxe3o0aPo1q0bPDw8NNpXrVqFkpISTJs2DZmZmfjll1+wbds2lJWVITo62qgBExERVceg4paZmYmePXtqtf/4449o0qSJxotLR40ahYCAACQnJxsclEqlwscff4xWrVrB2toafn5++Omnn6odt2DBAkiSpDVZWVkZHIO5E0Lg4cOH6knPnwglImoQDHqgJCcnB82bN9doy8vLw5UrVxAQEAB7e3uNZd27d0daWprBQYWFhSEhIQERERHw8vJCbGwshgwZgoMHD8Lf37/a8WvWrIGdnZ163sLCwuAYzF3FdfQKO3bs0NhnIqKGzKDiZmlpifv372u0nT59GgDg6+ur1d/W1tbggFJTU7Fp0yYsW7YMM2fOBACEhoaiS5cumD17No4fP17tOsaMGaNVhImIqOEw6LJkhw4dsH//fo22pKQkSJKEPn36aPW/ffs2XF1dDQooISEBFhYWmDJlirrNysoKkyZNQkpKCm7cuFHtOoQQKCws5KU6IqIGyqDiNnr0aFy6dAnvvfcezp07h4SEBKxbtw52dnYYNGiQVv9jx47B09PToIDS09PRoUMHrfdLVdzrO3v2bLXraNeuHZRKJezt7RESEoK7d+8aFAMRmR7vK9OLMOiyZEREBDZv3ox169bh66+/BvAsAVesWKF1CTItLQ2XL1/Gu+++a1BA2dnZOs/2Ktpu375d6dimTZviz3/+M3r37g2FQoHk5GSsXr0aqampSEtLq/KFjCqVCiqVSj1fWFhoUNxE5q6+5bic7iub8oW8UukTKJ+bD5y3CaJxE5PEUpcv5DWouNnY2ODYsWNYuXIlTpw4AScnJwQHB2P48OFafc+cOYORI0dixIgRBgX0+PFjre/RAVA/8fj48eNKx86YMUNjfvTo0ejZsyfefvttxMTE4JNPPql0bFRUFBYuXGhQrET1CXOcGhKDX3ljZ2eHefPm4YcffsDGjRt1FjYAmDJlCrZv3w4vLy+D1m9tba3x6bJCSUmJerkhxo8fj5YtW2Lfvn1V9ouMjERBQYF60ufeHlF9whynhsTs3kfj6uqKW7duabVnZ2cDAFq1amXwOt3c3JCXl1dlH4VCofOMkUgumOPUkJjdy0q7deuGjIwMrfsBJ0+eVC83hBACWVlZcHZ2NlaIRERk5syuuI0ZMwZlZWVYt26duk2lUmHDhg3w8/ODm5sbAOD69eu4cOGCxticnByt9a1ZswY5OTk6n+YkIiJ5MrvLkn5+fggODkZkZCTu3bsHT09PxMXFISsrC99++626X2hoKA4fPqzxeLCHhwfefPNNeHt7w8rKCkePHsWmTZvQrVs3g5/a1AefgHqmLp+AIiLSh9kVNwDYuHEj5s2bh++++w75+fno2rUrdu/ejX79+lU57u2338bx48exbds2lJSUwMPDA7Nnz8bcuXPVbxAnIiL5M8viZmVlhWXLlmHZsmWV9tH1JvCK794REVHDZpbFjYiIjENYWKKg6ziN+YaAxY2IKsX7ys/U6/vKkmSy42ZKZve0JBER0YticSMiItlhcSMiItlhcSMiItlhcSMiItnh05L1VEN9vJeISB8sbvVVA328l4hIH7wsSUREssPiRkREssPiRkREssPiRkREssMHSojILPGJYHoRLG5EZJ74RDC9AF6WJCIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2WFxIyIi2THL4qZSqfDxxx+jVatWsLa2hp+fH3766Se9xt66dQtjx46Fo6MjHBwcMHLkSFy9erWWIyYiInNilsUtLCwMK1aswNtvv41Vq1bBwsICQ4YMwdGjR6sc9/DhQwwYMACHDx/GnDlzsHDhQqSnp6N///64f/9+HUVPRESmZnZvBUhNTcWmTZuwbNkyzJw5EwAQGhqKLl26YPbs2Th+/HilY2NiYnDp0iWkpqaiR48eAIDBgwejS5cuWL58ORYvXlwn+0BERKZldmduCQkJsLCwwJQpU9RtVlZWmDRpElJSUnDjxo0qx/bo0UNd2ACgU6dO+P3vf48tW7bUatxERGQ+zK64paeno0OHDnBwcNBo79mzJwDg7NmzOseVl5fj3Llz8PX11VrWs2dPXLlyBUVFRUaPl4iIzI/ZXZbMzs6Gq6urVntF2+3bt3WOy8vLg0qlqnZsx44ddY5XqVRQqVTq+YKCAgBAYWFhpbGWqR5XuqwhqeoY6YPH8Rl9jqO9vT0kSarR+pnjNcccNw59j+OL5HkFsytujx8/hkKh0Gq3srJSL69sHIAajQWAqKgoLFy4UKvdzc2t+qAbOOWX75k6BFnQ5zgWFBRoXdXQF3O85pjjxqHvcXyRPK9gdsXN2tpa49NlhZKSEvXyysYBqNFYAIiMjMSHH36oni8vL0deXh6cnJxe+BNEbSksLISbmxtu3LjxwonQkNWn42hvb1/jsczxhqu+HccXyfMKZlfcXF1dcevWLa327OxsAECrVq10jmvWrBkUCoW6nyFjgWdnfL8963N0dNQ3bJNycHCoFwlr7uR+HJnj1JCOo9k9UNKtWzdkZGRoXZs9efKkerkujRo1gre3N9LS0rSWnTx5Eu3atTPKpwEiIjJ/ZlfcxowZg7KyMqxbt07dplKpsGHDBvj5+anvD1y/fh0XLlzQGnvq1CmNAnfx4kUcOHAAwcHBdbMDRERkcmZ3WdLPzw/BwcGIjIzEvXv34Onpibi4OGRlZeHbb79V9wsNDcXhw4chhFC3TZ06FV9//TWGDh2KmTNnwtLSEitWrICLiws++ugjU+xOrVIoFJg/f77Oh2hIfzyO5ov/b4yjIR5HSTxfHcxESUkJ5s2bh/j4eOTn56Nr16749NNPERQUpO4TGBioVdwA4ObNm/jLX/6CpKQklJeXIzAwECtXroSnp2dd7wYREZmIWRY3IiKiF2F299yIiIheFIubjEmShAULFpg6jBdy6tQp9OnTB7a2tpAkqdKfXzOlNm3aICwszNRhNEjM8bpRH3Pc7B4oIarw9OlTBAcHw8rKCitXroSNjQ08PDxMHRaR0TDHaw+LG5mtK1eu4Nq1a/j6668RHh5u6nCIjI45Xnt4WZLM1r179wDUn1/RIDIUc7z2sLiZwIIFCyBJEjIyMhASEgKlUglnZ2fMmzcPQgjcuHEDI0eOhIODA1q2bInly5erxz558gR/+9vf4OPjA6VSCVtbWwQEBODgwYN6bfvWrVt455134OLiAoVCgZdffhnr16+vrV2tsbCwMPTv3x8AEBwcDEmSEBgYCAC4cOECxowZg2bNmsHKygq+vr7YuXOnxvjY2FhIkoSjR4/igw8+gLOzMxwdHfHuu+/iyZMnePDgAUJDQ9G0aVM0bdoUs2fP1vpayeeff44+ffrAyckJ1tbW8PHxQUJCgl7xP3jwABEREXBzc4NCoYCnpyeWLl2K8vLyFz849QBzvHrM8VomqM7Nnz9fABDdunUT48aNEzExMWLo0KECgFixYoXo2LGjeP/990VMTIzo27evACAOHz4shBAiJydHuLq6ig8//FCsWbNGfPbZZ6Jjx47C0tJSpKena2wHgJg/f756/s6dO6J169bCzc1NLFq0SKxZs0aMGDFCABArV66suwOgh+PHj4s5c+YIAOKDDz4Q3333nUhKShK//PKLUCqVonPnzmLp0qUiOjpa9OvXT0iSJBITE9XjN2zYoD7GgwYNEqtXrxYTJkwQAMTs2bOFv7+/GD9+vIiJiRHDhg0TAERcXJxGDK1btxZTp04V0dHRYsWKFaJnz54CgNi9e7dGPw8PDzFx4kT1fHFxsejatatwcnISc+bMEWvXrhWhoaFCkiQxY8aM2jxsZoM5Xj3meO1icTOBij/8KVOmqNtKS0tF69athSRJYsmSJer2/Px8YW1trU6s0tJSoVKpNNaXn58vXFxcxDvvvKPR/ts//EmTJglXV1eRm5ur0e+tt94SSqVSPHr0yEh7aBwHDx4UAMTWrVvVbb///e+Ft7e3KCkpUbeVl5eLPn36CC8vL3VbxR9+UFCQKC8vV7f37t1bSJIk3nvvPXVbxbHv37+/xvZ/ezyePHkiunTpIgYOHKjR/ts//E8//VTY2tqKjIwMjX6ffPKJsLCwENevX9f/INRTzHH9MMdrDy9LmtDzN5AtLCzg6+sLIQQmTZqkbnd0dETHjh1x9epVdb8mTZoA+N8rS0pLS+Hr64szZ85Uui0hBLZt24bhw4dDCIHc3Fz1FBQUhIKCgirHm4O8vDwcOHAAY8eORVFRkTr++/fvIygoCJcuXdJ6o8SkSZM0Xufi5+endYwrjn3FMa7w/CuS8vPzUVBQgICAgGqP09atWxEQEICmTZtqHOfXXnsNZWVlOHLkyIschnqFOW4Y5rjx8GlJE3J3d9eYVyqVsLKyQvPmzbXa79+/r56Pi4vD8uXLceHCBTx9+lTd3rZt20q3lZOTgwcPHmDdunUaP0r9vIqb2+bq8uXLEEJg3rx5mDdvns4+9+7dw0svvaSe13WMAe0XdCqVSuTn52u07d69G3//+99x9uxZjfcEVvfus0uXLuHcuXNwdnauNMaGgjluGOa48bC4mZCFhYVebQDUN4Lj4+MRFhaGUaNGYdasWWjRogUsLCwQFRWFK1euVLqtipu8ISEhmDhxos4+Xbt2NXQX6lTFPsycOVPjd0af99vfEK3seOpqF8/dbE9OTsaIESPQr18/xMTEwNXVFZaWltiwYQO+//77auN8/fXXMXv2bJ3LO3ToUOV4OWGOG4Y5bjwsbvVMQkIC2rVrh8TERI1PV/Pnz69ynLOzM+zt7VFWVobXXnuttsOsFe3atQMAWFpa1vo+bNu2DVZWVti7d6/GL6lv2LCh2rHt27fHw4cP6+1xNjXmOHPcGHjPrZ6p+DT2/CewkydPIiUlpdpxo0ePxrZt2/DLL79oLc/JyTFuoLWgRYsWCAwMxFdffaXzjevG3AcLCwtIkoSysjJ1W1ZWFv7zn/9UO3bs2LFISUnB3r17tZY9ePAApaWlRotTjpjjzHFj4JlbPTNs2DAkJibiD3/4A4YOHYrMzEysXbsWnTt3xsOHD6scu2TJEhw8eBB+fn6YPHkyOnfujLy8PJw5cwb79u1DXl5eHe1Fza1evRr+/v7w9vbG5MmT0a5dO9y9excpKSm4efMmfv75Z6NsZ+jQoVixYgUGDRqE8ePH4969e1i9ejU8PT1x7ty5KsfOmjULO3fuxLBhwxAWFgYfHx8UFxfj/PnzSEhIQFZWltY9J/of5jhz3BhY3OqZsLAw3LlzB1999RX27t2Lzp07Iz4+Hlu3bsWhQ4eqHOvi4oLU1FQsWrQIiYmJiImJgZOTE15++WUsXbq0bnbgBXXu3BlpaWlYuHAhYmNjcf/+fbRo0QLdu3fH3/72N6NtZ+DAgfj222+xZMkSREREoG3btli6dCmysrKq/cO3sbHB4cOHsXjxYmzduhUbN26Eg4MDOnTogIULF6pv+JNuzHHmuDHwfW5ERCQ7vOdGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGRESyw+JGeikuLsbixYvx6quvws7ODgqFAq1bt0ZAQAAiIyOrfM8WUX3AHJcX/nAyVauoqAj+/v44d+4cPD09ERISAicnJ+Tm5iI1NRVLlixB+/bt0b59e1OHSlQjzHH5YXGjav3zn//EuXPnEB4ejnXr1mm9gj4zM1PjFfVE9Q1zXH54WZKqVfGSyGnTpmn90QNA27Zt0alTJ422e/fu4S9/+Qs8PT2hUCjQvHlzjB49WuMlkkIIDBkyBJIkYfPmzRrjhRAYPHiwzmVExsYclyFBVI2QkBABQGzevFmv/pcvXxatW7cWAMQbb7whPvroIzFhwgRhY2MjbG1txYkTJ9R979y5I1q0aCGUSqXIyspSt69YsUIAEGFhYUbfH6LfYo7LD4sbVWvHjh0CgLC3txcfffSR2Lt3r8jNza20f58+fYSFhYX48ccfNdovXrwo7O3thbe3t0b7f//7XyFJkujTp48oLS0V6enpokmTJsLLy0sUFRXVyj4RPY85Lj8sbqSX5cuXCzs7OwFAPbVv315MmzZNZGRkqPudOXNGABDvvPOOzvV8+OGHAoA4f/68RntERIQAIGbOnCk6deokLC0tRVpaWq3uE9HzmOPywjdxk96Kiorw448/4vjx40hLS8PJkyfx9OlTWFlZYfPmzRgxYgTWrFmDqVOnYujQofD19dVax6lTp7Bnzx5s3boVY8aMUberVCr06tULZ8+eBQAsXboUs2fPrqtdIwLAHJcVU1dXqr8ePHggpk6dKgCI5s2bC5VKJf7+979rfPKtbIqNjdVaX2RkpAAgrKysxP37902wR0SamOP1F5+WpBpTKpWIjo6Gh4cHcnNzcf78eTg4OAAAvvzyS4hnl711ThMnTtRY18mTJ7Fs2TI4OTmhpKQE77//vil2iUgDc7z+YnGjFyJJEmxtbdXzfn5+AP73aLU+ioqKMH78eDRu3BiHDh3C6NGjsWXLFqxfv97o8RIZijleT5nidJHql7Vr14rU1FSdy7Zv3y4kSRKOjo6ipKRECCGEn5+fkCRJbNq0Sat/WVmZOHTokEZbxWPY0dHRQggh8vLyhJubm7C1tRUXL1408t4QaWOOyw8fKKFqjRo1Cjt27ICnpyf69u2LVq1aobi4GOnp6UhOTkajRo0QHx+PcePGAXj2aw4DBgzAtWvX0KtXL7z66quwtrbG9evXkZKSgpycHJSUlAAA4uPjMWHCBAwfPhw7d+5Ub/PIkSMYMGAAunfvjpSUFFhaWppk36lhYI7LkKmrK5m/CxcuiM8++0y8/vrrom3btsLKykpYWVmJ9u3bi4kTJ+p8nDkvL0/89a9/FV26dBHW1tbCzs5OeHl5ifHjx4vExEQhhBBXr14VDg4OwtXVVeTk5GitY+7cuepHp4lqE3NcfnjmRkREssMHSoiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHZY3IiISHb+H/M9JPdoZ8muAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for Parch,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp2ElEQVR4nO3de1hU9b4/8PeIMjMCAymojAoioB4FxK2AaSpmimIXbUPKTpHtdWep20sqdjyplVSkJ8rtbrc1E3UfzdtTXmrrAUUJFOshNdNQLqKAkYqACCPC9/dHP9ZxmgHBGZiZxfv1POt5nO/6ru/6LPwMH9ZdIYQQICIikpE2lg6AiIjI3FjciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljcqEE9evRAjx49LB2GxNriIdtnbTllbfHYKha3FlZRUYG1a9fiD3/4AxwdHaFUKtGtWzcMGzYMsbGxyM7OtnSI1Ei1tbX4+OOP4e/vD7VaDTc3N0RFRSEnJ8fSoVkUc1weiouLERcXh4iICHh5eUGhUEChUFg6rEZra+kAWpPy8nI89dRTOHfuHHx8fDBlyhR07NgRN2/eREZGBt599114e3vD29vb0qFKkpKSLB2C1ZozZw42bdqEfv36Yf78+SgsLMQXX3yBI0eO4NSpU/D19bV0iC2OOS4fP/30E1asWAGFQgFfX1+0b98e9+7ds3RYjSeoxaxZs0YAEDNnzhS1tbUG83NycsTFixctEJnt8PT0FJ6enpYOQyQnJwsAYvjw4UKn00nthw8fFgDEmDFjLBid5TDHTWctOX7jxg2RkpIiysrKhBBC9O7dW9hSyeBhyRaUnp4OAHj11VeN7t57eXmhT58+em0KhQKhoaFGxzN2bD4mJgYKhQI5OTlYt24d+vbtC6VSiZiYGLz11ltQKBRITEw0Ot6+ffugUCjwxhtv1LuOxxkDAHJzczFz5kx4eHhAqVTC3d0dMTExuHr1qtFxvvzySwQFBUGtVqNz586YNWsWSkpKjPa1hH/+858Afvt52NvbS+3jxo1DaGgojhw5gvz8fEuFZzHMcfnkeOfOnTF8+HA4OTlZOpTHwuLWgjp27AgAyMrKavZ1zZs3D2vXrsWgQYPw17/+Ff7+/pgyZQoUCgW2b99udJlt27YBAKZOnVrvuI8zxunTpzFgwABs3boVAwcOxIIFCzBs2DDs2LEDwcHBBueoEhMTMWHCBGRlZWHq1KmYNm0avv32WzzzzDO4f/9+k34OzeX48eNwcHDA0KFDDeaFhYUBAFJSUlo6LItjjssnx20dz7m1oMjISGzfvh0zZ85ERkYGxowZg4EDB0q/EMzp3LlzyMzMhIeHh1770KFDkZycjKKiIri7u0vtt2/fxuHDhzFo0CCDv6wf5uXl1aQxqqurMXnyZNTW1iIjIwMDBgyQ+qempiI0NBQLFizAgQMHAABlZWWYN28eHBwccObMGfTq1QsA8M477+CZZ55BUVERPD09G/1zWLVqVaP7Ar/tFTzqSrWKigoUFRXBz88PdnZ2BvPrzrVdvny5SeuWA+a4PHJcFix9XLS1WbdunXB0dBQApMnb21u8+uqrIisry6A/ADFixAijYxk7Nj9t2jQBQCQkJBhd5h//+IcAINatW6fXvnHjRgFAfPjhh49cR1PG2LdvnwAg1qxZYzSeF198UbRp00aUlpYKIYTYunWrACDmzZtn0PfkyZMCQJPORzz8c27MdOzYsUeOWVBQIACIoUOHGp1/5MgRAUDMnz+/0XHKCXNcny3muDE850YNWrRokXRV3V//+lc89dRTyM/Px9/+9jcEBATgq6++Mst6goODjba/9NJLUCqV0qGVOtu3b0fbtm0RFRX1yLGbMsapU6cAAD///DNWrVplMN24cQO1tbXSYayzZ88CAIYNG2aw3ieffBJt2zbtYIMQoklTfed+qPGY48xxa8DDkhbg5OSEyMhIREZGAgBKS0uxYsUKbNy4ETNmzEBBQYHeRQqPo3PnzkbbXVxc8Oyzz2Lv3r346aef0LdvX2RnZyMtLQ3h4eHo1KnTI8duyhi3b98GAOzYsaPBMSsqKgD89rMAYDQOOzu7Zjm81VTOzs4A/i/W3ysrK9Pr1xoxxw3ZUo7LAYubFXB2dsaGDRtw6NAhXL16FefPn8fAgQMB/HYl2YMHD4wuV1paWu8v0IZutpw6dSr27t2Lbdu2IS4uTjpx3tBJ9scdQ6PRAAAOHDiAZ5999pHj1m1PcXGxwbyamhrcunULXbt2bXSczXE+wsHBAe7u7sjNzUVNTY3Bebe6c22t8T63+jDH/48t5LgstNwRUHqUvn37CgDiu+++k9o6dOggevToYdA3NzfX6LH5uvMRubm59a7n/v37omPHjsLDw0PU1NQIX19f4eTkJO7du2fQt757bho7xq5duwQAsWLFioY3/v+zlfMRkydPFgBESkqKwbzQ0FABQOTl5TU6ztaCOW47Of57tnbOzXYilYFPPvlEZGRkGJ23f/9+oVAohIuLi6iqqpLaw8LCBABx/PhxqU2n04mJEyc+9hdfCCHmzp0rAIi4uDgBQMTExBjt19ANpY0Zo6qqSnh4eAiVSmW0ENy/f1+cPHlS+nznzh2h0WiEg4OD+Pnnn/X6jRgxoslf/ObCm7iNY47LJ8d/z9aKm0IIIcy1F0gNmzBhAr788kv4+Phg6NCh0Gq1qKioQGZmJk6ePIk2bdpg+/bteierjxw5grFjx0KtViMqKgrt27fH0aNH4eLigqtXr8Le3h55eXlS/5iYGGzduhW5ubkNHno4deoUnnzySbRr1w7V1dVISkrC008/bdCvboyH19HUMc6cOYNx48bh1q1bePrpp+Hv7w+FQoGrV6/i5MmT6NixIy5duiT137p1K2JiYqDRaDB58mQ4Ozvj4MGDUKvVKCoqMthmS5k1a5b0+K3x48ejqKgIu3btgqOjI9LT06VLvFsT5ri8cjwmJkb69/79+1FWVoZp06ZJbcuXL2/wtgqLsnR1bU0uXbok3n//fTF69Gjh5eUlVCqVUKlUwtvbW0ybNk3vUM3Ddu/eLfz9/YW9vb3o0qWLmDdvnigvL2/wMulH/VUrhBC+vr4CgOjWrZuoqakx2udRjwJqzBhCCHH9+nWxYMEC4evrK5RKpdBoNOI//uM/xMyZM0VSUpJB//3794uBAwcKpVIpOnXqJGbOnClu375tNY8mEkKImpoakZCQIPr16yeUSqXo2LGjmDRpkrhy5YqlQ7MY5ri8chzNdIizJXDPjYiIZIf3uRERkeywuBERkeywuBERkeywuBERkeywuBERkeywuBERkeywuNVDCIGysjLwTgmSK+Y4yRmLWz3Ky8vh7OyM8vJyS4dC1CyY4yRnLG5ERCQ7LG5ERCQ7LG5ERCQ7LG5ERCQ7fBM3ETUrIQQqKiqkzw4ODg2+RZvIHFjciKhZVVRU4IUXXpA+f/nll3B0dLRgRNQa8LAkERHJDosbERHJDosbERHJjlUWN51Oh2XLlkGr1UKtViMkJARHjx5t9PK7du3Ck08+CQcHB7i4uGDIkCFITk5uxoiJiMiaWGVxi4mJwfr16/Hyyy8jISEBdnZ2CA8PR2pq6iOXXbVqFaKiotC9e3esX78eb7/9NgICAlBQUNACkRMRkTWwuqslMzIysHPnTsTHx2PJkiUAgOjoaPj5+WHp0qVIS0urd9lTp05hzZo1WLduHRYuXNhSIRMRkZWxuj23PXv2wM7ODrNnz5baVCoVZsyYgfT0dFy7dq3eZT/88EN06dIFCxYsgBACd+/ebYmQiaiVqvs9UzfxDQvWw+qKW2ZmJnr16gWNRqPXHhwcDAD44Ycf6l02KSkJQUFB+Oijj+Dm5gYnJye4u7tjw4YNzRkyEbVSdffw1U0P36xOlmV1hyWLiorg7u5u0F7XVlhYaHS5kpIS3Lx5E99++y2Sk5Px5ptvwsPDA1u2bMG8efPQrl07zJkzp9716nQ66HQ66XNZWZmJW0JkXZjj1JpY3Z5bZWUllEqlQbtKpZLmG1N3CPLWrVvYtGkTlixZgpdeegmHDh1C37598fbbbze43ri4ODg7O0tT9+7dTdwSIuvCHKfWxOqKm1qt1vvrsk5VVZU0v77lAKBdu3aIiIiQ2tu0aYNJkybh+vXryM/Pr3e9sbGxKC0tlaaGzu0R2SLmOLUmVndY0t3d3ehl+0VFRQAArVZrdLkOHTpApVLBxcUFdnZ2evM6deoE4LdDlx4eHkaXVyqVRvcYieSCOU6tidXtuQUGBiIrK8vgfMDp06el+ca0adMGgYGB+PXXX3H//n29eXXn6dzc3MwfMBERWR2rK24RERGoqanBp59+KrXpdDps2bIFISEh0nmC/Px8XLp0SW/ZSZMmoaamBlu3bpXaqqqqsGPHDvTt27fevT4iIpIXqzssGRISgsjISMTGxqK4uBg+Pj7YunUr8vLysHnzZqlfdHQ0UlJS9O4rmTNnDjZt2oRXX30VWVlZ8PDwwLZt23D16lUcOHDAEptDREQWYHXFDQASExOxcuVKbNu2DSUlJQgICMDBgwcxfPjwBpdTq9VITk7G0qVL8dlnn6GiogKBgYE4dOgQwsLCWih6IiKyNKssbiqVCvHx8YiPj6+3z/Hjx422d+rUCZ9//nnzBEb0//Ht0kTWzSqLG5G149uliayb1V1QQkREZCoWNyIikh0WNyIikh2ecyMiPQNfTzTreIoH9+H80OfQlTsh2tqbbfzv46PNNhbJB/fciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdkx+Wemvv/6KLVu24MyZM7hz5w5qamoM+igUCiQlJZm6KiIik/BFrK2HScXt3LlzePrpp1FSUgIhRL39FAqFKashIiJqEpMOSy5evBi3b9/GG2+8gdzcXFRXV6O2ttZgMrY3R0RE1FxM2nNLT0/HhAkTsGbNGnPF0+oIIVBRUSF9dnBw4J4uEZGJTNpzs7e3h7e3t7likeh0OixbtgxarRZqtRohISE4evRok8cZPXo0FAoFXnvtNbPHaC4VFRV44YUXpOnhQkdERI/HpOI2YsQIfPfdd+aKRRITE4P169fj5ZdfRkJCAuzs7BAeHo7U1NRGj7Fv3z6kp6ebPTYiIrJ+JhW3Dz74AD/++CM++OADc8WDjIwM7Ny5E3FxcYiPj8fs2bORnJwMT09PLF26tFFjVFVVYfHixVi2bJnZ4iKixyPs2qE0IEqahF07S4dErUCTzrlNnz7doM3Pzw/Lli3DJ598gsDAQGg0GoM+CoUCmzdvbtQ69uzZAzs7O8yePVtqU6lUmDFjBlasWIFr166he/fuDY7x/vvvo7a2FkuWLMF//dd/NWq9RNRMFAqzXh5P1BhNKm6ff/55vfNycnKQk5NjdF5TiltmZiZ69eplUCSDg4MBAD/88EODxS0/Px/vvvsuPvvsM6jV6katk4iI5KVJxS03N7e54pAUFRXB3d3doL2urbCwsMHlFy9ejAEDBmDy5MlNWq9Op4NOp5M+l5WVNWl5ImvHHKfWpEnFzdPTs7nikFRWVkKpVBq0q1QqaX59jh07hr179+L06dNNXm9cXBxWr17d5OWIbAVznFoTq3u2pFqt1vvrsk5VVZU035gHDx5g/vz5mDp1KoKCgpq83tjYWJSWlkrTtWvXmjwG6RNC4O7du9LU0FNsqPkxx6k1Mam4rVu3Dq6urvUeKiwsLISbmxs++uijRo/p7u6OoqIig/a6Nq1Wa3S5xMRE/Pzzz5gzZw7y8vKkCQDKy8uRl5eHe/fu1btepVIJjUajN5FpeA+fdWGOU2tiUnHbvXs3+vfvX2/B0Wq1CAwMxM6dOxs9ZmBgILKysgzOB9QdagwMDDS6XH5+PqqrqzF06FB4eXlJE/Bb4fPy8sKRI0caHQcREdkuk4rb5cuX0a9fvwb79OvXD5cvX270mBEREaipqcGnn34qtel0OmzZsgUhISHSlZL5+fm4dOmS1Gfy5MnYv3+/wQQA4eHh2L9/P0JCQpqyeUREZKNMerZkZWUlHBwcGuyjUqlw9+7dRo8ZEhKCyMhIxMbGori4GD4+Pti6dSvy8vL0bieIjo5GSkqKdB6nT58+6NOnj9Exvby8MGHChEbHQEREts2k4ubh4YG0tLQG+6Snp6Nbt25NGjcxMRErV67Etm3bUFJSgoCAABw8eBDDhw83JVwiImolTDosOX78eKSmpuKzzz4zOn/Tpk1ITU3Fc88916RxVSoV4uPjUVRUhKqqKmRkZCAsLEyvz/Hjxxt19Z0QAhs2bGjS+omIyLaZtOe2fPly/M///A9mzZqF7du3Y/To0ejatSsKCgpw5MgRnDhxAlqtFrGxseaKl4iI6JFMKm5ubm44duwYpkyZguPHj+P48eNQKBTSHlVQUBB27NgBNzc3swRLRETUGCYVNwDo3bs3zpw5gzNnziAjIwOlpaVwcXFBcHAwBg0aZI4YrcrA1xPNOp7iwX04P/Q5dOVOsz5k9vv4aLONRURkK0wqbtOnT4e/vz8WLlyIoKCgx3oyCBERkbmZdEHJv/71LxQXF5srFiIiIrMwqbh5e3sbfVQWERGRJZlU3KZPn45Dhw6hoKDAXPEQERGZzKRzbn/84x9x7NgxDBkyBEuXLkVQUBA6d+4MhUJh0NfDw8OUVRERETWaScWtZ8+e0qX/8+fPr7efQqHAgwcPTFkVERFRo5lU3KKjo43upREREVmSScXt888/N1MYRERE5mN1b+ImIiIylclPKCEiaq2EXTuUBkTpfSbrYHJxKy8vx4YNG/C///u/KCwshE6nM+ijUCiQnZ1t6qqIiKyLQmHWx+WR+ZhU3H799VcMGTIE2dnZ0Gg0KCsrg7OzM+7fv4/KykoAgFarRbt2/GuGiIhajknn3FatWoXs7GwkJiaipKQEALBw4UJUVFTg9OnTCA4ORo8ePXDhwgWzBEtERNQYJhW3w4cPY9SoUZgyZYrBLQFBQUH4+uuvkZeXh9WrV5sUJBERUVOYdFiyqKgIkZGR0mc7OzvpcCQAPPHEExg3bhy++OILvPfee6asisgkfFURUeti0p6bs7Mzqqurpc9PPPEErl+/rtdHo9Hgl19+MWU1RERETWJScevZsyfy8vKkzwMGDMDRo0dx69YtAEBlZSUOHDjA50oSEVGLMqm4jRkzBklJSbh37x4AYM6cOSguLkb//v0RGRkJPz8/ZGdnIyYmxhyxylLdfTJ1E++TISIynUnn3F555RX07dsX9+7dQ/v27fHiiy8iPj4eb7/9Nvbu3Qu1Wo1Fixbh9ddfN1e88mNF98nwvBQRycVj7bmlp6fj6aefhq+vL2bNmoWoqChkZGQAABYvXoybN2+iqKgId+/eRXx8POzs7MwaNBERUUOavOd2/vx5jBo1ClVVVVJbUlIS0tLSkJGRgX79+sHOzg6dO3c2a6BERESN1eQ9t3fffRdVVVV44403cOPGDdy4cQMrV65EZWUlL/cnIiKr0OQ9t5MnT+Kpp57CW2+9JbWtXr0ax48fR0pKilmDIyIiehxN3nP75ZdfMHjwYIP2kJAQs93PptPpsGzZMmi1WqjVaoSEhODo0aOPXG7fvn2YNGkSevbsifbt26N3795YvHgx7ty5Y5a4iIjINjS5uFVXV8PR0dGg3cHBQe+GblPExMRg/fr1ePnll5GQkAA7OzuEh4cjNTW1weVmz56NixcvYsqUKfjoo48wduxYbNiwAU8++aTek1OIiEjerO59bhkZGdi5cyfi4+OxZMkSAEB0dDT8/PywdOlSpKWl1bvsnj17EBoaqtc2cOBATJs2DTt27MDMmTObM3QiIrISj1Xctm/fjlOnTum1XblyBQAQHh5u0F+hUODQoUONGnvPnj2ws7PD7NmzpTaVSoUZM2ZgxYoVuHbtGrp372502d8XNgCYOHEipk2bhosXLzZq/UREZPseq7hduXJFKma/98033xi0/f6NAQ3JzMxEr169oNFo9NqDg4MBAD/88EO9xc2YGzduAABcXV0bvQwREdm2Jhe33Nzc5ohDUlRUBHd3d4P2urbCwsImjffee+/Bzs4OERERDfbT6XR6bxEvKytr0nqIrB1znFqTJhc3T0/P5ohDUllZCaVSadCuUqmk+Y31r3/9C5s3b8bSpUvh6+vbYN+4uDi+d45kjTlOrYlJD05uDmq1Wu+vyzp1T0RRq9WNGufkyZOYMWMGwsLC8M477zyyf2xsLEpLS6Xp2rVrTQucyMoxx6k1sbqrJd3d3VFQUGDQXlRUBADQarWPHOPs2bN4/vnn4efnhz179qBt20dvplKpNLrHSCQXzHFqTaxuzy0wMBBZWVkG5wNOnz4tzW9IdnY2xo4di06dOuHw4cNG78kjIiJ5s7riFhERgZqaGnz66adSm06nw5YtWxASEiJdKZmfn49Lly7pLXvjxg2MGTMGbdq0wb///W+4ubm1aOxERGQdrO6wZEhICCIjIxEbG4vi4mL4+Phg69atyMvLw+bNm6V+0dHRSElJgRBCahs7dixycnKwdOlSpKam6j3RpHPnzhg9enSLbgsREVmG1RU3AEhMTMTKlSuxbds2lJSUICAgAAcPHsTw4cMbXO7s2bMAgPfff99g3ogRI1jciIhaCassbiqVCvHx8YiPj6+3z/Hjxw3aHt6LIyKi1svqzrkRERGZisWNiIhkh8WNiIhkh8WNiIhkh8WNiIhkxyqvliR5EHbtUBoQpfeZiKglsLhR81EoINraWzoKImqFeFiSiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh8WNiIhkh6+8IXoMfFcdkXVjcSN6HHxXHZFV42FJIiKSHRY3IiKSHRY3IiKSHassbjqdDsuWLYNWq4VarUZISAiOHj3aqGULCgrw0ksvwcXFBRqNBi+88AJycnKaOWIiIrImVlncYmJisH79erz88stISEiAnZ0dwsPDkZqa2uByd+/exciRI5GSkoIVK1Zg9erVyMzMxIgRI3Dr1q0Wip6IiCzN6q6WzMjIwM6dOxEfH48lS5YAAKKjo+Hn54elS5ciLS2t3mU3btyIy5cvIyMjA0FBQQCAcePGwc/PD+vWrcPatWtbZBuIiMiyrG7Pbc+ePbCzs8Ps2bOlNpVKhRkzZiA9PR3Xrl1rcNmgoCCpsAFAnz59MGrUKHzxxRfNGjcREVkPqytumZmZ6NWrFzQajV57cHAwAOCHH34wulxtbS3OnTuHQYMGGcwLDg5GdnY2ysvLzR4vERFZH6s7LFlUVAR3d3eD9rq2wsJCo8vdvn0bOp3ukcv27t3b6PI6nQ46nU76XFpaCgAoKyvT61ejq2zEVliP38ffEG6b9ahv25ycnKBQKB5rTOa4vLdNTkzJ8zpWV9wqKyuhVCoN2lUqlTS/vuUAPNayABAXF4fVq1cbtHfv3v3RQVsx54//YukQmk1r3LbS0lKDoxqNxRy3PXLetoaYkud1rK64qdVqvb8u61RVVUnz61sOwGMtCwCxsbFYtGiR9Lm2tha3b99Gx44dTf4L4lHKysrQvXt3XLt2zeT/UGvDbTMvJyenx16WOd48uG3mZ0qe17G64ubu7o6CggKD9qKiIgCAVqs1ulyHDh2gVCqlfk1ZFvhtj+/3e30uLi6NDdssNBqN7L4cdbhtlsccb17cNutidReUBAYGIisry+BY8+nTp6X5xrRp0wb+/v747rvvDOadPn0aPXv2NMtfA0REZP2srrhFRESgpqYGn376qdSm0+mwZcsWhISESOcH8vPzcenSJYNlz5w5o1fgfv75ZyQnJyMyMrJlNoCIiCzO6g5LhoSEIDIyErGxsSguLoaPjw+2bt2KvLw8bN68WeoXHR2NlJQUCCGktrlz5+Kf//wnxo8fjyVLlqBdu3ZYv349OnfujMWLF1ticxpFqVTizTffNHoxjK3jthEg758Vt806KcTD1cFKVFVVYeXKldi+fTtKSkoQEBCAt956C2FhYVKf0NBQg+IGANevX8fChQtx5MgR1NbWIjQ0FP/93/8NHx+flt4MIiKyEKssbkRERKawunNuREREpmJxIyIi2WFxs6Dz588jIiICnp6eUKlU6Nq1K0aPHo2PP/7Y0qGZRXZ2NubMmYOePXtCpVJBo9Fg6NChSEhIaPBpMdbuwoULmDJlCrp27QqlUgmtVospU6bgp59+snRoVoc5brtsPc95zs1C0tLSMHLkSHh4eGDatGno0qULrl27hlOnTiE7OxtXrlyxdIgmOXToECIjI6FUKqVXFt2/fx+pqanYu3cvYmJi9G73sBX79u1DVFQUOnTogBkzZsDLy0u6kvf27dvYtWsXXnjhBUuHaRWY47aZ44BM8lyQRYSHhws3NzdRUlJiMO+XX35p+YDMKCcnRzg6Ooo+ffqIwsJCg/mXL18WH374oQUiM82VK1dE+/btRZ8+fURxcbHevF9//VX06dNHODo6ipycHAtFaF2Y47aX40LIJ89Z3Cykd+/eIjQ01NJhNIu//OUvAoD49ttvLR2KWc2ZM0cAECdOnDA6PyUlRQAQr7zySgtHZp2Y47ZJLnnOw5IWEhYWhvT0dKSlpcHPz8/S4ZhVt27doFQqkZ2dbelQzKpr166wt7dHbm5uvX28vLzw4MGDBl+q21owx22TXPKcF5RYyJIlS3Dv3j0EBgZiyJAhWLZsGY4cOYLq6mpLh2aSsrIyFBQUwN/f39KhmFVpaSkKCwvRv3//BvsFBATg+vXrfDEumOO2SE55zuJmIaNHj0Z6ejqef/55nD17Fu+//z7CwsLQtWtXfPXVV5YO77HVPfBabg+prvsSP2q76uZb85e+pTDHbY+c8pzFzYKCgoKwb98+lJSUICMjA7GxsSgvL0dERITNXG77e3WvxbDmpH8cjf0yl5eXQ6FQwNXVtSXCsnrMcdsipzxncbMC9vb2CAoKwtq1a/H3v/8d1dXV2L17t6XDeiwajQZarRY//vijpUMxK2dnZ2i1Wpw7d67BfufOnUO3bt1gb2/fQpHZBua4bZBTnrO4WZlBgwYBgNGXrtqKZ599FtnZ2UhPT7d0KGb13HPPITc3F6mpqUbnnzx5Enl5eXy90iMwx62bbPLc0pdrtlbJycmitrbWoP29994TAMT69estEJV5XLlyRTg4OIi+ffuKGzduGJ1vi/cAXb58WbRv31707dtX3Lx5U2/erVu3RN++fYVGo7H6+39aCnPc9nJcCPnkOW8FsBA/Pz/cu3cPEydORJ8+fXD//n2kpaVh165d6N69OzIzM+Hi4mLpMB/bV199hUmTJkGtVus9vSEtLQ27d+9GTEwM/vGPf1g6zCbbu3cvoqKi4OrqavDkhpKSEuzcuRPPP/+8pcO0Csxx28xxQCZ5bunq2lp9/fXXYvr06dLd/vb29sLHx0fMmzfP5p/eUCcrK0vMmjVL9OjRQ9jb2wsnJycxdOhQ8fHHH4uqqipLh/fYzp8/L/70pz+JLl26iDZt2ggAQqVSiQsXLlg6NKvCHLfdHBfC9vOce25EJkpMTERMTAymTJmCxMRES4dD1CxsLc/bWjoAIlsXHR2NoqIiLF++HN26dcPatWstHRKR2dlannPPjYiIZIe3AhARkeywuBERkeywuBERkeywuBERkeywuBERkeywuBERkeywuBERkeywuFGD8vLyoFAoEBMTY7EYQkNDoVAoWnSd1rDd1DKs4f+aOW5+LG42oi4RG5p69Ohh6TCJHhtznMyJj9+yMd7e3pgyZYrRebb8hHWiOsxxMgcWNxvj4+ODVatWWToMombDHCdz4GFJmVIoFAgNDUVBQQH+9Kc/wdXVFU5OThg/fjxycnIAABcvXsSECRPQoUMHODk5ISIiAr/88ku9Y164cAHjx4+Hi4sLHB0dMWbMGHz//fcG/b7//nu89tpr8PPzg7OzM9RqNfz9/fHuu++iurraoH+PHj3Qo0cP3LlzB6+99hq6d++Otm3b4vPPP29wG3ft2gWlUon+/fvrvdX5xIkTeO655+Dq6gqlUglfX1/853/+J+7du2cwRk1NDd577z34+PhApVLBx8cHcXFxqK2tbXDdZHnMceZ4gyz7xh1qrNzcXAFAhIWFNao/ABEQECB69OghBg8eLBYtWiSeffZZAUD07NlTnD9/Xri4uIhRo0aJxYsXi9DQUAFAjBw50uh6hw0bJpydncXIkSPF8uXLRVRUlGjbtq1o3769OHXqlN4yc+bMEVqtVkyePFm8/vrr4tVXXxX9+vUTAMSLL75oEKunp6fo0qWLGDBggPD19RVz584V8+fPF4cPHxZCCDFixAjx+1T96KOPhEKhEMOHDxd37tyR2jdu3CgUCoV44oknRHR0tFiyZIm0bUOGDBE6nU5vnOnTpwsAwsvLSyxatEjMnTtXuLq6Sj+radOmNernTaZjjjPHzYnFzUbUfQG9vb3Fm2++aXT6+uuvpf4ABACxcOFCvXFeeeUVAUC4uLiIDz/8UGqvra0V4eHhAoD4/vvvDdYLQCxfvlxvrG+++UYAEP7+/nrtV69eFQ8ePNBrq62tlb5kqampevM8PT2lX2r37t0z2Pbff/FXrFghAIiJEyeKyspKqf3ChQuibdu2on///uLmzZt6Y8TFxQkA4oMPPpDajh07JgCI/v37i7t370rt169fF66urrL+4lsj5jhz3JxY3GzEw1/A+qYFCxZI/QEIR0dHUVFRoTfOiRMnpF8gtbW1evMSExMFAPHZZ58ZrNfFxUWUl5cbxDVq1CgBQHz33XeP3Ibvv/9eABCrVq3Sa6/74p89e9bocnVf/AcPHogZM2YIAGLWrFkGv1zmz58vAIgTJ04YjFFTUyPc3NzEwIEDpbY///nPAoDYu3evQf+33npL1l98a8QcZ46bEy8osTFhYWH45ptvGtXX19cX7du312tzd3cHAAQEBBjcV1M3r7Cw0GCsAQMGwNHR0aB92LBhSEpKQmZmJgYOHAgAuH//PjZs2ICdO3fi0qVLuHv3LsRDrw00Nr5KpYK/v3+D2/PHP/4RX375Jd544w28/fbbBvNPnToFAPj3v/+NpKQkg/nt2rXDpUuXpM9nz56VtsHYdpFlMMeZ4+bA4iZjGo3GoK1t27aPnGfshHjnzp2NrqOuvbS0VGqLiIjAgQMH0KtXL0yaNAmdOnVCu3btcOfOHSQkJECn0xmM06lTp0fexHrixAmoVCqEh4cbnX/79m0AwDvvvNPgOHVKS0vRpk0buLq61rtdZN2Y4w1rzTnO4kaNUt8VZnXtzs7OAIAzZ87gwIEDCAsLw6FDh2BnZyf1PXXqFBISEoyO05inMyQlJeGZZ57B2LFj8c0332DIkCF68+t+mZWVlcHJyemR4zk7O6O2thY3b96Em5ub0e2i1oM5Li+8FYAaJTMzE3fv3jVoP3nyJIDfDukAQHZ2NgBg/Pjxel/6h/s+rgEDBiA5ORn29vYYO3Ysvv32W735ISEhAP7v0M2j9O/fv964TI2VbA9zXF5Y3KhR7ty5Y3AopO64v5+fn3QuwtPTEwCQmpqq1/fChQuIi4szOY7+/fsjOTkZSqUSY8eO1VvP3Llz0bZtW8ybNw/5+flGtyEzM1P6PHXqVADAmjVrUFFRIbUXFBTU+9c3yRdzXF54WNLGXLlypcGnNyxfvhwqlcrs6x02bBj+/ve/4/Tp0xg8eDDy8vKwe/duqNVqbNq0SeoXHByM4OBgfPHFFygqKsLgwYORn5+Pr776CuPHj8eePXtMjiUgIADJyckYNWoUxo0bh8OHD2PYsGHw8/PDxo0b8corr6B3794IDw+Ht7c3ysvLkZOTg5SUFMTExOCTTz4BAIwcORJ//vOfsWXLFvj7+2PixInQ6XTYtWsXBg8ejIMHD5ocKzUdc5w5bhaWvlyTGqcxl0kDECUlJUKI3y6THjFiRL3jGLv8t+6emDfffNNo/x9//FGEh4cLjUYjHBwcxDPPPGP08uji4mIxffp0odVqhUqlEv7+/uJvf/ubyMnJMbpuT09P4enpWe+2G7vBVQghzp8/Lzp16iQcHBxESkqK1J6RkSEmT54stFqtaNeunXB1dRV/+MMfxPLly8XFixf1xnjw4IGIi4sTPXv2FPb29qJnz55i7dq14sqVK7K+TNoaMceZ4+akEOKh61eJiIhkgOfciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdljciIhIdv4fsTSkStBOkl4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnfklEQVR4nO3deVRU5f8H8PcIMiAImCsom4AboJK7aOKeW5o75cLXJfPnVu5LHlErKzKzzDYNNfBLmXoUbVFRTBMFPZSpqchmsrmyKvvz+6Mvk+MMMMMMzHDn/TrnnuM8997nfmbkM5+5z91kQggBIiIiCaln6ACIiIj0jcWNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8XNxLi6usLV1dXQYSgYWzwkfcb2N2ds8UgFi5uO8vPz8e677+L555+HjY0N5HI5WrVqhb59+2LVqlVISEgwdIikobKyMnz66afw8fGBlZUVmjZtioCAACQmJho6NKPGHJCGu3fvYtOmTRg/fjzc3Nwgk8kgk8kMHVa1mRs6gLosNzcXffr0weXLl+Hh4YEpU6agcePGuH//PmJiYvDee+/B3d0d7u7uhg5VITIy0tAhGK05c+Zgx44d8PLywsKFC5GWlobvv/8ex44dw/nz5+Hp6WnoEI0Oc0A6rl27htWrV0Mmk8HT0xMNGjTA48ePDR1W9Qmqtg0bNggAYtasWaKsrExlfmJiovjrr78MEFnd4eLiIlxcXAwdhjh58qQAIF544QVRWFioaP/xxx8FADFkyBADRme8mAO6M5YcyMjIEKdPnxY5OTlCCCHatm0r6nKJ4LCkDqKjowEA8+bNU7v77ubmhnbt2im1yWQy+Pv7q+1P3dh7YGAgZDIZEhMTsXnzZnTo0AFyuRyBgYHYuHEjZDIZ9uzZo7a/AwcOQCaTYc2aNRVuozp9AEBSUhJmzZoFZ2dnyOVyODg4IDAwECkpKWr7OXToELp16wYrKys0b94cs2fPxqNHj9Quawhff/01gH8+DwsLC0X7sGHD4O/vj2PHjuH27duGCs9oMQekkwPNmzfHCy+8gIYNGxo6FL1gcdNB48aNAQA3b96s8W0tWLAA7777Lrp27Yo33ngDPj4+mDJlCmQyGUJDQ9Wu8+233wIApk6dWmG/1enjwoUL8PX1xe7du9GlSxcsWrQIffv2RVhYGLp3765yjGrPnj0YM2YMbt68ialTp2L69On47bffMGjQIBQVFWn1OdSUqKgoWFtbw8/PT2Xe0KFDAQCnT5+u7bCMHnNAOjkgNTzmpoMJEyYgNDQUs2bNQkxMDIYMGYIuXbooEl6fLl++jLi4ODg7Oyu1+/n54eTJk0hPT4eDg4Oi/eHDh/jxxx/RtWtXlV/OT3Nzc9Oqj+LiYkyePBllZWWIiYmBr6+vYvmzZ8/C398fixYtQkREBAAgJycHCxYsgLW1NWJjY9GmTRsAwDvvvINBgwYhPT0dLi4uGn8OQUFBGi8L/POrv6oz0fLz85Geng5vb2+YmZmpzC8/1hYfH6/Vtk0Bc0AaOSBJhh4Xres2b94sbGxsBADF5O7uLubNmydu3rypsjwA0a9fP7V9qRt7nz59ugAgtm7dqnadL7/8UgAQmzdvVmrfvn27ACA+/vjjKrehTR8HDhwQAMSGDRvUxjN27FhRr149kZ2dLYQQYvfu3QKAWLBggcqyZ86cEQC0Ot7w9OesyXTq1Kkq+0xNTRUAhJ+fn9r5x44dEwDEwoULNY7TlDAHlNXFHFCHx9xM3OLFixVn1b3xxhvo06cPbt++jc8++wwdO3bE4cOH9bKd7t27q22fOHEi5HK5YuikXGhoKMzNzREQEFBl39r0cf78eQDAjRs3EBQUpDJlZGSgrKxMMUz1xx9/AAD69u2rst1evXrB3Fy7wQMhhFZTRcd2SH+YA8wBY8RhST1o2LAhJkyYgAkTJgAAsrOzsXr1amzfvh0zZ85Eamqq0kkK1dG8eXO17fb29hg5ciT279+Pa9euoUOHDkhISMC5c+cwfPhwNGvWrMq+tenj4cOHAICwsLBK+8zPzwfwz2cBQG0cZmZmNTJ8pS07OzsA/8b6rJycHKXlSBVzQFVdygEpYnGrAXZ2dti2bRuOHj2KlJQU/Pnnn+jSpQuAf84UKykpUbtednZ2hV+glV1MOXXqVOzfvx/ffvstNm3apDgwXtlB9Or2YWtrCwCIiIjAyJEjq+y3/P3cvXtXZV5paSkePHiAli1bahxnTRxvsLa2hoODA5KSklBaWqpy3K38WBuvc9Mcc+BfdSEHJKn2RkBNT4cOHQQAcfHiRUXbc889J1xdXVWWTUpKUjv2Xn68ISkpqcLtFBUVicaNGwtnZ2dRWloqPD09RcOGDcXjx49Vlq3omhpN+/juu+8EALF69erK3/z/1JXjDZMnTxYAxOnTp1Xm+fv7CwAiOTlZ4zjpH8yBupMDz6rrx9zqbuRG4IsvvhAxMTFq5x08eFDIZDJhb28vCgoKFO1Dhw4VAERUVJSirbCwULz88svVTmwhhPi///s/AUBs2rRJABCBgYFql6vsglFN+igoKBDOzs7C0tJSbSEoKioSZ86cUbzOysoStra2wtraWty4cUNpuX79+mmd2DWFF3FXD3NAOjnwrLpe3GRCCKGvvUBTM2bMGBw6dAgeHh7w8/ODo6Mj8vPzERcXhzNnzqBevXoIDQ1VOhh97NgxvPjii7CyskJAQAAaNGiA48ePw97eHikpKbCwsEBycrJi+cDAQOzevRtJSUmVDi2cP38evXr1Qv369VFcXIzIyEgMGDBAZbnyPp7ehrZ9xMbGYtiwYXjw4AEGDBgAHx8fyGQypKSk4MyZM2jcuDGuX7+uWH737t0IDAyEra0tJk+eDDs7Oxw5cgRWVlZIT09Xec+GMnv2bMXtt0aMGIH09HR89913sLGxQXR0tOIUbvoXc0BaORAYGKj498GDB5GTk4Pp06cr2lauXFnpZRVGxdDVtS67fv26+OCDD8TgwYOFm5ubsLS0FJaWlsLd3V1Mnz5daSjmafv27RM+Pj7CwsJCtGjRQixYsEDk5uZWehp0Vb9ahRDC09NTABCtWrUSpaWlapep6lY/mvQhhBB37twRixYtEp6enkIulwtbW1vRvn17MWvWLBEZGamy/MGDB0WXLl2EXC4XzZo1E7NmzRIPHz40mlsPCSFEaWmp2Lp1q/Dy8hJyuVw0btxYTJo0Sdy6dcvQoRkt5oC0cgA1NMRpCNxzIyIiyeF1bkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDmSLW5CCOTk5IBXOpCpYg6QKZNsccvNzYWdnR1yc3MNHQqRQTAHyJQZXXGLjY3F/Pnz4eXlBWtrazg7O2PixIm18hh7IiKSBqN75M3777+P3377DRMmTEDHjh2RkZGBbdu24fnnn8f58+fh7e1t6BCJiMjIGd3tt86dO4euXbsqPdgwPj4ePj4+GD9+vOIZS1XJycmBnZ0dsrOzFc9fIjIlzAEyZUa359a7d2+VNk9PT3h5eeGvv/4yQERERFTXGN0xN3WEEMjMzESTJk0MHQoR1TFCCOTl5SkmIxusohpidHtu6oSFhSE1NRUbNmyocJnCwkIUFhYqXufk5NRGaERGgzmgXn5+PkaPHq14fejQIdjY2BgwIqoNRr/ndv36dcybNw+9evVSemjeszZt2gQ7OzvF5OTkVItREhkec4DoX0Z3QsnTMjIy4Ofnh+LiYpw/fx6Ojo4VLqvuV6uTkxMPppPJYA6ol5eXxz03E2S0w5LZ2dkYNmwYsrKycObMmUoLGwDI5XLI5fJaio7I+DAHiP5llMWtoKAAo0aNws2bN3HixAl06NDB0CEREVEdYnTFrbS0FJMmTUJ0dDQOHTqEXr16GTokIiKqY4yuuC1ZsgSHDx/GqFGj8PDhQ5WLtqdMmWKgyIiIqK4wuuL2+++/AwAiIiIQERGhMp/FjYiIqmJ0xS0qKsrQIRARUR1n9Ne5ERERaYvFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJMfc0AEQEelLl2V7VNpkJUWwe+q1/9pwCHMLleUuBU+rwciotnHPjYiIJIfFjYiIJIfFjYiIJIfFjYiIJIfFjYiIJEfnsyXv3buHkJAQxMbGIisrC6WlpSrLyGQyREZG6ropIiIijehU3C5fvowBAwbg0aNHEEJUuJxMJtNlM0RERFrRaVhyyZIlePjwIdasWYOkpCQUFxejrKxMZVK3N0dERFRTdNpzi46OxpgxY7BhwwZ9xUNERKQznfbcLCws4O7urq9YiIiI9EKn4tavXz9cvHhRX7EQERHphU7F7cMPP8SVK1fw4Ycf6iseIiIinWl1zG3GjBkqbd7e3lixYgW++OILdO7cGba2tirLyGQy7Ny5s/pREhERaUGr4rZr164K5yUmJiIxMVHtPBY3IiKqTVoVt6SkpJqKg4iISG+0Km4uLi41FQcREZHe8GGlRM8QQiA/P1/x2tramnfZIapjdDpbcvPmzWjSpAnS0tLUzk9LS0PTpk3xySef6LIZolqVn5+P0aNHK6anCx0R1Q06Fbd9+/ahU6dOcHR0VDvf0dERnTt3Rnh4uC6bISIi0opOxS0+Ph5eXl6VLuPl5YX4+HhdNkNERKQVnYrbkydPYG1tXekylpaWyMvL02UzREREWtGpuDk7O+PcuXOVLhMdHY1WrVrpshkiIiKt6FTcRowYgbNnz+Kbb75RO3/Hjh04e/YsRo0apctmiIiItKLTpQArV67Ef//7X8yePRuhoaEYPHgwWrZsidTUVBw7dgy//vorHB0dsWrVKn3FS0REVCWdilvTpk1x6tQpTJkyBVFRUYiKioJMJlM8lbtbt24ICwtD06ZN9RIsERGRJnS+iLtt27aIjY1FbGwsYmJikJ2dDXt7e3Tv3h1du3bVur+8vDwEBwfjwoULiImJwaNHjxASEoLAwEBdQyUiIhOhU3GbMWMGfHx88Oabb6Jbt27o1q2bzgHdv38fGzZsgLOzMzp16oSoqCid+6wNvKsFEZHx0Km47d27F2+++aa+YgEAODg4ID09HS1atMDFixf1UjBrQ/ldLcodOnQINjY2BoyIiMh06XS2pLu7O9LT0/UVCwBALpejRYsWeu2TiIhMi07FbcaMGTh69ChSU1P1FQ8ZMSEE8vLyFFP5iUNERMZGp2HJcePG4dSpU+jduzeWL1+Obt26oXnz5mqPNTk7O+uyqSoVFhaisLBQ8TonJ6dGt2eKOPRq3JgDRP/Sqbi1bt1acer/woULK1xOJpOhpKREl01VadOmTVi/fn2NbsOYdVm2R6f1LwVP01MkZCimngNET9OpuE2bNs1ozghctWoVFi9erHidk5MDJycnA0ZEVLuYA6aNZ2wr06m47dq1S09h6E4ul0Mulxs6DCKDYQ6oJ8zqI7tjgNJrKeJhA2V8EjcRSZtMBmFuYegoqJbpdLYkERGRMdJ5zy03Nxfbtm3DiRMnkJaWpnS2VjmZTIaEhASN+9y2bRuysrKQlpYGAIiIiMCdO3cAAAsWLICdnZ2uYRMRkYTpVNzu3buH3r17IyEhAba2tsjJyYGdnR2Kiorw5MkTAICjoyPq19dujPvDDz9ESkqK4vWBAwdw4MABAMCUKVNY3IiIapAUTk7RaVgyKCgICQkJ2LNnDx49egQAePPNN5Gfn48LFy6ge/fucHV1xdWrV7XqNzk5GUIItZOrq6suIRMRGQ1jvTFC+ckp5dPTha6u0Km4/fjjjxg4cCCmTJmiUtW7deuGn376CcnJybz2hohIDSkUEWOlU3FLT0+Hr6+v4rWZmZliOBIAGjVqhGHDhuH777/XZTNERERa0am42dnZobi4WPG6UaNGihM/ytna2iIzM1OXzRAREWlFp+LWunVrJCcnK177+vri+PHjePDgAQDgyZMniIiIqPH7ShIRET1Np+I2ZMgQREZG4vHjxwCAOXPm4O7du+jUqRMmTJgAb29vJCQk8CnaRERUq3QqbnPnzsXXX3+tKG5jx45FcHAw8vPzsX//fmRkZGDx4sVYtmyZXoIlIiLSRLWKW3R0NAYMGABPT0/Mnj0bAQEBiImJAQAsWbIE9+/fR3p6OvLy8hAcHAwzMzO9Bk1ERFQZrS/i/vPPPzFw4EAUFBQo2iIjI3Hu3DnExMTAy8sLZmZmaN68uV4DJSIi0pTWe27vvfceCgoKsGbNGmRkZCAjIwNr167FkydP8P7779dEjERERFrRes/tzJkz6NOnDzZu3KhoW79+PaKionD69Gm9BkdERFQdWu+5ZWZmomfPnirtPXr04PVsRERkFLQubsXFxWofgGdtba10QTcREZGh8GGlRER1SJdle9S2y0qK8PTzUvzXhqt9SOul4Gk1FJlxqVZxCw0Nxfnz55Xabt26BQAYPny4yvIymQxHjx6tzqaIqI6QwmNSSDqqVdxu3bqlKGbP+vnnn1Xa+AdOJH3ld7gvd+jQIbWHMDTBQkm60rq4JSUl1UQcREQK+iyUZJq0Lm4uLi41EUedoct4t6mMdVPdwT0kUvedJoXjdzyhhMiEcQ+JpEqnGycTEREZIxY3IiKSHBY3IiKSHBY3IiKSHJ5QQpLAs/6I6GksbiQJPOuPagt/SNUNLG6kllSvfSHSFX9I1Q085kZERJLDPTciE8A765Cp4Z4bERFJjknvufHAMBGRNJl0ceOBYSIiaTLp4masuEdZO/hEY5ISYVYf2R0DlF6bMhY3I8Q9SiLSmkym9keYqWJxIyKt6HOPl3vPVFN4tiQREUkOixsREUmOSQxL8gJWIvV4EgJJlUkUNyKqAE9CIIlicSMiqmEcPap9POZGRESSw+JGRESSw2FJqlM4vEO1hX9rdRv33IiISHJMes9Nn6dB85RqIpIKKXyfmXRx0+tp0DylmoikQgLfZxyWJCIiyWFxIyIiyWFxIyIiyTHtY25EpDc8QYuMCYubAfFZViQpPEGLjAiHJYmISHKMsrgVFhZixYoVcHR0hJWVFXr06IHjx48bOiyTVz5UVD5xqIiIjJVRFrfAwEB89NFHePXVV7F161aYmZlh+PDhOHv2rKFDM23/GyoqnyCTGToiIiK1jO6YW0xMDMLDwxEcHIylS5cCAKZNmwZvb28sX74c586dM3CERERk7IyuuP3www8wMzPDa6+9pmiztLTEzJkzsXr1avz9999wcnIyYIREZMp4JmfdYHTDknFxcWjTpg1sbW2V2rt37w4A+P333w0QFRHR/3B4vk4wuj239PR0ODg4qLSXt6Wlpaldr7CwEIWFhYrX2dnZAICcnByUFj6pdjw5OTlKr2ujL1lJEUpKSpSWE6WllfanS1zaxFadvvRJl8+sJj9/fWrYsCFk1fjCrAs58Gx/xvx3ayy5XpOfv679GVsOKBFGpnXr1mLYsGEq7QkJCQKA2LJli9r11q1bJwBw4lTnp+zs7GrlDnOAk1Sm6ubA02RCCAEj4u3tjebNmyMyMlKp/dq1a/Dy8sIXX3yBOXPmqKz37K/WsrIyPHz4EI0bN670F0BOTg6cnJzw999/qwyFaot9SSc2Q/alrz035kDN9GXMsUmlL33suRndsKSDgwNSU1NV2tPT0wEAjo6OateTy+WQy+VKbfb29hpv19bWVi9/9OzL8P2ZQl/qMAdqty9998e+9MvoTijp3Lkzbt68qTKWe+HCBcV8IiKiyhhdcRs/fjxKS0vx1VdfKdoKCwsREhKCHj168DIAIiKqktENS/bo0QMTJkzAqlWrcPfuXXh4eGD37t1ITk7Gzp079b49uVyOdevWqQznsK+a70vf/ZlCXzXBWN+rsfal7/7YV80wuhNKAKCgoABr165FaGgoHj16hI4dO2Ljxo0YOnSooUMjIqI6wCiLGxERkS6M7pgbERGRrljciIhIckyyuMlksiqnoKAgrfpMSEjAnDlz0Lp1a1haWsLW1hZ+fn7YunUrnjzR7PY2u3btqjSm8+fPa/1ek5KSMH/+fLRp0wYNGjRAgwYN0KFDB8ybNw+XL1+uVlyWlpZwdHTE0KFD8cknnyA3N1fruABg+/btkMlk6NGjR7XWVxebTCZDs2bN0L9/f/z000966a98WrlypUZ9aPL3JZPJEBUVpXV8+mKsOQDoPw+YA7r3VxdzwOjOlqwN3377bYXzgoKCkJCQoNUf29GjRzFhwgTI5XLF43mKiopw9uxZLFu2DFevXlW6tKEqGzZsgJubm0q7h4eHxn0AwJEjRzBp0iSYm5vj1VdfRadOnVCvXj1cv34dBw4cwOeff46kpCS4uLhoFVdxcTEyMjIQFRWFN954Ax999BEOHz6Mjh07ahVfWFgYXF1dERMTg1u3bmn9/tTFJoRAZmYmdu3aheHDhyMiIgIjR46sdn9P8/b21mjdZ/++9uzZg+PHj6u0t2/fXuu49MXYcwDQTx4wB0w4B3S+gZeEfP311wKAWLBggcbrJCYmChsbG9GuXTuRlpamMj8+Pl58/PHHGvUVEhIiAIjY2FiNt1+RW7duCWtra9G+fXu1cRUXF4utW7eK27dv6xRXZGSksLKyEi4uLuLx48cax5eYmCgAiAMHDoimTZuKoKAgjdfVJLaHDx+K+vXri1deeUUv/eli3rx5oq6kmqFzQAj9/R8wB0w7B0xyWFKdq1evYuHChfD19UVwcLDG633wwQfIy8vDzp071T7NwMPDA4sWLdJnqBrHlZ+fj5CQELVxmZubY+HChTpfFD9gwACsXbsWKSkpCA0N1Xi9sLAwNGrUCCNGjMD48eMRFhamUxzPsre3h5WVFczNTXJwolqYA9XDHDBOLG4AHj9+jIkTJ8LMzAzh4eFaXWgYERGB1q1bo3fv3nqLJzs7G/fv31eaHjx4oFUfR44cgYeHh05j+ZqaOnUqAODYsWMarxMWFoaxY8fCwsICAQEBiI+PR2xsbLVjKP/M7t27h6tXr2Lu3LnIy8vDlClTdOrv6UnKjC0HAN3zgDlg2jlgmiX9GQsWLMC1a9ewe/dutGnTRuP1cnJykJqaitGjR+s1nkGDBqm0yeVyFBQUaBxXWloaxowZozIvKytL6flR1tbWsLKyqnasANCqVSvY2dkhISFBo+UvXbqE69ev49NPPwUA9OnTB61atUJYWBi6detWrRie/czkcjm++eYbDB48WC/9AYCQ8CWhxpYDgG55wBxgDph8cdu7dy+++eYbTJ06FdOmTdNq3fKbOzds2FCvMX322WcqXzBmZmZax2VjY6Myz9/fH3/88YfidXBwMJYuXVrNSP9lY2Oj8RljYWFhaN68Ofr37w/gnzOrJk2ahNDQUGzevFmr91ru6c8sMzMToaGhmDVrFho2bIixY8fq1J/UGWMOALrlAXOAOWDSxS0+Ph6vv/462rRpg+3bt2u9fvmjG6p7GnBFunfvjq5du1Z7/fIvmry8PJV5X375JXJzc5GZmVnt4Qp18vLy0KxZsyqXKy0tRXh4OPr374+kpCRFe48ePbB582ZERkZiyJAhWm//2c8sICAAvr6+mD9/PkaOHAkLCwud+pMqY80BQLf/A+YAc8Bki1thYSEmTZqEoqIihIeHq/2FVxVbW1s4OjriypUrNRBh9dnZ2cHBwUFtXOXHH5KTk/W2vTt37iA7O1uj05hPnjyJ9PR0hIeHIzw8XGV+WFhYtRL7WfXq1UP//v2xdetWxMfHw8vLS+c+pYY5kKy37TEHjI/JnlCydOlSxMXF4YMPPoCvr2+1+xk5ciQSEhIQHR2tx+h0N2LECNy6dQsxMTE1vq3ya1c0ubF1WFgYmjVrhn379qlMAQEBOHjwoFYX/Fam/LiKul/vxBzQJ+aAEarVCw+MxIEDBwQA8dJLL+ncV/m1NB06dBAZGRlq5xviOrebN2+KBg0aCC8vL7VxlV9jExwcrFNc5df4uLm5iSdPnlTaz+PHj0XDhg3FjBkz1M7/7bffBAARHh5eZUxVxVZUVCQ8PT2FhYWFyM7O1rk/XRjjdW7GmgNC6O//gDlg2jlgcsOS6enpmDlzJszMzDBw4MAKr0txd3dHr169quzP3d0de/fuxaRJk9C+fXuluzOcO3cO+/btQ2BgoFYx/vTTT7h+/bpKe+/evdG6dWuN+vD09MTevXsREBCAtm3bKu7OIIRAUlIS9u7di3r16qFVq1Zax1VSUoLMzEycPHkSx48fh4uLCw4fPgxLS8tK1z98+DByc3Px0ksvqZ3fs2dPNG3aFGFhYZg0aZLGcT0dGwDcvXsXe/fuRXx8PFauXFlrj7WvK+pCDgC65wFzwMRzoFZLqRE4deqUAFDlNH36dK36vXnzppg9e7ZwdXUVFhYWomHDhsLPz098+umnoqCgQKM+yn8xVTSFhIRo/X5v3bol5s6dKzw8PISlpaWwsrIS7dq1E6+//rr4/fffqxWXhYWFaNGihRg8eLDYunWryMnJ0aifUaNGCUtLS5Gfn1/hMoGBgaJ+/fri/v371YoNgLC0tBSdO3cWn3/+uSgrK9Oon2f7q+u/WitjzDkghP7zgDlgmjnA57kREZHkmOwJJUREJF0sbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbkREJDksbhLj7+8PmUym8fJRUVGQyWQICgqquaCIahFzgAAWN4O5dOkSZs6cCU9PT8Vj7t3d3TF16lQcP37c0OFVW0lJCUJDQzF69Gi0bNkScrkc1tbWaNOmDaZMmYKDBw+irKzM0GGSEWAOUE3ivSVrWVlZGZYuXYotW7bA3NwcAwYMgLe3N+rXr4/ExEScOHECjx49woYNG7B27Vqt+/f398fp06eh6X/r48ePcfv2bTRp0gRNmjTRentPS0lJwcsvv4y4uDg0adIEAwcOhIuLC8rKypCUlISoqCg8ePAAY8aMwcGDB3XaFtVdzAHmQG0wuUfeGNpbb72FLVu2oHPnzvjhhx/g7u6uNP/JkyfYtm0bHjx4UCvxNGjQAO3atdO5n5ycHAwdOhQ3btzA8uXLERQUBCsrK6VliouLsXfvXkREROi8Paq7mAPMgVpRq88gMHHx8fHCzMxMNG7cWO3DE59W/oiQGzduiGXLlglfX1/x3HPPCblcLjw9PcWKFStEbm6uynr9+vUTAMSTJ0/EihUrhJOTk5DL5aJdu3bik08+UXn8RfnjT9atW6fU7uLiIlxcXERubq5YuHChcHBwEBYWFsLHx0fs27dPZbtvvfWWxo9JKS4uVnq9bt06AUCcOnVKhISECF9fX2FlZSX69eunMv9Z5Y/nePoxKElJSYpYrly5IoYPHy7s7OyEtbW1GDx4sLh48WKVMVLNYA78gzlQ87jnVot27dqF0tJSzJkzB82bN690WblcDgA4cOAAdu7cif79+8Pf3x9lZWU4f/483n//fZw+fRq//vor6tevr7L+xIkTERcXh3HjxgEA9u/fj4ULFyI5ORmbN2/WKN7i4mIMGTIEjx49wrhx4/D48WOEh4dj4sSJ+PnnnzFkyBDFsiEhIQCg0TCSubn6P7vg4GCcOnUKo0ePxpAhQ2BmZqZRnBVJTEyEn58fnn/+ecydOxcpKSnYt28fXnjhBZw8eRI9evTQqX/SHnPgH8yBWmDo6mpK/P39BQBx4sQJjde5c+eOKCwsVGlfv369ACBCQ0OV2st/tbZt21ZkZWUp2rOyskTbtm2FTCZTeghhZb9aAYjRo0crbf/EiRMCgBg6dKiiLSUlRQAQTk5OGr+vp5X/KrW2thaXL1+ucL62v1oBiJUrVyot//PPPwsAwsfHp1qxkm6YA+oxB/SPZ0vWooyMDADQ6rH2LVu2hIWFhUr7/PnzAQAnTpxQu97atWthZ2eneG1nZ4e33noLQgjs3r1b4+1v2bJFafvlB8hjY2MVbeXvy9HRUW0fH3/8MYKCgpSmrKwsleVee+01+Pj4aBxbVezt7bFmzRqltqFDh2LgwIH4888/cenSJb1tizTDHGAO1BYOSxo5IQRCQkKwa9cuXLlyBdnZ2UqnEaelpaldr2/fvhW2xcXFabRte3t7uLm5qbS3atUK0dHRGvUB/JPYKSkpSm2BgYGwt7dXauvevbvGfWrC19cXNjY2Ku19+/ZFZGQk4uLi0KVLF71uk/SPOVB9ppwDLG61qEWLFrh+/TpSU1PRtm1bjdZZuHAhtm3bBicnJ7z00ktwcHBQHItYv349CgsL1a6n7nhGeVt2drZG2376V+/TzM3Nlb5cyvut6EsmOTlZ8e8XX3wRv/zyi8Yx66Ki/rT9HEh/mAPMgdrC4laL/Pz8EBUVhcjISAwYMKDK5e/evYvPPvsMHTt2RHR0NBo0aKCYl5GRgfXr11e4bmZmJpydnVXagIoTtrpcXFzQsmVL/P3330hISFA5tVtTFd1Vol69f0bPS0pKVOZVlpzl77eidn1/DlQ15kDlmAP6w2NutSgwMBBmZmb46quvcO/evUqXLSwsRGJiIoQQGDRokFJSA8CZM2cqXV/d/PI2X19fLSOv2n/+8x8AwDvvvKP3vhs1agQASE1NVZlX2fBSXFwc8vLyVNpr8nOgyjEHqoc5oD0Wt1rk4eGB5cuX4/79+xg2bBiSkpJUlikoKMBHH32EoKAguLi4AADOnTunNARy584drFq1qtJtbdy4UekXXXZ2Nt5++23IZDJMnz5dT+/oX8uWLUObNm0QEhKCVatWoaCgQGWZkpIS5Ofna913t27dAAB79uxR+hyio6MRFhZW4XpZWVkqXzS//PILIiMj4e3tLdljDcaMOcAcqC0clqxlb7/9NgoKCrBlyxa0bdtW6dZDSUlJOHHiBB48eIC3334bDg4OGDduHPbv34+uXbti4MCByMzMxJEjRzBw4EAkJCRUuJ02bdrA29tb6RqfO3fuYPHixejatave35etrS2OHTuGMWPG4L333sOOHTswaNAguLi4oKSkBOnp6YiMjERmZia8vb1VDqRXpmfPnvDz88PJkyfRq1cvvPDCC0hJScGhQ4cwatSoCm9j1LdvX3z++ee4cOECevbsieTkZOzbtw9WVlbYsWOHnt45aYs5wByoFYa8DsGUxcbGihkzZggPDw9hZWUl5HK5cHV1Fa+88oo4fvy4Yrnc3FyxZMkS4erqqrgzw8aNG0VRUZEAoLiDQbmn786wfPly4eTkJCwsLETbtm2rdXcGdcq3oU5xcbHYs2ePGDlypOKODg0aNBDu7u5i8uTJ4uDBg6KkpERpncqu4Sl3//59MW3aNPHcc88JKysr0bNnT/HLL79ofHcGW1tbYW1tLQYNGmQSd2eoC5gD/2IO6B9vnEySk5ycDDc3N0yfPh27du0ydDhEtY45wGNuREQkQSxuREQkOSxuREQkOTzmRkREksM9NyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikpz/B77QJ3ttZVt5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAADmCAYAAAC58KAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAq0ElEQVR4nO3deVyU5d4/8M8wOosguCujgIpoASpGwHHJLXfzaAWaS8DJ7aS5pKahWS7H1IhTPWmmZa6Yx7Ae13rckAdX8BzLOkdDBZdgCAMEQRhwuH5/9GMepxlgcAZm5vbzfr3m9eq+7uu67u89Xc6X+7o3mRBCgIiISCJc7B0AERGRLTGxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCx0SNr37492rdvb+8wDBwtHnIujjZ+HC0eZ8LE5kCKi4vx7rvv4qmnnoKbmxuUSiXatWuHZ555BjExMbh+/bq9QyQLVVRU4OOPP0bXrl2hVqvRsmVLjB8/Hunp6fYOrd5wPEtDTk4OVq9ejfDwcHTo0AEymQwymczeYVWrgb0DoN/du3cPffr0waVLl9CpUydMmjQJzZs3x2+//YaUlBSsWbMGvr6+8PX1tXeoBsePH7d3CA5r+vTp+PzzzxEQEIDZs2cjKysLe/bswZEjR3Du3Dn4+fnZO8Q6xfEsHf/5z3+wePFiyGQy+Pn5oVGjRrh//769w6qeIIewYsUKAUBMmTJFVFRUmKxPT08Xly9ftkNkzsPHx0f4+PjYOwxx4sQJAUD07dtX6HQ6Q/nhw4cFADFkyBA7Rlc/OJ6t5yjjOTs7WyQlJYnCwkIhhBBdunQRjp46OBXpIM6ePQsAmDlzptnD/A4dOuCJJ54wKpPJZOjfv7/Z/szNz0dHR0MmkyE9PR1xcXHw9/eHUqlEdHQ0Vq5cCZlMhu3bt5vt7+uvv4ZMJsOSJUuq3Maj9AEAGRkZmDJlCry9vaFUKuHp6Yno6GjcvHnTbD/79u1DSEgI1Go1WrdujalTpyI/P99sXXv47LPPAPz+fSgUCkP58OHD0b9/fxw5cgS3bt2yV3j1guNZOuO5devW6Nu3Lxo3bmzvUCzGxOYgmjdvDgBIS0ur823NmjUL7777Lp5++mnMnTsXXbt2xaRJkyCTybBz506zbXbs2AEAePnll6vs91H6OH/+PHr06IFt27YhODgYc+bMwTPPPIP4+HiEhoaanJPavn07xowZg7S0NLz88suIiorC6dOnMWjQIJSVldXqe6grJ0+ehKurK3r37m2ybujQoQCApKSk+g6rXnE8S2c8OyOeY3MQERER2LlzJ6ZMmYKUlBQMGTIEwcHBhh8IW7p06RIuXrwIb29vo/LevXvjxIkT0Gq18PT0NJTn5eXh8OHDePrpp03+yn5Yhw4datVHeXk5XnrpJVRUVCAlJQU9evQw1D916hT69++POXPm4MCBAwCAwsJCzJo1C66urkhNTUXnzp0BAKtWrcKgQYOg1Wrh4+Nj8fewbNkyi+sCvx8h1HSVWnFxMbRaLQIDAyGXy03WV55bu3r1aq227Ww4nqUxnp2WvedC6f/ExcUJNzc3AcDw8fX1FTNnzhRpaWkm9QGIfv36me3L3Px8VFSUACA++ugjs202btwoAIi4uDij8k8++UQAEB9++GGN26hNH19//bUAIFasWGE2nhdeeEG4uLiIgoICIYQQ27ZtEwDErFmzTOomJycLALU6J/Hw92zJJzExscY+MzMzBQDRu3dvs+uPHDkiAIjZs2dbHKez4ng25ozj2RyeY6NamTdvnuHqublz56JPnz64desW1q9fj27dumH//v022U5oaKjZ8rFjx0KpVBqmWCrt3LkTDRo0wPjx42vsuzZ9nDt3DgDw888/Y9myZSaf7OxsVFRUGKazfvjhBwDAM888Y7Ldnj17okGD2k1ACCFq9anq/A+Zx/HM8WwvnIp0MI0bN0ZERAQiIiIAAAUFBVi8eDE++eQTTJ48GZmZmUYXJDyK1q1bmy1v0qQJnnvuOezduxf/+c9/4O/vj+vXr+PMmTMYMWIEWrVqVWPftekjLy8PABAfH19tn8XFxQB+/y4AmI1DLpfXyTRXbXl4eAD4v1j/qLCw0Kie1HE8m3Km8eysmNgcnIeHB9atW4dDhw7h5s2b+PHHHxEcHAzg96vIHjx4YLZdQUFBlT+e1d1c+fLLL2Pv3r3YsWMHVq9ebThxXt1J9kftw93dHQBw4MABPPfcczX2W7k/OTk5Juv0ej1yc3PRtm1bi+Osi3MSrq6u8PT0REZGBvR6vcl5tspza1K/j60qHM//xxnGs9Oqv1lPsoa/v78AIC5cuGAoa9asmWjfvr1J3YyMDLPz85XnJDIyMqrcTllZmWjevLnw9vYWer1e+Pn5icaNG4v79++b1K3qPhtL+/jHP/4hAIjFixdXv/P/n7Ock3jppZcEAJGUlGSyrn///gKAuHHjhsVxShHHs/OM5z9yhnNsjh3dY+TTTz8VKSkpZtd98803QiaTiSZNmojS0lJD+dChQwUAcfLkSUOZTqcTzz///CP/EAghxIwZMwQAsXr1agFAREdHm61X3Q2klvRRWloqvL29hUqlMpsEysrKRHJysmH57t27wt3dXbi6uoqff/7ZqF6/fv1q/UNQV3iDNsezlMbzHzlDYpMJIYStjv7o0Y0ZMwb79u1Dp06d0Lt3b2g0GhQXF+PixYtITk6Gi4sLdu7caXSy+siRIxg2bBjUajXGjx+PRo0a4ejRo2jSpAlu3rwJhUKBGzduGOpHR0dj27ZtyMjIqHYK4ty5c+jZsycaNmyI8vJyHD9+HAMHDjSpV9nHw9uobR+pqakYPnw4cnNzMXDgQHTt2hUymQw3b95EcnIymjdvjitXrhjqb9u2DdHR0XB3d8dLL70EDw8PHDx4EGq1Glqt1mSf7WXq1KmGR2qNHDkSWq0W//jHP+Dm5oazZ88aLu2WKo5naY3n6Ohow39/8803KCwsRFRUlKHszTffrPbWiXpn78xKv7ty5Yp47733xODBg0WHDh2ESqUSKpVK+Pr6iqioKKMpm4d99dVXomvXrkKhUIg2bdqIWbNmiXv37lV7eXRNf+EKIYSfn58AINq1ayf0er3ZOjU98seSPoQQ4pdffhFz5swRfn5+QqlUCnd3d/Hkk0+KKVOmiOPHj5vU/+abb0RwcLBQKpWiVatWYsqUKSIvL89hHkEkhBB6vV589NFHIiAgQCiVStG8eXMxbtw4ce3aNXuHVi84nqU1nlFH05p1hUdsREQkKbyPjYiIJIWJjYiIJIWJjYiIJIWJjYiIJIWJjYiIJIWJjYiIJIWJzUpCCBQWFoJ3TZAUcDyTFDCxWenevXvw8PDAvXv37B0KkdU4nkkKmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhS+AZtIiIbEEKguLjYsOzq6lrt272p7jCxERHZQHFxMUaPHm1Y3rdvH9zc3OwY0eOLU5FERCQpTGxERCQpTGxERCQpTGxERCQpDpnYdDodFi1aBI1GA7VajbCwMBw9erTGdu3bt4dMJjP78fPzM6pbVb01a9bU1W4REVE9cMirIqOjo5GQkIC5c+fCz88PW7duxYgRI5CYmIg+ffpU2e7DDz9EUVGRUdnNmzfx1ltvYciQISb1Bw8ejMjISKOyHj162GYniIjILhwusaWkpGD37t2IjY3FggULAACRkZEIDAzEwoULcebMmSrbjhkzxqTsb3/7GwBg4sSJJus6d+6MSZMm2SZwIiJyCA43FZmQkAC5XI5p06YZylQqFSZPnoyzZ8/i9u3btepv165d6NChA3r16mV2fUlJCUpLS62KmYiIHIfDJbaLFy+ic+fOcHd3NyoPDQ0FAHz//fe16uvy5cuYMGGC2fVbt26Fq6sr1Go1/P39sWvXrkeOm4iIHIPDTUVqtVp4enqalFeWZWVlWdxXfHw8APPTkL169cLYsWPRoUMHZGVlYf369Zg4cSIKCgrw6quvVtmnTqeDTqczLBcWFlocD5Gj4XgmKXK4xFZSUgKlUmlSrlKpDOstUVFRgd27d6NHjx548sknTdafPn3aaPmVV15BcHAwFi9ejOjoaKjVarP9rl69GsuXL7coBiJHx/FMUuRwU5FqtdroL8hKlefBqko4f5SUlITMzEyzR2vmKBQKvPbaa7h79y7++c9/VlkvJiYGBQUFhk9tz/kRORKOZ5Iihzti8/T0RGZmpkm5VqsFAGg0Gov6iY+Ph4uLC8aPH2/xtr28vAAAeXl5VdZRKpVmjyiJnBHHM0mRwx2xBQUFIS0tzWSu//z584b1NdHpdNi7dy/69+9vcSIEgPT0dABAy5YtLQ+YiIgcisMltvDwcOj1emzatMlQptPpsGXLFoSFhRmOqm7duoUrV66Y7ePw4cO4e/duldOQd+7cMSm7d+8ePvzwQ7Ro0QLBwcE22BMiIrIHh5uKDAsLQ0REBGJiYpCTk4NOnTph27ZtuHHjBjZv3myoFxkZiaSkJAghTPqIj4+HUqnEiy++aHYb69evx3//939j1KhR8Pb2hlarxRdffIFbt25hx44dUCgUdbZ/RERUtxwusQHA9u3bsXTpUuzYsQP5+fno1q0bDh48iL59+9bYtrCwEIcOHcLIkSPh4eFhtk7v3r1x5swZfP7558jNzYWrqytCQ0PxxRdfYODAgbbeHSIiqkcyYe6QhyxWWFgIDw8PFBQUmNxUTuRsOJ4fXVFREd+g7SAc7hwbERGRNZjYiIhIUpjYiIhIUpjYiIhIUpjYiIhIUpjYiIhIUpjYiIhIUpjYiIhIUpjYiIhIUhzykVpERHUt+I3tNu1P9qAMDz/Er//S3RANbPPc2X/GRtqkn8cFj9iIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSeIM2ERGZJYRAcXGxYdnV1RUymcyOEVmGiY2IiMwqLi7G6NGjDcv79u2Dm5ubHSOyjNWJ7c6dO9iyZQtSU1Nx9+5d6PV6kzoymQzHjx+3dlNEREQ1siqxXbp0CQMHDkR+fj6EEFXWc4ZDVyIikgarLh6ZP38+8vLysGTJEmRkZKC8vBwVFRUmH3NHcURERHXBqiO2s2fPYsyYMVixYoWt4iEiIrKKVUdsCoUCvr6+toqFiIjIalYltn79+uHChQu2isVAp9Nh0aJF0Gg0UKvVCAsLw9GjR2tst2zZMshkMpOPSqUyW3/z5s148sknoVKp4Ofnh48//tjWu0JERPXMqqnI999/H3/605/w/vvvY8GCBbaKCdHR0UhISMDcuXPh5+eHrVu3YsSIEUhMTESfPn1qbL9hwwajS1LlcrlJnY0bN+Kvf/0rXnzxRcybNw/JycmYPXs27t+/j0WLFtlsX4iIqH7VKrG98sorJmWBgYFYtGgRPv30UwQFBcHd3d2kjkwmw+bNmy3aRkpKCnbv3o3Y2FhDsoyMjERgYCAWLlyIM2fO1NhHeHg4WrRoUeX6kpISLFmyBCNHjkRCQgIAYOrUqaioqMDKlSsxbdo0NG3a1KJ4iYjIsdQqsW3durXKdenp6UhPTze7rjaJLSEhAXK5HNOmTTOUqVQqTJ48GYsXL8bt27fh5eVVbR9CCBQWFqJx48ZmbzVITExEbm4uZsyYYVQ+c+ZMxMfH49ChQ5g0aZJF8RJR7TnrEy3IOdQqsWVkZNRVHAYXL15E586dTY78QkNDAQDff/99jYmtY8eOKCoqgqurK8aMGYO4uDi0bt3aaBsA8PTTTxu1Cw4OhouLCy5evMjERlSHnPWJFuQcapXYfHx86ioOA61WC09PT5PyyrKsrKwq2zZt2hSvvfYaevbsCaVSieTkZKxfvx4pKSm4cOGCIVlqtVrI5XK0atXKqL1CoUDz5s2r3YZOp4NOpzMsFxYW1mr/iBwJxzNJkcM9K7KkpARKpdKkvPLKxpKSkirbzpkzx2j5xRdfRGhoKCZOnIhPPvkEb775pqEPhUJhtg+VSlXtNlavXo3ly5fXuB9EzoDjmaTIqsv94+Li0KJFiyqPcLKystCyZUv813/9l8V9qtVqo78gK5WWlhrW18aECRPQpk0bHDt2zGgbZWVlZuuXlpZWu42YmBgUFBQYPrdv365VPCRtQggUFRUZPtU9as4RcDyTFFl1xPbVV1+he/fu0Gg0ZtdrNBoEBQVh9+7dmD17tkV9enp6IjMz06Rcq9Ua+qwtLy8v5OXlGW1Dr9cjJyfHaDqyrKwMubm51W5DqVSaPaIkApzv3BHHM0mRVUdsV69eRUBAQLV1AgICcPXqVYv7DAoKQlpamslc//nz5w3ra0MIgRs3bqBly5ZG2wBgcnP5hQsXUFFRUettEBGR47AqsZWUlMDV1bXaOiqVCkVFRRb3GR4eDr1ej02bNhnKdDodtmzZgrCwMMMVkbdu3cKVK1eM2t65c8ekvw0bNuDOnTsYNmyYoWzgwIFo1qwZNmzYYFK3UaNGGDlypMXx1hdnm+IiIrIXq6Yivb29a7xh+uzZs2jXrp3FfYaFhSEiIgIxMTHIyclBp06dsG3bNty4ccPoXrjIyEgkJSUZ/cD7+Phg3Lhx6Nq1K1QqFU6dOoXdu3cjKCgI06dPN9RTq9VYuXIlZs6ciYiICAwdOhTJycnYuXMnVq1ahWbNmtXiW6gfzjbFRfS4EfKGKOg23miZ7MOqxDZy5Eh8+OGH+OKLL8w+leTzzz/HqVOnTK5WrMn27duxdOlS7NixA/n5+ejWrRsOHjyIvn37Vttu4sSJOHPmDPbu3YvS0lL4+Phg4cKFWLJkCRo1amRUd8aMGWjYsCHi4uKwf/9+eHl54YMPPqh1rEREAACZDKKB+autqX5ZldjefPNNfPnll5g6dSp27tyJwYMHo23btsjMzMSRI0fwv//7v9BoNIiJialVvyqVCrGxsYiNja2yzsmTJ03KPvvss1ptZ+rUqZg6dWqt2hARkWOzKrG1bNkSiYmJmDRpEk6ePImTJ09CJpMZpgdDQkIQHx9vdOEGERFRXbL6Bu0uXbogNTUVqampSElJQUFBAZo0aYLQ0FCTR1YRERHVNasS2yuvvIKuXbvi9ddfR0hICEJCQmwVFxER0SOx6nL/Xbt2IScnx1axEBERWc2qxObr62t4IggREZEjsHoqcs2aNcjMzETbtm1tFRMRET2i4De226wv2YMyeDy03H/pbpvd0vDP2Eib9GOOVYntxRdfRGJiInr16oWFCxciJCQErVu3NvvCQG9vb2s2RUREZBGrElvHjh0Nl/dX95BjmUyGBw8eWLMpIiIii1iV2CIjI/k6dyIicihWJbatW7faKAwiIiLbcLg3aBPVN55sr5ktvyNAut8TOQarLvcnIiJyNFYfsd27dw/r1q3DsWPHkJWVBZ1OZ1JHJpPh+vXr1m6KiIioRlYltjt37qBXr164fv063N3dUVhYCA8PD5SVlaGkpAQAoNFo0LAh30tERET1w6qpyGXLluH69evYvn078vPzAQCvv/46iouLcf78eYSGhqJ9+/b497//bZNgiYiIamJVYjt8+DCeffZZTJo0yeSy/5CQEHz77be4ceMGli9fblWQRERElrIqsWm1WvTo0cOwLJfLDVOQANC0aVMMHz4ce/bssWYzREREFrMqsXl4eKC8vNyw3LRpU/zyyy9Gddzd3fHrr79asxkiIiKLWZXYOnbsiBs3bhiWe/TogaNHjyI3NxcAUFJSggMHDvA5kUREVG+sSmxDhgzB8ePHcf/+fQDA9OnTkZOTg+7duyMiIgKBgYG4fv06oqOjbRErERFRjaxKbK+++io+++wzQ2J74YUXEBsbi+LiYuzduxfZ2dmYN28e3njjDZsES0REVJNHSmxnz57FwIED4efnh6lTp2L8+PFISUkBAMyfPx+//fYbtFotioqKEBsbC7lcbtOgiYiIqlLrG7R//PFHPPvssygtLTWUHT9+HGfOnEFKSgoCAgIgl8vRunVrmwZKRERkiVofsa1ZswalpaVYsmQJsrOzkZ2djaVLl6KkpARr166tixiJiIgsVusjtuTkZPTp0wcrV640lC1fvhwnT55EUlKSTYNzZnwaOhGRfdT6iO3XX3/Fn/70J5PysLAw3q9GRER2V+vEVl5eDjc3N5NyV1dXo5u1raHT6bBo0SJoNBqo1WqEhYXh6NGjNbb7+uuvMW7cOHTs2BGNGjVCly5dMH/+fNy9e9ekbvv27SGTyUw+f/3rX22yD0REZB8O+aLR6OhoJCQkYO7cufDz88PWrVsxYsQIJCYmok+fPlW2mzZtGjQaDSZNmgRvb2/8+OOPWLduHQ4fPox//etfUKvVRvWDgoIwf/58o7LOnTvXyT7R40HIG6Kg23ijZSJn5azj+ZES286dO3Hu3DmjsmvXrgEARowYYVJfJpPh0KFDFvWdkpKC3bt3IzY2FgsWLAAAREZGIjAwEAsXLsSZM2eqbJuQkID+/fsblQUHByMqKgrx8fGYMmWK0bq2bdti0qRJFsVFZBGZzGbnPonszknH8yMltmvXrhkS2R999913JmV/fPJ/dRISEiCXyzFt2jRDmUqlwuTJk7F48WLcvn0bXl5eZtv+MakBwPPPP4+oqChcvnzZbJuysjKUl5fD1dXV4hiJiMhx1TqxZWRk1EUcBhcvXkTnzp3h7u5uVB4aGgoA+P7776tMbOZkZ2cDAFq0aGGy7sSJE2jUqBH0ej18fHzw+uuvY86cOVZET0SWcNYpLnIOtU5sPj4+dRGHgVarhaenp0l5ZVlWVlat+lu7di3kcjnCw8ONyrt164Y+ffqgS5cuyM3NxdatWzF37lxkZWVVez+eTqeDTqczLBcWFtYqHiJHYrfx7KRTXOQcHO7ikZKSEiiVSpNylUplWG+pXbt2YfPmzVi4cCH8/PyM1u3fv99o+S9/+QuGDx+Ov//975g1axbatWtnts/Vq1fzxak2IoRAcXGxYdnV1bVW09ZkPY5nkiKrHoJcF9RqtdFfkJUqH+H1xysbq5KcnIzJkydj6NChWLVqVY31ZTIZXn/9dTx48AAnT56ssl5MTAwKCgoMn9u3b1sUD5kqLi7G6NGjDZ+HkxzVD45nkiKHO2Lz9PREZmamSblWqwUAaDSaGvv44Ycf8Oc//xmBgYFISEhAgwaW7Wblubu8vLwq6yiVSrNHlETOiOOZpMjhjtiCgoKQlpZmMtd//vx5w/rqXL9+HcOGDUOrVq1w+PBhszeTVyU9PR0A0LJly9oFTUREDsPhElt4eDj0ej02bdpkKNPpdNiyZQvCwsIMR1W3bt3ClStXjNpmZ2djyJAhcHFxwf/8z/9UmaDy8vKg1+uNysrLy7FmzRooFAoMGDDAxntFRET1xeGmIsPCwhAREYGYmBjk5OSgU6dO2LZtG27cuIHNmzcb6kVGRiIpKQlCCEPZsGHDkJ6ejoULF+LUqVM4deqUYV3r1q0xePBgAL9fOPK3v/0N4eHh6NChA/Ly8rBr1y789NNPePfdd9GmTZv622EiIrIph0tsALB9+3YsXboUO3bsQH5+Prp164aDBw+ib9++1bb74YcfAADvvfeeybp+/foZElvXrl3h7++PnTt34s6dO1AoFAgKCsKePXsQERFh+x0iIqJ645CJTaVSITY2FrGxsVXWMXfl4sNHb9UJDg42udyfiIikweHOsREREVmDiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCSFiY2IiCTFIe9jI1N8MSMRkWWY2JyFg7yYMfiN7TbrS/agDB4PLfdfuttm+/jP2Eib9ENEzodTkUREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJClMbEREJCl8bQ3ZDd8xR0R1gYmN7MdB3jFHRNLikFOROp0OixYtgkajgVqtRlhYGI4ePWpR28zMTIwdOxZNmjSBu7s7Ro8ejfT0dLN1N2/ejCeffBIqlQp+fn74+OOPbbkbRERkBw6Z2KKjo/H3v/8dEydOxEcffQS5XI4RI0bg1KlT1bYrKirCgAEDkJSUhMWLF2P58uW4ePEi+vXrh9zcXKO6GzduxJQpUxAQEICPP/4YPXv2xOzZs7F27dq63DUiIqpjDjcVmZKSgt27dyM2NhYLFiwAAERGRiIwMBALFy7EmTNnqmz7ySef4OrVq0hJSUFISAgAYPjw4QgMDERcXBzeffddAEBJSQmWLFmCkSNHIiEhAQAwdepUVFRUYOXKlZg2bRqaNm1ax3tKRER1weGO2BISEiCXyzFt2jRDmUqlwuTJk3H27Fncvn272rYhISGGpAYATzzxBJ599lns2bPHUJaYmIjc3FzMmDHDqP3MmTNRXFyMQ4cO2XCPiIioPjlcYrt48SI6d+4Md3d3o/LQ0FAAwPfff2+2XUVFBS5duoSnn37aZF1oaCiuX7+Oe/fuGbYBwKRucHAwXFxcDOuJiMj5ONxUpFarhaenp0l5ZVlWVpbZdnl5edDpdDW27dKlC7RaLeRyOVq1amVUT6FQoHnz5lVuA/j9whadTmdYLigoAAAUFhYa1dPrSqrsw9H8MfbqOMt+PW771LhxY8hkslr3+TiPZynuE+A8+1XVPj3qWH6YwyW2kpISKJVKk3KVSmVYX1U7ABa1LSkpgUJh/jJzlUpV5TYAYPXq1Vi+fLlJuZeXV5VtHJ3Hx3+1dwg297jtU0FBgckshyU4np3D47RPjzqWH+ZwiU2tVhv9BVmptLTUsL6qdgAsaqtWq1FWVma2n9LS0iq3AQAxMTGYN2+eYbmiogJ5eXlo3ry51X9l1KSwsBBeXl64ffu21f/jHQX3yTYaN278SO04nm2L+2S9Rx3LD3O4xObp6YnMzEyTcq1WCwDQaDRm2zVr1gxKpdJQr7q2np6e0Ov1yMnJMZqOLCsrQ25ubpXbAH4/IvzjUWGTJk2q3ykbc3d3l8w/mkrcJ/vgeK4b3Cf7criLR4KCgpCWlmYy/3r+/HnDenNcXFzQtWtXXLhwwWTd+fPn0bFjR8NfApV9/LHuhQsXUFFRUeU2iIjI8TlcYgsPD4der8emTZsMZTqdDlu2bEFYWJhh7v/WrVu4cuWKSdvU1FSjhPXzzz/jxIkTiIiIMJQNHDgQzZo1w4YNG4zab9iwAY0aNcLIkSPrYteIiKg+CAcUEREhGjRoIN544w2xceNG0atXL9GgQQORlJRkqNOvXz/xx/ALCwuFr6+vaNWqlXjvvffEBx98ILy8vIRGoxE5OTlGddevXy8AiPDwcPHZZ5+JyMhIAUCsWrWqXvbxUZSWlop33nlHlJaW2jsUm+E+Pb6k+D1xnxyDQya2kpISsWDBAtGmTRuhVCpFSEiI+O6774zqmEtsQghx+/ZtER4eLtzd3YWbm5t47rnnxNWrV81uZ9OmTaJLly5CoVAIX19f8cEHH4iKioo62SciIqofMiGEsO8xIxERke043Dk2IiIiazCxERGRpDCxObiioiK88847GDZsGJo1awaZTIatW7faOyyrpKam4rXXXkNAQABcXV3h7e2NsWPHIi0tzd6hPbJ///vfiIiIQMeOHdGoUSO0aNECffv2xYEDB+wdmkPheHYOzj6eHe4GbTL222+/YcWKFfD29kb37t1x8uRJe4dktbVr1+L06dOIiIhAt27dkJ2djXXr1uGpp57CuXPnEBgYaO8Qa+3mzZu4d+8eoqKioNFocP/+fezduxd//vOfsXHjRqO3VTzOOJ6dg9OPZ3tfvULVKy0tFVqtVgghRGpqqgAgtmzZYt+grHT69Gmh0+mMytLS0oRSqRQTJ060U1S29+DBA9G9e3fRpUsXe4fiMDienZczjWdORTo4pVKJNm3a2DsMm+rVq5fJQ6j9/PwQEBCAy5cv2ykq25PL5fDy8sLdu3ftHYrD4Hh2Xs40njkVSQ5BCIFff/0VAQEB9g7FKsXFxSgpKUFBQQH279+Pb7/9FuPGjbN3WFTPOJ7ti4mNHEJ8fDwyMzOxYsUKe4dilfnz52Pjxo0Afn9+6QsvvIB169bZOSqqbxzP9sXERnZ35coVzJw5Ez179kRUVJS9w7HK3LlzER4ejqysLOzZswd6vb7KVySRNHE82x/PsZFdZWdnY+TIkfDw8EBCQgLkcrm9Q7LKE088gUGDBiEyMhIHDx5EUVERRo0aBcEH/DwWOJ4dAxMb2U1BQQGGDx+Ou3fv4rvvvqv2PXjOqvKNE858TxNZhuPZcXAqkuyitLQUo0aNQlpaGo4dOwZ/f397h1QnSkpKAPz+o0fSxfHsWHjERvVOr9dj3LhxOHv2LL766iv07NnT3iFZLScnx6SsvLwc27dvh1qtluwPHXE8OyIesTmBdevW4e7du8jKygIAHDhwAL/88gsAYNasWfDw8LBneLU2f/587N+/H6NGjUJeXh527txptH7SpEl2iuzRTZ8+HYWFhejbty/atm2L7OxsxMfH48qVK4iLi4Obm5u9Q3QYHM+Oz+nHs33vDydL+Pj4CABmPxkZGfYOr9Yq36VX1ccZffnll2LQoEGidevWokGDBqJp06Zi0KBBYt++ffYOzeFwPDs+Zx/PfB8bERFJCs+xERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxERGRpDCxUb3p378/ZDKZvcMgsgmOZ8fFxEYmbty4AZlMZvRRKBTw8vLChAkTcOnSJXuHSGQxjufHD5/uT1Xy9fU1PJm8qKgI586dw5dffomvv/4ax48fR+/eve0cIZHlOJ4fH0xsVKVOnTph2bJlRmVvvfUWVq1ahSVLluDkyZN2iYvoUXA8Pz44FUm1MmvWLABAamqqoaysrAwffPABQkJC0LhxY7i5ucHf3x/z5s1Dfn5+tf0VFBRg7dq16NevHzQaDRQKBTQaDSIjI3H9+nWT+qWlpYiLi0P37t3h4eEBV1dXtG/fHmPHjsUPP/xgqFdRUYHPP/8coaGhaNasGdRqNdq1a4dRo0bxB4wMOJ6liUds9EgqT5qXlJRg8ODBOH36NPz8/PCXv/wFSqUSV69excaNGxEZGYmmTZtW2c/ly5fx9ttvY8CAAXj++efh6uqKK1euYNeuXTh06BD+9a9/wcfHx1A/KioKe/bsQbdu3Qzbun37NhITE5Gamoru3bsDAGJiYvDee+/B19cXEyZMQOPGjZGZmYlTp07h2LFj6N+/f51+P+RcOJ4lxt4vhCPHk5GRIQCIoUOHmqx7++23BQAxYMAAIYQQ8+fPFwDEyy+/LB48eGBU9+7du+LevXuG5coXMv6xTm5ursl2Tpw4IVxcXMSUKVOM6spkMhEcHGyyrQcPHoj8/HzDcrNmzYRGoxHFxcUmfZvbHkkXx/Pjh0dsVKVr164ZzkkUFxfj/PnzSE5OhkqlwqpVq/DgwQNs2rQJHh4e+OijjyCXy43ae3h41LiNquoMGDAAAQEBOHbsmKFMJpNBCAGVSgUXF+NZdLlcjiZNmhiVKRQKk5gAoFmzZjXGRdLD8fwYsXdmJcdT+Rfuw5+GDRuKdu3aiQkTJohLly4JIYT48ccfBQAxaNAgi/o19xeuEEIkJiaK0aNHizZt2ogGDRoYbVehUBjVHTFihAAggoKCxKpVq8Tp06dFWVmZSZ8zZswQAESnTp3EW2+9JY4fPy7u37//CN8GOTuO58cPExuZqG7q5mGnTp0SAERUVJRF/Zr7IdizZ4+QyWSicePGIjw8XCxYsEC8/fbb4p133hE+Pj4m9YuLi8WSJUtEhw4dDD8W7u7uYs6cOUbTNOXl5SI2Nlb4+/sb6qlUKhEZGSnu3Llj2RdBksDx/PhhYiMTlv4Q/PTTT1b/hevv7y/UarVIS0szqd+lSxezfxFXSk9PF5s3bxYhISECgJg2bZrZepmZmWLXrl1i8ODBAoAYMmSIRfGSNHA8P36Y2MiEpT8E5eXlwt3dXXh4eIi8vLwa+zX3Q6BUKsVTTz1lUjcrK0s0bNiw2h+CSvfv3xdubm6iTZs21dbT6/WiU6dOwsXFhdM4jxGO58cP72OjR9agQQNMnz4dBQUFmDNnDvR6vdH6goICFBUVVduHj48Prl27hl9//dVQVlpaildffRXl5eVGde/cuYOffvrJpI/8/HzodDqoVCoAgE6nw5kzZ0zqFRcXo6ioCA0bNjQ5WU/E8SwdvCqSrLJixQqcO3cOO3bswLlz5zB8+HAolUqkp6fju+++w6lTpxAUFFRl+1mzZmHWrFno0aMHwsPD8eDBAxw9ehRCCHTv3t3oJtXMzEz06NED3bt3R7du3dC2bVvk5uZi3759KC8vx4IFCwD8fi9S79690blzZwQHB8Pb2xtFRUU4ePAgsrOzsWDBAiiVyrr+asgJcTxLhL0PGcnxWDp1U6m0tFS8//77IigoSKjVauHm5ib8/f3F/Pnzje7FMTd1U1FRIT799FMREBAgVCqVaNOmjZg8ebLIyckxqZ+fny+WLVsm+vbtKzw9PYVCoRAajUYMGzZMfPvtt4Z6ZWVlYu3atWLIkCGiXbt2QqFQiNatW4u+ffuKXbt2iYqKCuu+IHIqHM+PH5kQQtgzsRIREdkSJ2aJiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhSmNiIiEhS/h+F8SwXevxjigAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmhUlEQVR4nO3deVxU9f4/8NcRcQZZBkNESEUFtKtimgK5ky2upSWaGirXpW6WS26FXnOpXDJtU7SsBKOuhtK1xcoyIb0g6FdKu6W4gCsGyOoII8Ln94c/znWcYRlmYGYOr+fjMY9H53M+n3Pe5/TG95xlzpGEEAJEREQK0sTaARAREVkaixsRESkOixsRESkOixsRESkOixsRESkOixsRESkOixsRESkOixsRESkOixsRESkOixtVq3379mjfvr21w5DZWjxk/2wtp2wtHnvF4tbAtFotVq1ahQceeAAuLi5QqVRo06YNBgwYgMjISJw9e9baIVItVVRU4P3330dgYCCcnJzg6emJCRMm4Ny5c9YOzaqY48qQnZ2N1atXIywsDB06dIAkSZAkydph1VpTawfQmBQXF6N///44fvw4/P39ER4eDg8PD+Tm5iI1NRVr1qyBn58f/Pz8rB2qbP/+/dYOwWY999xz+Oijj9C1a1fMnj0bV65cwRdffIF9+/bh8OHDCAgIsHaIDY45rhx//PEHFi9eDEmSEBAQgObNm+PGjRvWDqv2BDWYlStXCgBi+vTpoqKiwmD+uXPnxJ9//mmFyOyHr6+v8PX1tXYY4ueffxYAxMCBA4VOp5Pb9+7dKwCIxx57zIrRWQ9z3Hy2kuNXr14ViYmJoqioSAghROfOnYU9lQyelmxAycnJAIAXXnjB6OF9hw4dcN999+m1SZKE0NBQo8szdm4+IiICkiTh3LlzWL9+Pbp06QKVSoWIiAi89tprkCQJ27dvN7q8+Ph4SJKEJUuWVLmOuiwDADIyMjB9+nS0a9cOKpUK3t7eiIiIwPnz540uZ8+ePQgKCoKTkxO8vLwwY8YM5OfnG+1rDVu3bgVwe380a9ZMbh82bBhCQ0Oxb98+XLhwwVrhWQ1zXDk57uXlhYEDB8LV1dXaodQJi1sD8vDwAACkp6fX+7pmzZqFVatWoXfv3pg7dy4CAwMRHh4OSZIQGxtrdMynn34KAJg0aVKVy63LMlJSUtCzZ0/ExMSgV69emDNnDgYMGIDPPvsMwcHBBteotm/fjtGjRyM9PR2TJk3ClClT8J///AePPPIIbt68adJ+qC8JCQlwdnZGv379DOYNGTIEAJCYmNjQYVkdc1w5OW7veM2tAY0dOxaxsbGYPn06UlNT8dhjj6FXr17yPwiWdPz4caSlpaFdu3Z67f369cPPP/+MrKwseHt7y+15eXnYu3cvevfubfDN+k4dOnQwaRllZWUYP348KioqkJqaip49e8r9Dx06hNDQUMyZMwdff/01AKCoqAizZs2Cs7Mzjhw5gk6dOgEA3njjDTzyyCPIysqCr69vrffD8uXLa90XuH1UUNOdalqtFllZWejWrRscHBwM5ldeazt9+rRJ61YC5rgyclwRrH1etLFZv369cHFxEQDkj5+fn3jhhRdEenq6QX8AYtCgQUaXZezc/JQpUwQA8e677xod88EHHwgAYv369XrtUVFRAoB45513alyHKcuIj48XAMTKlSuNxvPUU0+JJk2aiMLCQiGEEDExMQKAmDVrlkHfgwcPCgAmXY+4cz/X5nPgwIEal3n58mUBQPTr18/o/H379gkAYvbs2bWOU0mY4/rsMceN4TU3qta8efPku+rmzp2L/v3748KFC9i0aRO6d++Or776yiLrCQ4ONto+btw4qFQq+dRKpdjYWDRt2hQTJkyocdmmLOPw4cMAgFOnTmH58uUGn6tXr6KiokI+jfXbb78BAAYMGGCw3j59+qBpU9NONgghTPpUde2Hao85zhy3BTwtaQWurq4YO3Ysxo4dCwAoLCzE4sWLERUVhWnTpuHy5ct6NynUhZeXl9F2d3d3jBw5Ert378Yff/yBLl264OzZs0hKSsLw4cPRqlWrGpdtyjLy8vIAAJ999lm1y9RqtQBu7wsARuNwcHCol9NbptJoNAD+F+vdioqK9Po1RsxxQ/aU40rA4mYDNBoNNm7ciG+//Rbnz5/HiRMn0KtXLwC37yS7deuW0XGFhYVV/gNa3Y8tJ02ahN27d+PTTz/F6tWr5Qvn1V1kr+sy3NzcAABff/01Ro4cWeNyK7cnOzvbYF55eTmuXbuGe++9t9Zx1sf1CGdnZ3h7eyMjIwPl5eUG190qr7U1xt+5VYU5/j/2kOOK0HBnQKkmXbp0EQDE0aNH5bZ77rlHtG/f3qBvRkaG0XPzldcjMjIyqlzPzZs3hYeHh2jXrp0oLy8XAQEBwtXVVdy4ccOgb1W/uantMnbu3CkAiMWLF1e/8f+fvVyPGD9+vAAgEhMTDeaFhoYKACIzM7PWcTYWzHH7yfG72ds1N/uJVAG2bNkiUlNTjc778ssvhSRJwt3dXZSWlsrtQ4YMEQBEQkKC3KbT6cSTTz5Z5z98IYSYOXOmACBWr14tAIiIiAij/ar7QWltllFaWiratWsn1Gq10UJw8+ZNcfDgQXm6oKBAuLm5CWdnZ3Hq1Cm9foMGDTL5D7++8EfcxjHHlZPjd7O34iYJIYSljgKpeqNHj8aePXvg7++Pfv36wcfHB1qtFmlpaTh48CCaNGmC2NhYvYvV+/btw9ChQ+Hk5IQJEyagefPm+PHHH+Hu7o7z58+jWbNmyMzMlPtHREQgJiYGGRkZ1Z56OHz4MPr06QNHR0eUlZVh//79GDx4sEG/ymXcuQ5Tl3HkyBEMGzYM165dw+DBgxEYGAhJknD+/HkcPHgQHh4eOHnypNw/JiYGERERcHNzw/jx46HRaPDNN9/AyckJWVlZBttsLTNmzJAfvzVixAhkZWVh586dcHFxQXJysnyLd2PCHFdWjkdERMj//eWXX6KoqAhTpkyR21555ZVqf1ZhVdauro3JyZMnxZtvvikeffRR0aFDB6FWq4VarRZ+fn5iypQpeqdq7hQXFycCAwNFs2bNROvWrcWsWbNEcXFxtbdJ1/StVgghAgICBADRpk0bUV5ebrRPTY8Cqs0yhBDi0qVLYs6cOSIgIECoVCrh5uYm/va3v4np06eL/fv3G/T/8ssvRa9evYRKpRKtWrUS06dPF3l5eTbzaCIhhCgvLxfvvvuu6Nq1q1CpVMLDw0M8/fTT4syZM9YOzWqY48rKcdTTKc6GwCM3IiJSHP7OjYiIFIfFjYiIFIfFjYiIFIfFjYiIFIfFjYiIFIfFjYiIFIfFrQpCCBQVFYG/lCClYo6TkrG4VaG4uBgajQbFxcXWDoWoXjDHSclY3IiISHFY3IiISHFY3IiISHFY3IiISHH4Jm5q1IQQ0Gq18rSzs3O1b3gmIvvA4kaNmlarxahRo+TpPXv2wMXFxYoREZEl8LQkEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpDosbEREpjs0Vt+vXr2PZsmUYOnQo7rnnHkiShOjo6FqPLygowLPPPgtPT084OzvjoYcewrFjx+ovYCIisjk2V9xyc3OxcuVK/Pnnn7j//vtNGltRUYERI0bg888/x4svvog333wT2dnZCA0NxenTp+spYiIisjVNrR3A3by9vZGVlYXWrVvj6NGjCAoKqvXYXbt2ISkpCXFxcQgLCwMAjBs3Dp06dcKyZcvw+eef11fYZIZeC7dbbd3SrZvQ3DEdunQHRNNmVonl/9ZNtsp6iZTI5o7cVCoVWrduXaexu3btgpeXF5566im5zdPTE+PGjcOePXug0+ksFSYREdkwmytu5khLS8MDDzyAJk30Nys4OBg3btxAenq6lSIjIqKGpKjilpWVBW9vb4P2yrYrV65UOVan06GoqEjvQ6QkzHFqTBRV3EpKSqBSqQza1Wq1PL8qq1evhkajkT9t27attziJrIE5To2Jooqbk5OT0etqpaWl8vyqREZGorCwUP5cvHix3uIksgbmODUmNne3pDkq77S8W2Wbj49PlWNVKpXRoz4ipWCOU2OiqCO3Hj164NixY6ioqNBrT0lJQfPmzdGpUycrRUZERA3JbotbVlYWTp48ibKyMrktLCwMf/31F+Lj4+W23NxcxMXF4fHHH+e3ViKiRsLs05I5OTnYtm0bjhw5goKCApSXlxv0kSQJ+/fvr/UyN27ciIKCAvnuxq+//hqXLl0CAMyaNQsajQaRkZGIiYlBRkYG2rdvD+B2cXvwwQfx97//HX/88QdatmyJqKgolJeXY8WKFeZuKhER2Qmzitvx48cxePBg5OfnQwhRZT9Jkkxa7ltvvYXz58/L0/Hx8fLRWHh4ODQajdFxDg4O2Lt3LxYuXIj33nsPJSUlCAoKQnR0NDp37mxSDEREZL/MOi05f/585OXlYcmSJcjIyEBZWRkqKioMPsaO5qqTmZkJIYTRT+VRWnR0tN50pRYtWuCjjz5Cbm4utFotEhIS0Lt3b3M2k4iI7IxZR27JyckYPXo0Vq5caal4iIiIzGbWkVuzZs3g5+dnqViIiIgswqziNmjQIBw9etRSsRAREVmEWcXtrbfewu+//4633nrLUvEQERGZzaRrblOnTjVo69atG15++WVs2bIFPXr0gJubm0EfSZLw8ccf1z1KIiIiE5hU3KKjo6ucd+7cOZw7d87oPBY3IiJqSCYVt4yMjPqKg4iIyGJMKm6+vr71FQcREZHF2O2zJYmIiKpiVnFbv349WrZsWeUbrq9cuQJPT0+899575qyGiIjIJGYVt7i4ONx///1VvifNx8cHPXr0wI4dO8xZDRERkUnMKm6nT59G165dq+3TtWtXnD592pzVEBERmcSs4lZSUgJnZ+dq+6jValy/ft2c1RAREZnErOLWrl07JCUlVdsnOTkZbdq0MWc1REREJjGruI0YMQKHDh3CJ598YnT+Rx99hEOHDuHxxx83ZzVEREQmMeuVN6+88gr+9a9/YcaMGYiNjcWjjz6Ke++9F5cvX8a+ffvwyy+/wMfHB5GRkZaKl4iIqEZmFTdPT08cOHAA4eHhSEhIQEJCAiRJkt/KHRQUhM8++wyenp4WCZaIiKg2zCpuANC5c2ccOXIER44cQWpqKgoLC+Hu7o7g4GC+AZtsnnBwRGH3CXrTRGT/zCpuU6dORWBgIF566SUEBQUhKCjIUnERNQxJgmjazNpREJGFmXVDyeeff47s7GxLxUJERGQRZhU3Pz8/ZGVlWSoWIiIiizCruE2dOhXffvstLl++bKl4iIiIzGbWNbcxY8bgwIED6Nu3LxYtWoSgoCB4eXlBkiSDvu3atTNnVURERLVmVnHr2LGjfOv/7Nmzq+wnSRJu3bplzqqIiIhqzaziNnnyZKNHaURERNZkVnGLjo62UBhERESWY/aPuImIyHYJIaDVauVpZ2fnRnHGjcWNiEjBtFotRo0aJU/v2bMHLi4uVoyoYZhd3IqLi7Fx40b89NNPuHLlCnQ6nUEfSZJw9uxZc1dFRERUK2YVt5ycHPTt2xdnz56Fm5sbioqKoNFocPPmTZSUlAAAfHx84OjI5/UREVHDMetH3MuXL8fZs2exfft25OfnAwBeeuklaLVapKSkIDg4GO3bt8d///tfiwRLRERUG2YVt7179+Lhhx9GeHi4wQXKoKAgfPfdd8jMzMSKFSvMCpKIiMgUZhW3rKws9OzZU552cHCQT0cCQIsWLTBs2DB88cUX5qyGiIjIJGYVN41Gg7KyMnm6RYsWuHTpkl4fNzc3/PXXXyYtV6fT4eWXX4aPjw+cnJwQEhKCH3/8scZxy5cvhyRJBh+1Wm3S+omIyL6Z/fitzMxMebpnz5748ccfce3aNXh4eKCkpARff/21yc+VjIiIwK5duzB37lwEBAQgOjoaw4cPx4EDB9C/f/8ax2/evFnvVlcHBweT1k9ERPbNrOL22GOP4e2338aNGzfQvHlzPPfccwgLC8P999+PPn364NixY8jMzMQbb7xR62WmpqZix44dWLduHRYsWADg9mO+unXrhkWLFiEpKanGZYSFhaFly5Z13i4iIrJvZp2WfP7557F161bcuHEDAPDUU09h3bp10Gq12L17N65evYp58+Zh4cKFtV7mrl274ODggGeffVZuU6vVmDZtGpKTk3Hx4sUalyGEQFFREYQQpm8UERHZvToVt+TkZAwePBgBAQGYMWMGJkyYgNTUVADA/PnzkZubi6ysLFy/fh3r1q0z6bRgWloaOnXqBDc3N7324OBgAMCvv/5a4zI6duwIjUYDV1dXhIeHm3zNj4iI7JvJpyVPnDiBhx9+GKWlpXLb/v37kZSUhNTUVHTt2hUODg7w8vKqU0BZWVnw9vY2aK9su3LlSpVjW7RogRdffBF9+vSBSqXCwYMHsWnTJqSmpuLo0aMGBfNOOp1O7+kqRUVFdYqfyFYxx62n18LtVlu3dOsmNHdMhy7dAdG0mVVi+b91kxtsXSYfua1ZswalpaVYsmQJrl69iqtXr2Lp0qUoKSnB2rVrzQ6opKQEKpXKoL3yjsc7f2pwtzlz5uD999/HxIkTMWbMGLzzzjuIiYnB6dOnERUVVe16V69eDY1GI3/atm1r3oYQ2Rh7y3EhBK5fvy5/eJmBTGFycTt48CD69++P1157Da1atUKrVq2wYsUKDBgwAImJiWYH5OTkZPT5lJVHik5OTiYtb+LEiWjdujV++umnavtFRkaisLBQ/tTm2h6RPbG3HK984G/l584n2xPVxOTTkn/99RfGjx9v0B4SEoKUlBSzA/L29sbly5cN2rOysgDcflalqdq2bYu8vLxq+6hUKqNHjERKwRynxsTkI7eysjKjr0twdnbW+0F3XfXo0QPp6ekG1wMqC2ePHj1MWp4QApmZmfD09DQ7NiIisg9m/RSgPoSFhaG8vBwffvih3KbT6bBt2zaEhITI1wkuXLiAkydP6o3NyckxWN7mzZuRk5ODoUOH1m/gRERkM+r0I+7Y2FgcPnxYr+3MmTMAgOHDhxv0lyQJ3377ba2WHRISgrFjxyIyMhLZ2dnw9/dHTEwMMjMz8fHHH8v9Jk+ejMTERL2LzL6+vnj66acRGBgItVqNQ4cOYceOHejRoweee+65umwqERHZoToVtzNnzsjF7G7ff/+9QZuprzTfvn07li5dik8//RT5+fno3r07vvnmGwwcOLDacc888wySkpKwe/dulJaWwtfXF4sWLcKSJUvQvHlzk2IgIiL7ZXJxy8jIqI849KjVaqxbtw7r1q2rsk9CQoJB29atW+sxKiIishcmFzdfX9/6iIOIiMhibO6GEiIiInOxuBERkeKY9cobIiKybcLBEYXdJ+hNNwYsbkRESiZJVntQsjXxtCQRESkOj9yIqEp8VcttDfmqFrIMHrkREZHisLgREZHisLgREZHisLgREZHisLgREZHisLgREZHi8KcAdkoIAa1WK087Ozub/GohIiKlYnGzU1qtFqNGjZKn9+zZAxcXFytGRERkO3hakoiIFIfFjYiIFIfFjYiIFIfFjYiIFIc3lBCRTWqs7yEjy2BxMwOfmH4bn5hO9aKRvoeMLIOnJYmISHFY3IiISHFY3IiISHFY3IiISHFY3IiISHFY3IiISHH4UwA7xd8AERFVjcXNXvE3QEREVeJpSSIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhybLG46nQ4vv/wyfHx84OTkhJCQEPz444+1Gnv58mWMGzcO7u7ucHNzw6hRo3Du3Ll6jpiIiGyJTRa3iIgIbNiwAc888wzeffddODg4YPjw4Th06FC1465fv46HHnoIiYmJWLx4MVasWIG0tDQMGjQI165da6DoiYjI2mzud26pqanYsWMH1q1bhwULFgAAJk+ejG7dumHRokVISkqqcmxUVBROnz6N1NRUBAUFAQCGDRuGbt26Yf369Vi1alWDbAMREVmXzR257dq1Cw4ODnj22WflNrVajWnTpiE5ORkXL16sdmxQUJBc2ADgvvvuw8MPP4wvvviiXuMmIiLbYXPFLS0tDZ06dYKbm5tee3BwMADg119/NTquoqICx48fR+/evQ3mBQcH4+zZsyguLrZ4vEREZHts7rRkVlYWvL29Ddor265cuWJ0XF5eHnQ6XY1jO3fubHS8TqeDTqeTpwsLCwEARUVFVcZariupcl5jUt0+qg3ux9tqsx9dXV0hSVKdls8crzvmuGXUdj+ak+eVbK64lZSUQKVSGbSr1Wp5flXjANRpLACsXr0aK1asMGhv27ZtzUE3cpr3/2HtEBShNvuxsLDQ4KxGbTHH6445bhm13Y/m5HklmytuTk5Oet8uK5WWlsrzqxoHoE5jASAyMhLz5s2TpysqKpCXlwcPDw+zv0HUl6KiIrRt2xYXL140OxEaM3vaj66urnUeyxxvvOxtP5qT55Vsrrh5e3vj8uXLBu1ZWVkAAB8fH6Pj7rnnHqhUKrmfKWOB20d8dx/1ubu71zZsq3Jzc7OLhLV1St+PzHFqTPvR5m4o6dGjB9LT0w3OzaakpMjzjWnSpAkCAwNx9OhRg3kpKSno2LGjRb4NEBGR7bO54hYWFoby8nJ8+OGHcptOp8O2bdsQEhIiXx+4cOECTp48aTD2yJEjegXu1KlT+PnnnzF27NiG2QAiIrI6mzstGRISgrFjxyIyMhLZ2dnw9/dHTEwMMjMz8fHHH8v9Jk+ejMTERAgh5LaZM2di69atGDFiBBYsWABHR0ds2LABXl5emD9/vjU2p16pVCosW7bM6E00VHvcj7aL/28sozHuR0ncWR1sRGlpKZYuXYrY2Fjk5+eje/fueO211zBkyBC5T2hoqEFxA4BLly7hpZdewr59+1BRUYHQ0FC8/fbb8Pf3b+jNICIiK7HJ4kZERGQOm7vmRkREZC4WNwWTJAnLly+3dhhmOXLkCPr27QtnZ2dIklTl49esqX379oiIiLB2GI0Sc7xh2GOO29wNJUSVysrKMHbsWKjVarz99tto3rw5fH19rR0WkcUwx+sPixvZrLNnz+L8+fPYunUrpk+fbu1wiCyOOV5/eFqSbFZ2djYA+3mKBpGpmOP1h8XNCpYvXw5JkpCeno7w8HBoNBp4enpi6dKlEELg4sWLGDVqFNzc3NC6dWusX79eHnvz5k28+uqr6NWrFzQaDZydnTFgwAAcOHCgVuu+fPkypk6dCi8vL6hUKnTt2hWffPJJfW1qnUVERGDQoEEAgLFjx0KSJISGhgIATp48ibCwMNxzzz1Qq9Xo3bs3vvrqK73x0dHRkCQJhw4dwuzZs+Hp6Ql3d3c899xzuHnzJgoKCjB58mS0aNECLVq0wKJFiwx+VvLWW2+hb9++8PDwgJOTE3r16oVdu3bVKv6CggLMnTsXbdu2hUqlgr+/P9auXYuKigrzd44dYI7XjDlezwQ1uGXLlgkAokePHmLChAkiKipKjBgxQgAQGzZsEJ07dxbPP/+8iIqKEv369RMARGJiohBCiJycHOHt7S3mzZsnNm/eLN58803RuXNn4ejoKNLS0vTWA0AsW7ZMnr569apo06aNaNu2rVi5cqXYvHmzeOKJJwQA8fbbbzfcDqiFpKQksXjxYgFAzJ49W3z66adi37594vfffxcajUZ06dJFrF27VmzcuFEMHDhQSJIk4uPj5fHbtm2T9/HQoUPFpk2bxKRJkwQAsWjRItG/f38xceJEERUVJUaOHCkAiJiYGL0Y2rRpI2bOnCk2btwoNmzYIIKDgwUA8c033+j18/X1FVOmTJGntVqt6N69u/Dw8BCLFy8WW7ZsEZMnTxaSJIk5c+bU526zGczxmjHH6xeLmxVU/uE/++yzctutW7dEmzZthCRJYs2aNXJ7fn6+cHJykhPr1q1bQqfT6S0vPz9feHl5ialTp+q13/2HP23aNOHt7S1yc3P1+o0fP15oNBpx48YNC22hZRw4cEAAEHFxcXLbww8/LAIDA0VpaancVlFRIfr27SsCAgLktso//CFDhoiKigq5vU+fPkKSJPGPf/xDbqvc94MGDdJb/9374+bNm6Jbt25i8ODBeu13/+G/9tprwtnZWaSnp+v1e+WVV4SDg4O4cOFC7XeCnWKO1w5zvP7wtKQV3XkB2cHBAb1794YQAtOmTZPb3d3d0blzZ5w7d07u16xZMwD/e2XJrVu30Lt3bxw7dqzKdQkhsHv3bjz++OMQQiA3N1f+DBkyBIWFhdWOtwV5eXn4+eefMW7cOBQXF8vxX7t2DUOGDMHp06cN3igxbdo0vde5hISEGOzjyn1fuY8r3fmKpPz8fBQWFmLAgAE17qe4uDgMGDAALVq00NvPjzzyCMrLy/HLL7+YsxvsCnPcNMxxy+HdklbUrl07vWmNRgO1Wo2WLVsatF+7dk2ejomJwfr163Hy5EmUlZXJ7R06dKhyXTk5OSgoKMCHH36o91DqO1Ve3LZVZ86cgRACS5cuxdKlS432yc7Oxr333itPG9vHgOELOjUaDfLz8/XavvnmG7z++uv49ddf9d4TWNO7z06fPo3jx4/D09OzyhgbC+a4aZjjlsPiZkUODg61agMgXwiOjY1FREQERo8ejYULF6JVq1ZwcHDA6tWrcfbs2SrXVXmRNzw8HFOmTDHap3v37qZuQoOq3IYFCxboPWf0Tnc/Q7Sq/WmsXdxxsf3gwYN44oknMHDgQERFRcHb2xuOjo7Ytm0bPv/88xrjfPTRR7Fo0SKj8zt16lTteCVhjpuGOW45LG52ZteuXejYsSPi4+P1vl0tW7as2nGenp5wdXVFeXk5HnnkkfoOs1507NgRAODo6Fjv27B7926o1Wr88MMPek9S37ZtW41j/fz8cP36dbvdz9bGHGeOWwKvudmZym9jd34DS0lJQXJyco3jxowZg927d+P33383mJ+Tk2PZQOtBq1atEBoaig8++MDoG9ctuQ0ODg6QJAnl5eVyW2ZmJv7973/XOHbcuHFITk7GDz/8YDCvoKAAt27dslicSsQcZ45bAo/c7MzIkSMRHx+PJ598EiNGjEBGRga2bNmCLl264Pr169WOXbNmDQ4cOICQkBDMmDEDXbp0QV5eHo4dO4affvoJeXl5DbQVdbdp0yb0798fgYGBmDFjBjp27Ii//voLycnJuHTpEn777TeLrGfEiBHYsGEDhg4diokTJyI7OxubNm2Cv78/jh8/Xu3YhQsX4quvvsLIkSMRERGBXr16QavV4sSJE9i1axcyMzMNrjnR/zDHmeOWwOJmZyIiInD16lV88MEH+OGHH9ClSxfExsYiLi4OCQkJ1Y718vJCamoqVq5cifj4eERFRcHDwwNdu3bF2rVrG2YDzNSlSxccPXoUK1asQHR0NK5du4ZWrVqhZ8+eePXVVy22nsGDB+Pjjz/GmjVrMHfuXHTo0AFr165FZmZmjX/4zZs3R2JiIlatWoW4uDhs374dbm5u6NSpE1asWCFf8CfjmOPMcUvg+9yIiEhxeM2NiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNiIgUh8WNakWr1WLVqlV44IEH4OLiApVKhTZt2mDAgAGIjIys9j1bRPaAOa4sfHAy1ai4uBj9+/fH8ePH4e/vj/DwcHh4eCA3NxepqalYs2YN/Pz84OfnZ+1QieqEOa48LG5Uo3feeQfHjx/H9OnT8eGHHxq8gj4jI0PvFfVE9oY5rjw8LUk1qnxJ5AsvvGDwRw8AHTp0wH333afXlp2djZdeegn+/v5QqVRo2bIlxowZo/cSSSEEhg8fDkmSsHPnTr3xQggMGzbM6DwiS2OOK5AgqkF4eLgAIHbu3Fmr/mfOnBFt2rQRAMRjjz0m5s+fLyZNmiSaN28unJ2dxeHDh+W+V69eFa1atRIajUZkZmbK7Rs2bBAAREREhMW3h+huzHHlYXGjGu3Zs0cAEK6urmL+/Pnihx9+ELm5uVX279u3r3BwcBDff/+9XvupU6eEq6urCAwM1Gv/7rvvhCRJom/fvuLWrVsiLS1NNGvWTAQEBIji4uJ62SaiOzHHlYfFjWpl/fr1wsXFRQCQP35+fuKFF14Q6enpcr9jx44JAGLq1KlGlzNv3jwBQJw4cUKvfe7cuQKAWLBggbjvvvuEo6OjOHr0aL1uE9GdmOPKwjdxU60VFxfj+++/R1JSEo4ePYqUlBSUlZVBrVZj586deOKJJ7B582bMnDkTI0aMQO/evQ2WceTIEezduxdxcXEICwuT23U6HR588EH8+uuvAIC1a9di0aJFDbVpRACY44pi7epK9qugoEDMnDlTABAtW7YUOp1OvP7663rffKv6REdHGywvMjJSABBqtVpcu3bNCltEpI85br94tyTVmUajwcaNG+Hr64vc3FycOHECbm5uAID3338f4vZpb6OfKVOm6C0rJSUF69atg4eHB0pLS/H8889bY5OI9DDH7ReLG5lFkiQ4OzvL0yEhIQD+d2t1bRQXF2PixIlo2rQpEhISMGbMGHzxxRf45JNPLB4vkamY43bKGoeLZF+2bNkiUlNTjc778ssvhSRJwt3dXZSWlgohhAgJCRGSJIkdO3YY9C8vLxcJCQl6bZW3YW/cuFEIIUReXp5o27atcHZ2FqdOnbLw1hAZYo4rD28ooRqNHj0ae/bsgb+/P/r16wcfHx9otVqkpaXh4MGDaNKkCWJjYzFhwgQAt5/m8NBDD+H8+fN48MEH8cADD8DJyQkXLlxAcnIycnJyUFpaCgCIjY3FpEmT8Pjjj+Orr76S1/nLL7/goYceQs+ePZGcnAxHR0erbDs1DsxxBbJ2dSXbd/LkSfHmm2+KRx99VHTo0EGo1WqhVquFn5+fmDJlitHbmfPy8sQ///lP0a1bN+Hk5CRcXFxEQECAmDhxooiPjxdCCHHu3Dnh5uYmvL29RU5OjsEylixZIt86TVSfmOPKwyM3IiJSHN5QQkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREisPiRkREivP/AIlR7hLY3we5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Plots for Fare,\n", "----------------------\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlq0lEQVR4nO3deVxU9f4/8Ncozgw7KYqgCCiUC+C+pKFYKoqmLZJaLrjl1XK9elP79tBrN8lMb2ZpdeuWpo9c0q5bkaa5ICDpA81cMhZNcMoMZVNB4P37ox8npxkUmIGZObyej8c8Hp7P+cznvA++mTfnc5bRiIiAiIhIRerZOgAiIiJrY3EjIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXEjIiLVYXGjKgkMDERgYKCtw1DYWzzkmOwtj+wtHkfE4mZjhYWFWLp0KTp16gQ3NzfodDo0b94cERERWLBgAdLT020dIlVSWVkZVq9ejbCwMDg7O6Nx48YYNWoUMjIybB1arWNeq8PVq1cRFxeH4cOHIygoCBqNBhqNxtZhVYqTrQOoy/Lz8/HII4/g+++/R3BwMEaPHo1GjRrh2rVrSElJweuvv45WrVqhVatWtg5VsX//fluHYLemTJmCDz/8EO3atcOMGTNw5coVbNmyBXv37kVycjJCQkJsHWKtYF6rx9mzZ7Fw4UJoNBqEhITAxcUFN2/etHVYlSNkM0uWLBEAMmnSJCkrKzNZn5GRIefOnbNBZI4jICBAAgICbB2GHDhwQABI7969paioSGn/8ssvBYAMGDDAhtHVLua15ewlr3/55Rc5dOiQ5OXliYjIQw89JI5SNjgtaUNJSUkAgBdeeMHsoX5QUBBat25t1KbRaBAZGWl2PHPz9LGxsdBoNMjIyMCKFSvQtm1b6HQ6xMbG4tVXX4VGo8H69evNjrd9+3ZoNBq8/PLLFW6jOmMAQGZmJiZNmoQWLVpAp9PB19cXsbGxuHTpktlxduzYga5du8LZ2Rk+Pj6YPHkyrl+/bravLfznP/8B8MfPQ6vVKu2DBg1CZGQk9u7di59//tlW4dUq5rV68trHxwe9e/eGu7u7rUOpMhY3G2rUqBEA4MKFCzW+renTp2Pp0qXo0qULZs2ahbCwMIwePRoajQYbNmww+55PP/0UADBmzJgKx63OGMeOHUPHjh2xbt06dO7cGTNnzkRERAQ2btyIbt26mZyjWr9+PZ544glcuHABY8aMwbhx43D06FH069cPxcXFVfo51JSDBw/C1dUVvXr1MlkXFRUFADh06FBth2UTzGv15LUj4zk3G4qJicGGDRswadIkpKSkYMCAAejcubPy4WBN33//PVJTU9GiRQuj9l69euHAgQMwGAzw9fVV2nNycvDll1+iS5cuJn9l3y0oKKhKY9y5cwcjR45EWVkZUlJS0LFjR6V/QkICIiMjMXPmTOzatQsAkJeXh+nTp8PV1RXfffcdHnzwQQDAa6+9hn79+sFgMCAgIKDSP4fFixdXui/wxxHC/a5aKywshMFgQGhoKOrXr2+yvvxc208//VSlbTsq5rU68trh2XpetK5bsWKFuLm5CQDl1apVK3nhhRfkwoULJv0BSJ8+fcyOZW6efty4cQJAVq1aZfY977//vgCQFStWGLWvWbNGAMhbb711321UZYzt27cLAFmyZInZeJ566impV6+e5ObmiojIunXrBIBMnz7dpO+RI0cEQJXOTdz9c67M69tvv73vmNnZ2QJAevXqZXb93r17BYDMmDGj0nE6Oua1MUfMa3N4zo0qbc6cOcpVdbNmzcIjjzyCn3/+Ge+++y7Cw8Oxc+dOq2ynW7duZtufeeYZ6HQ6ZZql3IYNG+Dk5IRRo0bdd+yqjJGcnAwA+PHHH7F48WKT1y+//IKysjJlSuvUqVMAgIiICJPtPvzww3Byqtrkg4hU6VXReSC6N+Y189rWOC1pB9zd3RETE4OYmBgAQG5uLhYuXIg1a9Zg4sSJyM7ONrpIoTp8fHzMtnt5eWHIkCHYtm0bzp49i7Zt2yI9PR2JiYmIjo5GkyZN7jt2VcbIyckBAGzcuPGeYxYWFgL442cBwGwc9evXr5Gprqry9PQE8Gesf5WXl2fUr65gXptypLx2dCxudsjT0xPvvPMO9uzZg0uXLuH06dPo3LkzgD+uKispKTH7vtzc3Ao/QO914+WYMWOwbds2fPrpp4iLi1NOot/rhHt1x/Dw8AAA7Nq1C0OGDLnvuOX7c/XqVZN1paWl+P3339GsWbNKx1kT5yZcXV3h6+uLzMxMlJaWmpx3Kz/XVlfuc6sI8/pPjpDXDq/2ZkCpqtq2bSsA5Pjx40pbw4YNJTAw0KRvZmam2Xn68nMTmZmZFW6nuLhYGjVqJC1atJDS0lIJCQkRd3d3uXnzpknfiu6/qewYmzdvFgCycOHCe+/8/+co5yZGjhwpAOTQoUMm6yIjIwWAXLx4sdJxqhnz2nHy+q8c6ZybY0SpUu+9956kpKSYXffFF1+IRqMRLy8vuX37ttIeFRUlAOTgwYNKW1FRkTz55JPV/hAQEZk2bZoAkLi4OAEgsbGxZvvd6+bSyoxx+/ZtadGihej1erOFoLi4WI4cOaIs37hxQzw8PMTV1VV+/PFHo359+vSp8odATeFN3H9iXqsnr//KkYqbRkTEWkeBVDVPPPEEduzYgeDgYPTq1Qt+fn4oLCxEamoqjhw5gnr16mHDhg1GJ6737t2LgQMHwtnZGaNGjYKLiwv27dsHLy8vXLp0CVqtFhcvXlT6x8bGYt26dcjMzLznNERycjIefvhhNGjQAHfu3MH+/fvx6KOPmvQrH+PubVR1jO+++w6DBg3C77//jkcffRRhYWHQaDS4dOkSjhw5gkaNGuH8+fNK/3Xr1iE2NhYeHh4YOXIkPD09sXv3bjg7O8NgMJjss61MnjxZefzW4MGDYTAYsHnzZri5uSEpKUm53FvtmNfqyuvY2Fjl31988QXy8vIwbtw4pW3+/Pn3vK3CZmxdXeuy8+fPyxtvvCH9+/eXoKAg0ev1otfrpVWrVjJu3DijaZu7bd26VcLCwkSr1UrTpk1l+vTpkp+ff89Lpu/3F66ISEhIiACQ5s2bS2lpqdk+93ssUGXGEBHJysqSmTNnSkhIiOh0OvHw8JA2bdrIpEmTZP/+/Sb9v/jiC+ncubPodDpp0qSJTJo0SXJycuzmMUUiIqWlpbJq1Spp166d6HQ6adSokYwYMULS0tJsHVqtYl6rK69RQ1OcNY1HbkREpDq8z42IiFSHxY2IiFSHxY2IiFSHxY2IiFSHxY2IiFSHxY2IiFSHxa0KRAR5eXng3ROkJsxrUiMWtyrIz8+Hp6cn8vPzbR0KkdUwr0mN7K64FRQUYNGiRRg4cCAaNmwIjUaDTz75xGzfc+fOYeDAgXBzc0PDhg0xZswY/Pbbbyb9ysrK8MYbbyAoKAh6vR7h4eH47LPPanhPiIjIVuyuuF27dg1LlizBuXPn0L59+wr7ZWVloXfv3khLS8PSpUsxd+5c7NmzB/3790dxcbFR35dffhkvvfQS+vfvj9WrV6NFixZ49tlnsWnTppreHSIisgVbPvvLnNu3b4vBYBARke+++04AyMcff2zSb+rUqeLs7CyXLl1S2vbt2ycA5P3331fasrKypEGDBvLCCy8obWVlZRIRESHNmzeXkpKSSseWm5srAJSviidSA+Y1qZHdHbnpdDo0bdr0vv22bduGIUOGoEWLFkpbv3798OCDD2LLli1K244dO3Dnzh1MmzZNadNoNJg6dSqysrKQlJRk3R0gIiKbs7viVhnZ2dm4evUqunTpYrKuW7duSE1NVZZTU1Ph6uqKNm3amPQrX09EVF0igoKCAuUlvOrULjjZOoDqMBgMAABfX1+Tdb6+vsjJyUFRURF0Oh0MBgN8fHxMvo6+/L1XrlypcDtFRUUoKipSlvPy8qwRPpFNMa+tq7CwEMOGDVOWd+zYATc3NxtGRICDHrndunULwB9TmH+l1+uN+ty6datS/cyJi4uDp6en8vL397c4diJbY15TXeCQxc3Z2RkAjP76LHf79m2jPs7OzpXqZ86CBQuQm5urvC5fvmxx7ES2xrymusAhpyXLpxTLpyfvZjAY0LBhQ+VozdfXF99++y1ExGhqsvy9fn5+FW5Hp9OZPeojcmTMa6oLHPLIrVmzZmjcuDGOHz9usi4lJQUdOnRQljt06ICbN2/i3LlzRv2OHTumrCciInVxyOIGAE8//TR2795tNKWyf/9+XLhwATExMUrbsGHD0KBBA6xZs0ZpExG89957aNasGXr27FmrcRMRUc2zy2nJd955Bzdu3FCuZNy1axeysrIAANOnT4enpycWLlyIrVu3om/fvpg5cyYKCgqwfPlyhIWFYfz48cpYzZs3x6xZs7B8+XLcuXMHXbt2xf/+9z8cOXIEGzduRP369W2yj0REVHM0Yoc3ZQQGBuLSpUtm12VmZiIwMBAAcObMGcyZMwcJCQnQarUYPHgwVqxYAR8fH6P3lJWVYdmyZXj//fdhMBgQEhKCBQsW4LnnnqtSXHl5efD09ERubi48PDyqtW9E9oZ5bZmCggLeCmCH7LK42St+CJAaMa8tw+Jmnxz2nBsREVFFWNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1WNyIiEh1nGwdABFRbes8b73VxtKUFMPzruXIVzZBnLRWG//E8rFWG6su4ZEbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpjlWLW05ODi5fvmzNIYmIiKrM4uKWm5uLmTNnwsfHB40bN0ZQUJCy7tixY4iOjsaJEycs3QwREVGlWVTccnJy0L17d6xevRr+/v5o06YNRERZHx4ejqNHj2Ljxo0WB0pERFRZFhW3xYsX48KFC9i0aROOHz+OmJgYo/XOzs7o06cPDhw4YFGQREREVWFRcdu5cyeGDBmCZ555psI+gYGByMrKsmQzREREVWJRcTMYDGjbtu09++h0OhQWFlqyGSIioiqxqLg1atTovldHnj9/Hr6+vpZshoiIqEosKm69e/fGjh07Kpx2PHv2LOLj49GvXz9LNkNERFQlFhW3l19+GaWlpejVqxc2btyIa9euAQDOnTuHjz76CI8++ih0Oh3mzZtnlWCJiIgqw8mSN4eFhWHz5s0YM2YMxo4dCwAQEYSGhkJE4O7uji1btiAkJMQqwRIR2Rup3wC54aOMlsn2LCpuADB06FBkZmZi3bp1OHbsGHJycuDh4YHu3btj/Pjx8Pb2tkacRET2SaOBOGltHQX9hUXFbf369fDx8UFUVBRmz55trZiIiIgsYtE5t4kTJyI+Pt5asRAREVmFRcXN19cXJSUl1oqFiIjIKiwqbkOHDsW+fftQVFRkrXiIiIgsZlFxe+211+Dq6oqnnnoKZ86csVZMlXLw4EFoNBqzr+TkZKO+iYmJeOSRR+Di4oKmTZtixowZKCgoqNV4iYio9lh0QUnHjh1RVFSEkydPIj4+Hnq9Hk2aNIFGozHqp9FokJ6eblGgFZkxYwa6du1q1BYcHKz8++TJk3jsscfQpk0brFy5EllZWXjzzTfx008/4auvvqqRmIiIyLYsKm5lZWXQarVo0aKFUfvdX3tjbtmaIiIiMHz48ArXL1y4EA888AAOHjwIDw8PAH88zHny5MnYu3cvBgwYUGOxERGRbVhU3C5evGilMCyTn58PZ2dnODkZ705eXh727duH2bNnK4UNAMaOHYvZs2djy5YtLG5ERCpk8Tdx29r48ePh4eEBvV6Pvn374vjx48q606dPo6SkBF26dDF6j1arRYcOHZCamlrb4RIRUS2w+AkltqLVavH0008jOjoa3t7eOHv2LN58801EREQgMTERHTt2hMFgAACz30rg6+uLI0eO3HMbRUVFRleC5uXlWXcniGyAeU11gVWKW1JSEr755htcuXLF7G0BGo0GH330kTU2pejZsyd69uypLA8dOhTDhw9HeHg4FixYgPj4eNy6dQvAH98p91d6vV5ZX5G4uDj885//tGrcRLbGvKa6wKLiVlJSglGjRmH79u0QEWg0GqOLR8qXa6K4mRMcHIxhw4Zh+/btKC0thbOzMwCYLbi3b99W1ldkwYIFmDNnjrKcl5cHf39/6wZdh4iI0RfXurq6mlxZSzWPeU11gUXn3FasWIFt27Zh/PjxOH78OEQEs2bNQlJSEpYtWwYvLy/ExMTU2G0A5vj7+6O4uBiFhYXKdGT59OTdDAYD/Pz87jmWTqeDh4eH0Yuqr7CwEMOGDVNe/IZ222BeU11gUXHbuHEjQkND8eGHH6JTp04AAC8vL3Tv3h3z5s3D4cOHsXv3bnz99ddWCbYyMjIyoNfr4ebmhtDQUDg5ORldZAIAxcXFOHnyJDp06FBrcRHVdSKCgoIC5VWTtwgRWVTc0tLSEBkZqSxrNBrcuXNHWW7Xrh0ef/xxrF271pLNmPXbb7+ZtJ06dQo7d+7EgAEDUK9ePXh6eqJfv37YsGED8vPzlX6ffvopCgoKEBMTY/W4iMg8HrlTbbLonJtWq4WLi4uy7ObmhqtXrxr1CQgIwK5duyzZjFkjRoyAs7MzevbsiSZNmuDs2bP44IMP4OLigtdff13p99prr6Fnz57o06cPnn/+eWRlZWHFihUYMGAABg4caPW4iIjI9iw6cvP398fly5eV5datW+Pw4cNG0w3Jyclo2LChJZsx64knnsC1a9ewcuVKTJs2DZs3b8ZTTz2F48ePo02bNkq/Tp064ZtvvoGzszNmz56NDz74ABMnTsTnn39u9ZiIiMg+WHTk1qdPH+zYsUO5InLEiBGYO3cuhgwZgujoaCQkJCAhIQETJkywVryKGTNmYMaMGZXq+8gjj+Do0aNWj4GIiOxTlYtbXl4e9Ho9tFotJkyYgNLSUmRnZ6N58+aYPn06Dh48iN27dysPJe7WrZvRNCEREVFNq/K05AMPPIBly5YB+GPKb+3atcjOzsbbb7+NBg0aYOfOnUhJScFnn32GxMREJCYmolGjRlYPnIiIqCJVLm4iYnIJb3x8PGbPnq0sd+nSBSNGjECPHj1Qr57DP76SiIgcDCsPERGpDosbERGpjsN+KwAR1bzO89ZbbSxNSTE871qOfGUTxElrtfFPLB9rtbHI8fHIjYiIVKdaR24bNmxAcnKyspyWlgYAiI6ONttfo9Fgz5491dkUERFRlVWruKWlpSkF7W7x8fFm+/NrTYiIqDZVubhlZmbWRBxERERWU+XiFhAQUBNxkB2y5sUEAC8oIKLawwtKiIhIdVjciIhIdVjciIhIdVjciIhIdfiEEiKqFVK/AXLDRxktE9UUFjciqh0ajVWvjiW6F05LEhGR6rC4ERGR6rC4ERGR6rC4ERGR6rC4ERGR6rC4ERGR6rC4ERGR6vA+NzskIigsLFSWXV1d+Z14RERVwOJmhwoLCzFs2DBleceOHXBzc7NhRNbBJ1QQUW1hcaPawydUEFEt4Tk3IiJSHR65ERGRCUc/98/iZgWd56236niakmJ43rUc+comq07nnVg+1mpjEZE6Ofq5f05LEhGR6vDIjchCjj59Q6RGLG5EFnL06RsiNeK0JBERqQ6P3OwQb3YmIrIMi5s94s3OREQW4bQkERGpDosbERGpDosbERGpDs+5UZ3DJ8qQWlkztx09r3nkRkREqsPiRkREqsPiRkREqsPiRkREqsPiRkREqsOrJYksxMelEdkfFjciS/FxaaRCjv5HG4sbERGZcvA/2njOjYiIVIfFjYiIVKfOFLeioiK89NJL8PPzg7OzM7p37459+/bZOiwiIqoBdaa4xcbGYuXKlXjuueewatUq1K9fH9HR0UhISLB1aEREZGV14oKSlJQUbNq0CcuXL8fcuXMBAGPHjkVoaCj+8Y9/IDEx0cYREhGRNdWJI7fPP/8c9evXx/PPP6+06fV6TJw4EUlJSbh8+bINoyMiImurE8UtNTUVDz74IDw8PIzau3XrBgA4efKkDaIiIqKaUiemJQ0GA3x9fU3ay9uuXLli9n1FRUUoKipSlnNzcwEAeXl5Rv1Ki25ZK9Ra8df4K8L9sg8V7Ze7uzs0Gk2Vx6tsXgOO9bOq7P8/wP2yB9bOaxNSB7Rs2VIGDRpk0p6eni4A5N///rfZ9y1atEgA8MWXXb5yc3Or9fvAvObLnl/Vzeu/0oiIQOVCQ0Ph4+OD/fv3G7WfPXsW7dq1w3vvvYcpU6aYvO+vf+GWlZUhJycHjRo1ss5fFveQl5cHf39/XL582WQ61ZFxv6zHWkduzGvLcb+sx1pHbnViWtLX1xfZ2dkm7QaDAQDg5+dn9n06nQ46nc6ozcvLy+rx3YuHh4eqflnKcb9sh3ldc7hf9qNOXFDSoUMHXLhwwWSO99ixY8p6IiJSjzpR3IYPH47S0lJ88MEHSltRURE+/vhjdO/eHf7+/jaMjoiIrK1OTEt2794dMTExWLBgAa5evYrg4GCsW7cOFy9exEcffWTr8MzS6XRYtGiRyfSRo+N+1W1q/Tlxv+xPnbigBABu376NV155BRs2bMD169cRHh6OV199FVFRUbYOjYiIrKzOFDciIqo76sQ5NyIiqltY3IiISHVY3OzM6dOnMXz4cAQEBECv16NZs2bo378/Vq9ebevQLJaeno4pU6agZcuW0Ov18PDwQK9evbBq1SrcuuU4jw2625kzZzB69Gg0a9YMOp0Ofn5+GD16NM6ePWvr0OyKmvMaYG7bI55zsyOJiYno27cvWrRogXHjxqFp06a4fPkykpOTkZ6ejrS0NFuHWG179uxBTEwMdDqd8nVDxcXFSEhIwLZt2xAbG2t0q4Yj2L59O0aNGoWGDRti4sSJCAoKUq7AzcnJwebNmzFs2DBbh2lzas5rgLltt6zyEC+yiujoaGncuLFcv37dZN2vv/5a+wFZSUZGhri5uUnr1q3lypUrJut/+ukneeutt2wQWfWlpaWJi4uLtG7dWq5evWq07rfffpPWrVuLm5ubZGRk2ChC+6HWvBZhbtszFjc78tBDD0lkZKStw7C6v/3tbwJAjh49autQrGbKlCkCQA4fPmx2/aFDhwSATJ06tZYjsz9qzWsR5rY947SkHYmKikJSUhISExMRGhpq63Cspnnz5tDpdEhPT7d1KFbTrFkzaLVaZGZmVtgnKCgIJSUldf7LcNWa1wBz255zmxeU2JG5c+fi5s2b6NChA3r27ImXXnoJe/fuxZ07d2wdWrXl5eUhOzsbYWFhtg7FanJzc3HlyhW0b9/+nv3Cw8ORlZWF/Pz8WorMPqkxrwHmtr3nNoubHenfvz+SkpIwdOhQnDp1Cm+88QaioqLQrFkz7Ny509bhVUv5w6rd3d1tHIn1lP9C32+fytfb8wdAbVBjXgPM7bv72yMWNzvTtWtXbN++HdevX0dKSgoWLFiA/Px8DB8+3GEuwb1b+ddk2PMvQVVV9hc7Pz8fGo0G3t7etRGWXVNbXgPMbXvPbRY3O6XVatG1a1csXboUa9euxZ07d7B161Zbh1VlHh4e8PPzww8//GDrUKzG09MTfn5++P777+/Z7/vvv0fz5s2h1WprKTL7p5a8Bpjb9p7bLG4OoEuXLgD+/HJVRzNkyBCkp6cjKSnJ1qFYzeOPP47MzEwkJCSYXX/kyBFcvHgRMTExtRyZ43D0vAaY23bN1pdr0p8OHDggZWVlJu3Lli0TALJy5UobRGW5tLQ0cXV1lbZt28ovv/xidr2j3Qv0008/iYuLi7Rt21auXbtmtO7333+Xtm3bioeHh93fC1Qb1JrXIsxte8ZbAexIaGgobt68iSeffBKtW7dGcXExEhMTsXnzZvj7+yM1NRVeXl62DrNadu7ciREjRsDZ2dnoKQ6JiYnYunUrYmNj8f7779s6zCrZtm0bRo0aBW9vb5OnOFy/fh2bNm3C0KFDbR2mzak5rwHmtt2ydXWlP3311VcyYcIE5QkAWq1WgoODZfr06Q7/JAcRkQsXLsjkyZMlMDBQtFqtuLu7S69evWT16tVy+/ZtW4dXLadPn5Znn31WmjZtKvXq1RMAotfr5cyZM7YOzW6oPa9FmNv2iEduRFa0fv16xMbGYvTo0Vi/fr2twyGyGkfLbSdbB0CkJmPHjoXBYMD8+fPRvHlzLF261NYhEVmFo+U2j9yIiEh1eCsAERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbERGpDosbVcnFixeh0WgQGxtrsxgiIyOh0WhqdZv2sN9Uc+zh/5d5bV0sbg6qPCnv9QoMDLR1mERVwrwma+Hjtxxcq1atMHr0aLPrHPlJ61S3Ma/JUixuDi44OBiLFy+2dRhEVsW8JktxWrKO0Gg0iIyMRHZ2Np599ll4e3vD3d0dgwcPRkZGBgDg3LlzeOKJJ9CwYUO4u7tj+PDh+PXXXysc88yZMxg8eDC8vLzg5uaGAQMG4MSJEyb9Tpw4gRdffBGhoaHw9PSEs7MzwsLC8Prrr+POnTsm/QMDAxEYGIgbN27gxRdfhL+/P5ycnPDJJ5/ccx83b94MnU6H9u3bG3278+HDh/H444/D29sbOp0OISEh+L//+z/cvHnTZIzS0lIsW7YMwcHB0Ov1CA4ORlxcHMrKyu65bbIN5jXzukK2/cYdqq7MzEwBIFFRUZXqD0DCw8MlMDBQevToIXPmzJEhQ4YIAGnZsqWcPn1avLy85LHHHpO///3vEhkZKQCkb9++ZrcbEREhnp6e0rdvX5k/f76MGjVKnJycxMXFRZKTk43eM2XKFPHz85ORI0fKvHnz5IUXXpB27doJAHnqqadMYg0ICJCmTZtKx44dJSQkRKZNmyYzZsyQL7/8UkRE+vTpI39N3bfffls0Go307t1bbty4obSvWbNGNBqNPPDAAzJ27FiZO3eusm89e/aUoqIio3EmTJggACQoKEjmzJkj06ZNE29vb+VnNW7cuEr9vKl6mNfMa2thcXNQ5b+MrVq1kkWLFpl9ffXVV0p/AAJAZs+ebTTO1KlTBYB4eXnJW2+9pbSXlZVJdHS0AJATJ06YbBeAzJ8/32is+Ph4ASBhYWFG7ZcuXZKSkhKjtrKyMuUXLiEhwWhdQECA8gF38+ZNk33/64fAwoULBYA8+eSTcuvWLaX9zJkz4uTkJO3bt5dr164ZjREXFycA5M0331Tavv32WwEg7du3l4KCAqU9KytLvL29VfshYE+Y18xra2Fxc1B3/zJW9Jo5c6bSH4C4ublJYWGh0TiHDx9WPkzKysqM1q1fv14AyH//+1+T7Xp5eUl+fr5JXI899pgAkOPHj993H06cOCEAZPHixUbt5R8Cp06dMvu+8g+BkpISmThxogCQyZMnm3zQzJgxQwDI4cOHTcYoLS2Vxo0bS+fOnZW28ePHCwDZtm2bSf9XX31VtR8C9oR5zby2Fl5Q4uCioqIQHx9fqb4hISFwcXExavP19QUAhIeHm9xjU77uypUrJmN17NgRbm5uJu0RERHYv38/UlNT0blzZwBAcXEx3nnnHWzatAnnz59HQUEB5K6vETQ3vl6vR1hY2D335+mnn8aOHTvw8ssv41//+pfJ+uTkZADA119/jf3795usb9CgAc6fP68snzp1StkHc/tFtYd5zby2FItbHeLh4WHS5uTkdN915k6O+/j4mN1GeXtubq7SNnz4cOzatQsPPvggRowYgSZNmqBBgwa4ceMGVq1ahaKiIpNxmjRpct8bWg8fPgy9Xo/o6Giz63NycgAAr7322j3HKZebm4t69erB29u7wv0i+8O8vre6mtcsblQtFV1tVt7u6ekJAPjuu++wa9cuREVFYc+ePahfv77SNzk5GatWrTI7TmWe1LB//37069cPAwcORHx8PHr27Gm0vvyDLS8vD+7u7vcdz9PTE2VlZbh27RoaN25sdr9I3ZjX6sFbAahaUlNTUVBQYNJ+5MgRAH9M7wBAeno6AGDw4MFGHwB3962ujh074sCBA9BqtRg4cCCOHj1qtL579+4A/pzGuZ/27dtXGJelsZJjYF6rB4sbVcuNGzdMpkXKzwGEhoYq5yUCAgIAAAkJCUZ9z5w5g7i4OIvjaN++PQ4cOACdToeBAwcabWfatGlwcnLC9OnT8fPPP5vdh9TUVGV5zJgxAIAlS5agsLBQac/Ozq7wL3FSF+a1enBa0sGlpaXd80kO8+fPh16vt/p2IyIisHbtWhw7dgw9evTAxYsXsXXrVjg7O+PDDz9U+nXr1g3dunXDli1bYDAY0KNHD/z888/YuXMnBg8ejM8//9ziWMLDw3HgwAE89thjGDRoEL788ktEREQgNDQUa9aswdSpU/HQQw8hOjoarVq1Qn5+PjIyMnDo0CHExsbivffeAwD07dsX48ePx8cff4ywsDA8+eSTKCoqwubNm9GjRw/s3r3b4lipcpjXzGuL2fpyTaqeylwyDUCuX78uIn9cMt2nT58KxzF3KXD5/TGLFi0y2/+HH36Q6Oho8fDwEFdXV+nXr5/ZS6WvXr0qEyZMED8/P9Hr9RIWFibvvvuuZGRkmN12QECABAQEVLjv5m52FRE5ffq0NGnSRFxdXeXQoUNKe0pKiowcOVL8/PykQYMG4u3tLZ06dZL58+fLuXPnjMYoKSmRuLg4admypWi1WmnZsqUsXbpU0tLSVHvJtD1hXjOvrUUjcte1q0RERCrAc25ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6LG5ERKQ6/w8mKUKU46dWmwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtd0lEQVR4nO3deVhU9f4H8PcIMgwgoLiNgkCCK5q4gEkq7ksmXg0Vc8HUvGa49FMTzUfUUtPQTNPq6nUJjHK7qJUbitcS14tt7ogkOGqIsin79/eHl7mOM8DADAxzeL+eZ5463/M93/M5PB/nM2eXCSEEiIiIJKSWqQMgIiIyNhY3IiKSHBY3IiKSHBY3IiKSHBY3IiKSHBY3IiKSHBY3IiKSHBY3IiKSHBY3IiKSHBY3Khc3Nze4ubmZOgy16hYPmafqlkfVLR5zxOJmYtnZ2Vi+fDk6duwIOzs7yOVyODs7o3v37ggNDUVCQoKpQyQ9FRUVYf369WjXrh0UCgUaNGiAoKAg3Lp1y9ShVTnmtTQ8ePAAK1aswBtvvAF3d3fIZDLIZDJTh6UXS1MHUJNlZmbi1Vdfxa+//goPDw+MHTsWTk5OSE1Nxblz57By5Uo0b94czZs3N3WoajExMaYOodqaOnUqNm/ejLZt22LGjBm4e/cuvvvuOxw5cgRnzpyBp6enqUOsEsxr6bh8+TIWLFgAmUwGT09P2NjY4MmTJ6YOSz+CTGbp0qUCgJg8ebIoKirSmn/r1i1x5coVE0RmPlxdXYWrq6upwxDHjx8XAESPHj1Ebm6uuv2HH34QAET//v1NGF3VYl4brrrk9b1798TJkydFRkaGEEKIli1bCnMpGzwsaUJxcXEAgOnTp+vc1Xd3d0erVq002mQyGfz9/XWOp+s4fXBwMGQyGW7duoXw8HC0adMGcrkcwcHBWLZsGWQyGXbs2KFzvL1790Imk2HhwoUlrqMiYwBAYmIiJk+ejGbNmkEul0OpVCI4OBhJSUk6x4mOjkaXLl2gUCjQqFEjTJkyBY8ePdLZ1xT+8Y9/AHj297CyslK3Dxo0CP7+/jhy5Aj+/PNPU4VXpZjX0snrRo0aoUePHqhTp46pQyk3FjcTcnJyAgBcv3690tcVEhKC5cuXo3Pnzpg1axbatWuHsWPHQiaTISIiQucyX3/9NQBg3LhxJY5bkTHOnj0Lb29vbN++HZ06dcLMmTPRvXt3REZGwsfHR+sc1Y4dOzBs2DBcv34d48aNw4QJE/Dzzz+jb9++yMvLK9ffobLExsbC1tYWfn5+WvMGDBgAADh58mRVh2USzGvp5LU54zk3EwoMDERERAQmT56Mc+fOoX///ujUqZP6y8GYfv31V8THx6NZs2Ya7X5+fjh+/DhUKhWUSqW6PS0tDT/88AM6d+6s9Sv7ee7u7uUaIz8/H6NHj0ZRURHOnTsHb29vdf+ffvoJ/v7+mDlzJg4cOAAAyMjIQEhICGxtbXH+/Hm0aNECAPDRRx+hb9++UKlUcHV11fvvEBYWpndf4NkeQllXrWVnZ0OlUsHLywsWFhZa84vPtd24caNc6zZXzGtp5LXZM/Vx0ZouPDxc2NnZCQDqT/PmzcX06dPF9evXtfoDED179tQ5lq7j9BMmTBAAxLp163Qu8+WXXwoAIjw8XKN948aNAoD49NNPy1xHecbYu3evACCWLl2qM57hw4eLWrVqifT0dCGEENu3bxcAREhIiFbfU6dOCQDlOjfx/N9Zn8+JEyfKHDMlJUUAEH5+fjrnHzlyRAAQM2bM0DtOc8e81mSOea0Lz7mR3t577z31VXWzZs3Cq6++ij///BOff/452rdvj/379xtlPT4+PjrbR44cCblcrj7MUiwiIgKWlpYICgoqc+zyjHHmzBkAwLVr1xAWFqb1uXfvHoqKitSHtH755RcAQPfu3bXW+8orr8DSsnwHH4QQ5fqUdB6ISse8Zl6bGg9LVgN16tRBYGAgAgMDAQDp6elYsGABNm7ciEmTJiElJUXjIoWKaNSokc52R0dHDBkyBHv27MHly5fRpk0bJCQk4PTp0xg8eDAaNmxY5tjlGSMtLQ0AEBkZWeqY2dnZAJ79LQDojMPCwqJSDnWVl4ODA4D/xfqijIwMjX41BfNamznltbljcauGHBwcsGHDBnz//fdISkrCb7/9hk6dOgF4dlVZQUGBzuXS09NL/AIt7cbLcePGYc+ePfj666+xYsUK9Un00k64V3QMe3t7AMCBAwcwZMiQMsct3p4HDx5ozSssLMTDhw/RtGlTveOsjHMTtra2UCqVSExMRGFhodZ5t+JzbTXlPreSMK//xxzy2uxV3RFQKq82bdoIAOLChQvqtnr16gk3NzetvomJiTqP0xefm0hMTCxxPXl5ecLJyUk0a9ZMFBYWCk9PT1GnTh3x5MkTrb4l3X+j7xjffvutACAWLFhQ+sb/l7mcmxg9erQAIE6ePKk1z9/fXwAQt2/f1jtOKWNem09ev8iczrmZR5QS9cUXX4hz587pnLdv3z4hk8mEo6OjyMnJUbcPGDBAABCxsbHqttzcXPG3v/2twl8CQgjxzjvvCABixYoVAoAIDg7W2a+0m0v1GSMnJ0c0a9ZMWFtb6ywEeXl54tSpU+rpx48fC3t7e2FrayuuXbum0a9nz57l/hKoLLyJ+3+Y19LJ6xeZU3GTCSGEsfYCqXyGDRuG6OhoeHh4wM/PD02aNEF2djbi4+Nx6tQp1KpVCxERERonro8cOYKBAwdCoVAgKCgINjY2OHr0KBwdHZGUlAQrKyvcvn1b3T84OBjbt29HYmJiqYchzpw5g1deeQW1a9dGfn4+YmJi0Lt3b61+xWM8v47yjnH+/HkMGjQIDx8+RO/evdGuXTvIZDIkJSXh1KlTcHJywtWrV9X9t2/fjuDgYNjb22P06NFwcHDAwYMHoVAooFKptLbZVKZMmaJ+/NZrr70GlUqFb7/9FnZ2doiLi1Nf7i11zGtp5XVwcLD6//ft24eMjAxMmDBB3TZ//vxSb6swGVNX15rs6tWrYtWqVaJfv37C3d1dWFtbC2tra9G8eXMxYcIEjcM2z9u1a5do166dsLKyEo0bNxYhISEiMzOz1Eumy/qFK4QQnp6eAoBwdnYWhYWFOvuU9VggfcYQQojk5GQxc+ZM4enpKeRyubC3txetW7cWkydPFjExMVr99+3bJzp16iTkcrlo2LChmDx5skhLS6s2jykSQojCwkKxbt060bZtWyGXy4WTk5MYNWqUuHnzpqlDq1LMa2nlNSrpEGdl454bERFJDu9zIyIiyWFxIyIiyWFxIyIiyWFxIyIiyWFxIyIiyWFxIyIiyWFxKwchBDIyMsC7J0hKmNckRSxu5ZCZmQkHBwdkZmaaOhQio2FekxSxuBERkeSwuBERkeSwuBERkeSwuBERkeTwTdxERBIihEB2drZ62tbWttQ3lksVixsRkYRkZ2cjICBAPR0dHQ07OzsTRmQaPCxJRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSw+JGRESSU+2KW1ZWFhYvXoyBAweiXr16kMlk2LZtm1a/4OBgyGQyrU+rVq20+hYVFWHVqlVwd3eHtbU12rdvj2+++aYKtoaIiEyh2r0VIDU1FUuXLkWzZs3w8ssvIzY2tsS+crkcmzdv1mhzcHDQ6rdw4UKsXLkSU6ZMQZcuXRAdHY0xY8ZAJpNh9OjRxt4EIiIysWpX3JRKJVQqFRo3bowLFy6gS5cuJfa1tLTE2LFjSx0vJSUF4eHhmD59OjZs2AAAmDx5Mnr27Im5c+ciMDAQFhYWRt0GIiIyrWp3WFIul6Nx48Z69y8sLERGRkaJ86Ojo5Gfn4933nlH3SaTyTBt2jQkJycjLi7OoHiJiKj6qXbFrTyePHkCe3t7ODg4oF69epg+fTqysrI0+sTHx8PW1hatW7fWaPfx8VHPJyIiaal2hyX1pVQqMW/ePHTs2BFFRUU4dOgQNm7ciF9++QWxsbGwtHy2aSqVCo0aNdJ6zbpSqQQA3L17t8R15ObmIjc3Vz1d2h4ikblgXlNNYLbFbcWKFRrTo0ePRosWLbBw4ULs3r1bfaHI06dPIZfLtZa3trZWzy9tHUuWLDFi1ESmx7ymmsCsD0u+aPbs2ahVqxaOHTumblMoFBq/Uovl5OSo55ckNDQU6enp6s+dO3eMHzRRFWNeU01gtntuuigUCjg5OSEtLU3dplQqceLECQghNA5NqlQqAECTJk1KHE8ul+vc6yMyZ8xrqgkkteeWmZmJ1NRUNGjQQN3WoUMHPHnyBFeuXNHoe/bsWfV8IiKSFrMsbjk5OcjMzNRqX7ZsGYQQGDhwoLotICAAtWvXxsaNG9VtQgh88cUXaNq0Kbp161YlMRMRUdWploclN2zYgMePH6uvZDxw4ACSk5MBACEhIXj06BG8vb0RFBSkftzW4cOH8cMPP2DgwIEICAhQj+Xs7IxZs2Zh9erVyM/PR5cuXfCvf/0Lp06dQmRkJG/gJiKSIJkQQpg6iBe5ubkhKSlJ57zExEQ4OjoiJCQEZ86cwd27d1FYWAgPDw+8+eabmDNnDmrXrq2xTFFRET7++GN8+eWXUKlU8PT0RGhoKN58881yxZWRkQEHBwekp6fD3t6+wttHVJ0wr6UlKytL4wd+dHQ07OzsTBiRaVTL4lZd8UuApIh5LS0sbs+Y5Tk3IiKi0rC4ERGR5LC4ERGR5FTLqyVrOiEEsrOz1dO2trZaz8YkIqKSsbhVQ9nZ2TwhTERl6jR3h1abrCAPz7+y2X9RFISllVa/i6vHV2JkpsfDkkREJDksbkREJDksbkREJDksbkREJDksbkREJDm8WpKIqgRvcaGqxOJGRFWCt7hQVeJhSSIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhyjFre0tDTcuXPHmEMSERGVm8HFLT09HTNnzkSjRo3QoEEDuLu7q+edPXsWgwcPxsWLFw1dDRERkd4MKm5paWnw9fXF+vXr4eLigtatW0MIoZ7fvn17/Pzzz4iMjDQ4UCIiIn0ZVNzCwsJw/fp1REVF4cKFCwgMDNSYr1Ao0LNnTxw/ftygIImIiMrDoOK2f/9+DBkyBCNHjiyxj5ubG5KTkw1ZDRERUbkYVNxUKhXatGlTah+5XK7xPLmyZGVlYfHixRg4cCDq1asHmUyGbdu26ex75coVDBw4EHZ2dqhXrx7GjRuHv/76S6tfUVERVq1aBXd3d1hbW6N9+/b45ptv9I6JiIjMi0HFzcnJqcyrI69evQqlUqn3mKmpqVi6dCmuXLmCl19+ucR+ycnJ6NGjB27evInly5djzpw5+P7779GvXz/k5eVp9F24cCHef/999OvXD+vXr0ezZs0wZswYREVF6R0XERGZD4MenNyjRw9ER0cjOTkZzs7OWvMvX76MQ4cOYeLEiXqPqVQqoVKp0LhxY1y4cAFdunTR2W/58uXIzs7GxYsX0axZMwCAj48P+vXrh23btuHtt98GAKSkpCA8PBzTp0/Hhg0bAACTJ09Gz549MXfuXAQGBsLCwqK8m05ERNWYQXtuCxcuRGFhIfz8/BAZGYnU1FQAzw4XbtmyBb1794ZcLsfcuXP1HlMul6Nx48Zl9tuzZw+GDBmiLmwA0LdvX7Ro0QLfffedui06Ohr5+fl455131G0ymQzTpk1DcnIy4uLi9I6NiIjMg0F7bu3atcO3336LcePGYfz48QCevbPJy8sLQgjUqVMH3333HTw9PY0SbLGUlBQ8ePAAnTt31prn4+ODH374QT0dHx8PW1tbtG7dWqtf8fxXX33VqPEREZFpGfw+t6FDhyIxMRHbt2/H2bNnkZaWBnt7e/j6+mLixImoX7++MeLUoFKpAEDnuTylUom0tDTk5uZCLpdDpVKhUaNGWi9FLF727t27Ja4nNzcXubm56umMjAxjhE9kUsxrqgkMKm47duxAo0aNMGDAAMyePdtYMZXp6dOnAJ4dwnyRtbW1uo9cLlf/t7R+JVmxYgWWLFlijJBL1GnuDq02WUEeHJ6b9l8UBWFppdHn4urxlRoXSVd1zmuAuU3GYdA5t0mTJuHQoUPGikVvCoUCADR+fRbLycnR6KNQKPTqp0toaCjS09PVHz43k6SAeU01gUF7bkqlEgUFBcaKpVzrBf53ePJ5KpUK9erVU++tKZVKnDhxAkIIjUOTxcs2adKkxPXI5XKde31E5ox5LW3CojbS2wdpTNdEBu25DR06FEePHtW5Z1SZmjZtigYNGuDChQta886dO4cOHTqopzt06IAnT57gypUrGv3Onj2rnk9EJBkyGYSllfqDF643qCkMKm4fffQRbG1tMXz4cPzxxx/GikkvI0aMwMGDBzUOqcTExOD69esaz7gMCAhA7dq1sXHjRnWbEAJffPEFmjZtim7dulVp3EREVPkMOizp7e2N3NxcXLp0CYcOHYK1tTUaNmyodWWiTCZDQkKC3uNu2LABjx8/Vl/JeODAAfXzKUNCQuDg4IAFCxZg165d6NWrF2bOnImsrCysXr0a7dq107hp3NnZGbNmzcLq1auRn5+PLl264F//+hdOnTqFyMhI3sBdgwkhNB4NZ2trq5W7RGSeDCpuRUVFsLKy0riRGoDGa290TZflk08+QVJSknp679692Lt3LwBg7NixcHBwgIuLC06ePIn33nsP8+fPh5WVFV577TWEh4drnU9YuXIl6tatiy+//BLbtm2Dp6cnIiIiMGbMmHLFRdKSnZ2NgIAA9XR0dDTs7OxMGBERGYtBxe327dtGCqNi47Zt2xaHDx8us1+tWrUQGhqK0NBQAyMjIiJzYPCbuImIiKobFjciIpIcgx+/BQBxcXE4duwY7t69q/O2AJlMhi1bthhjVURERGUyqLgVFBQgKCgIe/fuVd8k/fzFI8XTLG5ERFSVDDosGR4ejj179mDixIm4cOEChBCYNWsW4uLi8PHHH8PR0RGBgYHlug2AiIjIUAbtuUVGRsLLywubN29Wtzk6OsLX1xe+vr4YPHgwfHx80Lt3b0ydOtXgYImIiPRh0J7bzZs34e/vr56WyWTIz89XT7dt2xavv/46Nm3aZMhqiIiIysWg4mZlZQUbGxv1tJ2dHR48eKDRx9XVFTdu3DBkNSQRQghkZWWpP+W9uZ+ISF8GHZZ0cXHReLZjq1at8O9//1vjCfxnzpxBvXr1DIuSJIFPBKnZ+LR6qkoG7bn17NlTXcwAYNSoUbh27RqGDBmCzz//HEFBQfjpp58wcOBAowRLRGaMT6unKlTuPbeMjAxYW1vDysoKb731FgoLC5GSkgJnZ2eEhIQgNjYWBw8exI8//ggA8PHxwcqVK40eOBERUUnKvedWt25dfPzxxwCAjh07YtOmTUhJScFnn32G2rVrY//+/Th37hy++eYbnD59GqdPn4aTk5PRAyciIipJuYubEELrQoBDhw5h9uzZ6unOnTtj1KhR6Nq1K2rV4hO+iIioahnl8VtERDUV3wtYPbG4EREZgFcBV088ZkhERJLDPbdqiPcDEREZpkLFLSIiAmfOnFFP37x5EwAwePBgnf1lMhm+//77iqyqZvrv/UBERFQxFSpuN2/eVBe05x06dEhnf55cJSKiqlTu4paYmFgZcRAR6YVXJ5I+yl3cXF1dKyMOIiK98OpE0gcvKCEiqga4R2pcLG4Sxn8sROaDe6TGZbbFLTY2Fr169dI5Ly4uDl27dlVPnz59GvPmzcN//vMf2NvbY+TIkVi+fLnkE4f/WIiMq9PcHVptsoI8ODw37b8oSufVzhdXj6/EyOhFZlvcis2YMQNdunTRaPPw8FD//6VLl9CnTx+0bt0aa9asQXJyMj755BPcuHFD/eYCkr6KfinxC4nIPJl9cevevTveeOONEucvWLAAdevWRWxsLOzt7QEAbm5umDJlCo4cOYL+/ftXVahERFRFzL64AUBmZiYUCgUsLTU3JyMjA0ePHsXs2bPVhQ0Axo8fj9mzZ+O7775jcask3FMiIlMy+2dLTpw4Efb29rC2tkavXr1w4cIF9bzffvsNBQUF6Ny5s8YyVlZW6NChA+Lj46s6XCIiqgJmu+dmZWWFESNGYPDgwahfvz4uX76MTz75BN27d8fp06fh7e0NlUoFAFAqlVrLK5VKnDp1qtR15ObmIjc3Vz2dkZFh3I0gMgHmNdUEZrvn1q1bN+zevRtvvfUWhg4divnz5+PMmTOQyWQIDQ0FADx9+hQAIJfLtZa3trZWzy/JihUr4ODgoP64uLgYf0OIqhjzmmoCsy1uunh4eCAgIAAnTpxAYWEhFAoFAGj8Si2Wk5Ojnl+S0NBQpKenqz937typlLipfIQQyMrKUn9efDM8lY55TTWB2R6WLImLiwvy8vKQnZ2tPhxZfHjyeSqVCk2aNCl1LLlcrnOvj0yL9+8ZxpzymveVUUVJas8NAG7dugVra2vY2dnBy8sLlpaWGheZAEBeXh4uXbqEDh06mCZIIiKqVGa75/bXX3+hQYMGGm2//PIL9u/fj0GDBqFWrVpwcHBA3759ERERgUWLFqFOnToAgK+//hpZWVkIDAw0RehEJCEVebkw90grn9kWt1GjRkGhUKBbt25o2LAhLl++jK+++go2NjZYuXKlut9HH32Ebt26oWfPnnj77beRnJyM8PBw9O/fHwMHDjThFhgX7ysjMhG+XLhaMtvDksOGDUNqairWrFmDd955B99++y2GDx+OCxcuoHXr1up+HTt2xLFjx6BQKDB79mx89dVXmDRpEnbv3m3C6ImIqDKZ7Z7bjBkzMGPGDL36vvrqq/j5558rOSIiIqouzHbPjYiIqCQsbkREJDksbkREJDlme86NagapXgWqa7v0YYrt4hvdyRyxuBFRqfhEmJrJ3H/UsLgREZEWc/9Rw+JGRGalIk8EMQdS3S5TYXGjKsN/vGQUUn0iiFS3y0RY3Kjq8B8vEVURFjcJ454SEdVULG5Sxj0lKic+rZ6kgsWNaizu2RJJF4sb1VzcsyUCIM09dhY3MjvVbY/L3G92JZIiFjcj4pdcFalme1zmfrMrkRSxuBkRv+SIiKoHFjciKlV1OwxcERV9UDVQfc8pUelY3CpIqk+rJ9JSzQ4DE+mD73MjIiLJ4Z4bERFpMffD0SxuRmTuyUBl4+FoqjHM/HA0i5sxmXkyAOb1hmgiopLwnBsREUlOjSluubm5eP/999GkSRMoFAr4+vri6NGjpg6LiIgqQY0pbsHBwVizZg3efPNNrFu3DhYWFhg8eDB++uknU4dGRERGViPOuZ07dw5RUVFYvXo15syZAwAYP348vLy8MG/ePJw+fdrEEZI544VERNVPjdhz2717NywsLPD222+r26ytrTFp0iTExcXhzp07JoyOzN5/LyQq/oDPEyUyuRpR3OLj49GiRQvY29trtPv4+AAALl26ZIKoiIiostSIw5IqlQpKpVKrvbjt7t27OpfLzc1Fbm6uejo9PR0AkJGRgcLcpxWKJSMjQ2Oa43Ccio5Tp06dCr11ojLy+sXYOE7NHMcYKprXWkQN8NJLL4lBgwZptSckJAgAYu3atTqXW7x4sQDADz/V8pOenl6hfw/Ma36q86eief0imRBCQOK8vLzQqFEjxMTEaLRfvnwZbdu2xRdffIGpU6dqLffiL9yioiKkpaXBycmpxF8WGRkZcHFxwZ07d7QOg5YHx+E4ZY1jrD035jXHqU7jGGvPrUYcllQqlUhJSdFqV6lUAIAmTZroXE4ul0Mul2u0OTo66rVOe3t7g5KB43AcY4yjC/Oa45j7OPqoEReUdOjQAdevX9c6Nnz27Fn1fCIiko4aUdzeeOMNFBYW4quvvlK35ebmYuvWrfD19YWLi4sJoyMiImOrEYclfX19ERgYiNDQUDx48AAeHh7Yvn07bt++jS1bthh1XXK5HIsXL9Y67MNxOE5VjmNs1W37OE7NHKc8asQFJQCQk5ODRYsWISIiAo8ePUL79u2xbNkyDBgwwNShERGRkdWY4kZERDVHjTjnRkRENQuLGxERSQ6LmxHIZLIyP2FhYXqPl5CQgKlTp+Kll16CtbU17O3t4efnh3Xr1uHp07Ifk7Nt27ZSYzlz5ozesSQmJuLdd99FixYtYGNjAxsbG7Rp0wbTp0/Hr7/+Wu5YrK2t0aRJEwwYMACfffYZMjMz9Y6l2MaNGyGTyeDr61vuZXXFJJPJ0LBhQ/Tq1Qs//vijwWMVf+bPn1/m8vrkjkwmQ2xsbIW21RDGzmuAuV0WQ3Kbea2pRlwtWdm+/vrrEueFhYUhISFB72T9/vvvERgYCLlcrn4tT15eHn766SfMnTsXf/zxh8YtDaVZunQp3N3dtdo9PDz0Wv7gwYMYNWoULC0t8eabb+Lll19GrVq1cPXqVezduxebNm1CYmIiXF1d9Y4lPz8f9+7dQ2xsLGbNmoU1a9Zg//79aN++vV4xAUBkZCTc3Nxw7tw53Lx5U+/tKSkmIQTu37+Pbdu2YfDgwThw4ACGDBlSobGe5+XlVeZyL+bOjh07cPToUa321q1blyseYzBmXgPMbX0YI7eZ1/9llId4kU7/+Mc/BAAREhKiV/9bt24JOzs70apVK3H37l2t+Tdu3BCffvppmeNs3bpVABDnz58vd8zFbt68KWxtbUXr1q11xpKfny/WrVsn/vzzzwrHEhMTIxQKhXB1dRVPnjzRK65bt24JAGLv3r2iQYMGIiwsTL8N0iOmtLQ0Ubt2bTFmzBiDx6qo6dOni+r+z7K8eS0Ec1sfhuY281oTD0tWkj/++AMzZsyAt7c3Vq9erdcyq1atQlZWFrZs2aLzLQYeHh6YOXOmsUMtMZbs7Gxs3bpVZyyWlpaYMWOGQTfA9+7dG4sWLUJSUhIiIiL0WiYyMhJ169bFa6+9hjfeeAORkZEVXv+LHB0doVAoYGnJAxolqUheA8xtfVRWbtfUvGZxqwRPnjzByJEjYWFhgaioKL1vXDxw4ABeeukldOvWzShxpKenIzU1VePz8OFDvZY9ePAgPDw8KnxeS1/jxo0DABw5ckSv/pGRkRg+fDisrKwQFBSEGzdu4Pz58xVad/Hf56+//sIff/yBadOmISsrC2PHjq3wWM9/pKaieQ0wt/VhrNxmXj9Ts0p5FQkJCcHly5exfft2tGjRQq9lMjIykJKSgoCAAKPF0bdvX602uVyOnJycMmO5e/cuhg0bpjXv8ePHKCgoUE/b2tpCoVBUOEZnZ2c4ODggISGhzL4XL17E1atXsX79egDAq6++CmdnZ0RGRqJLly7lXveLfx+5XI5//vOf6Nevn8FjAYCQ2C2kFclrgLld1bnNvH6Gxc3Idu7ciX/+858YN24cxo8fr/dyxQ91rlOnjtFi+fzzz7W+hCwsLPSOxc7OTmuev78/fvnlF/X06tWrMWfOHIPitLOz0+vKssjISDRq1Ai9evUC8OyKrFGjRiEiIgLh4eF6bdvznv/73L9/HxEREZg8eTLq1KmD4cOHV3gsKapoXgPM7arObeb1MyxuRnTjxg38/e9/R4sWLbBx48ZyLVv8GoiKXD5cEh8fH3Tu3LncyxV/CWVlZWnN+/LLL5GZmYn79+9X6DCHLllZWWjYsGGpfQoLCxEVFYVevXohMTFR3e7r64vw8HDExMSgf//+5Vrvi3+foKAgeHt7491338WQIUNgZWVV4bGkxJC8BpjbVZ3bzOtnWNyMJDc3F6NGjUJeXh6ioqJ0/jIsjb29PZo0aYLff/+9kiLUn4ODA5RKpc5Yis9T3L592yjrSk5ORnp6epmXPB8/fhwqlQpRUVGIiorSmh8ZGVnu4vaiWrVqoVevXli3bh1u3LiBtm3bGjSeFBia1wBz29S5XVPzmheUGMmcOXMQHx+PVatWwdvbu0JjDBkyBAkJCYiLizNydOX32muv4ebNmzh37lylrqf4vpeyHmAdGRmJhg0bYteuXVqfoKAg7Nu3T6+bgMtSfM5F1y/7msgYeQ0wt0tTFbldI/O6Sm88kKi9e/cKAGLo0KEGjVN8/02bNm3EvXv3dM6vqnuBrl+/LmxsbETbtm11xlJ8T87q1asrHEvxvUDu7u7i6dOnJY7x5MkTUadOHfHWW2/pnP/zzz8LACIqKqqMrSo9pry8POHp6SmsrKxEenq6QWNVVHW6z81YeS0Ec7skxsxt5rUmHpY0kEqlwqRJk2BhYYE+ffqUeE9L8+bN8corr5Q6VvPmzbFz506MGjUKrVu31niKw+nTp7Fr1y4EBwfrHduPP/6Iq1evarV369YNL730UqnLenp6YufOnQgKCkLLli3VT3EQQiAxMRE7d+5ErVq14OzsXK5YCgoKcP/+fRw/fhxHjx6Fq6sr9u/fD2tr6xKX3b9/PzIzMzF06FCd87t27YoGDRogMjISo0aN0iue52MCgAcPHmDnzp24ceMG5s+frz5PVFMZM6+L+zG3tVVGbjOv/6tKS6kEnThxQgAo8zNhwgS9x7x+/bqYMmWKcHNzE1ZWVqJOnTrCz89PrF+/XuTk5JS5fPGvrpI+W7du1TuWmzdvimnTpgkPDw9hbW0tFAqFaNWqlfj73/8uLl26VO5YrKysROPGjUW/fv3EunXrREZGRpljvP7668La2lpkZ2eX2Cc4OFjUrl1bpKamljsmAMLa2lp06NBBbNq0SRQVFZU5xotjmfMvXF0qI6+FYG6/yJi5zbzWxPe5ERGR5PCCEiIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWNyIikhwWN1Lz9/eHTCbTu39sbCxkMhnCwsIqLygiI2Bu1zwsbmbo4sWLmDRpEjw9PWFrawuFQoHmzZtj3LhxOHr0qKnDq7CCggJEREQgICAATZs2hVwuh62tLVq0aIGxY8di3759KCoqMnWYVImY22QsfLakGSkqKsKcOXOwdu1aWFpaonfv3vDy8kLt2rVx69YtHDt2DI8ePcLSpUuxaNGico/v7++PkydPQt+UePLkCf7880/Ur18f9evXL/f6npeUlIS//e1viI+PR/369dGnTx+4urqiqKgIiYmJiI2NxcOHDzFs2DDs27fPoHVR9cPcZm4bG195Y0Y++OADrF27Fh06dMDu3bvRvHlzjflPnz7Fhg0b8PDhwyqJx8bGBq1atTJ4nIyMDAwYMADXrl3DvHnzEBYWBoVCodEnPz8fO3fuxIEDBwxeH1U/zG3mttFV6TsIqMJu3LghLCwshJOTk84XLD6v+NUh165dE3PnzhXe3t6iXr16Qi6XC09PT/H++++LzMxMreV69uwpAIinT5+K999/X7i4uAi5XC5atWolPvvsM61XZhS/FmXx4sUa7a6ursLV1VVkZmaKGTNmCKVSKaysrES7du3Erl27tNb7wQcf6P36lPz8fI3pxYsXCwDixIkTYuvWrcLb21soFArRs2dPrfkvKn6tx/OvSUlMTFTH8vvvv4vBgwcLBwcHYWtrK/r16ycuXLhQZoxUPsztZ5jbxsU9NzOxbds2FBYWYurUqWjUqFGpfeVyOQBg79692LJlC3r16gV/f38UFRXhzJkz+Pjjj3Hy5En8+9//Ru3atbWWHzlyJOLj4zFixAgAwJ49ezBjxgzcvn0b4eHhesWbn5+P/v3749GjRxgxYgSePHmCqKgojBw5EocOHUL//v3Vfbdu3QoAeh1usrTUnbKrV6/GiRMnEBAQgP79+8PCwkKvOEty69Yt+Pn5oWPHjpg2bRqSkpKwa9cu9OjRA8ePH4evr69B49P/MLefYW4bmamrK+nH399fABDHjh3Te5nk5GSRm5ur1b5kyRIBQERERGi0F/+6bdmypXj8+LG6/fHjx6Jly5ZCJpNpvLywtF+3AERAQIDG+o8dOyYAiAEDBqjbkpKSBADh4uKi93Y9r/jXq62trfj1119LnF/eX7cAxPz58zX6Hzp0SAAQ7dq1q1CspBtzWzfmtmF4taSZuHfvHgDA2dlZ72WaNm0KKysrrfZ3330XAHDs2DGdyy1atAgODg7qaQcHB3zwwQcQQmD79u16r3/t2rUa6y8+kX7+/Hl1W/F2NWnSROcYn376KcLCwjQ+jx8/1ur39ttvo127dnrHVhZHR0csXLhQo23AgAHo06cPfvvtN1y8eNFo66rpmNvM7crAw5ISJoTA1q1bsW3bNvz+++9IT0/XuNz47t27Opfr3r17iW3x8fF6rdvR0RHu7u5a7c7OzoiLi9NrDODZF0BSUpJGW3BwMBwdHTXafHx89B5TH97e3rCzs9Nq7969O2JiYhAfH49OnToZdZ2kP+Z2xdWU3GZxMxONGzfG1atXkZKSgpYtW+q1zIwZM7Bhwwa4uLhg6NChUCqV6nMWS5YsQW5urs7ldJ33KG5LT0/Xa93P/zp+nqWlpcaXUPG4JX0Z3b59W/3/AwcOxOHDh/WO2RAljVfevwOVjbnN3K4MLG5mws/PD7GxsYiJiUHv3r3L7P/gwQN8/vnnaN++PeLi4mBjY6Oed+/ePSxZsqTEZe/fv49mzZpptQEl/8OuKFdXVzRt2hR37txBQkKC1iXg+irp6RO1aj078l5QUKA1r7R/xMXbW1K7sf8ONRlzu3TM7YrhOTczERwcDAsLC3z11Vf466+/Su2bm5uLW7duQQiBvn37avzjB4BTp06Vuryu+cVt3t7e5Yy8bBMnTgQAfPTRR0Yfu27dugCAlJQUrXmlHYaKj49HVlaWVntl/h1qKuZ2xTC3S8fiZiY8PDwwb948pKamYtCgQUhMTNTqk5OTgzVr1iAsLAyurq4AgNOnT2scKklOTkZoaGip61q2bJnGL7/09HR8+OGHkMlkmDBhgpG26H/mzp2LFi1aYOvWrQgNDUVOTo5Wn4KCAmRnZ5d77C5dugAAduzYofF3iIuLQ2RkZInLPX78WOsL6fDhw4iJiYGXl5ckzklUF8xt5nZl4GFJM/Lhhx8iJycHa9euRcuWLTUeUZSYmIhjx47h4cOH+PDDD6FUKjFixAjs2bMHnTt3Rp8+fXD//n0cPHgQffr0QUJCQonradGiBby8vDTuBUpOTsZ7772Hzp07G3277O3tceTIEQwbNgwrV67E5s2b0bdvX7i6uqKgoAAqlQoxMTG4f/8+vLy8tE64l6Zr167w8/PD8ePH8corr6BHjx5ISkpCdHQ0Xn/99RIfd9S9e3ds2rQJZ8+eRdeuXXH79m3s2rULCoUCmzdvNtKWUzHmNnPb6Ex5HwJVzPnz58Vbb70lPDw8hEKhEHK5XLi5uYkxY8aIo0ePqvtlZmaK//u//xNubm7qJzgsW7ZM5OXlCQDqJx0Ue/4pDvPmzRMuLi7CyspKtGzZskJPcdCleB265Ofnix07doghQ4aon/xgY2MjmjdvLkaPHi327dsnCgoKNJYp7V6fYqmpqWL8+PGiXr16QqFQiK5du4rDhw/r/RQHe3t7YWtrK/r27Su5pzhUN8zt/2FuG4YPTiZ6zu3bt+Hu7o4JEyZg27Ztpg6HyGhqWm7znBsREUkOixsREUkOixsREUkOz7kREZHkcM+NiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgkh8WNiIgk5/8BmNZk/2NvJToAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi7UlEQVR4nO3deVRU9f8/8OcFnRlkGYUSQVlMsARF3FMTsA+uuZSJpilgmp70i1pqhfZJjx01M+rjJyv1k6dUyCW1Dy5l7uWGS2lWaqSiCY65oCyjDNv790c/5uM4A4IzcGfuPB/nzDnd933P+77u9HJe3PddRhJCCBARESmIi9wBEBER2RqLGxERKQ6LGxERKQ6LGxERKQ6LGxERKQ6LGxERKQ6LGxERKQ6LGxERKQ6LGxERKQ6LG9VIcHAwgoOD5Q7DyN7iIcdkb3lkb/E4IhY3men1esyfPx/t27eHh4cH1Go1mjVrhh49eiA5ORnnz5+XO0SqpvLycnz00Udo06YN3Nzc8Oijj2LEiBG4cOGC3KHVOea1Mly7dg0LFizA0KFD0bx5c0iSBEmS5A6rWurJHYAzKygowFNPPYVTp04hJCQEo0aNgo+PD27cuIGjR4/i3XffRYsWLdCiRQu5QzXavXu33CHYrQkTJuCzzz5DeHg4Jk+ejCtXrmD9+vXYsWMHMjIyEBoaKneIdYJ5rRynT5/GzJkzIUkSQkND0aBBA9y5c0fusKpHkGzmzp0rAIhx48aJ8vJys/UXLlwQZ86ckSEyxxEUFCSCgoLkDkPs2bNHABBRUVHCYDAY27/55hsBQPTu3VvG6OoW89p69pLXV69eFd9//73Iz88XQgjx+OOPC0cpG5yWlNHhw4cBAJMmTbJ4qN+8eXM88cQTJm2SJCEmJsbieJbm6RMTEyFJEi5cuICUlBSEhYVBrVYjMTER77zzDiRJwqpVqyyOt2nTJkiShFmzZlW6jYcZAwCysrIwbtw4BAYGQq1Ww8/PD4mJibh06ZLFcdLT09GpUye4ubnB19cXL7/8Mm7dumWxrxz+85//APj781CpVMb2fv36ISYmBjt27MCff/4pV3h1inmtnLz29fVFVFQUPD095Q6lxljcZOTj4wMAyMzMrPVtJSUlYf78+ejYsSOmTp2KNm3aYNSoUZAkCampqRbfs3r1agDA6NGjKx33YcY4cuQI2rVrh5UrV6JDhw6YMmUKevTogbS0NHTu3NnsHNWqVavw7LPPIjMzE6NHj0ZCQgIOHjyI2NhYFBcX1+hzqC379u2Du7s7unfvbrauT58+AIDvv/++rsOSBfNaOXntyHjOTUZxcXFITU3FuHHjcPToUfTu3RsdOnQwfjnY0qlTp3DixAkEBgaatHfv3h179uyBTqeDn5+fsT03NxfffPMNOnbsaPZX9r2aN29eozFKSkrwwgsvoLy8HEePHkW7du2M/Q8cOICYmBhMmTIFW7ZsAQDk5+cjKSkJ7u7uOHbsGFq2bAkAmDdvHmJjY6HT6RAUFFTtz2HOnDnV7gv8fYTwoKvW9Ho9dDodWrduDVdXV7P1Fefa/vjjjxpt21Exr5WR1w5P7nlRZ5eSkiI8PDwEAOOrRYsWYtKkSSIzM9OsPwARHR1tcSxL8/QJCQkCgFi8eLHF9yxbtkwAECkpKSbtn3zyiQAg/vWvfz1wGzUZY9OmTQKAmDt3rsV4hgwZIlxcXEReXp4QQoiVK1cKACIpKcms7/79+wWAGp2buPdzrs5r7969DxwzJydHABDdu3e3uH7Hjh0CgJg8eXK143R0zGtTjpjXlvCcG1Xba6+9ZryqburUqXjqqafw559/4uOPP0ZERAQ2b95sk+107tzZYvuwYcOgVquN0ywVUlNTUa9ePYwYMeKBY9dkjIyMDADA77//jjlz5pi9rl69ivLycuOU1s8//wwA6NGjh9l2u3btinr1ajb5IISo0auy80BUNeY181punJa0A56enoiLi0NcXBwAIC8vDzNnzsQnn3yCsWPHIicnx+QihYfh6+trsb1hw4YYMGAANm7ciNOnTyMsLAznz5/HoUOH0L9/fzRu3PiBY9dkjNzcXABAWlpalWPq9XoAf38WACzG4erqWitTXTWl1WoB/C/W++Xn55v0cxbMa3OOlNeOjsXNDmm1WixZsgTbtm3DpUuX8Msvv6BDhw4A/r6qrLS01OL78vLyKv0CrerGy9GjR2Pjxo1YvXo1FixYYDyJXtUJ94cdw8vLCwCwZcsWDBgw4IHjVuzPtWvXzNaVlZXh5s2baNq0abXjrI1zE+7u7vDz80NWVhbKysrMzrtVnGtzlvvcKsO8/h9HyGuHV3czoFRTYWFhAoA4fvy4sc3b21sEBweb9c3KyrI4T19xbiIrK6vS7RQXFwsfHx8RGBgoysrKRGhoqPD09BR37twx61vZ/TfVHWPdunUCgJg5c2bVO///Ocq5iRdeeEEAEN9//73ZupiYGAFAXLx4sdpxKhnz2nHy+n6OdM7NMaJUqKVLl4qjR49aXPf1118LSZJEw4YNRVFRkbG9T58+AoDYt2+fsc1gMIjnnnvuob8EhBBi4sSJAoBYsGCBACASExMt9qvq5tLqjFFUVCQCAwOFRqOxWAiKi4vF/v37jcu3b98WXl5ewt3dXfz+++8m/aKjo2v8JVBbeBP3/zCvlZPX93Ok4iYJIYStjgKpZp599lmkp6cjJCQE3bt3h7+/P/R6PU6cOIH9+/fDxcUFqampJieud+zYgb59+8LNzQ0jRoxAgwYNsHPnTjRs2BCXLl2CSqXCxYsXjf0TExOxcuVKZGVlVTkNkZGRga5du6J+/fooKSnB7t278fTTT5v1qxjj3m3UdIxjx46hX79+uHnzJp5++mm0adMGkiTh0qVL2L9/P3x8fHD27Flj/5UrVyIxMRFeXl544YUXoNVqsXXrVri5uUGn05nts1xefvll4+O3nnnmGeh0Oqxbtw4eHh44fPiw8XJvpWNeKyuvExMTjf/99ddfIz8/HwkJCca2N998s8rbKmQjd3V1ZmfPnhXvvfee6NWrl2jevLnQaDRCo9GIFi1aiISEBJNpm3t99dVXok2bNkKlUokmTZqIpKQkUVBQUOUl0w/6C1cIIUJDQwUA0axZM1FWVmaxz4MeC1SdMYQQIjs7W0yZMkWEhoYKtVotvLy8RKtWrcS4cePE7t27zfp//fXXokOHDkKtVovGjRuLcePGidzcXLt5TJEQQpSVlYnFixeL8PBwoVarhY+Pjxg+fLg4d+6c3KHVKea1svIatTTFWdt45EZERIrD+9yIiEhxWNyIiEhxWNyIiEhxWNyIiEhxWNyIiEhxWNyIiEhxWNxqQAiB/Px88O4JUhLmNSkRi1sNFBQUQKvVoqCgQO5QiGyGeU1KxOJGRESKw+JGRESKw+JGRESKw+JGRESKw1/iJqI6IYSAXq83Lru7u1f5S9pE1mBxI6I6odfrMXjwYONyeno6PDw8ZIyIlIzTkkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDh2V9wKCwsxe/Zs9O3bF97e3pAkCV988YXFvmfOnEHfvn3h4eEBb29vjB49GtevXzfrV15ejvfeew/NmzeHRqNBREQE1qxZU8t7QkREcrG74nbjxg3MnTsXZ86cQdu2bSvtl52djaioKJw7dw7z58/H9OnTsW3bNvTq1QvFxcUmfWfNmoU33ngDvXr1wkcffYTAwECMHDkSa9eure3dISIiGdjdTdx+fn7Q6XRo0qQJjh8/jk6dOlnsN3/+fOj1evz4448IDAwEAHTu3Bm9evXCF198gfHjxwMAcnJykJKSgkmTJmHJkiUAgHHjxiE6OhozZsxAXFwcXF1d62bniIioTtjdkZtarUaTJk0e2G/jxo0YMGCAsbABQGxsLFq2bIn169cb29LT01FSUoKJEyca2yRJwiuvvILs7GwcPnzYtjtARESys7viVh05OTm4du0aOnbsaLauc+fOOHHihHH5xIkTcHd3R6tWrcz6VawnIiJlsbtpyerQ6XQA/p7CvJ+fnx9yc3NhMBigVquh0+ng6+tr9oDWivdeuXKl0u0YDAYYDAbjcn5+vi3CJ5IV85qcgUMeud29exfA31OY99NoNCZ97t69W61+lixYsABardb4CggIsDp2Irkxr8kZOGRxc3NzAwCTvz4rFBUVmfRxc3OrVj9LkpOTkZeXZ3xdvnzZ6tiJ5Ma8JmfgkNOSFVOKFdOT99LpdPD29jYerfn5+WHv3r0QQphMTVa819/fv9LtqNVqi0d9RI6MeU3OwCGP3Jo2bYpHH30Ux48fN1t39OhRREZGGpcjIyNx584dnDlzxqTfkSNHjOuJiEhZHLK4AcDzzz+PrVu3mkyp7N69G5mZmYiLizO2DR48GPXr18cnn3xibBNCYOnSpWjatCm6detWp3ETEVHts8tpySVLluD27dvGKxm3bNmC7OxsAEBSUhK0Wi1mzpyJr776Cj179sSUKVNQWFiIRYsWoU2bNhgzZoxxrGbNmmHq1KlYtGgRSkpK0KlTJ/z3v//F/v37kZaWxhu4iarQYcYqm40llRZDe89yzD/XQtRT2Wz8HxfF22wscnySEELIHcT9goODcenSJYvrsrKyEBwcDAD47bff8Nprr+HAgQNQqVR45plnkJKSAl9fX5P3lJeXY+HChVi2bBl0Oh1CQ0ORnJyMF198sUZx5efnQ6vVIi8vD15eXg+1b0T2pqq8tnlxO/W/Z7rmRYxgcaNaY5dHbhcvXqxWv/DwcHz33XcP7Ofi4oLk5GQkJydbGRkRETkChz3nRkREVBkWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhy7/D03ZyeEgF6vNy67u7tDkiQZIyKynnCtj7yIESbLRLWFxc0O6fV6DB482Licnp4ODw8PGSMisgFJsukvbxNVhdOSRESkOCxuRESkOCxuRESkOCxuRESkOCxuRESkOCxuRESkODYtbrm5ubh8+bIthyQiIqoxq4tbXl4epkyZAl9fXzz66KNo3ry5cd2RI0fQv39//Pjjj9ZuhoiIqNqsKm65ubno0qULPvroIwQEBKBVq1YQQhjXR0RE4ODBg0hLS7M6UCIiouqyqrjNmTMHmZmZWLt2LY4fP464uDiT9W5uboiOjsaePXusCpKIiKgmrCpumzdvxoABAzBs2LBK+wQHByM7O9uazRAREdWIVcVNp9MhLCysyj5qtdrkIcBERES1zari5uPj88CrI8+ePQs/Pz9rNkNERFQjVhW3qKgopKenVzrtePr0aWzfvh2xsbHWbIaIiKhGrCpus2bNQllZGbp37460tDTcuHEDAHDmzBmsWLECTz/9NNRqNWbMmGGTYImIiKrDqt9za9OmDdatW4fRo0cjPj4ewN8/tNm6dWsIIeDp6Yn169cjNDTUJsESERFVh9U/Vjpo0CBkZWVh5cqVOHLkCHJzc+Hl5YUuXbpgzJgxeOSRR2wRp13rMGOVTceTSouhvWc55p9rbfojjz8uirfZWERE9siq4rZq1Sr4+vqiT58+ePXVV20VExERkVWsOuc2duxYbN++3VaxEBER2YRVxc3Pzw+lpaW2ioWIiMgmrCpugwYNws6dO2EwGGwVDxERkdWsKm7z5s2Du7s7hgwZgt9++81WMREREVnFqgtK2rVrB4PBgJMnT2L79u3QaDRo3LgxJEky6SdJEs6fP29VoERERNVlVXErLy+HSqVCYGCgSfu9P3tjaZmIiKg2WVXcLl68aKMwiIiIbMfqX+ImIiKyNyxuRESkOFY/fgsADh8+jF27duHKlSsWbwuQJAkrVqywxaaM9u3bh549e1Yaz5NPPmlcPnToEF5//XX89NNP8PLywrBhwzB//nx4eHjYNCYiIrIPVhW30tJSjBgxAps2bYIQApIkmVw8UrFcG8WtwuTJk9GpUyeTtpCQEON/nzx5Ev/4xz/QqlUrfPDBB8jOzsb777+PP/74A99++22txERERPKyqrilpKRg48aNeOmllzBx4kR07NgRU6dOxfDhw/HDDz/g3XffRWxsLBYuXGireM306NEDQ4cOrXT9zJkz0ahRI+zbtw9eXl4AgODgYLz88svYsWMHevfuXWuxERGRPKw655aWlobWrVvjs88+Q/v27QEADRs2RJcuXTBjxgz88MMP2Lp1K7777jubBFuZgoICi48By8/Px86dOzFq1ChjYQOA+Ph4eHh4YP369bUaFxERycOq4nbu3DnExMQYlyVJQklJiXE5PDwcAwcOxKeffmrNZqo0ZswYeHl5QaPRoGfPnjh+/Lhx3S+//ILS0lJ07NjR5D0qlQqRkZE4ceJErcVFRETysWpaUqVSoUGDBsZlDw8PXLt2zaRPUFAQtmzZYs1mKt32888/j/79++ORRx7B6dOn8f7776NHjx44dOgQ2rVrB51OB+DvBzzfz8/PD/v3769yGwaDweQCmfz8fNvuRCWEa33kRYwwWSayFbnymqguWXXkFhAQgMuXLxuXn3jiCfzwww8mF5VkZGTA29vbms1Y1K1bN2zYsAEvvfQSBg0ahDfffBMZGRmQJAnJyckAgLt37wIA1Gq12fs1Go1xfWUWLFgArVZrfAUEBNh8PyySJIh6KuML9z3OjMgasuU1UR2yqrhFR0ebFLPhw4fj999/x4ABA/Dxxx9jxIgROHDgAPr27WuTYB8kJCQEgwcPxt69e1FWVgY3NzcAsHh7QlFRkXF9ZZKTk5GXl2d83VvIiRwV85qcQY2nJfPz86HRaKBSqfDSSy+hrKwMOTk5aNasGZKSkrBv3z5s3brVeJl9586d8e6779o88MoEBASguLgYer3eOB1ZMT15L51OB39//yrHUqvVFo/6iBwZ85qcQY2P3Bo1amS8tL99+/b49NNPkZOTg3//+9+oX78+Nm/ejKNHj2LNmjU4dOgQDh06BB8fH5sHXpkLFy5Ao9HAw8MDrVu3Rr169UwuMgGA4uJinDx5EpGRkXUWFxER1Z0aFzchhNlT/rdv345XX33VuNyxY0cMHz4cTz75JFxcaucJX9evXzdr+/nnn7F582b07t0bLi4u0Gq1iI2NRWpqKgoKCoz9Vq9ejcLCQsTFxdVKbEREJC+bPH5LDsOHD4ebmxu6deuGxo0b4/Tp01i+fDkaNGhgMg06b948dOvWDdHR0Rg/fjyys7ORkpKC3r1719m5QCIiqlsO++DkZ599Fjdu3MAHH3yAiRMnYt26dRgyZAiOHz+OVq1aGfu1b98eu3btgpubG1599VUsX74cY8eOxYYNG2SMnoiIapPDHrlNnjwZkydPrlbfp556CgcPHqzliIiIyF447JEbERFRZR7qyC01NRUZGRnG5XPnzgEA+vfvb7G/JEnYtm3bw2yKiIioxh6quJ07d85Y0O61fft2i/0lPmGDiIjqUI2LW1ZWVm3EQUREZDM1Lm5BQUG1EQcREZHN8IISIiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSnIf6sVIiIvqbEAJ6vd647O7uzh9otgMsbkREVtDr9Rg8eLBxOT09HR4eHjJGRACnJYmISIF45EZ1htM3RFRXWNyoznD6hojqCosbETmdDjNW2WwsqbQY2nuWY/65FqKeymbj/7go3mZjOROecyMiIsVhcSMiIsXhtCRVypZTNwCnb4io7vDIjYiIFIdHbkREVhCu9ZEXMcJkmeTH4kZkJd6/5+QkyabT6/bC0fOaxY3ISrx/j5TI0fOaxY3qDKdviKiusLhR3VHo9A0R2R8WN3I6vMWBlIpPXvkf3gpARESKw+JGRESKw2lJIivxQhki+8PiRmQtXihDCuTof7SxuBERkTkH/6ON59yIiEhxWNyIiEhxWNyIiEhxWNyIiEhxnKa4GQwGvPHGG/D394ebmxu6dOmCnTt3yh0WERHVAqcpbomJifjggw/w4osvYvHixXB1dUX//v1x4MABuUMjIiIbc4pbAY4ePYq1a9di0aJFmD59OgAgPj4erVu3xuuvv45Dhw7JHCEREdmSUxy5bdiwAa6urhg/fryxTaPRYOzYsTh8+DAuX74sY3RERGRrTlHcTpw4gZYtW8LLy8ukvXPnzgCAkydPyhAVERHVFqeYltTpdPDz8zNrr2i7cuWKxfcZDAYYDAbjcl5eHgAgPz/fpF+Z4a6tQq0T98dfGe6Xfahsvzw9PSFJUo3Hq25eA471WVX3/z/A/bIHts5rM8IJPPbYY6Jfv35m7efPnxcAxIcffmjxfbNnzxYA+OLLLl95eXkP9e+Bec2XPb8eNq/vJwkhBBSudevW8PX1xe7du03aT58+jfDwcCxduhQTJkwwe9/9f+GWl5cjNzcXPj4+tvnLogr5+fkICAjA5cuXzaZTHRn3y3ZsdeTGvLYe98t2bHXk5hTTkn5+fsjJyTFr1+l0AAB/f3+L71Or1VCr1SZtDRs2tHl8VfHy8lLUP5YK3C/5MK9rD/fLfjjFBSWRkZHIzMw0m+M9cuSIcT0RESmHUxS3oUOHoqysDMuXLze2GQwGfP755+jSpQsCAgJkjI6IiGzNKaYlu3Tpgri4OCQnJ+PatWsICQnBypUrcfHiRaxYsULu8CxSq9WYPXu22fSRo+N+OTelfk7cL/vjFBeUAEBRURH++c9/IjU1Fbdu3UJERATeeecd9OnTR+7QiIjIxpymuBERkfNwinNuRETkXFjciIhIcVjc7EhhYSFmz56Nvn37wtvbG5Ik4YsvvpA7LKsdO3YM//d//4fw8HC4u7sjMDAQw4YNQ2ZmptyhWeW3335DXFwcHnvsMTRo0ACPPPIIoqKisGXLFrlDsztKzG3mtX1ziqslHcWNGzcwd+5cBAYGom3btti3b5/cIdnEwoULcfDgQcTFxSEiIgJXr17FkiVL0L59e2RkZKB169Zyh/hQLl26hIKCAiQkJMDf3x937tzBxo0bMWjQICxbtszkVyicnRJzm3lt52zyEC+yiaKiIqHT6YQQQhw7dkwAEJ9//rm8QdnAwYMHhcFgMGnLzMwUarVavPjiizJFVTtKS0tF27ZtxeOPPy53KHZFibnNvLZvnJa0I2q1Gk2aNJE7DJvr1q0bVCqVSVtoaCjCw8Nx5swZmaKqHa6urggICMDt27flDsWuKDG3mdf2jdOSJAshBP766y+Eh4fLHYrV9Ho97t69i7y8PGzevBnffvsthg8fLndYJAPmtf1gcSNZpKWlIScnB3PnzpU7FKtNmzYNy5YtAwC4uLhgyJAhWLJkicxRkRyY1/aDxY3q3NmzZzFp0iR07doVCQkJcodjtalTp2Lo0KG4cuUK1q9fj7KyMhQXF8sdFtUx5rV94Tk3qlNXr17FM888A61Wiw0bNsDV1VXukKz2xBNPIDY2FvHx8di6dSsKCwsxcOBACD78x2kwr+0PixvVmby8PPTr1w+3b9/G9u3bK/0dPUc3dOhQHDt2zOHvd6LqYV7bJ05LUp0oKirCwIEDkZmZiV27diEsLEzukGrN3bt3Afz9pUfKxry2Xzxyo1pXVlaG4cOH4/Dhw/jqq6/QtWtXuUOyiWvXrpm1lZSUYNWqVXBzc1P0Fx0xr+0dj9zszJIlS3D79m1cuXIFALBlyxZkZ2cDAJKSkqDVauUM76FMmzYNmzdvxsCBA5Gbm4vU1FST9aNGjZIpMutMmDAB+fn5iIqKQtOmTXH16lWkpaXh7NmzSElJgYeHh9wh2hWl5Tbz2s7Jew853S8oKEgAsPjKysqSO7yHEh0dXek+OXIKrlmzRsTGxgpfX19Rr1490ahRIxEbGyvS09PlDs0uKS23mdf2jb/nRkREisNzbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsbkREpDgsblRrYmJiIEmS3GEQ2RTz2jGwuBEuXrwISZJMXiqVCgEBARg5ciROnTold4hENca8dm78VQAyatGihfFJ5oWFhcjIyMCaNWuwadMm7N69G927d5c5QqKaY147JxY3MgoJCcGcOXNM2t566y3MmzcPs2bNwr59+2SJi8gazGvnxGlJqlJSUhIA4NixY8a24uJifPjhh+jUqRM8PT3h4eGBsLAwvPbaa7h161aV4+Xl5WHhwoWIjo6Gv78/VCoV/P39ER8fj/Pnz5v1LyoqQkpKCtq2bQutVgt3d3cEBwdj2LBh+Pnnn439ysvL8dlnn6Fz587w9vaGm5sbmjVrhoEDB/LLi8wwr5WPR25ULRUn0O/evYtevXrh4MGDCA0NxZgxY6BWq/HHH39g2bJliI+PR6NGjSod58yZM3j77bfRs2dPPPfcc3B3d8fZs2fx5ZdfYtu2bfjpp58QFBRk7J+QkID169cjIiLCuK3Lly9j7969OHbsGNq2bQsASE5OxnvvvYcWLVpg5MiR8PT0RE5ODg4cOIBdu3YhJiamVj8fckzMawWT+wflSH5ZWVkCgOjTp4/ZurffflsAED179hRCCDFt2jQBQIwePVqUlpaa9L19+7YoKCgwLlf8mOP9fW7evGm2nT179ggXFxcxbtw4k76SJIkOHTqYbau0tFTcunXLuOzt7S38/f2FXq83G9vS9kj5mNfOjUduZHTu3DnjuQm9Xo8jR45g//790Gg0mDdvHkpLS7F8+XJotVosXrwYrq6uJu/XarUP3EZlfXr27Inw8HDs2rXL2CZJEoQQ0Gg0cHExnUF3dXVFw4YNTdpUKpVZTADg7e39wLhIuZjXTkru6kryq/gL995X/fr1RbNmzcTIkSPFqVOnhBBC/PLLLwKAiI2Nrda4lv7CFUKIvXv3isGDB4smTZqIevXqmWxXpVKZ9O3fv78AICIjI8W8efPEwYMHRXFxsdmYEydOFABESEiIeOutt8Tu3bvFnTt3HuLTIKVgXjs3FjeqcvrmXgcOHBAAREJCQrXGtfQlsH79eiFJkvD09BRDhw4V06dPF2+//baYPXu2CAoKMuuv1+vFrFmzRPPmzY1fFF5eXmLKlCkmUzUlJSVi0aJFIiwszNhPo9GI+Ph4cf369ep9EKQozGvnxuJG1f4S+PXXX63+CzcsLEy4ubmJzMxMs/6PP/64xb+IK1y4cEGsWLFCdOrUSQAQ48ePt9gvJydHfPnll6JXr14CgOjdu3e14iVlYV47NxY3qvaXQElJifDy8hJarVbk5uY+cFxLXwJqtVq0b9/erO+VK1dE/fr1q/wSqHDnzh3h4eEhmjRpUmW/srIyERISIlxcXDiV44SY186N97lRtdWrVw8TJkxAXl4epkyZgrKyMpP1eXl5KCwsrHKMoKAgnDt3Dn/99ZexraioCK+88gpKSkpM+l6/fh2//vqr2Ri3bt2CwWCARqMBABgMBhw6dMisn16vR2FhIerXr2924p6oAvNamXi1JNXI3LlzkZGRgdWrVyMjIwP9+vWDWq3GhQsXsH37dhw4cACRkZGVvj8pKQlJSUlo164dhg4ditLSUuzcuRNCCLRt29bkBtacnBy0a9cObdu2RUREBJo2bYqbN28iPT0dJSUlmD59OoC/71Hq3r07WrZsiQ4dOiAwMBCFhYXYunUrrl69iunTp0OtVtf2R0MOjHmtQHIfOpL8qjt9U6GoqEi8//77IjIyUri5uQkPDw8RFhYmpk2bZnKPjqXpm/LycrF06VIRHh4uNBqNaNKkiRg7dqy4du2aWf9bt26JOXPmiKioKOHn5ydUKpXw9/cXffv2Fd9++62xX3FxsVi4cKHo3bu3aNasmVCpVMLX11dERUWJL7/8UpSXl1v3AZFDYl47N0kIIeQsrkRERLbGCVsiIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlKc/we0yA79C32uGAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAADmCAYAAABWMssNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnpUlEQVR4nO3de1wU9f4/8NeIsMt1UUTCQCRAC8GHCl9JvEBm3m+nwtQvAt6/5cNr5UnL8ljeKuxyvOXJDMW+Kl6+mqe8JqaBIgVHz0kFFUwQQ0W5FYvA5/dHPybXXRTchd0dXs/HYx6P5jOfmXnP9Mb3zmdmZyUhhAAREZGCtDB3AERERKbG4kZERIrD4kZERIrD4kZERIrD4kZERIrD4kZERIrD4kZERIrD4kZERIrD4kZERIrD4kY6OnTogA4dOpg7DJmlxUPKYmn5ZWnxWDMWt0ZWXl6OpUuXonv37nBycoJKpYKXlxf69OmD+fPn49KlS+YOkeqppqYGf//73xEcHAx7e3u4u7tj7NixuHz5srlDsxjMd2UoLCzEsmXL8OKLL8LX1xeSJEGSJHOH1SAtzR2AkpWWlqJ37944c+YM/P39ER0dDTc3N9y8eRNpaWlYvnw5/Pz84OfnZ+5QZUeOHDF3CBZr2rRp+Pzzz9G5c2fMnDkT165dw/bt23Hw4EGcPHkSAQEB5g7RrJjvyvHzzz9jwYIFkCQJAQEBcHBwwG+//WbusBpGUKNZvHixACAmT54sampq9JZfvnxZnDt3zgyRWQ8fHx/h4+Nj7jDEd999JwCIvn37Cq1WK7d/8803AoAYMGCAGaOzDMx341lKvl+/fl0cO3ZMlJSUCCGE6NSpk7C2csFhyUaUmpoKAJg+fbrBS3pfX188+eSTOm2SJCEyMtLg9gyNx8fFxUGSJFy+fBnx8fEIDAyESqVCXFwc3n33XUiShE2bNhnc3q5duyBJEt5888069/Eo2wCAnJwcTJ48Ge3bt4dKpYKnpyfi4uJw5coVg9vZs2cP/uu//gv29vbw8PDAlClTcPv2bYN9zeEf//gHgD/Oh52dndw+ePBgREZG4uDBg/jll1/MFZ5FYL4rJ989PDzQt29fODs7mzuUR8bi1ojc3NwAAFlZWY2+rxkzZmDp0qUIDQ3F7NmzERwcjOjoaEiShMTERIPrbN68GQAwfvz4Orf7KNs4deoUunXrhoSEBISEhGDWrFno06cPtmzZgh49eujdo9q0aRNGjRqFrKwsjB8/HrGxsfjhhx/Qv39/VFZWNug8NJbk5GQ4OjqiV69eessGDhwIADh27FhTh2VRmO/KyXcl4D23RhQVFYXExERMnjwZaWlpGDBgAEJCQuR/BEzpzJkzyMjIQPv27XXae/Xqhe+++w4FBQXw9PSU24uKivDNN98gNDRU79P0vXx9fRu0jbt372LMmDGoqalBWloaunXrJvc/ceIEIiMjMWvWLHz99dcAgJKSEsyYMQOOjo44ffo0OnbsCABYsmQJ+vfvj4KCAvj4+NT7PCxatKjefYE/rgQe9nRaeXk5CgoKEBQUBBsbG73ltffasrOzG7RvpWG+KyPfFcPc46JKFx8fL5ycnAQAefLz8xPTp08XWVlZev0BiIiICIPbMjQeHxsbKwCITz75xOA6n332mQAg4uPjddrXrFkjAIiPP/74oftoyDZ27dolAIjFixcbjOf5558XLVq0EMXFxUIIIRISEgQAMWPGDL2+x48fFwAadA/i3vNcn+no0aMP3WZ+fr4AIHr16mVw+cGDBwUAMXPmzHrHqVTMd13WmO+G8J4b6Zk7d678VN3s2bPRu3dv/PLLL1i9ejW6dOmCvXv3mmQ/PXr0MNg+evRoqFQqeTilVmJiIlq2bImxY8c+dNsN2cbJkycBABcuXMCiRYv0puvXr6OmpkYeuvrXv/4FAOjTp4/efnv27ImWLRs2uCCEaNBU1/0eejTMd+a7peCwZBNwdnZGVFQUoqKiAADFxcVYsGAB1qxZg0mTJiE/P1/nIYVH4eHhYbDd1dUVw4YNw86dO/Hzzz8jMDAQly5dQkpKCoYMGYK2bds+dNsN2UZRUREAYMuWLQ/cZnl5OYA/zgUAg3HY2Ng0ypBWQ2k0GgB/xnq/kpISnX7NHfNdnzXlu1KwuJmBRqPBqlWr8M9//hNXrlzB2bNnERISAuCPp8eqqqoMrldcXFznP6AP+oLl+PHjsXPnTmzevBnLli2Tb5Y/6Mb6o27DxcUFAPD1119j2LBhD91u7fEUFhbqLauursatW7fw+OOP1zvOxrgH4ejoCE9PT+Tk5KC6ulrvvlvtvbbm/j23ujDf/2QN+a4YTTcCSvcLDAwUAER6errc1rp1a9GhQwe9vjk5OQbH42vvQeTk5NS5n8rKSuHm5ibat28vqqurRUBAgHB2dha//fabXt+6vmdT321s27ZNABALFix48MH/f9ZyD2LMmDECgDh27JjessjISAFA5Obm1jvO5oj5bj35fj9rvOdmXdFamXXr1om0tDSDy3bv3i0kSRKurq6ioqJCbh84cKAAIJKTk+U2rVYr/vKXvzzyH7sQQrzyyisCgFi2bJkAIOLi4gz2e9CXSOuzjYqKCtG+fXuhVqsNFoLKykpx/Phxef7OnTvCxcVFODo6igsXLuj0i4iIaPAfe2Phl7gfjvmunHy/nzUWN0kIIUx1FUi6Ro0ahT179sDf3x+9evVCu3btUF5ejoyMDBw/fhwtWrRAYmKizg3qgwcPYtCgQbC3t8fYsWPh4OCAQ4cOwdXVFVeuXIGdnR1yc3Pl/nFxcUhISEBOTs4DhxtOnjyJnj17wtbWFnfv3sWRI0fQr18/vX6127h3Hw3dxunTpzF48GDcunUL/fr1Q3BwMCRJwpUrV3D8+HG4ubnh/Pnzcv+EhATExcXBxcUFY8aMgUajwb59+2Bvb4+CggK9YzaXKVOmyK/fGjp0KAoKCrBt2zY4OTkhNTVVfqy7uWK+Kyvf4+Li5P/evXs3SkpKEBsbK7e98cYbD/xahdmZu7oq2fnz58X7778vnnvuOeHr6yvUarVQq9XCz89PxMbG6gzP3CspKUkEBwcLOzs78dhjj4kZM2aI0tLSBz4a/bBPskIIERAQIAAILy8vUV1dbbDPw17/U59tCCFEXl6emDVrlggICBAqlUq4uLiIp556SkyePFkcOXJEr//u3btFSEiIUKlUom3btmLy5MmiqKjIYl5HJIQQ1dXV4pNPPhGdO3cWKpVKuLm5iZdeeklcvHjR3KFZBOa7svIdjTTE2VR45UZERIrD77kREZHisLgREZHisLgREZHisLgREZHisLgREZHisLgREZHiNPviJoRASUkJ+I0Iag6Y79RcNPviVlpaCo1Gg9LSUnOHQtTomO/UXDT74kZERMpjscXtp59+wogRI9C6dWs4ODggKCgIn376qU6flJQU9O7dGw4ODnjssccwc+ZMlJWVmSliIiKyFBb5e24HDx7E8OHD0a1bNyxcuBBOTk64dOkS8vLy5D6ZmZl49tln8dRTT2HlypXIy8vDhx9+iOzsbHz77bdmjJ6IiMzN4opbSUkJYmJiMHToUOzYsQMtWhi+uFywYAFatWqF5ORk+QcDO3TogClTpuDgwYMYMGBAU4ZNREQWxOKGJb/66iv8+uuvWLJkCVq0aIHy8nLU1NTo9CkpKcGhQ4cQHR0tFzYAiImJgZOTE7Zv397UYRMRWSQhBMrKyuSpuTwpa3HF7fDhw3BxcUF+fj46deoEJycnuLi44OWXX0ZFRQUA4OzZs6iqqkJoaKjOunZ2dujatSsyMjLMEToRkcUpLy/HyJEj5am8vNzcITUJiytu2dnZqKqqwsiRIzFw4EDs3LkTEydOxLp16zBhwgQAQEFBAQDA09NTb31PT09cu3atzu1rtVqUlJToTERKxXyn5sriiltZWRl+++03xMTE4NNPP8Xzzz+PTz/9FNOmTcPWrVuRnZ2N33//HQCgUqn01ler1fJyQ5YtWwaNRiNP3t7ejXYsRObGfKfmyuKKm729PQDo/BQ9AIwbNw4AkJqaKvfRarV661dUVMjLDZk/fz6Ki4vl6erVq6YKncjiMN+pubK4pyXbtWuH//znP/Dw8NBpb9u2LQDg9u3b8PPzA/Dn8OS9CgoK0K5duzq3r1KpDF7xESkR852aK4u7cgsJCQEA5Ofn67TX3kdzd3dHUFAQWrZsifT0dJ0+lZWVyMzMRNeuXZskViIiskwWV9xGjx4NANiwYYNO++eff46WLVsiMjISGo0G/fv3R2Jios478jZv3oyysjJERUU1acxERGRZLG5Yslu3bpg4cSK++OILVFVVISIiAsnJyUhKSsL8+fPlIcclS5YgPDwcERERmDp1KvLy8hAfH48BAwZg0KBBZj4KIiIyJ4srbgCwbt06tG/fHhs3bsTu3bvh4+ODjz76CLNnz5b7dO/eHYcPH8Zf//pXzJkzB87Ozpg0aRKWLVtmvsCJiMgiSKK5fF29DiUlJdBoNCguLtZ52wmREjHfm5+ysjKMHDlSnt+zZw+cnJzMGFHTsLh7bkRERMayyGFJImq+hBA6r4hydHSEJElmjIisEYsbEVmU2nch1mouw2hkWhyWJCIixWFxIyIixWFxIyIixWFxIyIixWFxIyIixWFxIyIixeFXAYiIGlHI65vMun+pqhKae+YjF26FaGlnllh+/CCmyfbFKzciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIcFjciIlIciy9uS5YsgSRJCAoK0luWkpKC3r17w8HBAY899hhmzpyJsrIyM0RJRGSZhI0tiruMlSdhY2vukJpES3MH8CB5eXlYunQpHB0d9ZZlZmbi2WefxVNPPYWVK1ciLy8PH374IbKzs/Htt9+aIVoiIgskSRAt7cwdRZOz6OL22muv4emnn0Z1dTVu3ryps2zBggVo1aoVkpOT4eLiAgDo0KEDpkyZgoMHD2LAgAHmCJmIiCyAxQ5Lfv/999ixYwc+/vhjvWUlJSU4dOgQoqOj5cIGADExMXBycsL27dubMFIiIrI0FlncqqurMWPGDEyePBnBwcF6y8+ePYuqqiqEhobqtNvZ2aFr167IyMhoqlCJiMgCWeSw5Lp163DlyhUcPnzY4PKCggIAgKenp94yT09PHD9+vM5ta7VaaLVaeb6kpMTIaIks16Pme8jrmxorpIeSqiqhuWc+cuFWs94z+vGDGLPtmx6dSa/cioqKcPXqVaO2cevWLbz99ttYuHAh3N3dDfb5/fffAQAqlUpvmVqtlpcbsmzZMmg0Gnny9vY2Kl4iS8Z8p+bK6OJWXFyMWbNmwcPDA+7u7vD19ZWXnTp1CkOGDMGPP/5Y7+299dZbaN26NWbMmFFnH3t7ewDQ+URaq6KiQl5uyPz581FcXCxPxhZjIkvGfKfmyqhhyaKiIoSHhyMrKwvdu3eHu7s7zp07Jy/v0qULfvjhB2zZsgUhISEP3V52djbWr1+Pjz/+GNeuXZPbKyoqcPfuXeTm5sLFxUUejqwdnrxXQUEB2rVrV+c+VCqVwSs+IiVivlNzZdSV26JFi5CVlYWtW7ciPT0dUVFROsvt7e0RERGB7777rl7by8/PR01NDWbOnAlfX195OnXqFLKysuDr64vFixcjKCgILVu2RHp6us76lZWVyMzMRNeuXY05LCIisnJGXbnt3bsXw4YNw+jRo+vs06FDB6SkpNRre0FBQdi9e7de+1tvvYXS0lJ88skn8PPzg0ajQf/+/ZGYmIiFCxfC2dkZALB582aUlZXpFVkiImpejCpuBQUFGDNmzAP7qFQqlJeX12t7bdq0wahRo/Taa7/rdu+yJUuWIDw8HBEREZg6dSry8vIQHx+PAQMGYNCgQfU9BCIiUiCjhiXd3NweeoP6/PnzBh/ZN1b37t1x+PBh2NvbY86cOVi/fj0mTZqEHTt2mHxfRERkXYy6cuvbty/27NmDvLw8eHl56S3/+eefsX//fkyYMMGY3SA5Odlge+/evfHDDz8YtW0iIlIeo67c3nzzTVRXV6NXr17YsmWL/P7Hc+fOYcOGDejXrx9UKhVef/11kwRLRERUH0ZduQUHB2Pbtm0YP348YmL++Ba/EAJBQUEQQsDZ2Rnbt29HQECASYIlIiKqD6NfvzVixAjk5OQgISEBp06dQlFREVxcXBAWFoYJEyagTZs2poiTiIio3owqbps2bYKHhwcGDhyIOXPmmComIiIioxh1z23SpEnYv3+/qWIhIiIyCaOKm6enJ6qqqkwVCxERkUkYVdxGjBiBQ4cOGXyBMRERkbkYVdyWLFkCR0dHPP/88/jPf/5jqpiIiIiMYtQDJd26dYNWq0VmZib2798PtVqNtm3bQpIknX6SJOHSpUtGBUpERFRfRhW3mpoa2NnZoX379jrtQogHzhMRETUmo4pbbm6uicIgIiIyHaN/iZuIiMjSsLgREZHiGP36LQBITU3F4cOHce3aNYNfC5AkCRs2bDDFroiIiB7KqOJWVVWFsWPHYteuXRBCQJIknYdHaudZ3IiIqCkZNSwZHx+PnTt3YsKECUhPT4cQArNnz0ZqaipWrFgBV1dXREVF8WsAZFGEECgrK5MnPs1LpDxGXblt2bIFQUFB+Pzzz+U2V1dXhIWFISwsDEOGDEGPHj3Qr18/TJs2zehgiUyhvLwcI0eOlOf37NkDJycnM0ZERKZm1JXbxYsXERkZKc9LkoS7d+/K8507d8bw4cOxdu1aY3ZDRM2IsLFFcZex8iRsbM0dElkho4qbnZ0dHBwc5HknJycUFhbq9PHx8UF2drYxuyGi5kSSIFrayRPue+MRUX0YVdy8vb1x9epVef7JJ5/E999/r3MP4+TJk2jdurUxuyEiImoQo4pbRESETjF76aWXcOHCBQwbNgyrV6/G2LFjceLECQwaNMgkwRIREdVHgx8oKSkpgVqthp2dHSZOnIjq6mrk5+fDy8sLM2bMQHJyMvbt24dvv/0WANCjRw8sX77c5IETERHVpcFXbq1atcKKFSsAAN27d8fatWuRn5+PTz/9FLa2tti7dy/S0tLwv//7v0hJSUFKSgrc3NxMHnhzwkfXiYgapsFXbkIIvX9c9+/fj8WLF2PmzJkAgNDQUISGhpomQuKj60REDcR3SxIRkeKwuBERkeKwuBERkeKwuBERkeI80rslExMTcfLkSXn+4sWLAIAhQ4YY7C9JEv75z38+yq5IoUJe32S2fUtVldDcMx+5cOsfb8Iwkx8/iDHbvomU6pGK28WLF+WCdq/9+/cb7C814PU5p0+fRkJCAo4ePYrc3Fy4ubnh6aefxnvvvYeOHTvq9D137hzmzJmDEydOwM7ODkOHDsXKlSvh7u7esAMiIiJFaXBxy8nJaYw4ZCtWrMAPP/yAqKgodOnSBdevX8eqVavQvXt3nDx5EkFBQQCAvLw89O3bFxqNBkuXLkVZWRk+/PBDnD17FmlpabCzM+0ncV5p/IlXGkRk6Rpc3Hx8fBojDtncuXPx1Vdf6RSnl156CcHBwVi+fDkSExMBAEuXLkV5eTl+/PFHtG/fHsAfb0N57rnn8OWXX2Lq1KmNGicREVkui3ugJDw8XO+qKyAgAJ07d8a5c+fktp07d2LYsGFyYQOA/v37o2PHjti+fXuTxUtERJbH4oqbIUII/Prrr2jTpg0AID8/H4WFhQbfgtKjRw9kZGQ0dYhERGRBjPol7qayZcsW5OfnY/HixQCAgoICAICnp6deX09PTxQVFUGr1UKlUukt12q10Gq18nxJSUkjRU1kfsx3aq4s/srt/PnzmD59Onr27InY2FgAwO+//w4ABouXWq3W6XO/ZcuWQaPRyJO3t3cjRU5kfsx3aq4surhdv34dQ4cOhUajwY4dO2BjYwMAsLe3BwCdT6S1KioqdPrcb/78+SguLpane39slUhpmO/UXFnssGRxcTEGDx6MO3fu4Pjx42jXrp28rHY4snZ48l4FBQVo3bq1was64I+rvbqWESkN852aK4ssbhUVFRg+fDiysrJw+PBhBAYG6ix//PHH4e7ujvT0dL1109LS0LVr1yaKtGkIG1sUdxmrM09ERHWzuGHJ6upqvPTSS0hNTUVSUhJ69uxpsN8LL7yAffv26QyzHDlyBFlZWYiKimqqcJuGJEG0tJMnNOCNL0REzZHFXbm9+uqr2Lt3L4YPH46ioiL5S9u1oqOjAQALFixAUlISnnnmGcyaNQtlZWX44IMPEBwcjAkTJpgjdCIishAWV9wyMzMBAF9//TW+/vprveW1xc3b2xvHjh3D3Llz8cYbb8jvloyPj+c9BnogDvMSKZ/FFbfk5OR69+3cuTMOHDjQeMGQMv3/YV4iUi6Lu+dGRERkLBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHBY3IiJSHKsublqtFn/961/Rrl072NvbIywsDIcOHTJ3WEREZGZWXdzi4uKwcuVK/Pd//zc++eQT2NjYYMiQIThx4oS5QyMiIjNqae4AHlVaWhq2bt2KDz74AK+99hoAICYmBkFBQZg3bx5SUlLMHCEREZmL1V657dixAzY2Npg6darcplarMWnSJKSmpuLq1atmjI6IiMzJaotbRkYGOnbsCBcXF532Hj16AAAyMzPNEBUREVkCqx2WLCgogKenp157bdu1a9cMrqfVaqHVauX54uJiAEBJSckD91et/f1RQ1Wch52r+uD5/FN9zqezszMkSWrwtpnvxjM233ku/1Tfc/mo+a5DWKknnnhCDB48WK/90qVLAoD46KOPDK73zjvvCACcOFnVVFxc/Eh/J8x3TtY4PWq+30sSQghYoaCgIHh4eODIkSM67T///DM6d+6MdevWYdq0aXrr3f9JtqamBkVFRXBzczP+k0IjKikpgbe3N65evao3FEsNZ23n01RXbsz35snazqcprtysdljS09MT+fn5eu0FBQUAgHbt2hlcT6VSQaVS6bS5urqaPL7G4uLiYhXJaS2Ufj6Z73Sv5nQ+rfaBkq5duyIrK0tvDPfUqVPyciIiap6stri9+OKLqK6uxvr16+U2rVaLjRs3IiwsDN7e3maMjoiIzMlqhyXDwsIQFRWF+fPno7CwEP7+/khISEBubi42bNhg7vBMTqVS4Z133tEbYqJHw/Np2fj/x7Sa4/m02gdKAKCiogILFy5EYmIibt++jS5duuDdd9/FwIEDzR0aERGZkVUXNyIiIkOs9p4bERFRXVjcFEKSJCxatMjcYZjE6dOnER4eDkdHR0iSZJGvUuvQoQPi4uLMHUazxXxvWtaY71b7QAkp0927dxEVFQW1Wo2PPvoIDg4O8PHxMXdYRI2C+d54WNzIoly6dAlXrlzBP/7xD0yePNnc4RA1KuZ74+GwJFmUwsJCANb1Fg2iR8V8bzwsbo1s0aJFkCQJWVlZiI6Ohkajgbu7OxYuXAghBK5evYqRI0fCxcUFjz32GOLj4+V1Kysr8fbbbyMkJAQajQaOjo7o06cPjh49Wq995+fnY+LEifDw8IBKpULnzp3xxRdfNNahGi0uLg4REREAgKioKEiShMjISADA+fPn8eKLL6J169ZQq9UIDQ3F3r17ddb/8ssvIUkSTpw4gZkzZ8Ld3R2urq6YNm0aKisrcefOHcTExKBVq1Zo1aoV5s2bh/sfFv7www8RHh4ONzc32NvbIyQkBDt27KhX/Hfu3MHs2bPh7e0NlUoFf39/rFixAjU1NcafHCvBfK8/5nsjM/rVy/RAtW9l79q1qxg7dqxYs2aNGDp0qAAgVq5cKTp16iRefvllsWbNGtGrVy8BQBw7dkwIIcSNGzeEp6enmDt3rli7dq14//33RadOnYStra3IyMjQ2Q8A8c4778jz169fF15eXsLb21ssXrxYrF27VowYMUIAdf9igrmlpKSIBQsWCABi5syZYvPmzeLgwYPi3//+t9BoNCIwMFCsWLFCrFq1SvTt21dIkiR27dolr79x40b5XA8aNEisXr1ajB8/XgAQ8+bNE7179xbjxo0Ta9asEcOGDRMAREJCgk4MXl5e4pVXXhGrVq0SK1euFD169BAAxL59+3T6+fj4iNjYWHm+vLxcdOnSRbi5uYkFCxaIdevWiZiYGCFJkpg1a1ZjnjaLwnyvP+Z742Jxa2S1f+xTp06V26qqqoSXl5eQJEksX75cbr99+7awt7eXk6iqqkpotVqd7d2+fVt4eHiIiRMn6rTf/8c+adIk4enpKW7evKnTb8yYMUKj0YjffvvNREdoWkePHhUARFJSktz27LPPiuDgYFFRUSG31dTUiPDwcBEQECC31f6xDxw4UNTU1MjtPXv2FJIkif/5n/+R22r/H0REROjs//7zUllZKYKCgkS/fv102u//Y3/33XeFo6OjyMrK0un3xhtvCBsbG/HLL7/U/yRYMeZ7wzDfGw+HJZvIvTeLbWxsEBoaCiEEJk2aJLe7urqiU6dOuHz5stzPzs4OwJ8/VVJVVYXQ0FD89NNPde5LCIGdO3di+PDhEELg5s2b8jRw4EAUFxc/cH1LUlRUhO+++w6jR49GaWmpfBy3bt3CwIEDkZ2drffrEJMmTdL5uYywsDC9c137/6D2XNeyt7eX//v27dsoLi5Gnz59Hnq+kpKS0KdPH7Rq1UrnfPfv3x/V1dX4/vvvjTkNVof5/miY76bDpyWbSPv27XXmNRoN1Go12rRpo9d+69YteT4hIQHx8fE4f/487t69K7f7+vrWua8bN27gzp07WL9+vc6Lpe9VeyPb0l28eBFCCCxcuBALFy402KewsBCPP/64PG/oXAPQe5m2RqPB7du3ddr27duH9957D5mZmTq/g/aw35bKzs7GmTNn4O7uXmeMzQnz/dEw302Hxa2J2NjY1KsNgHzTNzExEXFxcRg1ahRef/11tG3bFjY2Nli2bBkuXbpU575qb+hGR0cjNjbWYJ8uXbo09BDMovZYXnvttTrfGerv768zX9d5NdQu7rnBfvz4cYwYMQJ9+/bFmjVr4OnpCVtbW2zcuBFfffXVQ+N87rnnMG/ePIPLO3bs+MD1lYb5/miY76bD4mbBduzYgSeeeAK7du3S+ST1zjvvPHA9d3d3ODs7o7q6Gv3792/sMBvVE088AQCwtbVt9GPZuXMn1Go1Dhw4oPP29I0bNz50XT8/P5SVlVn9+TYn5jvz3ZR4z82C1X7yuvfT1qlTp5CamvrQ9V544QXs3LkT//73v/WW37hxw7SBNqK2bdsiMjISn332mfwr6/cy5bHY2NhAkiRUV1fLbbm5ufi///u/h647evRopKam4sCBA3rL7ty5g6qqKpPFqVTMd+a7KfHKzYINGzYMu3btwl/+8hcMHToUOTk5WLduHQIDA1FWVvbAdZcvX46jR48iLCwMU6ZMQWBgIIqKivDTTz/h8OHDKCoqaqKjMN7q1avRu3dvBAcHY8qUKXjiiSfw66+/IjU1FXl5efjXv/5lkv0MHToUK1euxKBBgzBu3DgUFhZi9erV8Pf3x5kzZx647uuvv469e/di2LBhiIuLQ0hICMrLy3H27Fns2LEDubm5evebSBfz/Q/Md9NgcbNgcXFxuH79Oj777DMcOHAAgYGBSExMRFJSEpKTkx+4roeHB9LS0rB48WLs2rULa9asgZubGzp37owVK1Y0zQGYSGBgINLT0/G3v/0NX375JW7duoW2bduiW7duePvtt022n379+mHDhg1Yvnw5Zs+eDV9fX6xYsQK5ubkP/WN3cHDAsWPHsHTpUiQlJWHTpk1wcXFBx44d8be//U2+yU91Y77/gfluGvw9NyIiUhzecyMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSMiIsVhcSODysvLsXTpUnTv3h1OTk5QqVTw8vJCnz59MH/+/Af+vhaRtWG+Kw9fnEx6SktL0bt3b5w5cwb+/v6Ijo6Gm5sbbt68ibS0NCxfvhx+fn7w8/Mzd6hERmO+KxOLG+n5+OOPcebMGUyePBnr16/X+8n5nJwcnZ+kJ7JmzHdl4rAk6an9ccjp06fr/aEDgK+vL5588kmdtsLCQsyZMwf+/v5QqVRo06YNXnjhBZ0fjxRCYMiQIZAkCdu2bdNZXwiBwYMHG1xG1JiY7woliO4THR0tAIht27bVq//FixeFl5eXACAGDBggXn31VTF+/Hjh4OAgHB0dxcmTJ+W+169fF23bthUajUbk5ubK7StXrhQARFxcnMmPh+hBmO/KxOJGevbs2SMACGdnZ/Hqq6+KAwcOiJs3b9bZPzw8XNjY2Ij9+/frtF+4cEE4OzuL4OBgnfZvv/1WSJIkwsPDRVVVlcjIyBB2dnYiICBAlJaWNsoxEdWF+a5MLG5kUHx8vHBychIA5MnPz09Mnz5dZGVlyf1++uknAUBMnDjR4Hbmzp0rAIizZ8/qtM+ePVsAEK+99pp48sknha2trUhPT2/UYyKqC/NdefhL3FSn0tJS7N+/HykpKUhPT8epU6dw9+5dqNVqbNu2DSNGjMDatWvxyiuvYOjQoQgNDdXbxunTp/HNN98gKSkJL774otyu1Wrx9NNPIzMzEwCwYsUKzJs3r6kOjUgP811hzF1dyXrcuXNHvPLKKwKAaNOmjdBqteK9997T+bRb1/Tll1/qbW/+/PkCgFCr1eLWrVtmOCKiujHfrRuflqR602g0WLVqFXx8fHDz5k2cPXsWLi4uAIC///3vEH8McxucYmNjdbZ16tQpfPDBB3Bzc0NFRQVefvllcxwSUZ2Y79aNxY0aRJIkODo6yvNhYWEA/nycuj5KS0sxbtw4tGzZEsnJyXjhhRewfft2fPHFFyaPl8gYzHcrZo7LRbJs69atE2lpaQaX7d69W0iSJFxdXUVFRYUQQoiwsDAhSZLYunWrXv/q6mqRnJys01b76PWqVauEEEIUFRUJb29v4ejoKC5cuGDioyF6MOa7MvGBEtIzatQo7NmzB/7+/ujVqxfatWuH8vJyZGRk4Pjx42jRogUSExMxduxYAH+8weGZZ57BlStX8PTTT6N79+6wt7fHL7/8gtTUVNy4cQMVFRUAgMTERIwfPx7Dhw/H3r175X1+//33eOaZZ9CtWzekpqbC1tbWLMdOzQ/zXaHMXV3J8pw/f168//774rnnnhO+vr5CrVYLtVot/Pz8RGxsrMFHmIuKisRbb70lgoKChL29vXBychIBAQFi3LhxYteuXUIIIS5fvixcXFyEp6enuHHjht423nzzTflxaaKmwnxXJl65ERGR4vCBEiIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUhwWNyIiUpz/B3PkBpwD+PIfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 13.9 s (started: 2024-10-26 13:18:42 +00:00)\n" ] } ], "source": [ "da.plotCategoricForNumTargetPairs(df,nums,cats,\"Survived\",2.4,0.9)" ] }, { "cell_type": "markdown", "metadata": { "id": "fFOOuw0Fejvo" }, "source": [ "Bunları yorumlamayı size bırakıyorum." ] }, { "cell_type": "markdown", "metadata": { "id": "1BD5lFw0rn4c" }, "source": [ "#### Surival'ın iki yüzü" ] }, { "cell_type": "markdown", "metadata": { "id": "0X3UkowFrxma" }, "source": [ "Farkettiyseniz, hangi yönden baktığınıza göre rakamlarda çelişki, veya açıklaması zor bir durum varmış gibi görünüyor. Burada aslıdna iki ayrı durum var: **Kurtulma oranı(pozitiflerin yüzdesi)** ve **Kurtulanların(pozitiflerin) mutlak rakamı**. Şimdi bunlardan embark noktasına göre bir detay inceleme yapalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 287 }, "executionInfo": { "elapsed": 118, "status": "ok", "timestamp": 1729948739543, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "IUfE5S7Vrw4X", "outputId": "671baa87-092b-4d61-c6a7-6c91481d5658" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"df\",\n \"rows\": 6,\n \"fields\": [\n {\n \"column\": \"proportion\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.12905648351718915,\n \"min\": 0.33695652173913043,\n \"max\": 0.6630434782608695,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.5535714285714286,\n 0.44642857142857145,\n 0.33695652173913043\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 151,\n \"min\": 30,\n \"max\": 427,\n \"num_unique_values\": 6,\n \"samples\": [\n 93,\n 75,\n 217\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
proportioncount
EmbarkedSurvived
C10.55357193
00.44642975
Q00.61039047
10.38961030
S00.663043427
10.336957217
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " proportion count\n", "Embarked Survived \n", "C 1 0.553571 93\n", " 0 0.446429 75\n", "Q 0 0.610390 47\n", " 1 0.389610 30\n", "S 0 0.663043 427\n", " 1 0.336957 217" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 25 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "df.groupby(\"Embarked\")[\"Survived\"].value_counts(normalize=True).to_frame().join(\n", "df.groupby(\"Embarked\")[\"Survived\"].value_counts().to_frame())" ] }, { "cell_type": "markdown", "metadata": { "id": "TSIaeGEhtdzL" }, "source": [ "Görüldüğü üzere Southampton'dan binenler sayıca zaten fazla olduğu için, toplam kurtulanlar içinde bunların sayısının ve oranının fazla olması da gayet normal. Cherbourg'dan binenlerin yarıdan fazlasının kurtulması ise esas odaklanılması gereken şey. Orada muhtemelen ya bu datasetteki başka bir featurela açıklanan bir durum vardır(fare, class gibi), ki bu zaten multicollinearity'ye işarettir, bunu incelemeyi size bırakıyorum(Burada chi2 testi arkadaşınız olacak). yahut da burda olmayan bir bilgi de bu durumu açıklayabilirdi, ör: uçuk bir hipotezle geleyim, o bölgede yaşayanlar Rus asıllıdır ve Ruslar da soğuk suya dayanıklı olduğu için kurtulmuşlardır :)\n", "\n", "Benzer analizi diğer featurelar üzerinden de yapabilirsiniz." ] }, { "cell_type": "markdown", "metadata": { "id": "2YsRrBTOejvo" }, "source": [ "### Checking for cleaning" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 318 }, "executionInfo": { "elapsed": 111, "status": "ok", "timestamp": 1729948739543, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "ppLVZw-7ejvo", "outputId": "4a404bc6-3011-4619-e1cd-2ad4ce2d48ae" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Survived\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 314.8713661874558,\n \"min\": 0.0,\n \"max\": 891.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3838383838383838,\n 1.0,\n 0.4865924542648585\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 314.2523437079693,\n \"min\": 0.8360712409770513,\n \"max\": 891.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 891.0,\n 2.308641975308642,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 242.9056731818781,\n \"min\": 0.42,\n \"max\": 714.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 29.69911764705882,\n 28.0,\n 714.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SibSp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 314.4908277465442,\n \"min\": 0.0,\n \"max\": 891.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 891.0,\n 0.5230078563411896,\n 8.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Parch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 314.65971717879,\n \"min\": 0.0,\n \"max\": 891.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.38159371492704824,\n 6.0,\n 0.8060572211299559\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 330.6256632228577,\n \"min\": 0.0,\n \"max\": 891.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 32.204207968574636,\n 14.4542,\n 891.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassAgeSibSpParchFare
count891.000000891.000000714.000000891.000000891.000000891.000000
mean0.3838382.30864229.6991180.5230080.38159432.204208
std0.4865920.83607114.5264971.1027430.80605749.693429
min0.0000001.0000000.4200000.0000000.0000000.000000
25%0.0000002.00000020.1250000.0000000.0000007.910400
50%0.0000003.00000028.0000000.0000000.00000014.454200
75%1.0000003.00000038.0000001.0000000.00000031.000000
max1.0000003.00000080.0000008.0000006.000000512.329200
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " Survived Pclass Age SibSp Parch Fare\n", "count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n", "mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n", "std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n", "min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n", "25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n", "50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n", "75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n", "max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 26.7 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "#numeric borders, check the min-max\n", "df.describe()" ] }, { "cell_type": "markdown", "metadata": { "id": "2Sh6h7txejvo" }, "source": [ "Age kolonunda min değer biraz garip görünüyor, bu bir bebek olabilir, bakalım yaşı 1den küçük kaç yolcu var" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 287 }, "executionInfo": { "elapsed": 108, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "SmKOxHC5ejvo", "outputId": "5a470b1b-e294-486c-fd5c-ba6b1ebbb20b" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"df[df\",\n \"rows\": 7,\n \"fields\": [\n {\n \"column\": \"Survived\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"female\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.16128944700223172,\n \"min\": 0.42,\n \"max\": 0.92,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.92\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SibSp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Parch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 50.76969088508091,\n \"min\": 8.5167,\n \"max\": 151.55,\n \"num_unique_values\": 6,\n \"samples\": [\n 29.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Embarked\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CabinGrup\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassSexAgeSibSpParchFareEmbarkedCabinGrup
7812male0.830229.0000SZ
30511male0.9212151.5500SC
46913female0.752119.2583CZ
64413female0.752119.2583CZ
75512male0.671114.5000SZ
80313male0.42018.5167CZ
83112male0.831118.7500SZ
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " Survived Pclass Sex Age SibSp Parch Fare Embarked CabinGrup\n", "78 1 2 male 0.83 0 2 29.0000 S Z\n", "305 1 1 male 0.92 1 2 151.5500 S C\n", "469 1 3 female 0.75 2 1 19.2583 C Z\n", "644 1 3 female 0.75 2 1 19.2583 C Z\n", "755 1 2 male 0.67 1 1 14.5000 S Z\n", "803 1 3 male 0.42 0 1 8.5167 C Z\n", "831 1 2 male 0.83 1 1 18.7500 S Z" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 21.4 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "df[df.Age<1]" ] }, { "cell_type": "markdown", "metadata": { "id": "vFyIv4UBejvo" }, "source": [ "Bunların hepsini bebek gibi düşünebiliriz, ve belki de outlier capping yapıp yaşı 2'den küçük tüm çocukları 2 yapabilriiz." ] }, { "cell_type": "markdown", "metadata": { "id": "OjUSKOovejvo" }, "source": [ "yukarıda low-cardinalitysi olan featureların unique valuelarına tekrar bakalım, anormal bir değer var mı, görelim. (Yok)" ] }, { "cell_type": "markdown", "metadata": { "id": "xJ0PHo03ejvp" }, "source": [ "### Diğer işlemler" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 104, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "IeWGHIosejvp", "outputId": "960b45ab-9244-427f-fd4b-23f040de6a24" }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4.38 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "#duplicate check for rows\n", "len(df)-len(df.duplicated(keep=False))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 97, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "J_2dWwFWejvp", "outputId": "fba7f214-098f-4e62-c720-a977052f48e3" }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 2.65 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "#duplicate check for columns\n", "len(set(df.columns))-len(df.columns)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 350 }, "executionInfo": { "elapsed": 91, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "fl0LJmJhejvp", "outputId": "d493cffa-c1e1-45dd-a90a-d662dbab9d8c" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"corr_results[corr_results>0\",\n \"rows\": 9,\n \"fields\": [\n {\n \"column\": \"Survived\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3251277356005085,\n \"min\": 0.5401999468101071,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.5401999468101071,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.23311793872880504,\n \"min\": 0.5942173195035277,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 1.0,\n 0.5942173195035277\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3251277356005085,\n \"min\": 0.5401999468101071,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.5401999468101071\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SibSp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Parch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2394410549255615,\n \"min\": 0.5768783972799121,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.5942173195035277\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Embarked\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CabinGrup\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2383545282757677,\n \"min\": 0.5768783972799121,\n \"max\": 1.0,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.5982689448346374\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassSexAgeSibSpParchFareEmbarkedCabinGrup
Survived1.0000NaN0.5402NaNNaNNaNNaNNaNNaN
PclassNaN1.000000NaNNaNNaNNaN0.594217NaN0.598269
Sex0.5402NaN1.0000NaNNaNNaNNaNNaNNaN
AgeNaNNaNNaN1.0NaNNaNNaNNaNNaN
SibSpNaNNaNNaNNaN1.0NaNNaNNaNNaN
ParchNaNNaNNaNNaNNaN1.0NaNNaNNaN
FareNaN0.594217NaNNaNNaNNaN1.000000NaN0.576878
EmbarkedNaNNaNNaNNaNNaNNaNNaN1.0NaN
CabinGrupNaN0.598269NaNNaNNaNNaN0.576878NaN1.000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " Survived Pclass Sex Age SibSp Parch Fare Embarked \\\n", "Survived 1.0000 NaN 0.5402 NaN NaN NaN NaN NaN \n", "Pclass NaN 1.000000 NaN NaN NaN NaN 0.594217 NaN \n", "Sex 0.5402 NaN 1.0000 NaN NaN NaN NaN NaN \n", "Age NaN NaN NaN 1.0 NaN NaN NaN NaN \n", "SibSp NaN NaN NaN NaN 1.0 NaN NaN NaN \n", "Parch NaN NaN NaN NaN NaN 1.0 NaN NaN \n", "Fare NaN 0.594217 NaN NaN NaN NaN 1.000000 NaN \n", "Embarked NaN NaN NaN NaN NaN NaN NaN 1.0 \n", "CabinGrup NaN 0.598269 NaN NaN NaN NaN 0.576878 NaN \n", "\n", " CabinGrup \n", "Survived NaN \n", "Pclass 0.598269 \n", "Sex NaN \n", "Age NaN \n", "SibSp NaN \n", "Parch NaN \n", "Fare 0.576878 \n", "Embarked NaN \n", "CabinGrup 1.000000 " ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 24.6 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "#multicollinearty check->remove one if r>0.9 if numeric, # >0,5 if nominal/mixed\n", "corr_results[corr_results>0.5]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 90, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "pAKhgGCbejvp", "outputId": "8298d0bb-6a89-4241-b1fd-b64c3bb41554" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 841 µs (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "# any need for conversion, 100 USD-->100\n", "#yok" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 83, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Q4RTB2jvejvq", "outputId": "bc1fcb42-a0d6-470b-b521-fedc333fd189" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 753 µs (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "#check for feature extraction\n", "#bunu Cabin için zaten yaptık, pipelinea da eklemeyi unutmayalım" ] }, { "cell_type": "markdown", "metadata": { "id": "Jy-BWMBNejvq" }, "source": [ "## Varsayımların kontrolü" ] }, { "cell_type": "markdown", "metadata": { "id": "HUu20E5pejvq" }, "source": [ "Çok kritik varsayımlar olmadığı ve genel kullanılan bi dataseti olduğu için pas geçiyorum." ] }, { "cell_type": "markdown", "metadata": { "id": "GM2ztM08ejvq" }, "source": [ "## Preparing X,y and train-test splits" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 224 }, "executionInfo": { "elapsed": 79, "status": "ok", "timestamp": 1729948739544, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "K5QdNSBpejvq", "outputId": "ef2a1cd4-6299-4259-beac-85478f76f308" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"df\",\n \"rows\": 891,\n \"fields\": [\n {\n \"column\": \"Survived\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"female\",\n \"male\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14.526497332334044,\n \"min\": 0.42,\n \"max\": 80.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.75,\n 22.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SibSp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 8,\n \"num_unique_values\": 7,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Parch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 6,\n \"num_unique_values\": 7,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 49.693428597180905,\n \"min\": 0.0,\n \"max\": 512.3292,\n \"num_unique_values\": 248,\n \"samples\": [\n 11.2417,\n 51.8625\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Embarked\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"S\",\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CabinGrup\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 9,\n \"samples\": [\n \"F\",\n \"C\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe", "variable_name": "df" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassSexAgeSibSpParchFareEmbarkedCabinGrup
003male22.0107.2500SZ
111female38.01071.2833CC
213female26.0007.9250SZ
311female35.01053.1000SC
403male35.0008.0500SZ
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " Survived Pclass Sex Age SibSp Parch Fare Embarked CabinGrup\n", "0 0 3 male 22.0 1 0 7.2500 S Z\n", "1 1 1 female 38.0 1 0 71.2833 C C\n", "2 1 3 female 26.0 0 0 7.9250 S Z\n", "3 1 1 female 35.0 1 0 53.1000 S C\n", "4 0 3 male 35.0 0 0 8.0500 S Z" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 20.6 ms (started: 2024-10-26 13:18:56 +00:00)\n" ] } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 78, "status": "ok", "timestamp": 1729948739545, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "nbHOSAZZejvq", "outputId": "ecebdcac-08d5-4d5b-8b91-e408e8853298" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 1.93 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "X=df.iloc[:,1:]\n", "y=df.iloc[:,0].values" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 74, "status": "ok", "timestamp": 1729948739545, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "iZuxg8u-ejvr", "outputId": "df34276b-2261-43aa-e881-e706fb99fb9f" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 4.58 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "#if imbalanced add stratify=y\n", "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25, random_state=42,stratify=y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 68, "status": "ok", "timestamp": 1729948739545, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Md6Ct_Y1ejvr", "outputId": "558c1b57-3066-4392-e0af-076e0f2faecb" }, "outputs": [ { "data": { "text/plain": [ "[(668, 8), (223, 8), (668,), (223,)]" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 3.8 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "list(map(np.shape, (X_train, X_test, y_train, y_test)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 64, "status": "ok", "timestamp": 1729948739545, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "5l-JNxmYejvr", "outputId": "e84bd408-460d-4682-a4e9-130e2391bd3d" }, "outputs": [ { "data": { "text/plain": [ "[pandas.core.frame.DataFrame,\n", " pandas.core.frame.DataFrame,\n", " numpy.ndarray,\n", " numpy.ndarray]" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 2.74 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "list(map(type, (X_train, X_test, y_train, y_test)))" ] }, { "cell_type": "markdown", "metadata": { "id": "JhYFU_nOejvr" }, "source": [ "## Modelleme" ] }, { "cell_type": "markdown", "metadata": { "id": "2iC9c9g2ejvs" }, "source": [ "Logistic Regression ile birlikte benzer mantıkta çalışan birkaç classfiera daha bakacağız." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 60, "status": "ok", "timestamp": 1729948739545, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "sa6pRcM-ejvs", "outputId": "e46430c2-d252-431f-ec9b-bc33046cbd11" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 1.13 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "from sklearn.linear_model import LogisticRegression,RidgeClassifier,SGDClassifier" ] }, { "cell_type": "markdown", "metadata": { "id": "-XWe6kGIejvs" }, "source": [ "Diğer ikisini kısaca tanıyalım:" ] }, { "cell_type": "markdown", "metadata": { "id": "U9sZYLZHejvs" }, "source": [ "**Lasso**\n", "\n", "LinReg notebookunda detay bilgi var, şuraya da bakabilirsiniz. Burda belirtildiği gibi Lasso, en küçük kareler problemini L1 cezasıyla(penaltı) optimize eder. Tanım olarak, Lasso ile bir lojistik fonksiyonu optimize edemezsiniz. L1 cezalı bir lojistik fonksiyonu optimize etmek istiyorsanız, L1 parametreli LogReg modeli kullanabilirsiniz. Yani özetle, **LinReg'de olduğunun aksine Lasso sınıfnı kullanmayacağız**, bunun için penalty parametresini kullanacağız." ] }, { "cell_type": "markdown", "metadata": { "id": "Tj1MhTn3ejvs" }, "source": [ "**RidgeClassifer**\n", "\n", "Bu da L2 penaltısı kullanır, LogReg'den daha hızlı." ] }, { "cell_type": "markdown", "metadata": { "id": "SCFZ8H3jejvs" }, "source": [ "**SGDClassifier**\n", "\n", "SGD, ayrı bi tahminleme algoritması değil, bir optimizasyon yöntemidir. Lineer regresyon notebookunda bunu incelemiştik. SGDClassifer, sklearn içinde her ne kadar ayrı bir algoritmaymış gibi tutulmuş olsa da aslında bu optimizasyon yöntemi olarak SGD uygulayan lineer bir classifierdır. Burda loss=\"log_loss dediğimizde aslında optimizer olarak OLS değil de SGD kullanan bir LogReg eğitmiş oluruz.(log-loss yerine hinge kullanılırsa da bu sefer SVM eğitilmiş olur)\n", "\n", "Özellikle sample sayısı çokken, yani large data sözkonusu iken işe yarar, hem RAM hem CPU açısından daha verimli.\n", "\n", "- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html\n", "- https://scikit-learn.org/stable/modules/sgd.html#sgd" ] }, { "cell_type": "markdown", "metadata": { "id": "1qUsbehpejvs" }, "source": [ "### Model selection" ] }, { "cell_type": "markdown", "metadata": { "id": "-5k0CBOhejvt" }, "source": [ "#### hyperparametreler" ] }, { "cell_type": "markdown", "metadata": { "id": "VMRz2teYejvt" }, "source": [ "LogReg'in birçok hyperparametresi var ancak eğitimlerde çoğunlukla 1-2 tanesi üzerinde durulup geçilir. Ben öyle yapmanızı tavsiye etmiyorum. Buraya da copy paste yapmanın bi anlamı yok, dokümantasyonundan lütfen her parametrenin ne olduğuna, hangisinin neyle birlikte kullanılması gerektiğine bakın. Bunları doğru yapmazsanız ya eğitimlerde yüzeysel anlatıldığı gibi basit bir gridsearch yapmış olursunuz ve bu da muhtemelen yetersiz kalır, çünkü tüm olası seçenekleri denememiş olursunuz, ya da herşeyi birlikte denemeye çalışıp hatalar alırsınız, çünkü her parametrenin her değeri birbiriyle uyumlu değil. O yüzden birbiriyle uyumlu olacak geniş bir parametre uzayını denemek için bunlara hakim olmanız gerekir.\n", "\n", "Aşağıda [sklearn](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) sayfasından aldığım **solver x penalty** matrisi bu anlamda oldukça yol göstericidir." ] }, { "cell_type": "markdown", "metadata": { "id": "jjA-_aqfejvt" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "anDNEu5Aejvt" }, "source": [ "Solverlar(oppitmizerlar) hakkında detaylı bilgiyi buradan ve buradan elde edebilrsiniz." ] }, { "cell_type": "markdown", "metadata": { "id": "hDKXeBHVejvt" }, "source": [ "#### Pipeline" ] }, { "cell_type": "markdown", "metadata": { "id": "Z-3kYZgFejvt" }, "source": [ "Şimdi yavaştan [pipelineımızı](https://medium.com/@mvolkanyurtseven/makine-%C3%B6%C4%9Frenimi-felsefesi-6-part-ii-d6d05e989241#f553) kurmaya başlayalım. Öncelikle outlierhandlerımız olan custom class tanımımızı yapalım." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 56, "status": "ok", "timestamp": 1729948739546, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "j9MS9eLqejvt", "outputId": "336af9b9-0cbd-4c5a-d8c9-300bd36f6039" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 2.49 ms (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "from sklearn.base import BaseEstimator, TransformerMixin\n", "\n", "def logTransformer(df,col_name):\n", " temp=df.copy() #her defasında orjinal X_train bozulmasın diye, yoksa gridi 2.kez çalıştırdığımda hata alıyoruz\n", " temp[col_name] = np.log10(temp[col_name]+0.01)\n", " return temp\n", "\n", "class OutlierHandler(BaseEstimator, TransformerMixin):\n", " def __init__(self, featureindices): #if only specific columns to be processed\n", " self.featureindices = featureindices\n", "\n", " def fit(self, X:np.array, y = None):\n", " Q1s = np.quantile(X[:,self.featureindices],0.1,axis=0)\n", " Q3s = np.quantile(X[:,self.featureindices],0.9,axis=0)\n", " IQRs = Q3s-Q1s\n", " self.top=(Q3s + 1.5 * IQRs)\n", " self.bottom=(Q1s - 1.5 * IQRs)\n", " return self\n", "\n", " def transform(self, X:np.array, y = None ):\n", " X[:,self.featureindices]=np.where(X[:,self.featureindices]>self.top,self.top,X[:,self.featureindices])\n", " X[:,self.featureindices]=np.where(X[:,self.featureindices]#sk-container-id-1 {\n", " /* Definition of color scheme common for light and dark mode */\n", " --sklearn-color-text: black;\n", " --sklearn-color-line: gray;\n", " /* Definition of color scheme for unfitted estimators */\n", " --sklearn-color-unfitted-level-0: #fff5e6;\n", " --sklearn-color-unfitted-level-1: #f6e4d2;\n", " --sklearn-color-unfitted-level-2: #ffe0b3;\n", " --sklearn-color-unfitted-level-3: chocolate;\n", " /* Definition of color scheme for fitted estimators */\n", " --sklearn-color-fitted-level-0: #f0f8ff;\n", " --sklearn-color-fitted-level-1: #d4ebff;\n", " --sklearn-color-fitted-level-2: #b3dbfd;\n", " --sklearn-color-fitted-level-3: cornflowerblue;\n", "\n", " /* Specific color for light theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-icon: #696969;\n", "\n", " @media (prefers-color-scheme: dark) {\n", " /* Redefinition of color scheme for dark theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-icon: #878787;\n", " }\n", "}\n", "\n", "#sk-container-id-1 {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "#sk-container-id-1 pre {\n", " padding: 0;\n", "}\n", "\n", "#sk-container-id-1 input.sk-hidden--visually {\n", " border: 0;\n", " clip: rect(1px 1px 1px 1px);\n", " clip: rect(1px, 1px, 1px, 1px);\n", " height: 1px;\n", " margin: -1px;\n", " overflow: hidden;\n", " padding: 0;\n", " position: absolute;\n", " width: 1px;\n", "}\n", "\n", "#sk-container-id-1 div.sk-dashed-wrapped {\n", " border: 1px dashed var(--sklearn-color-line);\n", " margin: 0 0.4em 0.5em 0.4em;\n", " box-sizing: border-box;\n", " padding-bottom: 0.4em;\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "#sk-container-id-1 div.sk-container {\n", " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n", " but bootstrap.min.css set `[hidden] { display: none !important; }`\n", " so we also need the `!important` here to be able to override the\n", " default hidden behavior on the sphinx rendered scikit-learn.org.\n", " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n", " display: inline-block !important;\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-text-repr-fallback {\n", " display: none;\n", "}\n", "\n", "div.sk-parallel-item,\n", "div.sk-serial,\n", "div.sk-item {\n", " /* draw centered vertical line to link estimators */\n", " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n", " background-size: 2px 100%;\n", " background-repeat: no-repeat;\n", " background-position: center center;\n", "}\n", "\n", "/* Parallel-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-parallel-item::after {\n", " content: \"\";\n", " width: 100%;\n", " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n", " flex-grow: 1;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel {\n", " display: flex;\n", " align-items: stretch;\n", " justify-content: center;\n", " background-color: var(--sklearn-color-background);\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n", " align-self: flex-end;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n", " align-self: flex-start;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n", " width: 0;\n", "}\n", "\n", "/* Serial-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-serial {\n", " display: flex;\n", " flex-direction: column;\n", " align-items: center;\n", " background-color: var(--sklearn-color-background);\n", " padding-right: 1em;\n", " padding-left: 1em;\n", "}\n", "\n", "\n", "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n", "clickable and can be expanded/collapsed.\n", "- Pipeline and ColumnTransformer use this feature and define the default style\n", "- Estimators will overwrite some part of the style using the `sk-estimator` class\n", "*/\n", "\n", "/* Pipeline and ColumnTransformer style (default) */\n", "\n", "#sk-container-id-1 div.sk-toggleable {\n", " /* Default theme specific background. It is overwritten whether we have a\n", " specific estimator or a Pipeline/ColumnTransformer */\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "/* Toggleable label */\n", "#sk-container-id-1 label.sk-toggleable__label {\n", " cursor: pointer;\n", " display: block;\n", " width: 100%;\n", " margin-bottom: 0;\n", " padding: 0.5em;\n", " box-sizing: border-box;\n", " text-align: center;\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n", " /* Arrow on the left of the label */\n", " content: \"▸\";\n", " float: left;\n", " margin-right: 0.25em;\n", " color: var(--sklearn-color-icon);\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "/* Toggleable content - dropdown */\n", "\n", "#sk-container-id-1 div.sk-toggleable__content {\n", " max-height: 0;\n", " max-width: 0;\n", " overflow: hidden;\n", " text-align: left;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content pre {\n", " margin: 0.2em;\n", " border-radius: 0.25em;\n", " color: var(--sklearn-color-text);\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n", " /* Expand drop-down */\n", " max-height: 200px;\n", " max-width: 100%;\n", " overflow: auto;\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n", " content: \"▾\";\n", "}\n", "\n", "/* Pipeline/ColumnTransformer-specific style */\n", "\n", "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator-specific style */\n", "\n", "/* Colorize estimator box */\n", "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n", "#sk-container-id-1 div.sk-label label {\n", " /* The background is the default theme color */\n", " color: var(--sklearn-color-text-on-default-background);\n", "}\n", "\n", "/* On hover, darken the color of the background */\n", "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "/* Label box, darken color on hover, fitted */\n", "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator label */\n", "\n", "#sk-container-id-1 div.sk-label label {\n", " font-family: monospace;\n", " font-weight: bold;\n", " display: inline-block;\n", " line-height: 1.2em;\n", "}\n", "\n", "#sk-container-id-1 div.sk-label-container {\n", " text-align: center;\n", "}\n", "\n", "/* Estimator-specific */\n", "#sk-container-id-1 div.sk-estimator {\n", " font-family: monospace;\n", " border: 1px dotted var(--sklearn-color-border-box);\n", " border-radius: 0.25em;\n", " box-sizing: border-box;\n", " margin-bottom: 0.5em;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "/* on hover */\n", "#sk-container-id-1 div.sk-estimator:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n", "\n", "/* Common style for \"i\" and \"?\" */\n", "\n", ".sk-estimator-doc-link,\n", "a:link.sk-estimator-doc-link,\n", "a:visited.sk-estimator-doc-link {\n", " float: right;\n", " font-size: smaller;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1em;\n", " height: 1em;\n", " width: 1em;\n", " text-decoration: none !important;\n", " margin-left: 1ex;\n", " /* unfitted */\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-unfitted-level-1);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted,\n", "a:link.sk-estimator-doc-link.fitted,\n", "a:visited.sk-estimator-doc-link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "/* Span, style for the box shown on hovering the info icon */\n", ".sk-estimator-doc-link span {\n", " display: none;\n", " z-index: 9999;\n", " position: relative;\n", " font-weight: normal;\n", " right: .2ex;\n", " padding: .5ex;\n", " margin: .5ex;\n", " width: min-content;\n", " min-width: 20ex;\n", " max-width: 50ex;\n", " color: var(--sklearn-color-text);\n", " box-shadow: 2pt 2pt 4pt #999;\n", " /* unfitted */\n", " background: var(--sklearn-color-unfitted-level-0);\n", " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted span {\n", " /* fitted */\n", " background: var(--sklearn-color-fitted-level-0);\n", " border: var(--sklearn-color-fitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link:hover span {\n", " display: block;\n", "}\n", "\n", "/* \"?\"-specific style due to the `` HTML tag */\n", "\n", "#sk-container-id-1 a.estimator_doc_link {\n", " float: right;\n", " font-size: 1rem;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1rem;\n", " height: 1rem;\n", " width: 1rem;\n", " text-decoration: none;\n", " /* unfitted */\n", " color: var(--sklearn-color-unfitted-level-1);\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "#sk-container-id-1 a.estimator_doc_link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", "
HalvingRandomSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n",
       "                      error_score='raise',\n",
       "                      estimator=Pipeline(steps=[('log',\n",
       "                                                 FunctionTransformer(func=<function logTransformer at 0x7e7147611b40>,\n",
       "                                                                     kw_args={'col_name': 'Fare'})),\n",
       "                                                ('ct',\n",
       "                                                 ColumnTransformer(n_jobs=-1,\n",
       "                                                                   remainder='passthrough',\n",
       "                                                                   transformers=[('nominals',\n",
       "                                                                                  Pipeline(steps=[('ohe',\n",
       "                                                                                                   OneHotEncoder(d...\n",
       "                                            'clf__alpha': array([1.e+04, 1.e+03, 1.e+02, 1.e+01, 1.e+00, 1.e-01, 1.e-02, 1.e-03,\n",
       "       1.e-04, 1.e-05]),\n",
       "                                            'clf__class_weight': [{0: 1, 1: 2},\n",
       "                                                                  {0: 1, 1: 4},\n",
       "                                                                  {0: 1, 1: 6},\n",
       "                                                                  {0: 1, 1: 8},\n",
       "                                                                  {0: 1, 1: 10},\n",
       "                                                                  'balanced'],\n",
       "                                            'clf__solver': ['svd', 'cholesky',\n",
       "                                                            'lsqr', 'sparse_cg',\n",
       "                                                            'sag', 'saga'],\n",
       "                                            'clf__tol': [0.001, 0.0001],\n",
       "                                            'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n",
       "                                                                                                 3]),\n",
       "                                                                  None],\n",
       "                                            'ct__numerics__scl': [StandardScaler(),\n",
       "                                                                  MinMaxScaler()]}],\n",
       "                      scoring='accuracy', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "HalvingRandomSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n", " error_score='raise',\n", " estimator=Pipeline(steps=[('log',\n", " FunctionTransformer(func=,\n", " kw_args={'col_name': 'Fare'})),\n", " ('ct',\n", " ColumnTransformer(n_jobs=-1,\n", " remainder='passthrough',\n", " transformers=[('nominals',\n", " Pipeline(steps=[('ohe',\n", " OneHotEncoder(d...\n", " 'clf__alpha': array([1.e+04, 1.e+03, 1.e+02, 1.e+01, 1.e+00, 1.e-01, 1.e-02, 1.e-03,\n", " 1.e-04, 1.e-05]),\n", " 'clf__class_weight': [{0: 1, 1: 2},\n", " {0: 1, 1: 4},\n", " {0: 1, 1: 6},\n", " {0: 1, 1: 8},\n", " {0: 1, 1: 10},\n", " 'balanced'],\n", " 'clf__solver': ['svd', 'cholesky',\n", " 'lsqr', 'sparse_cg',\n", " 'sag', 'saga'],\n", " 'clf__tol': [0.001, 0.0001],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n", " 3]),\n", " None],\n", " 'ct__numerics__scl': [StandardScaler(),\n", " MinMaxScaler()]}],\n", " scoring='accuracy', verbose=1)" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 55.8 s (started: 2024-10-26 13:18:57 +00:00)\n" ] } ], "source": [ "%%time\n", "from sklearn.experimental import enable_halving_search_cv\n", "from sklearn.model_selection import HalvingRandomSearchCV\n", "from sklearn.base import BaseEstimator, TransformerMixin\n", "\n", "np.random.seed(42) #RandomizedSearchCV için\n", "\n", "#outlier handling ve scaling için\n", "class DummyTransformer(TransformerMixin,BaseEstimator):\n", " def fit(self,X,y=None): pass\n", " def transform(self,X,y=None): pass\n", "\n", "#3 farklı classifier için dummy estimator\n", "class DummyEstimator(BaseEstimator):\n", " def fit(self,X,y=None): pass\n", " def score(self,X,y=None): pass\n", "\n", "cat_pipe=Pipeline([\n", " (\"ohe\", OneHotEncoder(drop=\"first\",handle_unknown='ignore'))\n", " ])\n", "\n", "num_pipe=Pipeline([\n", " (\"imp\", SimpleImputer(strategy=\"median\")),\n", " (\"ouh\", DummyTransformer()),\n", " (\"scl\", DummyTransformer())\n", " ])\n", "\n", "\n", "coltrans = ColumnTransformer([\n", " ('nominals', cat_pipe, [e for e,v in enumerate(X.columns) if v in noms]),\n", " ('numerics', num_pipe, [e for e,v in enumerate(X.columns) if v in nums])\n", " ],n_jobs=-1,remainder=\"passthrough\") #ordinaller\n", "\n", "\n", "pipe = Pipeline(steps=[('log', FunctionTransformer(logTransformer,kw_args=dict(col_name=\"Fare\"))),\n", " ('ct', coltrans),\n", " # ('fs', SelectKBest(score_func=mutual_info_classif,k=10)), #en çok etkisi olan 10 feature seçilsin, ama bu işlem OHE uygulandıktan sorna deverye girecek, işler karışacak. OHE öncesinde uygularsam da bu sefer OHE'ye girecek olan noms içieriği değişebilir, o yüzden işleri karıştırmamak adına şimdilik iptal ediyorum\n", " ('clf', DummyEstimator())\n", " ])\n", "\n", "params = [\n", " {\n", " 'clf' : [LogisticRegression(max_iter=mi,random_state=42)],\n", " 'clf__C' : c_range,\n", " 'clf__tol' :[0.001, 0.0001],\n", " 'clf__penalty': ['l2'], #none koymadım, çünkü zaten yüksek C değeri de veriyorum ki bu zaten regularizasyon uygulama demekle aynı şey\n", " 'clf__solver' : ['newton-cg', 'lbfgs','sag','saga'],\n", " 'clf__class_weight': [{0:1, 1:x} for x in weights] + ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl': [StandardScaler(),MinMaxScaler()]\n", " } ,\n", " {\n", " 'clf' : [LogisticRegression(max_iter=mi,random_state=42)],\n", " 'clf__C' : c_range,\n", " 'clf__tol' :[0.000, 0.0001],\n", " 'clf__penalty': ['l1'],\n", " 'clf__solver' : ['liblinear','saga'],\n", " 'clf__class_weight': [{0:1, 1:x} for x in weights] + ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl': [StandardScaler(),MinMaxScaler()]\n", " } ,\n", " {\n", " 'clf' : [LogisticRegression(max_iter=mi,random_state=42)],\n", " 'clf__C' : c_range,\n", " 'clf__tol' :[0.001, 0.0001],\n", " 'clf__penalty': ['elasticnet'],\n", " 'clf__l1_ratio':[0.15, 0.5, 1],\n", " 'clf__solver' : ['saga'],\n", " 'clf__class_weight': [{0:1, 1:x} for x in weights] + ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl': [StandardScaler(),MinMaxScaler()]\n", " } ,\n", " {\n", " 'clf' : [SGDClassifier(loss='log_loss',max_iter=mi,random_state=42)],\n", " 'clf__alpha' : c_range,\n", " 'clf__tol' : [0.001, 0.0001],\n", " 'clf__penalty' : ['l1','l2','elasticnet'],\n", " 'clf__l1_ratio' : [0.15, 0.5, 1],\n", " 'clf__learning_rate': ['constant','optimal','invscaling','adaptive'],\n", " 'clf__eta0' : [0.01, 0.001, 0.0001],\n", " 'clf__early_stopping':[True,False],\n", " 'clf__class_weight': [{0:1, 1:x} for x in weights] + ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl' : [StandardScaler(),MinMaxScaler()]\n", " } ,\n", " {\n", " 'clf' : [RidgeClassifier(random_state=42)],\n", " 'clf__alpha' : c_range,\n", " 'clf__tol' :[0.001, 0.0001],\n", " 'clf__solver' : ['svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'],\n", " 'clf__class_weight': [{0:1, 1:x} for x in weights] + ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl': [StandardScaler(),MinMaxScaler()]\n", " }\n", " ]\n", "\n", "mycv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=1)\n", "hrs1 = HalvingRandomSearchCV(estimator = pipe, param_distributions = params, cv = mycv, n_jobs=-1, verbose = 1,\n", " scoring = 'accuracy',error_score='raise',min_resources=min_res,factor=fact)\n", "hrs1.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 331 }, "executionInfo": { "elapsed": 25, "status": "ok", "timestamp": 1729948793525, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "GyQG0THBejvu", "outputId": "5a327d4d-2fd5-4c4a-abf5-3e4751bd6780" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"ml\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"param_ct__numerics__scl\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"StandardScaler()\",\n \"StandardScaler()\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_ct__numerics__ouh\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"OutlierHandler(featureindices=[0, 3])\",\n \"OutlierHandler(featureindices=[0, 3])\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__tol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0001,\n \"max\": 0.0001,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0001\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__penalty\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"elasticnet\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__learning_rate\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"constant\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__l1_ratio\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__eta0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0001,\n \"max\": 0.0001,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0001\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__early_stopping\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__class_weight\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"balanced\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__alpha\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0049295030175464955,\n \"min\": 0.001,\n \"max\": 0.01,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.01\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"SGDClassifier(loss='log_loss', max_iter=4000, random_state=42)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__solver\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"cholesky\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__C\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.02503073262833915,\n \"min\": 0.7346666666666666,\n \"max\": 0.790234706616729,\n \"num_unique_values\": 5,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.037565369540199185,\n \"min\": 0.04349026434961815,\n \"max\": 0.13652910873093765,\n \"num_unique_values\": 5,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
param_ct__numerics__sclparam_ct__numerics__ouhparam_clf__tolparam_clf__penaltyparam_clf__learning_rateparam_clf__l1_ratioparam_clf__eta0param_clf__early_stoppingparam_clf__class_weightparam_clf__alphaparam_clfparam_clf__solverparam_clf__Cmean_test_scorestd_test_score
19StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001NaNNaNNaNNaNNaNbalanced0.001RidgeClassifier(random_state=42)choleskyNaN0.7902350.043490
17StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001NaNNaNNaNNaNNaNbalanced0.001RidgeClassifier(random_state=42)choleskyNaN0.7787360.072210
18StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001elasticnetconstant1.00.0001Falsebalanced0.010SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7737400.045706
16StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001elasticnetconstant1.00.0001Falsebalanced0.010SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7385290.075656
3StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001NaNNaNNaNNaNNaNbalanced0.001RidgeClassifier(random_state=42)choleskyNaN0.7346670.136529
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " param_ct__numerics__scl param_ct__numerics__ouh \\\n", "19 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "17 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "18 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "16 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "3 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "\n", " param_clf__tol param_clf__penalty param_clf__learning_rate \\\n", "19 0.0001 NaN NaN \n", "17 0.0001 NaN NaN \n", "18 0.0001 elasticnet constant \n", "16 0.0001 elasticnet constant \n", "3 0.0001 NaN NaN \n", "\n", " param_clf__l1_ratio param_clf__eta0 param_clf__early_stopping \\\n", "19 NaN NaN NaN \n", "17 NaN NaN NaN \n", "18 1.0 0.0001 False \n", "16 1.0 0.0001 False \n", "3 NaN NaN NaN \n", "\n", " param_clf__class_weight param_clf__alpha \\\n", "19 balanced 0.001 \n", "17 balanced 0.001 \n", "18 balanced 0.010 \n", "16 balanced 0.010 \n", "3 balanced 0.001 \n", "\n", " param_clf param_clf__solver \\\n", "19 RidgeClassifier(random_state=42) cholesky \n", "17 RidgeClassifier(random_state=42) cholesky \n", "18 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "16 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "3 RidgeClassifier(random_state=42) cholesky \n", "\n", " param_clf__C mean_test_score std_test_score \n", "19 NaN 0.790235 0.043490 \n", "17 NaN 0.778736 0.072210 \n", "18 NaN 0.773740 0.045706 \n", "16 NaN 0.738529 0.075656 \n", "3 NaN 0.734667 0.136529 " ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 41.1 ms (started: 2024-10-26 13:19:53 +00:00)\n" ] } ], "source": [ "ml.gridsearch_to_df(hrs1,5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 193 }, "executionInfo": { "elapsed": 532, "status": "ok", "timestamp": 1729948794038, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "IJL4e0lYejvu", "outputId": "e374b949-49b0-4a80-dfa6-04790b28a890" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"ml\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"param_clf\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"RidgeClassifier\",\n \"SGDClassifier\",\n \"LogisticRegression\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MAX of mean_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07120076753668937,\n \"min\": 0.6594942528735632,\n \"max\": 0.790234706616729,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.790234706616729,\n 0.7737403245942572,\n 0.6594942528735632\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MIN of mean_fit_time\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.01416038886650251,\n \"min\": 0.03138923168182373,\n \"max\": 0.05647663593292236,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.03255240440368652,\n 0.03138923168182373,\n 0.05647663593292236\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MAX of mean_test_scoreMIN of mean_fit_time
param_clf
RidgeClassifier0.7902350.032552
SGDClassifier0.7737400.031389
LogisticRegression0.6594940.056477
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " MAX of mean_test_score MIN of mean_fit_time\n", "param_clf \n", "RidgeClassifier 0.790235 0.032552\n", "SGDClassifier 0.773740 0.031389\n", "LogisticRegression 0.659494 0.056477" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 30.7 ms (started: 2024-10-26 13:19:53 +00:00)\n" ] } ], "source": [ "ml.compareEstimatorsInGridSearch(hrs1,tableorplot='table')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 494 }, "executionInfo": { "elapsed": 28, "status": "ok", "timestamp": 1729948794039, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "UqAyq0s0ejvv", "outputId": "cd38bf2d-0631-4e4b-9cef-fd87bbe5729e" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAHLCAYAAACu6RM9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk00lEQVR4nOzdd3hT1RsH8O/Nbpt0701ZbdmjBQQUFQEZAoIgKogg4+dARUHAgSiKiIriQMWBIgKy9xKUvaGsltlCJ91N0jY75/dH6aUh6UpHSnk/z9OH5Nx77n3T0Ly5557BMcYYCCGEEFJlAkcHQAghhNxrKHkSQggh1UTJkxBCCKkmSp6EEEJINVHyJIQQQqqJkichhBBSTZQ8CSGEkGoSOTqAhsxoNOLMmTPw8/ODQEDfMwgh9z6z2YzMzEx06NABIhGlAHvRb64CZ86cQWxsrKPDIISQWnf8+HHExMQ4Oox7FiXPCvj5+QEo+U8WEBDg4GgIIaTmMjIyEBsby3++EftQ8qxAaVNtQEAAgoODHRwNIYTUHroVVTP02yOEEEKqiZInIYQQUk2UPAkhhJBqonuehBBCyqUzmvDl7itYfzoNSo0BkQGueKtPC/Rs7lNp3VtKLT7aEo/9V7PBGNA1wgvvD4xGqJez1b7Zah2+3H0Fey9lIr/YAB+5FN2beeGz4e3q4mXVGCVPQggh5Xpr9TlsP5+BcT2aINzLBWtOpeCF305gxcSuiAn3LLdekc6IUUuOQq014OWHm0Ek4PDrwSSM/OkItk3pCQ8XCb9veoEGwxcfBgA82yUM/q4yZKq0OJtaUNcvz26UPAkhhNgUl1KAzWfTMat/JCY+2BQA8GTHIPT9aj/mbUvAupe6l1t32dGbSMopwsaXu6NdiDsAoFdLX/T9aj+WHEjE9H6R/L6z1p+HUMhh08s9LJJqQ0b3PAkhhNi0/XwGhAIOo2JD+TKZWIgRnUNwOrkA6QWaCuu2C3bjEycANPOV44GmXth6PoMvu5ZViP8uZ2Pig03h4SKB1mCCwWSuk9dTm+jKkxBC7kNqtRoqlYp/LpVKIZVKLfa5mK5CE28XKGRii/L2txNifLoKge5OVsc2mxkSbqkxorP1+Pj2Ie44cDUHhToj5FIRDl3LAQD4yCV4ZslRHL6eC6GAQ49m3pg7pDVCPK3vjzYEdOVJCCH3oejoaLi5ufE/8+bNs9onS62Fr0JqVV5alqnW2jx2gcYAvdEMX4Ws/LqqkrpJOUUAgJnrzkMsFODbZzrg7X4tcfJGHp775Rg0epN9L7CO0ZUnIYTch+Lj4xEUFMQ/v/uqEwC0BjMkIutrLKlIyG+3RWsoSXgV1y3Zp1hvBAD4KKT4bWwMBAIOAODv5oQpK85gY1wani7TbNxQ0JUnIYTchxQKBVxdXfkfW8lTJhZAb7ROkDqjid9ui0xckiArriu0+HdAm0A+cZY8D4BIwOHUzfzqvKx6Q8mTEEKITb4KGbLUOqvy0jI/G82yAODuJIZEJECWjWZdvq6rzOJfb4VlL1uhgIO7swRKjcH+F1CHKHkSQgixKTrQFUk5RVBrLRNYXEoBv90WgYBDpL8C51OVVtviUgoQ6ukMubTkrmHrIDcAQKbSMtHqjWbkF+vhJW+YQ1coeRJCCLHp8db+MJkZVhxP5st0RhNWn0xB+xB3vqdtWoEG17IK76obgLOpSpwrM9HB9exCHL6ei/5t7izx2DXCE95yCTbEpfP3QQFgzalUmMwMPZpVPpORI1CHIUIIITZ1CPXAgDYB+GzHZeQW6hHm5YK1p1ORmq/B/GFt+f2mrorDsaQ83Ph0AF82ulsYVp5IxrilJzChZwREQgF+OZAIb7kEE3o24feTioSY+XgU3lx9FiN/PIKhHYKQrtTit0NJiA33RL/W/vX6mquKkichhJByfTGiHYJ2O2HdmZK5baP8FfhlbAy6RHhVWE8uFWHlxK74aEs8vt17DWbG0DXCC+8NjIaX3LJz0rBOwRCLBFj833V8sv0SXGViPBMbimn9IiEs04moIeEYY8zRQTRUqampCAkJQUpKCi2GTQhpFOhzrXY02CtPs16PnEWLoNy4CSaVCtKWLeHz2hTIu5c/l2KposOHkfPDj9BduQJmMkESHg7P556F2+DB9RA5IYSQxq7BdhjKmDETuUt/h+ugQfCbNQucQICUSZNRfOpUhfXUe/ciefyLYAYDvF95BT6vvwaBVIr0t2cgd+nS+gmeEEJIo9Ygrzw1585BtW0bfKdNg9f4cQAAtyGDkTjoCWQt+BzhK1eUWzf/z+UQ+fgg9PelEEhKujh7jByJ6/0HQLl+A7zGjq2Pl0AIIaQRa5BXnqqdOwGhEO4jR/BlAqkU7sOGQRMXB0NGRrl1TUWFELq58okTADiRCEIPd3Ay6xk0CCGEkOpqkMlTl5AASXg4hHK5RblT2zYAAG3CpXLrusTGQnf1GrK+/hr6mzehT05G9vffQ3vhIrzGj6/4vDodVCoV/6NWq2v+YgghhDQ6DbLZ1pidDZGP9cDY0jJjVla5db3/9z/oU1OR+8OPyF38AwCAc3JC8KKvoXj00QrPO2/ePMyZM6cGkRNCCLkfNMgrT7NWB04itirnbk9czHS2l8EBAE4igSQ8HIq+fRH4xecIXPAZnFq1Qvq06dDExVV43pkzZ0KpVPI/8fHxNXodhJB7l9lMo/hI+RrkladAJgXTW08GzHQlEwpzUtuTEQPArY/mQnP2LJqsWwtOUPLdwLVfPyQOHIRbn8xDk79XlVv37sVgyy4USwi5f2w/n4FfDibh++c62lyTkpAGmTxFPj4wZFo3zRqzs0u2+/rarMf0ehSsXQuv8eP5xAkAnFgMlwcfRP7y5WB6PThJ3U80nBAZVefnaMyiLiU4OgRyn7p0S4U3V59Fsd6Ev44l4/XeLRwdEmmAGmSzrTQyCvobN2AqtJxoWHP2HABAFhVps56xoAAwGgGz9crjzGgAzGYws+3FWwkhJL9Ijwl/nESx3oSezb3xysPNHB0SaaAaZPJ07dsHMJlQsOpvvsys16Ng/TrI2rWFOKBkRn5Dejp0iYn8PiIvLwhcXaHe/Q+YXn+nblERCv/9D5KICAhk1ARDCLFmNJnxyorTSMnTINTTGd+M6gCRsEF+RJIGoEE22zq1awdFv37IWrgQxrxcSELDoNywAYa0dATOncvvl/72DBSfOME38XFCIbzGvYDsr75G0tNPw33wYDCTGQVr18J46xYCF3zmqJdECGngPtl2CYeu5cJZIsSSMZ3h7tww15EkDUODTJ4AEDj/U2R/vQjKTZtgVpbMbRuyeDGcY2IqrOc9eTLEQcHIW7YM2d99D6bXQ9qyBYK+/rrkipYQQu6y9lQqfj2UBAD4ckR7tPRXODgi0tDRqioVqMnqA9RhqGaowxCpL3EpBRjx4xHojWZMebQ5pj7WuDsI0aoqtaPBXnkSUpvoy0zNNcYvNFlqLSYvOwW90YzHov3w+qPNHR0SuUfQ3XBCyH1JZzThf3+exi2VFs185fhyRDsIGujCy6ThoeRJCLnvMMbwwaaLOHUzH64yEZaM6QyFzHpWM0LKU6NmW218PJRbt0KfmASzVoOw334DABjS0qA5dw4u3bpB6O5eG3ESQkit+fNYMlYcT4GAAxaN6oAm3i6ODoncY+xOnpkLFiDvt6VAaX8j7k5zB2NA2lvT4Pf2dHiOGVPTGAkhpNYcS8zFnE0XAQBv94tEr5a2ZywjpCJ2NdsWrF2HvF9/g7xXLzTZuAFeEydabJcEB8GpTRuo9/5bK0ESQkhtSCvQ4KXlp2E0MzzRLhATH4xwdEjkHmVX8sxfsQKSphEIXvQ1ZC1agBNb3yuQRERAf/NmjQMkhJDaoNGbMPGPk8gt0qNVoCvmD2sLjqMOQsQ+diVP3fXrcHngAXCi8lt9RV5eMOXm2h0YIYTUFsYY3l57DhfTVfBykeCnMZ3hJBE6OixyD7MreXJCIZjBesmwsoxZWRA4O9sVFCGE1Kaf9idi09l0iAQcvn+2I4LcnRwdErnH2ZU8pS1aoPjoMTCT9eolAGDWaFB05AhkrVrVKDhCCKmp/y5nYf6OSwCA2YOi0SXCy8ERkcbAruTpPuxJ6G/cwK0PPoC5zOolAGAqLET6zFkw5uTA/amnaiVIQgixR1JOEV5dcQZmBoyKDcFzXcMcHRJpJOwaquI+bBiKDh9BwZq1UG3bDoGrKwAg6akR0F+/DrNGA7ehQ+Har2+tBksIIVWl1how4Y+TUGuN6BTmgTlPtKYOQqTW2D3OM+iLz+HcJRb5y/+C7upVgDFoL1yApGkEPJ8bDY+nR9ZmnIQQUmVmM8Mbq87iWlYh/F1lWPxcR0hENKEaqT01mmHIY8QIeIwYAbNWC5NSBaHcBQIXmqmDEOJYX+25in8SMiERCfDj6E7wVcgcHRJpZOz6KpYQ3Qppb027cxCZDGI/X0qchBCH23EhA4v2XAUAzBvaBu1C3B0bEGmU7EqeArkc4gD/2o6FEEJq5NItFab+fRYAMK57EwzrROtVkrphV/J0atMG2kuXazsWQgixW0GxHhP/OIVivQndm3lhVv9IR4dEGjG7kqf3Ky+j+OhRFGzYUMvhEEJI9RlNZrzy1xkk5xUjxNMJ347qCJGQOgiRumNXh6Giw4fhHBuLjFnvIP/P5ZC1aQ2Rlzdwdy9wjoPPSy/VQpiEEFK+T7dfwsFrOXCWCLFkTGd4uEgcHRJp5OxKnjnffsc/1l68CO3Fi7Z3pORJCKlj606n4ueDSQCAL55qh0h/VwdHRBqKIp0RSTlFKNabENvEs1aPbVfyDP19aa0GQQgh9jiXWoAZ684DAF59pBkebxPg4IhIQ5CSV4w5m+Px3+UsmBkDx3G4/kl/AMDJG3mYse48PhrcGt2a2j9Vo13J0yU21u4TVpVZr0fOokVQbtwEk0oFacuW8HltCuTdu1dY79ojj8KQnm5zmzgsFM127qyLcAkh9SxbrcOkZaegN5rRO8oXb/Ru4eiQGiWd0YQvd1/B+tNpUGoMiAxwxVt9WqBnc59K695SavHRlnjsv5oNxoCuEV54f2A0Qr0sFw0Jn7HVZv3p/VripV7NqhVvWoEGQ78/jIJiPR6L9kO2WofTyfn89vYh7sgv0mPT2fT6T571IWPGTKh27YLnmDGQhIVBuX49UiZNRtjvS+HcqVO59fxmzYS5uNiizJCejuyvvq408RJC7g16oxn/+/MUMpRaNPVxwcKR7SEQ0NR7deGt1eew/XwGxvVognAvF6w5lYIXfjuBFRO7Iia8/KbQIp0Ro5YchVprwMsPN4NIwOHXg0kY+dMRbJvS0+q+dM/m3niyY5BFWatAt2rHu3D3Fag0Bqya1BWdwjzx1T9XLJKnSChATLgnTt3Mq/axy6pR8iw+fRrK9euhTbgEc2EhBHI5ZFFRcBsyuMIEVxnNuXNQbdsG32nT4DV+HADAbchgJA56AlkLPkf4yhXl1lX07m1VlrN4MQDAdeAgu2MihDQcszddxMmb+VDIRFgypjMUMrGjQ2qU4lIKsPlsOmb1j8TEB5sCAJ7sGIS+X+3HvG0JWPdS+Rcky47eRFJOETa+3J2fqKJXS1/0/Wo/lhxIxPR+lkOJmni7YGiHmo/L3X8lG31a+aFTWPmJPcjDCYev59ToPHb35c6cNw83nxuNgjVrob14EfrkZGgvXkTBmjW4OXoMMud9andQqp07AaEQ7iNH3AlUKoX7sGHQxMXBkJFRreMpt2yFODgYzh072B0TIaRh+PPoTaw4ngyOA74Z1QERPnJHh9RobT+fAaGAw6jYUL5MJhZiROcQnE4uQHqBpsK67YLdLGZ4auYrxwNNvbD1vO3PcK3BBK3B9lKXVVWgMSDYo+K1pBkD9CZzjc5j15VnwfoNyPtjGSTh4fB++WW4dImF0NsbptxcFB07hpzvvkfesmWQRkXCfciQah9fl5AASXg4hHLLPwqntm0AANqESxAHVK1jgDY+Hvrr1+E1eVLl59XpoNPp+OdqtboaURNC6trxpDx8sKmkd//0vpHo1dLXwRE1bhfTVWji7WJ1Zd/+dkKMT1ch0MbC4mYzQ8ItNUZ0tr6SbB/ijgNXc1CoM0IuvZOC1pxKxbKjN8FYSZJ99ZFmGNw+yKp+ZXzkUtzIKapwn8uZtuOuDruuPPNXroDI3x/hf6+C28ABEPn4gOM4iLy94TZgAMJXrYTIzw/5K8pvXq2IMTsbIh/rm9GlZcasrCofS7l5CwDAbVDlTbbz5s2Dm5sb/xMdHV3l8xBC6lZ6gQYvLT8Fo5lhULtATH4owtEh3dPUajVUKhX/U/bCoVSWWgtfhdSqvLQsU621eewCjQF6o9nmhPx8XdWdup3CPPBWn5b4aXRnzB3SGkKOw2sr47Ds6M1qv64ezbyx91IWEjJUNrcfT8rD4eu5eLiGX7zsSp76q9fg2ucxCBUKm9uFCgVc+zwG/dVrdgVl1urASazvYXDSkl8609l+w+7GzGaotm2DNDoK0qZNK91/5syZUCqV/E98fHz1AieE1AmtwYSJy04ip1CP6ABXfDasLa3NWUPR0dEWFwvz5s2z2kdrMNtcyk0qEvLbbSlteq247p3m2bX/ewDjejTBY9F+eK5rGDa/2gMt/RRYsONStZtxX3mkGaRiAUb8eATf7r2Km7klHUj/vZyFL3ZdxvO/HoenswSTHqzZl6867G1r/39sgUwKpjdYlbPb34w4adWWFyo+fgLGzEx4Pv98lfaXSqWQSu98y1KpbH9zIYTUH8YYZqw9hwtpKni6SPDTmE5wkggdHdY9Lz4+HkFBd5pFy372lZKJBdAbrROkzmjit9siE5e8PxXXLf89lIgEGPNAGN5ZfwHn05QV9uq9W4inM/4YF4tXV5zBF7uvgAPAAIxfegIMQKCbExY/1xG+rjVbps6u5Clp3gyqXbvhM2WKzWXITIVFUO3eBUnz6o3P4YPy8YEh07pp1pidXbLdt2qX28otmwGBAK4DBtgVByHE8ZYcSMSGuHSIBBy+f7ZjpZ1BSNUoFAq4ulY8G5OvQoZbKuuWvix1yYWMXznrpLo7iSERCZBlo1mXr1tJ8gp0K7knWVBsfSFVmQ6hHvjvrV74JyELcSkFUGr0kEtFaB/igcei/WplYXS7kqfHiJHIePdd3Hh6FLxfeQXOsTEQeXjAmJ+P4mPHkfPddzDeyoTPq1PsCkoaGYWiY8dhKiy06DSkOXsOACCLqny1BLNeD/Wu3XCOjYXYjzoVEHIv2nclG59uvwQAeH9QNLpG2D+onVRfdKArjiTmQq01WHQaiksp4LfbIhBwiPRX4Hyq0mpbXEoBQj2dLToL2ZKcV9Lc6mnnPMUioQD9WvujX+u6WT7TrvTrPuxJeDz7LHTXriHtjTdwtXsPJLRug6vdeyBt6lTorl2Dx7PPwn3oELuCcu3bBzCZULDqb77MrNejYP06yNq15XvaGtLToUtMtHmMwn37YFap4DZooF0xEEIc60ZOEV796zTMDBjZOQSju4Y5OqT7zuOt/WEyM6w4nsyX6YwmrD6ZgvYh7nyP1bQCDa5lFd5VNwBnU5U4l1rAl13PLsTh67noX2YaxdxC645KhTojfj2UBE8XCdoEVX+ihPpg9z1P/3ffgWu/vihYvx66hEswFRVC6CKHNDoK7kOGwLlzZ7uDcmrXDop+/ZC1cCGMebmQhIZBuWEDDGnpCJw7l98v/e0ZKD5xAlGXEqyOodq8BZxEAkWfPnbHQQhxjEKdERP+OAmV1oiOoe74cEgr6iDkAB1CPTCgTQA+23EZuYV6hHm5YO3pVKTmazB/WFt+v6mr4nAsKQ83Pr1zi2x0tzCsPJGMcUtPYELPCIiEAvxyIBHecgkm9GzC7/fHkZvYFZ+J3lG+CHR3QpZKh79PpiBdqcHCEe3tamJljGFXfCYSMlTIVOlgtDGmk+OAz4a3q/axS9Wow5Bz5841SpIVCZz/KbK/XgTlpk0wK0vmtg1ZvBjOMTGV1jUVFqJw3z7IH3qo3B7BhJCGyWxmmLoqDlezCuHnKsUPz3Xie2iS+vfFiHYI2u2EdWdK5raN8lfgl7Ex6FJJE7pcKsLKiV3x0ZZ4fLv3GsyMoWuEF94bGA0v+Z3OSZ3DPXA6OR8rT6SgoFgPJ7EQ7ULcsWB4WzzQzLva8d7IKcK430/gRk4RWAX7cahZ8uQYYxUd/76WmpqKkJAQpKSkIDi4etNGJURG1VFU9wdbrQk1Qe9HzdX2e1Ker/65gq/+uQqJUIBVk7qiQ6hHvZz3flGTz7V7wehfjuHgtRw81yUMT7QPhK9CCmE58x7XpPOZXfc8C9ZvQNKTw2z2iAUAQ2YWkp4cxk9QQAghVbHjwi189c9VAMDHQ1tT4iTVduJGHnpH+eGjIa0RE+6JMC8XBHs42/ypCbuSp3L9enBicbm9WMV+vuBkMhSsXVuj4Agh948rmWq8+XccAOCF7uF4qnOIYwMi9yS5VIRwr7ofzmRX8tRdvw5pdMXNYLLISOiu2zfDECHk/lJQrMeEP06iSG/CA0298E5/amYn9unRzBunbuZXvmMN2ZU8zWo1hK4Vdx8WyOUwK2mGHkJIxYwmM15dcQY3c4sR7OGEb5/pCJGw5oPYyf1pVv8oZKp0+GRbQo1XaKmIXb1tRb6+0FbSeUB7+RKE3jSgmRBSsc92XsaBqzlwEguxZExnuwfFEwIAvq4y/DE+Fk9+fxgrjiUj3NvF5oQMHAf8NaGr3eexK3m6dOuGgnXrUHjoEOTdrRdDLTx4CEUHDsJ92DC7AyOENH4bzqThp/0lE518/lQ7RAVUPF0cIZW5kKbE6F+OQaUtmdbvQrr1LEdATWZfL2FX8vSaNBGq7duRMmky3J54Ai4PPACxny8MmVkoOnQIys2bIZDL4TVpYg3DI4Q0Vpu69Mb0B18BhGKMvPwPIka8hfoZDNN41NfwoXvJh1viodIaMaNf5O2hKrJyh6rUhH0TwwcHI+THH5A29U0o16+HcsOGOxsZg8jfH8ELv4SkEY4hIoTUXLZahw+7vAC9UIzYW/EYk7DT0SGRRuJCmhID2wZg0kOVL0NZE3bPMOTcqROa7d4F9d690Jw7D7NaDYGrAk5t2kLxyMPgJHTfghBiTW8046Xlp5Dj7I5gdRamn/wLggrngiGk6uRSEbzl1sur1bYaTc/HSSRw7dcPrv361VY8hJBGbs7mizhxIx/OBg1mH/sNLsaqLW5PSFU8Fu2Hw9dzYTYzCOqgubZUrfYHNxUWovDQIRSfPAma9Y8Qcre/jiVj+bFkcBzw9snlCC7MdnRIpJGZ8XgkJCIBXlsVh1vKuvtiZteVZ/7ff0O1aTOCv/sWQreS8Z7aS5eQMmEijLm5AACn9u0R+svPEDg51V60hJB71skbeZi96QIA4K0+LRG7/pKDIyKNUf9FB2AwMpxPLcDWc+lwcxJDLrMxVAUc9k9/2O7z2Dc936ZNMBv0fOIEgMz582HMy4Pbk0Mhf/BBaOLikL9ipd2BEUIaj/QCDSb/eRoGE8OAtgF4qVfdduYg9y+zGRAJOQS6OyHQ3QkuUhEYg9WPuYato3Zdeepv3ITikUf458b8fBQfOw73p55CwJwPAABJI0dCuWUzvMa9UKMACSH3Nq3BhEnLTiGnUIeoAFcsGN6W1uYkdebQjEcq36kW2Dc9n0oFoeed1Q40p04BABSPPcaXOXfsBENaeg3DI4TcyxhjmLnuPM6nKeHhLMZPozvBWVKjfoqENAh2JU+huzuM2Xdu9BcdOQoIhXDu2OHOTowBBkONAySE3Lt+OZiE9WfSIBRw+P7ZTgjxrPvVLgipD3Z9BZS2bInCPXuhff4KBFIpVFu2wLlDBwic7/xhGNLSIPLxqbVACSH3lgNXs/HJtpIZcN4bEIVuTWmua1L7vv7nKjgOGNMtDO7OEnx9ez3YynAcMOXR5naf177p+caPR/K4cUgaMpQv8xw7ln/MzGYUnz4Nly5d7A6MEHLvuplbhFf+OgMzA57qFIznHwh3dEikkfpqzxVwAAa2DYC7swRf7blSpXocHJA8Xbp2QfD330G5bj0AwLV/fygeudPlV3P6NES+vlD0eay8QxBCGqlCnRET/jgJpcaA9iHumDu0NXUQInVmxe2VUQLdnSye1zW779wrevWColcvm9ucO3dGxPp1VuWG9HQY0tLgHBNj72kJIQ2Y2czw5t9xuJJZCF+FFD+O7gSpSOjosEgj1jXCq8LndaVeV5wtWLceN58fW5+nJITUo2/2XsPOi5mQCAX4YXQn+LnKHB0Suc+sPZWKhAxVhftcvqXG2lOpNTpPg12u3azXI+vzz3G154O41K49kkaMROGhQ1Wur9q2DTdGPo1LHTrickwsbjw9CkVHj9ZhxITc33ZdvIWF/5Tcb5o7tDU6hnpUUoOQ2vfWmrPYdTGzwn12x9/CtDVna3SeBjvgKmPGTKh27YLnmDGQhIVBuX49UiZNRtjvS+HcqVOFdbO/+RY5338PRd++8Bs6FMxohO7qVRgzK/6FEkLsczVTjTdWxQEAxj4QjhGdQxwbECEVMJkBQQ3vwzfI5Kk5dw6qbdvgO20avMaPAwC4DRmMxEFPIGvB5whfuaL8unFxyPn+e/i+PR1eZXoAE0LqhrLYgAl/nESR3oRuEV54Z0CUo0MipEIX05VwdxbX6BgNMnmqdu4EhEK4jxzBlwmkUrgPG4bshQthyMiAOCDAZt28P/6AyNsbnmPGgDEGVlwMgYtLfYVOyH3FZGZ4deUZ3MgtRpC7E757tiPEwgZ7N4g0UqN+srwlt+Z0Co4m5lrtZ2IMt5RapOYXY0DbwBqds0EmT11CAiTh4RDK5RblTm3bAAC0CZfKTZ5FR47CqUMH5C9bhpzFP8BUUAChjze8J02G53PP1nnshNxPPttxCfuvZEMmFuCnMZ3g6SJxdEjkPnQ06U6i5ACk5muQmq+x2k/AcXB3EqN/mwC8PzC6RudskMnTmJ1tc3ai0jJjVpbNeialEqb8fGhOn0bx0aPwfvlliAMDULBuPTLnzgUnEsHj6ZHlnlen00Gn0/HP1Wp1DV8JIY3Xxrg0/Lg/EQCwYHg7tAp0q6QGIXUjad4A/nGTmVvx+qMt8Fpv+ydAqIoG2b5i1urASazbozmpFADAdLYXODUXFwMATAUFCJj7EbzGj4Pr448j5McfIGnWFDk//FDheefNmwc3Nzf+Jzq6Zt9MCGmsLqQpMX3NOQDAS72aYlC7mjWBEVJbVkzoimGdgqpdLyFDVa3hKw0yeQpkUjC99aTy7PZVISe1PXaMk90uF4uh6Nv3TrlAANfHH4fx1i0Y0stf6WXmzJlQKpX8T3x8fA1eBSGNU06hDhP/OAmd0YyHW/rgzT4tHR0SIbyuEV4I9qj+AgQ7L1Zv+Eq9NtsKFfJy71WWJfLxgSHTumm2dCUXka+v7eO7uYGTSiFwVYATWs5qIvIqmXXCpFJBHGj7W7JUKoX09tUtAKhUFQ+0JeR+YzCZ8dLy00hXahHh7YKvR3WAUEBT75H7j11XnjefH4uCDRsq3Ee5aZPVbEKezz+PZnv+qfT40sgo6G/cgKmw0KJcc7akmUgWFWmzHicQQBYZCVNePpheb7Gt9D6p0MOz0vMTQmz7cHM8jiflQSEV4acxneEqq1l3f0LuVXYlz+Ljx2FIS6twH0N6OopPnLArKNe+fQCTCQWr/ubLzHo9Ctavg6xdW/7q1ZCeDl1iomXd/o+X1C2T3M06HZSbt0DSrCnEfravWgkhFVtxPBnLjt4ExwFfPd0ezXzllVcipJGqs2Zbc7EGnMi+wzu1awdFv37IWrgQxrxcSELDoNywAYa0dATOncvvl/72DBSfOIGoSwl8mfvIkShYswa3PpoL/Y2bEAcEQLlpEwzp6QhZ/H2NXxch96OLnuF4f+MFAMCbj7XAo1F+Do6IEMeqcna7u6ONWaW22fmGmc0wZmRAvWsXxEHV7/FUKnD+p8j+ehGUmzbBrFRB2rIlQhYvrnRFFoFMhtClS5G14HMo166FWaOBNCoSIT/8AHnPHnbHQ8j9Klvmho9jx8BgYhjQJgAvP9zM0SER4nBVTp7XHu1dsvQ2AHAc8pYtQ96yZeVXYAy+06bZHZhAKoXf9Gnwm17+McKW/WGzXOTlhcBP59l9bkJICb1AhLldnke+zBWR/goseKotrc1JCKqRPN0GDy5JnoxBuXEjpJGRkEXa6LgjFEDo5gaXrl0h79mzNmMlhNQjBmBR++G44hEKV10Rlox5GM6SBjmvCiH1rsp/CWWv5IpPnID70KHwHDO6ToIihDjehqY9sSe0MwRmE2aeWIYQzxGVVyKNjs5owpe7r2D96TQoNQZEBrjirT4t0LO59Sxwd7ul1OKjLfHYfzUbjJWMwXx/YDRCvcofh3niRh6e+uEIAOD0e4812Ckf7ept22zPP5Q4CWnEzvg0x8+tBgIAJlzYjPY51xwcEXGUt1afwy8HkjCkQxBmD2oFIQe88NsJnLiRV2G9Ip0Ro5YcxbGkXLz8cDO83rs54tOVGPnTEeQX6W3WMZsZZm+8CGeJ0Ob2uhTs4YzYJlUfymhX8jQVFkGfkgJmsJwFSLVtG9Lemob0d96B5uJFew5NCHGwDGdPzIt5DmaBEL2TT2Bw4kFHh0QcJC6lAJvPpmN6v5aY1T8Kz3QJxV8TuiLIwwnztiVUWHfZ0ZtIyinCL8/HYPJDTfFizwj8Mb4LstQ6LDmQaLPOX8eTkaHUYGSM/evB9vxsL347lFThPn8cuYGen+21KBveKRgrJ3ar8nnsSp5Zny9A0uAhYEYjX5a/YgXS3poG1datUK5bj5vPjbYag0kIadg0Qgk+7PIC1BIXtMxLxqtxa0Hdg+5f289nQCjgMCo2lC+TiYUY0TkEp5MLkF5gvXJJ2brtgt3QLsSdL2vmK8cDTb2w9XyG1f4FxXp8sesypj7WokaTb6Tma6DSGCvcR6UxIM3GqivVYd8kCSdOwvmBbhA4OfFlOUuWQOTnh7A/lyFo4UKAMeT+8kuNgiOE1B8G4IuOT+OGWwA8tCq8e3wpJOaKP4TIvUutVkOlUvE/ZVeUKnUxXYUm3i5Q3JXM2t9OiPHptqcwNZsZEm6p0SbYeqWd9iHuuJlbjEKd5f+tL3ZdgY9Cime6hNn5iqpOrTVCIqrZ1O52dZ0zZmdD3uPOmEnd9eswZtyC71tvwblTp5Lgdu1E8cmTNQqOEFJ/VrZ4FIeC2kJkMuK9Y7/DW0tzOzdmd68aNXv2bHzwwQcWZVlqLXwVUtyttCxTbXuFqwKNAXqjGb4K60U8+LoqLeQ+JbNUJWSo8NfxZPw2NsauuZKP3bXwdWp+sVUZULIYdkaBFhvi0tDEu2YzZNmVPJleb7FkWPGJEwDHwaVHd75MHBwC9d5/axQcIaR+HPWPxh/RjwMAXjm3DlH5Nx0cEalr8fHxCCozkU3ZRTFKaQ1mm1doUpGQ326L1mACgErqmviyDzZdRK8WPniwReU9eG15eslR/vYCB2Dt6VSsPW17eTF2e5+3+9meI72q7EqeYj8/aC9f5p8X/vsfhG5ukLW8szSRqaAAAufqLwtDCKlfyXJffNbpGQDAoMRD6HvzuIMjIvVBoVDA1dW1wn1kYgH0RusEqTOa+O2265UkyIrrluyz+Ww6TifnY+frD1Y9+LtMeaR56TQEWLT3Kro08UTXCC+r/YQcB3dnMbo19UIzX4Xd5wPsTJ4uDz6I/L/+Qub8z8BJJSg8eLBkEoUy9DduVGn5MUKI4xSKZfiw6wvQiGVok3MdE89vdHRIpAHxVchwS2XdNJulLrk/6mejWRYA3J3EkIgEyLLRrMvXdS2pO29bAvq3CYBYKEBKXjEAQKUtGcmRXqCBwWTm9y3PG4+14B8fS8rFU51CMKxTcGUvr0bsSp7eEyeg8N9/kbd0aclBfHzgM+VVfrsxNxfFZ87A85lnaiVIQkjtM4HD/M7PIU3uA9/ifMw6/gdEzHYzHLk/RQe64khiLtRag0WnobiUAn67LQIBh0h/Bc6nKq22xaUUINTTGXJpSfpJV2qxMS4dG+Os50of+M1BRAW4YvtrVZ+trjrDTWrCruQp8vFBxJbNKDpSMguEc0wMhPI7N19N+fnwm/YWXHrQROyENFS/Rz+Ok36RkBr1eO/Yb3DXFzk6JNLAPN7aHz/tT8SK48mY+GBTACXNrqtPpqB9iDsC3UtGXKQVaKDRmyyWqXu8dQDm77iEc6kFaBvsDgC4nl2Iw9dzMaFnBL/fj6M7WZ1389l0bDmXgS9HtIO/W8VXnY5i90SVApkMiocftrlN2qwZpM1o5QVCGqr/gtpjdYtHAABvnFmFZkrrb/2EdAj1wIA2Afhsx2XkFuoR5uWCtadTkZqvwfxhbfn9pq6Kw7GkPNz4dABfNrpbGFaeSMa4pScwoWcEREIBfjmQCG+5BBN6NuH369vK3+q8pUNgerX0rXR6vp6f7QUHDstf7IIQT2eryQ/Kw4HD/um2c1hV1GiWZ6bXo+jIEegSk2DWFMPnpZcAlCw+bS4shNDDA5ygZmNpCCG165pbIL7qUDJP7VNX9uKhtLMOjog0ZF+MaIeg3U5Yd6ZkbtsofwV+GRuDLjY65JQll4qwcmJXfLQlHt/uvQYzY+ga4YX3BkbDS27ds9deZjPAceyu55XXY2CV71QBjjFm1xHUe/ci4/3ZMOXllXRx4jhExZdMyac5dw43nh6FwPnz4TZoYI0CdKTU1FSEhIQgJSUFwcHVu/mcEBlVR1HdH8oucF4b6P0oUSBxwWu9XkeWswc630rAB0d/hbCKHyL0njQ89rwnNflcI3fYN8PQ6dNIfe11cBIx/GbNgutAywTp1LYtJKGhUO/aVStBEkJqzsgJ8HHsGGQ5eyCoMBtvn1pe5cRJSEP10ZZ47L+SzT9PK9BArTVUUKN22JU8c75fDKFCgSZr18LzuWchCbOeTknWurXFWFBCiGP91GYwLng3hZNBi/eP/ga5wfbsMITcS349lIQzyQX8857z9+LXgzfq/Lx2JU/NuXNQPPoIRB4e5e4jDvCHMSfH7sAIIbVnZ1gsNkeUzAA2/dRfCC3McnBEhNQOF4kImjKzFdVXW4rd0/MJXCqeF9CkUoOryl1bQkidSvAIw7ftngQAjInfjq634h0cESG1J9zbGTsv3kLfVn7wvT2ZgkprQFoFK76UCnJ3qnSf8tiVPCUhwdBcOF/hPpq4OEgiIirchxBSt3Jkrvioy/MwCkTonnYOT1/Z4+iQCKlVE3pG4I1VcRi2+DBf9tuhpErX9OQ4Dtc/6W/3ee1KnorH+iDnhx9QsHYd3Ic9abU995dfobt6Fb5vvWV3YISQmtELRJgbOxb5MleEK9Px5umVtDYnaXQGtw9CiKcz/r2UhVtKLdacTkWkv2u5sx/VFruSp9f4cVDv3oWM996DausWmPV6AEDmggXQxJ2F5swZyCIj4fHcs7UaLCGkahiAb9oPw2XPUCj0RXj/2FI4mfSODouQOtEx1AMdQ0v64Kw5nYq+rfzxWu/mdXpOu5KnwMUFYX/+iVsfzYVqxw7AVHKzNu/X3wCOg2u/fvCf/T4EkopnhqiIWa9HzqJFUG7cBJNKBWnLlvB5bQrk3btXWC/7m2+R8913VuWcRILIczQYnNwfNkb0wD+hMRAwM2ae+BMBxXmODomQerFiQlcEe1T/XmZChgrx6aoqTyhv9wxDQjc3BH2+AH7vzIL2wgWYCpQQyF3g1KYNRN7e9h6WlzFjJlS7dsFzzBhIwsKgXL8eKZMmI+z3pfyC2xXx/2C25ZJoAmGNYyLkXnDGuxmWtB4EAHjxwmZ0yL7q4IgIqT+2liKrip0Xb2HRnqt1nzz5A3h4QN6z6jPeV4Xm3Dmotm2D77Rp8Bo/DgDgNmQwEgc9gawFnyN85YpKj6Ho27fCoTSENEa3nD0xL3Y0zAIhHk0+iSHXDzg6JEIaJbvGeSZEt0L2999XuE/ODz8goVVru4JS7dwJCIVwHzmCLxNIpXAfNgyauDgYMjIqPwhjMBUWws7ZBwm552iFEnzYZSzUEhe0yE/GlLg11EGIkDpi35UnYyU/VdnPDrqEBEjCwy2WOQMAp7ZtAADahEuVLrR9vfdjMBcXg3N2huLRR+H39vRKm5N1Oh10Oh3/XK1W2xU/IfWNAfiy40gkuQXCQ6vCu8d+h8RsdHRYhDRaNW62LY8xLw+czL512IzZ2RD5+FiVl5YZs8qfHUXo5gqPZ5+FU/v24CQSFJ86ify/VkB77hzC166xSshlzZs3D3PmzLErZkIcaVWLR3AgqB1EZiPePf47fLTWixATQmpPlZNnwYYNFs91ly5ZlQEATGYYbmVAuXETpM3tW9PTrNVBJBFblXPSkmVsmK78OTk9x4yxeO7atw+c2rRF+rRpyP9rBbwnTii37syZMzF16lT+eVpaGqKjo6sbPiH16phfFP6I6gcAeOnsekTn3XRwRIQ0flVOnhkzZ91ZJI3joN6zF+o9NhYdvd1Uy8lk8HnlFbuCEsikYHrrWfHZ7SZVTlq9K1q3QQOR+dl8FB05XGHylEqlkErvrDOnUqmqdR5C6luK3AfzOz8LxgkwIPEwHr95zNEhEXJfqHLyDPjkk5IHjCHjnXeg6P0o5I88arUfJxRA6OYGp/btIXRzsy8oHx8YMq2bZo3ZJcvOiHx9q31MsX8ATEpqyiKNR6FYhjldXoBGLEPrnOuYdH6jo0Mi5L5R5eTpPnQI/7j4xAkoHusNxSOP1EVMkEZGoejYcZgKCy3uUWrOngMAyKIiq3U8xhgMaWmQRdHiu6RxMIHDZ52eRZrCFz7F+Xjn+DKImanyioSQWmHXUJXAeZ/YlTizv/2uSsNXXPv2AUwmFKz6my8z6/UoWL8OsnZt+Z62hvR06BITLeoa86xnUslfsQKmvDy49OxR7ZgJaYiWRfXDCf8oSI16vH9sKdz1hY4OiZB7WrCHM2KbeFZ5/zrrbVuuKgxfcWrXDop+/ZC1cCGMebmQhIZBuWEDDGnpCJw7l98v/e0ZKD5xAlGXEviya488CtfHH4e0RQtwUgk0p05DtW0bpFFR8Bg5sk5eEiH1aV9QO6xqWXLL5PUzf6OZMs3BERFy7xveKRjDqzi7EOCI5FlFgfM/RfbXi6DctAlmZcnctiGLF8M5JqbCem6DBqL4zBmod+2CWa+HODAAXi+Oh9ekyRA42b92GyENwXW3QCzsUPIlcPjVf9ErLc6xARHSAOUW6rD6VCrOpRZApTHCZLa+aOM44K8JXe0+R4NNngKpFH7Tp8Fv+rRy9wlb9odVWcBHH9VlWIQ4TIHEBR92GQudSIJOmZcw9uI2R4dESIOTkKHCM0uOQqkxoKJ2zprOvtVgkych5A4jJ8C8mNHIcvZEYGE23j65HMIKPxoIuT99vDUBBRoDXn24GUbEhCDAzQlCQe1PVEnJk5B7wJLWg3DOpxmcDFq8f2wpFAaNo0MipEE6nZyPPtF+mNqnZZ2ex67etoSQ+rMrNAabmpasXDTt1AqEqTMdHBEhDZdYKECYl0udn4eSJyENWIJHKL5pNwwA8FzCTnS7ddHBERHSsHVp4olzqQV1fh5KnoQ0ULkyV8yNfR5GoQgPpJ/HqMv/ODokQhq8dwZE4UpmIX7af71Oz1O/9zyrupQZqVNqsROcjToImdnRoZBy6AUifBT7PPKc3BCmuoU3T6+EgDoIEVKpb/deQws/OT7dfgnLjyUjOsAVcql1quM44LPh7ew+T70mT8+xz8P9yaH1eUpyFyMnwIgBJcN5pEY9nI1auBhKfpyNWjgbtHAxauBs0MHFqIWLQQNno66k/PZjF4Pm9v46SE16WnC5ljEA37Z7Epc9wyDXF+P9o7/B2airtB4hBFhzOpV/nJxXjOS8Ypv7cXBg8jRmZ0Nz8SLMajWYyfa8mu5DhvCPhQoFhApFTU5JakgjurNqjE4kgU4kQb7M1e7jCcwmuBi1t5OtBs63k+qdBHs7MZd57MInaS2/P10F37Epojt2h8VCwMyYeWIZAotzHR0SIfeMA9Mfrpfz2JU8zTodMt57D6pt2wFzOR96jAEcZ5E8ieMpDBps3jgdGpEURWInFIllKBbJ+H+LxTIUlXleJC4pK31cdj8zJ4BZIIRa4gK1pGa922RGncXVr+8vx6CQiaCQiqGQiSCXiaCQiW+X3XlcUi6Cq0wMqUgAjru3r4PPejfFT62fAACMv7AFHbOvOjgiQu4twR7O9XIeu5Jn1hdfQLV5CyTh4XAdMABifz9ASENG7xUiZobCoKnRWEEGQCuUWCXbYrFl4r07KZf9t1gkg04kAQBoRVJoRVLkomQZu8tXc6odk1jIQX47sZb8eyfJGtsOhTPf7Fy2OVpjceXsZNA5bPKBTGcPfBIzBmaBEI+knMLQ6/sdEgchpHJ2ZTz19h2QNmuK8LVrIZBIajsmcg/gADiZ9HAy6eEF+xcNN3BCFIulKBI5oVgsRbHYCUUiGdy//ApqrRFqrQFqnfH2YyMKtYY7j3VGqLQGFOqMYAwwmBjyiw3IL7ZeSB0R3asck1PZ5mab94Tvana+/bjsfhKzsVq/B61Qgg+7jIVK6oLm+SmYcmY13UsmpAa0BhPOpSqRqdJCb7TdQjqsGhPB382u5GlSq+E6cCAlTlJjYmaCm74YbnrLm/pRHav+n9psZig2mEoSrdZ4J+neTrBqrQFJC7+5czUssmyKLv3XIBQDADRiGTRiGXJrsI6AyGS0SLIWybfMFXDp1fCBoHZIdAuCu1aN944vhbSayZcQcscfR27gi11XoNba+CKNkpYzDg5InpImTWDMrX6zGiF1QSAoaa6VS0UIcLO9T8LEnZUeRy8QWjcxi2V3ropFMhSJnVAskt6+F1z62On2/iVXzgBgFIqgFMqhlMorOesdIrMR7xz/HT4aZZXrEEIs7biQgdmbLqKlnwKvPtIMH29LQJ9oP7QP8cDxpFz8dyUbj7f2xyORfjU6j13J02vcONz64APob96EJCysRgEQ0lBIzCZI9EVw1xfZfQwzOGhEUr4puiodr4pEMuiEEgxOPIDWeTdq7wURch/69eANeLlIsf6l7nCSCPHxtgREB7jhf72a4n+9mmJjXBre/PssRncNr9F57EqeYn8/uPTogaQRI+E5ZjRk0dEQym1/w65s/U1CGhMBWEkzrVELH9AVJLn36YwmfLn7CtafToNSY0BkgCve6tMCPZv7VFr3llKLj7bEY//VbDAGdI3wwvsDoxHqdadHrNZgwvsbLyAupQAZBVqYGEOopzNGdA7B6G5hEAurNxFewi0VBrYNgJNEyJeZykzOM7h9ENacSsWiPVfRralXtY5dll3J8+aY50umZ2AMOd9+V/K4HFHxNBcnIYTcq95afQ7bz2dgXI8mCPdywZpTKXjhtxNYMbErYsI9y61XpDNi1JKjUGsNePnhZhAJOPx6MAkjfzqCbVN6wsPldk97gwlXMgvxcEtfBHs4geM4nL6Zj4+2xiMupQCLRnWoVrxGE4Ony53+ODKRECqN5b3P6ABX/HU8uVrHvZtdydP7pZcqTJiEEELufXEpBdh8Nh2z+kdi4oNNAQBPdgxC36/2Y962BKx7qfxe7MuO3kRSThE2vtwd7ULcAQC9Wvqi71f7seRAIqb3iwQAuDtLsOFly+M81zUMCpkIvx+5iXcHRsFXIatyzH6uUmSp7szIFeThhPh0yxEBqQUaiGq4xqddydPn1VdqdFJCCCEN3/bzGRAKOIyKDeXLZGIhRnQOwYKdl5FeoEGgu+1u6dvPZ6BdsBufOAGgma8cDzT1wtbzGXzyLE/pZAcqjRG+1ZiYrm2wOy6USZYPtfDBb4eS8N2/1/BYtB9O3MjDzgu30L2Zd9UPagOtqkIIIcSmi+kqNPF2gUImtihvfzsh3n1FV8psZki4pUabYOvu7+1D3HEztxiFOsvhWHqjGXlFeqQXaLDjwi38dCARQe5OCPeq3oxB/dsEQG80IeX2nLYv9WqKADcnfLHrMvp9tR/vbrgAZ4kQM/tXnLwrQ9MCEULIfUitVkOlupP8pFIppFKpxT5Zai18FdK7q/JlmWqtzWMXaAzQG802m1v5uiot5D53OpruuHgLU1ac4Z+3DXbDZ8PbQlTNDkP9WvujX2t//rmXXIptU3pi5YlkJOcVI8jDCU92CIa/W9Wbgm2xO3kaMjKQs/gHFB05AmNWFpjBxmBUjkPUxQs1iY8QQkgdiI6Otng+e/ZsfPDBBxZlWoMZEpF18pKKhPx2W7SGkoVCKq5ruZhItwgv/Dm+C1RaAw5dy0FChgrFetsLjlSXm7MYkx5qWivHKmVX8tSnpODGiJEwqVSQNmsGptdDHBgITiqFISUFzGiENDKyRiuomPV65CxaBOXGTSXnadkSPq9Ngbx71adZA4DkceNQdPgIPJ55Bv7vv2d3PIQQ0pjEx8cjKCiIf373VScAyMQCm1Pb6YwmfrstMnFJgqy4rtCi3Echhc/tq9L+bQLw3b/XMPrnY/h3Wq9qdRgqq0hnRFJOEYr1JsQ2Kb9nsD3suueZ8+13MBUWIvS3XxGxcQMAwO3JoWi6bSua7vkH8kceASsuRtDXX9kdWMaMmchd+jtcBw2C36xZ4AQCpEyajOJTp6p8DNWuXSiOO2t3DIQQ0lgpFAq4urryP7aSp69Chiy19VqypWV+5SQ1dycxJCIBsmw06/J1XStOiI+39keR3oTd8ZmVvpa7peQV48XfT6LdnF144tuDGLXkKL/t5I089P5yH45cr9lSf3Ylz6IjRyB/8EG4xMbeKbw9BlXs64ughV8CALIXfmVXUJpz56Datg2+b7wBv+nT4DFyBEJ/XwpxYCCyFnxepWOYdTpkzf8MXi+OtysGQgi530UHuiIpp8hqjti4lAJ+uy0CAYdIfwXOp1pPFBKXUoBQT2fIpRU3fJY2Cau11ZvnOa1Ag6HfH8Z/l7PwWLQfOoZ6gJWZJKF9iDvyi/TYdDa9Wse9m13J05SfD2lEkzsFIhGY9s7yVgKJBC7dH0Dhf//ZFZRq505AKIT7yBF3jimVwn3YMGji4mDIyKj0GLk//wzGzPAaN86uGAgh5H73eGt/mMwMK8pMKKAzmrD6ZArah7jzw1TSCjS4llV4V90AnE1V4lxqAV92PbsQh6/non+bAL4sr0hvkdxKrTpRcs62QeVMWF2OhbuvQKUxYNWkrlj8XCf0aG45JEUkFCAm3BOnbuZV67h3s+uep9DDA+biO8lS5O4OfVraXTuJYFKr7QpKl5AASXi41ZR/Tm3bAAC0CZcgDgiwVRUAYEhPR+6SnxHw8VwIZDXrUUUIIferDqEeGNAmAJ/tuIzcQj3CvFyw9nQqUvM1mD+sLb/f1FVxOJaUhxufDuDLRncLw8oTyRi39AQm9IyASCjALwcS4S2XYELPOxdf68+kYfmxm+gT7Y9QT2cU6YzYfzUbB67moHeULx6o5njM/Vey0aeVHzqFlX+PM8jDCYev12xxE/tWVQkLgz7lzjcRWdu2KDp4CPqUFEhCQmDMy4N6505IQkLsCsqYnQ2Rj/W8iaVlxqysCutnzv8MsqgouA0YUOF+d9PpdNDp7rTvq+1M/oQQ0lh8MaIdgnY7Yd2Zkrlto/wV+GVsDLpEVDwvrFwqwsqJXfHRlnh8u/cazIyha4QX3hsYDS/5nfurMeEeOH0zH5vPpiO7UAeRgEOEjwveHRCFsQ+EVzveAo2Bn2ChPIwBepPtnsJVZVfydHmwZ0mnIZUKQldXeI4Zg8J//0Xi4CGQRkRAn5wMc2EhvF952a6gzFodRBKxVTl3+4Y209keWwQARUePQb1rF8L/XlXt886bNw9z5sypdj1CCGmsZGIhZvWPwqz+UeXus2pSN5vlAW5O+P7ZThUev22wO757tmONYizLRy7FjZyKV0a6nKkqd2akqrLrnqfHqFEI++N3QFDS1dilSyyCvvwC4sAA6K5ehcjLC37vzILHiBGVHKmcoGRSML31uFF2+6qQk9puimVGIzI//hhuTzwBpzZtqn3emTNnQqlU8j/x8fHVPgYhhBDH6dHMG3svZSEhw/bsR8eT8nD4ei4ebulbo/PYd89TLodTu3YWZa79+sG1X78aBcMH5eMDQ6Z106wxO7tku6/tF63cuBG6GzfgP2cO9KmW92DNRUXQp6ZB5OUJgZPtbxx3z7BRdvYNQgghDd8rjzTDtgsZGPHjEUx6MAI3c0um6fv3chZO38zHzweS4OkswaQHI2p0ngY5PZ80MgpFx47DVFho0WlIc/YcAEAWZXtOQkN6BmAw4OYzz1htU27cCOXGjQj+9hsoeveum8AJIYQ4VIinM/4YF4tXV5zBF7uvgEPJSMrxS0+AAQh0c8Li5zrCt5JxppWpUfJU7d4N1dZt0CcmwqzVotmunQAAXWIiCvfuheugQRD7+VX7uK59+yDv119RsOpveI0vGWpi1utRsH4dZO3a8j1tDenpMGu1kEaUfINwHdDfZmJNfeVVuDz0IDyeegqytm2tthNCCGk8OoR64L+3euGfhCzEpRRAqdFDLhWhfYgHHov2szltYHXZlTyZ2Yy0N9+EeucuAAAnk4Fp73TiEbq6Iuurr8FMZnhPmljt4zu1awdFv37IWrgQxrxcSELDoNywAYa0dATOncvvl/72DBSfOIGoSwkAAGlEBJ9I7yYJCqYrTkIIuU+IhAKrSeJrk13pN2/p71Dv2An3kSPQ4vgxeL3wgsV2kbc3nDt1QuG+fXYHFjj/U3iOGQPlpk3I/PhjMKMRIYsXwzkmxu5jEkIIIbXBritP5fr1kLVpg4DZs0sKOOsVuSWhoTVKngKpFH7Tp8Fv+rRy9wlb9keVjlV6ZUoIIaTxY4xhV3wmEjJUyFTpYLQxppPjgM+Gt7NRu2rsW1UlORkeNjrllCV0d4epoMCewxNCCCF2uZFThHG/n8CNnCJYT/p3BwcHJE9OJoO5sOLZdwzp6RC42p40mBBCCKkL7228gKScIjzXJQxPtA+Er0IKocC6dbSm7EqesqgoFB48BLNOB4GNZWxMBQUoPHgQzp071zhAQgghpKpO3MhD7yg/fDSkdZ2ex64OQ56jn4Px1i2kTpkCw61bFtv0yclIfeVVmNVqeI5+rlaCJIQQQqpCLhUh3KviuW1rg11XnopHH4XXiy8i9+efce2RR/kZe6480L3kPidj8P7f/+DStWttxkoIIYRUqEczb5y6mV/n57F7pKjvm1MR8vMSyHv1AufkBAiFgNkMl549EPLTT/CZ8mptxkkIIYRUalb/KGSqdPhkWwK0BlOdnadGMwzJu3eHvHv32oqFEEIIqRFfVxn+GB+LJ78/jBXHkhHu7QK51DrVcRzw1wT7W0cb5Ny2hBBCiD0upCkx+pdjUGlLVua6kK60uV9N+9/WKHkykwnGW7dgyMoCjEab+9CMQIQQQurLh1viodIaMaNf5O2hKrKGM1SFmc3I/fFH5P2xDCal7axeKir+ol2BEUIIIdV1IU2JgW0DMOmhpnV6HruSZ/aXXyL3l18h9PKC25NDIfLxASekFmBCCCGOJZeK4C23nn+gttmV8Qo2bISkSRM0Wf03BC4utR0TIYQQYpfHov1w+HouzGYGQR0015aya6iKubgY8oceosRJCCGkQZnxeCQkIgFeWxWHW0pt5RXsZN/0fC1awJiVVduxEEIIITXSf9EBGIwM51MLsPVcOtycxJDLbAxVAYf90x+2+zx2XXl6TZ4E9Z490FykzkCEEEIaDrMZEAk5BLo7IdDdCS5SERiD1Y+ZVbTmSuXsm56vVy8EzvsEKRMnQfHIw5C2jIRAbrsJ133IkJrERwghhFTZoRmP1Mt57EqeZr0e6n//hSk/HwVr1pYU3r0gNmMAx1HyJIQQ0ujYlTyzPv0Uqs1bIG3ZEq59+0Dk4wPQUBVCCCH3CbsynmrHTshatUL4yhXgRJQ0CSGE3F/s6jDEdDo4d4mlxEkIIeS+ZFfylLVqBUNycm3HQgghhNwT7EqePm+8jsIDB6H+99/ajocQQghp8Oxqdy06fBjOsTFIffkVuHTtUv5QFY6Dz0sv2RWYWa9HzqJFUG7cBJNKBWnLlvB5bUql64eqdu9GwcpV0F25AlNBAYSennBq1w7er7wMWYsWdsVCCCGkYfrtUBI6hHqgfYh7vZ7XruSZ8+13/OOiI0dRdOSo7R1rkDwzZsyEatcueI4ZA0lYGJTr1yNl0mSE/b4Uzp06lVtPd+UKhG6u8BgzGiIPDxhzclCwdh1ujBiJ8JUrIIuMtCseQgghDc+HW+Lx+qMt+OQZMXMrXu/dAlMebV6n57UreYb+vrSWw7CkOXcOqm3b4DttGrzGjwMAuA0ZjMRBTyBrwecIX7mi3Lo+L79sVeY+fDiu9noY+StWImDOB3UVNiGEkHomEwmhN5n45wwl0wzUNbuSp0tsbG3HYUG1cycgFMJ95Ai+TCCVwn3YMGQvXAhDRgbEAQFVPp7QywsCmQxmtaouwiWEEOIgIZ5O2H8lB2Mf0MFHUbIU2d1z9tSFBjnWRJeQAEl4OIRyuUW5U9s2AABtwqVKk6dJpQIzGmHMzkHeH7/DXFgI565dKz6vTgedTsc/V6vVdr4CQggh9WFUbCg+3BKPLp/8w5d99c8VfPXPlQrrcRyH65/0t/u8DTJ5GrOzS2YtuktpWVVWdLkx8mnok5IAAAJnZ3j9bzLchw+vsM68efMwZ84cOyImhBDiCC90bwIvuRT/XspCpkqLI4m5CHR3QrCHU52et0EmT7NWB5FEbFXOSUsuyZmu8jXaAj75GObCIhhSU1Cwbj2YVgeYTICg/NE5M2fOxNSpU/nnaWlpiI6OtuMVEEIIqS9PtAvEE+0CAQBNZm7FU51C8FrvBthhqK4JZFIwvcGqnN1uUuWkskqP4dyhA//YtX9/XB8wEADg9/b0cutIpVJIbydoAFCp6B4pIeT+pjOa8OXuK1h/Og1KjQGRAa54q08L9Gxu3Tp4t1tKLT7aEo/9V7PBGNA1wgvvD4xGqJczv096gQZ/n0zBv5eykJRTBKGAQws/BV59pDl6NPeudrwLhrdDq0DXaterLrsmSahrIh8fGLOzrcpLy0S+vtU6ntDNDS5dukC5ZXOtxEcIIfeLt1afwy8HkjCkQxBmD2oFIQe88NsJnLiRV2G9Ip0Ro5YcxbGkXLz8cDO83rs54tOVGPnTEeQX6fn9dsdn4od91xHm5YK3+rbEq480R5HeiOd+OYa/T6ZUO97hnYIRFVD3ybNKV56mwkIIJBJwEkldxwMAkEZGoejYcZgKCy06DWnOngMAyKKqP1bTrNPCrC6stRgJIaSxi0spwOaz6ZjVPxITH2wKAHiyYxD6frUf87YlYN1L5U9as+zoTSTlFGHjy93R7vYYzF4tfdH3q/1YciAR0/uVfI53a+qFwzMehafLnfzybNdQ9P/6ABbuvoIRnUPsin3DmTSsOZWK+AwVCrVGyGUitAp0xfBOwRjcPsiuY5ZVpSvPK7FdkPPzz/zz9FnvQL13b41PXh7Xvn0AkwkFq/7my8x6PQrWr4OsXVu+p60hPR26xESLusbcXKvj6VPTUHzkKGStW9VZzIQQ0thsP58BoYDDqNhQvkwmFmJE5xCcTi5AeoGmwrrtgt34xAkAzXzleKCpF7aez+DLWvgpLBInAEhFQjzc0hcZSi0KdcZqxWwyM0xedgpT/47Does5KNYb4esqRbHeiIPXcvDGqjhMXnYKZnPNBoNW7Z4nxwFlTqRcvx7ioEAoHqmbFbud2rWDol8/ZC1cCGNeLiShYVBu2ABDWjoC587l90t/ewaKT5xA1KUEvizxicFw6doVsqhICFxdob95E8o1a8GMRvhOfbNO4iWEkHuNWq226Ndxd58PALiYrkITbxcoZJYdOEtn84lPVyHQ3bpXq9nMkHBLjRGdg622tQ9xx4GrOSjUGSGXlp+Csgt1cBIL4SQWVudl4bdDSdgZfwsxYZ54+/FIdArz4LedTs7Hp9svYVf8LSw9fAPjejSp1rHLqtKVp8jXF/rkm3afxB6B8z+F55gxUG7ahMyPPwYzGhGyeDGcY2IqrOfx9NPQ37yJnCU/49aHH0G1eQtcundH+N9/w7ljhwrrEkLI/SI6Ohpubm78z7x586z2yVJr4auQWpWXlmWqbY98KNAYoDea4auw7tzJ11WVP2riRk4Rdly4hcdb+0MoqN6MB2tPp6GJtwuWT+hikTgBoGOoB5a/2AVNvF2w+lRqtY57typdebrExkK5ZQtM+QX8WEv1nj0wpKVXXJEDAj/+2K7ABFIp/KZPg9/0aeXuE7bsD6syn1dfgc+rr9h1TkIIuV/Ex8cjKOjOvb+7rzoBQGswQyKyvsaSioT8dlu0hpLp8iqua7LaBgAavQkvLT8NmViItx+vfv+WpJxCPN8tHGKh7WtDsVCA3lF++P3IjWofu6wqJU/faW/BmJuLosOHAbMZ4DjoEi5Bl3Cp4oocZ3fyJIQQUncUCgVcXSvulSoTC6A3WidIndHEb7ddryRBVlzXujnWZGZ4dcVpXMsqxNIXYuDnWvmwxLuJhQIU620n5lLFelO5ybWqqpQ8Rd7eCP15CZjBAGN2Nq492hueY8bAc8zoGp2cEEJIw+WrkOGWjebVLHXJmHs/G82yAODuJIZEJECWjWZdvq6NxDhj7TnsuZSFr0a2xwPNqj/GEwBaBbpi6/kMvPJIM5vnyFJpsfV8BloHutl1/FLVmiSBE4shDgyEc0wMpFGREAfVvLsvIYSQhik60BVHEnOh1hosOg3FpRTw220RCDhE+itwPlVptS0upQChns5WnYU+2ZaA1adS8f7A6BoNJXmxRwQmLDuJQd8cxISeEegS4QlvuRQ5hTocTczFzweSUFCsx4s97e8sBNg5w1DYH7/X6KSEEEIavsdb++On/YlYcTyZH+epM5qw+mQK2oe48z1t0wo00OhNaOYrL1M3APN3XMK51AK0DXYHAFzPLsTh67mY0DPC4jw/7ruOn/Yn4uWHm9aoBywA9I72wzv9ozB/xyXM255gsY0BEAk4zOofhUej/Gp0nhpNz2cuLoZ6zx5oEy7BXFgIgVwOWVQkFI8+CoGzc+UHIIQQ0mB1CPXAgDYB+GzHZeQW6hHm5YK1p1ORmq/B/GFt+f2mrorDsaQ83Ph0AF82ulsYVp5IxrilJzChZwREQgF+OZAIb7kEE8pc9e24cAvztl9CE28XNPOVY/0Zy16wPZr58EuNVdWLPSPQJ9ofG+LSEJ+u4ofFtAp0xeD2QRbTA9rL7uSp2rkLt95/Hya12nLlUY6DUKGA/0cfwrVPnxoHSAghxHG+GNEOQbudsO5Mydy2Uf4K/DI2Bl0ivCqsJ5eKsHJiV3y0JR7f7r0GM2PoGuGF9wZGw0t+JxkmZJSMNU3KKcIbq85aHWfFhK7VTp4AEOrljCmP1t3k8Bxj1V9zu/j0GdwcMwacQAC3IUPg3CUWIh8fmHJyUHTsOJQbNoCZzQj743eLCdrvNampqQgJCUFKSgqCg60H+1YkITKqjqK6P5Sd+KI20PtRc/SeNDz2vCc1+Vwjd9h15Zn744/gJBKE/7UcskjLcTiu/fvD45lRuDHqGeT++BOcf1hcK4ESQgghDYVdA100cXFwfbyfVeIsJWvZEq79+kFz5kyNgiOEEEIaIruSp1mrhcir4jE4Ii8vmLWVL1pNCCGE3GvsSp7ioKCS2YYqUHT0KI0DJYQQ0ijZlTxd+/WD9uJFpL89A4bMLItthqwspM+YCe3Fi3B9/PFaCZIQQghpSOzqMOQ14UUUHjwI5aZNUG3fDklYKIRe3jDl5kB/MxnMYICsbRt4TXixtuMlhBBCHM6u5ClwckLYn8uQu2QJlBs3QXftOnDtOgBAHBICtyGD4fXiixBIJJUciRBCCLn32D1JgkAigc/LL8Pn5ZdhKiyCuagQAhc5hHKX2oyPEEIIqVDEzK3VrsNxHK5/0t/uc9Zoer5SQrkLJU1CCCEOEe7tgqouma3SGpFTqLOcGc8OtZI8CSGEEEfZ+2avSvcp1huxZH8Sfj6QCAAWk9jbg5InIYSQRstsZvjreDIW7bmKnEId/FxleHdgFJ7qFFKj41LyJIQQ0ihtO5+Bz3ddxo2cIihkYkzrG4kXuodDJhbW+NiUPAkhhDQqRxNz8en2krVExUIBxvdoglcebg43Z3HllauIkichhJBG4fItNT7dnoB9V7LBcRyGdgjGm31a8It216YGmzzNej1yFi2CcuMmmFQqSFu2hM9rUyDv3r3Ceqpdu6Davh3a8xdgzMmB2N8f8l694P3S/yB0da2n6AkhhNSX9AINPt91GZvi0mFiDL1a+ODtxyMR6V93n/lVTp7Fp07BuVOnKh+YGQzIXrQIvm++aVdgGTNmQrVrFzzHjIEkLAzK9euRMmkywn5fWmEct96fDZGvL9yeGARRQAB0V64if/lyFO7fjybr1kIgk9kVDyGEkIbp4c//g8FkRpiXC97s0wJdby/UnVOoq7Cet7z6i2yXqnLyvPn8WHiOGQPf118DV8nMQZrzF5AxayZ01xPtSp6ac+eg2rYNvtOmwWv8OACA25DBSBz0BLIWfI7wlSvKrRv09ddw6RJrUSZrFY2MGTOh3LwZHk89Ve14CCGENFx6kxkcgJu5RZiyompLYdbbJAnSpk2R99tvKDpwAAGfzoNTq1ZW+zCDAdnffofcX38FGIPXhAl2BaXauRMQCuE+cgRfJpBK4T5sGLIXLoQhIwPigACbde9OnACg6P0YMjAT+uuJdsVDCCGk4YoN9wRX1VkSakmVk2eTNauR/c23yP31V9x8ehS8Jk2C9/8mgxOWdPnVXLyIjJmzoLt6FZKmEQicNw9ObdrYFZQuIQGS8HAI5ZaDWJ3alhxPm3Cp3ORpiyknGwAg9PCwKx5CCCEN16pJ3er9nFVOnpxYDN+pb0DxyMNInzETOd99h8L//kPAh3Og2r0beT//AmY2w3PcC/B57bUaTQpvzM6GyMfHOtjbZcasLKttFcn5+WdAKIRr3z4V7qfT6aDT3WkjV6vV1ToPIYSQ+0O1e9s6tW+PJhs3IGvB58j/6y8kDS+5hygJC0PgvE/g1L59jYMya3UQSazH43DSkpu7TKet8rGUm7dAuWYtvF4cD0l4eIX7zps3D3PmzKlWrIQQQu4/dg1V4SQSiHx9wQmFYEYjwHFQ9O4NmZ3NtHcTyKRgeoNVObt9VchJq9ZjtvjkSWS8+y5cevSAz+uvV7r/zJkzMXXqVP55WloaoqOjqxY0IYQQh/hh33W76k1+qKnd56x28tTfuIH0GTOhOXcO4qAgeE+ehNxffkXuL7+g6MgRBH46D9JmzewOCChpnjVkWjfNGrNL7l2KfH0rPYb20iWkvPQypM2bI/jrr8CJKn+pUqkUUumdrssqlaoaURNCCHGE+TsugQNQnXVSONRj8sz7YxmyvvoKTKOB+8gR8Js+HQJnZ7gOGoTsL75A3rI/kTRsOHxefQWe48eDs7P7kzQyCkXHjsNUWGjRaUhz9hwAQBYVWWF9fXIykidMgMjTEyE//QiBCy2XRgghjdWC4e3q/ZzVGudZfOIERH5+CPhmkcVMPwKJBH4zZ0LRuzfSZ85C1pcLod6zF4GfzoMkLKzaQbn27YO8X39Fwaq/+XGeZr0eBevXQdauLd/T1pCeDrNWC2lEBF/XmJ2N5PEvguMECPn5Z4g8Pat9fkIIIfeO4Z2C6/2cVZ9h6PhxuA0dCr9ZM62GkJRyjolBxKaNyPx0PgpWr0bi0CcRefpUtYNyatcOin79kLVwIYx5uZCEhkG5YQMMaekInDuX3y/97RkoPnECUZcS+LLkCRNhSEmB14vjoTl9Cpoy5xd6eVU6vR8hhBBSmSonz+Dvv4Pi4Ycr3U/g7IyAD+dA8dhjyHjvPbsDC5z/KbK/XgTlpk0wK0vmtg1ZvBjOMTEV1tNdugQAyP35F6ttzjExlDwJIYTUWJWTZ1USZ1nynj0QsXlTtQMqJZBK4Td9GvymTyt3n7Blf1iVlb0KJYQQ0vj1/Gxvtetw4LB/evXyWll1sqoKMxig3rMHBWvXIXTJT3VxCkIIIQQAkJqvgZDjIBTU3xx9tZo8tVeuQLl2LZSbNsOkVNbmoQkhhJAKdY3wwojOIejTyg9ioaBOz1Xj5GkqLIJqyxYUrFsH7YULAEpmAnIdMADuTw6tcYCEEEJIRXa/8RBWnUjGhrh0vLriNNydJRjSPggjYoLrbE1Pu5Nn8YkTKFizFqrdu8G0WoCVDE916dkDQV9+WW6PXEIIIaQ2NfOV450B0ZjxeBT+ScjE6pMpWHb0BpYeTkKrQDeMiAnB4PaBcJVZT/tqr2olT2N2NgrWb4By7VroU1IAxiAOCIDrE4Pg9sRgJA4YALGfPyVOQggh9U4o4NC3lT/6tvJHtlqHNadSseZUCt7feAGfbE1A31Z+mNYvEkHuTjU+V5WTZ8rk/6Hw0CHAaITAxQVuQ4fA7YnBNtfPJIQQQhzJRyHF/3o1xf96NcWhazl4a/VZbDqbjgFtA+s3eRbu2wcIBPAaPw7eU6bUaMkxQgghpK6dTSnA3ydTsPlsOtQ6I/xdZQhwq9rCIpWpcvIUh4TAkJKC3F9/Q+HBQ3AbPBhuAwfYXHeTEEJI46AzmvDl7itYfzoNSo0BkQGueKtPC/RsXvln/y2lFh9ticf+q9lgrKQ37PsDoxHq5Wyx37KjN3Hkeg7ikguQrtRiWMdgfDHCvvlq84r0WHc6FWtOpeJKphoigQCPRvliREwIHmruA0EtDWepcvJstmsnio4dR8GaNVDv3o2szz5D1hdfwKVbN7gNHgzFY71rJSBCCCENx1urz2H7+QyM69EE4V4uWHMqBS/8dgIrJnZFTHj5c4cX6YwYteQo1FoDXn64GUQCDr8eTMLIn45g25Se8HC503r5w3/XUaQ3ol2wO7LUumrHaDYz/Hs5C3+fTMG/l7JhMJvR0k+BdwZEY2iHIHi61H5LabU6DLl0iYVLl1iY1GooN2+Gcs1aFB08iKJDhyBwdgY4DuaiwloPkhBCSP2LSynA5rPpmNU/EhMfLFm+68mOQej71X7M25aAdS+VP93psqM3kZRThI0vd0e7EHcAQK+Wvuj71X4sOZCI6f3urI61alJXBLk7geM4RL+/o9pxdp23BzmFOihkYoyICcaIziFoG+xe7eNUh11DVYQKBTyfeQaezzwD7aVLKPh7NZRbtwKMQbVjJzTn+8Bt6BC4Dx4McVBQbcdMCCGkHmw/nwGhgMOo2FC+TCYWYkTnECzYeRnpBRoEltP5Zvv5DLQLduMTJ1AypOSBpl7Yej7DInkGezjbOELVZRfqIBYIEBWgQGq+Bl/uvlJpHQ7Aby/Y3+G1xpMkyCIj4f/+e/Cd8TbUO3ehYO1aFB8/jpxvvkXO94sRdeF8TU9BCCHEAS6mq9DE2wWKu8ZHtr+dEOPTVTaTp9nMkHBLjRGdrZcKax/ijgNXc1CoM0Iurb1J7gxmM44l5VV5/5re+ay1yAUSCdwGDYTboIHQp6ahYO0aKDdsrK3DE0IIqUVqtRoqlYp/LpVKIZVKLfbJUmvhq5DeXZUvy1RrbR67QGOA3miGr8K6ZytfV6WF3Kd25gQ4UIMJ3u1VJxPDS4KD4Pvaa/CZMqUuDk8IIaSGoqOjLZ7Pnj0bH3zwgUWZ1mCGRGQ9R6xUJOS326I1mACgkrqmasdcnpo2+9qjTpJnKY6rvxnuCSGEVF18fDyCyvRJufuqEwBkYgH0RusEqTOa+O22yMQlCbLiusLqB92AVDl5Xuv9WPWPznFotntX9esRQgipUwqFAq6uFU+a7quQ4ZbKumm2dDiJn41mWQBwdxJDIhIgy0azLl/XtXYmK3CUKidPQ1oaIBSCE97b3xYIIYRUTXSgK44k5kKtNVh0GopLKeC32yIQcIj0V+B8qvXSlHEpBQj1dK7VzkKOUO3onWNj4T7sSSgefRScuPZmqCeEENKwPN7aHz/tT8SK48n8OE+d0YTVJ1PQPsSd72mbVqCBRm9CM195mboBmL/jEs6lFvBjLq9nF+Lw9VxM6BlR76+ltlU5eUZs3YKC1Wug3LIZaVPfhNDNDW5PDILbk8Mga9miLmMkhBDiAB1CPTCgTQA+23EZuYV6hHm5YO3pVKTmazB/WFt+v6mr4nAsKQ83Ph3Al43uFoaVJ5IxbukJTOgZAZFQgF8OJMJbLsGEnk0szvNPfCYSMkp6/hpNDJduqfDNnqsAgN7RfogKqJs1OWuiyslTGhEBv7enw/etN1H4778oWLsOeX+tQN6yPyGLioL78GFwHTgQQoWiLuMlhBBSj74Y0Q5Bu52w7kzJ3LZR/gr8MjYGXSK8Kqwnl4qwcmJXfLQlHt/uvQYzY+ga4YX3BkbDS27ZOWn7hVtYezqVf34xXYWL6SXJ1N9N1iCTJ8fY7VWs7WDMyUHB+vVQrt8AfVISOJkMit694fvG6xAHBtZmnA6RmpqKkJAQpKSkIDjYerBvRRIio+ooqvtD1KWEWj0evR81R+9Jw2PPe1KTzzVyh+1+xlUk8vaG94QJaLptK0J//QVCNzeotm6F9tKl2oqPEEIIaXBq3N1Jc/48CtauhWrbdpjVaoj8/CDy86txYGa9HjmLFkG5cRNMKhWkLVvC57UpkHcvfyJiANAlJqFg1Upozp6DNj4eTK9H03/+gSSY5tglhBBSO+xKnsb8fCg3boRy3Xrorl0DJxRC/vDDcB8+DC49eoAT1OiCFgCQMWMmVLt2wXPMGEjCwqBcvx4pkyYj7PelcO7Uqdx6mrg45C37E9KmTSFp2hS6hNptaiKEEEKqnDyZ2YzCffugXLcOhf/tAzMaIW3eHH5vT4frE09A5OFRa0Fpzp2Dats2+E6bBq/x4wAAbkMGI3HQE8ha8DnCV64ot67ikYehOH4cQrkLcn/5FVmUPAkhhNSyqs8w9FAvGHNzIVAo4DZ8GNyfHAanNq3rJCjVzp2AUAj3kSP4MoFUCvdhw5C9cCEMGRkQBwTYrCt0d6+TmAghhJBSVU6expwccCIRZC1bwpCWhuxvFlVeieMQ+uOP1Q5Kl5AASXg4hHLLGfed2rYBAGgTLpWbPGtCp9NBp7uzirlara71cxBCCLn3VeueJzMaUXziRNUr2DkxvDE7GyIfH6vy0jJjVpZdx63MvHnzMGfOnDo5NiGEkMajysmz2T+76zIOC2atDiKJ9dR/3O1Z/5nO9hpyNTVz5kxMnTqVf56Wlma1bA8hhBBS5eQpDqq/oR4CmRRMb7AqZ7ebVDlp3czGf/disGUXiiWEEEJK1XxMSR0Q+fjAmJ1tVV5aJvL1re+QCCGEEF6DTJ7SyCjob9yAqbDQolxz9hwAQBYV6YiwCCGEEAANNHm69u0DmEwoWPU3X2bW61Gwfh1k7dryPW0N6enQJSY6KkxCCCH3qQa5GqlTu3ZQ9OuHrIULYczLhSQ0DMoNG2BIS0fg3Ln8fulvz0DxiRMWkyOb1Grk//knAKD49BkAQP7y5RC6KiBQuMLzuWfr98UQQghpdBpk8gSAwPmfIvvrRVBu2gSzsmRu25DFi+EcE1NhPZNSheyvLceg5v32GwBAHBhIyZMQQkiNNdjkKZBK4Td9GvymTyt3n7Blf1iVSYKDan3pJEIIIaSsBnnPkxBCCGnIKHkSQggh1UTJkxBCCKkmSp6EEEJINVHyJIQQQqqJkichhBBSTZQ8CSGEkGqi5EkIIYRUEyVPQgghpJooeRJCCCHVRMmTEEIIqSZKnoQQQkg1UfIkhBBCqomSJyGEEFJNlDwJIYSQaqLkSQghhFQTJU9CCCGkmih5EkIIIdVEyZMQQgipJkqehBBCSDVR8iSEEEKqSeToAMpj1uuRs2gRlBs3waRSQdqyJXxemwJ59+6V1jVkZiJz3qcoOnQIMJvh3KUL/GbOgCQkpB4iJ4SQxkNnNOHL3Vew/nQalBoDIgNc8VafFujZ3KfSureUWny0JR77r2aDMaBrhBfeHxiNUC9nq31XnUjGT/sTkZKvQaCbDGMfCMfY7k3q4iXVigZ75ZkxYyZyl/4O10GD4DdrFjiBACmTJqP41KkK65mLipA85nkUnzgB70kT4f3qK9AmJODm6DEw5ufXU/SEENI4vLX6HH45kIQhHYIwe1ArCDnghd9O4MSNvArrFemMGLXkKI4l5eLlh5vh9d7NEZ+uxMifjiC/SG+x7/JjN/H22vNo4afAnCdaoWOoBz7YHI/F/12vy5dWIw3yylNz7hxU27bBd9o0eI0fBwBwGzIYiYOeQNaCzxG+ckW5dfNXrID+5k2Er/4bTm3aAADkDz6IxEFPIO+3pfCd+ka9vAZCCLnXxaUUYPPZdMzqH4mJDzYFADzZMQh9v9qPedsSsO6l8lsClx29iaScImx8uTvahbgDAHq19EXfr/ZjyYFETO8XCQDQGkz4fOdlPBLpi8XPdQIAjIoNhZkxfLP3Kp6JDYWbs7huX6gdGuSVp2rnTkAohPvIEXyZQCqF+7Bh0MTFwZCRUUHdXZC1acMnTgCQRkTApWtXqHbsqNO4CSGkMdl+PgNCAYdRsaF8mUwsxIjOITidXID0Ak2FddsFu/GJEwCa+crxQFMvbD1/5zP8yPVc5BcbMLprmEX90d3CUaw3Ye/lzNp7QbWoQV556hISIAkPh1Autyh3aluSELUJlyAOCLCqx8xm6C5fhtuwJ622ydq2QdGhQzAVFkEod7F9Xp0OOp2Of65UKgEAGRUk6/LcMugr34mUS5GaWqvHo/ej5ug9aXjseU9KP8+USiVcXV35cqlUCqlUarHvxXQVmni7QCGzvPJrfzshxqerEOjuZHUOs5kh4ZYaIzoHW21rH+KOA1dzUKgzQi4V4WJ6yedsm2A3i/3aBLlBwAEX01QY2qHaL7PONcjkaczOhsjH+mZ0aZkxK8tmPZNSCabXV1pXKLd9E3revHmYM2eOVXlsbGyVYye1hDp3NTz0njQ8NXhPWrdubfF89uzZ+OCDDyzKstRa+CosEyoAvixTrbV57AKNAXqjGb4KWfl1VVrIfeTIUusgFHDwllueRyISwMNZgky1zuoYDUGDTJ5mrQ4iiXUbN3f7WxHT2X7DmLakXCCRWG0TVFIXAGbOnImpU6fyz41GIxISEhASEgKBoEG2cNtFrVYjOjoa8fHxUCgUjg6HgN6ThqYxvx9msxnJycmIjo6GSHQnBdx91QkAWoMZEpH1Z59UJOS326I1mACgkrom/l+xkLN5HKlIwO/X0DTI5CmQScH0BqtydrtJlZNaf5sBAE5WUm7WWzcHmSupC9hutuhehaEx9xqVSgUACAoKsmi2IY5D70nD0tjfj9DQ0Mp3AiATC6A3WidIndHEb7ddryRBVlxXyP9rMDGbx9EZzfx+DU2DvJwS+fjAmJ1tVV5aJvL1tVlP6OYGTiKxqy4hhBBLvgoZsmw0m5aW+dlolgUAdycxJCIBsmw06/J1XWW3zyGFycyQU2h5Hr3RjPxiPfxsNBs3BA0yeUojo6C/cQOmwkKLcs3ZcwAAWVSkzXqcQABpixbQXrhotU179hzEISHldhYihBBiKTrQFUk5RVBrLVsC41IK+O22CAQcIv0VOJ+qtNoWl1KAUE9nyKUii2Pcve/5tAKYWfnncLQGmTxd+/YBTCYUrPqbLzPr9ShYvw6ydm35nraG9HToEhMt6ir69oH2/Hlozl/gy3SJSSg6dgyu/frWzwto4KRSKWbPnm3zHgdxDHpPGhZ6P0o83tofJjPDiuPJfJnOaMLqkyloH+LO97RNK9DgWlbhXXUDcDZViXOpBXzZ9exCHL6ei/5t7oyWeKCpN9ydxfjz6E2L+n8eTYaTWIhHIhtmayHHGLPd2Oxgqa+/AfU//8Dz+TGQhIZBuWEDNOfPI+y3X+EcEwMAuDl6DIpPnEDUpQS+nqmwCElPPglzURG8xr0ATiRC7tLfAZMJTTash8jT01EviRBC7jkvLz+NnRdvYXyPJgjzcsHa06k4m1KA5S92QZcILwDAyB+P4FhSHm58OoCvV6gzYsCiAyjSGTGhZwREQgF+OZAIE2PYNqUnvMr0rl125Abe23gR/dv448HmPjh+Iw/rTqdhWt+WePnhZvX+mquiwSZPs06H7K8XQbl5E8zK23PbTpkCec8e/D62kicAGG7dspzbNja2ZG7bsLC7T0MIIaQCWsPtuW3PlMxtG+WvwNQ+LfFQiztDAm0lTwDIUGrw0ZZ4HLiSAzNj6BrhhfcGRiPc2/r22YrjyVhyIBGpeRoEuMswpls4xnUPB8fZ7onraA02eRJCCCENVYO850kIIYQ0ZJQ8CSGEkGqi5EkIIYRUEyVPQgghpJooeRJCCCHVRMmzETCbbU/OTByn9D2hzuyENE6UPO9xJpOJX/Flz5490GjKX5yW1A+z2QyBQIALFy5g8+bNMBqNjg6JEFLLKHne44TCkhUH+vTpgw8//BAJCQmV1CB1TSAQIC0tDTExMfjuu++QVc76s6R+2GqZoRYBUlOUPO9RJtOdNe4uXLiAjIwMvPjii4iMtD1pPql7pe+JVqvF3r170aVLF8yePRuBgYEOjuz+ZTQa+ZaZq1evIj8/HxqNBhzH0e0OUiMNcj1PUrnSK873338fGRkZEAgE6N+/P5ydnR0c2f1LKBTi6tWreOuttyAUCuHh4YEHHngAQMmVTkOdZqyxMpvN/GLPzz//PPbu3QtnZ2fExMTg448/RlhYGN/ETkh10f+ae9iuXbswd+5c/PPPPwgPD4eXlxcYY9Qk5UCZmZnYvHkzNmzYQPc6HYgxxifFZ555Blu2bMFjjz2GNm3aYM+ePejVqxeuXLkCgUBAV6DELpQ872F9+vTBDz/8wH9gb9myBRzHgeM4SqD1qPR3zRhDjx49cODAAQQEBGDnzp1YvXo1ANB7Uo/MZrPFVX5+fj4++eQT/Pzzz1izZg0WLVoEFxcXdO3alRIosRslz3tE2XucZU2cOBHffvstpFIp3nnnHezbtw8AfVjXh9IP3NIP6tJ/u3fvjr/++gtyuZxvGSjdTu9J3Su94hw6dCgee+wxZGdn45FHHuHLn3rqKXz22WcIDAxEt27dKIESu1DyvAcYjUb+Hue+ffuwZs0a7NixA+np6QCAcePG4csvv8TNmzcxc+ZM7N+/HwB9WNel0iFCycnJ+PrrrzF9+nR89NFHyMzMhNFoxEMPPYS1a9ciOTkZM2bMoARaz9LT01FcXIwzZ84gKyuL/2Kj1+sBAP3798dnn32GgIAA9OzZE5cvX4ZAIKD3hlQdIw2ayWTiHw8fPpz5+PgwoVDIOI5jPXr0YD/++CO//YcffmBubm6sW7dubP/+/Y4I975Q+p5cvHiRBQUFseDgYObv788UCgULCwtj33//PcvPz2eMMfbvv/8yDw8P1qlTJ7Znzx4HRn3/uXjxInvmmWcYx3HspZde4sv1ej3/eNu2bax58+aM4ziWn5/PzGazI0Il9yBKng1IRX+4Tz/9NPPz82PffvstO378ODt27BhzdXVlgYGB7J9//uH3++GHH5iXlxd9WNeysl9iGGMsPT2dtWjRgj322GNs7969TK1Ws6tXrzK5XM5iYmLYpUuX+H3//fdf5uPjw5o2bcr++++/+g690TMajeVuu3DhAhs5ciTjOI5Nnz6dLy+bQNevX8+WLVtWpzGSxoeGqjQg+fn58PT0tOo+f+zYMRw/fhzvvvsuxo4dCxcXF8THx0Or1WL06NGIjo7m60yaNAlGoxGvvvoqcnJyHPhqGocTJ04gJibGajjDsWPHoFar8dprr+Hhhx8GAPz8888wGAyYMGECgoKC+H179eqF5cuXY+LEiQgNDa3X+Bs7o9HID0dZtWoVbty4AbPZjC5duqB79+5o1aoV3n33XQDAggULAADz58+HWCyGXq+HRCLBkCFD+OPR0BVSZY7O3qTE+vXrmZeXFzty5IjNbVKplJ05c4YxxtjevXuZk5MTGzVqFEtNTeX3u3nzJv/43LlzdR5zY/fyyy8zuVzONm3aZLXtww8/ZAEBAfzzadOmMbFYzJYsWcIKCwsZY4wVFxcztVrN71NcXFz3Qd9HyrYGDB48mLm7uzOpVMqEQiFzdXVlw4cP53//58+f569AZ8yYYfMYhFQHfcVqAIqLi2EymcBxHM6cOcOXl/b+MxgMkEgkiIiIwKlTpzBgwAA8+eST+OKLL/grnB9//BELFiyASqUCALRu3driGKR6rly5gtGjRyMsLAzh4eFW21u0aAGVSoWLFy9i9uzZWLhwIb799ls8++yzcHFxAQCMGDEC48eP5zuhODk51edLaPRKrxAnT56MQ4cO4YsvvsCZM2eQkJCAAQMGYNu2bejbty8KCwvRunVrvP/++xg1ahTmz5+PV1991eIYhFSbo7P3/e7jjz9mbdu2ZVqtlsXHx/Pl169f5x9nZmayJk2asC5dujAXFxf2/PPPsxs3bljs++ijj7Lhw4ezgoKCeo2/MXrkkUdYx44dGWOMv3K5fv0627JlC7/P0aNHWbNmzVhkZCSTSqXsjz/+sLjK/Oeff1hsbCx7++23Le6vEfscPnyYZWZmWpWnpaWx6OhoNnbsWP6Kn7GSq/x3332XyWQyNmbMGKbT6RhjjCUkJLABAwawhQsX1lfopJGi5OlAa9asYc7OzuzNN99kubm5fPkrr7zCXF1d2alTpxhjjGk0GvbOO+8wd3d3FhYWZvEhkpyczN59913m4+PD/v7773p/DY3NjBkzmKenJ9u4cSPTaDSMsZLff7t27ViTJk3Y+vXr+X3fe+89xnEci42N5ZvUGStJrH379mUtWrRgiYmJ9fwKGp9Lly4xjuPY8OHDrZq+r127xmQyGZszZw5fZjAYGGOMabVaNnjwYObj48POnz/Pby/tCU1ITVDydBCTycRee+011rZtW5aQkGCx7a+//mJt2rRhLVu2ZCdOnGCMlVx9jh49mkmlUtalSxf2119/sa+//po99dRTTCwWs88++4yvT93t7VNcXMz69evHHnvsMb6s9IvKf//9x5o1a8Y6derEVq9ezW9/7bXXmFAoZM2bN2dvv/02e/rpp1n79u2Zt7c33XeuJRqNhs2fP5/NmzfPatvNmzeZv78/69OnD8vKyuLLS6/2jx8/zjiOY0uXLrWqS38npCYoeTrQiy++yORyOcvIyGCMlQxH+f777xljjK1YsYK1adOGNW/enB07dowxxlhWVhb7+OOPWXR0NJPJZMzJyYl17dqVLV68mD8mdYComf/9739MKBSy3NxclpqaykJDQ/lkuW/fPhYWFsY6depkcZW/ePFiNmjQIObp6cmioqLYuHHj2OXLlx31EhqlssNRvvvuO3br1i3++axZs5hEImG//vqrVRP51q1bGcdxbPPmzfUWK7k/UPKsZ2W/7V64cIGFhYWxbt26sW7dujEPDw+2c+dOfvvy5cutEqhOp2NqtZodPHiQXbp0iaWlpfH7U+KsuX/++YdFRUUxT09PplAoWJ8+fdj58+f53215CdRkMrG8vDzGGKN7nHVo+/btjOM4NmHCBD6Bpqens379+jG5XM5++uknvgd6SkoKmz59OvP19WXHjx93ZNikEaLkWY/Wrl3LNm3aZDVAWyKRMJlMxr7//nurD96yCbS0CdcWaoKyz/PPP2/RDMsYYx999BGTyWRMKpWyNWvWMMZKfr+lVz9lE2jpdsbu3Guj96L23P2FsLCwkH3//fdMKpWyF198keXk5DDGGIuLi2MDBw5kAoGAdezYkT377LPswQcfZCKRyOKWBiG1hZJnPSksLGT+/v7MxcXFoiftyJEjmbu7O3N3d2cxMTEsKSmJMWb5AVx6DzQyMpL/Bk0f0DV348YN1qxZMxYQEMAKCgqYTqdjJpOJ+fn5sfDwcBYSEsJ8fHzY2bNnGWMlyfHuK9AuXbqwFStWOPJlNFplm2rL/s1oNBr23XffMbFYzMaNG8d3AMrLy2OffPIJ69ChAwsPD2f9+vVjP//8M1+PWmZIbaLkWY+uXLnCfvjhB4uyNWvWsE2bNrFly5Yxf39/Fhsby65cucIYs0yQK1euZJGRkczHx4dlZmZS8qwl586d4ztslQ51uHbtGrty5QpbtmwZi4iIYD4+Puz06dOMMcsEun//fqZQKNjDDz9sMUyF1FzZxPnyyy+zXr16sUWLFvFlWq3WIoGWXoEyxlhubi7Lz8+3eE8ocZLaRsnTQSZOnMi2bNnCJ0GdTsf++usv5ufnV24C/e2339iff/7pkHgbm7u/fNy8eZMFBwdbDEVhjLHff/+dNWnSpNwEeujQIXb16tV6ifl+Ufa9GTRoEAsMDGTvvPOOxdUnY4wVFRXxCfTFF1+06ERU3vEIqS2UPB0gMzOTeXp6smbNmrEdO3bwA7gLCwvZihUrKkygpeibdO06d+4ci42NZR4eHmzHjh0W2/744w+rBKrX6+k9qGOvvfYa8/PzY2vWrGFKpdLmPqVNuE5OTmzs2LE2J1IgpC5Q8qwHtj5kk5KSWKtWrVizZs3Y9u3b+Y5CZRPoAw88QEMe6kjpe1L2i8mZM2dYnz59mFwuLzeBBgYGUs/NepCTk8NiY2PZ888/z0+MkJeXxw4dOsTee+899t577/FXmsXFxWzRokWM4ziLFYYIqUuUPOtY2Xs3+/btYyqVin+emJjIoqKi+ARa9gp01apVzMPDg0VGRtKUe7Ws9D1JSUlhy5YtY0ePHuW3VZRA//zzT+bm5saaN2/OtFotNQfWort/l/n5+axJkyZs+PDhjLGStTmHDBnC/Pz8mLOzM+M4jnXs2JH/eyouLuY7dhFSHyh51qGyiXPMmDGsadOm7Pnnn2cmk4n/sKgogf7+++/sp59+ckjsjVXpexIfH89atmzJOnXqxL744guLfSpKoCtXrqR7nLWs7N9J6f//oqIi9s477zCxWMxatmzJZDIZa9++PXv//fdZZmYmW7NmDRMKhTbnqKXmdFIfKHnWgyeeeIIFBgayhQsXWsx1WvpHnpiYyCIjI63ugZaOG2SMOj3UpitXrjBfX1/Wr18/tmHDBpv7nDp1ik+gu3btqucI7x9lE+eMGTPYoEGD+J6zN2/eZIsWLWJDhgxh8+bNs1g4Ye/evczNzY2GCRGHoeRZxz755BPm7e3NVq9ebdFky5hlQkxMTGStW7dmoaGhbNOmTfTtuY5oNBr23HPPsbZt2/KzNjFW8iFeUFBgsVrNqVOnWP/+/RnHcWzPnj2OCLdRK/t/fODAgSw8PJz179+f7yhXnrS0NPbee++x0NBQdujQoboOkxCbRI5eEq0xM5lMOH/+PJo1a4aBAwdCJpMhKysLe/fuxdq1a5GVlYXJkydjwIABaNKkCTZu3IiePXsiNzeX1hmsIxzHISEhAU2bNkVsbCwAYN++fdixYwf+/vtvGAwGTJ48GbNmzULHjh3xwQcfQCaTITAw0MGRNz6l/8fHjx+Ps2fPYsGCBejXrx/c3Nws9mOMgeM4AMDBgwexevVqLF68GPPmzcMDDzxQ73ETAgCUPGuR2Wy2SHpCoRAAcOPGDWRmZuLGjRt45513cO3aNbi4uMDZ2Rnjx4/H+vXr0bdvX0RERCAhIQGurq6OegmNzt3viVarRUREBE6fPo1Vq1YhPj4ev/zyCxhj6N69O/Lz8/Huu+8iIiICTz/9NGJiYvDXX39BKpU68FU0XklJSdizZw+effZZDBgwAHK5HGq1Gjk5Odi1axfat2+PJk2awNfXF8uXL8eHH34IrVaLBQsW4LXXXgNgmVwJqTcOvvJtNMreu7l58yb/ePfu3Sw8PJxJpVLGcRzr0aMH+/rrrxljjGVnZ7MmTZqwYcOGWd3TpGbbmit9TzIzM9nevXv58nXr1rE2bdowgUDApFIpmzp1Ktu3bx9jrKRXp5eXF3vvvfccEvP95uTJk4zjOLZ8+XLGWMn6tBMmTGAhISGM4zgmk8nYW2+9xcxmMzt//jxbvHgx279/P1+f/k6Io9CVZy0wmUz8VeZLL72E/fv346OPPsLQoUPx0EMPYfXq1di3bx/8/f3Ru3dv+Pn5AQAyMzMhEokQHR1t9c2Zmm1rpvQ9SUhIwJgxY5Cbm4vZs2fj+eefx9ChQ9GqVStkZ2cjODgYQUFBEIlK/hQyMzPh4uKC0NBQB7+CxoeVuUIsfX/at2+PBx98EFOmTMG6deuwY8cOBAUFYeDAgZgwYQJ+//13fPXVVxg7dixat26NqKgo/m+NMUZ/J8RhKHnWEGOM/2MeOHAgzp8/j8GDB6NVq1YAALFYjM6dO6Nz584W9VJTU7Fu3ToolUrExMTUe9yNWel7cvnyZTz88MNo06YNpk+fjqeeeorfp0WLFmjevLnFl5bDhw9jwYIFkEgk6Nu3ryNCb7TKfsEEAIPBAKFQCKFQiK+++gqffvopzpw5g8mTJ2P48OHo2rUrACA5ORnfffcdVCoVAFgcg5pqiSNR8qyh0j/gN998E2fPnsWXX36Jfv36QaFQlFtny5YtWLt2LVasWIE5c+Zg0KBB9RXufYHjOBQWFuJ///sfmjdvjk8//RSdOnXit5d+kJe+d2q1Gl9++SW2bNmC1NRU7Ny5EyEhIY4Kv9Epmzg/+OADnDx5Ejdu3MCgQYMwdOhQxMbGYuXKlcjOzoaPjw9fLyMjA//99x+aNGkCb29vR4VPiG2ObTVuHLRaLevatSsbMWIEPxwlNzeXHThwgE2ZMoXNnz+f/ffff4yxkpU4OnbsyKKjo9nixYv5Y9C9m9qVkpLCgoKC2Ny5c/my48ePs88//5zFxMSw4cOHs3379jGz2cxWr17NWrZsyYYNG8YuXbrkwKgbn7L38vv37898fHzYgw8+yEaOHMnkcjlr1qwZ+/777632PXPmDJs1axaTyWQWq6kQ0lBQ8qwF2dnZzMfHh73wwgussLCQXbp0iQ0ePJj5+/szuVzOBAIBa9++Pbty5QorLi5m//33Hzt//jxfnxJn7cvOzmZ+fn7s6aefZhkZGWzBggWsRYsWzN3dnT3wwAMsICCAtWrVil8L8urVq+VOPk5qbs6cOSwgIICtWLGCn27ym2++YRzHsblz5/Lz15pMJvbXX3+x4OBg5ufnxxYsWMAfgyYKIQ0JJc9qKvsHXPbxp59+yjiOY02bNmUcx7F27dqx2bNnM61Wy/bv3884jrM51R59INScrd+hXq9nCxYsYM7OzkwqlTKpVMrGjh3Lzxa0d+9exnEc+/333+s73PuO0Whkffv2ZUOHDuXXTN29ezdzdXVlo0eP5iemKO0dvW7dOvbuu++yrVu38segL5ikoaF7ntVwd6cHo9EIsVgMAJg6dSp8fX2xd+9evPLKKxg0aBCaNm0KAPDw8ICrq6vNsYLU6aFmSt8TjUaDwsJCiMViyOVyiMVijB49Gt26dcO+ffvQt29fNG3aFO7u7gBKOmx5eXkhIiLCsS+gETIajRCJRDAajTAajZDJZLh58yaeeuopuLi4YPfu3RgyZAiGDh2Kzz77DP7+/gCAHTt2oFOnThg6dCj69+/P/73cPVaXkAbB0dn7XlF2HOfcuXPZkCFDWP/+/dnnn39usV/pvLSlUlNT2fvvv8/8/PxoKrFaVvqeXLp0iZ/erXXr1uzFF19kubm55dY7efIk69+/P+vYsWO5CyiTmhs5ciSbOXMmY4yxxx9/nPXo0YMdPXqUubi4sGeeeYalp6fz++7evZt5enqy7du3OypcQqqFkmcVlG0yGjBgAHNzc2MdOnRg3bp1YwKBgI0cOdJiwvdS//77L5s6dSqTSCRWSZZUX9n3ofRxQkIC8/HxYa1atWKTJk1iTz/9NAsJCWGtW7fmE2jpWqmMMTZ//nz20EMPMS8vL4v7zqTmyi5k8O677zI/Pz/2xx9/MK1Wy1atWsXc3NwYx3HsmWeeYWq1mn8PU1NT2RtvvMFat27N4uLiHBU+IdVCybMaXnrpJRYaGsqWL1/Od3B45513GMdxbOTIkfy9G7PZzLZv387c3NxYWFgY++qrr/hj0L2bminbApCVlcW6d+/O+vTpYzHJ++DBgxnHcax58+b8Ch3FxcXs888/Zy1atGC9evWyWKGD1K74+Hg2f/589sYbbzCtVssYK5nl6dlnn2VyuZw99dRT/N/BpUuX2MyZM5mTkxP79ttvHRk2IdVCyfMuS5YsYW+//bZV+enTp1lsbCybM2cO30Nz3759TKFQsO7duzMXFxc2ePBglpSUxBgrmaJvxYoV7ODBg/wxKHHaZ+zYsaxPnz7889IrnI0bN7KgoCC2bt06ftvMmTOZWCxmEydOZN7e3qxly5YsLy+PMcbYtWvX2OHDh/mESmrfm2++yTiOY25ubuybb75hjN15v1JTU9mYMWOYWCxmvr6+rGPHjqxJkybMzc2NzZ8/nz8GdaIj9wJKnmUUFxezKVOmMI7j2Jw5cyy2nT59mvXv359fCPns2bPMxcWFPfvssywpKYnvbfv888/zCbQs+kCwT2FhIZs0aRLz9fVlo0aNstiWk5PDXnzxRf75ggULmFAoZD///DNTq9Vs+vTpjOM41rp1a5aZmVnfod8X7v5CuGrVKvbQQw8xsVjMXn/9dX6f0gSal5fHduzYwSZOnMgGDhzIZs2axbZt21bu8QhpqCh53iU1NZXNnDmTcRzHZs+ebbEtOzubMVbSXNihQwfWv39/PlFevHiRubu785O/3712J6m+0i8ceXl5bPr06czHx4c9/fTTNvc9fvw48/PzY++88w5/r/PKlSusadOmTCwWs7Zt2zKTyURfYmpR2d9lRkYG/3jTpk2sU6dOjOM4vlXAbDZbNLnbQomT3Evu+6Eq7K7ljIKCgvDyyy/DZDLhww8/BFAypRgAeHl5AQCysrKQlpaGiRMnIjw8nC9r0qQJJk2aBIFAUOH0fKRqOI6D0WiEh4cHpk2bBsYYli5dilGjRmHFihUASuZIFYvFyMjIgEqlwhNPPAFPT08wxrB582bI5XIsW7YMMTExNNyhFpUdPjJ8+HBwHIePPvoIkZGRGDRoEAQCAd599108/fTTWLNmDV/GGANQ8t6WfQzQYgjk3nJf/281m83gOA5FRUU4evQoFixYgNzcXAQFBeGNN97A9OnT8eGHH2L27NkA7vyR5+TkIDs7m0+QmZmZ2LlzJ9zc3DB06FBMmDABAPgPB1J9p06dwjfffIOhQ4ciLi4O3t7emDlzJl544QXs2bMHo0aNAgB+nK2Liwu0Wi3i4uIAACdOnMDevXvRuXNnDB06lMZz1iKj0cgnuqysLHh6emLDhg348ccfcfnyZQDAgAEDMHfuXLRu3RojRozA5s2brcY0cxxH45zJvcuRl72OVNpElJmZyfr27ctCQ0OZUChk33zzDT+0IT09nb399tuM4zj2/vvvW9QdNGgQ8/DwYGPHjmWPP/44k0gkNAdnLVm+fDmLiIhgISEhrH///mzJkiUW98xsNeEmJSWxIUOGMKFQyFq0aMGCg4NpOEodKNu0OmrUKNauXTvWrVs35uzszAQCAZswYQK7cuUKv8+WLVtYx44dmVwuZxs2bHBEyITUifsyeZbeq8nMzGTh4eEsNjaWLV68mOl0On76sFLlJdDz58+z8ePHMy8vL9apUyeLbvZ0X81+K1asYCKRiE2ePJkdOHDAYlvpB3fZBDpy5Eh+e1xcHFuwYAEbMGAAmzx5Mk3yXodeeOEF5uHhwRYvXszS09PZwYMH+b4C48ePt0igW7duZa1bt2Ycx7HExET6+yCNwn2ZPBkr6cXZu3dv1rlzZ3b48GG+M0Ppv2X/wMsm0HfffdfiOLdu3eInumaMOj3UxJkzZ1hERAR74YUXWHJyMl9etqOJrQQ6YsQIi33NZrPFxAikdmVmZrKwsDA2ZswYi9+zyWRiX375JeM4jk2cONHiy8u6devY8uXLHREuIXXivuswxG53EDp69CguXryIt99+G126dOE7M5TOXVv2XkxAQABee+01AMDHH38MoVDIdyLy8/OzODZ1erDfyZMnkZ+fj6efftpiPc2y8wkLBAKYzWZ4eHhgxowZAIDffvsNzz77LJYvX87vW3ovlNQuxhgKCwuRkZEBPz8/iMVi6HQ6SKVSCAQCvPLKK0hMTMT3338PJycn/O9//0PLli0xdOhQ/hg0Vy1pDO675FmaFA8ePAi1Wo2nnnqKT5y2Oi+U/qEHBATg9ddfh0AgwIcffoiioiIsWLDA5rFJ9ZT+7rdu3QpfX1/06dPHovxupWUeHh6YPn06BAIBPvvsMzg5OeHnn3+u19jvJ6XvR0REBNq3b49///0XACCVSvnJ4MViMfr27YsffvgB33zzDfR6PebMmWOxyDUlTtIY3HfJs5RarYZMJoNIVPIrKC/xlSZWlUoFf39/vPTSSygsLERwcHB9htuolf7uZf9v786jqirXP4B/NxzgHEQUBWQwnBE1cwS9joA5S169ek20zJkSlQwHVBrAgSupF800B9CuFDlctdRlTqiVmpmBljiQhIqAgjEog8j5/v7wd3Yc0VtOHMXns1Zrtfbe5/juczj72e+73+d5tVrk5+cjLS0Nrq6u9/1OFEVBZmYmbt68ifr162PKlCmwsrKCv79/RTa70rt7FSHD91FaWorhw4dj8uTJePPNN7F8+XJ1FRWNRoMqVaqga9eu8Pb2xnvvvYcmTZpg4sSJ970ZEuJZ9NzdAvL/00dq1aqF7Oxs7N2790+PPX36NKZMmaIGzYiICHUYVzw+devWRXZ2Nn777TcAd1Ii7mb4Tn777Tf4+fnh4sWLcHBwwHvvvQd3d/eKbG6ldvv2bTVwrl+/HmFhYZg1axaOHz8Oc3NzDBs2DIMGDcK6deswbtw4AIBGo0FmZia++uorlJaWYuzYsRg4cCBCQ0Nx4cIFCZyicjHJk9anQFJSEnU6HQcOHKjWqr2fDRs2UFEUnjx5smIaV8ndPdvSMAno6NGjtLOzY8eOHdVj7leV5p133mGDBg1YWFj4ZBv7HCo76c3Pz4/29va0t7ens7MzNRoN33nnHV69epWXLl3iq6++SkVR2KRJEw4YMICdO3emoijqYgirVq2iubk5Dx48aKrTEeKJeO56nsCdYadGjRohMDAQW7ZswYIFC4wKGpTt8Vy+fBlbtmxB9+7d4ebmZormVjqKoiAvLw9nzpxBVlYWioqKAABNmzbF4MGDcfjwYQwdOlSdwKXX61FaWqq+/tixYzhy5AhefvlleX72BBg+04CAABw/fhyRkZFITEzEmTNn0K9fPyxatAgHDx5E7dq1ERUVhbVr18LV1RU//PADbt++jY8++kgdmcnKyoK1tfU9F4IX4plm6uhdEe7Xe0lMTGSPHj2oKAqDg4ON0iNI8uLFiwwLC6ONjQ1jYmIqoKWV35EjRzht2jTWrVuXVatWpaurK/v166fmdF67do2+vr5UFIW9evViRkaGUU/o22+/ZZ8+fejs7GyUSyger4yMDHp4eHDmzJnMzc0lSe7fv59Vq1bl66+/ztTU1HIjCPn5+UY1nY8fP04vLy+2bt1arQstRGVR6YNn2QV6N27cyCVLljAiIkJde/PkyZPs168fzczM2K5dO4aFhfHAgQNcvnw5X3nlFep0Os6bN099D0nwfnhxcXFs2LAhGzRowCFDhnDixIns2bMnFUWhubk5ly1bRvJO4f2BAwdSURS6ublx5MiRXLJkCYcPH87mzZvTxcWFiYmJJj6bZ9v9/o4N23/66Seam5urNzV79uyhtbU1hw0bxitXrqjHG35Hd7/Hxx9/TG9vb9aoUUMed4hKqVIHz7I9lv79+9PBwYE2Nja0tbWlo6Mj586dy/z8fKakpHDRokWsVasWFUWhoii0srJily5duGbNmnu+n3gwMTEx6jqbd1cO+vTTT9mmTRtqNBp++OGHJMns7Gx+8skn7NGjBy0sLKgoChs0aMCAgAB1WTjxcAwjMTdu3OAPP/zArVu38vz580Y3mllZWWoFoe+//57W1tb09/c3CpwxMTF0cnIy2kbeWWfV29ubHTt25M8//1wxJyVEBavUwdNg5MiRdHJy4po1a5iUlMScnBy2atWKtra2/PLLL9Xj0tPTeeDAAX7xxRdMSEgwuihI4Hx4sbGxVBSF06ZNM+qpFBcXq/+/b98+durUiRqNRv1ODJ/5xYsXmZKSwtu3b0vloEdkCJwZGRns3LkzbWxsqCgKXV1dOX36dBYVFZG8U8HJz8+PDRs2ZJUqVTh8+HBmZmaqPdMLFy5w1KhR7Ny5My9fvlzu3zl9+rS6NJwQlVGlD57nzp1jo0aNOG/ePObn55MkDx8+zCpVqnD06NHqc87/tdagDNU+vB07dlBRFL788sv3vMiW/Wy//PJLOjg4sE6dOkbPn8seI9/FwzP8jaenp9PV1ZUtWrRgaGgoY2Ji6O7uTkVROHfuXPW4ffv20dLSkjY2Nly3bp36PqmpqXz33XdZrVq1cnMB5CZTPC8qffD87rvvaGlpycOHD5O8c0HQ6XTlhqAuXbpkqiZWamlpaXRwcKCjo6PRhbbsRbZsQDTUEN69e3dFNrPSM3zGGRkZrFu3Ljt06MDvv/9e3Z+enk4XFxd6enry+vXr6vZt27ZRp9PR2dmZo0aNYnBwMLt160atVsuIiIhy7y/E86JSzfMvm85gYGNjA71ej4KCApw8eRL9+vXDgAED8OGHH8LZ2RkAsHLlSrz22mvIzc2t6CZXSvz/tJ/bt2/DxcUFCQkJsLS0xPTp07F69Wq1BrBerwdwJ3XF8P9DhgwBAJw7d840ja+kFEVBQUEBWrZsiStXrmDGjBnw8vICANy6dQtOTk5o3rw5CgsLcfPmTfV1r7zyCrZv3w5fX1/s3r0bMTEx0Ol0WLlyJaZPnw7gj3VxhXieVKryfIaKKLt371bro7q6usLHxwdvvfUWLl26hCFDhiA8PFwNnCkpKTh48CA0Gg2Ki4tN1vbKRFEUkFRLH7q4uODo0aNo3749Zs2aBUVRMGrUKDWAls3VtLa2BgBYWlqapO2VmU6nw5AhQ7BkyRLs2bMHrVq1Qu3atWFpaYlbt26hsLAQaWlpWLRoEerVqwcvLy+89NJL8PX1ha+vr3qMVqtV8zalyLt4bpm45/tYlH1eGRoaSjs7O65YsULdtnz5clatWpXOzs7cs2ePuv3ixYsMDQ1ljRo1+Omnn1ZomyurY8eO8YMPPmDXrl3VKjOG7yctLY0vvPACHRwcuHr1anXotuwsz9mzZ9Pe3p7JyckV3/jnRHBwMBVFYWBgIFNTU0mSb775Js3NzdmsWTO2adOGiqLQwsKCL730EpctW8b9+/errzd8bzJUK55nz3zP01CMGgASExORnZ2NGjVqYN68edBoNBg9ejQCAgJw9epVLF68GK+//jrGjx+PkpISJCYmYvfu3QgPD8drr70G4P4reYg/9/nnnyM0NBQajQYdO3ZEixYt1O/HMIRr6IGGhIQAAEaMGAGNRgOSOHr0KPbv34/u3bsbLfUmHl3Zv+vIyEiQxKJFi2BpaYns7Gxs2LABq1evRv/+/WFtbY3MzEysWrUK8fHxCAwMBAAcPnwY7du3V3ua8jsRzzXTxu5HU/bO18/Pj+7u7vT09GSvXr2oKAqdnJz48ccfq8fExMSwf//+rF69OqtVq8bu3bszOjpa3S8zBR/e+vXraWZmxoCAAHVy1v2U7YGuWbOGer2ev/76K/v06UM3NzepHPSY/a/6wIa85qioqHLHG35f27Zt45YtW554O4V4ljxTwfN+w0SzZ8+mVqvl+vXr1SLv+/bt44svvsh69epx+fLl6rGFhYW8fPkyr169ypycHHW7BM6Hd+TIEbq4uPDNN980mrVsGI7NyMjgtGnTjF5jCKCGYhV9+vShjY2NVA56zMoOiS9dupQrV640Wgjh3XffpaIonDBhglF6UGlp6T1/b/I7EeKOZyZ4RkdHc8WKFUaJ9SR569Yt9u3bly1atFD3Ge6cv/vuO7q7u9PR0dGoUpCBPLt5NIbPLzQ0lHXq1OGRI0fUfYbvIDMzk23btqWiKPTz8zN6fVpaGhs0aEBFUVizZk0mJCRUXOOfA3dX2HJ1dWWXLl2Ynp5udNzUqVOpKAonTpzICxcuVHQzhXgmPRPBs7CwUK11unbtWqMAWlJSwj59+rBp06bqXXbZi8bOnTupKArr1q1r1AOVgPn4tGzZkj179iy3PSsri87OzmzZsiXHjBlDKysr9unTx+iYtLQ0tmrVSnqcj8m9eoYjR46kg4MD4+Li1ALtd//9GwJoUFCQBFAh/oJnIniS5JUrVzhixAhqtVpGR0cblWkLCgqimZkZd+7cabQOpF6vZ3FxMZs3b84mTZqwadOm/OKLL0x1CpWOXq9nSUkJGzVqxEGDBpXbv337dvbp04fJycnMzs7m1KlTqdVq2bt3b6Pj/ld1J/HX3KtAO0meOnWKtWvXZkhIiLr26f1uHA0FKkaNGmW0OooQorxnJnjq9XpmZGTQ39+flpaWjImJ4Y0bN0jeWcbK3d2dLVq0YEJCgtHF+PTp02zVqhWXLl3KevXq0dvb+74XGvHXlH1WnJ+fzw4dOrBu3brl0ksKCgqYm5ur9oYKCwvVC3RsbKx6nIwCPJpNmzaxXr1690y32rVrFxVF4c6dO0nev7KTwVtvvcXFixc/sbYKUVk8E9nNJSUlUBQFtWrVwty5c9GjRw+8/fbb2LJlCwoKCmBvb4/IyEhcu3YNr732GjZt2oSCggJcuHABn3/+OXJzczF27FjMnz8fhw4dwk8//WTqU3pmHTx4EJMnT8awYcMA3KngNHjwYKSmpmLXrl1Gx+p0Otja2qqpDVqtFiTRsGFD+Pj4qMdJysOjqVmzJtLT03Hr1q1y+2xtbQEAmZmZAGBU0MDwuf/4449qda1ly5YhKCgIAIwWiBdC3MXU0fvPlO1FTpgwgd7e3mzRogUVRWH16tXVVIfi4mLu2LGDL774ojoBxdHRkYqicM6cOSTvrASh0WgYEhJiqtN5psXGxtLV1ZWenp4MCQkxWvWkY8eOrFq1qtrDMSg7vH748GG2a9eOI0aMUEcNxKMx9B7LznIumyp07tw5enh4sE2bNjx9+jRJ495nYmIiPTw8uHnz5gpqsRCVw1MZPO/1DOyf//wnHR0dOWfOHJ44cYL//ve/6ePjQ61Wy9WrV6sXkYKCAs6bN4/jx4/npEmTGBcXp75HXFwcq1SpUm4lCPHnNm/eTK1Wy3HjxvHo0aPl9n/xxResXbs2bW1tGRcXV245qmPHjrF37950cXGRPM7HTK/XqwFx3LhxdHV15aZNm9T98+fPp6IoHDp0qNH6mleuXGFYWBhdXFyMKm8JIf7cUxU8jxw5oq4nWNbPP//MatWqccaMGep+vV7P8+fPc/Dgweokort7M2XvsI8fP85u3bqxXr16akky8ddcvHiRLVu25Ouvv270vPjutTVjY2PZrFkzWllZccCAAVy1ahXj4+MZHBzMNm3a0NHRUWbVPqK7n1Pe/R3s3buX9evXZ9u2bY0mx02ePJmKotDDw4ORkZGMjIzkoEGDqNFouGDBggppuxCVyVMTPL/99ltqtVoOHTq03HT77777joqiqD3GsgE2KSmJXl5etLOzY2xsLG/evKnuM9yRT548mS1btqSjo6PkEj6EhIQEarVabty4kaTxBTw/P5+rVq3iqlWreOzYMW7evJnTpk2jRqNRq9e4urpyyJAhPHPmjKlOoVIpLi7mV199xczMTHXb0KFDefz4cZJ3fkv16tVj69atjUZeFi9ezHbt2tHMzIxmZmZs0aKFUQUuKYAgxF/31ATPnJwcvvLKK0ZlwgyuXbvGGjVqcNy4ceq2u4vBK4pCrVbLZcuWGV3cMzMz+e6773LQoEFMSkp6sidRSe3Zs8doxiZJpqSkMCoqio0aNVKDZM2aNRkQEMCsrCwmJSXxwIED3LhxI1NTU9WFyMWjO3PmDDt16kQvLy/m5uayd+/eNDc3565du9Tfxf0C6LVr13ju3DkmJycbrWcrgVOIB/NUBE/DD75s8YMVK1aoPczff/+dw4cPp7W1tdHzSkNRhHXr1rFr1678+9//ziVLlpR7/1u3bhn1SMWDuXr1Kl944QV6enpy27Zt3LFjB//2t79RURR6eXkxLCyMa9euZd++fakoCiMjI03d5EotPz+f0dHRtLOzo729PR0cHLhz5041j9MQCMsG0HvlNxtuMiVVSIgHZ7Lgea8frCGIRkVF0czMjBMmTFAD6DfffMP69euzfv36XL16tfqazMxMjhw5kv7+/tK7eYKOHTtGe3t7tZdpbW3NiRMnGtVJvXTpEt3d3dm2bVvTNfQ5UVRUxObNm1NRFDZp0kStS6vX69X/yD8CqKenpxQIEeIxUsiKT+YyLKB748YNnD17FikpKejcuTOqVasGrVaLnJwcTJkyBXv37kXfvn2xePFiaLVa7Ny5E0FBQUhNTcWAAQNQt25dJCcnY+vWrVi5ciVGjRplSL+R3MEnwJDLqdPp0LhxY7Rr1w7AH99nSUkJ2rZtC51Oh6NHj5q4tZWP4XMmidTUVERERECj0SA2NhbNmjXD5s2b1aXc9Ho9FEWBoig4fPgwBg8eDK1Wi6+//hoNGzY08ZkIUQlUdLQ29C4zMjLo7e1NOzs7KorCOnXqMDIykmlpaSTJ3NxcvvHGG3R1deX48ePVIakjR44wMDCQtWvXpoWFBRs0aKAuukzKEFRFKzvbc+/evXRzc2NQUNB9V+UQD+fuqlmGEZnr169zzZo1tLOzY4cOHYwmEZF/fD/79+83Wn5PCPFoKrTnWVpaCnNzc2RkZMDT0xPVq1fHwIEDUaVKFWzcuBFnz57FwoULMXbsWABAfn4+Jk2ahD179sDPz0/tgRYXF0Ov1yMrKwsWFhZwcnIC8MeduagYhu8TAH766SeEhITgl19+wcGDB1G/fn0Tt67yKPs5jx07FqdPn0bPnj0REhICCwsL5Ofn4/PPP8eMGTPQpEkTbNmyBY6OjsjLy8P69evRunVrtG/fXn0/ysiMEI+uoqK0oReSnp5ONzc3tm/f3ijZ/scff2T9+vXZtGlTFhUVqcfn5eWpPdCAgIByeaAy6cF0DJ95VFQUfX19WatWLcnjfER3/z2X/bvu168fXV1dGRoaWi5XOS8vj5988gnt7OzYsWNHxsXFcdasWeUWuhZCPB4VOmx78+ZNNm/enBqNht98843RvoKCAvr4+LBx48blqtPk5ORwxIgRdHNz49ixY+9ZSEFUvOzsbLZv354ODg7s3bu3pAI9BnevtWkQEhJCBwcHbtq0ibm5uUb7DLPUc3JyGB0dTTc3NyqKQhsbG0ZERDzxNgvxPKrQYdu8vDzMnj0bK1euxMSJEzF37lxoNBqYmZmhqKgIfn5+OHHiBMaOHQsnJyf07dsXNjY2cHZ2VodwP/vsM3z99dfw9vauqGaL/+H06dNISUlB+/btUbNmTVM355m2detWTJ06FUuXLkWvXr3U7QUFBfDz84ONjQ22bdsGALh+/TpOnDiB7du348aNG5gwYQJatWqFoqIipKen4+jRo3BxcUHXrl0ByCMNIR67io7Wubm5DA4OpqIonDJlijoRaPz48Wr5MA8PD5qZmVGn0/Gll17i8uXLeerUKd66dYv79++v6CYLUSGio6PVxQ7KunnzJn18fOjl5cUbN24wMTGRPXr0oL29PatWrUobGxtaWlry5MmT93xfKYAgxONnkjzPsgE0JCSE48aNo06n4/r165mdnU29Xs+kpCTOnj2bbdq0UXMLjxw5or6HXBBEZVS2cPupU6dI3nnuGRERwZo1a7JGjRpqcYr58+eTJOPj41mzZk1OmzaNpPw2hKgIJsnzBO4M4YaFhWHp0qUoKSlBTEwM/P39YWFhYXRcTk4OEhIScOXKFfj7+5uiqUI8cXcPqwYGBuKrr75CdHQ0unXrhtLSUvznP/9BUlIS3Nzc0LdvX9StWxcAkJCQgF69emHmzJmYNGmSic5AiOeLxlT/sK2tLUJDQ6HT6RAREYHExES8+uqr6n7D9Pxq1aoZPd+UZzeiMro7daRly5aIj4/HzJkzMWfOHHTv3h1vvPFGudddvnwZW7duhZmZGZo1a1ZBrRVCmCx4AkC1atUQHByMoqIiLFy4EObm5nj//fdRpUoVNa/t7ouKBE5R2fAeeZdjxoyBtbU1wsPDMXPmTJibm8PX19fomEOHDiE2Nhbr1q1DWFgYunXrVpHNFuL5ZuJhY5LGz0CnT58uRdzFc6NsHuegQYM4Z84co/2xsbH08PBg27ZtjSbLbdiwgS4uLnR3d+fSpUvV7fK8U4iKYdKep4FhCNfMzAwLFixAfn4+oqKioNE8Fc0T4om4ffu2+jeenJyMwsJChIaGwsnJCaNHjwYA9Tl/eHg4pk2bhgULFsDHxwcDBgxAcXExGjduDE9PTwDySEOIimSyCUP3kpeXh5CQEDRu3FgmPohKrWygCwgIwNmzZ5GVlYVffvkFABAVFYWJEyeqx3/22WcIDw9H9erV8f7776Nnz55G70cpuSdEhXqqgicA3Lp1C5aWlqZuhhAV4tVXX0V8fDxmzJiB3r1748cff0RsbCx27dqFRYsWISgoSD02Li4Os2bNgrm5Ofbt24fatWtLwBTCRJ66cVEJnOJ5cf78eezatQujR49GQEAAdDodPDw80Lp1a9SqVQtTpkyBRqNBYGAggDuBtqioCGZmZnjhhRdM3Hohnm9PXfAU4nnx+++/Iy8vD+3atYNOp0NxcTGsrKzQpEkTBAcHIzk5GZMmTYKlpSXGjRsHAEbpKjJUK4TpyOwCIUzE3d0dDg4O+O9//wsAsLKyQmlpKQCgWbNmat5zQEAAPvroIwB3AqaBBE4hTEeCpxBPmF6vv+d2jUYDX19f7Nq1CytWrAAAmJubo6SkBABQs2ZNeHp6YuTIkZg0aRJ27NghAVOIp8RTN2FIiMqkbDpKQkIC0tLSUKtWLbi4uMDFxQUXLlxAly5dUFpailmzZqnPNzMzMxEeHq6umDJq1CjY2tpi+/btsLOzM+UpCSEgwVOIJ6ZsOsrQoUOxZ88eXL9+HQDg5uaGZcuWoW/fvjh//jx69OiBrKwsdOrUCe3atcOJEyewc+dOrFixAmPGjMGMGTOwZMkSJCUloU6dOqY8LSEEZNhWiCfGEDj9/f0RHx+PoKAgHD16FPPmzYOdnR0GDBiATz75BI0aNUJ8fDyGDRuG8+fPY+7cuThz5gwiIyMxZswYAHdSuHQ6nSlPRwhRhvQ8hXiCEhMT4evri8mTJyM4OBjW1tYAgGPHjiE8PBy7du3Czp070b17dxQXF8PMzAzp6emwtLSEk5MTAOCHH37AuHHj1GHbqlWrmvKUhBCQVBUhnqi0tDT8/vvv6N69O6ytrdUiIF5eXggJCcG5c+cQHByM+Ph41KhRA8CdIV3gzszauLg4rFu3DqmpqTh06JAETiGeEjJsK8RD+iuDNq6urgCA+Ph4AHeKgBjSUTp06ID+/fvjzJkzyMvLK/fa6OhovP3227h27RoOHjyIF1988TG2XgjxKKTnKcRDMBQouHnzJszNzaHVau95nIODA9zd3REbG4tOnTqhS5cuajqKhYUFmjZtipKSEty4caPca0ePHo0GDRrAw8NDHcIVQjwdpOcpxEMwBM5WrVohKCgIBQUF9zzOxcUFS5YswdmzZzFnzhy1B2phYYGMjAzs378fDRs2LJd+Yuident7S+AU4ikkPU8hHhJJ+Pj4ICYmBlWrVsUHH3ygTggqe0yPHj2wdu1avPHGG0hOTsY//vEPuLu749ChQ4iLi8OiRYvU4V0Dw2LwQoink8y2FeIR5OXlITw8HAsXLsQ777xzzwBqcODAAcyYMQOnTp1CYWEhGjVqhMDAQHXpMalVK8SzQ4KnEI/ozwKo4SemKAp++eUXWFlZwdzcHFZWVnBxcQEgC1kL8ayRYVshHpGtrS1CQ0MBAAsXLgQAowBq6E0mJycjPDwcKSkp2LdvH2xsbADcCa4SOIV4tkjwFOIxuFcAfe+999QA+euvv+LDDz/Ehg0bMHv2bHU7IKujCPEskuApxGNyrwC6YMECpKSkIDIyEitXrsT8+fMxffp0APKMU4hnmQRPIR6juwNobm4uSGLNmjVGgVOecQrxbJMJQ0I8AXl5eZg3bx4WLFgAAPjXv/6FqVOnApDAKURlID1PIZ4AW1tbhISEoKSkBA0aNMBbb70FQAKnEJWF9DyFeIKKi4thZWUFQAKnEJWJBE8hhBDiAcltsBBCCPGAJHgKIYQQD0iCpxBCCPGAJHgKIYQQD0iCpxBCCPGAJHgKIYQQD0iCpxBCCPGAJHgKIYQQD0iCpxBCCPGAJHgKIYQQD+j/AB5yrGOX/3R4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 292 ms (started: 2024-10-26 13:19:53 +00:00)\n" ] } ], "source": [ "ml.compareEstimatorsInGridSearch(hrs1,tableorplot='plot',figsize=(4,4))" ] }, { "cell_type": "markdown", "metadata": { "id": "DOoh8ehDejvv" }, "source": [ "Normal veya halving gridsearch yapsaydık 5.664.000 adet model çalışacaktı, bunu local makinede yapmak imkansız gibi. Peki halvingsiz normal randomsearch yapsak, ne kadar sürerdi ona bakalım, bi de skorumuz çok farkediyor mu, yani halvingrandom çalıştırmak değmiş mi görelim," ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 447 }, "executionInfo": { "elapsed": 295632, "status": "ok", "timestamp": 1729949089652, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "SBlbC13Pejvv", "outputId": "2063f27b-dfcf-44db-ecca-43e34f6eb5ee" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 50 folds for each of 100 candidates, totalling 5000 fits\n", "CPU times: user 21.8 s, sys: 549 ms, total: 22.3 s\n", "Wall time: 4min 54s\n" ] }, { "data": { "text/html": [ "
RandomizedSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n",
       "                   error_score='raise',\n",
       "                   estimator=Pipeline(steps=[('log',\n",
       "                                              FunctionTransformer(func=<function logTransformer at 0x7e7147611b40>,\n",
       "                                                                  kw_args={'col_name': 'Fare'})),\n",
       "                                             ('ct',\n",
       "                                              ColumnTransformer(n_jobs=-1,\n",
       "                                                                remainder='passthrough',\n",
       "                                                                transformers=[('nominals',\n",
       "                                                                               Pipeline(steps=[('ohe',\n",
       "                                                                                                OneHotEncoder(drop...\n",
       "                                         'clf__alpha': array([1.e+04, 1.e+03, 1.e+02, 1.e+01, 1.e+00, 1.e-01, 1.e-02, 1.e-03,\n",
       "       1.e-04, 1.e-05]),\n",
       "                                         'clf__class_weight': [{0: 1, 1: 2},\n",
       "                                                               {0: 1, 1: 4},\n",
       "                                                               {0: 1, 1: 6},\n",
       "                                                               {0: 1, 1: 8},\n",
       "                                                               {0: 1, 1: 10},\n",
       "                                                               'balanced'],\n",
       "                                         'clf__solver': ['svd', 'cholesky',\n",
       "                                                         'lsqr', 'sparse_cg',\n",
       "                                                         'sag', 'saga'],\n",
       "                                         'clf__tol': [0.001, 0.0001],\n",
       "                                         'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n",
       "                                                                                              3]),\n",
       "                                                               None],\n",
       "                                         'ct__numerics__scl': [StandardScaler(),\n",
       "                                                               MinMaxScaler()]}],\n",
       "                   scoring='accuracy', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "RandomizedSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n", " error_score='raise',\n", " estimator=Pipeline(steps=[('log',\n", " FunctionTransformer(func=,\n", " kw_args={'col_name': 'Fare'})),\n", " ('ct',\n", " ColumnTransformer(n_jobs=-1,\n", " remainder='passthrough',\n", " transformers=[('nominals',\n", " Pipeline(steps=[('ohe',\n", " OneHotEncoder(drop...\n", " 'clf__alpha': array([1.e+04, 1.e+03, 1.e+02, 1.e+01, 1.e+00, 1.e-01, 1.e-02, 1.e-03,\n", " 1.e-04, 1.e-05]),\n", " 'clf__class_weight': [{0: 1, 1: 2},\n", " {0: 1, 1: 4},\n", " {0: 1, 1: 6},\n", " {0: 1, 1: 8},\n", " {0: 1, 1: 10},\n", " 'balanced'],\n", " 'clf__solver': ['svd', 'cholesky',\n", " 'lsqr', 'sparse_cg',\n", " 'sag', 'saga'],\n", " 'clf__tol': [0.001, 0.0001],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n", " 3]),\n", " None],\n", " 'ct__numerics__scl': [StandardScaler(),\n", " MinMaxScaler()]}],\n", " scoring='accuracy', verbose=1)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4min 55s (started: 2024-10-26 13:19:53 +00:00)\n" ] } ], "source": [ "%%time\n", "from sklearn.model_selection import RandomizedSearchCV\n", "rs1 = RandomizedSearchCV(estimator=pipe, param_distributions = params, cv = mycv, n_jobs=-1, verbose = 1,\n", " scoring = 'accuracy',error_score='raise',n_iter=100)\n", "rs1.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 331 }, "executionInfo": { "elapsed": 420, "status": "ok", "timestamp": 1729949090063, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "K3j5kr2uejvv", "outputId": "6dc8f447-19c4-48b2-c8e4-5d79fe38e2d9" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "repr_error": "0", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
param_ct__numerics__sclparam_ct__numerics__ouhparam_clf__tolparam_clf__penaltyparam_clf__learning_rateparam_clf__l1_ratioparam_clf__eta0param_clf__early_stoppingparam_clf__class_weightparam_clf__alphaparam_clfparam_clf__solverparam_clf__Cmean_test_scorestd_test_score
29StandardScaler()OutlierHandler(featureindices=[0, 3])0.0010l1constant0.50.0100Truebalanced0.00001SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7880540.034758
21MinMaxScaler()OutlierHandler(featureindices=[0, 3])0.0010l1adaptive0.50.0100Truebalanced0.00001SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7869920.030304
67StandardScaler()None0.0010l2optimal0.50.0010Falsebalanced0.00100SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7868290.039258
94StandardScaler()None0.0010l1adaptive0.50.0100False{0: 1, 1: 2}0.01000SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7862470.037753
39StandardScaler()OutlierHandler(featureindices=[0, 3])0.0001elasticnetconstant0.50.0001Falsebalanced0.00010SGDClassifier(loss='log_loss', max_iter=4000, ...NaNNaN0.7858010.035637
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " param_ct__numerics__scl param_ct__numerics__ouh \\\n", "29 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "21 MinMaxScaler() OutlierHandler(featureindices=[0, 3]) \n", "67 StandardScaler() None \n", "94 StandardScaler() None \n", "39 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "\n", " param_clf__tol param_clf__penalty param_clf__learning_rate \\\n", "29 0.0010 l1 constant \n", "21 0.0010 l1 adaptive \n", "67 0.0010 l2 optimal \n", "94 0.0010 l1 adaptive \n", "39 0.0001 elasticnet constant \n", "\n", " param_clf__l1_ratio param_clf__eta0 param_clf__early_stopping \\\n", "29 0.5 0.0100 True \n", "21 0.5 0.0100 True \n", "67 0.5 0.0010 False \n", "94 0.5 0.0100 False \n", "39 0.5 0.0001 False \n", "\n", " param_clf__class_weight param_clf__alpha \\\n", "29 balanced 0.00001 \n", "21 balanced 0.00001 \n", "67 balanced 0.00100 \n", "94 {0: 1, 1: 2} 0.01000 \n", "39 balanced 0.00010 \n", "\n", " param_clf param_clf__solver \\\n", "29 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "21 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "67 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "94 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "39 SGDClassifier(loss='log_loss', max_iter=4000, ... NaN \n", "\n", " param_clf__C mean_test_score std_test_score \n", "29 NaN 0.788054 0.034758 \n", "21 NaN 0.786992 0.030304 \n", "67 NaN 0.786829 0.039258 \n", "94 NaN 0.786247 0.037753 \n", "39 NaN 0.785801 0.035637 " ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 75.9 ms (started: 2024-10-26 13:24:49 +00:00)\n" ] } ], "source": [ "ml.gridsearch_to_df(rs1,5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 193 }, "executionInfo": { "elapsed": 30, "status": "ok", "timestamp": 1729949090064, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "4xyK-nQUejvv", "outputId": "6f5604aa-3363-4fb3-954f-2b509fcf5d90" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"ml\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"param_clf\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"SGDClassifier\",\n \"RidgeClassifier\",\n \"LogisticRegression\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MAX of mean_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.024850193678267195,\n \"min\": 0.7437268544495568,\n \"max\": 0.7880540904500056,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.7880540904500056,\n 0.7853563012007632,\n 0.7437268544495568\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MIN of mean_fit_time\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.02514207827256074,\n \"min\": 0.03402810573577881,\n \"max\": 0.07899734973907471,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.03402810573577881,\n 0.037026896476745605,\n 0.07899734973907471\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MAX of mean_test_scoreMIN of mean_fit_time
param_clf
SGDClassifier0.7880540.034028
RidgeClassifier0.7853560.037027
LogisticRegression0.7437270.078997
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " MAX of mean_test_score MIN of mean_fit_time\n", "param_clf \n", "SGDClassifier 0.788054 0.034028\n", "RidgeClassifier 0.785356 0.037027\n", "LogisticRegression 0.743727 0.078997" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 39.3 ms (started: 2024-10-26 13:24:49 +00:00)\n" ] } ], "source": [ "ml.compareEstimatorsInGridSearch(rs1,tableorplot='table')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 494 }, "executionInfo": { "elapsed": 542, "status": "ok", "timestamp": 1729949090583, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "YtysMB2gejvw", "outputId": "ccdd3bd7-40fc-4dd8-ffe5-cfd7375711cb" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAHLCAYAAACu6RM9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtNklEQVR4nOzdd3hTZfsH8O/Jbpuke09KgbaMsocMQVkyBAQZKqgo4OsegID7p6+IiCivggsXKiB7yBQUkFmBQqFlttC9m9E2O8/vj9BASLrSkVLuz3X1onnOec65w4HcOc95BscYYyCEEEJIrfFcHQAhhBByp6HkSQghhNQRJU9CCCGkjih5EkIIIXVEyZMQQgipI0qehBBCSB1R8iSEEELqSODqAJozo9GI06dPIzAwEDwefc8ghNz5zGYz8vPz0aVLFwgElAKcRX9z1Th9+jR69uzp6jAIIaTBnThxAj169HB1GHcsSp7VCAwMBGD5RxYcHOziaAghpP5yc3PRs2dP6+cbcQ4lz2pUNtUGBwcjLCzMxdEQQkjDoUdR9UN/e4QQQkgdUfIkhBBC6oiSJyGEEFJHlDwJIYSQOqLkSQghhNQRJU9CCCGkjih5EkIIIXVEyZMQQgipI0qehBBCSB1R8iSEEELqiJInIYQQUkeUPAkhhJA6ouRJCCGE1BElT0IIIaSOKHkSQgghdUTJkxBCCKmjZrsYtlmvR9GyZVBu2QqTSgVxu3bwf+lFSPv2rbFu+ZEjKPrqa+guXQIzmSCKioLPY4/Cc8yYJoicEEJaDp3RhE/3XsKmU9lQagyIDZZj9tC26N/Gv8a6eUot3t+egoOXC8EY0DvaF2+PikeEr7vNfiqtAV/uv4Ld5/OQq9TCTypG3xhfvDS4LUK93BrrrdVLs73zzJ03H8U//gT56NEIXLAAHI+HzFnPoOLkyWrrqffvR8ZTT4MZDPB7/nn4v/wSeGIxcl6fh+Iff2ya4AkhpIWYve4sVh5Kx9guoXhndHvwOeDJHxKReK2k2nrlOiOmfHsMx9OL8dygGLw8uA1ScpSY9M1RlJbrrfuZzQxTvzuOVceuY1j7ILz3YHuMTgjBjuQ8jF9+BGU6Y2O/ReewZqjizBmW0i6WFX230lpm0mrZ5SFDWfqkydXWvf7kdHap/wBm0umsZWaDgV0eMpRdfXBMneLIzMxkAFhmZmad6hFCSHNVl8+10xmlLPL17ezrA1esZRq9kQ34eD8b9+U/1dZd8fcVFvn6dpaUUWotu5yvZtHz/2CLdqZay/69VswiX9/OfjqSblN/bWIGi3x9O9uZnFu7N9bEmuWdp2r3boDPh9ekidYynlgMr/HjoUlKgiE3t8q6pvIy8D3l4IlE1jJOIADf2wucRNyocRNCSEuyMzkXfB6HKT0jrGUSIR8Tu4fjVIYCOQpNtXUTwjyREO5lLYsJkOKe1r74I/nmZ7haa7mz9JPafj4HyMQ3ztcs01TzbLbVpaZCFBUFvlRqU+7WqSMAQJt6ocq6Hj17Qnf5Cgo+/xz669ehz8hA4fLl0J47D9+nnqr+vDodVCqV9UetVtf/zRBCyB3qfI4Krfw8IJMIbco730iIKTkqh/XMZobUPDU6hnnabesc7oXrxRXW5thOYV5wF/GxZM9FHLlShDylFsfSivHRzgtICPNEvxi/hn1TDaRZdhgyFhZC4G//MLqyzFhQUGVdv//8B/qsLBR/9TWKV3wFAODc3BC27HPI7r+/2vMuXLgQ7733Xj0iJ4SQO4NarYZKdTP5icViiMW2d38Faq31DvBWlWX5aq3DYys0BuiNZgTIJFXXVWkh9ZfCx0OELx7pgnkbkvHId8et+w1o648Vj3aFgN8s7/Ga552nWasDJxLalXM3LizTOb5gAMCJRBBFRUE2bBhClnyCkMUfw619e+TMmQtNUlK1550/fz6USqX1JyUlpV7vgxBCmqv4+Hh4enpafxYuXGi3j9ZghkhgnybEAr51uyNagwkAaqhrspb5eIjRPkSOOcPa4Zup3fDy4DZITC/BnPVn6v7GmkizvPPkScRgeoNdOdPpAACc2P7bTKW89z+A5swZtNq4ARzPcuHkw4cjbdRo5H24EK1+X1tl3du/ed36rYwQcvdgjAEAOI5zcSSNJyUlBaGhodbXt991ApbnjXqjfYLUGU3W7Y5IhJYEWX1dyz4ZxRWY8s0xfDoxAQ90DAYADG0fhDBvd8xedwZ/XSzAoHYBdXlrTaJZ3nkK/P1hLCy0K68sEwQ4/otkej0UGzZAeu+91sQJAJxQCI8BA6A9dw5Mr3dYlxBCKm1JysHUlSeQXU2HmDudTCaDXC63/jhKngEyCQrUOrvyyrJAB82yAODlJoRIwEOBg2Zda125pe76k5nQGU24L872c31IXCAA4OS10jq8q6bTLO88xbFxKD9+AqayMptOQ5ozZwEAkrhYh/WMCgVgNAJmk902ZjQAZjOY2Yym+C6ZGhvXBGdpueIupLo6BHKXyldp8faWc1Bpjdh8OhvPDYpxdUguEx8ix9G0Yqi1BptOQ0mZCut2R3g8DrFBMiRnKe22JWUqEOHjDqnYkn4Ky/RgAMy33aQabhQYzaz+b6QRNMvkKR82FCXffw/F2t/h+9R0AJYZhxSbNkKS0AnCYMutvSEnB2atFuLoaACAwNcXPLkc6r1/wv+FF8DdGK5iLi9H2V9/QxQdDZ6k6iZf0nLRl5n6uxu+0DDGMG/DWai0RnQK88SsAdGuDsmlHugQhG8OpmH1iQzMHNAagKXZdd2/megc7oWQG7P/ZCs00OhNiAmQ3lI3GIt2XcDZLAU6hXkBAK4WluHI1WLM6H/z7zXazwOMAdvP5uDh7uHW8q1JOQCA9lUkaFdrlsnTLSEBsuHDUbB0KYwlxRBFREK5eTMM2TkI+eAD6345r89DRWKi9T81x+fDd/qTKPzsc6RPngyvMWPATGYoNmyAMS8PIYs/dtVbIoTcAX7/NxN/XSyESMDDkocTmm1Pz6bSJcIbIzsG4+NdF1Fcpkekrwc2nMpCVqkGi8Z3su736tokHE8vwbWPRlrLpvaJxJrEDEz/MREz+kdDwOdh5aE0+ElFmNG/lXW/Cd3C8M2hNLyx6RzO56jQNlCGczlKrE3MRNtAKYa1D2rS91xbzTJ5AkDIoo9Q+PkyKLduhVlpmds2fMUKuPfoUW09v2eegTA0DCWrVqHwy+Vgej3E7doi9PPPIR82tImiJ4TcabJKK/D+dssX8deGtEWbQJmLI2oelkxMQOheN2w8bZnbNi5IhpVP9ECvaN9q60nFAqyZ2Rvvb0/BF/uvwMwYekf74q1R8fC9ZUIEbw8Rtj3fD5/uvYh9F/Lx2/EMeLkLMbF7GOYMi3XYY7c54FhltzJiJysrC+Hh4cjMzERYWFid6lIzYf00dBMhXY/6a8nNtmYzw9Tvj+PwlWJ0i/TG77P6gM9rmT1t6/O5Rm5qnimdEEKa0K/Hr+PwlWJIhDx88nBCi02cpOFQ8iSE3NWuF5fjwx2WKT/nDY9FKz8PF0dE7gSUPAkhdy2TmWH2ujPQGEzoE+2LaX2iXB0SuUNQ8iSE3LV+OJyOxGul8BDx8fGETuBRcy2ppXr1ttWmpED5xx/Qp6XDrNUg8ocfAACG7Gxozp6FR58+4Ht5NUSchBDSoK4UlOHj3RcBAG+Oike4j7uLIyJ3EqeTZ/7ixSj54UegsrPuLXNAMgZkz56DwNfnwmfatPrGSAghDcpoMuO1dWegN5pxb1t/TO4RXnMlQm7hVLOtYsNGlHz/A6QDB6LVls3wnTnTZrsoLBRuHTtCvf+vBgmSEEIa0tcH03AmUwGZRICPxnds0RPAk8bhVPIsXb0aotbRCFv2OSRt24IT2i8fJoqOhv769XoHSAghDSk1V4XP/rwEAHh3dHsEe7q5OCJyJ3IqeequXoXHPfeAE1Td6ivw9YWpuNjpwAghpKHpjWa89vsZGEwMg+MC8VDX0JorEeKAU8mT4/PBDPbrbd7KWFAAnjs9gCeENB9f/HUFKbkqeLsL8eFDHai5ljjNqeQpbtsWFceOg5nsl/4CALNGg/KjRyFp375ewRFCSENJzlLiy7+uAADeH9sBAVWsRUlIbTjV29Zr/EPIffMt5L37LgLfestmm6msDLlvvgVjURECFyxokCAJIS1PU843rOcJ8OLAl2GSB2FAVhJaT5yNljBTb0ueb7i5czJ5jkf5kaNQrN8A1Y6d4Mkt662lPzwR+qtXYdZo4DluHOTDhzVosIQQ4oxVscNwXR4EL60az57d6OpwSAvg9DjP0CWfwL1XT5T++ht0ly8DjEF77hxEraPh89hUeE+e1JBxEkKIU1K9I7Gxzb0AgBeT1sNTX+HiiEhLUK8ZhrwnToT3xIkwa7UwKVXgSz3A86BJlQkhzYOWL8SSbpNh5ni4P+Nf9Mk77+qQSAvhVIeh1Pj2yJ495+ZBJBIIAwMocRJCmpUf4x9AttQfvhoFnkne7OpwSAviVPLkSaUQBgc1dCyEENJgzvq1xpbWAwAAL59eB6lB6+KISEviVPJ069gR2gsXGzoWQghpEBUCMT7tYul3MfzaMXQvoM8r0rCcSp5+zz+HimPHoNi8uYHDIYSQ+lvZfhTyPXwQWF6CGee2uToc0gI51WGo/MgRuPfsidwFb6D0l18h6dgBAl8/4PbJOjgO/s8+2wBhEkJI7Zz0b4sdrfoAAF45vRbuRp2LIyItkVPJs+iLL62/a8+fh/Z8FT3YKHkSQppQmVCCz7pMBAA8ePUQEoquujgi4krlOiPSi8pRoTehZyufBj22U8kz4qcfGzQIR8x6PYqWLYNyy1aYVCqI27WD/0svQtq3b7X1rtx3Pww5OQ63CSMjELN7d2OESwhpBr7pMAZF7l4IKSvEkyk7XR0OcZHMkgq8ty0Ff18sgJkxcByHqx+OAAD8e60E8zYm4/0xHdCnta/T53AqeXr07On0CWsrd958qPbsgc+0aRBFRkK5aRMyZz2DyJ9+hHu3blXWC1wwH+YK20HQhpwcFH72eY2JlxBy5zoWFI+9kT3AMTNePbUWEpPe1SG1CDqjCZ/uvYRNp7Kh1BgQGyzH7KFt0b+Nf41185RavL89BQcvF4IxoHe0L94eFY8I35uLhqz7NxNz1p+t8hifTeqMsV1qv/pNtkKDccuPQFGhx5D4QBSqdTiVUWrd3jncC6Xlemw9k9P0ybOxac6ehWrHDgTMmQPfp6YDADzHjkHa6AdRsPgTRK1ZXWVd2eDBdmVFK1YAAOSjRjdOwIQQl1IJ3bGs8wQAwPgrB9C+5JprA2pBZq87i53JuZjerxWifD2w/mQmnvwhEatn9kaPqKqbQst1Rkz59hjUWgOeGxQDAY/D9/+kY9I3R7Hjxf7w9hABAHq18sXSSQl29Vf+k47UXDXuialbglu69xJUGgPWzuqNbpE++OzPSzbJU8DnoUeUD05eL6nTcW9Xr+RZceoUlJs2QZt6AeayMvCkUkji4uA5dky1d4c1Ue3eDfD58Jo00VrGE4vhNX48CpcuhSE3F8Lg4FofT7n9DwjDwuDetYvTMRFCmq/lCeNQKpEjQpWHqan0aKahJGUqsO1MDhaMiMXMAa0BAA91DcWwzw5i4Y5UbHy26ta8VceuI72oHFue64uEcC8AwMB2ARj22UF8eygNc4fHAgAifN1t7kQBQGsw4a3N53FPa986r35z8FIhhrYPRLfIqhN7qLcbjlwtqtNxb+fUUBUAyF+4ENcfmwrF+g3Qnj8PfUYGtOfPQ7F+Pa5PnYb8hR85HZQuNRWiqCjwpVKbcrdOHQEA2tQLtT6WNiUF+qtXIR810ul4CCHN16GQTjgQ1gU8swmvnVoDkdno6pBajJ3JueDzOEzpGWEtkwj5mNg9HKcyFMhRaKqtmxDmaU2cABATIMU9rX3xR3Jutef9MzUfZTojxnSu+2LlCo0BYd7VryXNGKA3met87Fs5deep2LQZJT+vgigqCn7PPQePXj3B9/ODqbgY5cePo+jL5ShZtQriuFh4jR1b5+MbCwsh8LdvT68sMxYU1PpYym3bAQCeo2tustXpdNDpbnZrV6vVtT4PIaTplYql+CJhPABg0uX9aKvIcnFEdw61Wg2VSmV9LRaLIRaLbfY5n6NCKz8PyCRCm/LONxJiSo4KIV5udsc2mxlS89SY2D3MblvncC8culyEMp0RUrHjFLT5dA4kQh6Gd6j7THb+UjGuFZVXu8/FfMdx14VTd56la1ZDEBSEqN/XwnPUSAj8/cFxHAR+fvAcORJRa9dAEBiI0tVVP5usjlmrAycS2pVzNy4s09Vumi1mNkO1YwfE8XEQt25d4/4LFy6Ep6en9Sc+Pr5ugRNCmgwD8L+E8VCJPRCtzMaUC3+6OqQ7Snx8vM3n3cKFC+32KVBrESAT25VXluWrHX8WKzQG6I1mh02u1rqqKupW6HHwUiHujwusMrlWp1+MH/ZfKEBqrsrh9hPpJThytRiD2gXU+di3cip56i9fgXzoEPBlMofb+TIZ5EOHQH/5inNBScRgeoNdObtxV8iJa9cGXnEiEcb8fHjWsqPQ/PnzoVQqrT8pKSm1D5oQ0qT+CuuKoyEdITAb8drJNRAyk6tDuqOkpKTYfN7Nnz/fbh+twQyRwD5NiAV863ZHtAbLtai+ruPrtSM5D3qTGWOdaLIFgOfvi4FYyMPEr4/ii/2Xcb3YMvrir4sFWLLnIh7//gR83EWYNSDaqeNXasTetrdPN1R7An9/GPLtm2aNhYWW7QG1+8ag3L4N4PEgH1m75523N1vc2qRBCGk+iiRyrOg0FgDwyIW9iFZV/wyN2JPJZJDL5dXuIxHyoDfaJ0id0WTd7rieJUFWX5fvsO7mpGx4uQsxsF3NQ2EcCfdxx8/Te+KF1aexZO8lcLC0Ujz1YyIYgBBPN6x4rCsC5HXriHQ7p5KnqE0MVHv2wv/FFx0uQ2YqK4dq7x6I2sQ4FZQ4Ng7lx0/AVFZm02lIc8YyFkgSF1vjMcx6PdR79sK9Z08IA+t3e04IaT4YgM87P4wykTvalmZg4uW/XB1SixUgkyDPQfNqgdrSChhYRU9YLzchRAIeChw061rrOkhe2QoNEq+VYErPCAj5TvdnRZcIb/w9eyD+TC1AUqYCSo0eUrEAncO9MSQ+0OEdcV05dQTviZNgzMvDtclToNq9B8ZSyxgaY2kpVLt24/qUKTDm5cN78hSngpIPGwqYTFCs/d1aZtbrodi0EZKETtZhKoacHOjS0hweo+zAAZhVKniOHuVUDISQ5ml3ZE/8GxQHocmA106uAZ/Vr9ckqVp8iBzpReVQa20foyVlKqzbHeHxOMQGyZCcpbTblpSpQISPu8PnmVuTcsAYnG6yvZWAb+lwNO+BWCx8qBPeGBmPkZ2CGyRxAk7eeXqNfwja1FSU/vorsl95xVLI4wHmG/+IGYP3Y4/Ba9xYp4JyS0iAbPhwFCxdCmNJMUQRkVBu3gxDdg5CPvjAul/O6/NQkZiIuAupdsdQbdsOTiSCbOhQp2IghDQ/+W7e+KbDgwCAaam7EFFW+573pO4e6BCEbw6mYfWJDOs4T53RhHX/ZqJzuJe1x2q2QgON3oSYAOktdYOxaNcFnM1SoFOYFwDgamEZjlwtxoz+jp83bknKRqiXG3pEeTfuG2sATj/zDHrzDciHD4Ni0yboUi/AVF4GvocU4vg4eI0dC/fu3esVWMiij1D4+TIot26FWWmZ2zZ8xQq49+hRY11TWRnKDhyA9N57q+zURAi5s5jBYWnXidAIJYgvTse4KwddHVKL1yXCGyM7BuPjXRdRXKZHpK8HNpzKQlapBovGd7Lu9+raJBxPL8G1j272L5naJxJrEjMw/cdEzOgfDQGfh5WH0uAnFWFG/1Z257qYp8aFPDX+M7A1OM75PjMAwBjDnpR8pOaqkK/SwehgTCfHAR9PsJ/ZqLbq1WHIvXv3eifJqvDEYgTOnYPAuXOq3Cdy1c8Oy/lSKWLPJDVKXIQQ1/ijVR+c8W8DsVGP106tAR/M1SHdFZZMTEDoXjdsPG2Z2zYuSIaVT/RAr+jqp82TigVYM7M33t+egi/2X4GZMfSO9sVbo+LhK7Uf/rI5KRsAMKZzSL3ivVZUjuk/JeJaUXm1/0I4uDB5EkJIU8jx8MXK9pb+C9PP/4GQ8mIXR3T3kAj5WDAiDgtGxFW5z9pZfRyWB3u6YfmjtZuq9fXhsXh9eM2dQWvy1pZzSC8qx2O9IvFg5xAEyMTg8+p3J+uIU09OFZs2I/2h8Q6HkwCAIb8A6Q+Nt87uQwghzjKBw5Kuk6ETiJBQeAWj0o+4OiTSjCVeK8HguEC8P7YDekT5INLXA2He7g5/6sOp5KnctAmcUFjlEBBhYAA4iQSKDRvqFRwhhGyOGYAU31ZwM2jxyum14FFzLamGVCxAlG/9EmNtOJU8dVevQhxf9S08AEhiY6G76twMQ4QQAgAZ0gD8FDccADDz3FYEVpTWUIPc7frF+OHk9cb/d+JU8jSr1eDLPas/sFQKs5Jm6CGEOMfE8bCk22QY+EJ0z0vFsOsnXB0SuQMsGBGHfJUOH+5IrXIKwIbgVIchQUAAtA7GVt5Ke/EC+H7Or9JNCLm7rWszEJe8IyDVV+ClpHX1mPCT3E0C5BL8/FRPPLT8CFYfz0CUn4fDCRk4DvhtRm+nz+NU8vTo0weKjRtRdvgwpH3tF0Mt++cwyg/9A6/x450OjBBy90qTB+PXWMsEJ88kb4afllqxSO2cy1Zi6srjUN2YFelcjv0sR0B9Zl+3cCp5+s6aCdXOncic9Qw8H3wQHvfcA2FgAAz5BSg/fBjKbdvAk0rhO2tmPcMjhNxtDBwfS7pNhpEnQJ/cc7gv85SrQyJ3kP/bngKV1oh5w2NvDFWRNMpQFecmhg8LQ/jXXyH71deg3LQJys2bb25kDIKgIIQt/RSiMPuFUAkhpDqr2w1Gmmco5LpyvJC0npprSZ2cy1ZiVKdgzLq35jWc68PpSRLcu3VDzN49UO/fD83ZZJjVavDkMrh17ATZfYPAiUQNGSch5C5wySsMa9veBwB4/swGeOvKXBwRudNIxQL4OZjBqKHVa4YhTiSCfPhwyIcPb6h4CCF3KT1PgCVdJ8PM42NA1mn0zznr6pDIHWhIfCCOXC2G2czAa4Tm2koNszbLDaayMpQdPoyKf/8FYzSQmRBSe6vihiFDHgRvrQrPndnk6nDIHWreA7EQCXh4aW0S8pT264k2FKfuPEt//x2qrdsQ9uUX4HtaxntqL1xA5oyZMBZb5px069wZESu/A8/NreGiJYS0SCk+kdgQcy8A4MWk9ZAbKlwcEblTjVh2CAYjQ3KWAn+czYGnmxBSiYOhKuBwcO4gp8/j3PR8W7fCbNBbEycA5C9aBGNJCTwfGgfpgAHQJCWhdPUapwMjhNwdtHwhPu06GYzjYXBGInrnpbg6JHIHM5sBAZ9DiJcbQrzc4CEWgDHY/Zjr2Trq1J2n/tp1yO67z/raWFqKiuMn4PXwwwh+710AQPqkSVBu3wbf6U/WK0BCSMv2Y/wIZEv94atRYFbyFleHQ+5wh+fdV/NODcC56flUKvB9bq70rTl5EgAgGzLEWubetRsM2Tn1DI8Q0pKd8WuNLa37AwBeOf07pIbGe0ZFSENyKnnyvbxgLCy0vi4/egzg8+HetcvNnRgDDIZ6B0gIaZkqBGIs7TIJAPBA+lF0K7jk4ogIqT2nmm3F7dqhbN9+aB+/BJ5YDNX27XDv0gU895vLwBiysyHw92+wQAkhLct37Uch38MHgeUlePo8rf1LnPP5n5fBccC0PpHwchfh8z8v16oexwEv3t/G6fM6Nz3fU08hY/p0pI8dZy3zeeIJ6+/MbEbFqVPw6NXL6cAIIS3XgUuF2NmqDwDg1dNr4W7UuTgicqf6bN8lcABGdQqGl7sIn+2rXQsGBxckT4/evRC2/EsoN1rGYslHjIDsvptdfjWnTkEQEADZ0CFVHYIQcpdSagx4fb1lAoQxVw+hU9FVF0dE7mSrb6yMEuLlZvO6sTk9w5Bs4EDIBg50uM29e3dEb9poV27IyYEhOxvuPXo4e1pCyB3u/7alIE+lRWhZIZ5I2eHqcMgdrne0b7WvG0uDzjBUE8XGTbj++BNNeUpCSDOyNyUfG05lgccBr55aA4mJOhWShrXhZBZSc6tfwu5inhobTmbV6zz1mtu2MZn1ehQtWwbllq0wqVQQt2sH/5dedLh+qCOqHTtQ8tPP0F66BE4ggLh1a/i//BI8ejfNLT0hxFZpuR7zNyYDAGYMiEb8pusujojUhs5owqd7L2HTqWwoNQbEBssxe2hb9G9Tc4fQPKUW729PwcHLhWDMclf49qh4RPi62+1bqNbh072XsP9CPkorDPCXitE3xhcfT0ioU7yz15/By/e3RVywvMp99qbk4dO9lzC+m/MrfzXb5Jk7bz5Ue/bAZ9o0iCIjody0CZmznkHkTz/CvVu3ausW/u8LFC1fDtmwYQgcNw7MaITu8mUY8/ObKHpCyO3e2nIORWU6tAmQ4pXBbZHu6oBIrcxedxY7k3MxvV8rRPl6YP3JTDz5QyJWz+yNHlE+VdYr1xkx5dtjUGsNeG5QDAQ8Dt//k45J3xzFjhf7w9vj5spbOQoNJqw4AgB4tFckguQS5Ku0OJOlaJT3ZDIDPK5+k8Y3y+SpOXsWqh07EDBnDnyfmg4A8Bw7BmmjH0TB4k8QtWZ11XWTklC0fDkCXp8L31t6ABNCXOePs7nYfjYXfB6HTyd2hkTId3VIpBaSMhXYdiYHC0bEYuYAy/qYD3UNxbDPDmLhjlRsfLbqlsBVx64jvagcW57ri4RwLwDAwHYBGPbZQXx7KA1zh8da912wKRl8Poetz/WzSaqN5XyOEl7uwnodo1kmT9Xu3QCfD69JE61lPLEYXuPHo3DpUhhycyEMDnZYt+TnnyHw84PPtGlgjIFVVIDn4dFUoRNCblOo1uHNzZbm2ucGtkbHMM8aapDmYmey5QvPlJ4R1jKJkI+J3cOxePdF5Cg01l6ujuomhHlaEycAxARIcU9rX/yRnGtNnlcKyvD3xUK8P7YDvD1E0BpM4PM4CPm175Iz5ZtjNq/Xn8rEsbRiu/1MjCFPqUVWaQVGdgqp9fEdaZbJU5eaClFUFPhSqU25W6eOAABt6oUqk2f50WNw69IFpatWoWjFVzApFOD7+8Fv1jPweezR6s+r00GnuzneTK1W1/OdEHJ3Y4xhwaZklFYYEB8sx/P3OT+ujjS98zkqtPLzgExie5fW+UZCTMlROUyeZjNDap4aE7vbP1PsHO6FQ5eLUKYzQioW4PCVIgCAv1SER749hiNXi8HncegX44cPxnZAuI/989HbHUu/mSg5AFmlGmSVauz243EcvNyEGNExGG+Piq/xuNVplsnTWFjocHaiyjJjQYHDeialEqbSUmhOnULFsWPwe+45CEOCodi4CfkffABOIID35ElVnnfhwoV47733GuZNEEKw6XQ29qbkQ8jnsGRiAkSCJu3gT6qhVquhUt3slSoWiyEWi232KVBrESAT317VWpavdjwXsUJjgN5oRoBMUnVdlRZSfynSi8oBAPM3JqNTmBe+eKQLchQafP7nZTy28jh2vTQAbqLqm/nTF460/t5q/h94+f62eGlw435Ra5b/ks1aHTiRfXs0d+PCMp3jC2ausKwBaFIoEPzB+/B9ajrkDzyA8K+/giimNYq++qra886fPx9KpdL6k5JCSyMR4qw8pRbvbD0PAHh5cPW9H0nTi4+Ph6enp/Vn4cKFdvtoDWaHX3jEAr51uyNagwkAaqhr2adCbwQA+MvE+OGJHhjVKQQzB7TGwvGdcL24AluSsuv0vlbP6I3x3ULrVAcAUnNVdRq+0iyTJ08iBtPbj/9iN5pUObH9txkA4CQ3yoVCyIYNu1nO40H+wAMw5uXBkFP1Si9isRhyudz6I5PJ6vEuCLl7Mcbw+oazUGuNSAj3wqwB0a4OidwmJSXF5mZh/vz5dvtIhDzojfYJUmc0Wbc7UtkhrPq6fJs/R3YMAY93swfsyI7BEPA4nLxeWpe3hd7Rvgjzrrmp93a7z+dhzvoztd6/SZtt+TJplc8qbyXw94ch375ptnIlF0FAgOPje3qCE4vBk8vA8W1v8wW+llknTCoVhCH1e1BMCKne2sRMHLhUCJGAhyUPd4KgDp0/SNOQyWSQy6tvDQiQSZCnsm/pK1BbbmQCHTTLAoCXmxAiAQ8FDpp1rXXlEps//WS2vWz5PA5e7iIoNc1zIg2n/kVff/wJKDZvrnYf5datdrMJ+Tz+OGL2/Vnj8cWxcdBfuwZTWZlNueaMZT5MSVyso2rgeDxIYmNhKikF0+tttlU+J+V7Vz0uiRBSf5klFXh/u+WRx5yh7RATQC04d6r4EDnSi8qh1tomsKRMhXW7Izweh9ggGZKzlHbbkjIViPBxh1RsuXfrEGrpfZ2vtE20eqMZpRV6+Eobf+iKM5xKnhUnTsCQXX07tCEnBxWJiU4FJR82FDCZoFj7u7XMrNdDsWkjJAmdrHevhpwc6NLSbOuOeMBS95bkbtbpoNy2HaKY1hAGOr5rJYTUn9nMMHf9WZTrTegR5Y3p/Vq5OiRSDw90CILJzLD6RIa1TGc0Yd2/megc7mXtaZut0OBKQdltdYNxJkuJs7dMdHC1sAxHrhZjRMebLZC9o33gJxVhc1KO9TkoAKw/mQWTmaFfTPNc2rLRmm3NFRpwAucO75aQANnw4ShYuhTGkmKIIiKh3LwZhuwchHzwgXW/nNfnoSIxEXEXUq1lXpMmQbF+PfLe/wD6a9chDA6GcutWGHJyEL5ieb3fFyGkaquOXcfRtGK4Cfn45OEE8Hn1m8WFuFaXCG+M7BiMj3ddRHGZHpG+HthwKgtZpRosGt/Jut+ra5NwPL0E1z662et1ap9IrEnMwPQfEzGjfzQEfB5WHkqDn1SEGf1vfqkSC/iY/0AcXlt3BpO+PopxXUKRo9Tih8Pp6Bnlg+Edgpr0PddWrbPb7R1tzCq1w843zGyGMTcX6j17IAyte4+nSiGLPkLh58ug3LoVZqVlbtvwFStqXJGFJ5Eg4scfUbD4Eyg3bIBZo4E4LhbhX30Faf9+TsdDCKnetaJyfLTzAgBg/ohYRPrS5CQtwZKJCQjd64aNpy1z28YFybDyiR7oVcPqJVKxAGtm9sb721Pwxf4rMDOG3tG+eGtUPHyltsNfxncLg1DAw4q/r+LDnRcglwjxSM8IzBke22y/gHGMMVabHVPj4i1Lb9cWY5bp9aY/6WxsLpeVlYXw8HBkZmYiLKxuEwinxsY1UlR3h1tbExoCXY/6q+6amMwMk74+in+vl+Ke1r745aleNj0nHaFrUn/O/D+pz+daS/bZn5ewbN9lpN0yZrQ6tb7z9BwzxpI8GYNyyxaIY2MhiXXQcYfPA9/TEx69e0Pav3+tAyeE3LlW/pOGf6+XQioW4OMJnWpMnITc6WqdPEM+ujmAtiIxEV7jxsFn2tRGCYoQcue4nK/GJ3suAQDeGhXn1Bg7Qu40TvXoqc1wE0JIy2c0mTF73RnojWYMauePid3DXR0SIU4J83ZHz1a1H8ro1FAVU1k59JmZYAbbsT+qHTuQPXsOct54A5rz5505NCHkDvLVgas4k6WEXCLAR+M7gavnGomE1Ff/j/fjh8PVrxb789Fr6P/xfpuyCd3CsGZmn1qfx6k7z4JPFkO1dRvaHP4HnNAyB23p6tXIe/8D4Eb/I9WOnWi1YT3E0TQtFyEtUUqOCp/vuwwAeG9Me+tMMYS4UlapBiqNsdp9VBoDsh2sulIXzk2SkPgv3O/pA57bzaVoir79FoLAQET+sgqhS5cCjKF45cp6BUcIaZ70RjNe/T0JBhPD0PhAjO3s/LA0QpqaWmus9wo/Tt15GgsLIe13c8yk7upVGHPzEDB7Nty7dbMEt2c3Kv79t17BEUKap//tv4wLeWr4eIjw33EdqbmWuNTx2xa+ziqtsCsDLIth5yq02JyUjVZ+UrvtdeFU8mR6vc2SYRWJiQDHwaNfX2uZMCwc6v1/1Ss4QkjzcyZTgeV/XwUAfDC2A/wdrPdISFOa/O0xVH594wBsOJWFDaccLy/Gbuzz+nDHc6TXllPJUxgYCO3Fi9bXZX/9Db6nJyTt2lnLTAoFeO7UZZ2QlkRrMOG1dWdgMjOMTgixmaOUEFd58b42ldMQYNn+y+jVyge9HcyAxOc4eLkL0ae1b70XLHAqeXoMGIDS335D/qKPwYlFKPvnH8skCrfQX7tWq+XHCCF3jk/3XsKVgjL4y8T4vwfbuzocQgAArwxpa/39eHoxHu4WjvHdGnf2JKeSp9/MGSj76y+U/Pij5SD+/vB/8QXrdmNxMSpOn4bPI480SJCEENf791oJvj1kWcVo4biO8PZonktFkbtbXYab1IdTyVPg74/o7dtQfvQoAMC9Rw/wpTcfvppKSxE4ZzY8+tFE7IS0BFq+CLPXnQFjlvFwg+MDXR0SIS7l9JJkPIkEskGDHG4Tx8RAHBPjdFCEkOblh/gHcK24AsGeErw9Ot7V4RBi1f/j/eDA4deneyHcx91u8oOqcOBwcK7jHFYb9VrPk+n1KD96FLq0dJg1FfB/9lkAlsWnzWVl4Ht7g+PVbywNIcS1zvi1xtbWlkUeFo3vBLlEWEMNQpqO2QxwHLvtdc31GGq1oFiVnE6e6v37kfv2OzCVlFi6OHGcNXnqLl7EtclTELJoETxHj6pXgIQQ1ykXiPFp10kAgEd6RWBAW38XR0SIrcPz7qv2dWNxboahU6eQ9dLL4ERCBC5YAPko2wTp1qkTRBERUO/Z0yBBEkJc47sOo1Hg7oOg8mIsGEHrb5Lm5/3tKTh4qdD6OluhgVprqKZGw3AqeRYtXwG+TIZWGzbA57FHIYqMtNtH0qGDzVhQQsid5d+AdtgV1RsA8MqptZCK6/WUh5BG8f3hdJzOUFhf91+0H9//c63Rz+tU8tScPQvZ/fdB4O1d5T7C4CAYi4qcDowQ4jplQgk+6/IwAGDM1YPoVJzm4ogIccxDJIDGYLK+rt+TzNpzeno+nkf18wKaVGqa75KQO9RXHcei2M0LoWWFeCJlp6vDIaRKUX7u2H0+D8PaByLgxso+Kq0B2YqaV00J9XKrcZ+qOJU8ReFh0JxLrnYfTVISRLQcGSF3nKNB7bEvojt4zIzXTq6BxNT4z48IcdaM/tF4ZW0Sxq84Yi374XB6jWt6chyHqx+OcPq8TiVP2ZChKPrqKyg2bITX+Ifsthev/B66y5cRMHu204ERQpqeUuSOZZ0nAADGX/4bcaXXXRwRIdUb0zkU4T7u+OtCAfKUWqw/lYXYIDniQ+SNel6nkqfvU9Oh3rsHuW+9BdUf22HW6wEA+YsXQ5N0BprTpyGJjYX3Y486HZhZr0fRsmVQbtkKk0oFcbt28H/pRUj79q22XuH/vkDRl1/alXMiEWLPnnE6HkLuBss7PQSFRIZIVR4eu7Db1eEQUitdI7zRNcLSB2f9qSwMax+Elwa3adRzOpU8eR4eiPzlF+S9/wFUu3YBJsvD2pLvfwA4DvLhwxH0ztvgiZyf+zJ33nyo9uyBz7RpEEVGQrlpEzJnPYPIn360rhlanaB337Fd1YXHdzoWQu4GB0MScDCsM3hmE147uRois6nmSqTF0xlN+HTvJWw6lQ2lxoDYYDlmD22L/m1qHvObp9RahpJcLgRjQO9oX7w9Kh4RvrYrbkXN+8Nh/bnD2+HZgXWbrW71jN4I8677s8zUXBVSclS1nlDe6b7nfE9PhH6yGIFvLID23DmYFErwpB5w69gRAj8/Zw8LwNKbV7VjBwLmzIHvU9MBAJ5jxyBt9IMoWPwJotasrvEYsmHDqu0NTAi5qUQsw5cJlkcwky/tQxtltosjIs3F7HVnsTM5F9P7tUKUrwfWn8zEkz8kYvXM3ugR5VNlvXKdEVO+PQa11oDnBsVAwOPw/T/pmPTNUex4sb/dwgL92/jhoa6hNmXtQzzrHK+jpchqY/f5PCzbd7nxk6f1AN7ekPbvX9/D2FDt3g3w+fCaNNFaxhOL4TV+PAqXLoUhN7fm5c4Yg6msDDwPD+r1S0g1GID/dR4PldgD0YpsTL64z9UhkWYiKVOBbWdysGBELGYOaA0AeKhrKIZ9dhALd6Ri47NVP0Zbdew60ovKseW5vkgI9wIADGwXgGGfHcS3h9Iw97bFqFv5eWBcl8ZdRqwhOTXOMzW+PQqXL692n6KvvkJq+w5OBaVLTYUoKspmpRYAcOvUEQCgTb1Q4zGuDh6CS9174GK37sieM5fGnBJShX3h3XAsuAMEZiNmn1oNIaPmWmKxMzkXfB6HKT0jrGUSIR8Tu4fjVIYCOdUMB9mZnIuEME9r4gSAmAAp7mntiz+Scx3W0RpM0BrujH9/zt15Mmb5qc1+TjAWFkLgb9+eXllmLCiosi7fUw7vRx+FW+fO4EQiVJz8F6W/rYb27FlEbVhvl5BvpdPpoNPprK/VarVT8RNypyiUeOKrTmMBAI+l7kErVZ5rAyJNRq1WQ6VSWV+LxWKIxWKbfc7nqNDKzwOy2xYD6HwjIabkqBDiYKyk2cyQmqfGxO72d5Kdw71w6HIRynRGm1mr1p/Mwqpj18GYJcm+cF8MxnQOtavfXDTafFvGkhJwEolTdc1aHQQi+5UbuBsXlum0Vdb1mTbN5rV82FC4deyEnDlzUPrbavjNnFFl3YULF+K9995zKmZC7jQMwOddHka50A3tSjIw4crfrg6JNKH4eNul5d555x28++67NmUFai0CZLYJFYC1LF/t+LNYoTFAbzQjQGafA6x1VVpI/S03M90ivTGyYzDCfdyRr9Ji1dHreGlNElRaI6b2tp/+tTmodfJUbN5s81p34YJdGQDAZIYhLxfKLVshbuPcmp48iRhMbz8wm924K+TEdUvKnqNHIf/jRSg/eqTa5Dl//ny8+uqr1tfZ2dl2/8AIaSl2RfbCycBYiEwGvHZqNfjM7OqQSBNKSUlBaOjNO7vb7zoBQGswQySwf7onFvCt2x2pbHqtvu7N5tkN/7nHZp+J3cMx+n//YPGuC3i4WxgkwuY3WqLWyTN3/oKbi6RxHNT79kO9z8GiozeaajmJBP7PP+9cUP7+MOTbN80aCy0z5wsCAup8TGFQMExKZbX73N5scWuTBiEtSb67N77tMBoA8HjKToSXFdZQg7Q0MpkMcnn1EwlIhDzojfYJUmc0Wbc7rmdJdtXXrTohigQ8TLsnEm9sOofkbGW1vXpdpdbJM/jDDy2/MIbcN96AbPD9kN53v91+HJ8Hvqcn3Dp3Bt+z7t2MAUAcG4fy4ydgKiuzeUapOXMWACCJi62qqkOMMRiysyGJoyWVCDGDw6ddJkEjlKBDURrGXD3k6pBIMxUgkyBPZd80W6C2tAIGOmiWBQAvNyFEAh4KHDTrWuvKq29BDPG0PEtVVDTP6SFrnTy9xo21/l6RmAjZkMGQ3dc4i47Khw1FyfffQ7H2d+s4T7NeD8WmjZAkdLIOUzHk5MCs1UJ8yxy6xpISCHxsv6WUrl4NU0kJPPr3a5R4CbmTbIu+B2f9YyA26vHKqbXgN9k6FOROEx8ix9G0Yqi1BptOQ0mZCut2R3g8DrFBMiRn2bf2JWUqEOHjXuMSdxklFQAAHw/nJ9tpTE51GApZ+KFTJyv84ksUrViBuPPnqt3PLSEBsuHDUbB0KYwlxRBFREK5eTMM2TkI+eAD6345r89DRWIi4i6kWsuu3Hc/5A88AHHbtuDEImhOnoJqxw6I4+LgPWmSU3ET0lJke/jhh/iRAICnz29HSEWxiyMizdkDHYLwzcE0rD6RYR3nqTOasO7fTHQO97L2tM1WaKDRmxATIL2lbjAW7bqAs1kKdArzAgBcLSzDkavFmNH/5g1PcZkOvlLb561lOiO+P5wOHw8ROoY614JZV2He7ujZqvbNw02/um0th6+ELPoIhZ8vg3LrVpiVlrltw1esgHuPHtXW8xw9ChWnT0O9Zw/Mej2EIcHwffop+M56Bjw355efIeROZwKHT7tOgk4gQueCSxiRftTVIZFmrkuEpRfsx7suorhMj0hfD2w4lYWsUg0Wje9k3e/VtUk4nl6Cax+NtJZN7ROJNYkZmP5jImb0j4aAz8PKQ2nwk4owo38r634/H72OPSn5GBwXgBAvNxSodPj930zkKDVYOrGzw05HjWFCtzBMqOXsQoArkmct8cRiBM6dg8C5c6rcJ3LVz3Zlwe+/35hhEXLH2hRzL1J8W8HNoMUrp38Hj5prSS0smZiA0L1u2HjaMrdtXJAMK5/ogV41TIMnFQuwZmZvvL89BV/svwIzY+gd7Yu3RsXb3Gl2j/LGqYxSrEnMhKJCDzchHwnhXlg8oRPuiXFuqtfiMh3WnczC2SwFVBojTGb7f+scB/w2o7dTxweacfIkhDSc67JA/Bw3DAAwK3kLAjQK1wZE7hgSIR8LRsRhwYiqO1yundXHYXmwpxuWP1r9Qh792/jXapL52krNVeGRb49BqTFU+/WwvpO2UvIkpIUzcTws6ToZBr4QPfJSMTQj0dUhEdJo/vtHKhQaA14YFIOJPcIR7OkGPq/h5zen5ElIC/d7m0G47B0Oqb4CLyWtq/c3bkKas1MZpRgaH4hXh7Zr1PM0zZNYQohLXPUMwW+xQwAA/zm7Cb5amviDtGxCPg+Rvh6Nfh5KnoS0UAaOjyVdJ8PIE+CenGQMyjrt6pAIaXS9WvngbJai0c9DyZOQFuq32CFI9wyBXFeGF5I2UHMtuSu8MTIOl/LL8M3Bq416nqZ95lnbpcwIIfVy0Sscv7cZBAB44cwGeOnLXBwRIU3ji/1X0DZQio92XsCvxzMQHyx3OJsRxwEfT0hw+jxNmjx9nngcXg+Na8pTEnLX0fMEWNJ1Msw8PgZmnkK/nGRXh0RIk1l/Ksv6e0ZJhXWav9txcGHyNBYWQnP+PMxqNZjJ8erfXmPHWn/ny2Tgy2T1OSUhpAY/xw1HpjwQ3loVnj27ydXhENKkDs0d1CTncSp5mnU65L71FlQ7dgLmKtYAZAzgOJvkSQhpXOd8orAxZgAA4KXT6yAzaFwcESFNK8zbvUnO41TyLFiyBKpt2yGKioJ85EgIgwIBPg0ZJcSVtHwRPu06GYzjYcj1E+iVn1pzJUKIU5zKeOqduyCOaY2oDRvAEzXP5WIIudt8334EcqV+8K8oxazkra4OhxCX0hpMOJulRL5K63BRbgAYX4eJ4G/nVPI0qdWQjxpFiZOQZiLJLwbboi3r1b58+nd4GO0XISbkbvHz0WtYsucS1FrHC2kzWDoM1Sd5OjXOU9SqFYzFRU6flBDScMoFYiztalmrdkT6EXQtvOziiAhxnV3ncvHO1vMI9pRgwYg4MABD4gMxZ1gs7m3rDwbLOqX16WkLOJk8fadPR9m+/dBfv16vkxNC6u+7DqNR4O6NoPJiPH1uu6vDIcSlvv/nGnw9xNj0bF88fWPR7fhgT/xnYGv88GRPfDapM/acz0eoV/3Wd3aq2VYYFAiPfv2QPnESfKZNhSQ+Hnyp1OG+NS1eTQhxXmJALHZF9QbHzHj11Fq4mfSuDokQl0rNU2FUp2C4ifjWMtMtk/OM6RyK9SezsGzfZfRpXf2apNVxKnlen/a4ZXoGxlD0xZeW36sQl3Le6eAIIVVTC93weZeHAQBjrv6DjsVpLo6IENczmhh8PG72x5EI+FBpbJ99xgfL8duJjHqdx6nk6ffss9UmTEJI4/u64xgUu3kiVF2AJ1J2uDocQpqFQLkYBSqd9XWotxtScmxXE8pSaCCo5xqfTiVP/xeer9dJCSH1cyS4PfZFdAePmfHaqTUQm42uDomQZqFTmBfO3ZIs723rjx8Op+PLv65gSHwgEq+VYPe5PPSN8avXeWhVFULuMEqRO/6XMAEAMOHyX4grrV/zEyEtyYiOwdAbTci8MaftswNbI9jTDUv2XMTwzw7izc3n4C7iY/6I2Hqdh6YFIuQO82XCeCgkMkQpc/HohT2uDoeQZmV4hyAM7xBkfe0rFWPHi/2xJjEDGSUVCPV2w0NdwhDkKanXeZxOnobcXBSt+ArlR4/CWFAAZnAwGJXjEHf+XH3iI4Tc4kBoAg6FJoBvNuG1U2sgMjtekIEQcpOnuxCz7m3doMd0KnnqMzNxbeIkmFQqiGNiwPR6CENCwInFMGRmghmNEMfG1msFFbNej6Jly6DcstVynnbt4P/Si5D27Vun42RMn47yI0fh/cgjCHr7LafjIcTVSsQyfJnwEABg8qV9iFFmuzgicjfQGU34dO8lbDqVDaXGgNhgOWYPbYv+bfxrrJun1OL97Sk4eLkQjAG9o33x9qh4RPhWPXl74rUSPPzVUQDAqbeG2PScratynRHpReWo0JvQs5WP08dxxKlnnkVffAlTWRkifvge0Vs2AwA8HxqH1jv+QOt9f0J6331gFRUI/fwzpwPLnTcfxT/+BPno0QhcsAAcj4fMWc+g4uTJWh9DtWcPKpLOOB0DIc0FA7Cs8wSoRR5orcjC5It/ujokcpeYve4sVh5Kx9guoXhndHvwOeDJHxKReK2k2nrlOiOmfHsMx9OL8dygGLw8uA1ScpSY9M1RlJY7Ho9sNjO8s+U83G8Zo+mMzJIKPP3Tv0h4bw8e/OIfTPn2mHXbv9dKMPjTAzh6tbhe53AqeZYfPQrpgAHw6NnzZuGNMajCgACELv0UAFC49DOngtKcPQvVjh0IeOUVBM6dA+9JExHx048QhoSgYPEntTqGWadDwaKP4fv0U07FQEhz8md4dxwPbg+ByYjXTq2BgFWxFCAhDSgpU4FtZ3Iwd3g7LBgRh0d6ReC3Gb0R6u2GhTuqX7Vn1bHrSC8qx8rHe+CZe1vj6f7R+PmpXihQ6/DtIcdjkn87kYFcpQaTeoQ7HXO2QoNxy4/g74sFGBIfiK4R3mC3TJLQOdwLpeV6bD2T4/Q5ACeTp6m0FOLoVjcLBAIw7c11A3kiETz63oOyv/92KijV7t0Anw+vSRNvHlMshtf48dAkJcGQm1vjMYq/+w6MmeE7fbpTMRDSXBRKPPF1pzEAgKkXdqOVKs/FEZG7xc7kXPB5HKb0jLCWSYR8TOwejlMZCuQoql4vdmdyLhLCPJEQ7mUtiwmQ4p7Wvvgj2f4zXFGhx5I9F/HqkLaQS4ROx7x07yWoNAasndUbKx7rhn5tbIekCPg89Ijywcnr1d8518Sp5Mn39oa54uZfmsDLC/rs256/8AUwqdVOBaVLTYUoKspuyj+3Th0BANrUC9XWN+TkoPjb7xDw2mvgSWrfo0qn00GlUll/1E7GT0hDYQA+6zIR5UI3tCu5jvFXDrg6JHIXOZ+jQis/D8huS2adbyTE2ycfqGQ2M6TmqdExzNNuW+dwL1wvrkCZznZs8pI9l+AvE+ORXpH1ivngpUIMbR+IbpFVP+MM9XZDnrJ+Kw85t6pKZCT0mTfHlkk6dUL5P4ehz8wEABhLSqDevRuicOduvY2FhRD42z+MriwzFhRUWz9/0ceQxMXBc+TIOp134cKF8PT0tP7Ex8fXqT4hDW1nZC+cCmwHkcmA2afWgE/NtaSBqNVqm5sFnU5nt0+BWosAmdiuvLIsX+04ASk0BuiNZgTI7G9erHVVN+um5qrw24kMvDkyHvx6zvyj0BgQ5l11hyQAYAzQm+r3f8mp5OkxoD8qjp+ASWX51uEzbRrM5eVIGzMW6RMextXhD8BYVATvxx51KiizVgdOZH/bzoktf+lMV/U3hvJjx6HesweBC+bX+bzz58+HUqm0/qSkpNT5GIQ0lDx3H3zb8UEAwBMpOxBWVujiiEhLEh8fb3OzsHDhQrt9tAYzRAL7NCEW8K3bHdEaLEOoqq97c5jVu1vPY2BbfwxoW3MP3pr4S8W4VlRe7T4X81UIccWqKt5Tplg6C/EsfwkevXoi9NMlKPziC+guX4YwJATeL70I74kTaziSYzyJGExvP26U3fhmxIkdN8UyoxH5//0vPB98EG4dO9b5vGKxGGLxzW9ZKpXjJglCGpsZHD7tOglagRgdiq5izNV/XB0SaWFSUlIQGhpqfX3rZ18liZAHvdE+QeqMJut2RyRCS26ovq5ln21ncnAqoxS7Xx5Qx3fgWL8YP2w6nY3UXBXiguV220+kl+DI1WJM79vKQe3acyp58qVSuCXYLiQqHz4c8uHD6xWMNSh/fxjy7ZtmjYWWb96CgACH9ZRbtkB37RqC3nsP+izbZ7Dm8nLos7Ih8PUBz61+3zgIaWzbovsi2a81JEYdXj21FjywmisRUgcymQxyuX1yuVWATII8lX1LX4HaciMT6KBZFgC83IQQCXgocNCsa60rt9RduCMVIzoGQ8jnWafUU2ktN085Cg0MJrN139p4/r4Y7DiXi4lfH8WsAdG4Xmw55l8XC3Dqeim+O5QOH3cRZg2IrvUxHWmW0/OJY+NQfvwETGVlNp2GNGfOAgAkcY7nJDTk5AIGA64/8ojdNuWWLVBu2YKwL/4H2eDBjRM4IQ0gy8MPP8SPAAA8dW47givq1yuQEGfFh8hxNK0Yaq3BptNQUqbCut0RHo9DbJAMyVlKu21JmQpE+LhDKraknxylFluScrAlyX7oyKj//YO4YDl2vtS/1jGH+7jj5+k98cLq01iy9xI4WDrePfVjIhiAEE83rHisKwLqkJAdqVfyVO3dC9UfO6BPS4NZq0XMnt0AAF1aGsr274d89GgIAwPrfFz5sKEo+f57KNb+Dt+nLENNzHo9FJs2QpLQCcLgYACWXrVmrRbiaMs3CPnIEQ4Ta9bzL8Dj3gHwfvhhSDp1cvbtEtLoTODwadfJ0AlE6FJwCSOvHXV1SOQu9kCHIHxzMA2rT2Rg5gDL9HY6ownr/s1E53Av63PDbIUGGr0JMQHSW+oGY9GuCzibpUCnMC8AwNXCMhy5WowZ/W/e9X09tZvdebedycH2s7n4dGKCU3PQdonwxt+zB+LP1AIkZSqg1OghFQvQOdwbQ+IDHT6LrSunkiczm5H92mtQ77ZMSs1JJGDam7fnfLkcBZ99DmYyw2/WzDof3y0hAbLhw1GwdCmMJcUQRURCuXkzDNk5CPngA+t+Oa/PQ0ViIuIuWAbriqOjrYn0dqLQMLrjJM3exph7keobBXeDBi+f/h20ai5xpS4R3hjZMRgf77qI4jI9In09sOFUFrJKNVg0/uaNyKtrk3A8vQTXPro5wmFqn0isSczA9B8TMaN/NAR8HlYeSoOfVIQZ/W8+bxzWPgi3qxwCM7BdgNPT8wn4PLtJ4huSU+m35MefoN61G16TJqLtiePwffJJm+0CPz+4d+uGsgPOj0kLWfQRfKZNg3LrVuT/979gRiPCV6yAe48eTh+TkObsuiwQP8dZ+g3MSt6KAI3CtQERAmDJxARM79cKG09n491t52E0mbHyiR7oFe1bbT2pWIA1M3ujZysffLH/Cj7dcxFxwXKsndkHvlL7zkl3GqfuPJWbNkHSsSOC33nHUsDZfz8WRUTUK3nyxGIEzp2DwLlzqtwnctXPtTpW5Z0pIc2VkeNhSdfJMPIF6JmXgiEZia4OiRAAll6xC0bEYcGIuCr3WTurj8PyYE83LH/Uvlm2Jq8MaYtXhrStc71KjDHsSclHaq4K+SodjA7GdHIc8PGEBAe1a8e5VVUyMuDtoFPOrfheXjApFM4cnpC7zu9t78Nl73BI9RV46fQ6aq4lxEnXisox/adEXCsqr7aPOgcXJE9OIoG5rPqp6ww5OeDV0A2akLuFli9EscQTxW6eKJLIb/ndE8Vuclz2sszG9ezZTfDR0bSQhDjrrS3nkF5Ujsd6ReLBziEIkInrPWuRI04lT0lcHMr+OQyzTgeeg4G1JoUCZf/8A/fu3esdICHNmRkcVCIPFLnZJ8RiiSeKJZ4ocvNEmaj66cIAYFDmSQzMOt0EURPSciVeK8HguEC8P7ZDo57HqeTpM/UxZD3/ArJefBHB771ns02fkYHcBW/ArFbDZ+pjDRIkIa6g5wluJEJPFEvkKHLztCbIytclEjmMvNr9N5IYdfDVKOGnVcFXq4SvRglfrRJ+GiX8NQq0UWRRcy0h9SQVCxBVzWLbDcWp5Cm7/374Pv00ir/7Dlfuu986Y8+le/pannMyBr///AcevXs3ZKyENAgGQCnyuJEEbzSj3pIYK1+rRR61Oh7HzPDSlcFXq7Ikx8qkaE2QKvhplHA3aik5EtLI+sX44eT10kY/j9OTJAS89irce/dC6a+/QXP2LKDXA2YzPPr3g89jUyHt368h4ySkVnRGEwpUOuSptMhTapF/489L3R9FkZvXjaZUOYz82v3TFxv1lrvEysR4W0L01Srho1XR4tSENBMLRsRh3PIj+HBHKl4d0tY6h25Dq9cMQ9K+fSHt27ehYiGkSowxKCoMlqSo0iJfeePPG8kxT6VDvkqLknK94wOEdbEr8tKqrYmxMhHeTJCWplWpQUN3i4TcQQLkEvz8VE88tPwIVh/PQJSfh3UqwFtxHPDbDOdbR5vl3Lbk7mLg+Chxk1ueL97obLPxjxRLQrwlSeocrNDgiEjAQ5BcgiBPifVPfLn0lgSpgo9WBSEz1XwwQsgd5Vy2ElNXHrdOLn8ux35+XQD1/lJcr+TJTCYY8/JgKCgAjEaH+9CMQHcvBqBM6GZNiDc733je6HwjR5GbF5RiqX3lQ+kOj+njIUKgXIIguRhBnpIbv0sQWJko5RJ4uQvB3TZxR+qrhxrhHRJCmpv/254CldaIecNjbwxVkTSfoSrMbEbx11+j5OdVMCkdZ/VKcSnnnQqMNG9GjoeSG+MVKxPhzWEaN15LPKET1G5eSoHJeMvzRCXaTn7oZnK8kRgD5GLrQrqEEOLIuWwlRnUKxqx7WzfqeZxKnoWfforild+D7+sLz4fGQeDvD66WHTBI88YAlAslN3qhVj1MQyGWgnG1mxpZpi+39kL1u6XzTeUwDV+tEnJ9hU0zStwvbzbK+yOEtGxSsQB+TTB3rlMZT7F5C0StWqHVut/B86hdd37SPBg4Pq56hdolxKJb/qz13aLZCB9rZ5vbE+LN12Kz4yZ9QghpaEPiA3HkajHMZgZeIzTXVnIqeZorKuA5ejQlzjtQhVCMV+59scb9pPqKmx1sbnSy8bMZ2K+CXF8OXrWzRxJCSNOa90AsHlt5Ai+tTcIbI+KcWg+0Npybnq9tWxgLCho6FtIE5PoKhJQVQq4vv5EQFfDTqGyGafhoVZCYDK4OlRBC6mzEskMwGBmSsxT442wOPN2EkEocDFUBh4NzBzl9HqeSp+8zs5D98ivQnD8Pt/btnT45aXocgJV/LnJ1GIQQ0ijMZkDA5xDi5WYtYw4ayFg9W82cm55v4ECELPwQmTNnQXbfIIjbxYInddyE6zV2bH3iI4QQQmrt8Lz7muQ8zj3z1Ouh/usvmEpLoVi/wVJ4+4LYjAEcR8mTEEJIi+NU8iz46COotm2HuF07yIcNhcDfH6ChKoQQQu4STmU81a7dkLRvj6g1q8EJKGkSQgi5u9RulPttmE4H9149KXESQgi5KzmVPCXt28OQkdHQsRBCCCF3BKeSp/8rL6Ps0D9Q//VXQ8djZdbrUfDJJ7jcfwAuJHRG+sRJKDt8uMZ6qr17kfHU05Z6HTvh8r0DkfXiS9BeutRosRJCCLm7ONXuWn7kCNx79kDWc8/Do3evqoeqcBz8n33WqcBy582Has8e+EybBlFkJJSbNiFz1jOI/OlHuHfrVmU93aVL4HvK4T1tKgTe3jAWFUGxYSOuTZyEqDWrIYmNdSoeQgi5G+mMJny69xI2ncqGUmNAbLAcs4e2Rf82/jXWzVNq8f72FBy8XAjGgN7Rvnh7VDwifN2t+2gNJry95RySMhXIVWhhYgwRPu6Y2D0cU/tEQsiv/h7vh8Pp6BLhjc7hXvV9q3XiVPIs+uJL6+/lR4+h/Ogxxzs6mTw1Z89CtWMHAubMge9T0wEAnmPHIG30gyhY/Ami1qyusq7/c8/ZlXlNmIDLAwehdPUaBL/3bp3jIYSQu9XsdWexMzkX0/u1QpSvB9afzMSTPyRi9cze6BHlU2W9cp0RU749BrXWgOcGxUDA4/D9P+mY9M1R7HixP7w9LHNoaw0mXMovw6B2AQjzdgPHcTh1vRTv/5GCpEwFlk2xX8j+Vv+3PQUv39/Wmjyj5/+Blwe3xYv3t2mwvwNHnEqeET/92MBh2FLt3g3w+fCaNNFaxhOL4TV+PAqXLoUhNxfC4OBaH4/v6wueRAKzWtUY4RJCSIuUlKnAtjM5WDAiFjMHWJb4eqhrKIZ9dhALd6Ri47N9q6y76th1pBeVY8tzfZFwI7ENbBeAYZ8dxLeH0jB3uKUV0MtdhM3P2R7nsd6RkEkE+Onodbw5Kg4Bsqrnp5UI+NCbbi5sz+B4RqGG5lTy9OjZs6HjsKFLTYUoKgp8qe0iyW6dOgIAtKkXakyeJpUKzGiEsbAIJT//BHNZGdx79260mAkhpKXZmZwLPo/DlJ4R1jKJkI+J3cOxePdF5Cg0NtPg3V43IczTmjgBICZAinta++KP5Fxr8qxKmLelaVelMSJAVvV+4T5uOHipCE/co4O/zLIU2e1z9jSGZjnWxFhYaJl44TaVZbWZlP7apMnQp6cDAHju7vD9zzPwmjCh2jo6nQ46nc76Wq1W1yVsQgi5Y6jVaqhUN1vjxGIxxGLbdTDP56jQys8DMonQpryyiTQlR+UweZrNDKl5akzsHma3rXO4Fw5dLkKZzgip+GYK0hvNKNMZoTWYcDZLiW8OpSHUyw1RtzwfdWRKzwj83/YU9PrwT2vZZ39ewmd/Vt9JlOM4XP1wRLX7VKdZJk+zVgeBSGhXzt24sEynrfEYwR/+F+aychiyMqHYuAlMqwNMJoBX9cPnhQsX4r333nM+cEIIuUPEx8fbvH7nnXfw7rvv2pQVqLUIkNkvLF1Zlq92/Fms0BigN5odNrda66q0kPrfbF3cdT4PL64+bX3dKcwTH0/oBEENHYae7NsKvlIx/rpQgHyVFkfTihHi5YYwb8d3xA2lWSZPnkQMprdfEovduCvkxDWvz+be5eZDZvmIEbg6chQAIPD1uVXWmT9/Pl599VXr6+zsbLt/YIQQ0hKkpKQgNDTU+vr2u04A0BrMEAnsk5dYwLdud0RrsDyDrL6uyaa8T7QvfnmqF1RaAw5fKUJqrgoVepNdfUceTAjBgwkhAIBW8//Aw93C8dLgxu0w5NQ4z8Ym8PeHsbDQrryyTBAQUKfj8T094dGrF5Tbt1W7n1gshlwut/7IZNU0tBNCyB1MJpPZfN45Sp4SIQ96o32C1BlN1u2OSISWBFl9Xb5Nub9MjH5t/DCiYzD+O64j7o8LxNTvjqOgirvbqiyekICh7QPrVMcZzTJ5imPjoL92DaayMptyzZmzAABJXN3Happ1WpjVZTXvSAghBAAQIJOgQK2zK68sC6yiF6yXmxAiAc9h4rPWlVffgvhAhyCU603Ym5Jfp5gndAtDXLC8TnWcUatmW1NZGXgiETiRqLHjAQDIhw1FyfffQ7H2d+s4T7NeD8WmjZAkdLL2tDXk5MCs1UIcHW2taywuhsDX1+Z4+qxsVBw9BkkHWribEEJqKz5EjqNpxVBrDTadhpIyFdbtjvB4HGKDZEjOUtptS8pUIMLH3aazkCOVTcJqrdGp2Defzsb6k1lIyVWhTGuEVCJA+xA5JnQLw5jOoTUfoAa1Sp6XevaC3/PPWSc8yFnwBmSD74fsvsZZdNQtIQGy4cNRsHQpjCXFEEVEQrl5MwzZOQj54APrfjmvz0NFYiLiLqRay9IeHAOP3r0hiYsFTy6H/vp1KNdvADMaEfDqa40SLyGEtEQPdAjCNwfTsPpEhnWcp85owrp/M9E53Mva0zZboYFGb0JMgPSWusFYtOsCzmYp0CnMCwBwtbAMR64WY0b/mzc8JeV6eLsLwd02vmRtomX+9E6hnnWK2WRmeO7XU9iTkgcGQCzgIUAuRlGZDv9cKcLhK0XYmZyH5Y92BY/n/JiW2nUY4jjAfHPUqXLTJghDQxoteQJAyKKPUPj5Mii3boVZqYK4XTuEr1gB9x49qq3nPXkyyg4cQNk//8BcXg6Bjw88+vaF76xZkLRr22jxEkJIS9MlwhsjOwbj410XUVymR6SvBzacykJWqQaLxney7vfq2iQcTy/BtY9GWsum9onEmsQMTP8xETP6R0PA52HloTT4SUWY0b+Vdb9Np7Px6/HrGBofhAgfd5TrjDh4uRCHLhdhcFwA7onxq1PMPxxOx+6UPPSI9MHrD8SiW6S3ddupjFJ8tPMC9qTk4ccj1zC9X6tqjlS9WiVPQUAA9BnXnT6JM3hiMQLnzkHg3DlV7hO56me7Mv8Xnof/C883ZmiEEHLXWDIxAaF73bDxtGVu27ggGVY+0QO9on2rrScVC7BmZm+8vz0FX+y/AjNj6B3ti7dGxcNXerNzUo8ob5y6XoptZ3JQWKaDgMch2t8Db46MwxP3RNU53g2nstHKzwO/zuhlNy9u1whv/Pp0Lwz/7CDWncxq/OTp0bMnlNu3w1SqsE5UoN63D4bsnOorckDIf//rdHCEEEJcSyLkY8GIOCwYEVflPmtn9XFYHuzphuWPVr2QBwB0CvPCl492rVeMt0ovKsPjfaKqnFBeyOdhcFwgfjp6rV7nqVXyDJgzG8biYpQfOQKYzQDHQZd6AbrUC9VX5DhKnoQQQpqMkM+rcXxohd5U42otNalds62fHyK++xbMYICxsBBX7h8Mn2nT4DNtar1OTgghhDSk9iFy/JGci+fvi3E4HKZApcUfybnoEFK3jki3q9MMQ5xQCGFICNx79IA4LhbC0Pp39yWEEEIaytP9ojFj1b8Y/b9/MKN/NHpF+8BPaulteyytGN8dSoeiQo+n+zv/vBNwcnq+yJ9/qtdJCSGEkMYwOD4Qb4yIw6JdF7BwZ6rNNgZAwOOwYEQc7o+r3yxE9Zrb1lxRAfW+fdCmXoC5rAw8qRSSuFjI7r8fPPfqZ8InhBBCGsPT/aMxND4Im5OykZKjsq7g0j5EjjGdQxFRw0otteF08lTt3oO8t9+GSa22XXmU48CXyRD0/v9BPnRovQMkhBBC6irC1x0v3t94k8M7lTwrTp1G9muvgePx4DVhAtx79YTA3x+moiKUHz8B5ebNyH5tNgQ//2SzugkhhBDSEjiVPIu//hqcSISo336FJNZ2knb5iBHwfmQKrk15BMVffwP3r1Y0SKCEEEJIc+HUQBdNUhLkDwy3S5yVJO3aQT58ODSnTzvcTgghhNzJnEqeZq0WAt/q5xsU+PrCrK3bOmyEEELIncCp5CkMDbXMNlSN8mPHaBwoIYSQFsmp5CkfPhza8+eR8/o8GPILbLYZCgqQM28+tOfPQ/7AAw0SJCGEENKcONVhyHfG0yj75x8ot26FaudOiCIjwPf1g6m4CPrrGWAGAySdOsJ3xtMNHS8hhBDick4lT56bGyJ/WYXib7+FcstW6K5cBa5cBQAIw8PhOXYMfJ9+GjyRqEGDJYQQQpoDpydJ4IlE8H/uOfg/9xxMZeUwl5eB5yEFX+rRkPERQggh1Yqe/0ed63Ach6sfjnD6nPWanq8SX+pBSZMQQohLRPl5gKvlviqtEUVlOtuZ8ZzQIMmTEEIIcZX9rw2scZ8KvRHfHkzHd4fSAAAxAdJ6nZOSJyGEkBbLbGb47UQGlu27jKIyHQLlErw5Kg4Pdwuv13EpeRJCCGmRdiTn4pM9F3GtqBwyiRBzhsXiyb5RkAj59T42JU9CCCEtyrG0Yny08wLOZikg5PPwVL9WeH5QG3i6CxvsHJQ8CSGEtAgX89T4aGcqDlwqBMdxGNclDK8NbYsQL7cGP1ezTZ5mvR5Fy5ZBuWUrTCoVxO3awf+lFyHt27faeqo9e6DauRPa5HMwFhVBGBQE6cCB8Hv2P+DL5U0UPSGEtAw6owmf7r2ETaeyodQYEBssx+yhbdG/jX+NdfOUWry/PQUHLxeCMaB3tC/eHhVvsxh1jkKD3//NxF8XCpBeVA4+j0PbQBleuK8N+rWpfg71W4/xyZ6L2JqUAxNjGNjWH68/EIvYoMb7zK/19HwVJ0/W6cDMYEDBkiV1DqhS7rz5KP7xJ8hHj0bgggXgeDxkznqmxjjy3n4H+qtp8HxwNALfWACP/v1R+uuvuDZ5Ck1UTwghdTR73VmsPJSOsV1C8c7o9uBzwJM/JCLxWkm19cp1Rkz59hiOpxfjuUExeHlwG6TkKDHpm6MoLddb99ubko+vDlxFpK8HZg9rhxfua4NyvRGPrTyO3//NrFWMgz75G5tPZyPcxx3/m9IFix9OgJ9UjKIyXbU/9VHrO8/rjz8Bn2nTEPDyS+BqmDlIk3wOuQvmQ3c1DQGvvVbnoDRnz0K1YwcC5syB71PTAQCeY8cgbfSDKFj8CaLWrK6ybujnn8OjV0+bMkn7eOTOmw/ltm3wfvjhOsdDCCF3o6RMBbadycGCEbGYOaA1AOChrqEY9tlBLNyRio3PVt0SuOrYdaQXlWPLc32REO4FABjYLgDDPjuIbw+lYe5wy5KWfVr74si8++HjcTOvPNo7AiM+P4Sley9hYveae8XqTWZwAK4Xl+PF1bVbCrPJJkkQt26Nkh9+QPmhQwj+aCHc2re324cZDCj84ksUf/89wBh8Z8xwKijV7t0Anw+vSROtZTyxGF7jx6Nw6VIYcnMhDA52WPf2xAkAssFDkIv50F9NcyoeQgi5G+1MzgWfx2FKzwhrmUTIx8Tu4Vi8+yJyFJoqnyfuTM5FQpinNXEClrGV97T2xR/Judbk2TZQZldXLOBjULsAfPdPOsp0RkjF1aeqnlE+4Go7S0IDqXXybLV+HQr/9wWKv/8e1ydPge+sWfD7zzPg+JYuv5rz55E7fwF0ly9D1DoaIQsXwq1jR6eC0qWmQhQVBb7UdhCrWyfL8bSpF6pMno6YigoBAHxv7+rPq9NBp7t5K69Wq2t9DkIIaWnO56jQys8DMoltL9XONxJiSo7KYfI0mxlS89SY2D3MblvncC8culxUY1IsLNPBTciHWy2Glayd1afGfRparZ95ckIhAl59BVG/rIIwNBRFX36Ja5MmQ5uSgoLPP8f1yVOgu3oVPtOfRKuNG51OnABgLCyEwN/+YXRlmbGgwG5bdYq++w7g8yEfNrTa/RYuXAhPT0/rT3x8fJ3OQwghdwq1Wg2VSmX9ufXGoVKBWosAmdiuvLIsX+24H4lCY4DeaEaATFJ1XVXVfVCuFZVj17k8PNAhCHxeE99S1lKd1/N069wZrbZshvejj0KbkoL0CQ+j+OtvIAwLQ9SvvyBwzpx6r6Zi1urAiezH43Biy18609W+449y23Yo12+A75NPQBQVVe2+8+fPh1KptP6kpKTUKW5CCLlTxMfH29wsLFy40G4frcEMkcA+TYgFfOt2R7QGEwDUUNfksK5Gb8Kzv56CRMjH6w/E1u7NuIBTQ1U4kQiCgABwfD6Y0QhwHGSDB0NSj7vNW/EkYjC9wa6c3fhmxIntv804UvHvv8h980149OsH/5dfrnF/sVgMsfjmtyyVSlW7gAkh5A6TkpKC0NBQ6+tbP/sqSYQ86I32CVJnNFm3O1I5g0/1de2bY01mhhdWn8KVgjL8+GQPBMpr91n/1YGrtdrvds/c29qpeoATyVN/7Rpy5s2H5uxZCEND4ffMLBSv/B7FK1ei/OhRhHy0EOKYGKcDAizNs4Z8+6ZZY6Hl2aUgIKDGY2gvXEDms89B3KYNwj7/DJyg2Q5pJYSQJieTySCvYex7gEyCPAfNqwVqy41MoINmWQDwchNCJOChwEGzrrWug8Q4b8NZ7LtQgM8mdcY9MbUb4wkAi3ZdAAegLuukcGjC5Fny8yoUfPYZmEYDr0kTETh3Lnju7pCPHo3CJUtQsuoXpI+fAP8XnofPU0+Bc7L7kzg2DuXHT8BUVmbTaUhz5iwAQBJX/a28PiMDGTNmQODjg/BvvgbPg5ZLI4SQuooPkeNoWjHUWoNNp6GkTIV1uyM8HofYIBmSs5R225IyFYjwcbfrLPThjlSsO5mFt0fFY0znULt61Vk8IaFO+zeEOo3zrEhMhCAwEMH/W2Yz0w9PJELg/PmQDR6MnPkLUPDpUqj37UfIRwshioysc1DyYUNR8v33UKz93TrO06zXQ7FpIyQJnaw9bQ05OTBrtRBHR1vrGgsLkfHU0+A4HsK/+w4CH586n58QQgjwQIcgfHMwDatPZFjHeeqMJqz7NxOdw72sPW2zFRpo9CabZb4e6BCMRbss88t2CvMCAFwtLMORq8WY0T/a5jxfH7iKbw6m4blBrTG9X6s6xzmhm32v3sZW6+RZceIEPMeNQ+CC+XZDSCq59+iB6K1bkP/RIijWrUPauIcQe6puMxMBgFtCAmTDh6Ng6VIYS4ohioiEcvNmGLJzEPLBB9b9cl6fh4rERMRdSLWWZcyYCUNmJnyffgqaUyehueX8fF/fGqf3I4QQYtElwhsjOwbj410XUVymR6SvBzacykJWqQaLxney7vfq2iQcTy/BtY9GWsum9onEmsQMTP8xETP6R0PA52HloTT4SUWY0f9mgtx1Lg8Ld15AKz8PxARIsel0lk0M/WL84e+gx6+r1Tp5hi3/ErJBg2rcj+fujuD/ew+yIUOQ+9ZbTgcWsugjFH6+DMqtW2FWWua2DV+xAu49elRbT3fhAgCg+LuVdtvce/Sg5EkIIXWwZGICQve6YeNpy9y2cUEyrHyiB3pF+1ZbTyoWYM3M3nh/ewq+2H8FZsbQO9oXb42Kh6/0ZjJMzbV0zEwvKscra8/YHWf1jN7NMnlyjLG6PGOtE5NaDb7MfvaIO0VWVhbCw8ORmZmJsLC6NQukxsY1UlR3h1tbExoCXY/6o2vS/DhzTerzudZc9f94f53rcOBwcG7NN4RVaZQuqMxggHrfPig2bETEt980xikIIYQQAEBWqQZ8jmvSCRUaNHlqL12CcsMGKLdug0lp38uKEEIIaSy9o30xsXs4hrYPhJBf5zmA6qTeydNUVg7V9u1QbNwI7blzACwzAclHjoTXQ+PqHSAhhBBSnb2v3Iu1iRnYnJSDF1afgpe7CGM7h2Jij7BGW9PT6eRZkZgIxfoNUO3dC6bVAjcenXr074fQTz+tskcuIYQQ0pBiAqR4Y2Q85j0Qhz9T87Hu30ysOnYNPx5JR/sQT0zsEY4xnUMgl9hP++qsOiVPY2EhFJs2Q7lhA/SZmQBjEAYHQ/7gaHg+OAZpI0dCGBhEiZMQQkiT4/M4DGsfhGHtg1Co1mH9ySysP5mJt7ecw4d/pGJY+0DMGR6L0CqWUauLWifPzGf+g7LDhwGjETwPD3iOGwvPB8c4XD+TEEIIcSV/mRj/Gdga/xnYGoevFGH2ujPYeiYHIzuFNG3yLDtwAODx4PvUdPi9+GK9V04hhBBCGtOZTAV+/zcT287kQK0zIkguQbBn7Sabr0mtk6cwPByGzEwUf/8Dyv45DM8xY+A5aqTDdTcJIYQQVygp12PjqSysP5mFS/lqCHg83B8XgIk9wnFvG3/wGmg4S62TZ8ye3Sg/fgKK9euh3rsXBR9/jIIlS+DRpw88x4yBbMjgBgmIEEIIqQuzmeGviwX4/d9M/HWhEAazGe0CZXhjZDzGdQmFj0fDt5TWqcOQR6+e8OjVEya1Gspt26BcvwHl//yD8sOHwXN3BzgO5vKyBg+SEEIIqUrvhftQVKaDTCLExB5hmNg93DoZfWNxaqgKXyaDzyOPwOeRR6C9cAGK39dB+ccfAGNQ7doNTfJQeI4bC68xYyAMrdvSMoQQQkhdFJbpIOTxEBcsQ1apBp/uvVRjHQ7AD0863+G13pMkSGJjEfT2WwiY9zrUu/dAsWEDKk6cQNH/vkDR8hWIO5dc31MQQggh1TKYzTieXlLr/ev75LPBpufjiUTwHD0KnqNHQZ+VDcWG9VBu3tJQhyeEEEIcOlSPCd6d1SgTw4vCQhHw0kvwf/HFxjg8IYQQYhXm7d7k52zUmXM5rulmuCeEEEKaSq3vPK8MHlL3o3McYvbuqXs9QgghpBmrdfI0ZGcDfD44Pr8x4yGEEEKavTo/83Tv2RNe4x+C7P77wQkbboZ6Qggh5E5R62ee0X9sh8/UqdBeSEX2q6/h8oB7kb9wIbQXax5PQwghhLQktU6e4uhoBL4+F23+/hthyz6HW+fOKPltNdLHjUP6+AkoXb0aJrW6MWMlhBBCmoU697bl+HzIBg9G+IrlaPPXfvi/8jLMGg3y/u99XB5wL7LnzIUhJ6cxYiWEEEKahXoNVRH4+cFvxgy03vEHIr5fCb6nJ1R//AHthQv1Dsys16Pgk09wuf8AXEjojPSJkyzridZAl5aO/IULcW3yFFzolIDU2Djos7LrHQ8hhBBSqd6TJGiSk6HYsAGqHTthVqshCAyEIDCw3oHlzpsP1Z498Jk2DaLISCg3bULmrGcQ+dOPcO/Wrep4kpJQsuoXiFu3hqh1a+hSU+sdCyGE3K10RhM+3XsJm05lQ6kxIDZYjtlD26J/m5qXo8xTavH+9hQcvFwIxoDe0b54e1Q8InxtJzVYdew6jl4tQlKGAjlKLcZ3DcOSiQmN9ZYahFPJ01haCuWWLVBu3ATdlSvg+HxIBw2C14Tx8OjXDxyvfnMvaM6ehWrHDgTMmQPfp6YDADzHjkHa6AdRsPgTRK1ZXWVd2X2DIDtxAnypB4pXfo8CSp6EEOK02evOYmdyLqb3a4UoXw+sP5mJJ39IxOqZvdEjyqfKeuU6I6Z8ewxqrQHPDYqBgMfh+3/SMembo9jxYn9437JM2Fd/X0W53oiEMC8UqHVN8bbqrdbJk5nNKDtwAMqNG1H29wEwoxHiNm0Q+PpcyB98EAJv7wYLSrV7N8Dnw2vSRGsZTyyG1/jxKFy6FIbcXAiDgx3W5Xt5NVgchBByN0vKVGDbmRwsGBGLmQNaAwAe6hqKYZ8dxMIdqdj4bN8q6646dh3pReXY8lxfJIR7AQAGtgvAsM8O4ttDaZg7PNa679pZvRHq5QaO4xD/9q5GfU8NpfYzDN07EMbiYvBkMnhOGA+vh8bDrWOHRglKl5oKUVQU+FKpTblbp44AAG3qhSqTJyGEkIaxMzkXfB6HKT0jrGUSIR8Tu4dj8e6LyFFoEOLlVmXdhDBPa+IEgJgAKe5p7Ys/knNtkqcr5qatr1onT2NRETiBAJJ27WDIzkbh/5bVXInjEPH113UOylhYCIG/fXt6ZZmxoKDOx6wNnU4Hne5mk4Gaht4QQlootVoNlUplfS0WiyEWi232OZ+jQis/D8gkthPidL6REFNyVA6Tp9nMkJqnxsTuYXbbOod74dDlIpTpjJCKG2VtkiZRp8iZ0YiKxMTaV3ByYnizVgeByH72Iu7GhWU6rVPHrcnChQvx3nvvNcqxCSGkOYmPj7d5/c477+Ddd9+1KStQaxEgs02oAKxl+WrHn8UKjQF6oxkBMknVdVVaSP2ldtvvFLVOnjF/7m3MOGzwJGIwvcGunN24K+TE9hekIcyfPx+vvvqq9XV2drbdPzBCCGkJUlJSEBoaan19+10nAGgNZogE9h1AxQK+dbsjWoMJAGqoa6p70M1IrZOn8Ja/5MYm8PeHId++adZYWGjZHhDQKOe9vdni1iYNQghpSWQyGeRyebX7SIQ86I32CVJnNFm3O65nSZDV172zFxlp1PU8nSWOjYP+2jWYyspsyjVnzgIAJHGxjqoRQghpQAEyicOhI5VlgQ6aZQHAy00IkYCHAgfNuta68sZpQWwqzTJ5yocNBUwmKNb+bi0z6/VQbNoISUIna09bQ04OdGlprgqTEEJatPgQOdKLyqHW2j5GS8pUWLc7wuNxiA2SITlLabctKVOBCB/3O7qzENAAMww1BreEBMiGD0fB0qUwlhRDFBEJ5ebNMGTnIOSDD6z75bw+DxWJiYi7cHMiBJNajdJffgEAVJw6DQAo/fVX8OUy8GRy+Dz2aNO+GUIIuUM90CEI3xxMw+oTGdZxnjqjCev+zUTncC9rT9tshQYavQkxAdJb6gZj0a4LOJulQKcwLwDA1cIyHLlajBn9o5v8vTS0Zpk8ASBk0Uco/HwZlFu3wqxUQdyuHcJXrIB7jx7V1jMpVSj83HYYTckPPwAAhCEhlDwJIaSWukR4Y2THYHy86yKKy/SI9PXAhlNZyCrVYNH4Ttb9Xl2bhOPpJbj20Uhr2dQ+kViTmIHpPyZiRv9oCPg8rDyUBj+pCDP6t7I5z58p+UjNtfQxMZoYLuSp8L99lwEAg+MDERdc/bNZV2i2yZMnFiNw7hwEzp1T5T6Rq362KxOFhdrciRJCCHHekokJCN3rho2nLXPbxgXJsPKJHugV7VttPalYgDUze+P97Sn4Yv8VmBlD72hfvDUqHr5S2569O8/lYcOpLOvr8zkqnM+xJNMgT0mzTJ4cY4y5OojmKisrC+Hh4cjMzERYmP1g3+qkxsY1UlR3h4b+AkTXo/7omjQ/zlyT+nyukZuaZYchQgghpDmj5EkIIYTUESVPQgghpI4oeRJCCCF1RMmTEEIIqSNKnoQQQkgdUfIkhBBC6oiSJyGEEFJHlDwJIYSQOqLkSQghhNQRJU9CCCGkjih5EkIIIXVEyZMQQgipI0qehBBCSB1R8iSEEELqiJInIYQQUkeUPAkhhJA6ouRJCCGE1BElT0IIIaSOKHkSQgghdUTJkxBCCKkjgasDqIpZr0fRsmVQbtkKk0oFcbt28H/pRUj79q2xriE/H/kLP0L54cOA2Qz3Xr0QOH8eROHhTRA5IYS0HDqjCZ/uvYRNp7Kh1BgQGyzH7KFt0b+Nf41185RavL89BQcvF4IxoHe0L94eFY8IX3e7fdcmZuCbg2nILNUgxFOCJ+6JwhN9WzXGW2oQzfbOM3fefBT/+BPko0cjcMECcDweMmc9g4qTJ6utZy4vR8a0x1GRmAi/WTPh98Lz0Kam4vrUaTCWljZR9IQQ0jLMXncWKw+lY2yXULwzuj34HPDkD4lIvFZSbb1ynRFTvj2G4+nFeG5QDF4e3AYpOUpM+uYoSsv1Nvv+evw6Xt+QjLaBMrz3YHt0jfDGu9tSsOLvq4351uqlWd55as6ehWrHDgTMmQPfp6YDADzHjkHa6AdRsPgTRK1ZXWXd0tWrob9+HVHrfodbx44AAOmAAUgb/SBKfvgRAa++0iTvgRBC7nRJmQpsO5ODBSNiMXNAawDAQ11DMeyzg1i4IxUbn626JXDVsetILyrHluf6IiHcCwAwsF0Ahn12EN8eSsPc4bEAAK3BhE92X8R9sQFY8Vg3AMCUnhEwM4b/7b+MR3pGwNNd2Lhv1AnN8s5TtXs3wOfDa9JEaxlPLIbX+PHQJCXBkJtbTd09kHTsaE2cACCOjoZH795Q7drVqHETQkhLsjM5F3wehyk9I6xlEiEfE7uH41SGAjkKTbV1E8I8rYkTAGICpLintS/+SL75GX70ajFKKwyY2jvSpv7UPlGo0Juw/2J+w72hBtQs7zx1qakQRUWBL5XalLt1siREbeoFCIOD7eoxsxm6ixfhOf4hu22STh1RfvgwTGXl4Es9HJ9Xp4NOp7O+ViqVAIDcapJ1VfIM+pp3IlWSZWU16PHoetQfXZPmx5lrUvl5plQqIZfLreVisRhisdhm3/M5KrTy84BMYnvn1/lGQkzJUSHEy83uHGYzQ2qeGhO7h9lt6xzuhUOXi1CmM0IqFuB8juVztmOYp81+HUM9weOA89kqjOtS57fZ6Jpl8jQWFkLgb/8wurLMWFDgsJ5JqQTT62usy5c6fgi9cOFCvPfee3blPXv2rHXspIFQ567mh65J81OPa9KhQweb1++88w7effddm7ICtRYBMtuECsBalq/WOjy2QmOA3mhGgExSdV2VFlJ/KQrUOvB5HPyktucRCXjwdhchX62zO0Zz0CyTp1mrg0Bk38bN3fhWxHSOLxjTWsp5IpHdNl4NdQFg/vz5ePXVV62vjUYjUlNTER4eDh6vWbZwO0WtViM+Ph4pKSmQyWSuDoeArklz05Kvh9lsRkZGBuLj4yEQ3EwBt991AoDWYIZIYP/ZJxbwrdsd0RpMAFBDXZP1TyGfc3gcsYBn3a+5aZbJkycRg+kNduXsRpMqJ7b/NgMAnMRSbtbbNweZa6gLOG626FuLoTF3GpVKBQAIDQ21abYhrkPXpHlp6dcjIiKi5p0ASIQ86I32CVJnNFm3O65nSZDV1+Vb/zSYmMPj6Ixm637NTbO8nRL4+8NYWGhXXlkmCAhwWI/v6QlOJHKqLiGEEFsBMgkKHDSbVpYFOmiWBQAvNyFEAh4KHDTrWuvKJTfOIYbJzFBUZnsevdGM0go9Ah00GzcHzTJ5imPjoL92DaayMptyzZmzAABJXKzDehyPB3HbttCeO2+3TXvmLITh4VV2FiKEEGIrPkSO9KJyqLW2LYFJmQrrdkd4PA6xQTIkZynttiVlKhDh4w6pWGBzjNv3Tc5WwMyqPoerNcvkKR82FDCZoFj7u7XMrNdDsWkjJAmdrD1tDTk50KWl2dSVDRsKbXIyNMnnrGW6tHSUHz8O+fBhTfMGmjmxWIx33nnH4TMO4hp0TZoXuh4WD3QIgsnMsPpEhrVMZzRh3b+Z6BzuZe1pm63Q4EpB2W11g3EmS4mzWQpr2dXCMhy5WowRHW+OlrintR+83IX45dh1m/q/HMuAm5CP+2KbZ2shxxhz3NjsYlkvvwL1n3/C5/FpEEVEQrl5MzTJyYj84Xu49+gBALg+dRoqEhMRdyHVWs9UVo70hx6CubwcvtOfBCcQoPjHnwCTCa02b4LAx8dVb4kQQu44z/16CrvP5+Gpfq0Q6euBDaeycCZTgV+f7oVe0b4AgElfH8Xx9BJc+2iktV6ZzoiRyw6hXGfEjP7REPB5WHkoDSbGsOPF/vC9pXftqqPX8NaW8xjRMQgD2vjjxLUSbDyVjTnD2uG5QTFN/p5ro9kmT7NOh8LPl0G5bSvMyhtz2774IqT9+1n3cZQ8AcCQl2c7t23Pnpa5bSMjbz8NIYSQamgNN+a2PW2Z2zYuSIZXh7bDvW1vDgl0lDwBIFepwfvbU3DoUhHMjKF3tC/eGhWPKD/7x2erT2Tg20NpyCrRINhLgml9ojC9bxQ4znFPXFdrtsmTEEIIaa6a5TNPQgghpDmj5EkIIYTUESVPQgghpI4oeRJCCCF1RMmTEEIIqSNKni2A2WyZP5I6TjcfldeEENIyUfK8w5nNZvB4PJw7dw7btm2D0Wh0dUh3PZPJZF2FZ9++fdBoql4wmBByZ6LkeYfj8XjIzs5Gjx498OWXX6KgirVOSdPh8y2rQAwdOhT/93//h9TU1BpqkMbkqBWAWmlIfVHyvEOZTDfWwtNqsX//fvTq1QvvvPMOQkJCXBzZ3avymgDAuXPnkJubi6effhqxsY4XMiCNz2g0WlsBLl++jNLSUmg0GnAcR03rpF6a5XqepGZ8Ph+XL1/G7Nmzwefz4e3tjXvuuQeA5Vt1c53SqiWrvON8++23kZubCx6PhxEjRsDd3d3Fkd2dzGazdbHnxx9/HPv374e7uzt69OiB//73v4iMjLQ+9iCkruhfzR0sPz8f27Ztw+bNm+lZZzOxZ88efPDBB/jzzz8RFRUFX19fMMaombCJMcasSfGRRx7B9u3bMWTIEHTs2BH79u3DwIEDcenSJfB4PLoDJU6h5HmHqfwQZoyhX79+OHToEIKDg7F7926sW7cOAMBxHH1Yu8jQoUPx1VdfWb/YbN++HRzH0TVpQmaz2ablpbS0FB9++CG+++47rF+/HsuWLYOHhwd69+5NCZQ4jZLnHaLyP3flh0Lln3379sVvv/0GqVRqveOp3E4f1o3r1mect5o5cya++OILiMVivPHGGzhw4AAAuiZNpfKOc9y4cRgyZAgKCwtx3333WcsffvhhfPzxxwgJCUGfPn0ogRKnUPK8A1QOfcjIyMDnn3+OuXPn4v3330d+fj6MRiPuvfdebNiwARkZGZg3bx4l0CZgNBqtzzgPHDiA9evXY9euXcjJyQEATJ8+HZ9++imuX7+O+fPn4+DBgwDomjSVnJwcVFRU4PTp0ygoKLB+2dTr9QCAESNG4OOPP0ZwcDD69++Pixcvgsfj0bUhtcdIs2YymRhjjJ0/f56FhoaysLAwFhQUxGQyGYuMjGTLly9npaWljDHG/vrrL+bt7c26devG9u3b58KoW7bKa8IYYxMmTGD+/v6Mz+czjuNYv3792Ndff23d/tVXXzFPT0/Wp08fdvDgQVeEe9c6f/48e+SRRxjHcezZZ5+1luv1euvvO3bsYG3atGEcx7HS0lJmNptdESq5A1HybIZu/XBmjLGcnBzWtm1bNmTIELZ//36mVqvZ5cuXmVQqZT169GAXLlyw7vvXX38xf39/1rp1a/b33383degtTnUfppMnT2aBgYHsiy++YCdOnGDHjx9ncrmchYSEsD///NO631dffcV8fX3pS00jMRqNVW47d+4cmzRpEuM4js2dO9dafmsC3bRpE1u1alWjxkhaHhqq0owkJiaiR48edl3njx8/DrVajZdeegmDBg0CAHz33XcwGAyYMWMGQkNDrfsOHDgQv/76K2bOnImIiIgmjb8lKi0thY+Pj92QhuPHj+PEiRN488038cQTT8DDwwMpKSnQarWYOnUq4uPjrXVmzZoFo9GIF154AUVFRS58Ny2P0Wi0DkdZu3Ytrl27BrPZjF69eqFv375o37493nzzTQDA4sWLAQCLFi2CUCiEXq+HSCTC2LFjrcejoSuk1lydvYnFc889x6RSKdu6davdtv/7v/9jwcHB1tdz5sxhQqGQffvtt6ysrIwxxlhFRQVTq9XWfSoqKho/6BZu06ZNzNfXlx09etThNrFYzE6fPs0YY2z//v3Mzc2NTZkyhWVlZVn3u379uvX3s2fPNnrMd5NbW2jGjBnDvLy8mFgsZnw+n8nlcjZhwgTr/4nk5GTrHei8efMcHoOQuqCvWM3ApUuXMHXqVERGRiIqKspue9u2baFSqXD+/Hm88847WLp0Kb744gs8+uij8PDwAABMnDgRTz31lLXDg5ubW1O+hRanoqICJpMJHMfh9OnT1vLKHpkGgwEikQjR0dE4efIkRo4ciYceeghLliyxtgR8/fXXWLx4MVQqFQCgQ4cONscg9VN5h/jMM8/g8OHDWLJkCU6fPo3U1FSMHDkSO3bswLBhw1BWVoYOHTrg7bffxpQpU7Bo0SK88MILNscgpM5cnb3vdvfddx/r2rUrY4xZvyVfvXqVbd++3brPsWPHWExMDIuNjWVisZj9/PPPNneZf/75J+vZsyd7/fXXbZ7lEOf897//ZZ06dWJarZalpKRYy69evWr9PT8/n7Vq1Yr16tWLeXh4sMcff5xdu3bNZt/777+fTZgwgSkUiiaNvyU6cuQIy8/PtyvPzs5m8fHx7IknnrC2wjBmaXl58803mUQiYdOmTWM6nY4xxlhqaiobOXIkW7p0aVOFTlooSp4uNG/ePObj48O2bNnCNBoNY4wxjUbDEhISWKtWrdimTZus+7711luM4zjWs2dPa1MhY5bEOmzYMNa2bVuWlpbWxO+g5Vm/fj1zd3dnr732GisuLraWP//880wul7OTJ08yxizX6Y033mBeXl4sMjLS5oM9IyODvfnmm8zf35/9/vvvTf4eWpoLFy4wjuPYhAkT7B5HXLlyhUkkEvbee+9ZywwGA2OMMa1Wy8aMGcP8/f1ZcnKydXtl73RC6oOSp4tUVFSw4cOHsyFDhljLKj+A//77bxYTE8O6devG1q1bZ93+0ksvMT6fz9q0acNef/11NnnyZNa5c2fm5+dHz9MagMlkYi+99BLr1KkTS01Ntdn222+/sY4dO7J27dqxxMRExpjlek2dOpWJxWLWq1cv9ttvv7HPP/+cPfzww0woFLKPP/7YWp+GQDhPo9GwRYsWsYULF9ptu379OgsKCmJDhw5lBQUF1vLKFpgTJ04wjuPYjz/+aFeXrgmpD0qeLvSf//yH8fl8VlxczLKyslhERIQ1WR44cIBFRkaybt262dy9rFixgo0ePZr5+PiwuLg4Nn36dHbx4kVXvYUW5+mnn2ZSqZTl5uYyxizDUZYvX84YY2z16tWsY8eOrE2bNuz48eOMMcYKCgrYf//7XxYfH88kEglzc3NjvXv3ZitWrLAekzql1N+tw1G+/PJLlpeXZ329YMECJhKJ2Pfff2/32OKPP/5gHMexbdu2NVms5O5AydOF/vzzTxYXF8d8fHyYTCZjQ4cOZcnJydYP26oSqMlkYiUlJYwxRs84G8CtdyDnzp1jkZGRrE+fPqxPnz7M29ub7d6927r9119/tUugOp2OqdVq9s8//7ALFy6w7Oxs6/6UOBvWzp07GcdxbMaMGdYEmpOTw4YPH86kUin75ptvrL2dMzMz2dy5c1lAQAA7ceKEK8MmLRAlzyb0+OOP2zTDMsbY+++/zyQSCROLxWz9+vWMMcuHeeU37VsTaOV2xm4+16Gmp/rZsGED27p1q92geZFIxCQSCVu+fLndF5RbE2hlE64jdG3q7/YvH2VlZWz58uVMLBazp59+mhUVFTHGGEtKSmKjRo1iPB6Pde3alT366KNswIABTCAQ2DSfE9JQKHk2kWvXrrGYmBgWHBzMFAoF0+l0zGQyscDAQBYVFcXCw8OZv78/O3PmDGPMkhxvvwPt1asXW716tSvfRotSVlbGgoKCmIeHh01P2kmTJjEvLy/m5eXFevTowdLT0xljtsmw8hlobGys9a6GkmXDurWp9tbro9Fo2JdffsmEQiGbPn26tQNQSUkJ+/DDD1mXLl1YVFQUGz58OPvuu++s9agVgDQkSp5N6OzZs9aOKJXd6q9cucIuXbrEVq1axaKjo5m/vz87deoUY8w2gR48eJDJZDI2aNAgm2EqpH4uXbrEvvrqK5uy9evXs61bt7JVq1axoKAg1rNnT3bp0iXGmG2CXLNmDYuNjWX+/v4sPz+fkmcDujVxPvfcc2zgwIFs2bJl1jKtVmuTQCvvQBljrLi4mJWWltr8P6HESRoaJc8mcPuH6vXr11lYWJjNUBTGGPvpp59Yq1atqkyghw8fZpcvX26SmO9GM2fOZNu3b7deL51Ox3777TcWGBhYZQL94Ycf2C+//OKSeFuqW/9+R48ezUJCQtgbb7xhc/fJGGPl5eXWBPr000/bdCKq6niENBRKni5w9uxZ1rNnT+bt7c127dpls+3nn3+2S6B6vZ6+OTey/Px85uPjw2JiYtiuXbusg+rLysrY6tWrq02glegaNayXXnqJBQYGsvXr1zOlUulwn8omXDc3N/bEE084nEiBkMZAybMJVH6o3vqBe/r0aTZ06FAmlUqrTKAhISHUS7CROEp06enprH379iwmJobt3LnT2lHo1gR6zz330NCgJlBUVMR69uzJHn/8cevECCUlJezw4cPsrbfeYm+99Zb1TrOiooItW7aMcRxns5oNIY2Jkmcjq3x2k5mZyVatWsWOHTtm3VZdAv3ll1+Yp6cna9OmDdNqtdT01IBufZ524MABplKprK/T0tJYXFycNYHeege6du1a5u3tzWJjY2nKvQZ2+7/v0tJS1qpVKzZhwgTGmGVtzrFjx7LAwEDm7u7OOI5jXbt2tV67iooKa2c7QpoCJc9GVPkhnZKSwtq1a8e6devGlixZYrNPdQl0zZo19Iyzgd2aOKdNm8Zat27NHn/8cWYymawf4NUl0J9++ol98803Lom9pbr1mlT+XZeXl7M33niDCYVC1q5dOyaRSFjnzp3Z22+/zfLz89n69esZn893OEctNZ+TpkDJs5FdunSJBQQEsOHDh7PNmzc73OfkyZPWBLpnz54mjvDu9OCDD7KQkBC2dOlSmzmBKz9409LSWGxsrN0z0MrxtYxRR5SGcGvinDdvHhs9erS15+z169fZsmXL2NixY9nChQttJunfv38/8/T0pKFbxGUoeTYijUbDHnvsMdapUyfrbDSMWT4wFAqFzSocJ0+eZCNGjGAcx7F9+/a5Ity7xocffsj8/PzYunXrbJpsGbNNiGlpaaxDhw4sIiKCbd26le5oGtitf5+jRo1iUVFRbMSIEdZOWVXJzs5mb731FouIiGCHDx9u7DAJcUjg6iXRWjKO45CamorWrVujZ8+eAIADBw5g165d+P3332EwGPDMM89gwYIF6Nq1K959911IJBKEhIS4OPKWy2QyITk5GTExMRg1ahQkEgkKCgqwf/9+bNiwAQUFBXjmmWcwcuRItGrVClu2bEH//v1RXFxMaz82sMq/z6eeegpnzpzB4sWLMXz4cHh6etrsxxgDx3EAgH/++Qfr1q3DihUrsHDhQtxzzz1NHjchAEDJswGZzWabD1itVovo6GicOnUKa9euRUpKClauXAnGGPr27YvS0lK8+eabiI6OxuTJk9GjRw/89ttvEIvFLnwXLcvt14TP5wMArl27hvz8fFy7dg1vvPEGrly5Ag8PD7i7u+Opp57Cpk2bMGzYMERHRyM1NRVyudxVb6FFS09Px759+/Doo49i5MiRkEqlUKvVKCoqwp49e9C5c2e0atUKAQEB+PXXX/F///d/0Gq1WLx4MV566SUAtsmVkCbj4jvfFqPy2U1+fj7bv3+/tXzjxo2sY8eOjMfjMbFYzF599VV24MABxpilB6Gvry976623XBJzS3fr87Tr169bf9+7dy+LiopiYrGYcRzH+vXrxz7//HPGGGOFhYWsVatWbPz48XbPNKnZtuH9+++/jOM49uuvvzLGLGuhzpgxg4WHhzOO45hEImGzZ89mZrOZJScnsxUrVrCDBw9a69M1Ia5Cd54NwGQygc/nIzU1FdOmTUNxcTHeeecdPP744xg3bhzat2+PwsJChIWFITQ0FAKB5a89Pz8fHh4eiIiIcPE7aHkqrwkAPPvsszh48CDef/99jBs3Dvfeey/WrVuHAwcOICgoCIMHD0ZgYCAAyzURCASIj4+3u5uhZtv6YbfcIVZen86dO2PAgAF48cUXsXHjRuzatQuhoaEYNWoUZsyYgZ9++gmfffYZnnjiCXTo0AFxcXHW68oYo2tCXIaSZz0xxsDn83Hx4kUMGjQIHTt2xNy5c/Hwww9b92nbti3atGlj82F85MgRLF68GCKRCMOGDXNF6C1W5TUBgFGjRiE5ORljxoxB+/btAQBCoRDdu3dH9+7dbeplZWVh48aNUCqV6NGjR5PH3ZLd+mUGAAwGA/h8Pvh8Pj777DN89NFHOH36NJ555hlMmDABvXv3BgBkZGTgyy+/hEqlAgCbY1BTLXElSp71xHEcysrK8J///Adt2rTBRx99hG7dulm3V35oVP5HV6vV+PTTT7F9+3ZkZWVh9+7dCA8Pd1X4LVLl3/Vrr72GM2fO4NNPP8Xw4cMhk8mqrLN9+3Zs2LABq1evxnvvvYfRo0c3Vbgt3q2J891338W///6La9euYfTo0Rg3bhx69uyJNWvWoLCwEP7+/tZ6ubm5+Pvvv9GqVSv4+fm5KnxCHHNtq3HLkJmZyUJDQ9kHH3xgLTtx4gT75JNPWI8ePdiECRPYgQMHmNlsZuvWrWPt2rVj48ePZxcuXHBh1C2bVqtlvXv3ZhMnTrQORykuLmaHDh1iL774Ilu0aBH7+++/GWOWFWu6du3K4uPj2YoVK6zHoOdp9Xfrc+MRI0Ywf39/NmDAADZp0iQmlUpZTEwMW758ud2+p0+fZgsWLGASicRmNRVCmgtKng2gsLCQBQYGssmTJ7Pc3Fy2ePFi1rZtW+bl5cXuueceFhwczNq3b29dd/Dy5ctVTnRNGkZhYSHz9/dnTz75JCsrK2MXLlxgY8aMYUFBQUwqlTIej8c6d+7MLl26xCoqKtjff//NkpOTrfUpcTas9957jwUHB7PVq1dbpzb83//+xziOYx988IF1/lqTycR+++03FhYWxgIDA9nixYutx6BJKUhzQsmzjhz9B9br9Wzx4sXM3d2dicViJhaL2RNPPGGdLWj//v2M4zj2008/NXW4d4Vbr8mtv3/00UeM4zjWunVrxnEcS0hIYO+88w7TarXs4MGDjOM4h1Pt0Yd0wzIajWzYsGFs3Lhx1nVs9+7dy+RyOZs6dap1spDK3tEbN25kb775Jvvjjz+sx6AvM6S5oWeedVD57Eaj0aCsrAxCoRBSqRRCoRBTp05Fnz59cODAAQwbNgytW7eGl5cXAEtHFF9fX0RHR7v2DbRAt3dEMRqNEAqFAIBXX30VAQEB2L9/P55//nmMHj0arVu3BgB4e3tDLpc7HFNLHVH+v717j4uqTv8A/jnDcEeQO4KioiLe8gpaWqKlJkhGPw0v5V0kr2iKoqIrqJmYrZJp3tBWVixLzctapmSZsmYGuYoXVlYTAQVTQASF+fz+YOc0I9pmogg+79erV3TOmdN35syc53xvz/fhlJaWQqvVorS0FKWlpbCwsMCFCxfQv39/WFtbY9++fXj11VcRHByMxYsXw83NDQCwd+9etG/fHsHBwQgICFCvzd1zdYV4IlR19K4u9E/Fp0+fVlOJtWzZkqNGjWJeXt59X3fs2DEGBASwXbt2912sV/w5hvM458+fz1dffZUBAQFcsmSJ0XH6vLR6ly5d4pw5c+jq6irp3R6hkJAQRkZGkiR79+7NLl26MDk5mdbW1hw0aBAvX76sHrtv3z46ODjwH//4R1UVV4gHIsHzPgybifR/p6Wl0dnZmS1atOCYMWM4YMAA1qtXjy1btlQDqH4NSJJ899132bVrVzo6Ohr1p4mHZ3h9AgMDaWdnx7Zt2/LZZ5+lRqNhSEiIUcJ3vaSkJE6ZMoVmZmYVgqx4OIZJ82fPnk1XV1d+/PHHLC4u5pYtW2hnZ0dFUTho0CAWFBSo1/DSpUucPHkyW7ZsyZSUlKoqvhAPRILn7zCs2Vy5coWdO3dmz549jZK89+3bl4qisEmTJupqEEVFRVyyZAm9vb3p7+9vtBqEqFxjx46lp6cnExIS1EEns2bNoqIoDAkJUfvTdDod//GPf9DOzo7169fnX//6V/Uc0p9WuU6dOsV3332XkydPZnFxMcnyzFuDBw+mjY0N+/fvr37mp0+fZmRkJC0tLfnBBx9UZbGFeCASPO8ybNgw9uzZU/1v/dP0jh076OHhwc8//1zdFxkZSVNTU4aGhtLJyYlNmzbltWvXSJLp6ek8fPiwGlDFn7dmzRpOnz69wvbjx4/Tz8+P8+bNU0cyHzx4kLVq1WLnzp1pbW3Nvn37MiMjg2R5ir7Nmzfz0KFD6jkkcFaut99+m4qi0M7OjnFxcSR/+w1dunSJQ4YMoampKV1cXNiuXTs2bNiQdnZ2fPfdd9VzyIAtUR1I8DRQWFjIMWPG0MXFhQMHDjTal5uby1GjRqn/HRsbSxMTE65du5YFBQWMiIigoihs2bIlc3JyHnfRa6yioiJOnDiRiqJw3rx5RvuOHz/OgIAAdcHw1NRUWltbc/DgwczIyFBH2w4dOlQNoIbkJv3w7n742LJlC7t27UpTU1OGh4erx+gD6LVr17h3716GhoayT58+nDlzJvfs2XPf8wnxpJLg+V/6G+m1a9cYERFBZ2dnDhgw4J7HHj16lK6urpw1a5ba13n27Fk2atSIpqamfOaZZ1hWViY350py6dIlRkZGUlEUzp0712jf1atXSZY3q7dt25YBAQFqoDx58iRr166tJn+/e+1O8XAMv99ZWVnq31988QXbt29PRVHUlhqdTmfUDXIvEjhFdSJTVf5LURSUlpbC3t4e06ZNA0ls2LABAwcOxObNmwGU5+M0NTVFVlYW8vPz8corr8DBwQEksXPnTtjY2OBvf/sbfH19ZWj9Q+BdS0x5eHhg3LhxKCsrQ3R0NIDyNG8A4OjoCAC4cuUKMjMzERoaigYNGqjbGjZsiDFjxkCj0fxuej7xYAynj/Tr1w+KoiAmJgY+Pj4ICgqCRqPB7NmzMWDAAGzdulXdRhJA+e/N8G9AEu+L6kW+rQB+/PFHxMXFITg4GCkpKXByckJkZCSGDx+O/fv3Y+DAgQCgzh+0trZGcXExUlJSAAA//PADDhw4gA4dOiA4OFjmcz4EnU4HRVFw8+ZNJCcnIzY2Fnl5efDw8MDkyZMRERGB6OhozJ07F8BvN97c3FxcvXpVDZA5OTn48ssvYWdnh+DgYIwePRoA1Bu2+PNKS0vVQHflyhU4ODhg+/bt+Oijj3DmzBkAQGBgIObPn4+WLVvi9ddfx86dOyvMn1UURebUiuqrKqu9T4KEhAR6eXmxXr16DAgI4Jo1a4z6Z+7VhJuRkcFXX32VJiYm9Pb2Zt26dWU6SiXQN9vl5OSwV69e9PT0pImJCePi4tQpQJcvX+b06dOpKArnzJlj9NqgoCDa29tz2LBh7N27N83MzCQvaiUzbFodOHAgW7duzWeffZZWVlbUaDQcPXo0z549qx6za9cutmvXjjY2Nty+fXtVFFmIR+KpDp6bN2+mVqtlWFgYv/vuO6N9+puEYQANCQlR96ekpDA2NpaBgYEMCwuTJO8PSd9/lpOTwwYNGtDPz48rV65kSUmJmtJN734B9MSJExw5ciQdHR3Zvn17o6kP0v9cuYYPH057e3uuXLmSly9f5qFDh9R+6ZEjRxoF0N27d7Nly5ZUFIXnz5+XayFqhKc2eP7000/08vLi8OHDefHiRXW74aCGewXQ119/3ehYnU5nlBhB/HmFhYV86aWX2KFDBx4+fFi9Fvp/G950DQPo7Nmzjc6TnZ2tJh8nZSBKZcvJyWH9+vU5ZMgQo+9+WVkZly5dSkVRGBoaavRA+fnnnzMhIaEqiivEI/HUDhg6duwYfv31VwwYMMBoPU3DPKkajQY6nQ729vaYMWMGACA+Ph6DBw9GQkKCeqy+L1T8OfzvAKHk5GScPHkS06dPR8eOHdUBJvrP2bB/rE6dOpg0aRIAYMGCBTAxMVEHEbm6uhqdWwaiVB6SKCwsRFZWFlxdXWFqaoqSkhKYm5tDo9Fg/PjxOH/+PD788ENYWlrirbfeQtOmTREcHKyeQ3LViprgqQue+hv17t274eLigp49exptv5t+m729PSIiIqDRaLB48WJYWlpi7dq1j7XsNZX+Mz506BAKCgrQv39/NXDe65rob7516tRBeHg4NBoNoqOjcfPmTcTGxt7z3OLh6a+Hl5cX2rRpg6SkJACAubm5mgze1NQUvXr1wqpVqxAXF4fbt29j3rx5RotcS+AUNcFTFzz1N1MLCwsUFBQgMzMTHh4e973JKoqCnJwc3Lx5E15eXpgyZQrMzc0xaNCgx1nsp0JBQQEsLCyg1ZZ/Le93TfSBNT8/H25ubhg7diwKCwtRt27dx1ncGu/uFWv016OsrAxvvPEGJk2ahLfeegsrV65UV1HRarWwtrZG165d4e/vj7lz56JZs2aYMGHCfR+GhKiOntpHwAYNGiAvLw//+c9/AJQPv78b/zut4T//+Q+CgoJw8eJFODs7Y+7cufD29n6cxa3R9J+zq6sr8vLy8PXXX//PY0+dOoUpU6aoQXPRokVqM654eKWlpWrg3LRpE6KjozFr1iwcO3YMJiYmGDx4MPr164eNGzciNDQUAKDVapGTk4OdO3eirKwMo0ePxmuvvYaoqCicP39eAqeoWaqkp/Uxuntkn37wSHJyMu3t7dm5c2f1mPtlQHn77bfZqFEj3rp169EW9imXlpZGS0tLvvbaa2qu2vv55JNPqCgKf/7558dTuKeI4QCroKAgOjk50cnJiXXq1KFWq+Xbb7/NK1eu8JdffuGAAQOoKAqbNWvG4OBgPv/881QURU28v2bNGpqYmPDgwYNV9XaEeCRqfM1TURTk5+fj9OnTyM3NRXFxMQCgefPm6N+/Pw4fPoyBAweqA1N0Oh3KysrU1x89ehRHjhzBSy+9JH01j1BZWRmaNGmC8ePHY9u2bVi8eLFRQgPDloFLly5h27Zt6NGjBzw9PauiuDWa/nseFhaGY8eOITY2FqmpqTh9+jT69OmDpUuX4uDBg6hbty6WLVuGDRs2wMPDAz/88ANKS0vxwQcfqK0Aubm5sLKyuuei40JUa1UdvR+lI0eOMCIigg0aNGCtWrXo4eHBPn36qHM6r169yu7du1NRFL788svMzs42euo+dOgQAwICWKdOHaN5a+Lh3a+Wn5qayp49e1JRFE6dOtVoGhFJXrx4kdHR0bSxsWF8fPxjKOnTKTs7mz4+Ppw5cyZv3LhBkjxw4ABr1arFIUOG8MKFCxVadQoKCozyBx87dox+fn5s166dmoNYiJqixgbPxMRENm7cmI0aNWJISAgnTJjAXr16UVEUmpiYcMWKFSTLE4q/9tprVBSFnp6eHD58OJcvX8433niDrVq1oru7O1NTU6v43dQshosmf/rpp1y+fDkXLVqkrr35888/s0+fPtRoNOzYsSOjo6P5zTffcOXKlXzllVdoaWnJhQsXqueQSfcP7n6fmX77Tz/9RBMTE/VBc9++fbSysuLgwYN5+fJl9Xj9Nbv7HB9++CH9/f3p4OAgTeuiRqqRwTM+Pl5dZ/PuzEEff/wx27dvT61WyyVLlpAk8/Ly+NFHH7Fnz540NTWloihs1KgRw8LC1OWuROUwrNn37duXzs7OtLGxoa2tLV1cXLhgwQIWFBQwIyODS5cupaurKxVFoaIoNDc35wsvvMB169bd83zij9HX+gsLC/nDDz9w+/btPHfunNFDTW5urppB6J///CetrKw4aNAgo8AZHx9PNzc3o21k+dq3/v7+7Ny5M//1r389njclxGNW44JnQkICFUVhRESE0VNxSUmJ+vf+/fvZpUsXarVafvHFFyR/uwlfvHiRGRkZLC0tlcxBj9Dw4cPp5ubGdevWMS0tjdevX2fbtm1pa2urXhOyfKmrb775hlu2bGFKSorRjVoC54PTB87s7Gw+//zztLGxoaIo9PDw4PTp01lcXEyyPKtWUFAQGzduTGtra77xxhvMyclRa6bnz5/niBEj+Pzzz/PSpUsV/j+nTp1Sl+sToiaqUcFz9+7dVBSFL7300j1/0IZNVV988QWdnZ1Zv359o341w2OkOfDROHv2LJs0acKFCxeyoKCAJHn48GFaW1tz5MiR6vX4vfUf5do8OP3nmZWVRQ8PD7Zu3ZpRUVGMj4+nt7c3FUXhggUL1OP2799PMzMz2tjYcOPGjep5Lly4wDlz5tDOzq5Cv7M80IinRY0KnpmZmXR2dqaLi4vRj9rwB21409XnRv3qq68eZzGfet9//z3NzMx4+PBhkuU3aUtLywrNgr/88ktVFbHG0X/vs7Oz2aBBAz733HP85z//qe7Pysqiu7s7fX19ee3aNXX7jh07aGlpyTp16nDEiBGcOnUqX3zxRVpYWHDRokUVzi/E06Laz73gf6czlJaWwt3dHSkpKTAzM8P06dOxdu1aNbepTqcDUD51Rf93SEgIAODs2bNVU/ingOG0Hz0bGxvodDoUFRXh559/Rp8+fRAcHIwlS5agTp06AIDVq1fjzTffxI0bNx53kWskRVFQVFSENm3a4PLly5gxYwb8/PwAALdv34abmxtatWqFW7du4ebNm+rrXnnlFezatQvdu3fHV199hfj4eFhaWmL16tWYPn06gN/WYBXiaVLt0/PpV6TXp3Rzd3dHcnIyOnXqhFmzZkFRFIwYMUINoIZzNa2srAAAZmZmVVL2p4E+S81XX32l5hH28PBAt27dMHbsWPzyyy8ICQlBTEyMGjgzMjJw8OBBaLValJSUVFnZaxpLS0uEhIRg+fLl2LdvH9q2bYu6devCzMwMt2/fxq1bt5CZmYmlS5eiYcOG8PPzwzPPPIPu3buje/fu6jEWFhbqvE1J8i6eWlVc830oR48e5bx589i1a1c1o4m+vyYzM5P16tWjs7Mz165dqzbdGo4onD17Np2cnJienv74C1/DGfZXRkVF0d7enqtWrVK3rVy5krVq1WKdOnW4b98+dfvFixcZFRVFBwcHfvzxx4+1zE+LqVOnUlEUjh8/nhcuXCBJvvXWWzQxMWGLFi3Yvn17KopCU1NTPvPMM1yxYgUPHDigvl7/W5KmWvE0q7Y1z82bNyMqKgparRadO3dG69at1cTU+iZcfQ00MjISADB06FBotVqQRHJyMg4cOIAePXoYLWElHp7+OgBAamoq8vLy4ODggIULF0Kr1WLkyJEICwvDlStX8P7772PIkCEYM2YM7ty5g9TUVHz11VeIiYnBm2++CeD+K96IP87wM4yNjQVJLF26FGZmZsjLy8Mnn3yCtWvXom/fvrCyskJOTg7WrFmDpKQkjB8/HgBw+PBhdOrUSa1pyjURT7Wqjd1/zqZNm6jRaBgWFqYOOrkfwxrounXrqNPp+O9//5sBAQH09PSUzEGVzLA2EhQURG9vb/r6+vLll1+moih0c3Pjhx9+qB4THx/Pvn37snbt2rSzs2OPHj24fv16db+M3nx4v5ezWT+HdtmyZRWO11/LHTt2cNu2bY+8nEJUJ9UueB45coTu7u586623jEZj6ptjs7OzGRERYfQafQDVT8IPCAigjY2NZA6qBPdrups9ezYtLCy4adMmNcn7/v372bJlSzZs2JArV65Uj7116xYvXbrEK1eu8Pr16+p2CZwPz7CbIi4ujqtXrzZKuj9nzhwqisJx48YZTdkqKyu757WVayJEuWoTPPU/2qioKNavX59HjhxR9+mflHNyctihQwcqisKgoCCj12dmZrJRo0ZUFIWOjo5MSUl5fIWvodavX89Vq1YZJaAgydu3bzMwMJCtW7dW9+mv0ffff09vb2+6uLgYZQrSk/60ynN3NicPDw++8MILzMrKMjpu2rRpVBSFEyZM4Pnz5x93MYWolqpN8NRr06YNe/XqVWF7bm4u69SpwzZt2nDUqFE0NzdnQECA0TGZmZls27at1Dgrwa1bt9ScwBs2bDAKoHfu3GFAQACbN2+u1nwMb+R79uyhoihs0KCBUQ1UAubDu1fNcPjw4XR2dmZiYqKaoP3uz1ofQMPDwyWACvEHVJvgqdPpeOfOHTZp0oT9+vWrsH/Xrl0MCAhgeno68/LyOG3aNFpYWLB3795Gx/1e1hrxYC5fvsyhQ4fSwsKC69evN0pnGB4eTo1Gwz179hitl6rT6VhSUsJWrVqxWbNmbN68Obds2VJVb6HGuFeCdpI8ceIE69aty8jISHU92vs9pOiThowYMcJodRQhREVPfPA07AMrKCjgc889xwYNGlSYXlJUVMQbN26oT963bt1SbwYJCQnqcVK7qTw6nY7Z2dkcNGgQzczMGB8fz8LCQpLly715e3uzdevWTElJMXpoOXXqFNu2bcu4uDg2bNiQ/v7+9735i/9t69atbNiw4T2n9uzdu5eKonDPnj0k759tS2/s2LF8//33H1lZhagpnujZzQcPHsSkSZMwePBgAOWZafr3748LFy5g7969RsdaWlrC1tZWHUZvYWEBkmjcuDG6deumHifD6yvHnTt3oCgKXF1dsWDBAvTs2ROTJ0/Gtm3bUFRUBCcnJ8TGxuLq1at48803sXXrVhQVFeH8+fPYvHkzbty4gdGjR+Odd97Bt99+i59++qmq31K15ejoiKysLNy+fbvCPltbWwBATk4OABglNND/Fn788Uc1k9OKFSsQHh4OAEaLkQsh7lLV0ft+EhIS6OHhQV9fX0ZGRhqtetK5c2fWqlVLfZrWM2w2PHz4MDt27MihQ4eqtSFROQxrkePGjaO/vz9bt25NRVFYu3ZtdUpQSUkJd+/ezZYtW6oDtVxcXKgoCufPn0+yfHUOrVbLyMjIqno71Zq+9mg48txw+tbZs2fp4+PD9u3b89SpUySNa5+pqan08fHhZ5999phKLETN8EQGz88++4wWFhYMDQ1lcnJyhf1btmxh3bp1aWtry8TExApLHx09epS9e/emu7u7zOOsJPfqK3799dfp4uLC+fPn8/jx4/zrX//Kbt260cLCgmvXrlVv7EVFRVy4cCHHjBnDiRMnMjExUT1HYmIira2tK6zOIf44nU6nBsTQ0FB6eHhw69at6v533nmHiqJw4MCBRutrXr58mdHR0XR3dzfK8iSE+N+euOB58eJFtmnThkOGDDHqB7t7bc2EhAS2aNGC5ubmDA4O5po1a5iUlMSpU6eyffv2dHFxkVG1leDIkSPqGo+G/vWvf9HOzo4zZsxQ9+t0Op47d479+/dXBxHdXes3rPUcO3aML774Ihs2bKimiRO/7+5+yrt/F19//TW9vLzYoUMHo4FYkyZNoqIo9PHxYWxsLGNjY9mvXz9qtVouXrz4sZRdiJrkiQueKSkptLCw4KeffkrS+GZRUFDANWvWcM2aNTx69Cg/++wzRkREUKvVqplSPDw8GBISwtOnT1fVW6gxDh06RAsLCw4cOLDCFIjvv/+eiqKoNUbDAJuWlkY/Pz/a29szISGBN2/eVPfpa0mTJk1imzZt6OLiInNuH1BJSQl37tzJnJwcddvAgQN57NgxkuXXrWHDhmzXrp1RLf/9999nx44dqdFoqNFo2Lp1a6NsT5IAQYg/7okLnvv27TMaHUiSGRkZXLZsGZs0aaIGSUdHR4aFhTE3N5dpaWn85ptv+Omnn/LChQvqAsvi4Vy/fp2vvPKKUeo2vatXr9LBwYGhoaHqtruTwSuKQgsLC65YscLoISgnJ4dz5sxhv379mJaW9mjfRA10+vRpdunShX5+frxx4wZ79+5NExMT7t27V70G9wugV69e5dmzZ5menm60dqoETiEezBMXPK9cucJ69erR19eXO3bs4O7du/nss89SURT6+fkxOjqaGzZsYGBgIBVFYWxsbFUXuUbS34QNkx+sWrVKrWH++uuvfOONN2hlZWXUX6lPirBx40Z27dqVr776KpcvX17h/Ldv3zaqkYo/rqCggOvXr6e9vT2dnJzo7OzMPXv2qPM49YHQMIDeay6t/oFGpm8J8eCeuOBJlg/4cXJyUmuZVlZWnDBhglFOzl9++YXe3t7s0KFD1RW0hrnXTVQfRJctW0aNRsNx48apAfS7776jl5cXvby8uHbtWvU1OTk5HD58OAcNGiStAI9IcXExW7VqRUVR2KxZMzUvrU6nU/8hfwugvr6+koxCiEqkkE/mZC79XE5LS0s0bdoUHTt2BPDb4rt37txBhw4dYGlpieTk5CoubfWn/1wLCwtx5swZZGRk4Pnnn4ednR0sLCxw/fp1TJkyBV9//TUCAwPx/vvvw8LCAnv27EF4eDguXLiA4OBgNGjQAOnp6di+fTtWr16NESNGAJBlxSqD/hqRxIULF7Bo0SJotVokJCSgRYsW+Oyzz9Tl9XQ6HRRFgaIoOHz4MPr37w8LCwt8+eWXaNy4cRW/EyFqgKqN3Q/GcGTh119/TU9PT4aHh993BQjxx+hrl9nZ2fT396e9vT0VRWH9+vUZGxvLzMxMkuSNGzc4bNgwenh4cMyYMWoz4ZEjRzh+/HjWrVuXpqambNSokbo4OSnNgpXh7gxN+tr/tWvXuG7dOtrb2/O5554zGkRE/vabOXDggNFSb0KIh/PE1jzvVlZWBhMTEwDATz/9hMjISJw8eRIHDx6El5dXFZeu+tJ/rtnZ2fD19UXt2rXx2muvwdraGp9++inOnDmD9957D6NHjwYAFBQUYOLEidi3bx+CgoLUGmhJSQl0Oh1yc3NhamoKNzc3AL/VlsSfZ/jdHz16NE6dOoVevXohMjISpqamKCgowObNmzFjxgw0a9YM27Ztg4uLC/Lz87Fp0ya0a9cOnTp1Us9HaQUQ4uFVcfD+w/S1l2XLlrF79+50dXWVeZwPSf+ZZmVl0dPTk506dTJKSvHjjz/Sy8uLzZs3Z3FxsXp8fn6+WgMNCwurMA9UBqL8eXd/doafYZ8+fejh4cGoqKgK82Lz8/P50Ucf0d7enp07d2ZiYiJnzZpVYaFrIUTlqDbBMy8vj506daKzszN79+4tUxwqyc2bN9mqVStqtVp+9913RvuKiorYrVs3Nm3atEIWp+vXr3Po0KH09PTk6NGj75lIQTy4u9fa1IuMjKSzszO3bt3KGzduGO3Tj4i+fv06169fT09PTyqKQhsbGy5atOiRl1mIp1G1abYFgFOnTiEjIwOdOnWCo6NjVRenRsjPz8fs2bOxevVqTJgwAQsWLIBWq4VGo0FxcTGCgoJw/PhxjB49Gm5ubggMDISNjQ3q1KmjNuH+/e9/x5dffgl/f/+qfjvV2vbt2zFt2jTExcXh5ZdfVrcXFRUhKCgINjY22LFjBwDg2rVrOH78OHbt2oXCwkKMGzcObdu2RXFxMbKyspCcnAx3d3d07doVgDSfC1Hpqjp6i6p348YNTp06lYqicMqUKepAoDFjxqgp3Xx8fKjRaGhpaclnnnmGK1eu5IkTJ3j79m0eOHCgit9BzbB+/Xo1sb6hmzdvslu3bvTz82NhYSFTU1PZs2dPOjk5sVatWrSxsaGZmRl//vnne55XEiAIUfkkeAqSxgE0MjKSoaGhtLS05KZNm5iXl0edTse0tDTOnj2b7du3V+fgHjlyRD2H3KQfnmHi9hMnTpAs7/dctGgRHR0d6eDgoCYMeeedd0iSSUlJdHR0ZEREBEm5DkI8DtWq2VY8Wvn5+YiOjkZcXBzu3LmD+Ph4DBo0CKampkbHXb9+HSkpKbh8+TIGDRpURaWtWe5uVh0/fjx27tyJ9evX48UXX0RZWRn+9re/IS0tDZ6enggMDESDBg0AACkpKXj55Zcxc+ZMTJw4sYregRBPF21VF0A8OWxtbREVFQVLS0ssWrQIqampGDBggLpfP2XCzs7OqH9T+tMe3t1TR9q0aYOkpCTMnDkT8+fPR48ePTBs2LAKr7t06RK2b98OjUaDFi1aPKbSCiEkeAojdnZ2mDp1KoqLi/Hee+/BxMQEf/nLX2Btba3ONbz7Ri+B8+HwHvMuR40aBSsrK8TExGDmzJkwMTFB9+7djY759ttvkZCQgI0bNyI6Ohovvvji4yy2EE+3Km42Fk8owz7Q6dOnSxL3R8RwHme/fv04f/58o/0JCQn08fFhhw4djAZmffLJJ3R3d6e3tzfj4uLU7dLfKcTjITVPcU/6JlyNRoPFixejoKAAy5Ytg1YrX5nKUlpaqn6e6enpuHXrFqKiouDm5oaRI0cCgNqnHBMTg4iICCxevBjdunVDcHAwSkpK0LRpU/j6+gKQ5nMhHicZMCR+V35+PiIjI9G0aVMZjFKJDANdWFgYzpw5g9zcXJw8eRIAsGzZMkyYMEE9/u9//ztiYmJQu3Zt/OUvf0GvXr2MzkdJuSfEYyXBU/xPt2/fhpmZWVUXo0YaMGAAkpKSMGPGDPTu3Rs//vgjEhISsHfvXixduhTh4eHqsYmJiZg1axZMTEywf/9+1K1bVwKmEFVE2uDE/ySB89E4d+4c9u7di5EjRyIsLAyWlpbw8fFBu3bt4OrqiilTpkCr1WL8+PEAygNtcXExNBoN6tWrV8WlF+LpJsFTiCry66+/Ij8/Hx07doSlpSVKSkpgbm6OZs2aYerUqUhPT8fEiRNhZmaG0NBQADCariJNtUJUHRldIEQV8fb2hrOzMz7//HMAgLm5OcrKygAALVq0UOfYhoWF4YMPPgBQHjD1JHAKUXUkeArxiOl0untu12q16N69O/bu3YtVq1YBAExMTHDnzh0AgKOjI3x9fTF8+HBMnDgRu3fvloApxBNCBgwJ8QgZTkdJSUlBZmYmXF1d4e7uDnd3d5w/fx4vvPACysrKMGvWLLV/MycnBzExMeqKKSNGjICtrS127doFe3v7qnxLQghI8BTikTGcjjJw4EDs27cP165dAwB4enpixYoVCAwMxLlz59CzZ0/k5uaiS5cu6NixI44fP449e/Zg1apVGDVqFGbMmIHly5cjLS0N9evXr8q3JYSANNsK8cjoA+egQYOQlJSE8PBwJCcnY+HChbC3t0dwcDA++ugjNGnSBElJSRg8eDDOnTuHBQsW4PTp04iNjcWoUaMAlE8XsrS0rMq3I4QwIDVPIR6h1NRUdO/eHZMmTcLUqVNhZWUFADh69ChiYmKwd+9e7NmzBz169EBJSQk0Gg2ysrJgZmYGNzc3AMAPP/yA0NBQtdm2Vq1aVfmWhBCQqSpCPFKZmZn49ddf0aNHD1hZWakJJ/z8/BAZGYmzZ89i6tSpSEpKgoODA4DyJl2gfGRtYmIiNm7ciAsXLuDbb7+VwCnEE0KabYX4k/5Io42HhwcAICkpCUB5wgn9dJTnnnsOffv2xenTp5Gfn1/htevXr8fkyZNx9epVHDx4EC1btqzE0gshHobUPIX4E/QJCm7evAkTExNYWFjc8zhnZ2d4e3sjISEBXbp0wQsvvKBORzE1NUXz5s1x584dFBYWVnjtyJEj0ahRI/j4+KhNuEKIJ4PUPIX4E/SBs23btggPD0dRUdE9j3N3d8fy5ctx5swZzJ8/X62BmpqaIjs7GwcOHEDjxo0rTD/R1079/f0lcArxBJKapxB/Ekl069YN8fHxqFWrFubNm6cOCDI8pmfPntiwYQOGDRuG9PR0/N///R+8vb3x7bffIjExEUuXLlWbd/X0C48LIZ5MMtpWiIeQn5+PmJgYvPfee3j77bfvGUD1vvnmG8yYMQMnTpzArVu30KRJE4wfP15dekxy1QpRfUjwFOIh/a8Aqv+JKYqCkydPwtzcHCYmJjA3N4e7uzsAWchaiOpGmm2FeEi2traIiooCALz33nsAYBRA9bXJ9PR0xMTEICMjA/v374eNjQ2A8uAqgVOI6kWCpxCV4F4BdO7cuWqA/Pe//40lS5bgk08+wezZs9XtgKyOIkR1JMFTiEpyrwC6ePFiZGRkIDY2FqtXr8Y777yD6dOnA5A+TiGqMwmeQlSiuwPojRs3QBLr1q0zCpzSxylE9SYDhoR4BPLz87Fw4UIsXrwYAPDuu+9i2rRpACRwClETSM1TiEfA1tYWkZGRuHPnDho1aoSxY8cCkMApRE0hNU8hHqGSkhKYm5sDkMApRE0iwVMIIYR4QPIYLIQQQjwgCZ5CCCHEA5LgKYQQQjwgCZ5CCCHEA5LgKYQQQjwgCZ5CCCHEA5LgKYQQQjwgCZ5CCCHEA5LgKYQQQjwgCZ5CCCHEA/p/1oWJ2XxylnkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 320 ms (started: 2024-10-26 13:24:49 +00:00)\n" ] } ], "source": [ "ml.compareEstimatorsInGridSearch(rs1,tableorplot='plot',figsize=(4,4))" ] }, { "cell_type": "markdown", "metadata": { "id": "tGAA_rU6ejvw" }, "source": [ "Halvingde 1 puanlık bir artımız bile olmuş, süre performansı cabası(*randomlık nedeniyle notebook her çalışıtğında burdaki değer ve yapılacak yorum da değişecektir*)\n", "\n", " Şimdi şunu yapabiliriz. rs1'in sonuçlarına bakıp rakamsal parametrelerden en iyi olanların yeni değer uzayını daraltıp şimdi bu sefer tekrar halvingli random kullanabilir ve performansta bir tık daha iyileşme sağlayabiliriz." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 538 }, "executionInfo": { "elapsed": 17, "status": "ok", "timestamp": 1729949090584, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "C0728V2-7Naa", "outputId": "fd092ca6-bb52-4a60-8e8e-ec96882ad4bd" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"ml\",\n \"rows\": 15,\n \"fields\": [\n {\n \"column\": 29,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 13,\n \"samples\": [\n 0.7880540904500056,\n 1e-05,\n \"StandardScaler()\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
29
param_ct__numerics__sclStandardScaler()
param_ct__numerics__ouhOutlierHandler(featureindices=[0, 3])
param_clf__tol0.001
param_clf__penaltyl1
param_clf__learning_rateconstant
param_clf__l1_ratio0.5
param_clf__eta00.01
param_clf__early_stoppingTrue
param_clf__class_weightbalanced
param_clf__alpha0.00001
param_clfSGDClassifier(loss='log_loss', max_iter=4000, ...
param_clf__solverNaN
param_clf__CNaN
mean_test_score0.788054
std_test_score0.034758
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " 29\n", "param_ct__numerics__scl StandardScaler()\n", "param_ct__numerics__ouh OutlierHandler(featureindices=[0, 3])\n", "param_clf__tol 0.001\n", "param_clf__penalty l1\n", "param_clf__learning_rate constant\n", "param_clf__l1_ratio 0.5\n", "param_clf__eta0 0.01\n", "param_clf__early_stopping True\n", "param_clf__class_weight balanced\n", "param_clf__alpha 0.00001\n", "param_clf SGDClassifier(loss='log_loss', max_iter=4000, ...\n", "param_clf__solver NaN\n", "param_clf__C NaN\n", "mean_test_score 0.788054\n", "std_test_score 0.034758" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 13.6 ms (started: 2024-10-26 13:24:50 +00:00)\n" ] } ], "source": [ "ml.gridsearch_to_df(rs1,1).T" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 823 }, "executionInfo": { "elapsed": 60230, "status": "ok", "timestamp": 1729949150799, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "xLZrEiiPejvw", "outputId": "a8c4ba6b-855a-4ea9-8b0d-99f3715e565c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n_iterations: 3\n", "n_required_iterations: 3\n", "n_possible_iterations: 3\n", "min_resources_: 50\n", "max_resources_: 668\n", "aggressive_elimination: False\n", "factor: 3\n", "----------\n", "iter: 0\n", "n_candidates: 13\n", "n_resources: 50\n", "Fitting 50 folds for each of 13 candidates, totalling 650 fits\n", "----------\n", "iter: 1\n", "n_candidates: 5\n", "n_resources: 150\n", "Fitting 50 folds for each of 5 candidates, totalling 250 fits\n", "----------\n", "iter: 2\n", "n_candidates: 2\n", "n_resources: 450\n", "Fitting 50 folds for each of 2 candidates, totalling 100 fits\n", "CPU times: user 4.39 s, sys: 135 ms, total: 4.53 s\n", "Wall time: 59.8 s\n" ] }, { "data": { "text/html": [ "
HalvingRandomSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n",
       "                      error_score='raise',\n",
       "                      estimator=Pipeline(steps=[('log',\n",
       "                                                 FunctionTransformer(func=<function logTransformer at 0x7e7147611b40>,\n",
       "                                                                     kw_args={'col_name': 'Fare'})),\n",
       "                                                ('ct',\n",
       "                                                 ColumnTransformer(n_jobs=-1,\n",
       "                                                                   remainder='passthrough',\n",
       "                                                                   transformers=[('nominals',\n",
       "                                                                                  Pipeline(steps=[('ohe',\n",
       "                                                                                                   OneHotEncoder(d...\n",
       "                                            'clf__class_weight': ['balanced'],\n",
       "                                            'clf__early_stopping': [True,\n",
       "                                                                    False],\n",
       "                                            'clf__eta0': [0.005, 0.01, 0.02],\n",
       "                                            'clf__l1_ratio': [0.3, 0.5, 0.7],\n",
       "                                            'clf__learning_rate': ['adaptive'],\n",
       "                                            'clf__penalty': ['l1'],\n",
       "                                            'clf__tol': [0.0005, 0.001, 0.002,\n",
       "                                                         0.005],\n",
       "                                            'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n",
       "                                                                                                 3]),\n",
       "                                                                  None],\n",
       "                                            'ct__numerics__scl': [StandardScaler()]}],\n",
       "                      scoring='accuracy', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "HalvingRandomSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n", " error_score='raise',\n", " estimator=Pipeline(steps=[('log',\n", " FunctionTransformer(func=,\n", " kw_args={'col_name': 'Fare'})),\n", " ('ct',\n", " ColumnTransformer(n_jobs=-1,\n", " remainder='passthrough',\n", " transformers=[('nominals',\n", " Pipeline(steps=[('ohe',\n", " OneHotEncoder(d...\n", " 'clf__class_weight': ['balanced'],\n", " 'clf__early_stopping': [True,\n", " False],\n", " 'clf__eta0': [0.005, 0.01, 0.02],\n", " 'clf__l1_ratio': [0.3, 0.5, 0.7],\n", " 'clf__learning_rate': ['adaptive'],\n", " 'clf__penalty': ['l1'],\n", " 'clf__tol': [0.0005, 0.001, 0.002,\n", " 0.005],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n", " 3]),\n", " None],\n", " 'ct__numerics__scl': [StandardScaler()]}],\n", " scoring='accuracy', verbose=1)" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 1min (started: 2024-10-26 13:24:50 +00:00)\n" ] } ], "source": [ "%%time\n", "params= [\n", " {\n", " 'clf' : [SGDClassifier(loss='log_loss',max_iter=mi,random_state=42)],\n", " 'clf__alpha' : [0.001, 0.002, 0.005],\n", " 'clf__tol' : [0.0005, 0.001,0.002,0.005],\n", " 'clf__penalty' : ['l1'],\n", " 'clf__l1_ratio' : [0.3, 0.5, 0.7],\n", " 'clf__learning_rate': ['adaptive'],\n", " 'clf__eta0' : [0.005, 0.01, 0.02],\n", " 'clf__early_stopping':[True,False],\n", " 'clf__class_weight': ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl' : [StandardScaler()]\n", " }\n", "]\n", "\n", "hrs2 = HalvingRandomSearchCV(estimator = pipe, param_distributions = params, cv = mycv, n_jobs=-1, verbose = 1,\n", " scoring = 'accuracy',error_score='raise',min_resources=min_res,factor=fact)\n", "\n", "hrs2.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 41, "status": "ok", "timestamp": 1729949150801, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "_-CSLpu2ejvw", "outputId": "508b96bd-5d09-4add-b866-cb111df84d7c" }, "outputs": [ { "data": { "text/plain": [ "0.7960374531835206" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 3.76 ms (started: 2024-10-26 13:25:50 +00:00)\n" ] } ], "source": [ "hrs2.best_score_" ] }, { "cell_type": "markdown", "metadata": { "id": "QYCTM-ohejvw" }, "source": [ "Çok da işe yaramadı, ilk bulduğumuz sonuçlar daha iyiydi, belki birkaç kez çalıştırmak gerekebilir. Bununla birlikte \"titanic logistic regression\" diye bir google araması yaparsanız zaten çoğu kişin %80 civarı bir accuracy bulduğunu görürsünüz. Başka neler yapılarak skor iyileştirilebilir:\n", "\n", "- kişilerin ismindeki Mr., Mrs gibi ünvanlar çıkartılabilir\n", "- yukarda söylediğimiz ama yapmadığımız, age için minimum yaş olarak 2 belirlenebilir, hatta age alanı belki discretize edilebilir\n", "- fare featuru da discretize edilebilir\n", "- age alanının simpleimputer yapmak yerine, iterativeimputer yapılabilir. yukarıdaki pipelineımız bunu destekler nitelikte, orada aynı işlem için istediğimiz kadar transformer kullanabiliyoruz(scalerlarda yaptığmız gibi)\n", "- ve şuan aklıma gelmeyen, sizin aklınıza gelebilecek diğer yöntemler\n", "- tabiki son olarak, LogReg dışında başka algoritmalar denenebilir." ] }, { "cell_type": "markdown", "metadata": { "id": "Vv872J_5ejvx" }, "source": [ "### Model değerlendirme(evaluation)" ] }, { "cell_type": "markdown", "metadata": { "id": "zLDYB2aFG-QC" }, "source": [ "#### Confusion Matrix ve Classification Report" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 476 }, "executionInfo": { "elapsed": 559, "status": "ok", "timestamp": 1729949151344, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Q9ECBiXbejvx", "outputId": "deb0a9de-b695-4091-bb79-f818d485b94e" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAG5CAYAAABrx4bMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCs0lEQVR4nO3de1hU1foH8O8AMoAwIzcFFMR7JioqahqKJiJZaqaomZqK0k0tyzT5aZoepBIpq6PlybS8VB61m2UqJomCKAp5OZrmLUC8CwMCM8zM/v3BYY7TgM4NZmB/P8+zn3PYe+293kHiZb177bUlgiAIICIiogbNwdYBEBERUe1jwiciIhIBJnwiIiIRYMInIiISASZ8IiIiEWDCJyIiEgEmfCIiIhFwsnUAtUWr1eLKlSvw8PCARCKxdThERGQiQRBQXFyMgIAAODjUzvi0vLwcKpXKKtdydnaGi4uLVa5VGxpswr9y5QoCAwNtHQYREVkoNzcXLVq0sPp1y8vL0aqlO65e11jlen5+frh48aLdJv0Gm/A9PDwAAJePBUPmzjsX1DA9PmuyrUMgqjVqdTmyUpbpfp9bm0qlwtXrGlw+GgyZh2V5QlGsRcsel6BSqZjw61pVGV/m7mDxPySRvXJqZJ+/WIisqbZvy7p7SODuYVkfWtj/reMGm/CJiIiMoRG00Fj4VhmNoLVOMLWICZ+IiERNCwFaWJbxLT2/LrDWTUREJAIc4RMRkahpoYWlBXnLr1D7mPCJiEjUNIIAjWBZSd7S8+sCS/pEREQiwBE+ERGJmlgm7THhExGRqGkhQCOChM+SPhERkQhwhE9ERKLGkj4REZEIcJY+ERERNRgc4RMRkahp/7tZeg17x4RPRESiprHCLH1Lz68LTPhERCRqGgFWeFuedWKpTbyHT0REJAIc4RMRkajxHj4REZEIaCGBBhKLr2HvWNInIiISAY7wiYhI1LRC5WbpNewdEz4REYmaxgolfUvPrwss6RMREYkAR/hERCRqYhnhM+ETEZGoaQUJtIKFs/QtPL8usKRPREQkAhzhExGRqLGkT0REJAIaOEBjYcFbY6VYahMTPhERiZpghXv4Au/hExERkT3gCJ+IiESN9/CJiIhEQCM4QCNYeA+/Hiyty5I+ERGRCHCET0REoqaFBFoLx79a2P8QnwmfiIhETSz38FnSJyIisoGjR48iOjoaMpkMHh4eiIqKQk5OTrVt09PTER4eDjc3N/j5+WHWrFkoKSkxqT+O8ImISNSsM2nPtJL+sWPHEB4ejsDAQCxatAharRarVq1CREQEDh8+jA4dOuja5uTkYNCgQejYsSOSk5ORl5eHpKQknDt3Djt37jS6TyZ8IiIStcp7+Ba+PMfE8xcuXAhXV1dkZGTA29sbADBhwgS0b98e8fHx2LZtm65tfHw8PD09kZqaCplMBgAIDg7G9OnTsXv3bkRFRRnVJ0v6REREdSwtLQ2RkZG6ZA8A/v7+iIiIwI4dO3TleoVCgT179mDChAm6ZA8AkyZNgru7O7Zs2WJ0nxzhExGRqGmtsJZ+1Sx9hUKht18qlUIqlRq0VyqVcHV1Ndjv5uYGlUqFkydP4pFHHsGJEyegVqsRFham187Z2RmhoaHIzs42OkaO8ImISNSq7uFbugFAYGAg5HK5bktMTKy2zw4dOuDQoUPQaP732h2VSoXMzEwAQH5+PgCgoKAAQOXo/+/8/f1x5coVoz8nR/hERCRqWjhY7Tn83NxcvdJ7daN7AHjppZfw4osvIjY2FnPnzoVWq8U//vEPXYIvKyvT+9/qruPi4qI7bgyO8ImIiKxEJpPpbTUl/BdeeAHx8fHYvHkzOnXqhM6dO+P8+fOYO3cuAMDd3R0AdGV/pVJpcI3y8vJqbwvUhAmfiIhETSNIrLKZKiEhAdeuXUNaWhqOHz+OI0eOQKvVAgDat28P4H+l/KqR/70KCgoQEBBgdH9M+EREJGqa/07as3Qzh6enJ8LDw9G5c2cAQEpKClq0aIGHHnoIABASEgInJydkZWXpnadSqZCTk4PQ0FCj+2LCJyIisgPffPMNjhw5gldffRUODpXpWS6XIzIyEhs3bkRxcbGu7YYNG1BSUoKYmBijr89Je0REJGpawQFaC1fa05q40t7+/fuxZMkSREVFwdvbG4cOHcK6desQHR2NV155Ra9tQkIC+vbti4iICMTFxSEvLw8rVqxAVFQUoqOjje6TCZ+IiETNkpL8/65hWsJv3rw5HB0dsXz5chQXF6NVq1b4xz/+gddeew1OTvqpuXv37khJScG8efMwe/ZseHh4IDY2tsZH/mrChE9ERFTH2rRpg127dhndPjw8HAcPHrSoTyZ8IiISNS1g1iz7v1/D3jHhExGRqFln4R37nwNv/xESERGRxTjCJyIiUbt3LXxLrmHvmPCJiEjUtJCY/D776q5h75jwiYhI1MQywrf/CImIiMhiHOETEZGoWWfhHfsfPzPhExGRqGkFCbSWPodv4fl1wf7/JCEiIiKLcYRPRESiprVCSb8+LLzDhE9ERKJmnbfl2X/Ct/8IiYiIyGIc4RMRkahpIIHGwoVzLD2/LjDhExGRqLGkT0RERA0GR/hERCRqGlhektdYJ5RaxYRPRESiJpaSPhM+ERGJGl+eQ0RERA0GR/hERCRqAiQWv89e4GN5RERE9o0lfSIiImowOMInIiJRE8vrcZnwiYhI1DRWeFuepefXBfuPkIiIiCzGET4REYkaS/pEREQioIUDtBYWvC09vy7Yf4RERERkMY7wiYhI1DSCBBoLS/KWnl8XmPCJiEjUeA+fiIhIBAQrvC1P4Ep7REREVJ1z585h3LhxaNGiBdzc3PDQQw9hyZIlKC0t1WuXnp6O8PBwuLm5wc/PD7NmzUJJSYnJ/XGET0REoqaBBBoLX35j6vm5ubno1asX5HI5ZsyYAS8vL2RkZGDRokU4evQovv/+ewBATk4OBg0ahI4dOyI5ORl5eXlISkrCuXPnsHPnTpP6ZMInIiJR0wqW34PXCqa137BhAwoLC3HgwAF06tQJABAXFwetVosvv/wSd+7cgaenJ+Lj4+Hp6YnU1FTIZDIAQHBwMKZPn47du3cjKirK6D5Z0iciIqpjCoUCANCsWTO9/f7+/nBwcICzszMUCgX27NmDCRMm6JI9AEyaNAnu7u7YsmWLSX3a5QhfqVTirbfewoYNG3Dnzh106dIF//jHPzB48GBbhyZ6pSUO+OI9f6TvlKPwlhPadCrDi0vz0CG0DABw54YT1iYE4OhvHrhb5IiQR0rw8j/y0Ly1ysaREz3YiIj/YETEafh5FwMALl3xxBc/dUfmyUAAgJesFC+OzkSPjvlwc6lA7jU5NvzcDfuPtbJl2GQhrRUm7VWdX5XIq0ilUkilUoP2AwYMwLvvvovY2Fi8/fbb8Pb2Rnp6OlavXo1Zs2ahcePGOHjwINRqNcLCwvTOdXZ2RmhoKLKzs02K0S5H+JMnT0ZycjKeffZZrFy5Eo6Ojhg6dCgOHDhg69BE7/3XA3FsvzvmfnQZn+w9gx4RxXhzbFvcLGgEQQDentoKBZedsXjdBfxz9x9o1kKFN8e2RXmpXf6oEem5cacxPt3eE9MTRiIu4Skc+yMACS/tRrD/bQBA/NRUBDYrQvw/ozDl7VHYfywYi+P2ol3gTRtHTpbQQmKVDQACAwMhl8t1W2JiYrV9RkdHY+nSpdizZw+6deuGoKAgjBs3DjNnzsT7778PACgoKABQOer/O39/f1y5csWkz2l3I/zDhw/j66+/xvLlyzFnzhwAleWLkJAQzJ07F+np6TaOULyUZRIc+LkJFq+7iM6P3AUATJxzFYf2yLDjS29Ejr6D00cb49N9ZxDcoRwAMPOdPIzr2gn7vm2Cx5+9bcvwiR4o/XhLva8/+64nRkScxsOtr+NSgRc6tb6G9zeH48ylpgCADT93R0zkSbRveRPncn1sETLZmdzcXL3ye3Wj+yrBwcHo378/Ro0aBW9vb/z0009YtmwZ/Pz8MGPGDJSVldV4DRcXF91xY9ldwt+6dSscHR0RFxen2+fi4oLY2FjEx8cjNzcXgYGBNoxQvDQaCbQaCZylWr39UhctTh12R8TwQgDQO+7gADRyFnDqiDsTPtUrDhItBoRdhItzBU5dqLzPeupCMwwMO4+M44EoKZNiYNgFODfSIOcPwxEY1R/WXGlPJpPpJfyafP3114iLi8PZs2fRokULAMDTTz8NrVaLefPm4ZlnnoGrqyuAytvcf1deXq47biy7S/jZ2dlo3769wTesV69eACofUWDCtw03dy069riLzR/4IajdJTTxVSP1O0+cPtoYAcFKBLYtR9PmKnye6I9X3s2Di5sW29f44maBM25fs7sfNaJqtW5+G/+c9z2cG2lQpmyEBasH43KBJwBg8aeDsChuL3Z8sAFqjQTlKicsWD0Y+TfkNo6aLGHNe/jGWrVqFbp166ZL9lWGDx+O9evXIzs7W1fKryrt36ugoAABAQEm9Wl3N1YLCgpqvF8BoMZ7FkqlEgqFQm8j65v70WUIAjC+ewieDO6K79b6YMBTdyBxAJwaAW+tvYj88y4Y/XBnDG/TBb+nu6PnYwpI7O4njah6f12VY9rSp/Fi4gh8/1tHxE/5DS397wAAYkdkwd1NhdnJQxGXMBJb9nTG4ri9aN2c1SsyzbVr16DRaAz2V1RUAADUajVCQkLg5OSErKwsvTYqlQo5OTkIDQ01qU+7+zVcVlZW4/2KquPVSUxM1JsowSpA7QgIViFp+5/4/s/j2Jh1Ch/9fA7qCgn8W1aWnNp1KcPqlD+w/cxxfJVzEss2X4DijiP8gwxLUkT2SK1xRP4NOc7+5Yt/fdsLf+Z5YfSgkwjwVeDpx/6Dd9f3x7EzzXE+zxtf7OiBPy774KkBp2wdNllAC4luPX2zNxMX3mnfvj2ys7Nx9uxZvf1fffUVHBwc0KVLF8jlckRGRmLjxo0oLi7WtdmwYQNKSkoQExNjUp92l/BdXV1rvF9Rdbw68+fPR1FRkW7Lzc2t1TjFzsVNC+9mahQXOuLobzL0GaJfUWks06KJtwb5F5xx7nc3g+NE9YWDREAjJw1cnNUAAOFv93q1Wgkc7P+9KXQfghVm6AsmJvw33ngDGo0G/fr1w9KlS7Fq1SoMHToU3333HaZOnaor1yckJOD27duIiIjAJ598ggULFmDGjBmIiopCdHS0SX3a3Y1Vf39/5OfnG+yvuodR0z2Lmp51JOvKSvWAIACBbZTIv+iMz5Y2R2DbckSNvQUA2P+jHHJvDZo2V+HiaRd88lYL9IkuQo8BxQ+4MpHtTR95GJknA3H9tjvcXCowqNefCG1fgDdWPo7LV5sg75oMr084gFVbe0Nx1wXhoZcQ1jEfb348xNahkwVs8ba8/v37Iz09HYsXL8aqVatw69YttGrVCgkJCZg7d66uXffu3ZGSkoJ58+Zh9uzZ8PDwQGxsbI2P+92P3SX80NBQ7Nu3DwqFQm/iXmZmpu442c5dhSPWJfrjZkEjeDTR4NGhhZjyZgGcGlUev32tET5d3ByFN53g1VSNyJjbGP/qNdsGTWQkT48yxE9Jhbe8FHfLnHE+3wtvrHwcWacrJ1bN/Sgazz99GIkzdsNVWoH86zIkrh+AzJNBNo6c6qNevXrh559/fmC78PBwHDx40OL+JIIgmLgCcO3KzMzEI488ovccvlKpREhICLy9vXHo0CGjrqNQKCCXy3HnbGvIPOzuzgWRVUTc8/gqUUOjrijHoV/eQlFRkVGPupmqKk+M3DMFjRo7W3StirsqfDt4Xa3Fag12N8Lv3bs3YmJiMH/+fFy/fh1t27bFF198gUuXLmHt2rW2Do+IiBoYW5T0bcHuEj4AfPnll1i4cKHeWvo7duxA//79bR0aERFRvWSXCd/FxQXLly/H8uXLbR0KERE1cPeuhW/JNeydXSZ8IiKiuiKWkj5nsxEREYkAR/hERCRqYhnhM+ETEZGoiSXhs6RPREQkAhzhExGRqIllhM+ET0REoibA8sfq7GrJ2how4RMRkaiJZYTPe/hEREQiwBE+ERGJmlhG+Ez4REQkamJJ+CzpExERiQBH+EREJGpiGeEz4RMRkagJggSChQnb0vPrAkv6REREIsARPhERiZoWEosX3rH0/LrAhE9ERKImlnv4LOkTERGJAEf4REQkamKZtMeET0REoiaWkj4TPhERiZpYRvi8h09ERCQCHOETEZGoCVYo6deHET4TPhERiZoAQBAsv4a9Y0mfiIhIBDjCJyIiUdNCAglX2iMiImrYOEufiIiIGgwmfCIiErWqhXcs3UwxefJkSCSSGrf8/Hxd2/T0dISHh8PNzQ1+fn6YNWsWSkpKTP6cLOkTEZGoCYIVZumbeP7zzz+PyMjIv11DwAsvvIDg4GA0b94cAJCTk4NBgwahY8eOSE5ORl5eHpKSknDu3Dns3LnTpD6Z8ImIiOpYnz590KdPH719Bw4cQGlpKZ599lndvvj4eHh6eiI1NRUymQwAEBwcjOnTp2P37t2Iiooyuk+W9ImISNSqJu1Zullq8+bNkEgkGD9+PABAoVBgz549mDBhgi7ZA8CkSZPg7u6OLVu2mHR9jvCJiEjUrDlLX6FQ6O2XSqWQSqUPPL+iogJbtmxB3759ERwcDAA4ceIE1Go1wsLC9No6OzsjNDQU2dnZJsXIET4REYmaNSftBQYGQi6X67bExESjYti1axdu3bqlV84vKCgAAPj7+xu09/f3x5UrV0z6nBzhExERWUlubq5e+d2Y0T1QWc5v1KgRxowZo9tXVlZW4zVcXFx0x43FhE9ERKJmzVn6MplML+Ebo6SkBN9//z2GDBkCb29v3X5XV1cAgFKpNDinvLxcd9xYTPhERCRqlQnf0nv45p/73XffGczOB/5Xyq8q7d+roKAAAQEBJvXDe/hEREQ2tGnTJri7u2P48OF6+0NCQuDk5ISsrCy9/SqVCjk5OQgNDTWpHyZ8IiISNVs+lnfjxg2kpKRg5MiRcHNz0zsml8sRGRmJjRs3ori4WLd/w4YNKCkpQUxMjEl9GVXS/+uvv0y66L2CgoLMPpeIiKi2CbD8ffbmnv/NN99ArVYblPOrJCQkoG/fvoiIiEBcXBzy8vKwYsUKREVFITo62qS+jEr4wcHBkEhM/+tFIpFArVabfB4REZEYbNq0CU2bNjVYZrdK9+7dkZKSgnnz5mH27Nnw8PBAbGys0Y/73cuohD9p0iSzEj4REZG9s+XrcTMyMh7YJjw8HAcPHjTr+vcyKuGvX7/e4o6IiIjski1r+nWIj+UREZG4WWMtfCuspV/bLEr4KpUKKSkpOHPmDO7evYuFCxcCqFwQQKFQwMfHBw4OfBCAiIjI1szOxj/88AOCgoIwbNgwzJkzB4sXL9YdO378OPz9/fH1119bI0YiIqJaU7XSnqWbvTMr4R88eBCjR4+GVCrFypUrda/yq9KrVy+0bdsW27Zts0qQREREtcVeXo9b28wq6S9duhRNmjTB0aNH4ePjg1u3bhm0CQsLQ2ZmpsUBEhERkeXMGuFnZmZixIgR8PHxqbFNYGAgrl69anZgREREdUKQWGezc2aN8JVK5QPfBlRYWMgJe0REZPes+bY8e2ZWRm7dujWOHDly3zYZGRl46KGHzAqKiIiIrMushD9q1CgcPHgQ69atq/Z4UlISTp48ibFjx1oUHBERUa0TrLTZObNK+m+88Qa2bduGadOmYfPmzVAqlQCAuXPnIiMjA+np6QgNDcWMGTOsGiwREZG12XJp3bpkVsJ3d3dHWloaZsyYgS1btkCj0QCoHNlLJBKMGTMGq1atglQqtWqwREREZB6zV9rz9PTEpk2b8OGHH+LIkSO4ffs2ZDIZevbsiWbNmlkzRiIiotpVD0rylrJ4LX1vb2+T38lLRERkL1jSN1J2djays7NRVFQEuVyObt26oVu3btaIjYiIqPbxbXn3d+TIEUyfPh0nTpwAAAiCAImk8i+czp0747PPPkNYWJh1oiQiIiKLmJXwjx07hoEDB6K0tBSDBg1Cv3790KxZM1y7dg379+/Hr7/+ioEDByItLQ2hoaFWDpmIiMiaJP/dLL2GfTMr4c+fPx8VFRXYtWsXBg8ebHB8165dGDZsGN5880388ssvFgdJRERUa0RS0jdr4Z309HTExMRUm+wBYMiQIRg9ejTS09MtCo6IiIisw6wRvpOTE1q2bHnfNq1atYKjo6NZQREREdUZkYzwzUr4ffv2feCrbw8dOoTw8HCzgiIiIqoz1njbXT14LM+skv7y5ctx9OhRLFiwAKWlpXrHSktLER8fj+zsbLz33ntWCZKIiIgsY9QIf+rUqQb7unTpgsTERKxevRrdunXTzdLPzs5GYWEh+vXrh6SkJKxdu9bqQRMREVmLWF6Pa1TCX79+fY3H7ty5g19//dVg//79+5GWlsaET0RE9o338P/n4sWLtR0HERER1SKjEv6DZuQTERHVWyKZtGfxWvpERET1mUSo3Cy9hr2zKOGXl5fjyJEjuHLlCpRKZbVtJk2aZEkXREREtYv38O/vn//8JxYuXIiioqJqj1e9TIcJn4iIyPbMeg5/+/btmDlzJgIDA5GUlARBEDBixAgsW7YM0dHREAQBo0aNwueff27teImIiKyr6h6+pZudMyvhf/DBB2jatCkyMjIwe/ZsAEBoaCjmzZuHn376CRs3bsR3333HyX5ERGT/BCttds6shH/8+HEMHz4cbm5uun0ajUb3/8ePH4/HHnsMS5YssTxCIiIisphZCb+iogK+vr66r11dXVFYWKjXpmvXrjh27JhFwREREdU6G47wjx07huHDh8PLywtubm4ICQnBhx9+qNcmPT0d4eHhcHNzg5+fH2bNmoWSkhKT+zJr0l5AQAAKCgp0X7ds2RLZ2dl6bS5fvgwnJz71R0REds5Gs/R3796NYcOGoVu3bli4cCHc3d1x/vx55OXl6drk5ORg0KBB6NixI5KTk5GXl4ekpCScO3cOO3fuNKk/szJyz5499Ubv0dHRWLlyJRITEzF8+HAcOHAA27dvR2RkpDmXJyIiatAUCgUmTZqEJ554Alu3boWDQ/UF9/j4eHh6eiI1NRUymQwAEBwcjOnTp2P37t2Iiooyuk+zSvoxMTFQKpW4dOkSAGD+/Plo0aIFFixYgC5duuDFF1+Eu7s735ZHRET2zwaz9Ddv3oxr164hISEBDg4OuHv3LrRarV4bhUKBPXv2YMKECbpkD1Sub+Pu7o4tW7aY1KdZI/yRI0di5MiRuq99fX2Rk5ODzz77DBcuXEDLli0xceJENG/e3JzLExER1RlrrrSnUCj09kulUkilUoP2KSkpkMlkyM/Px1NPPYWzZ8+icePGmDhxIt5//324uLjgxIkTUKvVCAsL0zvX2dkZoaGhBrfSH8RqN9k9PT3xxhtvWOtyRERE9U5gYKDe14sWLcLixYsN2p07dw5qtRojRoxAbGwsEhMTkZqaio8++giFhYX46quvdHPl/P39Dc739/dHWlqaSbFxVh0REYmbFSft5ebm6pXfqxvdA0BJSQlKS0vxwgsv6GblP/3001CpVPj000+xZMkSlJWV1XgNFxcX3XFjGZXwv/zyS5Muei8urUtERGIhk8n0En5NXF1dAQDPPPOM3v7x48fj008/RUZGhm6tm+reVVNeXq67hrGMSviTJ0+GRGLahASupU9ERPWBBFa4h29i+4CAAJw6dQrNmjXT29+0aVMAwJ07d9CmTRsA0HsMvkpBQQECAgJM6tOohL9u3TqTLkpEREQ169GjB/bs2YP8/Hx06NBBt//KlSsAKifDh4SEwMnJCVlZWRgzZoyujUqlQk5Ojt4+YxiV8J977jmTLmpPRrbvDCdJI1uHQVQrrmxW2ToEolqjLVUBv9RBR9Z4+Y2J548ZMwbvvPMO1q5di8cee0y3/7PPPoOTkxMGDBgAuVyOyMhIbNy4EQsXLoSHhwcAYMOGDSgpKUFMTIxJfXLSHhERiZsNVtrr1q0bpk6dis8//xxqtRoRERFITU3Fv//9b8yfP19Xrk9ISEDfvn0RERGBuLg45OXlYcWKFYiKikJ0dLRJfTLhExER2cAnn3yCoKAgrFu3Dt9++y1atmyJ999/H6+++qquTffu3ZGSkoJ58+Zh9uzZ8PDw0D3GZyomfCIiEjcbraXfqFEjLFq0CIsWLbpvu/DwcBw8eNDMwP6HCZ+IiETNmivt2TOz1tInIiKi+oUjfCIiEjcblfTrGhM+ERGJGxP+g6lUKqSkpODMmTO4e/cuFi5cCKByyT+FQgEfH58a3/FLREREdcfsbPzDDz8gKCgIw4YNw5w5c/TeBnT8+HH4+/vj66+/tkaMREREtaZq0p6lm70zK+EfPHgQo0ePhlQqxcqVKzF+/Hi947169ULbtm2xbds2qwRJRERUa6pW2rN0s3NmlfSXLl2KJk2a4OjRo/Dx8cGtW7cM2oSFhSEzM9PiAImIiGqVSO7hmzXCz8zMxIgRI+Dj41Njm8DAQFy9etXswIiIiMh6zBrhK5XKB77vt7CwkBP2iIjI7oll4R2zEn7r1q1x5MiR+7bJyMjAQw89ZFZQREREdYYl/ZqNGjUKBw8exLp166o9npSUhJMnT2Ls2LEWBUdERETWYdYI/4033sC2bdswbdo0bN68GUqlEgAwd+5cZGRkID09HaGhoZgxY4ZVgyUiIrI6azxWVw9G+GYlfHd3d6SlpWHGjBnYsmULNBoNgMqRvUQiwZgxY7Bq1SpIpVKrBktERGR1Iinpm73SnqenJzZt2oQPP/wQR44cwe3btyGTydCzZ080a9bMmjESERGRhSxeS9/b2xvR0dHWiIWIiKjucYRPRETU8PGxvPt47LHHjGonkUiwd+9ec7ogIiIiKzIr4aempt73uEQigSAIkEjsf21hIiIiMTDrOXytVlvtVlhYiF9//RW9e/fG6NGjoVKprB0vERGRdQlW2uycVde+lclkGDBgAHbt2oXDhw8jISHBmpcnIiKyOr4e1wIeHh54/PHHa1yJj4iIiOpWrc3Sd3BwQEFBQW1dnoiIyHrqwQjdUrWS8C9cuIB///vfCA4Oro3LExERWQ+fw6/Z1KlTq92vVquRn5+PAwcOoKKiAkuWLLEoOCIiIrIOsxL++vXr73u8Q4cOeP311zFt2jRzLk9ERFRnuPDOfVy8eLHa/Q4ODmjSpAk8PDwsCoqIiKjOsKRfM4lEAmdnZ/j5+Vk7HiIiIqoFZj2W16pVK8THx1s7FiIiojonlufwzRrhe3p6wtvb29qxEBER1T2RlPTNGuH369cPmZmZ1o6FiIiIaolZCT8xMRHHjx/HkiVLoFarrR0TERFR3RHJWvpmlfTfe+89dO7cGW+//TY+/fRTdO3aFc2aNTN4O55EIsHatWutEigREVFtsMVjeampqRg4cGC1xzIyMvDII4/ovk5PT8fcuXNx7NgxyGQyjBkzBsuWLYO7u7tJfRqd8B0dHbF48WIsXLhQ7zn8goKCGpfQZcInIiK7Z8N7+LNmzULPnj319rVt21b3/3NycjBo0CB07NgRycnJyMvLQ1JSEs6dO4edO3ea1JfRCV8QBAhC5Seq6Tl8IiIiMl6/fv0wevToGo/Hx8fD09MTqampkMlkAIDg4GBMnz4du3fvRlRUlNF9mVXSb9mypTmnERER2R8bz9IvLi6Gq6srnJz0U7JCocCePXswe/ZsXbIHgEmTJmH27NnYsmWLSQm/Vl6PS0REVF/Y8jn8KVOmQCaTwcXFBQMHDkRWVpbu2IkTJ6BWqxEWFqZ3jrOzM0JDQ5GdnW1SXyaN8P8+KY+IiIj+R6FQ6H0tlUohlUoN2jk7O2PUqFEYOnQofHx88J///AdJSUno168f0tPT0a1bN938OH9/f4Pz/f39kZaWZlJsJo3wFy9eDEdHR6O3v5cniIiI7I4VH8sLDAyEXC7XbYmJidV22bdvX2zduhVTp07F8OHD8eabb+LQoUOQSCSYP38+AKCsrAwAqv2DwcXFRXfcWCZlZJlMhiZNmpjUARERkT2z5mN5ubm5evfbq0vWNWnbti1GjBiB7du3Q6PRwNXVFQCgVCoN2paXl+uOG8ukhD979my89dZbJnVAREQkFjKZTC/hmyowMBAqlQp3797VlfKre/S9oKAAAQEBJl2bk/aIiEjc7GilvQsXLsDFxQXu7u4ICQmBk5OT3kQ+AFCpVMjJyUFoaKhJ12bCJyIicbNBwr9x44bBvt9//x0//PADoqKi4ODgALlcjsjISGzcuBHFxcW6dhs2bEBJSQliYmJM6pOz6oiIiOrY2LFj4erqir59+6Jp06b4z3/+gzVr1sDNzQ3vvPOOrl1CQgL69u2LiIgIxMXFIS8vDytWrEBUVBSio6NN6pMjfCIiEjWJlTZTPPXUU7h58yaSk5Px0ksv4ZtvvsHTTz+NrKwsdOzYUdeue/fuSElJgaurK2bPno01a9YgNjYWW7duNflzGj3C12q1Jl+ciIjI7tlgpb1Zs2Zh1qxZRrUNDw/HwYMHzQhKH0v6REQkarZ4W54tsKRPREQkAhzhExGRuNn45Tl1hQmfiIioHiRsS7GkT0REJAIc4RMRkaiJZdIeEz4REYmbSO7hs6RPREQkAhzhExGRqLGkT0REJAYs6RMREVFDwRE+ERGJGkv6REREYiCSkj4TPhERiZtIEj7v4RMREYkAR/hERCRqvIdPREQkBizpExERUUPBET4REYmaRBAgESwbolt6fl1gwiciInFjSZ+IiIgaCo7wiYhI1DhLn4iISAxY0iciIqKGgiN8IiISNZb0iYiIxEAkJX0mfCIiEjWxjPB5D5+IiEgEOMInIiJxY0mfiIhIHOpDSd5SLOkTERGJAEf4REQkboJQuVl6DTvHhE9ERKLGWfpERERUJxISEiCRSBASEmJwLD09HeHh4XBzc4Ofnx9mzZqFkpISk/vgCJ+IiMTNxrP08/LysGzZMjRu3NjgWE5ODgYNGoSOHTsiOTkZeXl5SEpKwrlz57Bz506T+mHCJyIiUZNoKzdLr2GuOXPm4JFHHoFGo8HNmzf1jsXHx8PT0xOpqamQyWQAgODgYEyfPh27d+9GVFSU0f2wpE9ERGQj+/fvx9atW/HBBx8YHFMoFNizZw8mTJigS/YAMGnSJLi7u2PLli0m9WV3I/ySkhIsX74cmZmZOHz4MO7cuYN169Zh8uTJtg6NAIT0LkHMSzfQrnMpvP3UWDw1GBm/yHXHm/hUIPb/CtAjohiN5RqcPOSOfy5ojisXpTaMmsh4jrdV8PqqAG6/KyBRaqH2k+L680FQtXYDALQen1PtebeeCUDRsKZ1GClZjRVL+gqFQm+3VCqFVFr97z+NRoOZM2di2rRp6Ny5s8HxEydOQK1WIywsTG+/s7MzQkNDkZ2dbVKIdpfwb968iSVLliAoKAhdu3ZFamqqrUOie7i4aXHhlAt2feWFRZ9f+ttRAYs+vwSNWoLFU1qhtMQBT8fdwDvfnMf0iA5QljnaImQiozmUqBGw+BzKH/bA1bmtoZE5odFVJbSN//eze3lVJ71zXHMU8P1XLu72kv/9clRPWHOWfmBgoN7+RYsWYfHixdWe88knn+Dy5ctISUmp9nhBQQEAwN/f3+CYv78/0tLSTIrR7hK+v78/CgoK4Ofnh6ysLPTs2dPWIdE9svbJkLVPVu2x5q1VeDisFHEDOuDyWRcAwEdvtsDXv/8HA0cW4pfN3nUZKpHJmvx4HWpvZ9x4IUi3T91Uf3SmadJI7+vGR4tQ/rA71M1Yxaq3rPgcfm5url75vabR/a1bt/DWW29h4cKF8PX1rbZNWVlZjddwcXHRHTeW3SV8qVQKPz8/W4dBZmjkXDlrRaWU6PYJggQVKgk69bzLhE92z+1YEcq6yND0g4twPXMXas9GUAz2QfFj1f/sOhZVwC1HgesvtKzjSMleyWQyvYRfkwULFsDLywszZ86ssY2rqysAQKlUGhwrLy/XHTeW3SV8cymVSr1vyt/vo1Dty/3TBdfyGmHq/AKsnNcC5aUOeDruJnwDKuDVrMLW4RE9kNN1FTxSbqLocV8UPtUM0vOl8P4iD4KTBCX9vQzau++/Da2LI0p7spxfn9X1wjvnzp3DmjVr8MEHH+DKlSu6/eXl5aioqMClS5cgk8l0pfyq0v69CgoKEBAQYFKMDWaWfmJiIuRyuW77+30Uqn0atQRLYoPRvI0S206fwg/nT6Br3xIc3usBQSt58AWIbEyiBVTBrrgzLgCqYDcUD6oc3ctSblbb3iP1Nkoe9YTg3GB+lYqTYKXNSPn5+dBqtZg1axZatWql2zIzM3H27Fm0atUKS5YsQUhICJycnJCVlaV3vkqlQk5ODkJDQ036mA1mhD9//ny89tpruq8VCgWTvg38ecINLw3uADcPDRo1ElB02wkrd5zD2eOmlZ6IbEHt6QRVcxe9faoAFzQ+XGTQ1uVMCZwLlLg+K7iOoqOGIiQkBN9++63B/gULFqC4uBgrV65EmzZtIJfLERkZiY0bN2LhwoXw8PAAAGzYsAElJSWIiYkxqd8Gk/Dv9+gD1b3S4spZzQGtlGjXtRRfLOe8DLJ/yvaN0ahA/36p81Ul1D6NDNp6pN6CspUrVC35x2x9V9clfR8fHzz11FMG+6uexb/3WEJCAvr27YuIiAjExcUhLy8PK1asQFRUFKKjo02KkXUoMomLmwatO5WhdafK2aF+gSq07lQG3+YqAEC/JwvRpU8J/IKU6DOkCIlfn0fGL3Ic+83DlmETGaXo8aZw+fMumnx3DU5XlWh88A48fr0FxWAfvXaSUg0aZxZBMZATURuEqln6lm61oHv37khJSYGrqytmz56NNWvWIDY2Flu3bjX5Wg1mhE91o33XMizfdl739QtvV0442f2NJ1bMDoJXswo8v/gKmviocfu6E1L+7YnNHzSzVbhEJlG2ccO12a3g9U0Bmnx7FWpfZ9ya2Bwl4foT9twz7gCCgJK+njaKlBqimtadCQ8Px8GDBy2+PhM+meR4hjuGBHSt8fj3a33x/drqnyklqg9Ku8tR2v3+s+6LB/mgeJDPfdtQ/SGW1+PaZcL/+OOPUVhYqHtc4ccff0ReXh4AYObMmZDL+QgMERFZiY3flldX7DLhJyUl4fLly7qvt2/fju3btwMAJkyYwIRPRERkIrtM+JcuXbJ1CEREJBIs6RMREYmBVqjcLL2GnWPCJyIicRPJPXw+h09ERCQCHOETEZGoSWCFe/hWiaR2MeETEZG4WWOlvFpaac+aWNInIiISAY7wiYhI1PhYHhERkRhwlj4RERE1FBzhExGRqEkEARILJ91Zen5dYMInIiJx0/53s/Qado4lfSIiIhHgCJ+IiESNJX0iIiIxEMksfSZ8IiISN660R0RERA0FR/hERCRqXGmPiIhIDFjSJyIiooaCI3wiIhI1ibZys/Qa9o4Jn4iIxI0lfSIiImooOMInIiJx48I7REREDZ9YltZlSZ+IiEgEOMInIiJxE8mkPSZ8IiISNwGWv8/e/vM9Ez4REYkb7+ETERFRrTh16hRiYmLQunVruLm5wcfHB/3798ePP/5o0Pb06dOIjo6Gu7s7vLy8MHHiRNy4ccPkPjnCJyIicRNghXv4pjW/fPkyiouL8dxzzyEgIAClpaXYtm0bhg8fjk8//RRxcXEAgLy8PPTv3x9yuRzLli1DSUkJkpKScOLECRw+fBjOzs5G98mET0RE4maDSXtDhw7F0KFD9fbNmDEDPXr0QHJysi7hL1u2DHfv3sXRo0cRFBQEAOjVqxcGDx6M9evX69oZgyV9IiIiO+Do6IjAwEAUFhbq9m3btg1PPvmkLtkDQGRkJNq3b48tW7aYdH2O8ImISNy0ACRWuAYAhUKht1sqlUIqldZ42t27d1FWVoaioiL88MMP2LlzJ8aOHQsAyM/Px/Xr1xEWFmZwXq9evfDzzz+bFCJH+EREJGpVs/Qt3QAgMDAQcrlctyUmJt6379dffx2+vr5o27Yt5syZg5EjR+Ljjz8GABQUFAAA/P39Dc7z9/fH7du3oVQqjf6cHOETERFZSW5uLmQyme7r+43uAeDVV1/F6NGjceXKFWzZsgUajQYqlQoAUFZWVuM1XFxcdG0e1EcVJnwiIhI3K07ak8lkegn/QR566CE89NBDAIBJkyYhKioKw4YNQ2ZmJlxdXQGg2lF8eXk5AOjaGIMlfSIiEreqhG/pZgWjR4/GkSNHcPbsWV0pv6q0f6+CggJ4eXkZPboHmPCJiIjsRlUZv6ioCM2bN4evry+ysrIM2h0+fBihoaEmXZsJn4iIxM0GI/zr168b7KuoqMCXX34JV1dXPPzwwwCAUaNGYceOHcjNzdW127t3L86ePYuYmBiT+uQ9fCIiEjcrPpZnrOeffx4KhQL9+/dH8+bNcfXqVWzatAlnzpzBihUr4O7uDgCIj4/Hv//9bwwcOBCvvPIKSkpKsHz5cnTu3BlTpkwxqU8mfCIiEjVbvDxn7NixWLt2LVavXo1bt27Bw8MDPXr0wLvvvovhw4fr2gUGBuK3337Da6+9hjfffBPOzs544oknsGLFCpPu3wNM+ERERHVu3LhxGDdunFFtO3XqhF27dlncJxM+ERGJmw3W0rcFJnwiIhI3rQBILEzYWvtP+JylT0REJAIc4RMRkbixpE9ERCQG1lgpz/4TPkv6REREIsARPhERiRtL+kRERCKgFWBxSZ6z9ImIiMgecIRPRETiJmgrN0uvYeeY8ImISNx4D5+IiEgEeA+fiIiIGgqO8ImISNxY0iciIhIBAVZI+FaJpFaxpE9ERCQCHOETEZG4saRPREQkAlotAAufo9fa/3P4LOkTERGJAEf4REQkbizpExERiYBIEj5L+kRERCLAET4REYmbSJbWZcInIiJREwQtBAvfdmfp+XWBCZ+IiMRNECwfofMePhEREdkDjvCJiEjcBCvcw68HI3wmfCIiEjetFpBYeA++HtzDZ0mfiIhIBDjCJyIicWNJn4iIqOETtFoIFpb068NjeSzpExERiQATPhERiVvVWvqWbiY4cuQIZsyYgU6dOqFx48YICgrCmDFjcPbsWYO2p0+fRnR0NNzd3eHl5YWJEyfixo0bJn9MlvSJiEjctAIgqdt7+O+++y4OHjyImJgYdOnSBVevXsXHH3+M7t2749ChQwgJCQEA5OXloX///pDL5Vi2bBlKSkqQlJSEEydO4PDhw3B2dja6TyZ8IiKiOvbaa69h8+bNegl77Nix6Ny5M9555x1s3LgRALBs2TLcvXsXR48eRVBQEACgV69eGDx4MNavX4+4uDij+2RJn4iIxE0QKp+jt2gzbYTft29fg9F5u3bt0KlTJ5w+fVq3b9u2bXjyySd1yR4AIiMj0b59e2zZssWkPjnCJyIiURO0AgQLS/rCfxO+QqHQ2y+VSiGVSo2+xrVr19CpUycAQH5+Pq5fv46wsDCDtr169cLPP/9sUowc4RMRkbhZPLrX6lbaCwwMhFwu122JiYlGh7Fp0ybk5+dj7NixAICCggIAgL+/v0Fbf39/3L59G0ql0ujrc4RPRERkJbm5uZDJZLqvjR3dnzlzBi+//DL69OmD5557DgBQVlZW4zVcXFx0bYztgwmfiIhEzZolfZlMppfwjXH16lU88cQTkMvl2Lp1KxwdHQEArq6uAFDtKL68vFyvjTGY8ImISNwELQDbvDynqKgIjz/+OAoLC5GWloaAgADdsapSflVp/14FBQXw8vIyenQPNOCEX/XXlhoVFi+RTGSvtKXltg6BqNZoyypHtkItr1NvjTyhRoXJ55SXl2PYsGE4e/YsUlJS8PDDD+sdb968OXx9fZGVlWVw7uHDhxEaGmpah0IDlZubW/U2BG7cuHHjVo+33NzcWskTZWVlgp+fn9Xi9PPzE8rKyozqW61WC8OHDxecnJyEn376qcZ2L7zwguDq6ir89ddfun0pKSkCAGH16tUmfV6JINSDV/yYQavV4sqVK/Dw8IBEIrF1OA2eQqFAYGCgwYQVooaCP+N1TxAEFBcXIyAgAA4OtfNQWXl5OVQqlVWu5ezsrJtM9yCvvvoqVq5ciWHDhmHMmDEGxydMmACgchJgt27d0KRJE7zyyisoKSnB8uXL0aJFCxw5csSkkn6DTfhUtxQKBeRyOYqKivjLkBok/oyTNQ0YMAC//fZbjcfvTc2nTp3Ca6+9hgMHDsDZ2RlPPPEEVqxYgWbNmpnUJxM+WQV/GVJDx59xqu+48A4REZEIMOGTVUilUixatMik+0lE9Ql/xqm+Y0mfiIhIBDjCJyIiEgEmfCIiIhFgwiciIhIBJnwiIiIRYMIniyiVSsybNw8BAQFwdXVF7969sWfPHluHRWQ1JSUlWLRoEaKjo+Hl5QWJRIL169fbOiwikzHhk0UmT56M5ORkPPvss1i5ciUcHR0xdOhQHDhwwNahEVnFzZs3sWTJEpw+fRpdu3a1dThEZuNjeWS2w4cPo3fv3li+fDnmzJkDoHJd6pCQEDRt2hTp6ek2jpDIckqlEnfu3IGfnx+ysrLQs2dPrFu3DpMnT7Z1aEQm4QifzLZ161Y4OjoiLi5Ot8/FxQWxsbHIyMhAbm6uDaMjsg6pVAo/Pz9bh0FkMSZ8Mlt2djbat29vsK54r169AAA5OTk2iIqIiKrDhE9mKygogL+/v8H+qn1Xrlyp65CIiKgGTPhktrKysmrXFa96H3RZWVldh0RERDVgwiezubq6QqlUGuwvLy/XHSciIvvAhE9m8/f3R0FBgcH+qn0BAQF1HRIREdWACZ/MFhoairNnz0KhUOjtz8zM1B0nIiL7wIRPZhs9ejQ0Gg3WrFmj26dUKrFu3Tr07t0bgYGBNoyOiIju5WTrAKj+6t27N2JiYjB//nxcv34dbdu2xRdffIFLly5h7dq1tg6PyGo+/vhjFBYW6p48+fHHH5GXlwcAmDlzJuRyuS3DIzIKV9oji5SXl2PhwoXYuHEj7ty5gy5dumDp0qUYMmSIrUMjsprg4GBcvny52mMXL15EcHBw3QZEZAYmfCIiIhHgPXwiIiIRYMInIiISASZ8IiIiEWDCJyIiEgEmfCIiIhFgwiciIhIBJnwiIiIRYMInIiISASZ8IiIiEWDCJzLDpUuXIJFIMHnyZL39AwYMgEQisU1QJgoODjZ6SdjU1FRIJBIsXrzYoj4lEgkGDBhg0TXuZ/HixZBIJEhNTa21PojqKyZ8smtVifXezdnZGYGBgRg/fjyOHz9u6xCtavLkyZBIJLh06ZKtQyGiBoZvy6N6oU2bNpgwYQIAoKSkBIcOHcJXX32F7du3Y+/evXj00UdtHGGlL7/8EqWlpbYOg4jIABM+1Qtt27Y1KCcvWLAACQkJ+L//+z+7KeEGBQXZOgQiomqxpE/11syZMwEAR44c0e2rukecn5+PSZMmwc/PDw4ODnp/EOzfvx/Dhg2Dj48PpFIp2rVrhwULFlQ7MtdoNHj33XfRtm1buLi4oG3btkhMTIRWq602pvvdw//+++8RFRUFb29vuLi4IDg4GBMnTsTJkycBVN5T/+KLLwAArVq10t3C+Ps974sXL2LatGkICgqCVCqFv78/Jk+eXOPrW7///nv07NkTrq6uaNasGaZPn447d+5U/0010b59+zB16lR06NAB7u7ucHd3R1hYGNasWXPf8/Ly8vDMM8/Ax8cHbm5uePTRR5GSklJtW5VKheTkZHTv3h2NGzeGh4cH+vXrhx9++MEqn4FILDjCp3rv7wn21q1b6NOnD7y8vDBu3DiUl5dDJpMBAFavXo2XX34ZTZo0wbBhw9C0aVNkZWUhISEB+/btw759++Ds7Ky7VlxcHD7//HO0atUKL7/8MsrLy5GcnIz09HSTYnz99deRnJwMLy8vPPXUU2jatClyc3ORkpKCHj16ICQkBK+++irWr1+P33//Ha+88gqaNGkCAHoT6zIzMzFkyBDcvXsXTz75JNq1a4dLly5h06ZN2LlzJzIyMtC6dWtd+y+//BLPPfccZDIZJk6ciCZNmmDHjh2IjIyESqXS+6zmePfdd/Hnn3/ikUcewciRI1FYWIhffvkFzz//PP744w+sWLHC4Jw7d+7g0Ucfha+vL6ZNm4YbN27gm2++QXR0NLZu3YqnnnpK11apVCI6OhqpqakIDQ1FbGwsKioq8NNPP2HEiBH46KOPMGPGDIs+A5FoCER27OLFiwIAYciQIQbH3nrrLQGAMHDgQN0+AAIAYcqUKYJardZrf+rUKcHJyUno2rWrcPPmTb1jiYmJAgAhKSlJt2/fvn0CAKFr165CSUmJbn9eXp7g4+MjABCee+45vetEREQIf//P6scffxQACJ07dzbot6KiQrh69aru6+eee04AIFy8eNHg86pUKiE4OFjw8PAQjh07pncsLS1NcHR0FJ588kndvqKiIkEmkwmNGzcW/vjjD73r9O/fXwAgtGzZ0qCf6lR9LxYtWqS3/8KFCwZtKyoqhMGDBwuOjo7C5cuX9Y5V/fuMHz9e0Gq1uv2///674OzsLPj6+gqlpaW6/fHx8QIAYeHChXrtFQqFEBYWJjg7Owv5+fm6/YsWLRIACPv27TPqcxGJCRM+2bWqhN+mTRth0aJFwqJFi4Q5c+YI/fr1EwAILi4uQnp6uq49AMHZ2Vm4ceOGwbVmzZolABD2799vcEyj0Qi+vr5Cjx49dPumTJkiABC2bdtm0H7p0qVGJ/zHH39cACD8+uuvD/y890v427dvFwAIS5Ysqfbcp59+WnBwcBCKiooEQRCEL774QgAgzJw506BtWlqaVRJ+TbZt2yYAENavX6+3H4Dg6OgoXLp0yeCc2NhYAYCwdetWQRAq/008PT2FNm3a6CX7Kj/88IMAQPjoo490+5jwiWrGkj7VC+fPn8fbb78NAGjUqBGaNWuG8ePH480330Tnzp312rZq1Qo+Pj4G1zh06BAAYNeuXdi7d6/B8UaNGuHMmTO6r3///XcAQL9+/QzaVrevJocPH4ZUKkVERITR51SnKv4//vij2ufhr169Cq1Wi7NnzyIsLOy+8ffp0wdOTpb/519cXIykpCR89913OH/+PO7evat3/MqVKwbnBAUFoWXLlgb7+/Xrh7Vr1yI7OxujRo3CH3/8gTt37iAgIED3b3+vGzduAIDevxkR1YwJn+qFIUOG4JdffjGqbbNmzardf/v2bQBAQkKCUdcpKiqCg4NDtX881NRHTddp3rw5HBwsmyNbFf+mTZvu264q6RYVFQEAmjZtatDG0dER3t7eFsWjUqkwYMAAHDt2DN26dcPEiRPh7e0NJycnXLp0CV988QWUSqXBeTV976r2V8Vd9XlPnTqFU6dO1RjH3//IIKLqMeFTg1PTLPmqiXsKhQIeHh4PvI5cLodWq8XNmzfh6+urd+zatWtGx9OkSRPd6NuSpF8V/48//ognn3zyge3lcjkA4Pr16wbHNBoNbt26hebNm5sdz/fff49jx44hNjYWn332md6xr7/+WvfEwd/V9L2r2l8Vd9XnHTVqFLZu3Wp2nERUiY/lkWj07t0bwP9K4w/StWtXAEBaWprBser21aRXr15QKpX47bffHtjW0dERQGVC/ruq+DMyMozq937xZ2RkQK1WG3Wdmpw/fx4AMGLECINj9/v+/PXXX9U+Qlh1Trdu3QAAHTt2hEwmQ1ZWFioqKiyKlYiY8ElEXnrpJTg5OWHmzJn466+/DI4XFhYiOztb9/XEiRMBAEuWLNErG+fn52PlypVG9/vyyy8DAF555RVdmbqKWq3WG/F6eXkBAHJzcw2uM2LECAQFBSE5ORn79+83OF5RUYEDBw7otZfJZPj8889x9uxZvXYLFiwwOv6aVN2Hv7dPAPjtt9/wr3/9q8bzNBoN4uPjIQiCbt/x48exYcMG+Pr6YujQoQAAJycnvPjii7h8+TLmzJlTbdI/efJktRUMIjLEkj6JRkhICFatWoUXX3wRHTp0wNChQ9GmTRsUFxfjwoUL+O233zB58mR88sknAICBAwdiypQpWLduHTp37oyRI0dCqVTim2++wSOPPIIdO3YY1e/QoUMxZ84cJCUloV27dhg5ciSaNm2K/Px87N27F3PmzMGrr74KAHjssceQlJSEuLg4jBo1Co0bN0bLli0xceJESKVSbN26FY8//jgiIiLw2GOPoXPnzpBIJLh8+TLS0tLg7e2tm8Qml8vx4YcfYvLkyejZsyfGjRsHuVyOHTt2wNXVFf7+/hZ9P4cNG4bg4GC89957OHnyJEJCQvDHH39gx44dGDlyZI1l+C5duuDAgQPo2bMnIiMjdc/hq9VqrFmzBq6urrq2b7/9No4dO4YPP/wQP/30E/r376/73p04cQK///47MjIyqp2nQER/Y+vHBIju537P4VcHgBAREXHfNocPHxbGjRsnBAQECI0aNRJ8fHyE7t27C2+++aZw+vRpvbZqtVpITEwUWrduLTg7OwutW7cWli1bJvz5559GP5ZXZdu2bcLAgQMFuVwuSKVSITg4WJg4caJw8uRJvXbvvfee0K5dO6FRo0bVfp68vDzhlVdeEdq1aydIpVJBJpMJHTt2FKZNmybs3bvXoN9vv/1W6NGjhyCVSoWmTZsK06ZNE27fvi20bNnSKs/hjxo1SvD19RXc3NyEnj17Cl9//XWN7as+T25urjB27FjBy8tLcHFxEfr06SPs3r272r7VarXw6aefCo8++qggk8kEqVQqBAUFCdHR0cLq1av11kjgY3lENZMIwj11NSIiImqQeA+fiIhIBJjwiYiIRIAJn4iISASY8ImIiESACZ+IiEgEmPCJiIhEgAmfiIhIBJjwiYiIRIAJn4iISASY8ImIiESACZ+IiEgEmPCJiIhE4P8B5Y/nQaPrlmkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 434 ms (started: 2024-10-26 13:25:50 +00:00)\n" ] } ], "source": [ "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n", "y_pred=rs1.predict(X_test)\n", "cm = confusion_matrix(y_test,y_pred)\n", "ConfusionMatrixDisplay(cm,display_labels=rs1.classes_).plot();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 32, "status": "ok", "timestamp": 1729949151346, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "zqgR6LtNejvx", "outputId": "23ee81a7-7456-457e-dd98-0108889e5c51" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.84 0.72 0.78 137\n", " 1 0.64 0.78 0.70 86\n", "\n", " accuracy 0.74 223\n", " macro avg 0.74 0.75 0.74 223\n", "weighted avg 0.76 0.74 0.75 223\n", "\n", "time: 15 ms (started: 2024-10-26 13:25:50 +00:00)\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": { "id": "QZMry6zZHIQ-" }, "source": [ "#### Learning Curve" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 515 }, "executionInfo": { "elapsed": 25055, "status": "ok", "timestamp": 1729949176387, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "suU0ebc9ejvx", "outputId": "c25f40db-ae62-4050-cf93-810ac18dfa1b" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABo4AAAHgCAYAAACbwZ/VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd2AUZfrA8e9szabTAgFC7yCiIIhKVUTBAoj8UDxAVPAUERTw0ANEUE4RELtYwEM9C6JnVxTsFQXLqYhIbyG9bJ95f39sdskmmwbpPJ+7dXffeWfmnUnIzr7PvM+rKaUUQgghhBBCCCGEEEIIIYQQ4qRnqukGCCGEEEIIIYQQQgghhBBCiNpBAkdCCCGEEEIIIYQQQgghhBACkMCREEIIIYQQQgghhBBCCCGEKCCBIyGEEEIIIYQQQgghhBBCCAFI4EgIIYQQQgghhBBCCCGEEEIUkMCREEIIIYQQQgghhBBCCCGEACRwJIQQQgghhBBCCCGEEEIIIQpI4EgIIYQQQgghhBBCCCGEEEIAEjgSQgghhBBCCCGEEEIIIYQQBSRwJISol9q0acPkyZNruhlCCCGEKGLy5Mm0adPmuNbVNI3p06eXWW/t2rVomsbu3btDZYMHD2bw4MGh97t370bTNNauXXtcbakqy5Yto127dpjNZnr16lXh9T/++GM0TWP9+vWV37ha5kSu9zRN484776zU9gghhKgZJ/rZKY7Pe++9R69evYiKikLTNLKysiq8jfJe29V1J3L9W/QaVojqIoEjIUSJgp0uW7ZsqemmCCGEEKIK/Pzzz4wdO5bWrVsTFRVFixYtGDZsGA899FBNN61GvPPOOzUaTPjggw+YO3cuZ599NmvWrOGee+4pse4LL7zAAw88UH2NE0IIIcop2JcQfERFRdGpUyemT5/OkSNHKnVfFfnsFJUnPT2dcePG4XA4eOSRR1i3bh0xMTER63755ZfceeedxxVYEkLUHEtNN0AIIarC9u3bMZkkNi6EEEKU5Msvv2TIkCG0atWK6667jmbNmrFv3z6+/vprVq1axU033VTTTTxuf/vb3xg/fjx2u73EOq1bt8blcmG1WkNl77zzDo888kiNBY82bdqEyWTi6aefxmazlVr3hRde4JdffmHmzJnV0zghhBCigu666y7atm2L2+3m888/57HHHuOdd97hl19+ITo6ulL2UZHPTlF5vvvuO3Jzc1m8eDHnnXdeqXW//PJLFi1axOTJk0lMTKyeBgohTpgEjoQQtZ7f78cwjApdBJbWUVQbGYaB1+slKiqqppsihBDiJHH33XeTkJDAd999V+xLfGpqas00qpKYzWbMZnOpdYJ3QNcmqampOBwO6fgSQghRL1x44YX06dMHgGuvvZZGjRqxYsUK/vvf/3LFFVec0LadTifR0dGV/tmplMLtduNwOCple/VV8FpRAkFC1F9yO74Q4oQdOHCAKVOm0LRpU+x2O927d+eZZ54Jq+P1elmwYAG9e/cmISGBmJgYBgwYwObNm8PqBecbuP/++3nggQdo3749drudX3/9lTvvvBNN0/jzzz9Dd6okJCRw9dVX43Q6w7YTKef9Tz/9xKBBg3A4HLRs2ZIlS5awZs2aYnMglOT3339n3LhxNGnSBIfDQefOnbnjjjtCy0vKWRtsd2HBPL7PP/883bt3x2638+abb9KwYUOuvvrqYtvIyckhKiqK2bNnh8o8Hg8LFy6kQ4cO2O12UlJSmDt3Lh6Pp8xjEUIIIXbu3En37t0jfuFPSkoqVvbcc8/Rt29foqOjadCgAQMHDuSDDz4ILf/vf//LyJEjad68OXa7nfbt27N48WJ0XS+zLffffz9nnXUWjRo1wuFw0Lt371Ln6Hn++efp3LkzUVFR9O7dm08//TRseaQ5jooqOsfR5MmTeeSRRwDC0usopWjTpg2XXnppsW243W4SEhKYNm1aqcfn9/tZvHhx6LqmTZs23H777WGf2ZqmsWbNGvLz80P7Lmn+pcGDB/P222+zZ8+eUN2i1yCGYXD33XfTsmVLoqKiOPfcc/nzzz+Lbeubb77hggsuICEhgejoaAYNGsQXX3xR6vHAsbmUXn75ZRYtWkSLFi2Ii4tj7NixZGdn4/F4mDlzJklJScTGxnL11VcXu0Ypz3mBQCfekiVLaNmyJdHR0QwZMoT//e9/EduVlZXFzJkzSUlJwW6306FDB+69914MwyjzmIQQQlStoUOHArBr165Q2XPPPUfv3r1xOBw0bNiQ8ePHs2/fvrD1Bg8eTI8ePfj+++8ZOHAg0dHR3H777aV+dpb3M6ZNmzZcdNFFvP/++/Tp0weHw8ETTzxRKZ9za9asYejQoSQlJWG32+nWrRuPPfZYsfMSbMPnn39O3759iYqKol27dvz73/8uVjcrK4tZs2bRpk0b7HY7LVu2ZOLEiaSlpYXqnGhfwSuvvBL6mTRu3JirrrqKAwcOhP08Jk2aBMAZZ5yBpmklzjl45513MmfOHADatm0b+jkVvUZ7/fXX6dGjR6hP6b333iu2rfL0PZUk2Afzyiuv0K1bNxwOB/379+fnn38G4IknnqBDhw5ERUUxePDgiNeQZZ2XoscSFRVFjx49eO211yK2yTAMHnjgAbp3705UVBRNmzZl2rRpZGZmluuYhKhqMuJICHFCjhw5wplnnhn6EG7SpAnvvvsu11xzDTk5OaH0KTk5OTz11FNcccUVXHfddeTm5vL0008zfPhwvv3222ITWK5Zswa3283UqVOx2+00bNgwtGzcuHG0bduWpUuX8sMPP/DUU0+RlJTEvffeW2I7Dxw4wJAhQ9A0jXnz5hETE8NTTz1V7pFJP/30EwMGDMBqtTJ16lTatGnDzp07efPNN7n77rsrfN4gMKT+5ZdfZvr06TRu3JiOHTsyevRoNmzYwBNPPBF2x9Trr7+Ox+Nh/PjxQOAC45JLLuHzzz9n6tSpdO3alZ9//pmVK1fyxx9/8Prrrx9Xm4QQQpw8WrduzVdffcUvv/xCjx49Sq27aNEi7rzzTs466yzuuusubDYb33zzDZs2beL8888HAsGa2NhYbrnlFmJjY9m0aRMLFiwgJyeHZcuWlbr9VatWcckllzBhwgS8Xi8vvvgil19+OW+99RYjR44Mq/vJJ5/w0ksvMWPGDOx2O48++igXXHAB3377bZnHUZpp06Zx8OBBNm7cyLp160LlmqZx1VVXcd9995GRkRF2TfLmm2+Sk5PDVVddVeq2r732Wp599lnGjh3LrbfeyjfffMPSpUv57bffQp0J69atY/Xq1Xz77bc89dRTAJx11lkRt3fHHXeQnZ3N/v37WblyJQCxsbFhdf71r39hMpmYPXs22dnZ3HfffUyYMIFvvvkmVGfTpk1ceOGF9O7dm4ULF2IymUKdXJ999hl9+/Yt87wtXboUh8PBP/7xD/78808eeughrFYrJpOJzMxM7rzzTr7++mvWrl1L27ZtWbBgQYXOC8CCBQtYsmQJI0aMYMSIEfzwww+cf/75eL3esLY4nU4GDRrEgQMHmDZtGq1ateLLL79k3rx5HDp0SOaEEkKIGrZz504AGjVqBARGP8+fP59x48Zx7bXXcvToUR566CEGDhzI1q1bw25uSU9P58ILL2T8+PFcddVVNG3alD59+pT42VnezxgIpLq/4oormDZtGtdddx2dO3cOLTuRz7nHHnuM7t27c8kll2CxWHjzzTe54YYbMAyDG2+8MawNf/75J2PHjuWaa65h0qRJPPPMM0yePJnevXvTvXt3APLy8hgwYAC//fYbU6ZM4fTTTyctLY033niD/fv307hx4xPuK1i7di1XX301Z5xxBkuXLuXIkSOsWrWKL774IvQzueOOO+jcuTOrV68OpSNs3759xO2NGTOGP/74g//85z+sXLmSxo0bA9CkSZNQnc8//5wNGzZwww03EBcXx4MPPshll13G3r17Q78r5e17Ks1nn33GG2+8ETr3S5cu5aKLLmLu3Lk8+uij3HDDDWRmZnLfffcxZcoUNm3aVKHzAoE5ty677DK6devG0qVLSU9P5+qrr6Zly5bF2jNt2rTQdmfMmMGuXbt4+OGH2bp1K1988UVYOmUhaoQSQogSrFmzRgHqu+++K7HONddco5KTk1VaWlpY+fjx41VCQoJyOp1KKaX8fr/yeDxhdTIzM1XTpk3VlClTQmW7du1SgIqPj1epqalh9RcuXKiAsPpKKTV69GjVqFGjsLLWrVurSZMmhd7fdNNNStM0tXXr1lBZenq6atiwoQLUrl27SjxGpZQaOHCgiouLU3v27AkrNwwj9HrSpEmqdevWxdYNtrswQJlMJvW///0vrPz9999XgHrzzTfDykeMGKHatWsXer9u3TplMpnUZ599Flbv8ccfV4D64osvSj0eIYQQ4oMPPlBms1mZzWbVv39/NXfuXPX+++8rr9cbVm/Hjh3KZDKp0aNHK13Xw5YV/hwMfuYXNm3aNBUdHa3cbneoLNLnZdF1vV6v6tGjhxo6dGhYOaAAtWXLllDZnj17VFRUlBo9enSoLHgNU/jzfdCgQWrQoEGh98FrjjVr1oTKbrzxxmKf2UoptX37dgWoxx57LKz8kksuUW3atAk7D0Vt27ZNAeraa68NK589e7YC1KZNm0JlkyZNUjExMSVuq7CRI0dGvO7YvHmzAlTXrl3Drr1WrVqlAPXzzz8rpQI/u44dO6rhw4cX+zm2bdtWDRs2rNT9B/fTo0ePsN+ZK664Qmmapi688MKw+v379w9rb3nPS2pqqrLZbGrkyJFh7bz99tsVEHa9t3jxYhUTE6P++OOPsG3+4x//UGazWe3duzdUBqiFCxeWeoxCCCGOT/Bz+MMPP1RHjx5V+/btUy+++KJq1KiRcjgcav/+/Wr37t3KbDaru+++O2zdn3/+WVkslrDyQYMGKUA9/vjjxfYV6bOzIp+9rVu3VoB67733wuqe6OecUpGvjYYPHx723b5wGz799NNQWWpqqrLb7erWW28NlS1YsEABasOGDcW2G/yMPJG+Aq/Xq5KSklSPHj2Uy+UKlb/11lsKUAsWLAiVlae/KGjZsmUl9rsAymazqT///DNU9uOPPypAPfTQQ6Gy8vY9lQRQdrs9rA1PPPGEAlSzZs1UTk5OqHzevHlh7a3IeenVq5dKTk5WWVlZobIPPvhAAWG/H5999pkC1PPPPx/Wzvfee69YedFrWCGqi6SqE0IcN6UUr776KhdffDFKKdLS0kKP4cOHk52dzQ8//AAE5hoIjqAxDIOMjAz8fj99+vQJ1SnssssuC7sDpbDrr78+7P2AAQNIT08nJyenxLa+99579O/fP2xkU8OGDZkwYUKZx3n06FE+/fRTpkyZQqtWrcKWFU1BVxGDBg2iW7duYWVDhw6lcePGvPTSS6GyzMxMNm7cyP/93/+Fyl555RW6du1Kly5dws57cOh/0RSAQgghRFHDhg3jq6++4pJLLuHHH3/kvvvuY/jw4bRo0YI33ngjVO/111/HMAwWLFiAyRT+9aHw52DhuQByc3NJS0tjwIABOJ1Ofv/991LbUnjdzMxMsrOzGTBgQMRrhP79+9O7d+/Q+1atWnHppZfy/vvvlyst3vHo1KkT/fr14/nnnw+VZWRk8O677zJhwoRSrwfeeecdAG655Zaw8ltvvRWAt99+uwpaDFdffXXY6OUBAwYA8NdffwGwbds2duzYwZVXXkl6enroWiI/P59zzz2XTz/9tFzp3SZOnBh2R2y/fv1QSjFlypSwev369WPfvn34/X6g/Oflww8/xOv1ctNNN4Wd50h3Fr/yyisMGDCABg0ahF0fnXfeeei6XiyloRBCiKp13nnn0aRJE1JSUhg/fjyxsbG89tprtGjRgg0bNmAYBuPGjQv7m92sWTM6duxY7Dut3W6PmNY9kop+9rZt25bhw4dH3Nbxfs5B+PVNdnY2aWlpDBo0iL/++ovs7Oyw9bt16xb6rIbAiJzOnTuHPrcBXn31VU499VRGjx5drJ3Bz8gT6SvYsmULqamp3HDDDWHzQI4cOZIuXbpU2TXLeeedFzZiqWfPnsTHx4eOvSJ9T6U599xzw1L79uvXDwj0P8XFxRUrD+6/vOfl0KFDbNu2jUmTJpGQkBCqN2zYsGJ9P6+88goJCQkMGzYs7Hh69+5NbGys9OmIWkFS1QkhjtvRo0fJyspi9erVrF69OmKdwpNrP/vssyxfvpzff/8dn88XKm/btm2x9SKVBRUN3jRo0AAIdDTFx8dHXGfPnj3079+/WHmHDh1K3E9Q8GLhRNLfRBLpGC0WC5dddhkvvPACHo8Hu93Ohg0b8Pl8YYGjHTt28Ntvv5UYXKvrk5oLIYSoHmeccQYbNmzA6/Xy448/8tprr7Fy5UrGjh3Ltm3b6NatGzt37sRkMhX7wlvU//73P/75z3+yadOmYjdzFO0cKeqtt95iyZIlbNu2rdi8P0V17NixWFmnTp1wOp0cPXqUZs2albqv4zVx4kSmT5/Onj17aN26Na+88go+n4+//e1vpa63Z88eTCZTsWuOZs2akZiYyJ49e6qkvaVdL0HgWgIIzVEQSXZ2dmi98u4n2FGSkpJSrNwwDLKzs2nUqFG5z0vwuejPvUmTJsXatmPHDn766Se5PhJCiFrikUceoVOnTlgsFpo2bUrnzp1DN6Hs2LEDpVTEz3WgWJquFi1ahN0QUZqKfvZWpP+hvJ9zAF988QULFy7kq6++KjYvc3Z2dlhwoeh+IPDZXXi+m507d3LZZZeV2FY4sb6C4HkpnKovqEuXLnz++eel7vt4lXXsFe17Ku9+SvtZwrFrpvKel5KuWYLrFg5u7dixg+zs7Ijzipb3eISoahI4EkIct+BdqFdddVWJnQ49e/YEAhNeTp48mVGjRjFnzhySkpIwm80sXbo0lOe4sMJ35hRlNpsjliulKnoIlaqku41Luvu5pGMcP348TzzxBO+++y6jRo3i5ZdfpkuXLpx66qmhOoZhcMopp7BixYqI2yh64SOEEEKUxmazccYZZ3DGGWfQqVMnrr76al555RUWLlxYrvWzsrIYNGgQ8fHx3HXXXbRv356oqCh++OEHbrvttlJHrnz22WdccsklDBw4kEcffZTk5GSsVitr1qzhhRdeqKxDPGHjx49n1qxZPP/889x+++0899xz9OnTJ2InQiQnMkr5eJR1vRT8mSxbtqzYXJNBRedNqsh+ynu9VpnnxTAMhg0bxty5cyMu79SpU6XtSwghRNn69u1Lnz59Ii4zDANN03j33XcjfmYU/QwqrY+gJOX9jDme/oeyPud27tzJueeeS5cuXVixYgUpKSnYbDbeeecdVq5cWezaqLL6OepiX0F5r1nK0/d0PPupiT4mwzBISkoKG81eWEmBPyGqkwSOhBDHrUmTJsTFxaHrOuedd16pddevX0+7du3YsGFD2MVbeTukTlTr1q35888/i5VHKiuqXbt2APzyyy+l1mvQoAFZWVnFyit6J/HAgQNJTk7mpZde4pxzzmHTpk3ccccdYXXat2/Pjz/+yLnnnlvtHVFCCCHqt2AHz6FDh4DAZ45hGPz6668lBhg+/vhj0tPT2bBhAwMHDgyV79q1q8z9vfrqq0RFRfH+++9jt9tD5WvWrIlYPzhSprA//viD6OjoE/6SXdpnasOGDRk5ciTPP/88EyZM4IsvvuCBBx4oc5utW7fGMAx27NhB165dQ+VHjhwhKyuL1q1bV3pbyyOYEiY+Pr7M67iqUN7zEnzesWNH6JoMAncfF74LGwLHlJeXVyPHI4QQomLat2+PUoq2bdtWemC/qj57K+LNN9/E4/HwxhtvhI10OZEUZO3bty+zX+JE+gqC52X79u2h1HZB27dvr7Frlor0PVWF8p6XwtcsRW3fvj3sffv27fnwww85++yzjysoKkR1kDmOhBDHzWw2c9lll/Hqq69GvHg5evRoWF0Iv2Pjm2++4auvvqr6hgLDhw/nq6++Ytu2baGyjIyMEu/uKKxJkyYMHDiQZ555hr1794YtK3w87du3Jzs7m59++ilUdujQIV577bUKtdVkMjF27FjefPNN1q1bh9/vD0tTBzBu3DgOHDjAk08+WWx9l8tFfn5+hfYphBDi5LN58+aId1IG5wUIjqQZNWoUJpOJu+66q9jdscH1I33Oe71eHn300TLbYTab0TQtbITu7t27ef311yPW/+qrr8JSfezbt4///ve/nH/++SXeMVpeMTExABFvBAH429/+xq+//sqcOXMwm82MHz++zG2OGDECoFiQKXgn8MiRI4+7rWWlACxN7969ad++Pffffz95eXnFlhe+jqsK5T0v5513HlarlYceeijs9ytS0G7cuHF89dVXvP/++8WWZWVlhc07IYQQomaNGTMGs9nMokWLil2PKKVIT08/7m1X1WdvRUS6NsrOzi7xxpjyuOyyy0KphYsK7udE+gr69OlDUlISjz/+eFjq4HfffZfffvvthK5ZoOTrq7JUpO+pKpT3vCQnJ9OrVy+effbZsGu0jRs38uuvv4Ztc9y4cei6zuLFi4vtz+/3H/e5EqIyyYgjIUSZnnnmGd57771i5TfffDP/+te/2Lx5M/369eO6666jW7duZGRk8MMPP/Dhhx+SkZEBwEUXXcSGDRsYPXo0I0eOZNeuXTz++ON069YtYmdFZZs7dy7PPfccw4YN46abbiImJoannnqKVq1akZGRUeYdMA8++CDnnHMOp59+OlOnTqVt27bs3r2bt99+OxSMGj9+PLfddhujR49mxowZOJ1OHnvsMTp16lSuiRoL+7//+z8eeughFi5cyCmnnBJ2lxQEOq5efvllrr/+ejZv3szZZ5+Nruv8/vvvvPzyy7z//vslpgQQQgghAG666SacTiejR4+mS5cueL1evvzyS1566SXatGkTmoC6Q4cO3HHHHSxevJgBAwYwZswY7HY73333Hc2bN2fp0qWcddZZNGjQgEmTJjFjxgw0TWPdunXlSvExcuRIVqxYwQUXXMCVV15JamoqjzzyCB06dAi7GSOoR48eDB8+nBkzZmC320PBqUWLFp3wOenduzcAM2bMYPjw4cWCQyNHjqRRo0a88sorXHjhhSXmpS/s1FNPZdKkSaxevTqU0u/bb7/l2WefZdSoUQwZMuS42/rSSy9xyy23cMYZZxAbG8vFF19c7vVNJhNPPfUUF154Id27d+fqq6+mRYsWHDhwgM2bNxMfH8+bb755XG0rj/KelyZNmjB79myWLl3KRRddxIgRI9i6dSvvvvsujRs3DtvmnDlzeOONN7jooouYPHkyvXv3Jj8/n59//pn169eze/fuYusIIYSoGe3bt2fJkiXMmzeP3bt3M2rUKOLi4ti1axevvfYaU6dOZfbs2ce17ar67K2I888/H5vNxsUXX8y0adPIy8vjySefJCkpKTSqu6LmzJnD+vXrufzyy5kyZQq9e/cmIyODN954g8cff5xTTz31hPoKrFYr9957L1dffTWDBg3iiiuu4MiRI6xatYo2bdowa9as42p38PrqjjvuYPz48VitVi6++OJQQKk8ytv3VBUqcl6WLl3KyJEjOeecc5gyZQoZGRk89NBDdO/ePazva9CgQUybNo2lS5eybds2zj//fKxWKzt27OCVV15h1apVjB07tsqOSYhyUUIIUYI1a9YooMTHvn37lFJKHTlyRN14440qJSVFWa1W1axZM3Xuueeq1atXh7ZlGIa65557VOvWrZXdblennXaaeuutt9SkSZNU69atQ/V27dqlALVs2bJi7Vm4cKEC1NGjRyO2c9euXaGy1q1bq0mTJoXV27p1qxowYICy2+2qZcuWaunSperBBx9UgDp8+HCZ5+OXX35Ro0ePVomJiSoqKkp17txZzZ8/P6zOBx98oHr06KFsNpvq3Lmzeu6550LtLgxQN954Y4n7MgxDpaSkKEAtWbIkYh2v16vuvfde1b17d2W321WDBg1U79691aJFi1R2dnaZxyOEEOLk9u6776opU6aoLl26qNjYWGWz2VSHDh3UTTfdpI4cOVKs/jPPPKNOO+200GfOoEGD1MaNG0PLv/jiC3XmmWcqh8OhmjdvrubOnavef/99BajNmzeH6hX97FdKqaefflp17NhR2e121aVLF7VmzZpSPz+fe+65UP3TTjstbPtKRb42GDRokBo0aFDoffCaY82aNaEyv9+vbrrpJtWkSROlaVqx/Sul1A033KAA9cILL5R8covw+Xxq0aJFqm3btspqtaqUlBQ1b9485Xa7w+pNmjRJxcTElGubeXl56sorr1SJiYkKCJ3TzZs3K0C98sorYfUjHa9SgeujMWPGqEaNGim73a5at26txo0bpz766KNS91/SfoLn/rvvvgsrj3QdV97zouu6WrRokUpOTlYOh0MNHjxY/fLLLxGv93Jzc9W8efNUhw4dlM1mU40bN1ZnnXWWuv/++5XX6w3VA9TChQtLPUYhhBDHp6TPgkheffVVdc4556iYmBgVExOjunTpom688Ua1ffv2UJ1Bgwap7t27R1y/pM/O8n7GtG7dWo0cObLY+pXxOffGG2+onj17qqioKNWmTRt17733qmeeeSZi/0WkNhS9dlFKqfT0dDV9+nTVokULZbPZVMuWLdWkSZNUWlpaqM6J9hW89NJLoWu+hg0bqgkTJqj9+/eX6zyUZPHixapFixbKZDKFHX9JfSORPuPL0/dUkkj7Kan/qaSffXnOi1KB3+muXbsqu92uunXrpjZs2BDx+lcppVavXq169+6tHA6HiouLU6eccoqaO3euOnjwYKhOpN8DIaqDplQNzyYvhBA1aObMmTzxxBPk5eWdcHobIYQQQtR/s2bN4umnn+bw4cNER0fXdHOEEEIIIYQQotLJHEdCiJOGy+UKe5+ens66des455xzJGgkhBBCiDK53W6ee+45LrvsMgkaCSGEEEIIIeotmeNICHHS6N+/P4MHD6Zr164cOXKEp59+mpycHObPn1/TTRNCCCFELZaamsqHH37I+vXrSU9P5+abb67pJgkhhBBCCCFElZHAkRDipDFixAjWr1/P6tWr0TSN008/naeffpqBAwfWdNOEEEIIUYv9+uuvTJgwgaSkJB588EF69epV000SQgghhBBCiCojcxwJIYQQQgghhBBCCCGEEEIIQOY4EkIIIYQQQgghhBBCCCGEEAUkcCSEEEIIIYQQQgghhBBCCCEAmeOoWhmGwcGDB4mLi0PTtJpujhBCCFErKKXIzc2lefPmmExyT0tVkmsRIYQQoji5Fqk+ci0ihBBCFFcbr0UkcFSNDh48SEpKSk03QwghhKiV9u3bR8uWLWu6GfWaXIsIIYQQJZNrkaon1yJCCCFEyWrTtYgEjqpRXFwcEPgFiI+Pr+HWVA+fz8cHH3zA+eefj9Vqrenm1BtyXquGnNeqIee16tSXc5uTk0NKSkroc1JUHbkWqbv/TmobOa9VQ85r1ZDzWnXqy7mVa5HqUx3XIvXl97Ko+nhc9fGYoH4eV308Jqifx1Ufjwnq/3H179+ftm3b1qprEQkcVaPgMOz4+PiTqrMmOjqa+Pj4evWPuqbJea0acl6rhpzXqlPfzq2kK6l6ci1S9/+d1BZyXquGnNeqIee16tS3cyvXIlWvOq5F6tvvZVB9PK76eExQP4+rPh4T1M/jqo/HBPX/uIIBo9p0LVI7EuYJIYQQQgghhBBCCCGEEEKIGieBIyGEEEIIIYQQQgghhBBCCAFI4EgIIYQQQgghhBBCCCGEEEIUkDmOhBCiEui6js/nq+lm1Eo+nw+LxYLb7UbX9ZpuTr1SV86t2WzGYrHUqly9QgghhBBCCCGEECIyCRwJIcQJysvLY//+/SilaroptZJSimbNmrFv3z4JHFSyunRuo6OjSU5Oxmaz1XRThBBCCCGEEEIIIUQpamXgyOPxsGDBAtatW0dmZiY9e/ZkyZIlDBs2rMx1P/zwQ+6++25+/vln/H4/nTp14qabbuJvf/tbqM6+fft45plnePvtt9mxYwdms5kePXrwz3/+k/POOy9se2vXruXqq6+OuK9Dhw7RrFmzEztYIUSdpus6+/fvJzo6miZNmtT6zvuaYBgGeXl5xMbGYjJJhtTKVBfOrVIKr9fL0aNH2bVrFx07dqy1bRVCCCGEqC2kX0QIIYQQNalWBo4mT57M+vXrmTlzJh07dmTt2rWMGDGCzZs3c84555S43htvvMGoUaPo378/d955J5qm8fLLLzNx4kTS0tKYNWsWAP/973+59957GTVqFJMmTcLv9/Pvf/+bYcOG8cwzz0S8ILrrrrto27ZtWFliYmKlHrcQou7x+XwopWjSpAkOh6Omm1MrGYaB1+slKipKAgaVrK6cW4fDgdVqZc+ePaH2CiGEEEKIkkm/iBBCCCFqUq0LHH377be8+OKLLFu2jNmzZwMwceJEevTowdy5c/nyyy9LXPfhhx8mOTmZTZs2YbfbAZg2bRpdunRh7dq1oQukIUOGsHfvXho3bhxa9/rrr6dXr14sWLAg4gXShRdeSJ8+fSrzUIUQ9YiMNBKidLU5sCWEEEIIUZtIv4gQQgghalqt68VZv349ZrOZqVOnhsqioqK45ppr+Oqrr9i3b1+J6+bk5NCgQYPQxRGAxWKhcePGYSMBunfvHnZxBGC32xkxYgT79+8nNzc34vZzc3Nr9eTjQgghhBBCCCGEqNukX0QIIYQQNa3WjTjaunUrnTp1Ij4+Pqy8b9++AGzbto2UlJSI6w4ePJh7772X+fPnM2nSJDRN44UXXmDLli28/PLLZe778OHDREdHEx0dXWzZkCFDyMvLw2azMXz4cJYvX07Hjh1L3Z7H48Hj8YTe5+TkAIHUVj6fr8z21AfB4zxZjre6yHmtGsdzXoOp6gzDwDCMqmpanaaUCj3LOapcdencGoaBUgqfz4fZbA5bJn/LhBBCCCGOkX6RE1Nfvy/Xx+Oqj8cE9fO46uMxQf08rvp4TCDHVRNqXeDo0KFDJCcnFysPlh08eLDEdefPn8+uXbu4++67WbJkCQDR0dG8+uqrXHrppaXu988//2TDhg1cfvnlYR1a0dHRTJ48mSFDhhAfH8/333/PihUrOOuss/jhhx9KvFgDWLp0KYsWLSpW/sEHH0S8CKvPNm7cWNNNqJfkvFaNipxXi8VCs2bNyMvLw+v1Hv9OdR3LV1+hHT6MatYMf//+UKRzvbbr2bMnf//73/n73/8ecXnRuxY///xzLr74Ynbv3k1CQkJ1NLHeKumO0NrE6/Xicrn49NNP8fv9YcucTmcNtUoIIYQQovaRfpHKUV+/L9fH46qPxwT187jq4zFB/Tyu+nhMUH+Pa/PmzTXdhGJqXeDI5XKFDakOCk6k7XK5SlzXbrfTqVMnxo4dy5gxY9B1ndWrV3PVVVexceNGzjzzzIjrOZ1OLr/8chwOB//617/Clo0bN45x48aF3o8aNYrhw4czcOBA7r77bh5//PES2zNv3jxuueWW0PucnBxSUlI4//zzi905VF/5fD42btzIsGHDsFqtNd2cekPOa9U4nvPqdrvZt28fsbGxob9TFbZhA9qsWWj794eKVMuWqJUrYcyY49tmKYqO9ihqwYIFLFy4sMLb/e6774iJiSn2BVApRW5uLnFxcWFzQZ133nkcOHCApk2byhxRx6mkc1sbud1uHA4HAwcOLPZvJXjnqRBCCCGEkH6RE1Vfvy/Xx+Oqj8cE9fO46uMxQf08rvp4TFD/j2vIkCE13ZRial3gyOFwhA1jDnK73aHlJZk+fTpff/01P/zwQ2gS7nHjxtG9e3duvvlmvvnmm2Lr6LrO+PHj+fXXX3n33Xdp3rx5mW0855xz6NevHx9++GGp9ex2e8SLPavVWq9+wcvjZDzm6iDntWpU5Lzquo6maZhMptDfnQrZsAHGjYOClGNB2oEDaOPGwfr1lR48OnToUOj1Sy+9xIIFC9i+fXuoLDY2NnQsSil0XcdiKfvjomnTphHLgynUgucpKCoqqlx/c+san89Xbf8uSzq3tZHJZELTtIj/vuTvmBBCCCHEMdIvUjnq6/fl+nhc9fGYoH4eV308Jqifx1Ufjwnq93HVNrWulyk5OTmsUzMoWFbSBYzX6+Xpp59m5MiRYZ1nVquVCy+8kC1btkRMI3Xdddfx1ltvsXbtWoYOHVrudqakpJCRkVHu+kKIk4RSkJ9fvkdODsyYUSxoFNoOwM03B+qVZ3uRthNBs2bNQo+EhAQ0TQu9//3334mLi+Pdd9+ld+/e2O12Pv/8c3bu3Mmll15K06ZNiY2N5Ywzzij2JbFNmzY88MADofeapvHUU08xZswYmjdvTufOnXnjjTdCyz/++GM0TSMrKwuAtWvXkpiYyPvvv0/Xrl2JjY3lggsuCPtM8Pv9zJgxg8TERBo1asRtt93GpEmTGDVqVInHu2fPHi6++GIaNGhATEwM3bt355133gkt/9///sdFF11EfHw8cXFxDBgwgJ07dwKBwMxdd91Fy5Ytsdvt9OrVi/feey+07u7du9E0jZdeeolBgwYRFRXF888/D8BTTz1F165diYqKokuXLjz66KPl+vkIIYQQQoiTm/SLCCGEEKKm1brAUa9evfjjjz+Kpa0J3hXTq1eviOulp6fj9/vRdb3YMp/Ph2EYxZbNmTOHNWvWsHLlSq644ooKtfOvv/6iSZMmFVpHCHEScDohNrZ8j4QEOHCg5G0pBfv3B+qVZ3uVOE/MP/7xD/71r3/x22+/0bNnT/Ly8hgxYgQfffQRW7du5YILLuDiiy9m7969pW5n0aJFXH755Xz++edceOGFTJgwodQvl06nk/vvv59169bx6aefsnfvXmbPnh1afu+99/L888+zZs0avvjiC3Jycnj99ddLbcONN96Ix+Ph008/5eeff+bee+8lNjYWgAMHDjBw4EDsdjubNm3i+++/Z8qUKaE5eFatWsXy5cu5//77+emnnxg+fDiXXHIJO3bsKHa+br75Zn777TeGDx/O888/z4IFC7j77rv57bffuOeee5g/fz7PPvtsqW2tbZRSGMoIfIYaOn7Dj1f34tNr36SNQghRF/h0A5dXJ9vlIyPfS5bTS7bLR67bR57Hj8sb+Pzx+nV8uoFuKAyjfDeGCCHqD+kXEUIIUZnyPH6ynT7yPX68fgNVzhuPxcmt1gWOxo4dG8rBG+TxeFizZg39+vULTbq4d+9efv/991CdpKQkEhMTee2118LuoMnLy+PNN9+kS5cuYcO5ly1bxv3338/tt9/OzTffXGJ7jh49WqzsnXfe4fvvv+eCCy44oWMVQoja6q677mLYsGG0b9+ehg0bcuqppzJt2jR69OhBx44dWbx4Me3btw8bQRTJ5MmTueKKK2jXrh133303eXl5fPvttyXW9/l8PP744/Tp04fTTz+d6dOn89FHH4WWP/TQQ8ybN4/Ro0fTpUsXHn74YRITE0ttw969ezn77LM55ZRTaNeuHRdddBEDBw4E4JFHHiEhIYEXX3yRPn360KlTJ66++mo6d+4MwP33389tt93G+PHj6dy5M/feey+9evUKG1kFMHPmTMaMGUPbtm1JTk5m4cKFLF++PFQ2ZswYZs2axRNPPFFqW2tKMECkG3pYgMire/H6vXh0TyhgpBs6hjJquslCCFHrGYbC7dPJ8/jJzPeSmuMmI99LjtuH2xcIDHn8Bm6fjtOrk+/xk+sJdOhmufxk5HtJy/NwNM/DkRw3qblu0vI8ZOR7ycz3ku30kVMQcHJ6/bh9Om6fjtdv4NcNCTgJUYdJv4gQQojKYBiKzHwv+R4/bn/BdanTS2quh7Q8D9lOH06vBJNEZLVujqN+/fpx+eWXM2/ePFJTU+nQoQPPPvssu3fv5umnnw7VmzhxIp988knol9psNjN79mz++c9/cuaZZzJx4kR0Xefpp59m//79PPfcc6F1X3vtNebOnUvHjh3p2rVr2DKAYcOGhebqOOusszjttNPo06cPCQkJ/PDDDzzzzDOkpKRw++23V8MZEULUKdHRkJdXvrqffgojRpRd7513oCDQUea+K0mfPn3C3ufl5XHnnXfy9ttvc+jQIfx+Py6Xq8wRRz179gy9jomJIT4+ntTU1BLrR0dH0759+9D75OTkUP3s7GyOHDlC3759Q8vNZjO9e/cOzfUTyYwZM/j73//OBx98wHnnncdll10Wate2bdsYMGBAxFyyOTk5HDx4kLPPPjus/Oyzz+bHH38MKyt8vvLz89m5cyfXXHMN1113Xajc7/eTkJBQYjurg1IKhQp9dhrKQBEIGqFAcexCUUMDrWD+JO3YfSYSNBJCiMh8uhF4+BU+IzBaqDIpBbpS6FRsuxrBv+Vg0jRMmoZmCpSH3hcs00J1AusIIWqG9IsIIYQ4UT7dIMvtxSghIKQbCt3QcfuPlVlMGhazCatZw2o2YTFpck14Eqt1gSOAf//738yfP59169aRmZlJz549eeutt0J3iJfkjjvuoG3btqxatYpFixbh8Xjo2bMn69ev57LLLgvVC3b47dixg7/97W/FtrN58+bQBdL//d//8fbbb/PBBx/gdDpJTk7muuuuY+HChSVOBC+EOIlpGsTElK/u+edDy5aBdHWRPsg1LbD8/PPBbK7cdpYhpsgxzJ49m40bN3L//ffToUMHHA4HY8eOjZgjvbCiARlN00oN8kSqf6J3vVx77bUMHz489Ld86dKlLF++nJtuuqnUiYUrovD5yisIHD755JP069cvrJ65mn6OhQNEoWelMCh/gEgIIUTJDEPhDQaKdIVfNyoYzqk+iuDI0uC78gkGnIoGk0xFgkxa4YAUYDJJ54IQlUH6RYQQQpyILKcPs6ViXf9+Q+E3dNwF2ek1wGzSsFpMWE0mLAUBJXFyqJWBo6ioKJYtW8ayZctKrPPxxx9HLL/yyiu58sorS93+nXfeyZ133lmutixZsoQlS5aUq64QQlSI2QyrVsHYsYEgUeEASfCOjgceqPagUSRffPEFkydPZvTo0UAgOLJ79+5qbUNCQgJNmzblu+++C31h1nWdH374ocQ870EpKSlcf/31XH/99cybN48nn3ySm266iZ49e/Lss8/i8/mKBa3i4+Np3rw5X3zxBYMGDQqVf/HFF2Gjnopq2rQpzZs356+//mLChAnHf8AVEJyHqNQAUcHvlASIhBCiYpRS+A0VGk3k1Y0S79ysT4IBJxQVH+VUNJhUMMrJVCjwBOHvJeAkRDjpFxFCCFFRSilyXIGoT2VcrSoKgkleHReBlMoaYDEXBJFMgdFJFgkm1Uu1MnAkhBAnjTFjYP16uPlm2L//WHnLloGg0ZgxNda0wjp27MiGDRu4+OKL0TSN+fPnlzpyqKrcdNNNLF26lA4dOtClSxceeughMjMzSx06PXPmTC688EI6depEZmYmmzdvpmvXrgBMnz6dhx56iPHjxzNv3jwSEhL4+uuv6du3L507d2bOnDksXLiQ9u3b06tXL9asWcO2bdt4/vnnS23nokWLmDFjBgkJCVxwwQV4PB62bNlCZmYmt9xyS4WPO9IIIkMdy0Hs1b1hgaHgswSIhBCi4vRgkKgOjCaqrSStnhBCCCFE9fLrBlkuHx5/1fbVKIIpmikWTCqc4k6CSXWfBI6EEKKmjRkDl14Kn30Ghw5BcjIMGFArRhoFrVixgilTpnDWWWfRuHFjbrvtNnJycqq9HbfddhuHDx9m4sSJmM1mpk6dyvDhw0tNAafrOjfeeCP79+8nPj6eCy64gJUrVwLQqFEjNm3axJw5cxg0aBBms5levXqF5jWaMWMG2dnZ3HrrraSmptKtWzfeeOMNOnbsWGo7r732WqKjo1m2bBlz5swhJiaGU045hZkzZ5a6XokBokLzEgUV7iQzm8zSaSaEEMdBKRUIDhkn12ii2qqq0urp/kDyfq9fB5NZ0uoJIYQQol5x+3RyXL4au9mpcDCJYDBJIyy9ndVswizXXnWKBI6EEKI2MJth8OBq3+3kyZOZPHly6P3gwYMjzinUpk0bNm3aFFZ24403hr0vmrouuJ3CI5OysrJK3FfRtgCMGjUqrI7FYuGhhx7ioYceCm27a9eujBs3rsRjDNYtSc+ePXn//fcjLjOZTCxcuJCFCxdGXN6mTZsS52AqLUVIRQNEGlpBh1jki6xA95cQQoiyyGii+qmstHp+f6ADI8vlx+ILX1Y4rZ5JC3ymmkxIB4cQQgghaj2lFLkePy6vXtNNKUYp8OoG3gjBJKslMCpJrrVqNwkcCVFF8rx5HM0/itlkxm62YzVbsZgsmDUzZpM59CyppIQovz179vDBBx8waNAgPB4PDz/8MLt27Sozh3tNOZ4AkSmYk0cIIcQJCY4mKhwoktFEoqiS0+oFOjhMmobNbMJmkRz+QgghqpdPN8hx+dA0DbMWuLHBbNJCNzwEXkvK1pOVbiiyXT58evVPI3C8jgWTjrXZpGmhayyLKXDdJaPCawcJHAlRBXy6j6P5R3H5XVhMFvK9+Riq8B9FUyhwZDFZsJvt2Cy2YkEli8kigSUhCjGZTKxdu5bZs2ejlKJHjx58+OGHoTmLaooEiIQQouYFRxN5dQOf30A3lIwmEifMUAq3X8ftP3anrK1gNJK1IKAkhBBCVLbw1GMKXyl1NQ3MwUBSQWApFGgKjqqVjvh6xePXyXb5qA/3RBlK4fGrsLmZgsEkq7kg1Z1JrrdqggSOhKhkSikyXBnk+/JpENUg4p0fhjLwG350Q8ere3H5XegunWD3hglTYHRSQRDJZrFhM9mwmAMjlgpugEQ3dKxYq/PwhKhRKSkpfPHFFzWy72AAKBQcoiA4VChYVJgEiIQQouoUHU3k1Y168cVZ1H5KgcdvhDo3NArS2hWMSLKZTXLntxBCiBOS7/GT5/GXu75S4FcKv1HyxVBwbj+TjF6q8/I8fvIr8PtRF0UKJhl6oDPU6fUTpZnkmqsaSOBIiEqW580j3ZlOnC2uxD9gJs2EzWwDc+RtGMpAN3R0peNXfjweD37Dj0KhoWEU/OHck7UHq80aGLFktmE1W4uNWjJrZvlDKkQFBANBgf9XIEAkd8AIIUSV8esGfkOFRhOV1jEiRHVSFE+5EhiNFLhLVtKtCCGEKC+lFDluP25f5c9XowiMztYrMHpJK3g2a1qo096Qa7AaYxiKHLcvLJhyMgmmnM7z6Lj1wG+x2aQVzJmkYTEFrr+kD7TySOBIiErk032k5qdiMVuwmo9/JJBJM2Eym0ocTeT3Be4sMJvMGMogz5uHrvSwDu1Q4MhkxmayYbPYsJqsxVLhSWBJnKwkQCSEELWTUoEAkV9XMppI1EmBkXAQTBNgLpj82W4xySTQQgghIjIMRVYtmK+mpNFLfn+gHyot34vVYxQbvXRs1JKMXqoKPt0gy+mT+TqL0A2Fbui4Cw3ACl53Wc0STDpREjgSopIEU9S5/C4aRDWo0n0F/+DZLXbMluLDlpRS6EpHN3QMZeD0O8n15obmXAGwaIFUeCbNhNVsDQWXzJo5LE1esI4QdVXRQFBYgCgYPCpEAkRCCFG9/LoRSDtnyGgiUT+FOjUK7iA3aYGUdlZL4NlilmsOIYQ4mfl1g8w6FBQ40dFLoUCTzL1ULi6vTq7bR9347ah5x667Au81AsEkS8FIcItZw2KSYFJ5SOBIiEqS580jzZlWaoq66qJpGhbNgsVU8j/xYCo83dDx+D3kG/kYqvBEdKawkUk2sy0QqIqQCs9sKiHnnhDVqGiAKBgcMjBCo4qCNDQouANKAqNCCFF9gqOJfLrC5zfwGTKaSJx8DKVw+4/dHatpBAJJoYd0ZgghxMnC7dPJcdXPoEB5516KGFSS0UtVmrrwZKIAv6HwF7qJJxhMslpMWE2BYJJVbuQpRgJHQlSCYIo6q9l6QinqqpPZZMaMucx5lvyGH6/uxeV3obsCf2AVChOmsJFJNosNm8mGxWyJOGpJiMpSOEAUepYAkRBC1ErB0USBYJGBLqOJhChGKfD4jdCcBRoF8yRZAkEkmfxZCCHqp3yPnzyPv+yK9Zgi8B3f0I9v9JKmUSjoVH8+K/26QbbLJyPxq0gomOTVcXEsmGQpGJFkM5uwFIxSOplJ4EiIE6SUIt2VXi0p6qpTaJ6lEgJhwcCSrnT8yo/H48Fv+FEotIL/BQNHJpMJmykwYslishQLKsk8SyISCRAJIUTdYhgF6eZkNJEQJ0QB3oL5vYIsJg1bwRxJNrOpXnWOCSHEyUZGklTcyTR6qT6PQqvNFMfmqSwaTLIWjEg62YJJEjgS4gTlenPJcGXUihR11SkUWCJyYKnwPEu60sn35ZPjzQmlEQOOBY5MZqwmK3aLHavJGhZUspgsJ0VgSTd0Ptv7GYdyD5Ecl8yAVgNq7UgtFaEXsOg8QcG3xVLHGcXnFIq0zdB8XEUDRAW/BxUJEP372X8z+5bZpKanArB40WLeeOMNvvv+uxLXuXbKtWRlZbF+w/py7aOqtyOEELWV26vj9COjiYSoYsG7YinoyAhO/Gwzm7BZTJglkCSEEHWCYSiyXD58hW4OEJWjoqOXTJqGYQRGfLm9OjqmGh+9lOv24fRKQLG2KBxMCl6DBVMMJ0bbarJp1UICR0KcAK/u5Wj+UaymupOirrqUNc+SUgpDGfgNP4YycPld5HnzQgEDDS0UPDJpgZFPNpMNm8VWLKgUrFNXbfhtAze/dzP7c/aHylrGt2TVBasY03VMxHXKFbwJFEYuBw4dPsTSe5by7jvvcuDAAZKSkuh5ak9mzJjB0HOHRgzclLafkpYF2+rVveUOAB5PgKi8Zt06ixum31Cp29y9ezedO3Tm2y3fcmqvU0Ply1cuj/izEkKIusYwAunm/EZgNJHL4wUgx+PHIt8ohKh2xyZ+DnRimLRAWhWrRQvNlSSEEKJ28esGWS6f3GxTw4Kjl0DhL0gTm+PxYykUr6nu0Uu6ociWgGKdoBRho8LrM/maJ8RxUkqR7gykqGvoaFjTzalzNE0rc/6j4Ggl3dDx+D04lTM0zxIERj0VTncXHLFkNVuLpcKrqtE7RdOoVTR4s+G3Dfzf+v8rtvxAzgHGvjyWF8e+yKguo4pto6LBm6L27N7D0MFDSUxI5O6ld9O9R3d8Ph8fbvyQGTfNYNsv2wLp3wAKXQf5fD6sVuuxZUEFb02YKLoIBV68gSBiLbgZNjY2ltjY2GrZV0JCQrXspzp5vV7sNntNN6PKeTweFixYwLp168jMzKRnz54sWbKEYcOGlbnugQMHmDVrFh988AGGYTBkyBBWrlxJu3btwuqV9CVj6dKl/OMf/ziubQpRWXwFcxL5/IH0c0U7OKS7Q4jaxVAKt1/HXTBVRvBuWGvoodX7EfxCCFGbefw62S6fpPGtI45n9JLJdHxzL8nvhqit5DYkIY5TrjeXTHcm8fb4mm5KvWU2mbGZbTisDmJsMcTb42ngaBB6xNnjsFvsaJqGz/CR7cnmSP4R9ufsZ0/WHnZl7mJX5i52Z+1md+ZuDuYeJC0/jSx3FrmeXHI9ueR4csh2ZwcenmwAMt2ZpOWnkZqfypG8IxzOPczB3IPsz97P3uy97M7czV+Zf/FX5l/sy96H3/Dj1b14dA8en4dMZyaZzkwynBmBhyuDTFdmsUdafhoz35sZeZROQdkt799CljOLXG8ued680CPfm0++Nx+n1xl6wLEROoXTAEZ6zJwxE5Nm4ouvv+CysZfRpUsXTjnlFGbdMovPvvwsMIrLZMJhc/DkE08ydvRYGiU04r6l92HSTKx+YjVdO3clLjqOU7qfwgvPvxDojNACF1eLFy2mQ9sOxEXH0aZVG2677bbQsT3+2ON069KN+Jh4UpqnMH7c+Ig/f8MwaNe6HU88/kRY+bat24iyRrFnzx4AHlj5AKf3Op0G8Q1o36Y9N02/iby8vBJ/rxYvWswZvc8Ivdd1nTm3ziGpURLJScnMu21esVFC77/3PkMGDgnVGXXJKHbu3Bla3rlDZwD69umL3WJn2NBAcOHaKdcydszYUD2Px8OsmbNomdyS+Jh4hgwcwpbvtoSWf/LxJ9gtdjZ9tIn+/fqTGJfIoHMGsX379hKPx+v1cvOMm2ndsjXxMfF0bNeR+/51X2h5VlYWN/z9BlKapxAfE89pp57G22+9HVr+2obX6NWzF3HRcXRq34mVK1aGbb9T+07cs+QepkyeQuMGjbnx+hsB+PzzzxkwYAAOh4OUlBRmzJhBfn5+ie2sayZPnsyKFSuYMGECq1atwmw2M2LECD7//PNS18vLy2PIkCF88skn3H777SxatIitW7cyaNAg0tPTi9UfNmwY69atC3tcfPHFJ7RNISrKMBRun06u20dGvpfUHDcZ+V5y3X7cfl3uihWiDlIKPH6DPI+fTKeXo7keMvK95Hn8ePy6jIgWQohq5PT6yXJKYKA+UiqQTtarG7h9OvkePzluH9muwHX10TwPqTnu0OdwttNHjttHvicwx1WeR343RO0lI46EOA6FU9SVlIpNVL3yzLPkN/zoSsev/Hg8HnQV/kU5GKDR0DAKhigfyT2C2WoOlWuaFvYMhL8u9D+n30nj+xtXyvEpFAdyD9B0RdNy1c+Ym0GMLabsehkZfPD+B9y1+C5iYorXT0xMDHu/5K4lLLlnCfevuB+LxcJ/X/8vt866lftX3M/Qc4fyztvvcN0119GiRQsGDxnMaxte48FVD7Lu+XV0696NI4eOhIIj32/5nltm3sKaZ9dwZv8zyczILLEj3mQyMe7/xvHSf15i2vXTQuX/eeE/nHXWWbRu3TpUb8XKFbRp24Zdf+1ixk0zmPePeTz08EPlOm8rV6xk3b/Xsfqp1XTu0plVK1fx39f/y+Ahg0N1nE4nN8+6mR6n9CA/L59Fdy5i3NhxfPf9d5hMJr746gvO7n82777/Lt26d8Nmi5zrdt4/5vH6htd56pmnaN26NcvvX85FIy7i1+2/0rDhsZGLC+cv5N777qVJkyZMv2E6066dxseffRxxm0888QRvv/U2z//neVJapbB/33727w+kPTQMg0tGXkJuXi5rnl1Du/bt+O3X3zCbA7/fP3z/A1eOv5L5C+YzdtxYvv7qa2ZMn0GjRo2YOGli2Dm6/Z+3c8f8O1BKsXPnTi644AKWLFnCM888w9GjR5k+fTrTp09nzZo15Trvtdm3337Liy++yLJly5g9ezYAEydOpEePHsydO5cvv/yyxHUfffRRduzYwbfffssZZwQClBdeeCE9evRg+fLl3HPPPWH1O3XqxFVXXVVqeyq6TSHKUng0kVc3MOSbqhD13rEc/cdSq1hMGlZLwTxJZlONzecghBD1WY7bh0vmrDmplXf0khC1jfR4C1FBwRR1br+bBo4GNd0cUQpN07CarSUGlorS/YGLuURHImZL+VLb+ZUfL14oyG1bF1KA7PxzJ0opOnfpXK76/zf+/5g0eVLo/cQJE/nbpL9x/d+vBwId399+8y0rV6xk8JDB7N27l6bNmnLueeditVppldKK7t26A7Bv3z5iYmIYMXIEcXFxtG7dml6n9Spx31dceQUPrHyAvXv30qpVKwzD4JWXX+Eftx9L4zXj5hmh123atGHRXYuYfsP0cgeOHn7wYebcNodRo0cF3j/6MBs/2BhWZ/SY0WHvVz+1mhbNWvDbr7/RvUd3GjcJBAsbNWpEs2bNIu4nPz+f1Y+v5qlnnuKCCy8A4LEnHuOjDz9izTNruHX2raG6ixYvYuCggQDMnjubUZeMwu12ExUVVWy7+/fvp32H9px9ztlomhYKqAF89OFHfPfdd/z4y4906tQJICy12aoHVjFk6BBu/+ftQOBn+duvv7Fi+YqwwNHgIYOZdcssAAxl8Pepf2fChAnMnDkTgI4dO/Lggw8yaNAgHnvssYjtrEvWr1+P2Wxm6tSpobKoqCiuueYabr/9dvbt20dKSkqJ655xxhmhAA9Aly5dOPfcc3n55ZcjBnlcLheappV43o5nm0IE6YY6FijSFX7dkDRzQgggcIe036vjKpjs2WwKzI9kK0htZ5F5koQQ4oRkOb0YWtWkzRdCiKomV4JCVFCOJ4cMVwZx9riaboqohaKt0WTMzSjX443xb5Rrm2+Mf6Nc24u2RpdrexVNTdK7T++w97///jtnnXVWWFn/s/rz+++/A3DZ2Mtwu9x06diFv0/7O/99/b/4/YGE++eedy6tWreiS8cuXD3pav7zwn9wOgNp9v7zwn9omNAw9Pj8s885tdepdOnahZf+8xIAn37yKampqVw29rLQvj/68COGDxtO21ZtaZTYiKsnXU16enpou6XJzs7m0KFD9O3bN1RmsVg4vffpYfV27NjB3yb8jc4dO9O4QWM6tQ8EYfbu3Vuucwjw186/8Pl89D+rf6jMarXS54w+bP89PBXdKT1PCb1OTk4GIDU1NeJ2r7zySn768Sd6dOvBrJmzwoJeP/74Iy1btgwFjYqK+LM8uz9/7vgTXT92V1zv3uG/Az//9DNr164NzRcVGxvL8OHDMQyDXbt2lXYa6oStW7fSqVMn4uPDU5EGf0+2bdsWcT3DMPjpp5/o06dPsWV9+/Zl586d5ObmhpWvXbuWmJgYHA4H3bp144UXXjjhbQqhlMLl1UnP85CW5yHb5cPp1fFJ0EgIUQq9IG1ljttHen4gvV2204fT65fJuoUQogL8BX8zvbpceQkh6i4ZcSREBXh1L2nONGxmm6SoExFpmlaudHEA57U7jxZxLTiYezDiPEcaGi3iW3Beu/MwmyrvLqUOHTugaVqxYEVJomPKF5AKSklJ4edff+ajDz/io48+YsZNM0hJSWHzJ5uJi4vjm+++4ZOPP+HDjR+y6M5FLL5rMV9+/SUXXXwRZ/Q9NqKiRYsWAFxxxRW8+OKLzLltDi+9+BLnDz+fRo0aAbB7925GXzqaqdOmctfiu2jQsAFffvEl066bhtfrJTq6Ym0vyZhRY2jVqhWPPf4Yyc2TUYbitFNPw+vzVsr2i7Jaj42SC45iM4zIHTannnoq23ds5/3332fTR5uYcMUEhp47lBdffhGHw1Ep7Sn6O5CXn8e0adOYMWNGsbqtWrWqlH3WpEOHDoUCdoUFyw4ePBhxvYyMDDweT5nrdu4cGO131llnMW7cONq2bcvBgwd55JFHmDBhAtnZ2fz9738/rm0W5fF48Hg8ofc5OTkA+Hw+fL6TI1FC8DhPhuP16wYuv47bZ1R5nnS94IaA4LOoHHJeq4ac1+PnLfSnUwOsZg2bxYTFFBiVFLw5qK7/ja3r7RdC1B4ev06mS/6mCCHqPun5FqKclFKk5afh8rto6GhY9gpClMFsMrNi+ArGrx+PhhYWPArOn7T8/OWVGjQCaNiwIcPOH8bjjz3OjTfdWGyeo6ysrGLzHBXWpUsXvvzyS/428W+hsq++/IquXbuG3jscDi66+CIuuvgirr/+enr26MkvP//Cab1Pw2KxcO5553LueefyzwX/JKlREh9v/phRo0cRF1d8JN//XfF/LFywkB++/4ENr27g4UcfDi3b+sNWDMPgvvvvw2QKDKJ99ZVXy30uEhISSE5O5ttvv2XAwAEA+P1+tv6wNZRCLz09nT+2/8Fjjz/GOQPOAeCLz78I205wTqPCo3SKate+HTabja++/CqUTs7n8/H9lu+ZPmN6udscSXx8PJePu5zLx13O6DGjuXjkxWRkZHDKKaewf/9+/vjjj4ijjoI/y8K++uIrOnbqGJoHKZJevXrx66+/0qFDhxNqd23lcrmw2+3FyoOp5FwuV4nrAeVe94svwn+PpkyZQu/evbn99tuZPHkyDoejwtssaunSpSxatKhY+QcffFBpgdW6YuPGjWVXEhW29atParoJ9ZKc16oh57Xq1PW/seUZqS6EEGVxev3kuv1VfgOPEEJUBwkcCVFOOZ4cMt2ZxNvjy64sRDmN6jKKF8e+yC3v38KB3AOh8hbxLVh+/nJGdRlVJftd9dAqhgwcwtn9z2bhnQvpcUoP/H4/H334EaufWM1Pv/xU4rqzZs9iwvgJ9OrVi6HnDuXtt97m9dde59333wXg38/+G13X6du3L45oB/954T84HA5atW7F22+9za5duxgwYACJDRJ57933MAyjxFRqEJi3qH///kybOg1d17no4otCy9q3b4/P5+ORhx9h5EUj+erLr3hy9ZMVOhfTb5rO/ffdT4eOHejcuTOrHlhFVlZWaHmDBg1o1KgRTz/1NM2Sm7Fv7z7+efs/w7aRlJSEw+Hgg/c/oEXLFkRFRZGQkBBWJyYmhqnXT2XebfNo0KABrVq1Yvn9y3E6nVw95eoKtbmwRx55hFatW3HqaadiMpnY8OoGmjVrRmJiIgMHDWTAgAGMHzee+5bdR/sO7dn++3Y0TWP4BcOZOWsmZ515FvcsuYex48byzdff8Nijj/Hgww+Wus/Zc2Yz8JyBTJ8+nWuvvZaYmBh+/fVXNm7cyMMPP1zqunWBw+EIG6UT5Ha7Q8tLWg84rnUhEICcPn06119/Pd9//z3nnHPOCW9z3rx53HLLLaH3OTk5pKSkcP755xdLxVdf+Xw+Nm7cyLBhw8JG89V1hqFw+3WcXgOjBnondL+frV99wmn9B2G2yFeKyiLntWrIea06Rc+txaRhtWjYTCYsZhNmU+2f/xOOjcgVQojjleP24fKWfCOhEELUNXLVLEQ5ePwejuYfxW6xS4o6UelGdRnFxZ0u5vO9n3M47zDNYptxTqtzKn2kUWHt2rXj6+++5l9L/8Vtc27j0KFDNGnShNNOP42HHn6o1HUvvfRSlq9czsoVK7l11q20aduGJ59+kkGDBwGQkJjA/ffez9zZc9F1nR49evCf//yHRo0akZiYyH9f+y9L7lqC2+2mQ8cOrHt+Hd26dyt1n+OvHM+M6TO46m9XhXWS9zy1J/fdfx/Lly1n/h3zOWfAOSy+ezFTJk8p97mYectMDh0+xLVXX4vJZGLS5ElcOupSsrOzATCZTKx7fh23zLqF0089nU6dO7Fi5QqGnTsstA2LxcKKB1Zwz5J7WHTnIs455xw2bip+5+3d99yNYRhMmTyF3NxcevfuzVvvvEWDBg3K3d6iYmNjWX7/cv7880/MZjO9+/Tmv2/+NzQC68VXXuQfc//BxKsmkp+fT/sO7Vly9xIATjv9NF548QUW3bmIe+6+h+TkZBbcuYCJkyaWus9Tep7CJ598wh133MGAAQNQStG+fXv+7//+77iPozZJTk7mwIEDxcoPHToEQPPmzSOu17BhQ+x2e6heRdYNSklJAQIp6ipjm3a7PeJoJavVWq+CKOVRX47Z6zdweXU8fgOFhslsrtFJS80WCxbpiK90cl6rhpzXqlP43PqMwAO/gUkLpLazmQOp7Szm2jnNcn34fBBC1AzDUGS7fHhlLjghRD0jV81ClEEpRbozHbfulhR1osqYTWYGtRlUrftMTk5m1YOrWPXgqhLrePzFRzkATLt+GtOunxZx2aWXXsqll156rECBMy+Q/uPsc86OGFApS2n7u3nmzdw88+awsglXTQi9njhpYlggZP7C+cxfOD/03mKxsHzFcpavWF7i/s8971x+/PnHsLKi52bKNVOYck14wOqpZ54Kex8VFcXKB1ay8oGVEfczaPCgYts9tdepJf4cACZNmsTfb/w7lHBDb8OGDVn91OoS1x89ZjSjx4wucfkfO/+IWH7GGWfwwQcflLheXdarVy82b95MTk5O2Kicb775JrQ8EpPJxCmnnMKWLVuKLfvmm29o165dxHSMhf31118ANGnSpNK2Keo+pRRun4HT68dvSO4TIUTdYSiF26fj9gXuwtc0sJlN2CwmrObAQwgh6iq/bpDl8qHL9ZkQoh6SqzQhypDjySHDnUGCPaHsykIIIeq8sWPHous6q1cfC7h5PB7WrFlDv379QqOC9u7dy++//15s3e+++y4s0LN9+3Y2bdrE5ZdfHio7evRosf3m5ubywAMP0LhxY3r37l3hbYr6x68b5Lp9HM3zkOP2SdBICFHnKQUev0Gu209GvpfUHDeZ+V7yPH48fh0lE4MIIeoIr98gw+mVoJEQot6SEUdClCKYoi7KElWlacOEEELUHv369ePyyy9n3rx5pKam0qFDB5599ll2797N008/Hao3ceJEPvnkk7BOrhtuuIEnn3ySkSNHMnv2bKxWKytWrKBp06bceuutoXqPPPIIr7/+OhdffDGtWrXi0KFDPPPMM+zdu5d169Zhs9kqvE1Rf7h9Oi6vLilPhBD1ngK8uhH6e6cBloK0dlZzIMWdqY7MkySEOHm4vDq5bh8SMhJC1GcSOBKiBIYySHOm4dE9NHAc5/wjhgEmGdgnhBB1zb///W/mz5/PunXryMzMpGfPnrz11lsMHDiw1PXi4uL4+OOPmTVrFkuWLMEwDAYPHszKlStD6ecAzj77bL788kueeuop0tPTiYmJoW/fvjzzzDMMHTr0uLYp6jbDULh8Ok6vjiF33AshTlIK8OkGgcx2gfR2ZlPheZJMmCWQJISoQbluH06vXtPNEEKIKieBIyFKkOPJIdOdeXwp6nw+yMmB3NxAIm+L5djDZAKzOfBsMgWWB18XLhNCCFFjoqKiWLZsGcuWLSuxzscffxyxvGXLlrzyyiulbn/YsGEMGzas3O0pzzZF3eT1G7h8Oh6fLnetCiFEBLqhcHl1XAWBJKvZRMMYWxlrCSFE5VJKke3y4fHLiHAhxMlBAkdCROD2uzmafxSHxVGxFHWGAXl5kJEBbjdERQXK3O5AQm/DCDwXFgwcFQ4gmc3HAk2Fg0zBRzB1ja6DWQJNtYL09glRKpmzQIhjlFK4fQZOr1/mLRJCiAqS+USEENVNNxSZMp+REOIkI4EjIYowlEG6Mx2v7i1/ijqlwOWCzMxA4Mhmg4SE8gV0lAJlBIJBwcCS1wseNxgFwabCdTUNtIL0d/v3BQJLwUfhUU1lPUSl0EwaCoXP5yPKEVXTzRGi4lSJbyIvUwq0in9hcjqdAFit1gqvK0R9oRsKp9ePy6cXu49ECCGEEELUPl6/QZbLK9duQoiTjgSOhCiiwinqPB7IyoLs7EBAJi6uYoEZTQPNDOUd2aQU+P2B1+aCdfz+QLBJqcAopOAVTTBwZTKBqSDgFBzdFBzNZLVK+rwTYDKbsNgtpKelY7FY0CTnenEKvF4vJrcpMOPxyay0LxulBXBKqeP1ejE5FeEnVxWqq8KewjZS3i8/hdZVSqGZTChH+X6YSimcTiepqakkJiZiNldgFKcQ9YTbp+P26ZLaRAghhBCiDnF5dXLdPkkwIoQ4KUngSIhCKpSizu8PzGOUlRUI2sTGBoIxVU3TjgWZrLZAqrqyBEcyGYVGNR1P+rxgoClS+rxg3eCykyTQpGkasQ1jyTqcxd69e9FO+shIcQqF1+3FFmWrxvNTyqV9xEVlfBUocXFJQZjSRu6Uc5/lqKIAr25gM5uOndkyT3EJFcq5nqEMNMBiq9gIu8TERJo1a1ahdYSoywxD4fLpOL06htyiKoQQQghRp+S6fTi9ek03QwghaowEjoQoYCiDNGcaPt1HoiOx5IpKBdLRZWaC0xmYxyixlPq1QXAEVHnv9A+mzzMKjWDyeo+VGRHumC4aRDqJ0ueZrWYatmyI7juJLyqVOhaALPJa9+v8unsv3Xp2wGw2hQcqi65XtLyEbYYCnkXrBYOjRdtWdBuFR+RE2n/wfTAAWvh14feFyzSNsOhNcFnResGywstC70P/KdgGpdINxa+7jtCtbVPM1TTaze3MRTOZSGnbtdzrWK1WGWkkTho+3cDp1fH4dLk7VQghhBCijlFKke3yyUhxIcRJTwJHQhTIdmeT5c4qPUVdcB6j3NxAMKS88xjVNaH0eZRvFFXhQFOw475w+rzCnfzB7ZeWPi/4XIfS52mahsVWjX9SIwVVSgqyVCQgU9L7wqPVCpdB8VFrRbahGQZ+vx9L6mHMGiUHaoJlpf1cSwu0aEWCNaHnousE34c2Wny9OkJDBc6tCczm6mm7WTPQNI2oKJnTS4ggpRRun4HLp+PTpZNBCCGEEKIu0g1FltOL35Dbf4QQQgJHQhBIUZfmTCs5RZ3XG5jDKDs70EkeF1v+OYlOBoUDTeUVKX2exxP+vug+CgeQgqOaLJay0+dVxqim0oIqhd8HXxd9Lu96hYMzkQI1RdePuO8io2ki1Y80eqbo60gjZoKBmpJG0wTPeeFlwYtuR9SxUW+RRuEIIUQdoxsKp9ePy6fLhMlCCCGEEHWY12+Q5fLKNZ0QQhSolbmhPB4Pt912G82bN8fhcNCvXz82btxYrnU//PBDhgwZQuPGjUlMTKRv376sW7cuYt2nn36arl27EhUVRceOHXnooYci1jtw4ADjxo0jMTGR+Ph4Lr30Uv7666/jPj5RuxROUeewOsIX6npgDqMDByA9Hex2iI+XoFFlCM6HZLUGzmtUFERHB+aKio8PjOYq/IiLg2hHoG4w+ODzgTM/MAosNRUOH4aDB2H/fti7F/btg30Fz8H3Bw8G6mZkBB5paYH3R44EHgCHDgZ+5vv2wZ49xx579xZ/FN7H/v0F7wvtL1i+f39gmwcPBh6HDwcewf2mpgbakpER+J3LyYH8vMDxuVyBoJrPdyx1YFAwgGa1FjqXDnA4AucrJiZw7gqf08TE8HNb+H3h1/HxgUdcXODnEhsLMbGBbUZHBx4OR+BnF3zY7WCzBR5W67HRYxD4d1MLR4sJIURFefw6WU4vaXkenF4JGgkhhKh80i8iRPVx+wLXdnJNJ4QQx9TKEUeTJ09m/fr1zJw5k44dO7J27VpGjBjB5s2bOeecc0pc74033mDUqFH079+fO++8E03TePnll5k4cSJpaWnMmjUrVPeJJ57g+uuv57LLLuOWW27hs88+Y8aMGTidTm677bZQvby8PIYMGUJ2dja33347VquVlStXMmjQILZt20ajRo2q9FyIqhdMUZcYlXisUCnILwhI5OfXjXmM6ruKjmoqT/q84HaDz8GrRLcHzKaSR97U07RnQgghSmYYCpdPx+XT0SV9iRBCiCom/SJCVI88j598j7+mmyGEELVOrQscffvtt7z44ossW7aM2bNnAzBx4kR69OjB3Llz+fLLL0tc9+GHHyY5OZlNmzZht9sBmDZtGl26dGHt2rWhCySXy8Udd9zByJEjWb9+PQDXXXcdhmGwePFipk6dSoMGDQB49NFH2bFjB99++y1nnHEGABdeeCE9evRg+fLl3HPPPVV2LkTVc/lcHM0/isPiwKQVRCTc7sCIj+xssJgLRhjVysF5ojTHkz5PN4CswEgas/zMhRBCgE83cHp1PD4dCRcJIYSoDtIvIkTVU0qR4/Lj9us13RQhhKiVal3P6Pr16zGbzUydOjVUFhUVxTXXXMNXX33Fvn37Slw3JyeHBg0ahC6OACwWC40bN8bhOJaCbPPmzaSnp3PDDTeErX/jjTeSn5/P22+/HdaeM844I3RxBNClSxfOPfdcXn755RM6VlGzginq/IY/kKLO5wukCTtwIJAmLJiWS4JGQgghxElFKYXbp5OR7yUj34tbgkZCCCGqkfSLCFG1dEMFrvEkaCSEECWqdT3iW7dupVOnTsTHx4eV9+3bF4Bt27aVuO7gwYP53//+x/z58/nzzz/ZuXMnixcvZsuWLcydOzdsHwB9+vQJW793796YTKbQcsMw+Omnn4rVC7Zn586d5ObmHtdxipqX6cok25NNvC02ECg6cCAwz4zFEhhlZJZ5jIQQQoiTiW4oct0+juZ5yHb58OlGTTdJCCHESUj6RYSoOj7dICPfi19SDwshRKlqXaq6Q4cOkZycXKw8WHbw4MES150/fz67du3i7rvvZsmSJQBER0fz6quvcumll4btw2w2k5SUFLa+zWajUaNGoX1kZGTg8XjKbE/nzp0jtsfj8eDxeELvc3JyAPD5fPh8vhKPoz4JHmdtO163z01qTio2r4FKO4Semwc2K8TGBVKc1fKOIr2gfXotb2ddI+e1ash5rTo1cW51Q6GhKvXvem37jBAnH49fx+XV8fjl75QQQoiaJ/0iJ6a29kOcqPp4XNV9TB6fTo7bX+UjyXW/P+y5PqiPxwT187jq4zFB7TouTau8v1u1+W97rQscuVyusCHVQVFRUaHlJbHb7XTq1ImxY8cyZswYdF1n9erVXHXVVWzcuJEzzzwztA2bzRZxG1FRUaF9BJ+Ptz1Lly5l0aJFxco/+OADoqOjS1yvPtq4cWNNN6GcMmu6ARXy45+HaroJ9ZKc16oh57Xq1MS5/XXvO5W2LafTWWnbEqK8DEPh9us4vTq63HEqhBCiFpF+kcpRd/ohKqY+Hld9PCaArV99UtNNqHT18Zigfh5XfTwmqL/HtXnz5ppuQjG1LnDkcDjC7kYJcrvdoeUlmT59Ol9//TU//PADpoJ5acaNG0f37t25+eab+eabb0Lb8Hq9EbfhdrtD+wg+H2975s2bxy233BJ6n5OTQ0pKCueff36xIef1lc/nY+PGjQwbNgyr1VrTzQG/n4zUPRw5/CcJyo4pNi6Qmq6O0XWDH/88xKkdkjGba13GyTpLzmvVkPNadWri3Lrys9FMZtr0OLvSthm881SI6uDTDZxeHY/MWySEEKKWkn6RE1Pr+iEqSX08ruo4JqUUuW4/7mocWa77/Wz96hNO6z8Icx3sc4qkPh4T1M/jqo/HBLXruDQNmsQWv6HieAT/Dg4ZMqRStleZat1vT3JyMgcOHChWfuhQ4G7q5s2bR1zP6/Xy9NNPM3fu3NDFEYDVauXCCy/k4Ycfxuv1YrPZSE5ORtd1UlNTw4Zle71e0tPTQ/to2LAhdrs9tO+KtAcCd+REuivHarXWmw/58qrxY1YKcnNxHTlAVtqfxDpiscYk1Fx7KonZbJKO+Cog57VqyHmtOtV5bs0mDc2kVerf9JPtM1HUDI9PJ9erZN4iIYQQtZ70i1SOGu+HqCL18biq6pgMQ5Hl8uHHhMVS/d9FzRYLlnrUcQ/185igfh5XfTwmqB3HpWmV349RG/+u17oevF69evHHH38Uu/s4eFdMr169Iq6Xnp6O3+9H1/Viy3w+H4ZhhJYFt7Fly5awelu2bMEwjNByk8nEKaecUqxesD3t2rUjLi6uIocnaoLTCQcPou/dzdHcI+hxsUTVg6CREEIIIUqnG4p8byAHdrbbL0EjIYQQdYL0iwhx4ny6QXq+V67/hBDiONW6wNHYsWNDOXiDPB4Pa9asoV+/fqSkpACwd+9efv/991CdpKQkEhMTee2118KGW+fl5fHmm2/SpUuX0PDpoUOH0rBhQx577LGwfT/22GNER0czcuTIsPZ89913YRdJ27dvZ9OmTVx++eWVe/Cicnm9kJoKe/dCdjaZNkWOzSDeJhe1QgghRH3m8etkOb2k5XnI9xTvPBNCCCFqM+kXEeLEuH06mfleDCWJiYUQ4njVuvFq/fr14/LLL2fevHmkpqbSoUMHnn32WXbv3s3TTz8dqjdx4kQ++eQTVMGHgNlsZvbs2fzzn//kzDPPZOLEiei6ztNPP83+/ft57rnnQus6HA4WL17MjTfeyOWXX87w4cP57LPPeO6557j77rtp2LBhqO4NN9zAk08+yciRI5k9ezZWq5UVK1bQtGlTbr311uo7MaL8dB1ycyEtDdxuiI3FadJJz0sj2uLApNW6eKkQQgghTpBSCpdPx+nV0Q3pJBBCCFF3Sb+IEMcv3+Mnz+Ov6WYIIUSdV+sCRwD//ve/mT9/PuvWrSMzM5OePXvy1ltvMXDgwFLXu+OOO2jbti2rVq1i0aJFeDweevbsyfr167nsssvC6t5www1YrVaWL1/OG2+8QUpKCitXruTmm28OqxcXF8fHH3/MrFmzWLJkCYZhMHjwYFauXEmTJk0q/djFCVAK8vMhPT0QOIqKgoYN0Q2do/mpGEoRZa6cicuEEEIIUTv4dQOnT8ft1ZFwkRBCiPpC+kWEqBilFDkuP26/jDYXQojKUCsDR1FRUSxbtoxly5aVWOfjjz+OWH7llVdy5ZVXlms/1113Hdddd12Z9Vq2bMkrr7xSrm2KGuJ2Q2Zm4GEyQWJi4BnI9GST68snUVLUCVH76Tq2LVsxH01Db9IYb5/TwGyu6VaJIF0nass2LOlZkKlgwAD5+Yga4y4YXSR564UQQtRH0i8iRPkZhiLL5ZPrQiGEqES1MnAkRLn5/ZCVBRkZ4PNBXBxYjv1aO/0u0jwZxEiKOiFqvaj3N5Fw9zLMh1NDZXqzJLLvmIN7+NAabJmASD+fxdCyJaxaBWPG1GjbxMlDNwLp6FxeXXLWCyGEEEIIfLpBltMn14ZCCFHJpCdd1E2GAdnZsGcPHD4cCBY1aBAWNNINnaOudJRS2M22GmysEKIsUe9vosGMOZgKBY0ATEdSaTBjDlHvb6qhlgko+efDgQMwdixs2FAzDRMnDY9fJ9vpIy3PQ77HLx0DQgghhBACt08nM98r14ZCCFEFZMSRqHvy8wMjjLKzwW4PBIw0rVi1YIq6Brb4GmikEKLcdJ2Eu5eBgqL/kjUFCkhYcDfKbAJz4fsdCtXWyvOaMuuoErdZ9rolvqbs7aiKtr/gjdlQJO49is2bhclkKte6qsS2lfDaMEi4c2nEnw9KBerOnAmXXipp60SlUiowusjp1dEN6QwQQgghhBDH5Hv85Hn8Nd0MIYSotyRwJOoOj+dYWjoIm8eoqHyfM5SiTosQVBJCVDNdx3z4CLbDRzAfPIT54OHA84HDWHbuCktPV5QGmDOzaHTDrdXX3jqkaU03QCnYtw8++wwGD67p1oh6wK8bOH06bq+OhIuEEEIIIURhSily3H7cPr2mmyKEEPWaBI5E7afrgdFF6eng9UJsLFitJVc3dI6600FS1AlRfdxuzAcPYzl0GPOBQ4WCQ4H3Fx8+gkk/sQt7f0pLjMSEwJuwVARFupYLLyv0WlNl1wnbVlid8qxbyr7LUafk12Erh9dR4PX5sVnM4TupxOPWPB5MuXmU6dChsusIUQp3wdxFXpnUWAghhBBCRGAYiiyXD59cLwohRJWTwJGovZSCvLxAwCgvDxyOQFq6MmR4ssjz5tPAnlANjRTiJKAUWlY25kOHsUQICpkPHcacnlH2Zsxm9OSm6MnN0Jsno7dohp7cDC03l4T7Hixz/ax75uPt16cyjqje0HWDH7Yf4PTOLTCbq2baQts3W2j8t2llV0xOrpL9i/rNMBTOgoCR5KYXQgghhBAl8esGmU6fXDMKIUQ1kcCRqJ1crmPzGFksJc5jVFS+z0m6J5MYa7SkqBOivHQdU+rRQFAoNGKoUFDo4CFMTleZmzGiHYGAUPNk9ObNAo8WyXibNmWbC7r1PwWzLcJoQV0n9t8vYjqSGj46poDSQG/WFG+f0yrhYEVFefucht4sqcSfD5oGLVvCgAHV3jZRd3n9Bi6vjscv6eiEEEIIIUTpPH6dbKdPrhuFEKIaSeBI1C4+37F5jHQd4uLKPdm63/BLijohItBcrkAgqHBQKDjH0MFDmA+nopUjjZzeqGGxoJCe3Ax/i0CwSCXERwzw6rqBe/uBkv8tm81k3zGHBjPmoLTw1GpKA9DIuX12uf8WiEpWys8n9PN+4AH5+YgyKaVwFYwu8hvytV8IIYQQQpTN6fWT6/bXdDOEEOKkI4EjUTsYBuTkBNLSuVwQEwN2e4U2kenJlhR14uSjFKbMrJKDQgcPY87ILHszFjN6s2bFgkJ6i2T8zZPRk5tCVFSVHYZ7+FAyH1xGwt3LMB9ODZXrzZqSc/ts3MOHVtm+RdlK+vnQsmUgaDRmTI21TdR+ft3A6dNx+/Ri04IJIYQQQghRkhy3D5f3xObKFUIIcXwkcCRqllKQnx8IGOXmBjqmGzas8GbyfPmkuTOItcZIijpRv/j9mFOPYj5wuNDcQofCXptc7jI3Y8REHxstVDQo1LwZRpPGNT5ixD18KO7zBmHbshXz0TT0Jo0D6elkJEutEPz5qM8+w5KeRdMzhwbS08nPR5TAXTC6yCuTFwshhBBCiAowDEW2yyfXkUIIUYMkcCRqjtsNmZmBh8kEiYmB5wryG37S3BlogM0cYf6UmqDr0vktykVzBtPIHYocHDpytHxp5Bo3OjZaqNA8Q/7myegtklHxceWaJ6zGmc14+/Wp6VaIkpjNuPv0QjOZ4dRBNd0aUQsZhsJZEDCSiYuFEEIIIURF+XWDLJcPXVIbCyFEjZLAkah+fv+xeYx8vsA8Rpbj/1XM8GSR53PSwBZfeW08AVHvb4qQbiuJ7DvmSLqt2qA6g3rBNHIHg2nkDhVKKVcQIMrMKnszVgt6s6YlBoX05KYVTu0oxPHQDZ2v07Zx1JtFrwTFgFYDMJskKC7A6zdweXU8fl0mLRZCCCGEEMfF49fJdvkkvbEQlUg3FNv2ZZGW56FxrJ1eKYmYTXXgxmJR4yRwJKqPYUBeHhw9GpjHKDoaYmNPaJN5vnzS3ZnEWqJrRYq6qPc30WDGHIr2mpmOpNJgxhwyH1wmwaMaVOlBPb8f85GjgSDQgQhBoUOHy5lGLga9RUlBoWYYTRrJiDVR497Zt4kF3y/jkLPg38+WxbSMb8mqC1YxpqvMcXQyy/P4yffIhMVCCCGEEOL4Ob1+ct1yTSlEZdr8eyorNv5Baq4nVJYUZ+eWYZ0Y0iWpBlsm6gIJHInq4XJBdnbgYbdDgwYnnDbLb/g56krHpGm1I0WdrpNw9zJQUPTINAVKg/h77sd93iAJAtSA8gT18s8bHLYskEauhKBQMI2cUXbOZb1Jo2PzCzU/Nq+QXjiNnBC12Dv7NjH1sznFRpIcyDnA2JfHsn7cegkencQkJZ0QQgghhDgRuR4fPqPiUxcIIUr28R9HueP1X4uVp+Z6+MeGn/nXmFMkeCRKJYEjUbW83sDzvn2BQFFCQqUFTdLdmeT7XbUmRZ1ty9awkSxFaQosh47QdMAFqCgHmE1gMqFMgefgQ5lNoJlKXa7Q6OfykhAfHTifhdctXDf4umCbFV5euC1lLFcmM5i0QHs0DWUueF9QHr78BNtS9LyYi5+nsMBkWUE9IPH2RVi//o6+f+6hUU5WIFCUlV3mz11ZLejJ4XML+QsFhfRmSZJGTtRpuqGz4PtlEdOPKRQaGjPfm8mlnS+VtHVCCCGEEEKIcjMK5jFyeQ0sFgkcCVFZDAUPfPRnqXVWfvgHAzs1kbR1okQSOBJVQ9chJwdSCwIpUVHgcFTa5nO9eaR7ak+KOgDz0bTy1UvLqJT9Vd7ZrJ+Uph0LQgEmn6/Euhqg5eYR9/zLFB37Y8TFljK3UEEaOZNc4Ir6RSlFqjuN3bn7+fDAZ8fS00Wqi2Jfzj4+2/sZg9sMrr5GCiGEEEIIIeosv26Q6Sr5e7oQ4vjtzNE4musttc6RHA9bdmfQr12jamqVqGskcCQql1KBeYzS0wPPNlugPPhcCXyGjzR3BmbNVDtS1BXQmzQuV72sO+fh69YZDANNN0AZgUCbodCMwDMFz5quB+aGMoxASjTDAN3A0HX2HkindVICJlSRbQWeNd0IrVtseXB7hco0o0j98i43dLRCbUbX0ZQKHdNxLS+6r6LtKAdNKfDrgF5slFFJnIPO4c/O3Uju1QXVsjl6i2aoOEkjJ+on3dA56DzCrrx97Mndz+68fezO3ceevP3szt2PSy97fq7CDuUeqqKWCiGEEEIIIeoTj18n2+VDNyTlsRBVIaecMdmbX9xG60bRtG8SS7smMbRvEkv7JrG0aOCQkUhCAkeiErlckJERmMfIbA7MY1TOTv7yUkqR4c4i3++kgS2hUrd9oix//ImieCq0IKWB3qwpzv8bfcLp+nTdYO/2AzTu3AKz+SQc7VJKYKlokA1lYPv+RxrecnuZm82bchW7EprR4GQ9r6Le8eo+9uYfCAsM7S4IDO3LP4DPKHnyWZNmomV0Mom2eH7K/K3MfSXHJVdm04UQQgghhBD1kMurk+v2RUyFLYSoHOUN+Shgd7qT3elOPvr9WLndYqJNo5hAMCkplvYFQaWkOHutyfwkqp4EjsSJ8/kgKysQNNJ1iI0FS9X8auX58kn3ZBJnjak9f6iUIu6h1cQ9vDrwFkALzJ0TqqIFCnNun11pczyd1ILzGBUoesFZ9L37wibo9z2A6Uhq2M8lVL8gqOfp3Qv+PFzZrRWiSrl1N79l7WCf8wC7c/cXBIb2sTtvHwedRzBUyQF8m8lKq9gWtIlNoXVcS9rGptAmLoXWsS1pGZOMzWxFN3T6vXERh52pEb/caWi0jG/JgFYDqu4ghRBCCCGEEHVejtuHy6vXdDOEqNc++j2Vl3aWfTN00zg7T0zszZ50JzuP5rHzaD47U/PYlZaPx2+w/Ugu24/khq0TYzcHRic1LhidVBBUSoyuvExTovaQwJE4foYRmMcoPT0w2igmBuz2Ktudz/CR6k7DopmxmmpJijpdJ+Gue4n5z6sA5Nw0DX+n9iTcfT/mw8fmBNGbNSXn9tm4hw+tqZae3Mxmsu+YQ4MZc1AS1BN1UJY3JzBqKHdfILVcMDiUu59Udxr8XPK60RYHbWJTaBPXMvTcOrYlbeNSaOZIwmwq/ffebDJzV+85TP1sDhrhgVmt4D6mBy54oMztCCGEEEIIIU5OSimyXT48/srNSiOEOMbp9bNi4x+8+eMhQKNlYhT7s0pOQT9rWCeSExwkJzg4s9A8R7qhOJjl4q+j+QUBpUBQaW+6k3yPzk/7s/lpf3bYthrG2GjfJIZ2TY6NTmrbOIYYu4Qe6jL56YmKUwry8wMjjHJyICoqkJauCkcABVPUufzu2pOizuulwex/4njvI5Smkb3wNpxXXg6A+7zB2LZsxXw0Db1JY7x9TpOgRA1zDx9K5oPLSLh7WclBPV0uYkXNUEpx1J3Onrz97MoNDwztzttPlje71PUTbQm0LQgIBUcMtY1LoU1sCo2jGp7wCM0RKUNZPWAZC75fxiHnsX8/LeNb8sAFDzCm65gT2r4QQgghhBCiftINRabTK/MZCVGFfj+cw/zX/8feDCcaMKyFwR3jz+CrXVms2PgHqbmeUN2m8XZmndeJIV2SIm7LbNJIaRhNSsNoBnVuEir3+g32ZgRGJwWDSn8dzedAlouMfC8Z+V6+250Ztq3khKjw+ZOSYmjdMAabRaaHqAskcCQqxuMJBIwyMwOpwhITw1KGVZXalqJOy8uj4Q23Yv96C8pqJfP+xbgvHHasgtmMt1+fmmugiMg9fCju8wZJUE/UCEMZHHIeYVfBPEPH5h0KPDv9rlLXb+poHAoMtYlNoU1sS1JiWpB9yMzA7p2rfF6uESlDGd5iEJ/u/Yyj3ix6dR/KgFYDZKSREEIIIYQQIiKv3yDL5UVJzEiIKmEoxX++3cujm3fiNxRJcXYWjOyCvud7LGYTQ7okMbBTE7btyyItz0PjWDu9UhIxmyret2qzmOiQFEuHpNiwcqfXz660fHYezeevgtFJfx3NIy3Py6FsN4ey3Xz+Z1qovlnTSGnoKBJQiqVFouO42iWqjgSORPn4/ZCdHUhL5/MF5jGyVk+6uNqWos6Ulk7Da2/C9ut2jJhoMh5djrd/35puligvCeqJKuQzfOzLO8TuvH3syd3Prrx97C4YQbQ37wBew1fiuibNRIvoZoWCQy0D6eUKRhBFWxzF1tF1gx+OHqjKQwpjNpk5s3EvNJOZdm0GVdt+hRBCCCGEEHWLy6uT6/ZFnCdVCHHi0vM8LHrzV77ZlQHA4E5NuH1kV2KsGlv2HKtnNmn0bt2gytoRbbPQvXkC3ZuHZ4jKcnrDRiYFU97lefzsTneyO93JR78fq2+3mGjTOKZYyrukOHutGERwMpLAkSidUpCbGwgY5edDdHQgaFRtu1ekuzNrTYo68979NJpyI5a9+9EbNiDjqYfw9eha080Sov5QKhCo1vVA+svgAwq9D1YusryauPwu9uQdCKSSK0gpF0gtt5/9zkMYquSUh1aThZSYFgXzDR0bPdQ6riUpMc2xm2VCSSGEEEIIIUTdluv24fTqNd0MIeqtL/5MY/Fbv5Lp9GG3mJg1rBOjejVH0zT8fn9NNw+AxGgbp7e2cXqhoJVSitRcT7GA0q60fDx+g+2Hc9l+ODdsO7F2C+2axNC2UTSWbA3T3iw6NYsnMVr6T6qaBI5EyZzOQFq67OzA6KIqnscoklxfHhnurFqRos7y2x80unY65qPp+Fs2J/2ZR9DbtIpYVzd0vjm6lVRXGkmOxvRrcpqkcxIiEr8/8PD5jgWLrNZACkylwDAI5TVQClCgCC8LPor+jShaFnxfLCBV8J9CAaocf34gKOQ8GEgrl3+A3XkH2J2/n8Ouo6UeUpTZHppfqHVcy9Bz29gUmkc3lb8FQgghhBBCiHpJKUW2y4fHL/MHnyjdUJWSXkzULx6/ziObd/LSd/sA6JAUy+JLu9OuSfXd5H8iNE2jaXwUTeOj6N++UahcNxQHs1yhUUnBlHd7053kefz8tD+bn/ZnA2Ze3f0jAI1ibGHp7to1iaFt4xhi7BLuqCxyJkVxXm9gDqPMzECnbXx8jcwB49W9HHWnYzVZajxFne27H2g4bSamvHx8nTuQ/tTDGE2bRKz7zr5NxSaQT45O4q7ecxiRMrS6mixE7WPo4POC7gefPxCosZjBYoWEBLDbwWYDi+XY35zCgaGS3hcuL2udgjKl66S70tmdvZfduXtDo4Z25e5jT94BMrxZpR5KgjWWNjEtaB3dnDbRLWgT3Zw2MYHXSfaGhQZFFbqw9yvIzQsvDxtFVbSs0Loljb4yCr6QGQaYqn/0lRBCCCGEEEJAoOM3y+nFb0hyuhO1+fdUVmz8g9RcT6gsKc7OLcM6MaRLUg22TNSkXWn5zH/9F3akBvoVxvVpyfShHbBb6v7NqWaTRkrDaFIaRjO487Fyr99gb4aTnUfz2HEkh63b95BhRHMw2016vpf0/Ay+3Z0Rtq3khCg6JIUHlFo3jMFmqdp5oesjCRyJY3QdcnICaenc7kBKOlvNDPsrnKKuoT2xRtoQFLVxMw1m3Y7m9eLpcxoZj69ExcdFrPvOvk1M/WxOsRy+h52pTP1sDqsHLJPgkTg5GMaxkUS+gmHSLjfYrBAdAw5HYGRR8FEQ8NANnW8OfENqfipJMUn0a9EPs/n4PqoMZXAo7xB7svewO2s3e7L2sCtrV+B19h7yvHmlrt8kugltEtvQOqEVbRLa0CahFW3iW9MmoTUN7AWpM0sLYpUSuAobTRV8Xfh9pNFWhZcHCkEveO10BuJOhetHGm1VVNgIrFBh8SBV4bq6H2TUlBBCCCGEEKKA12+Q5fIe+6oijtvm31P5x4afi5Wn5nr4x4af+deYUyR4dJJRSvH6toOs3PgHHr9Bg2gr/7yoG+d0aFzTTatyNouJDkmxdEiK5dzOjdmi7aLPgH54jUAgbefRfHamHkt5l57v5VC2m0PZbj7bkRbajlnTSGnoKAgoxYbmUWqR6KjwSD7dUPy4Pwuv3yApLoq+bRvW29GAEjgSgQ7FvLxAwCgvL9Ch27BhjTYp15dHpiebeGvNDrWMfvk1Ehbcg2YYuM4dRObKeyAqKmJd3dBZ8P2yiBM/KgJ9sgu/v5/hLQZJqipRvwTnJQoGioJBCqs18O8l3g4Hc6B5c4h2BNLQRfDOjndYsHkBh/IOhcqSY5O5a8hdjOg4IuI6Pt3HgdwD7M7aHfbYk72HPVl78OieiOsBaGg0j2tO68TWtE1sS+uE1rRJbEObBm1ondCaWFstGOpd1kgqnx/2ZwXOrcVc+jolbScYtIoUuAqOaCpcZjIf25cQQgghhBDipOb26eS4fBH7QkTF6IZixcY/Sq2zcuMfDOzUpN52VItw2S4f97zzGx9vD6TM79u2IQsv7kbjWHsNt6xmRdssdG+eQPfmCWHlWU5vKIi0s9A8SnkeP7vTnexOd8JvxzJE2S0m2jSOoUORlHdJcfaIU6ZEGg2YnBDFwou7cUGP5Ko74BoigaOTndsdmMcoKyuQGqoG5jEqqnCKOouphn5FlSL28TXEr3wEgPyxl5J91+2BFFol+Obo1rD0dMU2CRx0HuGM10fSLLoJ8bY44q2xJNjiCl7HBV5bY4m3BV/HhV47zFE1Ps+TEEBgdKLPdyxYZDIF/n7YbBAXF3gOjiSyWMCvA7sCQaRSgkZT35yKKvJ143DeYaa+OZU7B99Jq4RW4cGhrD3sy9mHrkqedNVistAyviVtE9sGRg8lFgSHEtqQkpBClCVyILjWKJqyrqhgENrhqNpgTuGAktcJxzkKTAghhBBCCFF/5Lp9OL0lfx8TFbNtX1ZYh3QkR3I9DF3+MQkOKzE2CzF2C9E2MzF2CzF2c/Gygufg+1i7hRibhWi7GatZUnfVZt/vyWThG//jaK4Hi0njhiHtuaJvK0zSN1iixGgbp7e2cXrrBqEypRSpuZ5QQOmvo/n8eTSP3Wn5ePwG2w/nsv1wbth2Yu2WUCCpfcHzoWw3d731a7F9Hs528/fnfuCxq06vd8Ej6fk5Wfl8kJ0dGGWk64G0dKUERapLMEWd2+85lgqquhkG8fcsJ/bfLwKQO+1qcm+5scyAWqorrdTlQUfcRzniPlrhZlk0cyjAFG+NRfPZaJHWmER7eOApzhpLvC2WhIKgU7wtjgRrHNEWhwSeRMUZemBUi98XCAApBVZLIHAQFxcIBhUOEpXyO6YbOk6Pk3xfPvm+fFw+F/nefHK9uczdOLdY0AgIlS38eGGJ240yR4UCQsHn4AiiFvEtai4AXZ8UDmCV8XMWQgghhBBC1G9KKbJdPjx+o6abUq+k5ZUeNApy+wzcPg9QvvolsZlNgWBTQTApxm4m2hY5ABVl0TicrqF2ZxLnsIUFqhw2swQzKpFfN3jqs12s/XI3Ckhp6GDxpT3omhxf002rkzRNo2l8FE3jo+jfvlGoXDcUB7Jc/FUwOin4vDfdSZ7Hz0/7s/lpf3aZ2w9mmVr05q8M69asXo0GlN60k41hQG4upKWBywUxMYEJ6WuJHF8uGZ4s4qwxNdMAr4/Efywk+q33Aci+/VbyJ19ZrlWTHOXLLbq49xxaxbYgx5tLji+PbG8uOb5ccry5Ba/zCr0OlPuVjl/pZHiyyPBkhbb1Y+lTtIQxa+bwgFJoNFPssdehYFP9DTzphs43R7eS6kojydGYfk1Ok9SBQUqBz4fu8+B05eL0u8hXXpx4cZr85JsM8pUHp8eL03CTn+rC6QsEgpw+Z+h1vjf8vdPrJM+Th3eb94Sa1zaxLT2SehRLLdc0tikmTe6UEkIIIYQQQoiqphuKLKcXvyHJ6SpbedOP3XlxN9o0jiHf4yffqweeC712Bsu8fvI9Os6C52CZ2xcI+Hl1A6/TINPpK2cLzfDHT8VKNcBRZIRTcFRTqKwgEFU4UBVppJTNcnJ8t9cNxbZ9WaTleWgca6dXSiJmk8bBLBfz//sLvxzIAeCinsncen4nom3ShV/ZzCaNVg2jadUwmsGdj5V7/QZ7MvLDRij9ejCb9PyS/50o4FC2m293ZYQFp+o6+a07WSgVmDw9PT0QOLLZakVausK8upc0dwY2k7VGRgho+U4azJhL1GdfoSxmsv51J65LIs+rEkm/JqeRFNWYVHfkkUcakBzdlEkdL69QoEIphUt3BwJJBcGkTHcOP+3ZS8PGFnL9+eUKPOlKJ9OTTaan7Gh5JPUh8PTOvk0s+H5ZWErB5Ogk7uo9hxEpQ2uwZcdHN3Rcupt8v5N8nwunXhDI8bsCQR+/E2eh18XqBAM7fidOv5t83YVTd+MuZV6gymDSTMRYY4ixxhBti8are9mfs7/M9WafNZtRXUZVaduEEEIIIYQQQkTm0w2ynD4MJUGjqpAUZ8esgV7K6W0ab+f87ic2qsFvGLi8elgwKSzA5C0IRBV6nefxc+RoOuao2ECAqqCubgTyhDi9Ok6vTsXz64SzmLSwYNKx4FLxtHtFA1WFg1IOm7nWjvyINE9OUpydoV2SePOng+R7dGLtFv5xYReGdWtagy09OdksJjomxdExKS5U9v7/DrPgv/8rc93UXHdVNq3aSeDoZODxQGZm4AGQkFDiPCM1RSlFmjsDl99NQ3tite/flJFJw6k3Y/vpfxiOKDIfWoZn4FkV2obZZKZtXKuIgSOt4L+Les+u8OgWTdOItjiItjhIjk4CQNcNGuQe4PSOLTCXkZM2UuDp2Ovyj3iqmsBTbNhzsfmeCpXHWKJPKPD0zr5NTP1sTrFkaIedqUz9bA6rByxjePPBx7390hjKKBTICQR6nD5nQVl4gCcU5PG7cBUO+PhdOP3hQaHqDPA4rA5ibAXBHms00dZoYmwxRFsCzw6r41gwKLisoF6UKYpdW3fR9+y+xDnisJvDJxn8ct+XXP7K5WW2JykmqSoPVwghhBBCCCFECdw+nRyXL0KCcVEZdqflM/0/W0sNGgHMOq/TCQdELCYTcVEm4qKs5V7H7/ez5bOP6DOgD5aCqS6UUnj8RrERTpFGPZVa5vWH5sryG4E0iNmu8o6CKpnDaj4WgLIXGfVUUOawmEg7rJH+vyPEOWwRg1J2i6nSboTe/Hsq/9jwc7Hy1FwPL363D4CeLRNYdEl3mic6KmWf4sSVdzRgUlwtn0e7giRwVJ/5/YF5jDIyAsGjuLjAPCS1UI4vl0xPNvHW2Grft/ngIRpefSPWXXswEhNIf3IVvlNPqfB2vkndyjdHfwCgsb0haZ6M0LLk6KYs6j27Rka1RAo8VURZgadgoCnHm0t2QaApx5sXep3tzam0wFOcNTZ8hFORAFRJgadYazQLtiyLeIEbzEW68Pv7Gdr0bFy6i1RXGm7lORas8Tlx6m7yfU7y/U5cBcGfYCDIWeh1vs95bARPQXl1BHiizQ5irA6iLdFEm6OIMTuIMUfhMNmJMUeFRvdE2+OIccQTbY8lJiqeGEc8Dlt0xKBP0QDP8dL9Ovm2fBo6GmK2FA+c9mvRj+TYZA7nHY44z5GGRnJcMv1a9DvhtgghhBBCCCGEqJi8glRoompsP5zLjP9sJcvlo23jGMafkcLTn+8KG5HSNN7OrPM6MaRL7bmhUtM0oqxmoqxmGsbYTmhbuqECo6C8/mIp+I4FnIqUFUnB5/To5Hn8oTSKLp+Oy6eTRllp882w6/eSl2paeIq9UBCq0AioCEGpomV2q4kVG/8otSUxNjMPX3ka9gh9J6Lm9EpJJCnOHvZvsjANaJYQRd+2Dau3YVVMAkf1kVKBdHTp6ZCfDw4HNKy9v7ge3cNRVzp2s63aU9RZduyk0ZTpmI+k4k9uSsbTj+Dv0LbC2/Ebfu7Yci8AE9qPZukZ8+rNPDqVEXhy626yvXlFgk7hI5zKE3jK8maT5T2+wFOpbQQOOo/Qfn3BKLPiN39UCg2NGEs00ZaowEgda+B1oOzY62J1zFEFdaOJtjiIsTgK6jiINkcRpcxoug4+X+Dfv6YFgsQ2W+Dfv80GFkvguZaNNoTAaL27htzF1DenoqGFBY+0gvF6iwYvqrP/hoQQQgghhBCiLlJKkePy4/brNd2UeuvHfVnc8vKP5Hn8dGkWx6rxvUiMtnHxqc0jzoFTX5lNGrFRFmKjTrxf0Os3igSXiqTgKxSAynP7OHDwELb4RmEBKmdBIEoBulLkuP3kuKs+eJrv1fnlQA69Wzeo8n2J8jObNG4Z1iniaLHgv8qFF3erd/9GJXBU3zidgZR0WVmBjuNaNo9RUUop0t2ZuHVPtaeos/7wI42mzcSUnYOvfVvSn3kYI7nZcW3r3zvW81vWDhJtCfzj1Bsxm8yc1bRPJbe4btI0DYfFgcPioBlNKrx+ZQWeKtRmtFCAJhA0iw6M5jE7CgI4joLl0cQUHFvwdbTFERi1EyEQFGWOOvERPMEAkd8Pbj+YfGA2AkGhuLjAs9UaeFjqzp/4ER1HsPri1SzYvIBDeYdC5clxySwavIgRHcs/35gQQgghhBBCiBOjF6QM8+lGTTel3vr6r3Rue/Un3D6DXimJLB93KrH2wPd4s0mT4MFxsllM2Cw2GsSUXTeQgu8AfQb0DKXgCzLUsVFQTk/kEU7FykJBqWOBKqdXx+Mv/7+jtLyqzVojjs+QLkn8a8wpxeanapYQxcKLu3FBj+QabF3VqJW9ih6PhwULFrBu3ToyMzPp2bMnS5YsYdiwYaWu16ZNG/bs2RNxWYcOHdixYwcAa9eu5eqrry5xO8899xwTJkwA4M4772TRokXF6tjtdtzuWjThldcbCBZlZIBhQHw8mGv/3fnBFHUJ1riyK1ci+8ef02DGXExuD95ep5D+xAOoBonHta2jrnSW/fQYALedegMNo+SDvTJVRuDp40NfctXHM8qsu/rs+0jIbc2ZXdpiqQ3Dgg0dfH7w+8CvB0YTWS1gtgSCRFFR4UGiWhwkLo8RHUcwvP1wvjnwDan5qSTFJNGvRT8ZaSSEEEIIIU460i8iapJPN8hy+jCUzGhUVT7enso/X/8Fn67o364R/7rsFKKs8t23NjFpWmi+I06w29KnG3z1ZzpzXv2pzLrlnU9HVL8hXZIY2KkJP+7Pwus3SIoLpKerbyONgmpl4Gjy5MmsX7+emTNn0rFjR9auXcuIESPYvHkz55xzTonrPfDAA+Tl5YWV7dmzh3/+85+cf/75obKBAweybt26YuuvXLmSH3/8kXPPPbfYsscee4zY2GPz75hrS1BG1wNp6dLSwO2G2NjAiIM6oHCKuursGHa8/jaJ8xah6TrugWeT+eC9qOjjn3Dunh8fIseXxykNujCh/ehKbKmoDJqmMbDZmSRHJ3HYmRpxniONwDxUw5oP5Mcdhytt0sMKUerYSKJgyjmzORAQcjjAEX0s5ZzVWitTzlUGs8nMWSln1XQzhBBCCCGEqFHSLyJqitunk+PyRfzuLCrHOz8fYslbv6Erxbldklh0aXes5vr5HV8EWM0mzu7YuNR5ciAwl1WvlMTqa5iosOBowKS4qJpuSpWrdYGjb7/9lhdffJFly5Yxe/ZsACZOnEiPHj2YO3cuX375ZYnrjho1qljZkiVLAEJ3ygC0a9eOdu3ahdVzuVzccMMNDB06lGbNiqcrGzt2LI0bNz6eQ6paGRlw5Eitn8eoKEMZpLkz8BheGtgSqm2/MU+vI+HeBwBwXjKCrKULAp3wx2nL0Z94+a83AVjS5zYZGVFLmU1m7uo9h6mfzUGDsAtgreC/i3rPrt6fXzBA5PcHAsDBeYmsVkhICE85J1/IhBBCCCGEOGlIv4ioKXkF876IqvPKln3c/8EfAFzUM5nbR3Stt6MVRLjS5skJmnVeJ/l9ELVGrQtnr1+/HrPZzNSpU0NlUVFRXHPNNXz11Vfs2/f/7N15fBXV/f/x193vzb4SgoRNQVBWZanUBbS41mpVXPuzVqvWFVFEEVBRXFFwt9WqqAVR0fZr1VpcELUoiGxuiAoBhLBlX+4+8/vjkkjMQhJucm+S99NHHklmzsx8ZoL3zj2fOZ+zpVn7mz9/Pr1792b06MafYP/3v/9NeXl5rRupvZmmSVlZGWa8DdMNh38ekdCOlAXKKfaXkWJP2nfjaDBNUu5/uCZpVPGnCyi5f8Z+JY3CRpipK+4F4Jw+v2N49uBoRCqt5OS8Y3nqqFl0TehSa3luQg5PHXU/J+cd23oHN8KREYGVFVBaGvny+yKjhlJTITcXevSAvLzIV2bmz6XolDQSEREREelU1C8ibc00TUqrgkoatbK5S/NrkkbnjMhj6ilKGnU21fPkdEmuXY4uJ8XFvWcMYmz/Lg1sKdL24m7E0apVq+jXrx8pKSm1lo8cORKA1atXk5eX1+R9ffvtt0ydOnWfbefNm4fH4+GMM86od32fPn2oqKggMTGR008/nQcffJCcnJxG9+n3+/H7fx5+WFZWBkAwGCQYDDbpHPaperRCOByd/UVZcE9cwb3iC4T9bK/chRM7mBbCrT3RYihExq13kfjPNwEoueEayi/5f5FhJ/tx7Bd/eI2vir8jxZHMTYOuav3z2Ev1sdrymB3BCd3G8JuuR7F892p2enfTxZPFyKyh2Kw2wmEjOtfVMCAcisxNFA5HfrfbwW4DlwfS3GB3/Dya6Jdl8ULx+f/y/gjvOadwBzy3WIvFtQ2Hwlgslui9j0FU9yUiIiLS3qlfZP9U77ej3WO21nkZhkmpL0gw3PYJwXAoVOt7R/HL8zJNk79+tJF/LIskff80uieX/LonRjhMe+nV6Sx/q7Zw1EEZjO4zijU/lVJYESAzycmQ7qnYrBZCUYhDf6vWZ7FE77U4nt+z4i5xVFBQQG5ubp3l1cu2bdvW5H3NmzcPoMGnZaoVFRXxzjvvcPrpp5OcXHu2s/T0dK6++mqOOOIIXC4XH3/8MY8//jjLly9nxYoVdW7k9nbPPffUO4HkokWLSEhIaPJ5dATvrlkTk+Pa/H6Gz5pF4ooVGFYra666is1HHQfrm/7vqD5loTLu+fZxAM7pci6bN3nZzNZohNwsa34oaPNjdgQuupJHV/DBmuLtddbruraONUtj8zrQGcTi2n7DN1HbV1VVVdT2JSIiItLeqV8kOt59991W3X+sdMTzWvXpkliH0CpWfboEw4SFG638b0ek6NNpPcMMNX/ki09+jHF0LdOR/1axkA4YhbBqU/T3rb9V+7J48eJYh1BH3CWOvF4vLperznK3212zvikMw2DBggUMGzaMAQMGNNp24cKFBAKBem+kJkyYUOv3M888k5EjR3LBBRfwxBNPcPPNNze43ylTpnD99dfX/F5WVkZeXh7HH398ozdWzbJjR6TsVbT2F2XBcJh316xh3JAhOGw2Sv2lbKvaSYo9sdXnk7GUlpF95W24Vq7BcLkonH0XWcceQzQqMk/+/DkqwhUMSO3LlNEXY7e27f9K4bDBmh8KGHJQLjZNoBg1+7yu4TCEgpFRQaFQ5BEDuz0ycsjjAafj59FE9rh7eY2ZcCjMmqVrGDJ6CDa7Su9FUyyurTfoxWKx0CutV9T2Wf3kqYiIiIioX2R/BYNB3n33XcaNG4djP8rTx5ton5c/GKbMFyKWhQfDoRCrPl3CsCOOwdaBPkNXn9egkUdxz6If+d+OnViAySf043dD6iaF24OO/rfqSOfVEc8J4uu8LBbITqr7Pt0S1a/tY8eOjcr+oinu/vV4PJ5aw5ir+Xy+mvVNsWTJErZu3crEiRP32XbevHlkZGRw0kknNWnf559/PjfccAPvvfdeozdILper3ps9h8MRvZsXuz0yB0qcz4PisNkIm0GKgyUkOlw47a1782bdvpPMP1+NY/2PGMlJFP31IYIjhhGNq7Rq91e8vOENAO4ecRMuhzMKe20Zm82qxFErsNms2CxmpNxcdaLINMFhB5sdUhMj8w859koS/bLknNRhs9uUOGolbXltbaYNi8US1Q/hHekDvYiIiMj+Ur9IdLTFMWIhGudV6Q9RGSLmna/VbHY79jiJJVqCBtz61no++aEQm9XC7acewvGHdo11WPutI/6toGOeV0c8J4iP87JYot+PEY/vV3H3ryc3N5etW+uW/CooiJSO6tatW5P2M2/ePKxWK+edd16j7TZv3szHH3/MZZdd1qw/UF5eHkVFRU1u39kZpsFuXxFBI0Sas3VHR9k25JN5ydXYtxYQ7pJF4TOPETq4b1T2bZgG01bcj4nJmb1OYWSXYVHZr8SYaUIwCIFA5PfS0kiSqHokkScBnM6fRxdZlawTEREREZHWoX4RaS2maVLmC+ELav7Z1lQVCPPUOivrSwtx2qzcc+YgjjwoGvVvRETaTtz1fg4dOpT169fXKVuzbNmymvX74vf7ee211xgzZsw+b6heeuklTNPcZ73fvZmmSX5+PtnZ2U3eprMrC5RREign2Z7YqsdxrP2arPMuwb61gFCvHuxe8FzUkkYAL/34L1YXfU2SPZFpw66N2n6lFZkmGOFImblgEPx+8PnA64XycigpgbKySOm56pFw3XIhLy/y1e0ASE+HxERwuZQ0Eukk/H4/N910E926dcPj8TBq1Kgm15PfunUrZ599NmlpaaSkpHDaaaexYcOGRrf55JNPsFgsWCwWdu/eXWvd7bffXrNu76/qcjUiIiLSsahfRFqDYZgUVwWVNGplZd4g172yhvWlVjwOG3POGaKkkYi0S3HXA3rWWWcRDod56qmnapb5/X6ee+45Ro0aRV5eHhB5ImbdunX17uPtt9+mpKSkSTc98+fPp0ePHhx55JH1rt+1a1edZU8++SS7du3ixBNPbMopCVDoK8Zjc7XqvEau/31G5oWXYysuITBwALtfeoZw96Y9idUUxf5S7lnzGAA3DL6cLh698bcJw4gkfkKhuomfykqorIgkgEpL636VlETWVXnB541sbxiR/dpskJoKubnQo0fkq3v3yLqk5EgpujgvASkireeiiy5i9uzZXHDBBTz88MPYbDZOPvlkPvnkk0a3q6ioYOzYsSxZsoRbbrmFGTNmsGrVKo455hgKCwvr3cYwDK655hoSExt/uOLJJ5/kxRdfrPl67rnnWnx+IiIiEr/ULyLRFgobFFYGCIaNWIfSoRVW+Lli3kq+3lZOgs3kkXMHM7xXRqzDEhFpkbgrVTdq1CjGjx/PlClT2LlzJwcddBDPP/88+fn5PPPMMzXtLrzwQpYsWYJp1p3Gb968ebhcLs4888xGj/XVV1+xdu1abr75ZiwNzE/Ss2dPzjnnHAYNGoTb7eaTTz5hwYIFDB06lMsvv3z/TrYTMMzITUnQDJNiT2q147jf/C/pN92KJRjCP3oURY/NwkyK7uim+9c+QbG/lINTD+RP/c6O6r47LNOs/WUYPyduDKP28l/+v2yakaKhFktklM/eP8Oe+b2sYLVFfrZaf2639897b7f3+vr+nw/pySsRgeXLl7NgwQJmzZrFpEmTgMh9x8CBA5k8eTJLly5tcNsnnniC77//nuXLlzNixAgATjrpJAYOHMiDDz7I3XffXWebp556ii1btvDnP/+Zhx9+uMF9n3XWWWRl6aEFERGRjk79IhJN/lCY0qogdf+VSDRtL/VxzUur2FxURUaig0sP9HJIbutO1SAi0priLnEE8MILLzB9+nRefPFFiouLGTx4MG+++SZHH330PrctKyvjrbfe4pRTTiE1NbXRtvPmzQMikzo25IILLmDp0qW89tpr+Hw+evbsyeTJk5k6dSoJCQnNO7FOqCwQGVqf0ool6hJfWEDKXQ9gMU28J42jeNYdkflooujLom958fvXALhr+E04rPE3YVmrME0wDTD5Obmzd8Lnl+vqY7WC1QL8IgHkdEZ+r0762Gz1J3iq91FfQkhEpBUsXLgQm83GZZddVrPM7XZzySWXcMstt7Bly5aaJ33r23bEiBE1SSOA/v37c9xxx/HKK6/USRwVFRUxbdo07rjjDnbu3NloXKZpUlZWRnJycoMdOyIiItIxqF9EoqHSH6LCH4p1GB3e5sIqrn5pJTvK/OSmunno7MFs/6rhh81ERNqDuEwcud1uZs2axaxZsxps8+GHH9a7PCUlBa/X26Tj3HPPPdxzzz2Ntnn66aebtC+pyxvysttbDIDV0gpVEU2T5Ef+SvLjfweg8oKzKZ02KerlxQzT4JbP78PE5PSeJ3BEzuFR3X+rMgzABMOsm/TZe51Rz3B109wrUQNYfjHqZ++Ej91eeyRPU0b8iIjEqVWrVtGvXz9SUmo/IThy5EgAVq9eXW/iyDAM1q5dy8UXX1xn3ciRI1m0aBHl5eUkJyfXLJ8+fTpdu3bl8ssv584772w0rj59+lBRUUFiYiKnn346Dz74IDk5OY1u4/f78fv9Nb9Xz5UQDAYJBoONbttUoVCQUCh+y56EQ6Fa3yU6dF1bh65r69B1bT2xuLZWi4VgMLqfJ6L1nhhN6heR/WGaJmW+kOYzagPf7yznmvmrKK4K0jMjgUfPH0Zmgp3tsQ5MRGQ/xWXiSNo/wzTY7SsiRCvdpITDpN5+L4kvvw5A2bWXU3HVpa0yCuXVDW+ysvBLEu0JTB82Mer7b1B9Zd6qf67+YFZZGUnqVK/75fm3ZZk3EZEOoqCggNzc3DrLq5dt27at3u2Kiorw+/373Pbggw8GYO3atfztb3/j7bffxtbIQw/p6elcffXVHHHEEbhcLj7++GMef/xxli9fzooVK+okuPZ2zz33MGPGjDrLFy1a1OmeEF716ZJYh9Ah6bq2Dl3X1qHr2nra+7WtqqqKdQgiUWMYJqXeIAHNZ9TqvtxaysSXV1PuC9EvJ4mHzx1GRqKTkB5UEJEOQIkjaRXFvhJKAxV7StSVRXfnfj/pN0zDs+gDTIuF0ttvpuq8s6J7jD1KA+XctfoRACYOvJSuCdnN28Evy7s1VObNMOpPxjRU5s2+p1ReUhI4HbXLvO2d6Kneh8q8iYg0mdfrxeVy1Vnudrtr1je0HdDkba+99lpOOukkjj/++EbjmTBhQq3fzzzzTEaOHMkFF1zAE088wc0339zgtlOmTOH666+v+b2srIy8vDyOP/74RhNOzVHuD+INxG/HRDgUYtWnSxh2xDHY7Lr1jRZd19ah69o6dF1bTyyurdViISspuqXJq0fkirR3obBBiTdI2NCMRq1tRX4Rk15dizcYZnD3VGafPYRkdyeZ1kBEOgXdNUvUeUNeCv3FeGyuqJeos5SXk3HlDbiWfYHpcFA8+y58JxwX1WPs7YG1T1LoL+aglF5ccvB5zdu4shLC4cjInmiXeQuFYcNO6NIF7NEtzSci0tl5PJ5a5d2q+Xy+mvUNbQc0aduXX36ZpUuX8tVXX7UoxvPPP58bbriB9957r9HEkcvlqjeR5XA4cDii88HWHga7Ef9lUGx2O3Z1GEedrmvr0HVtHbquractr63VYonae1i1aO9PJBb8oTCl3mCD0w9L9Hz8/S5uef0rAmGDkb0zuP/MwXic6psRkY5Fd80SVWEjHClRZ4ZJciQSjuLQaOuu3WT++Voc336HkZhI0ZMPEvjViH1v2EJfF69n7vevAjBz+E04bc34MOHzASbk5oLLpTJvIiLtSG5uLlu3bq2zvKCgAIBu3brVu11GRgYul6umXWPb3njjjYwfPx6n00l+fj4AJSUlAGzZsoVAINDgcarl5eVRVFTUpHMSERERkY6rKhCi3KfyaG3hv19vZ8Yb3xA2TY7pl83M0wfitGseZxHpeJQ4kqgq8ZdSGignzRmd8jfVbJu3kPmnq7Bv2Uo4M4PCZx4ldEj/qB5jb6ZpMm3FfRimwW97/Iajuo5s+sahEPj9kJMDe02ALiIi7cPQoUNZvHgxZWVltcq5LVu2rGZ9faxWK4MGDWLFihV11i1btow+ffqQvOd9YcuWLcyfP5/58+fXaXvYYYcxZMgQVq9e3WCMpmmSn5/PsGHDmnFmIiIiItLRlPmCeAPxP/q7I3h95U/c/853mMBJA7sy7bcDsFuVNBKRjkmvbhI13pCX3f4iEuyeqJaos3+zjqxzL8G+ZSuh7gewe8GzrZo0Angt/22W71qNx+bm1mETm76hYUBFBWRkQGpq6wUoIiKt5qyzziIcDvPUU0/VLPP7/Tz33HOMGjWKvLw8ADZv3sy6devqbPv555/XSh599913fPDBB4wfP75m2T//+c86X+eccw4AL7zwAnPmzKlpu2vXrjoxPvnkk+zatYsTTzwxOictIiIiIu2KYZgUVwaUNGojL362ifv2JI3OPOwAbj31ECWNRKRD04gjiYrqEnVh0yDZVncuhZZyLltBxhXXY62oJNi/H4V/fwSjS3bU9l+f8mAFM1c9DMCEgZdwQGLXZmxcDinJkcSRStKJiLRLo0aNYvz48UyZMoWdO3dy0EEH8fzzz5Ofn88zzzxT0+7CCy9kyZIlmHsVkr/yyit5+umnOeWUU5g0aRIOh4PZs2eTk5PDDTfcUNPu9NNPr3Pc6hFGJ510EllZWTXLe/bsyTnnnMOgQYNwu9188sknLFiwgKFDh3L55ZdH/wKIiIiISFwLhQ1KvEHChiY0am2mafK3JRt4bmk+AH8c3ZMrjjkQi/p8RKSDU+JIoqI1StS5//sB6TdMxRII4B9xGEV/nY3ZBqXfHlz7FLt8hfRO7sFl/f/Q9A0rKyLzGWVmgU2TIoqItGcvvPAC06dP58UXX6S4uJjBgwfz5ptvcvTRRze6XXJyMh9++CETJ05k5syZGIbBmDFjmDNnDtnZLXvw4YILLmDp0qW89tpr+Hw+evbsyeTJk5k6dSoJCQkt2qeIiIiItE+BUJjKUBhTOaNWZ5gmc95dzysrfgLgyjEH8sfRvWIblIhIG1HiSPZbVSuUqEt4+XVSb7sHi2Hg/c0YiufcHUnKtLJ1JT/w7PoFAMw8/EZcNmfTNvT5It+7dGmTOEVEpHW53W5mzZrFrFmzGmzz4Ycf1ru8e/fuvPrqq80+5u23387tt99eZ/nTTz/d7H2JiIiISMdU6g1hs6s7r7WFDIO731rHW18WYAFuPOFgzjy8e6zDEhFpM3qnkf0SNsLs8hZimCbuaJSoM02SnnyGlIeeBKBy/OmUzpgCbXBTZJom01bcT9gMc2L3MYzpNrppG4ZC4PdD166gJ79FREREREREJMrK/UEANNCo9QVCBrf+31cs/m4XNouF6acO4KSBubEOS0SkTSlxJPul2F9KebCSNGcUSsgZBikzHyDpHy8DUH7FJZRfd0WbzRX0xqZFfLrzC9w2F7cfdsO+NwAwDKiogMxMSIlemT4REREREREREdM0KfUG8QaMWIfSKXgDYW56bS3LNhbhsFm46/eDOKZf6861LSISj5Q4kharLlGXGI0SdYEgaTfdRsJb/wWgdNokKi88LwpRNk1FsJI7Vs0B4OpD/kReUrd9b2SaUFYWSRhlZLRZgktEREREREREOr6wYVJcFSBsaJxRW6jwhZj4ymrW/lSK22Fl1llDGNk7I9ZhiYjEhBJH0iLVJepM02z6PEANsFRWkX71JNz/W4Zpt1Fy3wy8p54UpUib5qGv/s527y56JXXnikMubNpGlZWR0nRZWWCztW6AIiIiIiIiItJpBEIGJd4ApnJGbaK4MsCEl1fz3fZykt125pw9lEHdU2MdlohIzChxJC0SrRJ11qJiMi6dgPPLrzESPBQ/ej/+o5o4t1CUfF+6kafXzQNgxuGTmjZXk88XGWGUlQXO/UuciYiIiIiIiIhU8wbClPuCms+ojews93HN/FXkF1aRnuDgkfOG0S8nClMyiIi0Y0ocSbNVBquiUqLOtrWAzIuvwr5xE+G0VIqefoTgkIFRjHTfTNNk+hezCJlhftPtKH5zwFH73igYhEAAcnIiI45ERERERERERKKg3BekKhCOdRidxk/FVVw9fxUFpT66JLt47Pxh9MxMjHVYIiIxp8SRNEvYCLPLVwj7WaLOvv4HMi++GtvOXYS6daXomccIHdg7ipE2zVtb3ufj7ctwWZ3cMXzSvjcwwpESddnZkbmNRERERERERET2k2malHqD+ENGrEPpNDbsquCal1axuyJA93QPj50/jNxUT6zDEhGJC0ocSbMU+UuoCFSS7mp5nVfnF6vJuPw6rGXlBPseSOEzj2J0zYlilE1TFfIyY+VsAK485I/0TOre+AamCWXlkJoKaWmRUnUiIiIiIiIiIvshbJiUVAUIGSpO11a+2VbGhJdXUeYNcVB2Eo+cN5TMpCZMXSAi0kkocSRNVhmsotBfTKIjAUsLkyauxR+Rce3NWPx+AsMGU/i3hzDTYjPZ4MNfPcO2qh3kJXbjqkMu2vcGFRWR0nSZmWCztXp8IiIiIiIiItKxBUIGJd4ApnJGbWblpmJueHUNVYEwh3ZLYc45Q0n1OGIdlohIXGn5BDXSqYSM0H6XqPO8/gYZV07C4vfjO+bXFM59ImZJox/LNvG3dS8CcPth1+OxuxvfwOsFqzVSos7Z8hJ9IiIiIiIiIiIAvmCYkioljdrS/37YzXUvr6YqEObwnuk8et4wJY1EROqhEUfSJMX+0v0qUZf8zIukPfAIAFWnn0LJXdPBEZs3ZtM0ue2LBwgaIcbmjuaE7mMa3yAYjHx17Qoe1boVERERERERkf1T7gtSFQjHOoxO5b1vdnDrG18TNkyOPCiLu88YiMuuijIiIvVR4kj2qSJYyW5fEUmOxOaXqDMMDpk7l7R//Suyr0v+H2U3XhsZvRMj//3pQxYXLMVpdXDH4Tc2fk5GGCorIyONkpPbLkgRERERERER6XBM06TUG8QfMmIdSqfyxupt3POfbzFMGHdIDrefegh2mwoxiYg0RIkjaVTICLHbV4QFcNqaOUIoGCTjljtJ/L+3ACidPIHKP18Y/SCbwRvyctvKBwG4fMD/o09Kj4YbmyaUV0BqKqSnQwvndRIRERERERERCRsmJVUBQoZq07Wll5Zv5qH3vgfg9KHdmHxif2xW9fGIiDRGiSNpVJG/hIpgFenOlGZtZ/F6SZ9wM+4PP8GwWim+azr+M3/XSlE23WPfzOWnygK6JeRw7aEXN964ogISEiArK6YjpERERERERESkfQuGDUqqghia0KjNmKbJM59s5OmPNwJwwageXHPsQc2vpiMi0gkpcSQNqghWUugrJsme0Kw3VUtJKZmXX4dz1VoMl4vlkyZxwOm/JdZVY/PLt/DkNy8AcNth15Ngb2S+Iq8XbLZI0ihGczGJiIiIiIiISPvnC4Yp8wZRyqjtmKbJw+9/z0vLtwBw+dF9+NOveylpJCLSREocSb1CRohd3kKsFkuzStRZt+8g8+KrcfywASMlmV1PzmFHYhYHtGKsTXXbFw/iNwIc1XUUp+Qd13DDQACCQejaFTyNJJdERERERERERBpR4Q9R6Q/FOoxOJWyY3PfOOv5v9TYArh/Xj3NG5MU4KhGR9kX1t6Rehb5iKkNekuyJTd7G/uNGss75E44fNhDuks3u+X8ncNiQVoyy6d7d+hHvbfsYh9XOzMNvbPgJEyMMVVWRkUYpzSvPJyIiIiIiIiICkREvpVVBJY3aWDBscOv/fcX/rd6G1QLTfztASSMRkRbQiCOpoyJYSaG/eSXqHGu+IuPSa7GVlBLq3ZPCZx8nfEAuhI1WjnbffGE/t33xAACXHnwBB6X2rr+haUJZOaSlRb5ERERERERERJopbJiUVAUIGSpO15Z8wTBTXv+SpT8WYrdauOO0QzluQE6swxIRaZeUOJJagkaQXd5CbBZrk0vUuT75lPSrb8Ra5SUw6FCKnn4YIyO9lSNtuie/eYFNFVvp6slmwsBLGm5YXg6JiZCZCVYNxhMRERERERGR5gmGDUqqghimkkZtqcIf4sZX17Bycwkuu5X7zhzMEQdmxjosEZF2S4kjqWGaJkW+EipDVaQ7U5u0jefNd0ibfCuWUBjfr0dR/NgDmIkJrRxp022p2MZj3zwHwK3DJpLkaKD0XlUV2O2REnWOps/pJCIiIiIiIiICkREvZd4gShm1rdKqINe9vJpvCspIdNl4cPwQhvWInweaRUTaIyWOpEZ1ibpkR2KTStQlvvASqTMjJeCqTjmBkvtmgDO+ki63r3wQX9jP6Jzh/K7n8fU3CgQgFILcXPB42jZAEREREREREWn3KvwhzWcUA7sr/FwzfxUbdleS6nHw8LlDGZCrOatFRPaXEkcCRErU7fTtxm6x4bDuI/ljmiTPeYLkvz4LQMUfzqFs2qS4K++2eNtS3vnpQ2wWGzMPn1x/MswIR0YbdekCycltH6SIiIiIiIiItFumaVLmDeELhWMdSqezrcTLNS+t4qdiL9lJLh45byh9spNiHZaISIegxJHUlKjzhnz7LlEXCpF62z0kvvovAMquu4KKKy6BJoxQakv+cIDpX8wC4OJ+53Jw2oF1G5kmlJVDWlrkS0RERERERESkiQzDpMQbJBg2Yh1Kp5O/u5KrX1rFrnI/3dLcPH7+YXRLUxUZEZFoUeJIml6izu8nfeIteN77ENNqpfT2KVSde0bbBdoMT637BxvLN9PFnckNgy+rv1F5OSQlQWZm3I2WEhGRljFNkx9++AG3201eXl6swxERERGRDioYNiipCmKYmtGora3bXsaEl1ZT4g3SOyuRR84bSpdkd6zDEhHpUNRb3sk1tUSdpbyczEuuiSSNnE6KH74vbpNGWysLePirZwCYNuw6kh31DFOuqgKHA7KyIt9FRKRdef3117nwwgspLi6uWZafn8/gwYPp378/vXr14txzzyUcVskQEREREYkuXzBMcWVASaMYWLOlhCvnraTEG6R/12T++ofDlDQSEWkFShx1YqZpUugrxhvykWhPaLCddecusi64DNfyLzCSEil85lF8JxzbhpE2z4yVc/CGfYzMHsoZvU6q2yAQgHAYsrPBrZsLEZH26Mknn2T16tWkp6fXLJs4cSJff/01Y8eOZfDgwbz66qs8++yzMYxSRERERDqaSn+IUm8QpYza3mcbCrl2wSoq/WGG5qXx+AWHkZbgjHVYIiIdUlwmjvx+PzfddBPdunXD4/EwatQo3n333X1u16tXLywWS71fffv2rdW2oXb33ntvnf1u3bqVs88+m7S0NFJSUjjttNPYsGFD1M43VsqDFRT5ShotUWfbtIWscy/BsW494axMdv/jaQKjhrdxpE330fZlvLXlfawWKzOH31T3vMJh8Hoj5emSNGGiiEhzGKZB2IyPETzffPMNI0eOrPm9vLyct956i3POOYf33nuP5cuXM2DAACWOREREpF1Sv0j8MU2TUm+QCn8o1qF0SovX7WTSq2vwBQ2O6JPJw+cOJcmlGThERFpLXL7CXnTRRSxcuJDrrruOvn37MnfuXE4++WQWL17MkUce2eB2Dz30EBUVFbWWbdq0iWnTpnH88cfXaT9u3DguvPDCWsuGDRtW6/eKigrGjh1LaWkpt9xyCw6Hgzlz5nDMMcewevVqMjMz9+NMYycQDrDLV4jd2nCJOsfX35Lx52uxFRYRyjuAwuceJ9wjfueLCISDTF9xPwAX9R3Poen9ajcwzci8RunpkJbW9gGKiMQx0zQJm2HCRrgmQVT9s7nneUorVmxWG05b7J/qKyoqomvXrjW/f/LJJ4RCIc477zwAHA4H48aNY968ebEKUURERKTF1C8SXwzDpMQbJBg2Yh1Kp/T2lwXc+eY3GCYc178LM047FIctLp+FF4k7NquFVI8Du9VC2DAJGSZhwyRsmoTDkd9VdlPqE3eJo+XLl7NgwQJmzZrFpEmTALjwwgsZOHAgkydPZunSpQ1ue/rpp9dZNnPmTAAuuOCCOuv69evHH/7wh0bjeeKJJ/j+++9Zvnw5I0aMAOCkk05i4MCBPPjgg9x9991NPbW4sXeJugxXWr1tnJ8uJ+PKSVgrKwkOOJjCvz+CkZ3VtoE20zPfvcQPZflkuTOYNPiKug3KyyOjjDIzwaobDBHpPEzTrJMMqv65mgULNqsNm8WG1WrFY/PgtDlx2BzYLLaadTarDbs19rcPKSkpFBYW1vy+ePFirFYrRx11VM0yh8NBZWVlLMITERERaTH1i8SXUNiguCqojtUYeXXFFh5YtB6AU4fkMuWkAdis9VfNEZHaEpw2klz2mopMdpsFu61uO9M0a5JKhrknuRTek1wy9NrXWcVd7/nChQux2WxcdtllNcvcbjeXXHIJn376KVu2bGnW/ubPn0/v3r0ZPXp0veu9Xi8+n6/ReEaMGFFzcwTQv39/jjvuOF555ZVmxRIvyoMVFPtLSXHUX6rN/d/3yfzztVgrK/GPOpzd//hb3CeNCqp2MvurpwC4Zeg1pDqTazeorASHA7KywB77Dk8RkWgKG2EC4QDeoJfKQCVl/jKKvcUUeYso8hZR4iuhMlBJMBwEwGV3keZKIzc5l+4p3emZ1pPe6b1//krrTV5qHjlJOWR4Mkh1p5LkTMLjiCSTrJbY3z7079+ff//73xQWFlJSUsL8+fM5/PDDa815tGnTJnJycmIYpYiItDdhw+SLTcX89+vtfLGpWJ0lEhPqF4kfvmCYosqAkkYxYJomc/+XX5M0OmdEHrecrKSRSFOleRwkux0NTk+yN4vFgt1mxe2wkeC0k+J2kJ7oJCvJRU6Km8xEJ2kJDpLddjxOGy67FZvVgv5v7Njirgd91apV9OvXj5SUlFrLq+cxWL16NXl5TSuXtmrVKr799lumTp1a7/q5c+fyxBNPYJomAwYMYNq0aZx//vk16w3DYO3atVx88cV1th05ciSLFi2ivLyc5OTkOushUpPY7/fX/F5WVgZAMBgkGAw26Rz2KRSKzNsTbtqcE4FwgO2Vu7CaViymlfAvhlknvvw66TPuxWKaVI0bS+GsO8HlghYOx67e/y+PE213rJxDVcjLYZmDOKPHybWPF/BDKAxds8DuiPzczoX3nEO4A5xLPNF1bR26rvvHMA3CRpiwGa71MyYYe17ryr3l2O32mlFBbrsbh8OB3WaPjBKy/DySyGaxNXzjaICx57+21JL3xGuvvZbx48fTvXv3mpFF1U/TVvvss8847LDDohWmiIh0cIvX7WT2u+vZWf7zZ7guyS6uH9ePsf27xDAy6WzUL7J/qve7v/uvCoSo8MfPZ5hwKFTre0fQ0DmZpsmTSzYyb3kkSfqn0T255Nc9McLhNv6k0jKd6W/V3nXE83JaI/+XWMxwVF9nrYDVAg4bYLPAnrRR2DAJG8bP5e8Mk5ARKfEZzZR7PP2tLJb9f4+pFq33rNYQd4mjgoICcnNz6yyvXrZt27Ym76t6XoP6hmOPHj2as88+m969e7Nt2zYef/xxLrjgAkpLS7niikiZs6KiIvx+/z7jOfjgg+s9/j333MOMGTPqLF+0aBEJCQlNPo/WU/zzj6ZJv1deIe+llwDIP/541lx+OeTvjsqR1vxQEJX91OfL8i95Y/MiLFi4IPMiVq9v4FhbS1sthlhZs3RNrEPokHRdW4eua+vZ8EX7npi4qqqq2duceeaZPP744zzzzDMAnHvuuVx00UU165csWUJZWRknnnhitMIUEZEObPG6ndz8+pd1lu8s93Pz619y7xmDlDySNqN+keh49913W3X/sbLq0yWxDiHq9j4nw4SFG638b0ekysHpPcMMNX/ki09+jFV4LdbR/1YdSUc8L70Gti+LFy+OdQh1xF3iyOv14nK56ix3u90165vCMAwWLFjAsGHDGDBgQJ31//vf/2r9fvHFF3P44Ydzyy23cNFFF+HxeGqO1dJ4pkyZwvXXX1/ze1lZGXl5eRx//PF1nhxqsR07oLQUmrC/skAZ2yp3kGRPqD0/RThM2t0PkvzSqwCUXnEJtmsu57AmDGXcl3DYYM0PBQw5KBdbK0xcGDRCTP5v5Br/4cAzGD/s6J9XGkZkXqO0NMjOjqSDO4hwKMyapWsYMnoItvqKk0qL6Lq2js56XU3TrHdOIdM0qX7u5pfzCjmtThx2Bw6rI7KcyJxCVou15vvegsEg7777LuPGjcPhcMTiNKOi+snT5rriiitqOjV+6ZhjjqG4uLjedSIiInsLGyaz313faJs5763n6H7ZKpEkbUL9Ivtnf+6RDcOkzBckEI6/0nThUIhVny5h2BHHYOsgJfh/eU6hsMHMt7/jfzt2YgEmn9CP3w2pm7SMd53hb9VRdJTz8jitJDkjcxm1l36CyEglE8MwCZkGhkFkbqUGRirF09/KYoHspLrviy1R/fcaO3ZsVPYXTXH3f4TH46k1jLladb1dj8fTpP0sWbKErVu3MnHixCa1dzqdXH311fzlL3/hiy++4Mgjj6w5Vkvjcblc9d5cORyO6P2Pa7eDzRb5akQgHKAkWIrb7sTlcO61IkD6jbfi+c+7mBYLpdNupOr/nUO0u3ZtNmurJI6e+f5V1pdtIN2Vyk1Dr6p9jMoKSE2BLtkddl4jm93WqTri24qua+voSNfVNM1ayaC9f65WkxSy2rBb7bitbpxWJ067M1I6bk/CaO/vLRXV95UYaM+xi4hI+2KaJkWVATburiS/sIpNhZWs3VJaqzxdfXaU+bli3hcckptCToqb3FR3zfdUT9PmDxBpKvWLREdzjxEKG5T7gxgWW1x3IdjsduzxHGAL2Ox2wliY9sa3fPz9bmxWC7efegjHH9o11qHtl476t+po5wTt97xsVgspbgdOe90+13jvJ2gsMsMwa5JIYdMkHDbxBSL3WvHwt7JYot+PEY9/q7j7PyI3N5etW7fWWV5QECk/1q1btybtZ968eVitVs4777wmH7u6RnBRUREAGRkZuFyummPvTzyxZJomu31FeEM+MlxpNcstFZVkXDUJ16fLMR12iu+7A99vT4hdoM20w7uLB9f+DYBbhlxDuiv155WVleB0QmZmh00aiUjrqZ5HqDopVJ0YMveaFLc62WO1WHHZXbWSQtUjhPZODKlDKfpCoRCPPvooL730EuvWraOqqorQnnrHq1ev5qmnnuK6666jX79+MY5URETaWtgw2VbiJb+wkg07K/jiBytPbVrJ5iIv5b6W1cZfs6WUNVvqlr92O6x0TXHTNdX98/e9fs5OdmG3Rv8hOum41C/S9vyhMKXeIGb8DTTqFKoCYab882tWbCrGZbdy9xmDOPKgrFiHJRLXPE4byS57h+xrsFotOH8xyjthT14lK9GJxWbHMPckl8KR5FLIMPQaHmVx16M+dOhQFi9eTFlZWa1hy8uWLatZvy9+v5/XXnuNMWPGNOsGZsOGyBwR2dnZAFitVgYNGsSKFSvqtF22bBl9+vRpcALIeFIWLKfYX0qKI6lmmbWomIw/X4Pzq28xEjwUP/4A/l//KoZRNt9dqx6lIlTJ0IxDOffA035e4feDaUbK0+0ZOi8iUs0wjZrE0C9/rmaz/Jz0cVgdOO1OnFYndpu93tFCHfFGLd55vV6OP/54li5dSlZWFikpKVRWVtas7927N8899xwZGRnMnDkzhpGKiEhr8gXDbC6qYuPuSjYVVpG/u5L8wko2F1URrFVqygqUR36yQLc0D70yE+mVFZlj5R+fbd7nsc4+vDsOu5XtpT62l/nYXuqjsDKAL2iQX1hFfmH9c/bZLBayk13kpLjITfXQNdVd6+euKW48zo4xKluiQ/0ibasqEGpxQln2X1UIrntlDV9vKyfBaeOB8UM4vGd6rMMSiVtWi4UUjx1XB6no0lxWqwVHPSOsIDJSKWxGRirVjFgylFRqqbhLHJ111lk88MADPPXUU0yaNAmI3PA899xzjBo1qubpl82bN1NVVUX//v3r7OPtt9+mpKSk3skfAXbt2lVzE1StvLychx56iKysLA4//PBa8dx8882sWLGC4cOHA/Ddd9/xwQcf1MQXz/xhP7u8hbhszpp5jWw/bSPz4quw528mnJ5G0dOPEBx8aIwjbZ7lO1fxWv5bWLBw14ibfp73IxwGrxdyciAxMbZBikiba2heob2TQlaLtSbpY7fY8Tg9OPe8RtZXPu6X8wpJfLj77rv53//+x7333suNN97IjBkzuPPOO2vWp6amcswxx/Df//5XiSMRkQ6gtCrIxsJKNhVWkr+7io2FleTvrmR7qa/eOvgALruVnpkJ9Ej34KjYzujDBtGnSzJ5GZ5anS1hw2TR1zsaLVeXk+LiunH96sxx5A+F2VHmZ0epj4I9yaTqpNL2Uh87ynyEDDOyrMzHmp/qjlgCSPU4ao1S2rsUXtcUN2kJKofXmahfpO2U+YJ4A+F9N5RWUVQZ4NGvbWyrKifFbeehc4dyaLfUfW8o0km5HTZS3B1zlFE0WK0WrFhw1JNTM81fJpN+/tlQVqlecZc4GjVqFOPHj2fKlCns3LmTgw46iOeff578/HyeeeaZmnYXXnghS5YsqVU2qNq8efNwuVyceeaZ9R7j8ccf51//+hennnoqPXr0oKCggGeffZbNmzfz4osv4nT+PAfQlVdeydNPP80pp5zCpEmTcDgczJ49m5ycHG644YboX4AoMk2TQl8xvrC/pkSd/bvvybzkamw7dxM6IJfCZx4j3KdXTONsrpAR4pYV9wFw/oGnMzRzT9LLMKC8PFKeLi0tdgGKSKtoKCkUNiMf9Cx7/qtO+litVhJsCTjtThxWR51k0P7OKySx9fLLLzN27FgmT54MUO+Nc58+fVi1alVbhyYiIi1kmCY7ynzk764if09iqHoeouKqYIPbpXjs9MpMpHdWYs0ool6ZiXRNdWO1WAiFQqz4uIDh/bPrrYlvs1q4flw/bn79ywaPMfE3dZNGAC67jR4ZCfTISGjwnAorArWSSb/8ucIfotQbpNQb5Lvt5fXux2W31lsGr/p7l2QX9laYU1ZiQ/0irc8wTEq9QQJhY9+NpVVsL/Vx9fzVbKuykJno5NHzhnFgl6R9byjSCXX2UUbRYLFYcNianlSqnmepMyeV4i5xBPDCCy8wffp0XnzxRYqLixk8eDBvvvkmRx999D63LSsr46233uKUU04hNbX+pxR+/etfs3TpUv7+979TWFhIYmIiI0eO5Nlnn+XYY4+t1TY5OZkPP/yQiRMnMnPmTAzDYMyYMcyZM6fO0znxprpEXaojMmzcuWIVGX+ZiLWsnGC/Ayn8+2MYXbvEOMrme+H7hXxb8j1pzhRuHnLVzyvKyyElGTIyIrOUiUhcM00TExPDNDDNPd8xa36uTgztzW61Y7VYsVqsuO3uWvMK/XK0kNVi1VM4HdjmzZv5/e9/32ib5ORkSkvrf7JbRERiJxg22FIUKe1WXVquOkHkCzbcids1xV2TFOqVlUivzMjP6YnOBrdpqrH9u3DvGYOY/e76WiOPclJcTPxNP8b2b9nnJuueMnXZyS4GHVD/59MKX4iCMi87Sv0UlHp/Tizt+b67IoA/ZLCpqIpNRfWXw7NaICvJ1fCopVQ3Cc64/PgvDVC/SOsJhQ1KvEHCRuftDIy1zYVVXP3SSnaU+clwmTxx/lB6ZStpJFIfjTJqfftKKtUaoWRGkkqdwX7fOf7zn/+sNSn1Dz/8AMC6det44403uOCCCzjggAOatU+3282sWbOYNWtWg20+/PDDepenpKTg9Xob3f+4ceMYN25ck+Pp3r07r776apPbx4O9S9TZrDZc7y8h47opWPx+/IcNoehvD2Gmpux7R3Fmt6+IWWufBGDykCvJcO+pe1tZAS4XZGaBTdl3kdbWWNLnl8tDwUi98GJvMTa7DRMTC5EbnuokkAVLTaLHYrFEEkK2yEghzSsk9UlOTmbnzp2Ntvnxxx/bZWeGiEhHUeEPkV8991BhZc08RFuLvYQbeHrTbrWQl5EQSQrtNYKoZ0Ziq88DNLZ/F47ul83qLSXsrvCTleRiaF5avSONoinJbaevO5m+XeqfJyYQMthZXjuZVLCnDF7192DYZGe5n53lftZS/0MTKW57gyOWuqa4yUh06v6qhdQv0n74Q2FKvUHNdRFD3+8s55r5qyiuCtIjw8PFvcrpnu6JdVgiccdqsZDstuOuL5shbcZisWC3WeiMg71anDgyDIPzzjuPhQsXAuDxeGrdmKSnpzN16lTC4TBTpkzZ/0ilyUzTZLevCL8RIN2Ziue1N0ibNhNLOIxv7FEUP3QPpqd9vinfvfpRyoIVDErvzx8OPCOy0OcDE8jOjiSPRKRR+xrp88t1QK1kD+wpC2ex1Jv0sWHDbrNjtVqxW+0YIYMNbKBbSjecDmet9r/cvvp3dVrIvvzqV7/i3//+NyUlJaTVU550y5YtvP322/sclSQiIvvHNE12VwTYtCcxVD1yKH93FbsqGp4zKMFpq1VarmdmIr0zE+mW7sZujV3JNZvVEneTsjvtVrqnJ9A9veFyeMWVgVrJpFol8cp8lPtClPlClPkqWL+jov7j2KzkpLrITfHQNdVNToqL3FRPTWKpS4oLh8rh1aJ+kfbFGwhT5mu47KW0vi+3ljLx5dWU+0L0y0li9lmD+HHlx7EOSyTuuO02kt12rK388IpIY1qcOJozZw6vvvoqf/nLX7j33nuZPXt2rUmpc3JyOOqoo3jrrbd0g9TGSgNlFPvLSLUnkvTUXFIeeBSAqt//lpKZ08DhiHGELbNi11pe3vAGADOH3xSZmyQUAr8fcnIgMTHGEYq0vsaSOw0t/6XGkj4OiyNSDm5P0seKFZvV1miSp2bUkMVSb9InGIx8OEt1peJop68/En9uvPFGxo4dy3HHHccjjzxCKBQZ2VZVVcWnn37KNddcQygU4vrrr49xpCIiHUPIMNhW7NtTVq6yZh6iTYVVVPhDDW6XleSsU1quV1YiWUka3RItVouFzCQXmUkuBjZUDs8fYkepj4IyHzv2JJP2TjTtLvcTCBtsKfKypaj+kSoWICvZVasUXnaSg/JiCxm7KumWkUiSq3XL4YUNk1U/FeMPGXRJdjOyd0arjwhrjPpF2o8yXxBvILzvhtJqVuQXMenVtXiDYQZ3T2X22UPw2PU+ILI3iwVS3A6NMpK40OK7urlz5zJixAieeOIJoP5JqQ866CDeeuutlkcnzeYP+9nlK8RjsZN+/yMkPTcPgPJL/0j5pGva7dw/YSPMtBX3AXBOn98xPHswGAZUVEBmJjRQt1kknrQ06VM92sfExEr9I3Wqy7vVlHL7xTw/9SV56ksEibQXRx99NI899hgTJkyoVes/OTlS5sdms/HEE09w+OGHxypEEZF2yRsIs7modmm5/N2VbCmuIhiuv7aT1QIHpHsiSaE9I4iqf05ya16deJDkspPUJanBieeDYYNd5f56Rytt35Ng8ocibXaV+/ly697l8Gw8tW4FAMlue71l8KpL5GUkOrG28DPp4nU768xBlZvq5rZTD+HEgbkt2uf+Ur9I/DNNk5KqIIFww/OnSev7aP0upv7zKwJhg5G9M7j/zMF4nLaah79ERKOMJP60+C7+hx9+4Kqrrmq0TWZmJoWFhS09hDSTYRrs9hUR8HvpfdtDJLzxNgClN11H5SX/L8bR7Z95P/6TL4vXkeJI4pah10QWlpdDSjJkZLTbhJi0H01N+lSv2zvZs3fSp76SbPUlfexWe5NKuinpI53ZFVdcwZgxY/jrX//KsmXLKCoqIiUlhVGjRnHllVdy6KGHxjpEEZG4VVIVqCktt/c8RAWlvga3cdmt9MpMpGfN/EMJ9M5KpHt6Ak677kXaM4fNSrc0D93S6i9pbpomxVXBPfMredlR5qeg1EtBiZeNBbspCzso84Uo94Uo91Xw/c76y+E5bBZyUty1Ri3lpES+d0110yXZXe+/pcXrdnLz61/WWb691McV/1jJk384LCbJI/WLxLewYVJaGSDcSSYxj1f//Xo7M974hrBpMqZfNneePlDvGSJ70SgjiVctThx5PB5KS+ufdLPapk2b6p13QFpHWaCckuId9LnxLjwfLcW02Si5+1a8v/9trEPbL0W+Yu5b8zgANw6+gix3BlRWROYzyswCW3y+sIaMEBWB+j8wNWTvOWQaEw5FhtiX+cuwhZt3/k09Rq1tWpCYi+fjVPvlvD7VJdWKvcXY7LZa8/o0NA+PxWLBZXNhxVqrxJuSPiJtY8CAATz88MOxDkNEJC4Zpsn2Ul+t0nL5e5JFpd6G5/lI8zjolRVJEFXPQ9QzM4Guqe4WjxaR9s1isZCR6CQj0ckh3VJqlodCIVZ8/D7DjxpDwKDe0UrVJfF2lfsJhk1+KvbyU3HD5fAyk5y1Rip1SXbxzCf59bY392wz49/fMO6Qrm1etk79IvGtqCqAzaZRj7H0+sqfuP+d7zCBkwZ2ZdpvB8R0Hrv2yO2w0dSXtv1JkZr72DhkMfbEY8Vu36sfaj8Oau7HxvuKt/Hj/sxiRi6uw2bB3oR5/MwWHLixLRxWq0YZSdxq8TvosGHD+O9//4vP58PtdtdZX1RUxDvvvFOrfIxEUTgMH38M334LiYn4jjqCwu0bOPCKm3Cv+RrD7aL4kfvxjzky1pHut3vXPE5JoIwBaX25sO9Z4NvzFGSXLpHkUZwq95eT7k7HaXM22Kb6TbI5b5amadYM5051pWK3N/y/8S/325Tj/PJNsClvii09j6buf3+O88vj7c1qsWK32SMjfSw2DIfBBjaQm5yL0+FsMMnzy2UiIiIiTRU2TFZvKWF3hZ+sJBdD89L2u7M7EDLY8svycnvmH/KHGi7PlJvqrl1abs8oorSEhu9fRRqS4LTTJzuJPtn1l8MLhQ12lvtr5lX6ZSm8gtJIObzdFQF2VwT4amtZk45rAgWlPpZvLOKIAzOjeEb7pn6R+OTbM5fR/nQsy/578dNNPLb4BwDOPOwAJp1wsB4+aKYkl53EVp47rqn2PGdLitvRoeYuDgYj/ybTE5wd6rxEoqHFrz7XXnstv//97znzzDP529/+Vmvdjz/+yMUXX0xpaSnXXnvtfgcpv/D66zBhAvz0U80iR3YmeVYrzh27MFJTKHzqYYLDBscwyOhYXfg183/8FwB3D78JuwH4/dC1KyQkxDS2xvhCPpw2J5kJmbjs0U9uVY+MyUnK0RvbPjSWmPpl0qf6uqa503RdRdqJXbt28c0337Bt27aa/4d/6cILL2zjqERE6lffHC1dkl1cP64fY/t32ef2Fb4QG/eMGqpODm3cXcm2Ei8NVWJy2Cz0yEigZ2YkKdRrrxFEKokibcm+Vzm8YfWsr56L5pcjltZsKeHb7eX73P/O8obLLLYW9YvEn3JfkDK/5s2JJdM0+duSDTy3NB+AP47uyRXHHKiHLpspMY6SRiLSObX4Fei0007jpptu4r777qNnz54kJiYC0KVLFwoLCzFNk+nTp3PsscdGLVghkjQ666w6j85YdxViA8KpKRTO/zuhvgfGJr4oMkyDqZ/fh4nJmb1OYWTWECgrg8xMSEnZ9w5iqCpYRdfErq2SNJLm0c2pSMfk9Xq55pprePHFFxucVNc0TSwWixJHIhIXGpqjZWe5n5tf/5J7zxjEUQdlYJqwq9zPlpIyNu1JDFXPQ1RYGWhw/4kuW82ood57zUPULc2tskDSLlgsFtITnaQnOhmQ+/PnvS82FXPlvJX73L5Lct0RP61N/SLxwzRNSr3BRkdZSuszTJM5767nlRWRB52vGnsgFx7RK7ZBtUMJThtJShqJSIzt16vQPffcw7HHHstjjz3GsmXL8Pl8GIbBiSeeyLXXXssJJ5wQrTgFIuXpJkyod7y1hT01M11OQn16tXFgrWPBj//H6qKvSbInMnXoNVBeHkkYZWREZo6LU96gF7fNTao7NdahiIh0WNdeey3PPvssgwcP5qyzziI3N7fR0p0iIrEUNkxmv7u+0Ta3//tremUksHG3Df9nnzXYLjvJVae0XK+sRDITnXpgRjqkoXlpdEl21RqptzcL0DXVzcjeGW0b2B7qF4m9sGFSUhUg1NDQS2kTIcPg7rfW8daXBViAG084mDMP7x7rsNodj9NGslsVUEQk9lrcw7J582acTifjxo1j3Lhx0YxJGvLxx7XK0/2SBbDt3I1zxSoCo4a3XVytoNhfyt1rHgXghsGXk2N4wO2ArCywxW9JDdM08Ya8HJB8AA6b3uhFRFrLa6+9xvDhw/n000+xxfH7goiIYZq8+832Bju9q/mCBut2VAAWbBY4ID3h5wTRnnmIemYm6glk6XRsVgvXj+tX74i96lTpbacest9zhbWE+kXigzcYVtIoxgIhg+n/9xUffrcLm8XC9FMHcNLA3FiH1e64HTZSlDQSkTjR4k8dvXv35o9//CPPPvtsNOORxhQUNKmZbdfuVg6k9d2/9gmK/aUcnHogf+pxWmQ4VXY2OON7ot6qYBUeu4dkV3KsQxER6dDC4TBjxoxR0khE4oZpmuyq8LNhVyU/7qrgx12VbNhVwcbdlfiCTSudNP7wAzgotIkTfjMWjyu+73tF2tLY/l2494xBdeYI65rq5rZTD+HEGHVQq19EBLyBMDe9tpZlG4tw2Czc9ftBHNMvO9ZhtTtuu41Uj5JGIhI/Wpw4Sk9PJzMzM5qxyL7kNu1mOJyd1cqBtK4vi77lxe9fA2Dm0OtxhAzIyYGEhBhH1jjDNPCH/eSl5GG36klQEZHWNGLECL7//vtYhyEinVSpN8iGvZJD1d/LfPXPuWa3Wpr0NPzRfbMwNm3CYdOcRCK/NLZ/F47ul83an0rwhwy6JEfK08VipFE19YtIZ1fhCzHxldWs/akUt8PKrLOGxKxsZHvmsltJ8agfSUTiS4tflY466iiWLVsWzVhkX446Crp3h61b653nyLRAuGsOgeHDYhBcdBimwdQV92NiclqP4xmd2D8yp1FKyr43jrHKQCVJjiSNNhIRaQN33nknv/nNb3jzzTf57W9/G+twRKSDqgqE2Li7sk6CaHdFoN72NouFvAwPB2Yn0Sc7kQOzkzgwO4muqW7OfHJpo+XqclJcDOmeyqpNrXU2Iu2fzWrh8J4ZZCe7Yh0KoH4R6dyKKwNMWLCa73aUk+y2M+fsoQzqrrmem8tps5LqcWieQhGJOy1OHN1zzz386le/4o477uCWW27RhNRtwWaDhx+Gs84Ci6VW8si0AFgou2VSXM8BtC+vbnyTL3avJdGewPSDLobUVEhPj5xvHAsbYUJGiG7J3bBa9ISoiEhrO+KII1i0aBG/+93vOOywwxgyZAgp9TxkYLFYmD59egwiFJH2JBg22FRYxY+7KmpKzW3YVcnWEm+D2+SmumsliPpkR+YictrrvxdsaI6WahN/0y+mIydEpPnULyKd1c5yH9fMX0V+YRXpCQ4eOW8Y/XL0EG1zOWxW0hKUNBKR+NTiu5r777+fQYMGMWPGDP72t78xZMgQcnJy6rzYWSwWnnnmmf0OVPY44wxYuBAmTICffqpZHO6aQ9ktk/CdcGwMg9s/pYFy7lr1CAAT+11IbkZPyMxsF4mwikAFKa4UkpxJsQ5FRKRTKCwsZMqUKRQXF/P+++/z/vvv19tOiSMR2VvYMNla4q1TZm5zURXhBkrJZSY66ySIemclkuhq3kephuZoyUlxMfE3/RjbvwuhUP2l7kQkPqlfRDqjn4qruHr+KgpKfXRJdvHY+cPomZkY67DaHbvVQrqSRiISx1qcOJo7d27NzwUFBRQUFNTbTjdIreCMM+C00+DjjylZvYwyl4l97HHtIsHSmAfWPkmhv5iDkntyyYHjITsbnPE/KXDICGGaJhmeDL3hi4i0kWuuuYZPPvmEk08+mXPPPZfc3Fw95SsiNUzTZGe5v9booR92VZC/uxJ/yKh3mySXfa/ycj8nidISonc/Wj1Hy+otJeyu8JOV5GJoXppGGom0U+oXkc5mw64KrnlpFbsrAnRP9/DY+cPITfXEOqx2x2a1kJ7gVB+SiMS1FvewbNy4MZpxSHPZbDBmDL68DKoKfyKlnSeNvin+nrnfvwrAnYdcgzOnG3jax81Hhb+CNHcaCY6EWIciItJpvPPOO4wZM4Y333wz1qGISIyVVAVqjR6qThRV+OsfveOyW+mdlVhnFFGXZFebdOBE5mhJb/XjiEjrU7+IdCbfbCtjwsurKPOGOCg7iUfOG0pmUnzMN9ae2KwWMhKcWPXQiIjEuRYnjnr27BnNOKQTM02TqSvuxTANTul6NEf3Px6S20dt3EA4gNViJc2TpidFRETakGmaDB8+PNZhiEgbqvSH2Li7smYU0Y97EkVFlYF629ssFnpkJnBgdiJ9spM4aE+CqFuaRyN8RCQq1C8incXKTcXc8OoaqgJhDu2WwpxzhpLqccQ6rHbHaomMNFLSSETaA9V0kZh7Pf8/LN+1Go/NzW0jJ0N6OrSTJExFoILshGyNNhIRaWO//vWvWbNmTazDEJFWEAgZ5BdW1ioz9+OuCgpKfQ1uc0Cap9booQOzk+iRkYDTbm3DyEVERDqe//2wmymvf4k/ZHB4z3RmnTW42fP8SXXSyKGHV0Sk3djvV/p58+Yxd+5cVq9eTVlZGSkpKQwbNoyLLrqI888/PxoxSgdWHqxg5qqHAJgw4CIO6DkQrO3jA74/5MdpdZLqTo11KCIinc4DDzzA6NGjeeyxx7j66qtjHY6ItEDYMNla7K01emjDrgq2FHkJm2a922QlOffMQfRzgqhXVgIJTnVgiUjsqF9EOqr3vtnBrW98TdgwOapvFnf9fiAue/ueKiEWLBZIT3Bgt7WP/i4REdiPxFE4HObss8/mX//6F6Zp4na76datGzt27OC9997j/fff57XXXuPVV1/F2k4SAdL2Zn/5FDt9hfRO7M5lo68BR/sZ6lwZrCQnMQe33R3rUEREOp3777+fwYMHM2HCBB555BEGDx5MSkpKnXaajFok9kzTZEeZv9booQ27KskvrMQfMurdJtlt35MgipSZOzA7kT5ZSaQmtJ97RRHp+NQvIh3ZG6u3cc9/vsUw4fhDcrjt1EOU+GiBSNLIqWsnIu1OixNHjzzyCP/85z858sgjue+++zjiiCNq1n322WfcdNNN/Otf/+LRRx9lwoQJUQlWOpbvSn7kme8WAHDnkbfiSkqLbUDN4A16cdvcGm0kIhIjc+fOrfn5hx9+4Icffqi3nRJHIm2ruDJQM3qoOkG0YXcFlf5wve1ddmvNyKG9RxFlJTk1f6SIxD31i0hH9dLyzTz03vcAnD60G5NP7K8Say1gAdI8ThxKGolIO9TixNHzzz9Pv379eP/993H8YpTIr371K9577z0GDx7Mc889pxskqcM0TaauuI+wGebEHscy9pCTYx1Sk5mmiTfoJTc5F6fNGetwREQ6pY0bN8Y6BJFOrdIfYmM5bFtTwMbCqpqRRMVVwXrb26wWemUm/Dx6aM/3bmkerEoQiUg7pX4R6WhM0+SZTzby9MeRe+0//KoHV489SA9ztFCqx675FkWk3Wpx4mj9+vVcffXVdW6OqjkcDk499VQee+yxFgcnHdcbm/7Lpzu/wG1zcftxMyNjd9sJb8iLx+HRaCMRkRjq2bNnrEMQiWthw2T1lhJ2V/jJSnIxNC+tRU8K+0NhNhVWRUYR7fx5FNH2Mh9gh6/W12pvAQ5I99QaPXRgdiJ5GQl62lZEOhz1i0hHYpomD7//PS8t3wLAX47pw0Wjeylp1ALVV8yp+aBEpB1rceLI6XRSWVnZaJvKykqcTo3IkNoqg1XcsXIOAFcPv4q89PbT+WeaJr6Qj+4p3bFbNQmziIiIxJ/F63Yy+9317Cz31yzrkuzi+nH9GNu/S73bhAyDn4q8deYh2lJchWHWf5xUp0n/AzI4sEsyB+5JEvXOSsTtUCeJiHQO6heRjiJsmNz7n3W8sWYbANeP68c5I/JiHFX7leJWf5GItH8tfiUbNmwYr7zyClOnTqVbt2511hcUFPDKK69w2GGH7VeA0vE8tPpJtvt20zMljytGXRXrcJqlMlhJkiOJZGdyrEMREelUPvroIwBGjhyJ2+2u+b0pjj766GYfz+/3c+utt/Liiy9SXFzM4MGDmTlzJuPGjdvntlu3bmXixIksWrQIwzAYO3Ysc+bMoU+fPg1u88knn3DUUUcBsGvXLrKysvZ7n9I5LV63k5tf/7LO8p3lfm5+/UvuOWMg/bum1EoO/birgvzCSoLh+jNEKR47B2Un1Soz1yPdxfrPP2L4UYOx29U5IiKdk/pFpCMIhg1uf+Nr3vt2J1YLTD1lAL8dXPffszRNqseBDSPWYYiI7LcWf8q7/vrrOe200xg+fDg33HADxxxzDDk5OezYsYMPP/yQ2bNnU1RUxPXXXx/NeKWd+2H3ep764WUAZhx7J267O8YRNZ1hGgTDQbomdcVm1ZO0IiJtacyYMVgsFr799lv69etX83tThMPhZh/voosuYuHChVx33XX07duXuXPncvLJJ7N48WKOPPLIBrerqKhg7NixlJaWcsstt+BwOJgzZw7HHHMMq1evJjMzs842hmFwzTXXkJiYWO9Tyy3Zp3ROYcNk9rvrG21zy+tf0cAAIjwOG32yE/cqMRdJFGUkOuv8/xYKhaIUtYhI+6V+EWnvfMEwU17/kqU/FmK3Wrjz9IEc28DoZNm3ZLcdt8NGMKjEkYi0fy1OHJ166qk88MAD3HzzzUyePLnWOtM0sdvtPPDAA/z2t7/d7yClYzDDIaZ9MYuQGeY3fX7DuD77fmo7nlQEKkh2JZPkTIp1KCIinc6tt96KxWKpGYlT/XtrWL58OQsWLGDWrFlMmjQJgAsvvJCBAwcyefJkli5d2uC2TzzxBN9//z3Lly9nxIgRAJx00kkMHDiQBx98kLvvvrvONk899RRbtmzhz3/+Mw8//HBU9imd07INhbXK09XHBKwWao0eqi4z1zXVjVXzGIiINJn6RaQ9q/CHuPHVNazcXILLbuW+MwdzxIF6IKmlklx2EpwahS0iHcd+vaJdf/31nH766cybN4/Vq1dTVlZGSkoKw4YN4/zzz1f5FPmZafLW92/xceFKXDYXM8bMiHVEzRIyQoSNMBmeDKwWTewsItLWbr/99kZ/j6aFCxdis9m47LLLapa53W4uueQSbrnlFrZs2UJeXv013xcuXMiIESNqEjwA/fv357jjjuOVV16pk+QpKipi2rRp3HHHHezcuTMq+5TOIxQ2+HpbGZ/nF7F8YxFrt5Y2abtbf3sIJw3KbeXoREQ6B/WLSHtUWhVkwsur+LagnESXjQfHD2FYj/RYh9VuJbrsJLqUNBKRjmW/X9X69OnD9OnToxGLdGBVJbuYse5vAFwx/Ap6pfWKbUDNVBGoIM2dRqIjMdahiIgIsHnzZtLS0khJSWmwTXl5OcXFxfTo0aNZ+161ahX9+vWrs++RI0cCsHr16noTR4ZhsHbtWi6++OI660aOHMmiRYsoLy8nOfnnefKmT59O165dufzyy7nzzjujsk/puEzT5MddlXyeX8Tn+UWs2lxCVaD5pRi7pLSfUsEiIu2B+kWkPdld4eea+avYsLuSVI+DR84bSv+uDd9TS+MSnDaSlDQSkQ5Ir2zSJh7buIBt3h10T+nO1SOvjnU4zRIMB7FgId2T3mplkUREpHl69+7N7bff3mgnzSOPPMKtt97a7DmOCgoKyM2tOxqjetm2bdvq3a6oqAi/37/PbQ8++GAA1q5dy9/+9jfefvttbLb6585r7j5/ye/34/f/XLqsrKwMgGAwSDAYrHeb5gqFgoRC8VvHPbxnLp5wO52TZ3upjxWbilmxqYQvNhdTVFn775bmcXBYjzRG9EpnWF4q17y8hl3lgQb31yXZxcDcpP2eo6i9X9d4pevaOnRdW08srq3VYiEYjG4ViGi9J4rEu20lXq6ev4qtJV6yk1w8ct5Q+mSrHH9LeZw2kt2OWIchItIqWpw4evDBB7nnnntYu3Yt3bp1q7N+27ZtDBkyhOnTp3PttdfuV5DSjgUDbPNv46kfFwAwY8wMPA5PjINqnopABRmeDBIcCbEORURE9jBNE9M099mmJbxeLy6Xq85yt9tds76h7YAmb3vttddy0kkncfzxxzcaS3P2+Uv33HMPM2bULQ+7aNEiEhI61/vaqk+XxDqEJqkMwvdlFtaXWviu1MJuX+2HVpxWkwNTTPqlRr66JYSwWrxQVsCOr+HUXAvPlld3qO69beT/h9/mVrHqfx9ELd72cl3bG13X1qHr2nra+7Wtqqpq0XbqF5H2JH93JVe/tIpd5X4OSPPw2PnD6JbWvvpn4onbYSNFSSMR6cBanDh69dVXGTJkSL03RwDdunVj6NChLFiwQDdInVU4jFlZxd9/+jsBI8jYXmM54cATYh1Vs/hDfuxWO+ke1foVEWlvfvrppxaVcPN4PLVG6VTz+Xw16xvaDmjSti+//DJLly7lq6++2mcsTd1nfaZMmcL1119f83tZWRl5eXkcf/zxjZb5a45yfxBvIL5HHK36dAnDjjgGmz3+Btv7g2HWbC1lRX4JKzYVs35HBXunPG0WOKRbCofvGVV0aLcUHLaGn7QfDhy4fhcPvf9DrZFHXZLdTDjuQMb0y45K3PF+XdsrXdfWoevaemJxba0WC1lJzqjus3pEbnOpX0Tai3Xby5jw0mpKvEF6ZyXy6HnDyE6u+2CSNI3bbiPVo6SRiHRsLb6z+/7777ngggsabXPooYcyb968lh5C2jPThPJy3q1cw8rylTisDmaMndHuSr1VBivpktgFt11zAYiIxNodd9xR6/cPP/yw3nbhcJgtW7awYMECfvWrXzX7OLm5uWzdurXO8oKCAoAGO4cyMjJwuVw17Rrb9sYbb2T8+PE4nU7y8/MBKCkpAWDLli0EAgG6devWrH3Wx+Vy1TtayeFw4HBE58OuPQx2o/nz7LQ1m92OPQ46jEOGwbqCclbkF7M8v4i1P5UQDNceHdcnK5ERvTMi5ed6pDe7bv5vDsllbP+urN5Swu4KP1lJLobmpWGzRv8+LF6ua0ej69o6dF1bT1teW6vFErX3sGot3Z/6RaQ9WL2lhOtfWU2lP0z/rsk8fO5Q0hKim3ztTFx2KykevZeISMfX4lc6r9dLYmJio23cbjcVFRUtPYS0Z+XleN12Znz8EACXHXYZB6YfGNuYmskb9OKyuUhzp8U6FBERAW6//faany0WCx9++GGDySOIJFTuu+++Zh9n6NChLF68mLKyslqjcpYtW1azvj5Wq5VBgwaxYsWKOuuWLVtGnz59akZAbdmyhfnz5zN//vw6bQ877DCGDBnC6tWrm7VPiU+mabKpsIrP84tYnl/Eyk0lVPhrzwXSJdnFiN4ZjOyVwfBe6WQl7f8TwDarhcN7asS0iEhrUr+IxLvPNhQyeeFa/CGDYXlpPHD2kGY/kCI/c9qspHoc7e6haBGRlmjxjJI9evRg6dKljbb59NNP6d69e7P37ff7uemmm+jWrRsej4dRo0bx7rvv7nO7Xr16YbFY6v3q27dvTbstW7YwY8YMRo4cSXp6OllZWYwZM4b33nuvzj7nzp3b4D63b9/e7HPrFKqqwOHg8c0L2VL+E1mOLK4ZcU2so2oW0zTxhrxkeDJw2vQkjohIPFi8eDGLFy/mgw8+wDRNLrroopple3999NFHfPXVV2zevJkRI0Y0+zhnnXUW4XCYp556qmaZ3+/nueeeY9SoUeTl5QGwefNm1q1bV2fbzz//vFai57vvvuODDz5g/PjxNcv++c9/1vk655xzAHjhhReYM2dOs/cp8WNXuZ+3vyxgxr+/5tRH/8c5T33GA4vW89H63VT4QyS77Yw5OJsbTziYVy8/gjeu/jW3/vYQThzYNSpJIxERaRvqF1G/SDxbvG4nk15dgz9kcESfTB46d6iSRvvBYbOSlqCkkYh0Hi1+xzjllFN46KGHePbZZ7n44ovrrP/73//OJ598woQJE5q974suuoiFCxdy3XXX0bdvX+bOncvJJ5/M4sWLOfLIIxvc7qGHHqrzJM+mTZuYNm1arYmn/+///o/77ruP008/nT/+8Y+EQiFeeOEFxo0bx7PPPsuf/vSnOvu+44476N27d61laWlpzT63Ds/vh3CY/MQgT6yKdLhdfMDFJDja1wTc3pAXj91Diis68z+IiMj+O+aYY2p+vu222xg7dixHH310s/ZRVlZGSUkJPXr0aLDNqFGjGD9+PFOmTGHnzp0cdNBBPP/88+Tn5/PMM8/UtLvwwgtZsmQJpvlzmbErr7ySp59+mlNOOYVJkybhcDiYPXs2OTk53HDDDTXtTj/99DrHXb16NQAnnXQSWVlZzd6nxE6FL8QXm4v5fGMRn+cXkV9Ye5J1p83KkLxURvTKYGTvDPrlJLdK2TgREWlb6hdRv0i8emttATPf+gbDhOP6d2HGaYc2OkeiNM5utZCmkUYi0sm0OHF0880389JLL3HppZfyj3/8g3HjxnHAAQewdetWFi1axEcffUS3bt2YMmVKs/a7fPlyFixYwKxZs5g0aRIQ6ZgZOHAgkydPbvRpnvo6YWbOnAlQq+7w2LFj2bx5c61Omb/85S8MHTqUW2+9td4bpJNOOonhw4c361w6nXAYvF7o0oXbP7oef9jPkXlHckTqEbGOrFlM08QX8nFA8gE4bJrsUEQkHt12220t2m7OnDnccccdhMONz8nzwgsvMH36dF588UWKi4sZPHgwb7755j4TVcnJyXz44YdMnDiRmTNnYhgGY8aMYc6cOWRnZ7co5tbYp+yfQMhg7U8lNfMUfVtQhrHXNEUWYEBuCiN6pzOiZwaDuqfidthiFq+IiLQO9YtIPHp1xRYeWLQegFOH5DLlpAF6YGU/2KwW0hOcWHUNRaSTaXHiKDs7m8WLF/OHP/yhZo4Bi8VS89TtiBEjmDdvXrM7NBYuXIjNZuOyyy6rWeZ2u7nkkku45ZZb2LJlS02JmKaYP38+vXv3ZvTo0TXLDj300DrtXC4XJ598MrNnz6a8vLze+QLKy8tJSEjAZtMH/zpME8rLIT2d94pX8u6Gd7Fb7cw4ZgblX5XHOrpmqQxWkuhI1GgjEZFOzO12M2vWLGbNmtVgm4bmV+revTuvvvpqs495++2315rHKRr7lOgwTJP1O8r5fGMxn+cXsXpLCf6QUatNz4wEhvdKZ2TvDA7rkU6KRw+fiIh0dOoXkXhimibPL93Ek0t+BOCcEXlc95u+WDVKpsVsVgsZShqJSCe1X8VNDz74YD7//HM+//xzli9fTmlpKWlpaYwcObLFT6GsWrWKfv361ZqMGmDkyJFApIxLU2+QVq1axbfffsvUqVOb1H779u0kJCSQkFC3rNrYsWOpqKjA6XRywgkn8OCDD9aqD9zplZdDUhK+1ERuffNWAC497FL6ZvRlJStjHFzTGaZBIBwgJzEHm1U3wiIiIp2RaZr8VOzl8/wiPs8v5otNxZR6g7XaZCY6GdE7gxG90hnRK4OcFHeMohURkVhSv4j6ReKBaZo8vvhHXvxsEwCXHNmbS4/qrdJq+8Fq0UgjEencojIr3ogRIxgxYgShUIgvv/wSgGAwiMPR/CctCwoKyM3NrbO8etm2bduavK958+YBtYdjN+SHH37g9ddfZ/z48bWenElISOCiiy5i7NixpKSk8MUXXzB79mxGjx7NypUrG71Z8/v9+P3+mt/LysqAyLUJBoMNbdYsobBB2DAJh419N24tVVVgt0NaOk+s/BubSjeRk5jDNcOvIRyKlAKq/h7vyv3lJNgTcFvdUfsbtYbq2OI5xvZI17V16Lq2no5ybdt7/NIxFFb4WbGpmBX5kVFFBaW+WusTnDYO7xlJEo3olU7vrER1xoiISA31i9SvTfpFQiFCe/U5hEOhWt87iobOyzBNHnz3e/61ugCAa8b24dwRefsszRwP4vVvZbVYSPHYMcIhjBZcxo7yOW1vHfGcoGOeV0c8J9B5xUKzEkcbN26smYixX79+tda9+eabXHLJJezevRuA9PR0nnjiCc4+++xmBeT1enG5XHWWu93umvVNYRgGCxYsYNiwYQwYMKDRtlVVVYwfPx6Px8O9995ba93ZZ59d6xxOP/10TjjhBI4++mjuuusu/vrXvza433vuuYcZM2bUWb5o0aJ6n97ZLzu2Rnd/LQnhu294dN2jAPwh6w+s/2x9zbo1S9fEKqwW+ZIvYx1Ck7z77ruxDqFD0nVtHbqurae9X9uqqqpYhyCdUFUgxKrNJTWjin7YWXsicbvVwuDuqQzvlcHIXhkM6JaM3apJpUVEOjv1i8Rxv8gvrPp0SavuP1b2Pq+wAfN+tPLFbisWTM7uY3CQbz0rPl7fyB7iT0f9W7X3z2n16YjnBB3zvDriOUHHPa/FixfHOoQ6mpU4evrpp7nvvvvYsGFDreU//PADZ599Nj6fj549e5KYmMi3337LBRdcQN++fRk2bFiTj+HxeGo9jVLN5/PVrG+KJUuWsHXrViZOnNhou3A4zLnnnss333zDf/7zH7p167bPfR955JGMGjWK9957r9F2U6ZM4frrr6/5vaysjLy8PI4//vg6Q85basfGrykt2kpKWk5U9tcs4TBUVEB2NqSnc9lblxEwA/zqgF9x7e+uxWKxEA6FWbN0DUNGD8Fmj+/Sb6W+UpJdyeQm5cb9E8TBYJB3332XcePGtegJNqmfrmvr0HVtPR3l2lY/eSrSmkJhg68KSliRX8TyjUV8ta2MsGHWatMvJ2nPiKIMhual4XHG972LiIi0PfWLRMRTv0hlIESlv/aIo1WfLmHYEcdgs0el0E5c+OV5+UMGt77xDV/sLsRmtXDrKQP4zYAusQ6zWeLtb2WxQJrHgcO2fw8LdZTPaXvriOcEHfO8OuI5Qcc/r7Fjx8Y6lDqa9ar8ySefMHToUHr27Flr+cMPP4zP5+Oqq67i0UcjI07+9a9/ccYZZ/DYY4/xzDPPNPkYubm5bN1ad/RMQUFkyG1TbmAgMhzbarVy3nnnNdru0ksv5c0332TevHkce+yxTY4zLy+P7777rtE2Lper3qeEHA5H1P6B221WbFYLtv18U2s2w4CqSsjKhKxMPty0hHd+fAebxcZdx92F3VH7n5bNbovrxFEwHMRmt5GVlIXT6Yx1OE0WzX9L8jNd19ah69p62vu1bc+xS/wyTZMfd1Xy2Y+7ef9bKxtXLMUbrF1r5IA0T80cRYf3TCc9sf3cA4iISGyoX+RncdMvYliwh+s+/Gmz27HHQTIi2mx2OwEDJr/2FSs2FeOyW7n7jEEceVBWrENrsXj4W1mAtAQnTnv0+tfa++e0+nTEc4KOeV4d8ZygY59XvGl2qbrf/va3dZa/8847OJ1O7r777pplp59+OkcddRQff/xxswIaOnQoixcvpqysrNbTJ8uWLatZvy9+v5/XXnuNMWPGNHpDdeONN/Lcc8/x0EMP7fNG6pc2bNhAdnZ2s7bpUMrLISUZMjLwhwNM+2AaABcPu5j+Wf1jHFzzVQYqSfekk+Bo3aHyIiIi0noKSr18nl/M5xuL+Dy/iOKq6jrRViBMmsfB8F7pjOwdGVXULa1pT2yLiIhUU7/Izzp9v0iMlPmC3PjaV3y1tYwEp40Hxg/h8J7psQ6rXbMAqQmOqCaNRETau2a9Iu7atYusrNpPMBQVFfHjjz8yatQokpOTa60bNmxYvU/JNOass84iHA7z1FNP1Szz+/0899xzjBo1qmbSxc2bN7Nu3bp69/H2229TUlLS6OSPs2bN4oEHHuCWW25hwoQJDbbbtWtXvfv/4osvOPHEE5t6Wh1LZQW4XJCZBXY7T618io0lG8lOyOaGI26IdXTNFggHsFltpLnT4r5EnYiIiPystCrI+9/u4N7/rOPMJ5dy+uNLueutb1n0zQ6Kq4K4HVZ+1SeD03qGmXvR4fznuqO46/eDOG3oAUoaiYhIi6hf5Of9d+p+kRgpC8A1L63hq61lpLjtPHb+MCWN9pMFSPE4cMVxlRwRkVho1ogjh8NBYWFhrWVffPEFAMOHD6/TPjExsdkBjRo1ivHjxzNlyhR27tzJQQcdxPPPP09+fn6tod0XXnghS5YswTTNOvuYN28eLpeLM888s95j/POf/2Ty5Mn07duXAQMG8I9//KPW+nHjxpGTE5kzaPTo0QwbNozhw4eTmprKypUrefbZZ8nLy+OWW25p9vm1ez4fmETmNXK52Fq+lYc/exiAaUdPI9mV3Pj2cagyUElWQhYehzqQREQ6OtM06713kPbBFwyzeksJK/KLWZ5fxPrt5ez917RZLBx6QMqeeYrSGXhAKhbTYMXH79O3SxJWPSAiIiL7Sf0i6heJle1lPh752sYuXyWZiU4ePW8YB3ZJinVY7V6Kx4HboaSRiMgvNStx1K9fP95///1ayxYtWoTFYmH06NF12m/bto3c3NxmB/XCCy8wffp0XnzxRYqLixk8eDBvvvkmRx999D63LSsr46233uKUU04hNTW13jZr1qwB4Pvvv+f//b//V2f94sWLa26QzjnnHN566y0WLVpEVVUVubm5XHrppdx22201bTqNUAj8fsjJgT03v3csuQNvyMvIA0Zy5oD6b0jjmS/kw2lzkuZOi3UoIiLSDBdffDGnn346v/vd7xps8+abb/L666/z7LPP1iy7/fbbuf3229sgQomGkGGwrqCcz/OL+Dy/mLU/lRAM1+4cOzA7keG9MhjZK4OhPdJIctW+vQ2FjLYMWUREOjj1i3TyfpEY2VxYxdXzV7PLZ6FriovHzj+MvAyV2t9fKW4ljUREGtKsxNGZZ57JtGnT+Mtf/sKVV17J+vXreeqpp0hKSqp3ePL//vc/DjrooGYH5Xa7mTVrFrNmzWqwzYcffljv8pSUFLxeb6P7b06n0cyZM5k5c2aT2nZohgEVFZCZCXtuPD/a9BFvrn8Tq8XKzGNntssyb1XBKromdsVlrztZp4iIxK+5c+fSq1evRhNHa9as4fnnn6+VOJL4Zpom+YVVrMgvYnl+ESs3lVDhD9Vqk5Pi2jOiKIPhvdLJStJ7uIiItB31i0hb+35nOdfMX0VxVZAubpMnLxhGt3QljfZXstuOx6mkkYhIQ5qVOLruuut4+eWXeeqpp3j66aeByAf82bNn1xl+vWLFCn744Qcuv/zy6EUrsVNeDinJkJEBFguBcIDpi6cDcNGQizg0+9AYB9h83qAXt81Nqrv+J7BERKR98/l82O3NutWRGNhZ7mNFfnFkVNHGYnZV+GutT3HbOaxnOiN7ZTCidwZ56Z52+bCKiIh0DOoXkbb05dZSJr68mnJfiL5dkvhjjxK6JOuhmf2V5LKT4NTnBBGRxjTrVTIhIYH//e9/zJkzh88++4zMzEzGjx/PqaeeWqftypUrOe200xp9EljaicoKcLkgMwtskacxnl31LD8U/UCmJ5NJoyfFOMDmM00Tb8jLAckH4LA5Yh2OiIi0QEPJA9M02bJlC//5z3/o1q1bG0fVeYQNk+Ubi9hUVEmK28HQvDRs1n0ndCp8Ib7YXMznG4v4PL+I/MKqWutdditDuqcxonc6I3pl0C8nuUn7FRERaQvqF5G28vnGIm5cuBZvMMzg7qncf8ZAvvt8SazDavcSXXYSXUoaiYjsS7NfKZOSkpg+ffo+21122WVcdtllLQpK4ojPF/nepUskeQRsr9jO7E9nAzD1qKntcsROVbAKj91Dsis51qGIiEgTWa3WWsmifZVYMU2Tm266qQ0i63ze+aqAGf/+hoJSX82yLskurh/Xj7H9u9RqGwgZrP2phM/3jCr6tqAMY69piqwW6N81hRG9I6OKBnVPxWVX2RAREYlf6heR1vbR+l1M/edXBMIGI3tncP+Zg3FYzX1vKI1KcNrqzIcpIiL106ulNCwUAr8fcnIg4ef6uXcuuZPKYCWH5R7G+EPHxzDAljFMA3/YT15KHnar/hcQEWkvjj766JrE0UcffUSPHj3o1atXnXY2m42MjAyOPfZYLr300jaOsuN756sCrvjHSn7ZdbGz3M/Nr3/J3b8fSLc0Dyvyi1meX8SaLSX4Q0attj0zEhjRO4MRvdI5rEc6KR6N/hUREREB+O/X25nxxjeETZMx/bK58/SBOO1WQqHQvjeWBnmcNpLduucUEWkq9ZpL/QwDKiogMxNSfx5RtHTLUv713b+wYOHuY+/GarHGMMiWqQxUkuRI0mgjEZF2Zu8JoK1WK3/605+49dZbYxdQJxQ2TGb8+5s6SaO9Tf3nV3XWZyU5Gd4rg5G9MhjeK52cFHdrhikiIiLSLr2+8ifuf+c7TOCkgV2Z9tsB2K3tr98l3rgdNlKUNBIRaRYljqR+5eWQkgwZGbDn6e5gOMj0DyLD8f/fkP/HoJxBsYywRcJGmJARoltyt3aZ9BIRkQjDMPbdSKJu+caiWuXp6mMSmadoZO8MRvSKjCrqnZXY4JxUIiIiIgIvfrqJxxb/AMBZh3fnhuP7YdX9035z222kanS7iEizKXEkdVVUROYzysoG289zDMxdM5d1hetId6czefTkGAbYchWBClJcKSQ5k2IdioiISLuzs7zxpFG1KSf356SBua0cjYiIiEj7Z5omf12ygblL8wH44+ieXHHMgXroJgpcdispHnV9ioi0hF49pTafDyxAly7gdNYs3lm5kweXPgjAlCOnkO5Jj1GALRcyQpimSYYnQzdgIiLtzMUXX4zFYuHuu+8mJyeHiy++uEnbWSwWnnnmmVaOrvPokty0EnNNbSciIiLSmRmmyexF63n1i58AuGrsgVx4RK/YBtVBOG1WUj0O9f+IiLSQEkfys1AIAgHIyYGEhFqrZn40k/JAOUNzhnLeoPNiFOD+qfBXkOZOI8GRsO/GIiISV+bOnYvFYuGmm24iJyeHuXPnNmk7JY6ia2TvDHJT3Wwv9TU4z1FOiouheWltGZaIiIhIuxMyDO5+ax1vfVmABbjxhIM58/DusQ6rQ3DYrKQlKGkkIrI/lDiSCMOIlKjLyoKUlFqrlm9dzmvfvoYFC3cdd1e7nBsoEA5gtVhJ86TpxkFEpB2aM2cOJ554In369AFg48aNMY6oc7JZLdx26iFc8Y+VWKDe5NHE3/TDZtV7rYiIiEhDAiGD6f/3FR9+twubxcL0UweozG+U2K0W0jTSSERkvylxJGCaUFYWSRilp8Neb64hI8TUD6YCcN7A8xjadWiMgtw/FYEKshOyNdpIRKSduv766ykrK2P69OkAjB07lokTJ3LNNdfEOLLO58SBuTz5h8OY8e9vKCj9ec6jnBQXE3/Tj7H9u8QwOhEREZH45g2Euem1tSzbWITDZuGu3w/imH7ZsQ6rQ7BZLaQnOLHqISYRkf2mxJFAZWWkNF1WFthstVa9uOZFvtn1DWmuNKYcNSVGAe4ff8iP0+ok1Z0a61BERKSFHA4HgUCg5vf8/HyKi4tjGFHnduLAXMYd0pXlG4vYVFRJitvB0Lw0jTQSERERaUSFL8TEV1az9qdS3A4rs84awsjeGbEOq0NQ0khEJLqUOOrsfL7ICKPsbHA6a63aXbWb+5feD8DkIyeT4WmfNzOVwUpyEnNw2zVRt4hIe9WjRw8++eQTwuEwtj0POaj8RGzZrBaOODCTQw9IwRsIxzocERERkbhWXBlgwoLVfLejnGS3nTlnD2VQdz3gGg1WSyRppIeYRESiR4mjziwYhEAAunYFj6fO6rs/vpsyfxkDuwzkD4P+EIMA95836MVtc2u0kYhIO3f++edzxx13kJGRQWZmJhCZ9+i5555rdDuLxcKPP/7YFiGKiIiIiNRrR5mPa19aRX5hFekJDh45bxj9cpJjHVaHYLFAeoJDSSMRkShT4qizMsKREnXZ2ZBc92bli21f8PLXLwNw17F3YbPa6rSJd6Zp4g16yU3OxWlz7nsDERGJW9OmTcPtdvPWW2+xbds2LBYLpmlimmaj2+1rvYiIiIhIa/qpuIqr56+ioNRHl2QXj50/jJ6ZibEOq0OwWCAjwYndZo11KCIiHY4SR52RaUJ5BaSmQnp65J12L2EjzNQPpgJw9qFnM7zb8FhEud+8IS8eh0ejjUREOgC73c7NN9/MzTffDIDVamXixInceuutMY5MRERERKR+P+6s4NoFq9hdEaB7uofHzh9Gbmrdii/SfJGRRkoaiYi0Fr26dkYVFZHSdJmZYK37T2Del/P4cueXpLhSmHrU1BgEuP9M08QX8pGZkIndqvyoiEhHc9tttzFmzJhYhyEiIiIiUq9vtpXxl3lfsLsiwEHZSTz1/w5X0ihKLECax4lDSSMRkVajHvXOxuuNJIuys8FZt3xbkbeI+z65D4AbR99IVkJWW0cYFZXBSpIcSSQ7VTNYRKQjuu2222IdgoiIiIhIvVZuKuaGV9dQFQhzaLcU5pwzlFSPI9ZhdQgWIDXBgdOupJGISGvSq2xnEgxCIBBJGnnqf8rl3k/upcRfwoCsAVw45MI2DjA6DNMgGA6SkZDRLudmEhEREREREZH26X8/7Oa6l1dTFQhzeM90Hj1vmJJGUWIBUjwOXHb19YiItDaNOOosjDBUVkaSRsn1j8JZs30N87+cD8Bdx97Vbku8VQQqSHYlk+RMinUoIiIiIiIiItJJvPvNDm5742vChslRfbO46/cDleSIohSPA7dD11NEpC20z8yANI9pQlk5pKZCenpkBsFfMEyDqR9MxcTkjAFnMKr7qBgEuv9CRoiwESbDk4HVogF1IiIiIiIiItL63li9jbvf/hYTOP6QHG479RDsmoMnalLcShqJiLQlJY46g4oKSEyErKzI/Eb1WPDVAlZtX0WSM4lpR01r4wCjpyJQQZo7jURHYqxDEREREREREZFO4KXlm3nove8BOH1oNyaf2B+bte5Du9IyyW47HqeSRiIibUmJo47O6wWbLZI0ctRfU7fYW8zdH98NwA1H3EBOUk5bRhg1wXAQCxbSPelY6hlVJSIiIiIiIiISLaZp8vePN/L3TzYC8Idf9eDqsQepTyKKklx2EpzqvhQRaWt65e3IAgEIBiE3FzyeBpvNWjqLYl8xB2cezJ+G/qkNA4yuikAFGZ4MEhwJsQ5FRERERERERDow0zR5+P3veWn5FgD+ckwfLhrdS0mjKEp02Ul0qetSRCQW9OrbURlhqKqCLl0gObnBZl/t/IoX174IwMxjZ+Kw1T8qKd75Q37sVjvpnvRYhyIiIiIiIiIiHVjYMLn3P+t4Y802AG4Y14+zR+TFOKqOJcFpI0lJIxGRmNErcEdkmlBWDmlpka8GGKbBLe/fgmEanHbwaYzOG91mIUZbZbCSLoldcNvdsQ5FRERERERERDqoYNjg9je+5r1vd2K1wNRTBvDbwd1iHVaH4nHaSHa3zwebRUQ6CiWOOqLyckhMhMxMsFobbLbwm4V8UfAFCY4Eph89vQ0DjC5v0IvL5iLNnRbrUERERERERESkg/IFw9z8+pd8+mMhdquFO08fyLH9u8Q6rA7FbbeRoqSRiEjMKXHU0VRVgd0OWVngaPiNttRXyl0f3wXAxF9NJDc5t60ijCrTNPGGvOQm5eK0OWMdjoiIiIiIiIh0QBX+EDe+uoaVm0tw2a3cf9ZgftUnM9ZhdSguu5XUBCWNRETigRJHHUkgAKEQ5OaCx9No0wc/fZDdVbs5KOMg/nzYn9sowOjzhrx47B5SXCmxDkVEREREREREOqDSqiATXl7FtwXlJLpsPDh+CMN6aI7laHLarKR6lDQSEYkXShx1FEY4MtqoSxdITm606Te7vuG51c8BcOfYO9vtSB3TNPGFfByQfAAOm24uRERERERERCS6dlf4uWb+KjbsriTN4+Dh84bSv6seXo0mp81CWoIDi8US61BERGQPJY46AtOEsnJIT4e0tH00NZn6wVQM0+CUvqdwdM+j2ybGVlAZrCTRkajRRiIiIiIiIiISddtKvFw9fxVbS7xkJ7l49Pxh9M5KjHVYHU6qR0kjEZF4Y411ABIF/gAkJUFmJlgb/5P+c90/Wb51OR67h9uOua2NAow+wzQIhANkeDKwWW2xDkdEREREREREOpCNuyu57MUv2Fri5YA0D09deLiSRlFmt0aSRUoaiYjEH4046ggSEyArC+yN/znL/eXc+dGdAFw76loOSDmgLaJrFZWBSpKdySS7Gi/LJyIiIiIiIiLSHOu2lzHhpdWUeIP0zkrk0fOGkZ3sinVYHYrNaiHZpWkHRETilRJHwRkUcQAAYdhJREFU7Z3bDVnZke/7MPuz2eys3EnvtN5cfvjlbRBc6wgbYcJmmAxPBlaLBs2JiIiIiIiISHSs3lLC9a+sptIfpn/XZB4+dyhpCe1zbuh4ZbNaSE9wYoRDsQ5FREQaoMRRe5eSAn5jn82+2/0dz6x8BoA7x96Jy95+n5SpCFSQ4kohyZkU61BEREREREREpIP4bEMhkxeuxR8yGJaXxgNnDyHJpa6zaLJaIkkjm9WCEY51NCIi0hC9+3UCpmkybfE0wmaYEw88kbG9x8Y6pBYLhoMApLvTVQNXRERERERERKJi8bqdTPvXV4QMkyMOzOTeMwbhdmhO5WiyWCA9wYHNqv4cEZF4F5d1vvx+PzfddBPdunXD4/EwatQo3n333X1u16tXLywWS71fffv2rdP+mWeeYcCAAbjdbvr27cujjz5a7363bt3K2WefTVpaGikpKZx22mls2LBhv8+zrbyx/g2WblmK2+bm9jG3xzqc/VIZqCTNnUaCIyHWoYiIiIiIiIi0CvWLtK231hZwyz+/JGSYHNe/C7POGqykUZRFkkZO7La47IoUEZFfiMsRRxdddBELFy7kuuuuo2/fvsydO5eTTz6ZxYsXc+SRRza43UMPPURFRUWtZZs2bWLatGkcf/zxtZb/7W9/4y9/+Qtnnnkm119/PR9//DHXXnstVVVV3HTTTTXtKioqGDt2LKWlpdxyyy04HA7mzJnDMcccw+rVq8nMzIzuyUdZZaCSO5bcAcDVI68mLzUvxhG1XCAcwGa1keZO02gjERERERER6bDUL9J2Xl2xhQcWrQfg1CG5TDlpgEbERJmFSNLIoaSRiEi7EXeJo+XLl7NgwQJmzZrFpEmTALjwwgsZOHAgkydPZunSpQ1ue/rpp9dZNnPmTAAuuOCCmmVer5epU6dyyimnsHDhQgAuvfRSDMPgzjvv5LLLLiM9PR2AJ554gu+//57ly5czYsQIAE466SQGDhzIgw8+yN133x2V824tD332ENsrttMztSdXjLgi1uHsl4pABdkJ2XgcnliHIiIiIiIiItIq1C/SNkzT5Pmlm3hyyY8AnDsijwm/6YtVD6pGlQVIU9JIRKTdibtX7YULF2Kz2bjssstqlrndbi655BI+/fRTtmzZ0qz9zZ8/n969ezN69OiaZYsXL6awsJArr7yyVturrrqKyspK3nrrrVrxjBgxoubmCKB///4cd9xxvPLKK809vTb1Q9EPPL3yaQBmjJ2B2+6OcUQt5wv5cFqdpLnTYh2KiIiIiIiISKtRv0jrM02Txxf/WJM0+vORvblOSaOoswCpCQ6c9rjrfhQRkX2IuxFHq1atol+/fqSkpNRaPnLkSABWr15NXl7Tyq2tWrWKb7/9lqlTp9ZZDjB8+PBayw8//HCsViurVq3iD3/4A4ZhsHbtWi6++OI6+x45ciSLFi2ivLyc5OTkeo/v9/vx+/01v5eVlQEQDAYJBoNNOod9CYVChENhwrZwreWmaTLt/WkEjSDH9jqWY3scSzgUbmAvraf6mPt77ApvBV0Su2A1rVG7du1Z9TXQtYguXdfWoevaejrKtW3v8YuIiIhEk/pFmicUChHaq88hHArV+v5LYcPkwXe/5//WFABwzdg+nDsij3C47ftMmmNf5xWPUt12rKZBMGjUu76jfJ75pY54Xh3xnKBjnldHPCfQecVC3CWOCgoKyM3NrbO8etm2bduavK958+YBtYdjVx/DZrPRpUuXWsudTieZmZk1xygqKsLv9+8znoMPPrje499zzz3MmDGjzvJFixaRkJDQ5PNoiaUlS/l4y8c4LA7Ge8az8qOVrXq8fVmzdM1+72MjG6MQScfSlMlRpfl0XVuHrmvrae/XtqqqKtYhiIiIiMQN9YtEx6pPl9RZFjZg3o9WvthtxYLJOX0MDvKtZ8XH61s1lmiq77zau/b+eaYhHfG8OuI5Qcc8r454TtBxz2vx4sWxDqGOuEsceb1eXC5XneVut7tmfVMYhsGCBQsYNmwYAwYMqHMMp9NZ73Zut7vmGNXfWxrPlClTuP7662t+LysrIy8vj+OPP77Ok0MttaNiB6X+UlJcP++vKljFlS9GhptfOeJKTvnVKVE5VkuEQ2HWLF3DkNFDsNltzd7eNE1KfCXkJueqTN1egsEg7777LuPGjcPhcMQ6nA5D17V16Lq2no5ybaufPBURERER9Ys0V2UgRKW/9oijVZ8uYdgRx2Cz/9zt5Q8Z3PrGN3yxuxCb1cKtpwzgNwO61LfLuNTQecWjFJcdt3PffUAd5fPML3XE8+qI5wQd87w64jlBxz+vsWPHxjqUOuLuncbj8dQaxlzN5/PVrG+KJUuWsHXrViZOnFjvMQKBQL3b+Xy+mmNUf29pPC6Xq96bK4fDEbV/4Ha7HVvYVisp88SyJ9hWsY3uKd25ZtQ1LUrYRJvNbmtRHJWBShLdiaQnpmO3xt0/15iL5r8l+Zmua+vQdW097f3atufYRURERKJN/SLNYzcs2MN15yay2e3Y9yRYqgIhJr/2FSs2FeOyW7n7jEEceVBWVI7f1vY+r3iU7LaT4GxefO3980xDOuJ5dcRzgo55Xh3xnKBjn1e8ibvZ6XJzcykoKKizvHpZt27dmrSfefPmYbVaOe+88+o9RjgcZufOnbWWBwIBCgsLa46RkZGBy+WKSjxtZUPxBv664q8AzBgzA4+jaTeU8cgwDfxhP1kJWUoaiYiIiIiISKegfpHoKvUGuXr+KlZsKibBaWPOOUPbbdIo3iW5mp80EhGR+BR3iaOhQ4eyfv36OmVrli1bVrN+X/x+P6+99hpjxoyp9wameh8rVqyotXzFihUYhlGz3mq1MmjQoDrtquPp06dPgxNAxoJpmty2+DYC4QBjeo7hhANPiHVI+6UyUEmSI4lkV/xcYxEREREREZHWpH6R6Cms8HPlvJV8va2MFLedx84fxuE902MdVoeU6LKT6FLSSESko4i7xNFZZ51FOBzmqaeeqlnm9/t57rnnGDVqFHl5eQBs3ryZdevW1buPt99+m5KSkjqTP1Y79thjycjI4Mknn6y1/MknnyQhIYFTTvl5TqCzzjqLzz//vNZN0nfffccHH3zA+PHjW3yerWHRj4v4IP8DHFYHdxx7BxZL3aHa7UXYCBMyQmQmZGK1xN0/UxEREREREZFWoX6R6Nhe5uPyf3zBDzsryEx08tc/HM6h3VJjHVaH5HHaSFLSSESkQ4m7V/VRo0Yxfvx4pkyZws6dOznooIN4/vnnyc/P55lnnqlpd+GFF7JkyRJM06yzj3nz5uFyuTjzzDPrPYbH4+HOO+/kqquuYvz48Zxwwgl8/PHH/OMf/+Cuu+4iIyOjpu2VV17J008/zSmnnMKkSZNwOBzMnj2bnJwcbrjhhuhfgBbyBr3c9uFtAFw+/HIOTD8wxhHtn4pABSmuFJKcSbEORURERERERKTNqF9k/+30wt3zVrOj3E9uqptHzxtGXkZCrMPqkNwOGynu+JubQ0RE9k/cJY4AXnjhBaZPn86LL75IcXExgwcP5s033+Too4/e57ZlZWW89dZbnHLKKaSmNvwkyZVXXonD4eDBBx/kjTfeIC8vjzlz5jBhwoRa7ZKTk/nwww+ZOHEiM2fOxDAMxowZw5w5c8jOzt7vc42WJz5/gi1lW8hNymXCqAn73iCOhYwQpmmS7klv16OmRERERERERFpC/SIt9/3OCh7+2kZF0E/PjAQePX8YOSnuWIfVIbntNlI9ShqJiHREcZk4crvdzJo1i1mzZjXY5sMPP6x3eUpKCl6vt0nHufTSS7n00kv32a579+68+uqrTdpnWwkbYT7e/DHf7vqWykAljy1/DIDbxtxGgqN9P0VT4a8g1Z1KoiMx1qGIiIiIiIiItDn1i+xb2DBZvrGILcVVJLnsDM1L45uCMiYuWENF0ELfLkk8ct4wMhKdsQ61Q3LZraQmKGkkItJRxWXiSBr3+revM+GdCfxU9lOt5f2z+vPbvr+NUVTREQgHsFqsGm0kIiIiIiIiIvV656sCZvz7GwpKfTXL0jwOqgJhAmGD3skmj547hHQljVqF02bVSCMRkQ7OGusApHle//Z1znrlrDpJI4B1u9fxnx/+E4OooqciUEGaJ63dj5oSERERERERkeh756sCrvjHylpJI4ASb5BA2ODA7ESuGBAm2a1npVuDw2YlLcGhh31FRDo4JY7akbARZsI7EzCpO/ElgAULt314G2Ej3MaRRYc/5MdpdZLmTot1KCIiIiIiIiISZ8KGyYx/f9NAr0hEmS+EQ71drcJhs5KupJGISKegt9J25OPNH9c70qiaicm28m0s27qsDaOKnspgJemedNx2TVopIiIiIiIiIrUt31hUZ6TRL+0q9/NjmRIb0Wa3WkjzKGkkItJZKHHUjhSUFzSp3c7Kna0cSfR5g17cNjep7tRYhyIiIiIiIiIicWhneeNJo2plwVYOpJOxWS2kJzixWpU0EhHpLJQ4akdyk3Ob1K5LYpdWjiS6TNPEG/SS7knHadPElSIiIiIiIiJSV5fkplUoSXG0ciCdiNWipJGISGekxFE7clSPo+ie0h0L9b9ZW7DQLbkbow4Y1caR7R9vyIvH4dFoIxERiRt+v5+bbrqJbt264fF4GDVqFO+++26Ttt26dStnn302aWlppKSkcNppp7Fhw4ZabbxeL5dccgkDBw4kNTWVpKQkhgwZwsMPP0wwWPsR2blz52KxWOr92r59e9TOWURERCTejeydQW6qu4FekYguyS4OTGlsFiRpKqvFQkaiE5uSRiIinY491gFI09msNh4+8WHOeuUsLFgw95oOsjqZNGPMDGxWW6xCbDbTNPGFfHRP6Y7dqn+OIiISHy666CIWLlzIddddR9++fZk7dy4nn3wyixcv5sgjj2xwu4qKCsaOHUtpaSm33HILDoeDOXPmcMwxx7B69WoyMzOBSOLo66+/5uSTT6ZXr15YrVaWLl3KxIkTWbZsGfPnz6+z7zvuuIPevXvXWpaWlhbV8xYRERGJZzarhdtOPYQr/rESC1BfemjCcQdi3bG2rUPrcCwWSE9wKGkkItJJqae+nTljwBksPHshE96ZwE9lP9Usz03OZcaYGZzc9+QYRtd8lcFKkhxJJDuTYx2KiIgIAMuXL2fBggXMmjWLSZMmAXDhhRcycOBAJk+ezNKlSxvc9oknnuD7779n+fLljBgxAoCTTjqJgQMH8uCDD3L33XcDkJGRwWeffVZr27/85S+kpqby2GOPMXv2bLp27Vpr/UknncTw4cOjeaoiIiIi7c6JA3N58g+HMePf31BQ+vOcRzkpLib+ph9HHZTBih0xDLADiCSNnNhtKlQkItJZKXHUDp0x4AxOO/g0Pt78Md/u+pZEZyJje41tVyONAAzTIBgO0jXp/7d33/FRVfn/x993+qQXIAQJIEX4Kl0ERQRBKYooaoB1bSz2gmUVFMuCiorS1F0EARVFxIK6rmURlCIriqCIa8Wf1AVEihASQsrk/P6AjIwzCQlkMpPJ6/l4sO6ce+6d8zl3Zu7J+dxSv8a1HQAQu+bNmye73a5rr73WX+bxeHTVVVfpnnvu0ebNm5WVlVXmuqeccoo/aSRJrVq10llnnaXXXnvNnzgqS5MmTSRJe/bsCUocSdK+ffsUFxcnu53jJgAAqL36tc5U7xPr6/P1u7X5t/1KcDvUPitFdpul4uLiSDevRrN0MGnkJGkEALUaiaMaym6z68wmZ6pVeivtKdhTIxMvuYW5SnQnKsGVEOmmAADgt3r1ap1wwglKSkoKKO/cubMk6auvvgqZOCopKdHXX3+tYcOGBS3r3LmzFixYoH379ikx8ferbAsLC5WTk6P8/HytWrVKEyZMUOPGjdW8efOgbfTs2VO5ublyuVzq27evJk6cqBYtWpQbS0FBgQoKCvyvc3JyJElFRUVBz1I6WsXFRSouLqmSbYWD79DkkY9JpCpFv4YH/Roe9Gv4RKJvbZaloqKqndCuqmMiqpfdZum0ZulqU5CsvAK+31XBkpRC0ggAIBJHiJDikmL5SnxK86bJZjEgAQBEj23btikzMzOovLRs69atIdfbvXu3CgoKjrhuy5Yt/eVvvvmmLrnkEv/rTp066bnnnpPD8fsQLS4uTkOHDlXPnj2VlJSkL774QpMmTVLXrl315Zdflnn1kyQ9+uijeuCBB4LKFyxYoLi4uDLXi0WrP10a6SbEJPo1POjX8KBfw6em9+3+/fsj3QQg4ixJyXFOuRzM0QAASBwhQnILc5XiSVG8Mz7STQEAIEB+fr7cbndQucfj8S8vaz1JlVq3Z8+eWrhwofbs2aOPPvpIa9asUV5eXkCdwYMHa/Dgwf7XAwcOVN++fdW9e3c9/PDDmjZtWpmxjBo1Sn/961/9r3NycpSVlaU+ffoEXVF1tPYVFCm/MLqvOFr96VJ1OK2H7A6GvlWFfg0P+jU86NfwiUTf2ixLdRJcVbrN0itygdosyeuU21Hz7mYDAAgPRs2odkW+IlmylOpNlWVZkW4OAAABvF5vwO3dSh04cMC/vKz1JFVq3YyMDGVkZEiSsrOz9cgjj6h379766aefQj7jqFS3bt3UpUsXffjhh+XG4na7QyaynE6nnE5nuetWlMMnOUp8VbKtcLI7HAFXcqFq0K/hQb+GB/0aPtXZtzbLqrJjWKmq3h5Q0yR7nfI4SRoBAH7H9aeodqVXG8U5a9ctcgAANUNmZqa2bdsWVF5a1qBBg5DrpaWlye12H9W6pbKzs5Wbm6u33377iO3MysrS7t27j1gPAAAAKEuSh6QRACAYiSNUq4LiAjlsDqV6UyPdFAAAQmrfvr3Wrl0bdNuaFStW+JeHYrPZ1KZNG61atSpo2YoVK9S0aVMlJiaW+96lt7Lbu3fvEdu5bt061a1b94j1AAAAgFASPQ55XSSNAADBSByhWuUV5SnVmyqPwxPppgAAEFJ2drZ8Pp+mT5/uLysoKNDzzz+vLl26KCsrS5K0adMm/fDDD0Hrrly5MiB59OOPP2rRokUaNGiQv2znzp0yxgS998yZMyVJnTp18pft2LEjqN7777+vL774Qv369TvKKAEAAFCbJbgdinNx+04AQGgcIVBt8ovy5ba7leJJiXRTAAAoU5cuXTRo0CCNGjVKv/76q5o3b64XXnhBGzZs0LPPPuuvd8UVV2jp0qUBCaAbb7xRM2bMUP/+/XXnnXfK6XRq0qRJysjI0B133OGv99JLL2natGkaOHCgmjZtqn379umDDz7QwoULNWDAAPXq1ctft2vXrurQoYM6deqk5ORkffnll3ruueeUlZWle+65p3o6BQAAADEjzmVXvJspQQBA2ThKoFoYY5RfnK/MhEy57K5INwcAgHK9+OKLuv/++zV79mz99ttvatu2rd59911179693PUSExO1ZMkS3X777Ro7dqxKSkp05plnavLkyQG3levWrZuWL1+uuXPnavv27XI4HGrZsqUmTZqk4cOHB2xzyJAheu+997RgwQLt379fmZmZuuaaazR69GhlZGSEJX4AAADEJq/LrkSPM9LNAABEORJHqBb5xfnyOrxKcidFuikAAByRx+PR+PHjNX78+DLrLFmyJGR5w4YN9frrr5e7/U6dOum1116rUFvGjh2rsWPHVqguAAAAUBaP064kkkYAgArgGUeoFgXFBUrzpslpZ4ACAAAAAABQnTwOu5K9zMkAACqGxBGqRZwzjquNAAAAAAAAqpnbYVNyHEkjAEDFkThCWJWYEklSqjdVdps9wq0BAAAAAACoPVx2G1caAQAqjcQRwiqvME+SlOBKiHBLAAAAAAAAag+n3aaUOKcsy4p0UwAANQyJI4SNr8Qnn/FJkmwWHzUAAAAAAIDq4LTblErSCABwlJjNR9jkFubyXCMAAAAAAIBq5LBZSvGSNAIAHD0SRwiLIl+RJCnFnRLZhgAAAAAAANQSdpul1DiXbDaSRgCAo0fiCGGRV5inFE+KvE5vpJsCAAAAAAAQ82wWSSMAQNVwRLoBiD2FvkLZbXaleFJkicEKAAAAAABAONksS2nxLtlJGgEAqgBXHKHK5RbmcrURAAAAAABANbAsKTXOSdIIAFBlSByhSh0oPiCXzaUUT0qkmwIAAAAAABDTDiaNXHLYmeIDAFQdjiqoUvuL9ivNmya3wx3ppgAAAAAAAMQsS1KK1yUnSSMAQBXjyIIqk1+UL4/do2RPcqSbAgAAAAAAELMsSSlxLrkcTO0BAKqeI9INQGwwxii/OF/HJR4np90Z6eYAAAAAwFGx/P9TxUyN2CSAGsCSlBznJGkEAAgbEkeoEvuL9svr8CrRnRjppgAAAABApbnsNnlddrkdNllW7X3AvDEVT0cVFR2ctK6b4JLTWfYJhJXYJIAKSPI65XbYI90MAEAMi8pTEwoKCnTXXXepQYMG8nq96tKlixYuXFjh9V999VWddtppio+PV0pKirp27apFixb5l8+aNUuWZZX5b86cOf66Y8aMCVnH4/FUacw1WYkpUYGvQHXi6shhIxcJAAAAoGawWZbi3Q7VSXArNd4lj9Neq5NGksr9WznUv4qsY7NV7b/agHkRlCXZ45DHSdIIABBeUTnLP3ToUM2bN0+33XabWrRooVmzZuncc8/V4sWL1a1bt3LXHTNmjB588EFlZ2dr6NChKioq0jfffKMtW7b463Tv3l2zZ88OWnfy5Mlas2aNzjrrrKBlU6dOVUJCgv+13c5BulReYZ4SnAlcbQQAAAAg6lmS3A67PC4bZ+wjajEvgrK4SRoBAKpB1CWOPv/8c73yyisaP3687rzzTknSFVdcodatW2vkyJFavnx5met+9tlnevDBBzVx4kTdfvvtZdZr2rSpmjZtGlCWn5+vG2+8Ub169VL9+vWD1snOzladOnWOMqrY5SvxqbikWA0SG8hmReUFbAAAAAAgh81Soschj8Nea65aQc3EvAhCSXSTMAIAVJ+om+mfN2+e7Ha7rr32Wn+Zx+PRVVddpU8//VSbN28uc90nnnhC9evX16233ipjjHJzcyv8vu+884727dunSy+9NORyY4xycnIqdb/n2iC3MFdJ7iTFu+Ij3RQAAAAACGBJ8jgP/tmbFu9SnMtB0ghRj3kR/FG82yGvK+rO/QYAxLCoO+qsXr1aJ5xwgpKSkgLKO3fuLEn66quvlJWVFXLdjz76SF27dtVTTz2lsWPHateuXapfv77uvfde3XzzzeW+75w5c+T1enXRRReFXN60aVPl5uYqPj5eAwcO1MSJE5WRkVHuNgsKClRQUOB/nZOTI0kqKipSUVFRuetWVHFxsXzFPvnsvirZXqXeu6RYxUXFSoxLPNgGBbehNM6qihcH0a/hQb+GB/0aPrHStzW9/QCA6OO02+R12uVx2lRcXBzp5gCVwrxI5RQXF6u4+Pf5CN+h77wvRr77cS6b3DYTM2P/w8ViTFJsxhWLMUmxGVcsxiQRVyREXeJo27ZtyszMDCovLdu6dWvI9X777Tft3LlTn3zyiRYtWqTRo0erUaNGev755zV8+HA5nU5dd911IdfdvXu35s+fr4EDByoxMfA5Pampqbr55pt12mmnye12a9myZZoyZYo+//xzrVq1Kmggd7hHH31UDzzwQFD5ggULFBcXV+Z6Nc06rTtinco8xBMVR7+GB/0aHvRr+NT0vt2/f3+kmwAAiAGWJXmddnmddjnsUXdzDaDCmBepGqs/XRrW7UdKTR/7hxKLMUmxGVcsxiTFZlyxGJMUu3EtXrw40k0IEnWJo/z8fLnd7qByj8fjXx5K6eXXu3bt0iuvvKIhQ4ZIOngP3jZt2mjs2LFlDpDmzZunwsLCkJdj33rrrQGvL774YnXu3FmXXnqpnn76ad19991lxjJq1Cj99a9/9b/OyclRVlaW+vTpU+7AqjK2527X3oK9SnJXzfYqqtBXqANFB5SVnCWv01tmvaKiIi1cuFC9e/eW0+msxhbGNvo1POjX8KBfwydW+rb0zFMAAI6G22GTx2mXhwfGI0YwL1I5eYXFyisIvOJo9adL1eG0HrI7om7aq8I8TpuSPL+P8WNl7H+4WIxJis24YjEmKTbjisWYpNiPq2fPnpFuSpCoO4J6vd6Ay5hLHThwwL+8rPUkyel0Kjs7219us9k0ZMgQjR49Wps2bVKjRo2C1p0zZ47S0tJ0zjnnVKiNf/7zn3XHHXfoww8/LHeA5Ha7Qw72nE5nlX3AHQ6H7D677I7q/SMpvyhfdRLrKCmuYgO9qowZv6Nfw4N+DQ/6NXxqet/W5LYDACLDbrMO3YrOLjvPLEKMYV6kchwllhy+4N8Bu8MhRw1NHHkcdiXHhe6fmj72DyUWY5JiM65YjEmKzbhiMSYptuOKNlF3/X5mZqa2bdsWVF5a1qBBg5DrpaWlyePxKD09XXZ7YBKlXr16kg5etv1HmzZt0rJlyzRo0KBK7aCsrCzt3r27wvVjSUFxgVw2l1I8KZFuCgAAAIBawtLBydSUOKfqJLgV73aQNEJMYl6kdnM7bGUmjQAAqC5Rlzhq37691q5dG3TbmhUrVviXh2Kz2dS+fXvt2LFDhYWFActK7/9bt27doPXmzp0rY0zIy7HLYozRhg0bQm6vNsgrylOqN1UehyfSTQEAAAAQ4xw2S4keh+okuJUc55S7mu+2AFQ35kVqL5fdpmQvSSMAQORFXeIoOztbPp9P06dP95cVFBTo+eefV5cuXZSVlSXp4BkxP/zwQ8C6Q4YMkc/n0wsvvOAvO3DggObMmaMTTzwx5Fk5L7/8sho1aqRu3bqFbM+OHTuCyqZOnaodO3aoX79+RxVjTZZflC+P3aNkT3KkmwIAAAAgRlmW5HXZlRbvUnqCW3Euh2xcXYRagnmR2slptyklzinL4rcOABB5UXez1y5dumjQoEEaNWqUfv31VzVv3lwvvPCCNmzYoGeffdZf74orrtDSpUtljPGXXXfddZo5c6ZuuukmrV27Vo0aNdLs2bO1ceNGvfPOO0Hv9c033+jrr7/W3XffXeaBuXHjxhoyZIjatGkjj8ej//znP3rllVfUvn37Mh8qGauMMcovyldmYqZcdlekmwMAAAAgxrjsNnlddrkdNiZPUWsxL1L7OGyWUkkaAQCiSNQljiTpxRdf1P3336/Zs2frt99+U9u2bfXuu++qe/fu5a7n9Xq1aNEijRw5Us8995zy8vLUvn17vffee+rbt29Q/Tlz5kg6+FDHslx66aVavny53njjDR04cECNGzfWyJEjde+99youLu7YAq1h8ovz5XV6udoIAAAAQJWxWZa8Lru8TjvPLAIOYV6k9jiYNHKRNAIARJWoTBx5PB6NHz9e48ePL7POkiVLQpbXq1dPs2bNqtD7PProo3r00UfLrTNjxowKbSvWGWN0oPiAGiY1lMMWlR8bAAAAADWEJcnlsMnjtMvj5JlFwB8xL1I72A8ljbgVJwAg2pABQIXkFeUpwZmgRFdipJsCAAAAoIay2yx5nQevLmKiFEBtZrNIGgEAoheJIxxRiSlRka9I9RPqy27jbEAAAAAAFWdJch9KFrkctkg3BwAizmZZSot3cXtOAEDUInGEI8otzFWiO1EJroRINwUAAABADeG02+R12uVx2nh2BwAcYllSapyTpBEAIKqROEK5ikuK5SvxKc2bJpvF2YEAAAAAymZZksdpV5zTLoedvx8A4HAHk0Yufh8BAFGPxBHKlVuYqxRPiuKd8ZFuCgAAAIAo5bLb5HXZ5XZwdREAhGJJSvG65CRpBACoAUgcoUxFviJZspTqTeWPPwAAAAABbJYlr+vgs4u45RIAlM2SlBLn4jlvAIAag8QRypRbmKs0b5rinHGRbgoAAACAKGBJcjvs8rhscjvskW4OAEQ9S1JynJOkEQCgRiFxhJAKigvksDmU6k2NdFMAAAAARJjDdvDqIo/DLhtXFwFAhSV5nSTaAQA1DokjhJRXlKd68fXkcXgi3RQAAAAAEWBJcjsP3oqOM+UBoPKSvU55nCSNAAA1D4kjBMkvypfb7laKJyXSTQEAAABQzZx2m7xOuzxOG886BYCjlOQhaQQAqLlIHCGAMUb5xfmqH19fLrsr0s0BAAAAUA0sS/IeurrIYefqIgA4Fokeh7wukkYAgJqLxBEC5Bfny+vwKtmTHOmmAAAAAAgzt8Mmj9POWfEAUEXi3Q7FuZhuAwDUbBzJ4GeM0YHiAzou8Tg57c5INwcAAABAGNht1qFb0dllt3ErOgCoKnEuuxLcTLUBAGo+jmbwyyvKU7wzXknupEg3BQAAAEAVsiS5HXZ5XDa5HVxdBABVzeuyK9HDSbgAgNhA4giSpBJTokJfoTLiM2S38YckAAAAEAscNktel10eh102ri4CgLDwOO1KImkEAIghJI4gScorzFOiK1GJ7sRINwUAAADAMbCsg5OYXqddTrst0s0BgJjmcdiV7CVpBACILSSOIF+JTz7jU5o3TTaLPywBAACAmshlt8nrssvtsMmyuLoIAMLN7bApycvUGgAg9nB0g3ILc5XkTlKCKyHSTQEAAABQCTbr4K3ovE677NyKDgCqjctuU7LXSaIeABCTSBzVckW+IklSqieVwQ4AAABQA1iSXA6bPE67PE6eTwoA1c1ptykljqQRACB2kTiq5fIK85TqTVWcMy7STQEAAABQDrvNkvfQs4tsXF0EABHhsFlKJWkEAIhxJI5qsUJfoew2u1I8KQx4AAAAgChkSXIfSha5HDyPFAAi6WDSyMUcCgAg5pE4qsVyC3NVN66uvE5vpJsCAAAA4DBOu01ep10ep40JSgCIAvZDSSOu+AQA1AYkjmqpA8UH5LK5lOJJiXRTAAAAAEgqzQ+lxTnl9bgi2xgAgJ/NImkEAKhdSBzVUvuL9qt+fH25He5INwUAAACo1Vx2m7wuu2zm4K3oHHZuSQcA0eJg0sgpO0kjAEAtQuKoFsovypfH7lGyJznSTQEAAABqJZtlyes6+Oyi0snIoqKSCLcKAHA4y5JS45wk9AEAtQ6Jo1rGGKP84nwdl3icnHZnpJsDAAAAxCRLks1myWGzZLNZsluW7LZD/yyL2x0BQJQ7mDRykTQCANRKJI5qmf1F++V1eJXoTox0UwAAAIAay7LkTwaRGAKA2GJJSvG65CRpBACopUgc1SIlpkQFvgJlJWXJYWPXAwAAAGU5PDFU+s9mkRgCgFhnSUqOc8rlIGkEAKi9yB7UInmFeUpwJnC1EQAAAGq90sSQw2aTzSZ/YshxKElkWSSGAKC2KU0auR32SDcFAICIInFUS/hKfCouKVaDxAayWZw1AwAAgNhmWZLDZjt0dZACbiNHYggAEEqSl6QRAAASiaNaI7cwV0nuJMW74iPdFAAAAOCYBd42Tr9fOURiCABwFJK9TnmcJI0AAJBIHNUKxSXFMsYo1ZvK1UYAAACoEQ5PDNntvyeISAwBAKpaosdB0ggAgMOQOKoFcgtylexJVryTq40AAAAQHUqfJ2SzBV85ZLeRFAIAVI8Et0NxLqbHAAA4HEfGGFfoK5TNsinVm8pZmQAAAKgWlnQwIWT9nhhy2KzfryIiMQQAiALxbofi3UyNAQDwRxwdY1xuYa7qxNVRnDMu0k0BAABAjChN+7jsllxOuxyHkkEkhgAANUWcy64EkkYAAIQUlQ+8KSgo0F133aUGDRrI6/WqS5cuWrhwYYXXf/XVV3XaaacpPj5eKSkp6tq1qxYtWhRQx7KskP/GjRsXtL0tW7Zo8ODBSklJUVJSki644AKtW7fumOMMt4LiArlsLqV4UiLdFAAAANQgliS7zZLLbpP30MRastep1DiX6ia4VTfRLUlKiXMp2etUvPvgsyFcDm4zBwBVgXmR8PK67Er0OCPdDAAAolZUnloxdOhQzZs3T7fddptatGihWbNm6dxzz9XixYvVrVu3ctcdM2aMHnzwQWVnZ2vo0KEqKirSN998oy1btgTV7d27t6644oqAsg4dOgS8zs3NVc+ePbV3717dc889cjqdmjx5snr06KGvvvpK6enpxx5wmOQV5SkjPkMehyfSTQEAoEYpKCjQ3/72N82ePVu//fab2rZtq7Fjx6p3795HXHfLli26/fbbtWDBApWUlKhnz56aPHmymjZt6q+Tn5+vm2++WStWrNDmzZvl8/nUrFkzDRs2TDfeeKOczsCJjD179mjkyJF66623tH//fnXu3FkTJ05Ux44dqzx21A6lt5LzP2PosCuFSm8vVx6fr3raCQC1FfMi4eNx2pVE0ggAgHJFXeLo888/1yuvvKLx48frzjvvlCRdccUVat26tUaOHKnly5eXue5nn32mBx98UBMnTtTtt99+xPc64YQTdNlll5Vb5+mnn9ZPP/2kzz//XKeccook6ZxzzlHr1q01ceJEPfLII5WIrvrkF+XLY/co2ZMc6aYAAFDjHO1kTUUnVvLz8/Xtt9/q3HPPVZMmTWSz2bR8+XLdfvvtWrFihV5++WX/NktKStS/f3+tWbNGI0aMUJ06dfT000/rzDPP1BdffKEWLVqEvT9Q81iW/Mmgo0kMAQAih3mR8PE47Er2kjQCAOBIoi5xNG/ePNntdl177bX+Mo/Ho6uuukr33HOPNm/erKysrJDrPvHEE6pfv75uvfVWGWOUl5enhISEct8vPz9flmXJ4wl9Vc68efN0yimn+AdHktSqVSudddZZeu2116JygGSMUX5RvjITM+WyuyLdHAAAapRjmayp6MRKWlqaPvvss4B1r7/+eiUnJ+sf//iHJk2apPr160s6OBZZvny5Xn/9dWVnZ0uSBg8erBNOOEGjR48OSDKhdigrKXR4uWWRGAKAmop5kfBwO2xK8kbdNBgAAFEp6p5xtHr1ap1wwglKSkoKKO/cubMk6auvvipz3Y8++kinnHKKnnrqKdWtW1eJiYnKzMzUP/7xj5D1Z82apfj4eHm9Xp144olBEy8lJSX6+uuv1alTp6B1O3furJ9//ln79u2rZIThl1+cL6/Ty9VGAAAchfImaz799FNt3ry53HXLm1g5kiZNmkg6eGu6w7eZkZGhiy66yF9Wt25dDR48WG+//bYKCgoqER2inWVJDpsltyP42ULp8S7VS3SrXqJH6QlupcS5lOT5/flCboddDruNpBEA1HDMi1Q9l92mZK+TYyQAABUUdadabNu2TZmZmUHlpWVbt24Nud5vv/2mnTt36pNPPtGiRYs0evRoNWrUSM8//7yGDx8up9Op6667zl+/a9euGjx4sI4//nht3bpVU6ZM0aWXXqq9e/fqhhtukCTt3r1bBQUFR2xPy5YtQ7apoKAgYDInJydHklRUVKSioqKKdMcRFRcXy1fsk89+8EbzxhjtP7BfDZIayPiMinxV8z5HqzTOqooXB9Gv4UG/hgf9Gj6x0rfR1v6KTNaEOsu3dGJl2LBhQcs6d+6sBQsWaN++fUpMTPSXFxYWKicnR/n5+Vq1apUmTJigxo0bq3nz5gHt6dixo2w2W9A2p0+frrVr16pNmzbHFDOqR1lXCtn8/xUTWgAA5kUqqbi4WMXFvz98z1dcHPBfp91SvNOm4kOva6pYGfsfLhZjkmIzrliMSYrNuGIxJom4IiHqEkf5+flyu91B5aWXTOfn54dcLzc3V5K0a9cuvfLKKxoyZIgkKTs7W23atNHYsWMDBkiffPJJwPrDhg3TySefrHvuuUdDhw6V1+v1v9fRtEeSHn30UT3wwANB5QsWLFBcXFyZ61WF9Vof1u1X1sKFCyPdhJhEv4YH/Roe9Gv41PS+3b9/f6SbEOBoJ2uOZmLlzTff1CWXXOJ/3alTJz333HNyOH4fom3btk3du3cvd5tlJY6qZ7KmSMXFJVWyrXD44+RRuPyeFNLvSSHr4C3jyk4KmYP/jFTik6K3F4NF8x84NRn9Gh70a/jESt9GW/uZF6kaqz9dGtbtR0pNH/uHEosxSbEZVyzGJMVmXLEYkxS7cS1evDjSTQgSdYkjr9cb8pYrBw4c8C8vaz1Jcjqd/vv/S5LNZtOQIUM0evRobdq0SY0aNQq5vsvl0s0336zrr79eX3zxhbp16+bf5tG0R5JGjRqlv/71r/7XOTk5ysrKUp8+fYLOYj5a23O3a2/BXiW5k1RiSpRzIEfHJR+nRFfikVeuBkVFRVq4cKF69+4tp5MHUFYV+jU86NfwoF/DJ1b6tjSZES2OdrLmaCZWevbsqYULF2rPnj366KOPtGbNGuXl5VVJe6TITtZEm1idPIq0WP3DLdLo1/CgX8OnpvdttJ3EwrxI5eQVFiuvIPCKo9WfLtXJp5+puole2WyxcTVvrIz9DxeLMUmxGVcsxiTFZlyxGJMU+3H17Nkz0k0JEnWJo8zMTG3ZsiWofNu2bZKkBg0ahFwvLS1NHo9HKSkpstvtAcvq1asn6eBl22UNkCT5bzuze/du/zbdbrf/vSvTHungxFGoiR6n01llH3CHwyG7zy67w668gjwlxycrJS5FNiu6Hl9VlTHjd/RreNCv4UG/hk9N79toa/uxTtZUZt2MjAxlZGRIOng28COPPKLevXvrp59+Uv369Y+pPVL1TNbsKyhSfmH0XitTOnnU4bQesjuCh7620quErMpcKYRY/cMt0ujX8KBfwydW+jbaTmJhXqRyHCWWHL7gY3XdRK/cbleVvEc0qelj/1BiMSYpNuOKxZik2IwrFmOSYjuuaBN1iaP27dtr8eLFysnJCZjQWLFihX95KDabTe3bt9fKlStVWFgol+v3wUHpLWXq1q1b7nuvW7cuoJ7NZlObNm20atWqoLorVqxQ06ZNA55TEEnFJcXylfiU5k2LuqQRAAA1ybFM1hzLxIp0MHl077336u233/bfSiYzMzO6J2t8kqPEd+SKEWCzLBn7wYmkhDiX3E5XwDOF7DFyBnIkxeofbpFGv4YH/Ro+Nb1vo63tzIscG9uhEz5i5UojAAAiIeoyDNnZ2fL5fJo+fbq/rKCgQM8//7y6dOniP/tl06ZN+uGHHwLWHTJkiHw+n1544QV/2YEDBzRnzhydeOKJ/omVHTt2BL3vvn379MQTT6hOnTo6+eSTA9qzcuXKgEHSjz/+qEWLFmnQoEFVE3QVyC3MVYonRfHO+Eg3BQCAGq19+/Zau3Zt0NnHFZmsOdaJldLbzu3duzegPV9++aVKSgKv6lmxYoXi4uJ0wgknHDGmWGSzLDntNnkcdnlddiW4HUr2OpUa51KdBLcykjyqm+hWatzBSbNEt1Pxboc8TrtcDhtJIwBA1GJe5OjZLEsp3qg7RxoAgBon6o6mXbp00aBBgzRq1Cj9+uuvat68uV544QVt2LBBzz77rL/eFVdcoaVLl8oY4y+77rrrNHPmTN10001au3atGjVqpNmzZ2vjxo165513/PWmTJmif/7znxowYIAaNWqkbdu26bnnntOmTZs0e/bsgLNybrzxRs2YMUP9+/fXnXfeKafTqUmTJikjI0N33HFH9XTKERSXFMtu2ZXqTeVWKgAAHKPs7GxNmDBB06dP15133imp7Mma/fv3q1WrVgHr3n333Vq1apU6deok6feJldJtSdLOnTuVnp4edNyeOXOmJPnXLd3mvHnz9Oabb/qfV7Bz5069/vrrGjBgQMgrimo6/xVBliWb7ffXXCkEAKgNmBc5OpYlpcY5ZaL0SmgAAGqSqEscSdKLL76o+++/X7Nnz9Zvv/2mtm3b6t1331X37t3LXc/r9WrRokUaOXKknnvuOeXl5al9+/Z677331LdvX3+9008/XcuXL9fMmTO1a9cuxcfHq3PnznruuefUq1evgG0mJiZqyZIluv322zV27FiVlJTozDPP1OTJk494iXd1KfIVKT0hXXHO2vWQawAAwuFYJmsqOrHy0ksvadq0aRo4cKCaNm2qffv26YMPPtDChQs1YMCAgPFIdna2Tj31VP3lL3/Rd999pzp16ujpp5+Wz+fTAw88UD2dUoVICgEAcGTMi1TOwaSRSw67TUUkjgAAOGZRmTjyeDwaP368xo8fX2adJUuWhCyvV6+eZs2aVe72e/furd69e1e4PQ0bNtTrr79e4frVLc4Zp1RvaqSbAQBAzDjayZqKTqx069ZNy5cv19y5c7V9+3Y5HA61bNlSkyZN0vDhwwO2abfb9f7772vEiBF66qmnlJ+fr1NOOUWzZs1Sy5YtwxL/0fpjUqg0IURSCACAymFepOIsSSlel5z2qHsaAwAANVZUJo5QcZZlKdWbKo/DE+mmAAAQM45lsqYiEyudOnXSa6+9VuH2pKamaubMmf5b2UWTeJdD8S4HSSEAABARcS47t+0HAKCKkTiq4dK8abJZnFUDAAAig4QRAACIJJJGAABUPRJHNZzT7ox0EwAAAAAAAAAAQIzgUhUAAAAAAAAAAABIInEEAAAAAAAAAACAQ0gcAQAAAAAAAAAAQBKJIwAAAAAAAAAAABxC4ggAAAAAAAAAAACSSBwBAAAAAAAAAADgEBJHAAAAAAAAAAAAkETiCAAAAAAAAAAAAIeQOAIAAAAAAAAAAIAkEkcAAAAAAAAAAAA4hMQRAAAAAAAAAAAAJJE4AgAAAAAAAAAAwCEkjgAAAAAAAAAAACCJxBEAAAAAAAAAAAAOcUS6AbWJMUaSlJOTE+GWVJ+ioiLt379fOTk5cjqdkW5OzKBfw4N+DQ/6NXxipW9Lj4ulx0mED2ORmvs9iTb0a3jQr+FBv4ZPrPQtY5HqUx1jkVj5XP5RLMYVizFJsRlXLMYkxWZcsRiTFPtx7du3T1J0jUVIHFWj0g9AVlZWhFsCAED02bdvn5KTkyPdjJjGWAQAgLIxFgk/xiIAAJQtmsYilommNFaMKykp0datW5WYmCjLsiLdnGqRk5OjrKwsbd68WUlJSZFuTsygX8ODfg0P+jV8YqVvjTHat2+fGjRoIJuNu+iGE2ORmvs9iTb0a3jQr+FBv4ZPrPQtY5HqUx1jkVj5XP5RLMYVizFJsRlXLMYkxWZcsRiTFPtxbdq0SZZlRdVYhCuOqpHNZlPDhg0j3YyISEpKiqkvdbSgX8ODfg0P+jV8YqFvo+WMmljHWKRmf0+iEf0aHvRreNCv4RMLfctYpHpU51gkFj6XocRiXLEYkxSbccViTFJsxhWLMUmxG1dycnLUxRUd6SsAAAAAAAAAAABEHIkjAAAAAAAAAAAASCJxhDBzu90aPXq03G53pJsSU+jX8KBfw4N+DR/6FjgyvifhQb+GB/0aHvRr+NC3iEax+rmMxbhiMSYpNuOKxZik2IwrFmOSiCsSLGOMiXQjAAAAAAAAAAAAEHlccQQAAAAAAAAAAABJJI4AAAAAAAAAAABwCIkjAAAAAAAAAAAASCJxBAAAAAAAAAAAgENIHKHCcnNzNXr0aPXr109paWmyLEuzZs0KWff7779Xv379lJCQoLS0NF1++eXasWNHUL2SkhI9/vjjOv744+XxeNS2bVvNnTs3zJFEj5UrV+rmm2/WSSedpPj4eDVq1EiDBw/W2rVrg+rSp5Xz7bffatCgQWratKni4uJUp04dde/eXe+8805QXfr26D388MOyLEutW7cOWrZ8+XJ169ZNcXFxql+/vm655Rbl5uYG1SsoKNBdd92lBg0ayOv1qkuXLlq4cGF1ND9qLFmyRJZlhfz32WefBdSlX1GbMRYJD8Yj4cFYpHowFqkajEVQHY7lM7FlyxYNHjxYKSkpSkpK0gUXXKB169YF1MnPz9dVV12l1q1bKzk5WQkJCWrXrp2efPJJFRUVBW3ziy++0Hnnnaf69esrISFBbdu21VNPPSWfzxdQr0mTJiG/G9dff31UxrVw4UL/dzQ1NVXZ2dnasGFDyPf/17/+pY4dO8rj8ahRo0YaPXq0iouLa2xMkd5Xf/Sf//zH34adO3ce0zafffZZ/d///Z88Ho9atGihv//97/5lNTWuso4748aNi6qYfvzxR91+++3q2rWrPB6PLMsq8zsllf29kqJrX1UmrvK+W9EU05tvvqkhQ4b4x98tW7bUHXfcoT179oTcVk3ZV5WJ60i/g5VigApav369kWQaNWpkzjzzTCPJPP/880H1Nm/ebOrUqWOaNWtmnnzySfPwww+b1NRU065dO1NQUBBQ9+677zaSzDXXXGOmT59u+vfvbySZuXPnVlNUkXXxxReb+vXrm+HDh5sZM2aYhx56yGRkZJj4+Hjz3//+11+PPq289957z/Tt29eMGTPGTJ8+3TzxxBPmjDPOMJLMM888469H3x69zZs3m7i4OBMfH29OOumkgGWrV682Ho/HdOjQwUydOtXce++9xu12m379+gVt509/+pNxOBzmzjvvNM8884w57bTTjMPhMMuWLauuUCJu8eLFRpK55ZZbzOzZswP+7dixw1+PfkVtx1gkPBiPhAdjkfBjLFJ1GIugOhztZ2Lfvn2mRYsWpl69euaxxx4zkyZNMllZWaZhw4Zm586d/nq7du0yXbp0MSNGjDBTpkwxU6dONZdffrmxLMtccsklAdtctWqVcblc5qSTTjKTJk0y06ZNMxdccIH/e3C4xo0bm/bt2wd9N1asWBF1cb3zzjvGZrOZTp06mSeffNI89NBDpk6dOua4444zv/76a0Dd999/31iWZXr27GmmT59uhg8fbmw2m7n++utrbEyR3leH8/l8pn379iY+Pt5ICvgtrew2p02bZiSZiy++2EyfPt1cfvnlRpIZN25cjY5Lkundu3fQ/vrmm2+iKqbnn3/e2Gw207p1a9O+fXsjyaxfvz7ktsr7XhkTXfuqMnGV992KppjS09NNmzZtzP33329mzJhhbrnlFuNyuUyrVq3M/v37A+rWpH1VmbiO9DtYGSSOUGEHDhww27ZtM8YYs3LlyjIna2644Qbj9XrNxo0b/WULFy4M+iP5f//7n3E6neamm27yl5WUlJgzzjjDNGzY0BQXF4cvmCjxySefBE0IrF271rjdbnPppZf6y+jTqlFcXGzatWtnWrZs6S+jb4/ekCFDTK9evUyPHj2CJmvOOecck5mZafbu3esvmzFjhpFkPvjgA3/ZihUrjCQzfvx4f1l+fr5p1qyZOe2008IfRJQonax5/fXXy61Hv6K2YywSHoxHqg9jkarFWKTqMBZBuB3LZ+Kxxx4zksznn3/uL/v++++N3W43o0aNOuJ733zzzUaSfwxhjDHXXHONcblcZteuXQF1u3fvbpKSkgLKGjdubPr3718j4jrxxBNN8+bNA47rX331lbHZbOavf/1rwPonnniiadeunSkqKvKX3XvvvUZSjY0pmvbV1KlTTXp6urn11ltDTgRXdJv79+836enpQXFdeumlJj4+3j9mqGlxGXMwcXT4uKZUtO2rXbt2mZycHGOMMePHjy83wVLW98qyLPPqq6/W2LjK+m5F275avHhx0DovvPCCkWRmzJgRUF6T9lVl4irvd7CySBzhqJQ3WVOvXj0zaNCgoPITTjjBnHXWWf7XU6ZMMZLMt99+G1Dv5ZdfNpJq9ZloHTt2NB07dvS/pk+rznnnnWcyMjL8r+nbo7N06VJjt9vN119/HTRZs3fvXuNwOMyIESMC1ikoKDAJCQnmqquu8peNGDHC2O32gMkHY4x55JFHjCSzadOm8AYSJQ6frMnJyQkYuJSiX4FAjEXCj/FIeDAWqRqMRaoWYxGE27F8Jk455RRzyimnBJX36dPHNGvW7IjvPWHCBCPJfP/99/6yIUOGmKSkJOPz+QLqDhkyJOA32pjfJ+EKCgpMbm5u1Ma1a9cuIynoO2qMMSeddJJp0KCB//W3335rJJkpU6YE1NuyZYuRZGw2W42LyZjo2Ve7du0y6enpZsqUKWb06NEhJ4Irus333nvPSDLvvfdeQL3ly5cbSebcc8+tkXEZ83viaP/+/SY/P99fHm376nDlJViO9L3q1q1bjYzLmLK/W9G8r0rl5OQYSQGJ5pq8r8qLy5jyfwcri2ccoUpt2bJFv/76qzp16hS0rHPnzlq9erX/9erVqxUfH6//+7//C6pXurw2MsZo+/btqlOnjiT69Fjl5eVp586d+vnnnzV58mT9+9//1llnnSWJvj1aPp9Pw4cP19VXX602bdoELf/vf/+r4uLioH51uVxq3759UL+ecMIJSkpKCqhb2q9fffVV1QcQxf7yl78oKSlJHo9HPXv21KpVq/zL6FegYvhtrxqMR6oOY5Gqx1gkfBiLIFyO9jNRUlKir7/+uszfyZ9//ln79u0LKC8sLNTOnTu1efNmvfXWW5owYYIaN26s5s2b++uceeaZysnJ0XXXXafvv/9eGzdu1LRp0/Tmm29q1KhRQe+1aNEixcXFKSEhQU2aNNGTTz4ZdXEVFBRIkrxeb9A24+LitHXrVv3yyy/+dksKev8GDRrI7XYrPj6+xsVUKhr21f3336/69evruuuuO+ZtlrWvTj75ZNlsNn3zzTc1Mq5Ss2bNUnx8vLxer0488US9/PLLUbWvKqO871XDhg21du3aGhlXqVDfrZqwr0p/I0r/rpFiY1+FiqtUWb+DleU4qrWAMmzbtk2SlJmZGbQsMzNTu3fvVkFBgdxut7Zt26aMjAxZlhVUT5K2bt0a/gZHoTlz5mjLli168MEHJdGnx+qOO+7QM888I0my2Wy66KKL9I9//EMSfXu0pk2bpo0bN+rDDz8MufxI/bps2bKAumXVk2pPv7pcLl188cU699xzVadOHX333XeaMGGCzjjjDC1fvlwdOnSgX4EK4re9ajAeqTqMRaoeY5Gqx1gE4Xa0n4nS38EjrduyZUt/+ZtvvqlLLrnE/7pTp0567rnn5HD8PgV2zTXX6Ntvv9UzzzyjmTNnSpLsdrv+8Y9/BD1AvG3bturWrZtatmypXbt2adasWbrtttu0devWqIorIyNDKSkp+uSTTwK2t2vXLn333XeSDp6wUL9+/XK/zzabLehYUxNikqJjX3399dd65pln9P7778tutx/zNrdt2ya73a569eoF1HO5XEpPT9fevXsDkqI1JS5J6tq1qwYPHqzjjz9eW7du1ZQpU3TppZcqMzMz6ESZSMVUGUc6Tn7zzTdq3bp1uW0LJdJxSWV/t+rUqaO2bdtGdUyPPfaY7Ha7srOz/WWxsK9CxSWV/zv42GOPVeo9SByhSuXn50uS3G530DKPx+Ov43a7/f8tr15t88MPP+imm27SaaedpiuvvFISfXqsbrvtNmVnZ2vr1q167bXX5PP5VFhYKIm+PRq7du3S3/72N91///2qW7duyDpH6tfD+4p+Pahr167q2rWr//X555+v7OxstW3bVqNGjdL8+fPpV6CC+G0/doxHqhZjkarFWCQ8GIsg3I72M1HR38nD9ezZUwsXLtSePXv00Ucfac2aNcrLywuoY7fb1axZM/Xt21eDBg2Sx+PR3LlzNXz4cNWvX18DBw701/3Xv/4VsO5f/vIXnXPOOZo0aZIaNGigRo0aRUVcNptN1113nR577DGNGjVKw4YNU05OjkaOHBl03Cnv/c3Bx1rUuJik6NhXt9xyi8455xz16dMn5PYqu838/Hy5XK6Q2/F4PMrLy6uW71ZVxyUpKCE4bNgwnXzyyfruu+9CXlEciZgq40jv7/P5omZfVVZZ360PPvigWn4vjjaml19+Wc8++6xGjhypFi1aVPj9o31flRWXVP7v4PDhw9WwYcMKvw+JI1Sp0suHSy8nPtyBAwcC6ni93grVqy1++eUX9e/fX8nJyZo3b54/00yfHptWrVqpVatWkqQrrrhCffr00YABA7RixQr69ijcd999SktL0/Dhw8usc6R+Pbyv6NeyNW/eXBdccIHefPNN+Xw++hWoIH7bjw3jkarHWKRqMRapPoxFUJWO9jNRmd/JUhkZGcrIyJAkZWdn65FHHlHv3r31008/+a9MGTdunJ588kn99NNPSkhIkCQNHjxYPXv21E033aTzzjsv4Aqlw1mWpdtvv10ffPCBfD5fVMX14IMPaufOnXr88cc1btw4SVKfPn101VVXadq0af5Yy3t/y7JCXnEU7TGFUt376tVXX9Xy5cv1zTfflNmmym7T6/X6k2Sh6jqdzhoZVygul0s333yzrr/+eu3cubPS2whHTJVxpPe32+1Rs6+O1eHfre3btx+xXX9UHTEtW7ZMV111lfr27auHH364Uu8fzfuqvLhCOXxfLVmyRJdddlmF34tnHKFKlV52V3rJ3+G2bdumtLQ0f9Y1MzNTv/zyS1BmunTdBg0ahLm10WPv3r0655xztGfPHs2fPz8gdvq0amVnZ2vlypVau3YtfVtJP/30k6ZPn65bbrlFW7du1YYNG7RhwwYdOHBARUVF2rBhg3bv3n3Efv3j57uselLt6NfyZGVlqbCwUHl5efQrUEH8th89xiPVg7HI0WMsUv0Yi6CqHO1novR38Fg+T9nZ2crNzdXbb7/tL3v66afVq1evoKTD+eef7/99KU9WVpYkKT4+PqricrlcmjlzprZu3aqPP/5YP/74oz744APt3btXNpvNf0uz8r7PJSUlIa8giPaYylKd+2rEiBEaNGiQXC6X/xi1Z88eSdLmzZv9t7eqzDYzMzPl8/n066+/BtQrLCzUrl27lJycXCPjKkvp/vpjvJGKqTKOdJxMTEyMmn1VFUr31a5du47Yrj8Kd0xr1qzR+eefr9atW2vevHlBJwLU1H11pLjKUrqvdu/eXaH6pUgcoUodd9xxqlu3bsBDVEt9/vnnat++vf91+/bttX//fn3//fcB9VasWOFfXhscOHBAAwYM0Nq1a/Xuu+/qxBNPDFhOn1at0ktC9+7dS99W0pYtW1RSUqJbbrlFxx9/vP/fihUrtHbtWh1//PF68MEH1bp1azkcjqB+LSws1FdffRXUr2vXrlVOTk5A3drUr+VZt26dPB6PEhIS6FeggvhtPzqMR6oPY5Gjx1ik+jEWQVU52s+EzWZTmzZtQv5OrlixQk2bNlViYmK57334726p7du3y+fzBdUtKiqSJBUXF5e7zXXr1kmSWrRoEVVxlcrIyNAZZ5yhE044QT6fT0uWLFGXLl38ibLSdv3x/bdu3aqCggLl5eXVuJjKUp37avPmzXr55ZcDjlGlD6Xv2LGjzj333Epvs6x9tWrVKpWUlOikk06qkXGVpXR/bdu2LSpiqozyvlf/+9//ouozWBVK99WOHTuiKqaff/5Z/fr1U7169fT++++H/I2oifuqInGVpXRflXWb5zIZ4CisXLnSSDLPP/980LLrr7/eeL1es2nTJn/Zhx9+aCSZqVOn+ss2b95snE6nuemmm/xlJSUl5owzzjDHHXecKS4uDmsM0aC4uNicf/75xuFwmPfee6/MevRp5W3fvj2orLCw0HTs2NF4vV6zb98+Ywx9Wxk7duwwb731VtC/k046yTRq1Mi89dZb5uuvvzbGGNOvXz+TmZlpcnJy/OvPnDnTSDL//ve//WWfffaZkWTGjx/vLztw4IBp3ry56dKlS/UFF2G//vprUNlXX31lnE6nOf/88/1l9CvwO8YiVYfxSHgwFql6jEXCh7EIwq2in4mNGzea77//PmDdcePGGUlm5cqV/rIffvjB2O12c9ddd/nLduzYYUpKSoLe++abbzaSzEcffeQva926tUlLSzM7d+70lxUXF5uTTz7ZJCYmmsLCQmOMMbt27Qr6fS0sLDSnn366cblc5r333ouquEIpfZ958+YFlLdq1cq0a9cuIL777rvPSKqRMUXDvgp1jBoyZIiRZF588UWzaNGiSm9z//79Ji0tzZx33nkBbbrssstMXFyc+eCDD2pkXKGOOzk5OaZZs2YmOTk5qmI63Pjx440ks379+pDLy/peWZZl5s6dWyPjKu+75XA4oiqmbdu2maZNm5oGDRqUuY9K1aR9VdG4jvQ7uG3btnL75I9IHKFS/v73v5uHHnrI3HDDDUaSueiii8xDDz1kHnroIbNnzx5jjDGbNm0y6enpplmzZuapp54yjzzyiElNTTVt2rQxBw4cCNjeiBEjjCRz7bXXmhkzZpj+/fsbSWbOnDmRCK/a3XrrrUaSGTBggJk9e3bQv1L0aeUNHDjQ9OrVy4wZM8bMmDHDPPTQQ6ZVq1ZGkpk4caK/Hn177Hr06GFOOumkgLIvvvjCuN1u06FDBzN16lRz7733Go/HY/r06RO0/qBBg4zD4TAjRowwzzzzjOnatatxOBxm6dKl1RVCxPXs2dOce+65ZuzYsWb69OnmtttuM3FxcSY5Odl89913/nr0K8BYJBwYj4QHY5Hqw1jk2DEWQXWoyGeiR48e5o/nOJdOJterV888/vjjZvLkySYrK8s0aNAgYPJ58uTJpmXLluauu+4yzzzzjJkwYYLp3bu3/xh3uJdeeslIMs2aNTOPPfaYeeqpp8xpp51mJJmxY8f66z3//POmWbNm5q677jLTpk0zjzzyiGndurWRZB555JGoi2v27Nlm4MCBZtKkSWb69Olm8ODBRpK5+uqrg/bHO++8YyzLMr169TLTp083t9xyi7HZbOaaa66pkTFFw74KZfTo0UaS2bFjx1Fvc8qUKUaSyc7ONjNmzDBXXHGFkWQefvjhGhvX6NGjTbt27cx9991npk+fbh544AHTuHFjY1mWeemll6Iqpj179vj/3ujXr5+RZO644w7z0EMPmb///e8Bdcv7XhkTXfuqonEd6bsVTTG1a9fOSDIjR44M+ptmwYIFAXVr0r6qaFwV+R2sDBJHqJTGjRv7zz7547/DM57ffPON6dOnj4mLizMpKSnm0ksvNb/88kvQ9nw+n3nkkUdM48aNjcvlMieddJJ56aWXqjGiyCr9gSnr3+Ho08qZO3euOfvss01GRoZxOBwmNTXVnH322ebtt98OqkvfHptQkzXGGLNs2TLTtWtX4/F4TN26dc1NN90UcHZqqfz8fHPnnXea+vXrG7fbbU455RQzf/786mh61HjyySdN586dTVpamnE4HCYzM9Ncdtll5qeffgqqS7+itmMsUvUYj4QHY5Hqw1jk2DEWQXWoyGci1CScMQevuszOzjZJSUkmISHBnHfeeUGfz5UrV5pBgwaZRo0aGbfbbeLj403Hjh3NpEmTTFFRUdA258+fb3r06GHq1KljXC6XadOmjZk2bVpAnVWrVpkBAwaY4447zrhcLpOQkGC6detmXnvttaiMa8WKFaZ79+4mNTXVeDwe065dOzNt2rSQV/cYc/CM9/bt2xu3220aNmxo7rvvPlNYWFgjY4qGfRVKWRPBld3m9OnTTcuWLY3L5TLNmjUzkydP9vdBTYxrwYIFpnfv3qZ+/frG6XSalJQU06dPH//VZtEU0/r168scJzdu3DhoO2V9r2pqXEf6bkVTTOX9TdOjR4+g7dSUfVXRuCryO1gZ1qE3BwAAAAAAAAAAQC1ni3QDAAAAAAAAAAAAEB1IHAEAAAAAAAAAAEASiSMAAAAAAAAAAAAcQuIIAAAAAAAAAAAAkkgcAQAAAAAAAAAA4BASRwAAAAAAAAAAAJBE4ggAAAAAAAAAAACHkDgCAAAAAAAAAACAJBJHAAAAAAAAAAAAOITEEYAglmXpzDPPPKZtLFmyRJZlacyYMVXSJlSdoUOHyrIsbdiwIdJNAQAgJMYisY2xCACgtigqKtKYMWPUokULud1uWZalJ554QpZlaejQodXenjFjxsiyLC1ZsqTa3xtAzULiCIhSlmVV6h8AAEBVYiwCAABwbCZOnKgHHnhADRo00J133qnRo0erX79+IeueeeaZxzym4sQZAFXFEekGAAht9OjRQWVPPPGE9u7dG3JZVfr+++8VFxd3TNvo3Lmzvv/+e9WpU6eKWgUAAKoTYxEAAIBj8+677yohIUELFy6Uy+WSdPAqpO+//17JycnV3p6bb75Zf/rTn9SoUaNqf28ANQuJIyBKhTo7ZNasWdq7d2/Yzxxp1arVMW8jLi6uSrYDAAAig7EIAADAsdm6davS09P9SSNJcjqdERuj1KlTh5NqAFQIt6oDargNGzb47437/fff68ILL1R6enrAfePfeustXXLJJWrevLni4uKUnJysM844Q2+88UbIbYZ6rkDpvejXr1+vp556Sq1atZLb7Vbjxo31wAMPqKSkJKB+WZdHN2nSRE2aNFFubq5uvfVWNWjQQG63W23bttW8efPKjHHIkCFKS0tTQkKCevTooY8//vio7s27fv16XX311WrUqJHcbrcyMzM1dOhQbdy40V+noKBA7du3l8Ph0CeffBKwflnLFi9erGHDhqlly5ZKSEhQQkKCOnXqpOnTp4dsR2kfb9myRX/+859Vp04dJSYmqn///lq3bp2kg2dbDxw4UGlpaUpMTFR2dra2b98e1Del+//bb79V//79lZKSooSEBPXp00dffPFFhftGkj7++GMNGDBAderUkdvtVosWLXTfffdp//79QXXfeOMN9ejRQ/Xq1ZPH41GDBg109tlnl/m5AgDEJsYijEUYiwAAEKh0jLB+/Xpt3LjRf2vfJk2aBBw7S1mWpaVLl/r/f+m/yjwHacyYMerZs6ck6YEHHgjYTumYLNTY5Y9jufPOO08pKSlKTU3VJZdcop07d0qSPv30U5111llKSkpSamqqrr76auXl5YVsC8dzoObjiiMgRvy///f/dOqpp6pNmzYaOnSodu3a5T+jZdSoUXK5XOrWrZsyMzO1Y8cO/etf/1J2draeeuopDR8+vMLvM2LECC1dulTnnXee+vbtq3/+858aM2aMCgsL9fDDD1doG0VFRerTp49+++03XXzxxdq/f79eeeUVDR48WPPnz1efPn38dbds2aKuXbtq27Zt6tevnzp06KAff/xRvXv3Vq9evSrVRytWrFDfvn2Vl5en8847Ty1atNCGDRs0Z84c/fvf/9ann36qpk2byu12a+7cuTr55JN16aWXas2aNf5LyEeOHKk1a9ZozJgxOv300/3bfuyxx/z74MILL9SePXs0f/58XXfddfrxxx81ceLEoPb89ttv6tatm+rXr68rr7xSa9eu1bvvvqsffvhBb7/9ts444wydfPLJGjZsmL744gu98cYb2r17txYtWhS0rXXr1un0009Xx44ddcMNN2jjxo16/fXX1b17dy1atEhdunQ5Yv9MnTpVN910k1JSUjRgwADVq1dPq1at0sMPP6zFixdr8eLF/s/U1KlTdeONNyozM9M/QfjLL7/o888/11tvvaWLL764UvsGAFDzMRY5MsYi5WMsAgCIFaUnwDzxxBOSpNtuu02SlJKSErL+6NGjNWvWLG3cuDHglsDt27ev1Htu2LBBL7zwgnr06BFwEk5Z73u49evXq2vXrurUqZOuvvpqrVq1Sq+88oo2b96scePGqU+fPurdu7euvfZaLVmyRM8++6xKSkr03HPPBWyH4zkQIwyAGqNx48bmj1/b9evXG0lGkvnb3/4Wcr2ff/45qGzfvn2mTZs2Jjk52eTl5QUsk2R69OgRUHbllVcaSeb44483W7du9Zfv2LHDpKSkmMTERFNQUOAvX7x4sZFkRo8eHTKGCy64IKD+hx9+aCSZvn37BtS/7LLLjCTz8MMPB5Q/++yz/rgXL14cMu7DFRYWmiZNmpjExETz5ZdfBixbtmyZsdvt5rzzzgsonzZtmpFkhgwZYowx5r333jOSTLdu3UxxcXFA3XXr1gW9Z1FRkendu7ex2+1m48aNActK23777bcHlN9www1GkklJSTFPPPGEv7ykpMSce+65RpL54osv/OWH7/+77747YFvz5883kkybNm0Cykv35fr16/1l3377rXE4HKZdu3Zm586dAfUfffRRI8lMmDDBX9axY0fjcrnM9u3bg+L+4/oAgNjBWOR3jEUOYiwCAEDZGjdubBo3bhxQVnrsvPLKKwPKe/ToETTOqqyyxj+lRo8eHTR2OfxYXtaxPyUlxfzzn//0LyssLDRt27Y1DofD/PLLL/5yjudA7OBWdUCMqF+/vu69996Qy5o2bRpUlpCQoKFDh2rv3r1auXJlhd/n/vvvV2Zmpv91nTp1dMEFF2jfvn368ccfK7ydyZMnB9zj96yzzlLjxo0D2lJQUKDXX39d9erV0x133BGw/l/+8he1bNmywu/37rvvasOGDRoxYoQ6dOgQsKxbt2664IIL9P777ysnJ8dfft111+nCCy/Uq6++qnHjxmno0KFKSUnRnDlzZLfbA7Zx/PHHB72nw+HQ9ddfL5/Pp8WLFwctT0hI0NixYwPKLrnkEklSenq6brnlFn+5ZVn605/+JElas2ZN0LZSUlKC9n/fvn111lln6b///e8RbxPzzDPPqLi4WH//+9+Vnp4esGzkyJGqW7eu5s6dG1DudDrldDqDtvXH9QEAtQNjkfIxFmEsAgBANGvWrFmZx/4OHTroggsu8C9zOp3Kzs5WcXGxvvvuO385x3MgdnCrOiBGtGvXLmDy43C//vqrxo0bp3//+9/auHGj8vPzA5Zv3bq1wu9z8sknB5U1bNhQkrRnz54KbSMlJSXk5EbDhg316aef+l//+OOPKigoUKdOneR2uwPqWpalrl27VniC6LPPPvNvM9QDvX/55ReVlJRo7dq16tSpk7985syZ+vzzzzVq1ChJ0quvvqpGjRoFrb9v3z5NmDBB//znP/Xzzz8H3ec3VB+3aNFCcXFxAWWlE2Ft27aVZVkhl4XaVocOHZSQkBBUfsYZZ+ijjz7S6tWrQ+67UqX988EHH+ijjz4KWu50OvXDDz/4X//pT3/SyJEj1bp1a/35z39Wz5491a1bNyUlJZX5HgCA2MZYpHyMRRiLAAAQzco79oe6ZV6ocQHHcyB2kDgCYkRGRkbI8t27d+uUU07Rpk2bdPrpp+vss89WSkqK7Ha7vvrqK7399tsqKCio8PuEOng7HAd/Snw+X4W2UXqP/lDbOfzB1qVn3NarVy9k/bJiDmX37t2SpDlz5pRb74+TLGlpaerevbvmzp2rhg0b6sILLwxap7CwUGeeeaa+/PJLdejQQZdffrnS09PlcDj89xcO1cfl9WV5y4qKioKWldUXpeV79+4NubxUaf9U9NkQd955p9LT0zV16lRNnDhREyZMkMPhUP/+/TV58uSQk3EAgNjGWKR8jEUYiwAAEM2qYlzA8RyIHSSOgBjxx7NCSj377LPatGmTHnroId13330By8aNG6e33367Opp3VEoHJr/++mvI5du3b6/0tt555x2dd955FV7vjTfe0Ny5c5Wenq7//e9/uvfee/X4448H1Hn77bf15Zdf6qqrrtLMmTMDlr3yyit64YUXKvx+R6usvigtL2uCrFRp/+Tk5CgxMfGI72dZloYNG6Zhw4Zp165dWrZsmebOnavXXntNP/30k77++uugW+gAAGIbY5GKbYuxSGiMRQAAqPk4ngOxg2ccATHu559/lqSAe9GWWrZsWXU3p1Jatmwpt9utL774IugsWWNMwK1kjqRLly6SVKl1/ve//+maa65R3bp1tXr1ap166qmaMGFC0OXW0dDHq1evVm5ubpnv/8dnKfxRaf+UXlZeGenp6Ro4cKBeffVV9erVS999953+3//7f5XeDgAgNkXDcfJoMRapOMYiAAAcm9IESUWvoA7XNo4Fx3MgdpA4AmJc48aNJUn/+c9/Aspffvllvf/++5FoUoW53W5lZ2dr+/bteuKJJwKWvfjiiwH3xT2SCy64QI0aNdKkSZP08ccfBy0vKioK6KOSkhJddtll+u233/T8888rKytLc+bMUWJioq644grt3LnTX7esPl66dKlmzJhR4TYeiz179gRdCl56T+HWrVuX+0wBSbrxxhvlcDg0fPhwbdq0KeT2V69e7X+9ZMkSGWMC6hQVFfkvS/d4PEcbCgAgxjAWOYixCGMRAADKk5aWJknavHlzRLdxLDieA7GDW9UBMe7yyy/XY489puHDh2vx4sVq3Lix1qxZo48++kgXXXSR3nzzzUg3sVyPPvqoPvzwQ919991aunSpOnTooB9//FHvvvuu+vXrp/nz58tmO3IO3O12a968eTrnnHPUo0cP9erVS23atJFlWdq4caOWLVum9PR0/wTQI488oqVLl+rmm29W//79JUlNmzbVlClTdPnll2vYsGH617/+JUkaMGCAmjRposcff1zffPONWrdu7W/jhRdeqHnz5oWvgw4544wzNHXqVK1YsUKnnnqqNmzYoNdff11erzfoljWhtG7dWk8//bRuuOEGtWzZUueee66aNWumffv2ad26dVq6dKmGDh2qadOmSZIGDhyopKQknXrqqWrcuLGKioq0cOFCfffdd8rOzvZPYAEAwFjkIMYi5WMsAgCo7Xr16qV58+bp4osv1jnnnCOPx6N27dppwIABFd5Gq1at1KBBA73yyityu91q2LChLMvS8OHDj3jb2KrA8RyIHSSOgBjXsGFDLV26VCNHjtSHH36o4uJidezYUQsWLNDmzZujfrImKytLn376qe666y4tWLBAS5cu1cknn6wFCxbo9ddflxT6IY2hnHLKKVqzZo3Gjx+v999/X5988oncbreOO+44DRw4UJdccomkg5dUP/DAA2rdurXGjx8fsI3LLrtM8+fP15w5czRlyhTddNNNSkhI0KJFizRixAh9/PHHWrJkiU466STNmTNHGRkZ1TJZ07RpU02dOlUjR47UlClT5PP5dOaZZ2rcuHFHPMO31DXXXKP27dv7z4R+5513lJycrEaNGun222/XlVde6a/76KOPav78+fr888/1zjvvKD4+Xs2aNdPUqVN11VVXhStMAEANxFjkd4xFysdYBABQm11zzTXasGGDXnnlFT322GMqLi7WlVdeWanEkd1u15tvvqm77rpLc+fO1b59+yQdHD9UR+JI4ngOxArL/PF6QACoIbp166ZPP/1Ue/fuVUJCQqSbExEbNmzQ8ccfryuvvFKzZs2KdHMAAKhVGIswFgEAAABiEc84AhD1tm3bFlT20ksv6ZNPPtHZZ59daydqAABA9WAsAgAAAKA24VZ1AKJe69at1aFDB5144omy2+366quvtGTJEiUmJmrChAmRbh4AAIhxjEUAAAAA1CYkjgBEveuvv17vvPOOVq1apby8PNWtW1d//vOfdf/996tVq1aRbh4AAIhxjEUAAECkjBkzpkL1brvtNqWkpIS1LQBqD55xBAAAAAAAAABRyLKsCtVbv369mjRpEt7GAKg1uOIIAAAAAAAAAKIQ5/wDiARbpBsAAAAAAAAAAACA6EDiCAAAAAAAAAAAAJJIHAEAAAAAAAAAAOAQEkcAAAAAAAAAAACQROIIAAAAAAAAAAAAh5A4AgAAAAAAAAAAgCQSRwAAAAAAAAAAADiExBEAAAAAAAAAAAAkSf8ft9NLrNMn204AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 23.3 s (started: 2024-10-26 13:25:50 +00:00)\n" ] } ], "source": [ "ml.plot_learning_curve(rs1.best_estimator_,\"Learnig curve\",X_train,y_train,cv=mycv)" ] }, { "cell_type": "markdown", "metadata": { "id": "tRqlpPSp8VJ9" }, "source": [ "**Learnig curve**\n", "\n", "Bu grafik, eğitim örneklerinin sayısı arttıkça hem eğitim puanının hem de cv skorunun nasıl geliştiğini gösterir.\n", "\n", "**Eğitim skoru (kırmızı çizgi)**: Başlangıçta model, az sayıda veri olduğundan eğitim verileri üzerinde çok iyi performans gösterirken test verisinde kötü performans gösteriyor yani overfit ediyor. Veri miktarı arttıkça, modelin genelleştirilebilecek daha fazla verisi olması ve eğitim setinde daha az \"ezberlenmesi\" nedeniyle eğitim skorunun artış hızı yavaşlar.\n", "\n", "**cv skoru (yeşil çizgi)**: Başlangıçta cv puanı eğitim puanından düşük; bu, modelin az miktarda veri üzerinde eğitildiğinde iyi genelleme yapmakta zorlandığını gösteriyor. Ancak eğitim örneklerinin sayısı arttıkça cv skoru ve eğitim ile cv skorları arasındaki fark daralır.\n", "\n", "**Yorum**: Eğitim ve cv skorları arasındaki fark azaldıkça model daha fazla eğitim örneğinden yararlanır. cv skoru 0,8 civarında sabitleniyor ve bu da modelin daha iyi genelleme yaptığını gösteriyor.\n", "Sonunda eğitim ve doğrulama puanları arasındaki hafif fark, bir miktar bias'a işaret ediyor, ancak bu ciddi bir fark değil. Model genel olarak iyi performans gösteriyor ve veri hacmi büyüdükçe skor da artıyor, demek daha fazla veri olsa daha iyi sonuçlar alacağız, ancak bu veriseti özelinde öyle birşey mümkün değil :)\n", "\n", "**Modelin Ölçeklenebilirliği**\n", "\n", "Bu grafik, eğitim örneklerinin sayısı arttıkça eğitim süresinin (modeli eğitmek için gereken süre) nasıl değiştiğini gösterir. Eğitim örneklerinin sayısı arttıkça modeli eğitmek için gereken süre de artar; bu beklenen bir davranıştır. Bizim veri seti özelinde ise eğitim sürelerindeki artışın üstel değil kademeli olduğu görülüyor; bu da modelin ölçeklenebilir olduğunu ve eğitim süresinde dramatik bir artış olmadan daha büyük veri kümelerini işleyebileceğini gösteriyor." ] }, { "cell_type": "markdown", "metadata": { "id": "FU7Tw6rAHN68" }, "source": [ "#### ROC ve ROC-AUC" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 591 }, "executionInfo": { "elapsed": 70, "status": "ok", "timestamp": 1729949176389, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "IEaAZdFRejvx", "outputId": "bd5f322d-1d7a-41da-867c-045a74436b6b" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAIsCAYAAADVgiLUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBhklEQVR4nOzdd1gU1/s28HvpRRCVbsGCiF1jwYYdsSsKauxd87UblWBib7EkxsQYNSpYY8HeBRXFXrGXaMQKIl3psOf9w5f9uVJclsWh3J/r4tI9c2b2Xto+nDNzRiaEECAiIiIqALSkDkBERESkKhYuREREVGCwcCEiIqICg4ULERERFRgsXIiIiKjAYOFCREREBQYLFyIiIiowWLgQERFRgcHChYiIiAoMFi5UaMjlctSoUQMLFiyQOgoVYrNnz4ZMJkN4eLjUUb5o8ODBKFasmEaPKZPJMHbs2C/28/HxgUwmQ3BwsKKtZcuWaNmypeJxcHAwZDIZfHx8NJoxJ/Lb1zMv8nz+ec9KQEAAZDIZAgICFG19+vRBr169NJZFE1i4aEj6D2n6h46ODkqXLo3Bgwfj9evXme4jhMDmzZvRvHlzmJmZwcjICDVr1sTcuXMRFxeX5XPt3bsXHTp0gLm5OfT09GBra4tevXrh1KlTKmVNTEzE8uXL4eTkhOLFi8PAwAAODg4YO3YsHj9+rNbrzw/++ecfvHz5UvFL9dOvR3YfAQEBil+g6R/a2tooV64c3NzcEBQUpPQ8n+9vamqKFi1a4PDhwxK86ozSf/lk9tGnTx9Fv5YtWyptK1myJBo0aIANGzZALpcr+g0ePFipn76+PhwcHDBz5kwkJiZqNPu2bdvw22+/afSYVLAcOXIEs2fP1vhxFy5ciH379mn8uIWdp6cndu/ejVu3bkkdRUFH6gCFzdy5c1GhQgUkJibi0qVL8PHxwblz53D37l0YGBgo+qWlpaFv377YuXMnnJ2dMXv2bBgZGSEwMBBz5szBrl274O/vDysrK8U+QggMHToUPj4+qFu3LiZPngxra2uEhIRg7969aNOmDc6fP48mTZpkmS88PBzt27fH9evX0blzZ/Tt2xfFihXDo0ePsH37dqxduxbJycl5+jnKK0uXLkWfPn1QvHhxAMDmzZuVtm/atAl+fn4Z2qtWrYqEhAQAwLfffouOHTsiLS0NDx48wF9//YWjR4/i0qVLqFOnjmIfFxcXDBw4EEIIPH/+HH/99Re6dOmCo0ePwtXVNW9fqIrGjx+PBg0aKLWVL19e6XGZMmWwaNEiAMC7d++wadMmDBs2DI8fP8bPP/+s6Kevr49169YBAGJiYrB//37MmzcPT58+xdatWzWWedu2bbh79y4mTpyosWOSNAYMGIA+ffpAX18/yz52dnZISEiArq6uou3IkSP4888/NV68LFy4EO7u7ujevbtGj1vY1a1bF/Xr18cvv/yCTZs2SR3nI0Ea4e3tLQCIq1evKrV7enoKAGLHjh1K7QsXLhQAxJQpUzIc68CBA0JLS0u0b99eqX3p0qUCgJg4caKQy+UZ9tu0aZO4fPlytjk7deoktLS0hK+vb4ZtiYmJ4vvvv892f1WlpKSIpKQkjRxLFTdu3BAAhL+/f5Z9xowZI7L6ln/27JkAIJYuXarUfuDAAQFAjBw5UtEGQIwZM0ap3/379wUA0aFDh1y8Cs04ffq0ACB27dqVbb8WLVqI6tWrK7XFxcWJMmXKCGNjY5GcnCyEEGLQoEHC2NhYqZ9cLheNGjUSMplMhIaGaix7p06dhJ2dncaOlxdmzZolAIh379599edOSEgQaWlpKvfP7GuXW5l9/6uqRYsWokWLFtn2ye7nNDeMjY3FoEGDMrTn5uuZlpYmEhISNJBOM3myosrnXYj/+91x+vRppfZly5YJY2Nj8f79e41lyg1OFeUxZ2dnAMDTp08VbQkJCVi6dCkcHBwUf+1+qkuXLhg0aBCOHTuGS5cuKfZZtGgRHB0dsWzZMshksgz7DRgwAA0bNswyy+XLl3H48GEMGzYMPXv2zLBdX18fy5YtUzzOal508ODBSn+5p0+zLFu2DL/99hsqVaoEfX193Lx5Ezo6OpgzZ06GYzx69AgymQwrV65UtEVHR2PixIkoW7Ys9PX1YW9vj8WLFytNW2Rl37590NPTQ/Pmzb/YNydat24NAHj27Fm2/apWrQpzc3Olr3Nm3r59q/LnJCUlBXPmzEHlypVhYGCAUqVKoVmzZvDz81Pz1XyZkZERGjVqhLi4OLx79y7LfjKZDM2aNYMQAv/9998Xj7t//3506tQJtra20NfXR6VKlTBv3jykpaUp+rRs2RKHDx/G8+fPFdNSn48QZWbLli2oV68eDA0NUbJkSfTp0wcvX75U6hMYGAgPDw+UK1cO+vr6KFu2LCZNmqQYafvUw4cP0atXL1hYWMDQ0BBVqlTBjz/+mKFfdHQ0Bg8eDDMzMxQvXhxDhgxBfHz8F/O2bNkSNWrUwPXr19GkSRMYGhqiQoUKWL16tVK/9Cm/7du346effkLp0qVhZGSE2NhYAMCuXbsUr9vc3Bz9+/fPclr6v//+g6urK4yNjWFra4u5c+dCCKHUZ9myZWjSpAlKlSoFQ0ND1KtXD76+vlm+jq1bt6JKlSowMDBAvXr1cPbsWaXtmZ3j8rnPz3EZPHgw/vzzTwDKU7JCCJQvXx7dunXLcIzExEQUL14co0aNyvJ5ZDIZ4uLisHHjRsUxBw8erNRHla9n+vk9W7duRfXq1aGvr49jx44BAF6/fo2hQ4fCysoK+vr6qF69OjZs2JAhyx9//IHq1avDyMgIJUqUQP369bFt27YM/VTJk5qainnz5il+55YvXx7Tp09HUlJSlp+LdK9evUL37t1hbGwMS0tLTJo0Kcv9XFxcEBcXl6e/e3KCU0V5LP2HtkSJEoq2c+fOISoqChMmTICOTuZfgoEDB8Lb2xuHDh1Co0aNcO7cOURGRmLixInQ1tZWK8uBAwcAfCxw8oK3tzcSExMxcuRI6Ovrw8bGBi1atMDOnTsxa9Yspb47duyAtrY2PDw8AADx8fFo0aIFXr9+jVGjRqFcuXK4cOECvLy8EBIS8sXzHi5cuIAaNWooDTlrQnohUqpUqWz7xcTEICoqCpUqVcq2n5WVlcqfk9mzZ2PRokUYPnw4GjZsiNjYWFy7dg03btyAi4vLF7O/f/8+wwl+JUuWhJZW9n+v/Pfff9DW1oaZmVm2/TL73s6Kj48PihUrhsmTJ6NYsWI4deoUZs6cidjYWCxduhQA8OOPPyImJgavXr3C8uXLAeCLJ5YuWLAAM2bMQK9evTB8+HC8e/cOf/zxB5o3b46bN28qXsOuXbsQHx+P7777DqVKlcKVK1fwxx9/4NWrV9i1a5fieLdv34azszN0dXUxcuRIlC9fHk+fPsXBgwcznPTdq1cvVKhQAYsWLcKNGzewbt06WFpaYvHixV/8fERFRaFjx47o1asXvv32W+zcuRPfffcd9PT0MHToUKW+8+bNg56eHqZMmYKkpCTo6enBx8cHQ4YMQYMGDbBo0SK8ffsWK1aswPnz55VeN/BxWrp9+/Zo1KgRlixZgmPHjmHWrFlITU3F3LlzFf1WrFiBrl27ol+/fkhOTsb27dvh4eGBQ4cOoVOnTkqZzpw5gx07dmD8+PHQ19fHqlWr0L59e1y5cgU1atT44uvPyqhRo/DmzZsMU7oymQz9+/fHkiVLEBkZiZIlSyq2HTx4ELGxsejfv3+Wx928ebPi52jkyJEAkOFnVdWv56lTp7Bz506MHTsW5ubmKF++PN6+fYtGjRopChsLCwscPXoUw4YNQ2xsrGLq8++//8b48ePh7u6OCRMmIDExEbdv38bly5fRt2/fHOcZPnw4Nm7cCHd3d3z//fe4fPkyFi1ahAcPHmDv3r1Zfj4SEhLQpk0bvHjxAuPHj4etrS02b96c5XmS1apVg6GhIc6fPw83N7csj/vVSDziU2ikTxX5+/uLd+/eiZcvXwpfX19hYWEh9PX1xcuXLxV9f/vtNwFA7N27N8vjRUZGCgCiR48eQgghVqxY8cV9vsTNzU0AEFFRUSr1z2p4cdCgQUrD+enTLKampiIsLEyp75o1awQAcefOHaX2atWqidatWysez5s3TxgbG4vHjx8r9fvhhx+Etra2ePHiRbZZy5QpI3r27JltH1WmiubMmSPevXsnQkNDRUBAgKhbt64AIHbv3q3oC0AMGzZMvHv3ToSFhYlr166J9u3bZzrVlBlVPye1a9cWnTp1+uLxPpc+3JvZx7NnzxT9WrRoIRwdHcW7d+/Eu3fvxIMHD8T48eMFANGlSxdFv/TphvR+T548EcuWLRMymUzUqFEj02nLz8XHx2doGzVqlDAyMhKJiYmKtpxMFQUHBwttbW2xYMECpfY7d+4IHR0dpfbMnn/RokVCJpOJ58+fK9qaN28uTExMlNqEEEqvMX0of+jQoUp93NzcRKlSpb6Yu0WLFgKA+OWXXxRtSUlJok6dOsLS0lIxRZf+daxYsaJS/uTkZGFpaSlq1KihNE1x6NAhAUDMnDlT0TZo0CABQIwbN07ptXTq1Eno6ekpTUd8/jlKTk4WNWrUUPqeFEIovpeuXbumaHv+/LkwMDAQbm5uirb034mff899+jsl/efO29tb0ZbVz+mjR48EAPHXX38ptXft2lWUL1/+i9+HX5oqUuXrCUBoaWmJe/fuKbUPGzZM2NjYiPDwcKX2Pn36iOLFiys+t926dcswPatunqCgIAFADB8+XKnflClTBABx6tQpRdvnn/f096CdO3cq2uLi4oS9vX2mU0VCCOHg4JAvpsKF4FSRxrVt2xYWFhYoW7Ys3N3dYWxsjAMHDqBMmTKKPu/fvwcAmJiYZHmc9G3pw8Lp/2a3z5do4hjZ6dmzJywsLJTaevToAR0dHezYsUPRdvfuXdy/fx+9e/dWtO3atQvOzs4oUaIEwsPDFR9t27ZFWlpahmHoz0VERKj0l/+XzJo1CxYWFrC2tkbLli3x9OlTLF68GD169FDqt379elhYWMDS0hL169fHyZMnMW3aNEyePPmLz6Hq58TMzAz37t3Dv//+q9ZrmTlzJvz8/JQ+rK2tlfo8fPgQFhYWsLCwQNWqVfHHH3+gU6dOGYa44+LiFP3s7e0xZcoUNG3aFPv378902vJzhoaGiv+njwQ5OzsjPj4eDx8+VOv17dmzB3K5HL169VL6nrG2tkblypVx+vTpTJ8/Li4O4eHhaNKkCYQQuHnzJoCPJyefPXsWQ4cORbly5ZSeK7PXOHr0aKXHzs7OiIiIUPycZUdHR0dpakNPTw+jRo1CWFgYrl+/rtR30KBBSvmvXbuGsLAw/O9//1M64b9Tp05wdHTM9Oq2Ty9fTh8VSE5Ohr+/v6L90+eIiopCTEwMnJ2dcePGjQzHa9y4MerVq6d4XK5cOXTr1g3Hjx9Xmv7TJAcHBzg5OSmdDB4ZGYmjR4+iX79+Kn0fZkfVr2eLFi1QrVo1xWMhBHbv3o0uXbpACKH0vejq6oqYmBjF59DMzAyvXr3C1atXc53nyJEjAJDhd873338PANle5XjkyBHY2NjA3d1d0WZkZKQYjcpM+u/m/IBTRRr2559/wsHBATExMdiwYQPOnj2b4az69MIhvYDJzOfFjamp6Rf3+ZJPj/GlaQB1VKhQIUObubk52rRpg507d2LevHkAPk6J6OjoKBUD//77L27fvp2h8EkXFhb2xecXn83Zq2PkyJHw8PCAlpYWzMzMFPPYn+vWrZvil//Vq1excOFCxMfHf3EaBlD9czJ37lx069YNDg4OqFGjBtq3b48BAwagVq1aKr2WmjVrom3bttn2KV++PP7++2/IZDIYGBigcuXKsLS0zNDPwMAABw8eBPBxbnzJkiUICwtTerPLzr179/DTTz/h1KlTGd4IYmJiVDrG5/79918IIVC5cuVMt386bfjixQvMnDkTBw4cQFRUVKbPn36ujqpTHZ8XN+mFc1RUlOJnLSu2trYwNjZWanNwcADwcQquUaNGivbPf66eP38OAKhSpUqG4zo6OuLcuXNKbVpaWqhYsWKWz5Xu0KFDmD9/PoKCgpTOdcisIMjsc+7g4ID4+Hi8e/cuQ4GsKQMHDsTYsWPx/Plz2NnZYdeuXUhJSdHI9LeqX8/Pvx7v3r1DdHQ01q5di7Vr12Z67PTfX56envD390fDhg1hb2+Pdu3aoW/fvmjatGmO8zx//hxaWlqwt7dX6mdtbQ0zMzPF90lmnj9/Dnt7+wxf28y+p9IJIXJdHGoKCxcNa9iwIerXrw8A6N69O5o1a4a+ffvi0aNHivn6qlWrAvg4n57VpXm3b98GAEVl7+joCAC4c+eO2pfzfXqM9JOGs5N+UtznsvqLKqs3sT59+mDIkCEICgpCnTp1sHPnTrRp0wbm5uaKPnK5HC4uLpg2bVqmx0j/RZuVUqVKZXhDUkflypW/+GYPfLyMOL1fx44dYW5ujrFjx6JVq1YZRmcyo8rnpHnz5nj69Cn279+PEydOYN26dVi+fDlWr16N4cOHq/8iP2FsbKzS69XW1lbq5+rqCkdHR4waNUpx7lRWoqOj0aJFC5iammLu3LmoVKkSDAwMcOPGDXh6eqp08nVm5HI5ZDIZjh49mul5X+k/b2lpaXBxcUFkZCQ8PT3h6OgIY2NjvH79GoMHD1b7+bM610wTBfSnVC0OcyMwMBBdu3ZF8+bNsWrVKtjY2EBXVxfe3t6ZnjgqlT59+mDSpEnYunUrpk+fji1btqB+/frZvuGqStWv5+dfj/Tvn/79+2PQoEGZHiP9j42qVavi0aNHOHToEI4dO4bdu3dj1apVmDlzZoYT9lXN87WKiaioqCz/SPjaWLjkIW1tbSxatAitWrXCypUr8cMPPwAAmjVrBjMzM2zbtg0//vhjpt+g6dfLd+7cWbFPiRIl8M8//2D69OlqnaDbpUsXLFq0CFu2bFGpcClRokSmV4xkV8lnpnv37hg1apRiauTx48fw8vJS6lOpUiV8+PBBpTfRzDg6On7xyp+8NGrUKCxfvhw//fQT3NzcvvjLRJXPCfDxZNohQ4ZgyJAh+PDhA5o3b47Zs2drrHBRl42NDSZNmoQ5c+bg0qVLSiMEnwsICEBERAT27NmjdNVXZl+vnPwSrlSpEoQQqFChQraF7Z07d/D48WNs3LgRAwcOVLR/foVE+qjE3bt3Vc6grjdv3iAuLk5p1CV98ccvXUllZ2cH4ONVaOlXvaV79OiRYns6uVyO//77T+lz9Plz7d69GwYGBjh+/LjSCKO3t3emGTKbvnz8+DGMjIyyHDVVVXbfAyVLlkSnTp2wdetW9OvXD+fPn1d5wcK8eoO3sLCAiYkJ0tLSVPr9ZWxsjN69e6N3795ITk5Gjx49sGDBAnh5eSlN/X2JnZ0d5HI5/v33X8Ufw8DHKxejo6MzfB98vu/du3czjKI8evQo0/6pqal4+fIlunbtqnK+vMRzXPJYy5Yt0bBhQ/z222+KVUaNjIwwZcoUPHr0KNPLLA8fPgwfHx+4uroq3hCMjIzg6emJBw8ewNPTM9O/6rZs2YIrV65kmaVx48Zo37491q1bl+kKksnJyZgyZYricaVKlfDw4UOly2Jv3bqF8+fPq/z6gY/zuq6urti5cye2b98OPT29DKNGvXr1wsWLF3H8+PEM+0dHRyM1NTXb52jcuDHu3r2r0mWAeUFHRwfff/89Hjx4gP3793+xvyqfk4iICKXHxYoVg729vWSv8XPjxo2DkZGR0kJ1mUkvsj/9nk1OTsaqVasy9DU2NlZ56qhHjx7Q1tbGnDlzMvw8CCEUn7/Mnl8IgRUrVijtY2FhgebNm2PDhg148eJFhuNpUmpqKtasWaN4nJycjDVr1sDCwkLp3JHM1K9fH5aWlli9erXS98LRo0fx4MGDDFcAAVBadkAIgZUrV0JXVxdt2rQB8PFzJJPJlEZTg4ODs1xp9uLFi0rnvrx8+RL79+9Hu3bt1L7qMV16MRcdHZ3p9gEDBuD+/fuYOnUqtLW1lVaD/tJxszpmbmhra6Nnz57YvXt3pkXvp78/P/+Z1tPTQ7Vq1SCEQEpKSo6et2PHjgCQoXD79ddfASDT74NP933z5o3S5e7x8fFZTnXdv38fiYmJ2S5u+jVxxOUrmDp1Kjw8PODj46M44eqHH37AzZs3sXjxYly8eBE9e/aEoaEhzp07hy1btqBq1arYuHFjhuPcu3cPv/zyC06fPg13d3dYW1sjNDQU+/btw5UrV3DhwoVss2zatAnt2rVDjx490KVLF7Rp0wbGxsb4999/sX37doSEhCjWchk6dCh+/fVXuLq6YtiwYQgLC8Pq1atRvXp1lU5A/FTv3r3Rv39/rFq1Cq6urhnOsZk6dSoOHDiAzp07Y/DgwahXrx7i4uJw584d+Pr6Ijg4WGka5XPdunXDvHnzcObMGbRr1y5H2TRl8ODBmDlzJhYvXqzSdN6XPifVqlVDy5YtUa9ePZQsWRLXrl2Dr6+vSveJ+RpKlSqFIUOGYNWqVXjw4IHSX32fatKkCUqUKIFBgwZh/PjxkMlk2Lx5c6bFQL169bBjxw5MnjwZDRo0QLFixdClS5dMj1upUiXMnz8fXl5eCA4ORvfu3WFiYoJnz55h7969GDlyJKZMmQJHR0dUqlQJU6ZMwevXr2Fqaordu3dnOrX4+++/o1mzZvjmm28wcuRIVKhQAcHBwTh8+HCGWz/khq2tLRYvXozg4GA4ODhgx44dCAoKwtq1a794Sb+uri4WL16MIUOGoEWLFvj2228Vl0OXL18ekyZNUupvYGCAY8eOYdCgQXBycsLRo0dx+PBhTJ8+XTE60qlTJ/z6669o3749+vbti7CwMPz555+wt7dXTFt/qkaNGnB1dVW6HBpApusT5VR64TZ+/Hi4urpmKE46deqEUqVKYdeuXejQoUOm52RldVx/f3/8+uuvsLW1RYUKFeDk5JTrvADw888/4/Tp03BycsKIESNQrVo1REZG4saNG/D390dkZCQAoF27drC2tkbTpk1hZWWFBw8eYOXKlejUqVOOL5qoXbs2Bg0ahLVr1yqmY69cuYKNGzeie/fuaNWqVZb7jhgxAitXrsTAgQNx/fp12NjYYPPmzTAyMsq0v5+fH4yMjFRahuGr+JqXMBVmWa2cK8TH1RUrVaokKlWqJFJTU5Xavb29RdOmTYWpqakwMDAQ1atXF3PmzBEfPnzI8rl8fX1Fu3btRMmSJYWOjo6wsbERvXv3FgEBASpljY+PF8uWLRMNGjQQxYoVE3p6eqJy5cpi3Lhx4smTJ0p9t2zZIipWrCj09PREnTp1xPHjx7O8HDq7S4FjY2OFoaGhACC2bNmSaZ/3798LLy8vYW9vL/T09IS5ublo0qSJWLZsmeIS0ezUqlVLDBs2LMvt6qycmxlks3Lo7Nmzs7yc8HNf+pzMnz9fNGzYUJiZmQlDQ0Ph6OgoFixY8MXPRW5Wzs1MdquvPn36VGhra2d6memnzp8/Lxo1aiQMDQ2Fra2tmDZtmjh+/HiGz9WHDx9E3759hZmZmQCg0qXRu3fvFs2aNRPGxsbC2NhYODo6ijFjxohHjx4p+ty/f1+0bdtWFCtWTJibm4sRI0aIW7duZbgUVwgh7t69K9zc3ISZmZkwMDAQVapUETNmzFBsz2pl08wu/81M+uf92rVronHjxsLAwEDY2dmJlStXKvX70tdxx44dom7dukJfX1+ULFlS9OvXT7x69UqpT/rX7unTp6Jdu3bCyMhIWFlZiVmzZmVYgXf9+vWicuXKQl9fXzg6Ogpvb2/Fa/1U+vf/li1bFP3r1q2b4Xte3cuhU1NTxbhx44SFhYWQyWSZ/sz+73//EwDEtm3bMv3cZObhw4eiefPmip+59O/ZnHw9s/vZf/v2rRgzZowoW7as0NXVFdbW1qJNmzZi7dq1ij5r1qwRzZs3F6VKlRL6+vqiUqVKYurUqSImJkbRJyd5UlJSxJw5c0SFChWErq6uKFu2rPDy8lJaYkCIzJe2eP78uejataswMjIS5ubmYsKECeLYsWOZ/v5ycnIS/fv3z/R1S0EmhIbHQIkksnnzZowZMwYvXrzIk6umiDShZcuWCA8P/yrn0hRWkyZNwvr16xEaGprlKAFpRlBQEL755hvcuHFD6X5tUuI5LlRo9OvXD+XKlVMsGU5EhU9iYiK2bNmCnj17smj5Cn7++We4u7vnm6IF4DkuVIhoaWnxr1iiQiosLAz+/v7w9fVFREQEJkyYIHWkImH79u1SR8iAhQsREeV79+/fR79+/WBpaYnff/89X40A0NfFc1yIiIiowOA5LkRERFRgsHAhIiKiAoPnuGRBLpfjzZs3MDExyTc3liIiIioIhBB4//49bG1tVbr5bE6wcMnCmzdvULZsWaljEBERFVgvX75EmTJlNHpMFi5ZSF9++eXLl1+8RT0RERH9n9jYWJQtWzbHtzJQBQuXLKRPD5mamrJwISIiUkNenGrBk3OJiIiowGDhQkRERAUGCxciIiIqMFi4EBERUYHBwoWIiIgKDBYuREREVGCwcCEiIqICg4ULERERFRgsXIiIiKjAYOFCREREBQYLFyIiIiowWLgQERFRgcHChYiIiAqMfFe4fPjwAbNmzUL79u1RsmRJyGQy+Pj4qLx/dHQ0Ro4cCQsLCxgbG6NVq1a4ceNG3gUmIiKirybfFS7h4eGYO3cuHjx4gNq1a+doX7lcjk6dOmHbtm0YO3YslixZgrCwMLRs2RL//vtvHiUmIiKir0VH6gCfs7GxQUhICKytrXHt2jU0aNBA5X19fX1x4cIF7Nq1C+7u7gCAXr16wcHBAbNmzcK2bdvyKjYRERF9BfluxEVfXx/W1tZq7evr6wsrKyv06NFD0WZhYYFevXph//79SEpK0lRMIiIikkC+K1xy4+bNm/jmm2+gpaX8sho2bIj4+Hg8fvxYomRERESFV2xiCk7cC8WxuyE4djcEfvdD8+y58t1UUW6EhISgefPmGdptbGwAAG/evEHNmjUz3TcpKUlpRCY2NjZvQhIRERUy03bdxrF7/1esyJPi8+y5CtWIS0JCAvT19TO0GxgYKLZnZdGiRShevLjio2zZsnmWk4iIqDAJjU0EAFSyMEZ9uxKoW9Ysz56rUBUuhoaGmZ7HkpiYqNieFS8vL8TExCg+Xr58mWc5iYiICpPU5ESEH/oFfR204ftdE2we7pRnz1WoporSr0j6XHqbra1tlvvq6+tnOlpDREREWYuNjcWlVVMQ9yQIs8Y9x6AOj/L0+QrViEudOnVw48YNyOVypfbLly/DyMgIDg4OEiUjIiIqXCLjknH2zn9o0rwVIp4EQaZnhCnzlkNHJ2/HRAps4RISEoKHDx8iJSVF0ebu7o63b99iz549irbw8HDs2rULXbp04YgKERGRBsTEp8DpJ1+0bd0a927dgJahKay+XYia9fNuiihdvpwqWrlyJaKjo/HmzRsAwMGDB/Hq1SsAwLhx41C8eHF4eXlh48aNePbsGcqXLw/gY+HSqFEjDBkyBPfv34e5uTlWrVqFtLQ0zJkzR6qXQ0REVKhcu/cIwRunIDUqBLompVB92BJUcnBEfbuSef7c+bJwWbZsGZ4/f654vGfPHsUoSv/+/VG8ePFM99PW1saRI0cwdepU/P7770hISECDBg3g4+ODKlWqfJXsREREhd0vC2YhNSoEembWeHD9PCpWrPjVnlsmhBBf7dkKkNjYWBQvXhwxMTEwNTWVOg4REVG+ceXRC7RyG4BKnUbj9tJvM2zPy/fQfDniQkREJAUhBCLjksG/6DMKefMaNralAQBpOsaw6DoNesW+/rmjLFyIiIj+P8/dt7Hz2iupY+Q7iS9uI2z3PJg17QvThm6SZimwVxURERFp2rXgKKkj5DvxT68ibNdsiOQEJPx3HUKeBgCQyQDX6lZfPQ9HXIiIiD6za3RjNCif91fI5Hc7d+5Ev18WQKSmomvXrtixY4fiNjpS4YgLERERZbBhwwZ8++23SE1NxbfffgtfX1/JixaAhQsRERF9ZsWKFRg2bBjkcjlGjBiBzZs3Q1dXV+pYADhVREREhZwQAiM3X8eZx+++2Dc5Vf7FPkVB+kop33//PZYuXQqZTCZxov/DwoWIiAq1pFQ5/O6/Vbm/iYEOKpgb52Gi/G/ixImoW7cumjdvnq+KFoCFCxERFSH+k5vDSC/7t74SRnow1NP+SonyB7lcjiVLlmD06NEwMzMDALRo0ULaUFlg4UJEREWGdXFDFNPnW9+nUlJSMGTIEGzduhWHDx/GmTNnoKWVf0+B5VePiIioiEpKSkLv3r2xf/9+6OjoYOzYsfm6aAFYuBARUSH0PCIOE3cEISouGXKu35+puLg4uLm5wc/PD/r6+ti1axe6dOkidawvYuFCRESFTsCjd7j5IlqpzdJEHwY6+Xs04WuJjo5Gp06dcOHCBRgbG+PAgQNo3bq11LFUwsKFiIgKnfTLeZtUKoXJLg4AAHvLYtDRZuECAAMHDsSFCxdgZmaGo0ePolGjRlJHUhkLFyIiKrRKGuuhPpfuz2DJkiX477//sGXLFtSpU0fqODnCwoWIiKgISE5Ohp6eHgDA0dERt2/fzvcn4maGhQsREeVKwKMwrD/3DGn56CzYkJhEqSPkKw8ePEDnzp2xZs0atG3bFgAKZNECsHAhIqJcWn3mKS79Fyl1jExZmkh/U0Cp3bhxA66urggPD8ePP/6INm3a5LvVcHOChQsREeVK+kjLsGYVULusmbRhPqGnrYXmDuZSx5DU+fPn0bFjR8TGxqJ+/fo4cuRIgS5aABYuRESkIQ3Kl0D7GjZSx6D/z8/PD927d0d8fDycnZ1x6NAhmJqaSh0r1wrmBBcRERFlaf/+/ejcuTPi4+PRvn17HDt2rFAULQBHXIiISAVvohOw5sxTxCWnZdj2LDxOgkSUnX379iE5ORk9e/bEtm3bFFcTFQYsXIiI6Iu2XX6BjRefZ9unuGHheXMs6P7++2/Ur18fo0aNgo5O4XqrL1yvhoiI8kRiyseRFqcKJdHK0TLDdmtTAzhV4EJvUjp06BA6dOgAbW1t6OjoYMyYMVJHyhMsXIiISGV1yplhdItKUsegTwghMGvWLMybNw/Dhw/H2rVrC/yVQ9lh4UJERFRACSEwefJk/PbbbwCAihUrFuqiBchF4fLkyROcP38er169Qnh4OIyMjGBhYYGaNWuiSZMmMDQ01GROIiLKgaCX0Tj1MExjx7v+IkpjxyLNSEtLw6hRo7B+/XoAwMqVKwvt9NCnclS4vHz5EuvWrYOPjw9evXoF4P/uwJlOJpNBR0cH7dq1w6hRo9CpU6dCX/0REeU3E7bfxPOIeI0f10iXA/X5QXJyMgYOHIgdO3ZAS0sLGzZswKBBg6SO9VWo9B347t07zJo1C+vWrUNqairs7e3Rv39/1K9fH1ZWVihZsiQSEhIQGRmJR48e4dKlSzh16hSOHDmCypUrY8mSJejatWtevxYiIvr/PiSmAgC61LZFCSNdjRzTWF8HfZ3KaeRYlDv9+vWDr68vdHV18c8//6Bnz55SR/pqVCpcKlWqBC0tLYwfPx79+/dX6RbYcXFx8PX1xbp16+Dm5oZly5Zh0qRJuc1LREQ5MK61PRysTKSOQRo2cOBAnDhxAjt27ED79u2ljvNVqVS4TJgwAd9//z3MzMxUPrCxsTEGDRqEQYMG4dSpU4iJiVE3IxEREX2iS5cuePbsGUqWLHqXoKtUuMybNy9XT9K6detc7U9Ehc/155H49+0HqWMUWunrrlDh8PbtWwwePBh//vknKlasCABFsmgBeDk0EUkg7H0iPFZfhFx8uS/ljq42b0lX0L148QIuLi54/PgxBgwYgHPnzhXpi17UKlyqVauGESNGYODAgShVqpSmMxFRIRcTnwK5AHS1ZWjhYCF1nEKrirUJypcykjoG5cKTJ0/Qpk0bvHjxAnZ2dti4cWORLloAQCY+v55ZBcWKFUNCQgL09PTQvXt3jBgxotBNB8XGxqJ48eKIiYkpNHfUJMov/n37Hi7Lz6KEkS5uzmwndRyifOnu3btwcXFBaGgoHBwc4O/vj7Jly0odSyV5+R6q1hhiaGgoVq1ahRo1amDHjh1wcXGBvb09fv75Z4SGhmo0IBERUVFz9epVtGjRAqGhoahduzbOnj1bYIqWvKZW4VKsWDGMGjUKV69exa1bt/C///0PUVFRmD59OsqVK4cePXrg6NGjGRanI6KiSy4XuP48Emcfv8O151yFlSgrQgh4enoiMjISTk5OOH36NKysrKSOlW+oNVWUmaSkJPj6+mL9+vU4c+YMAKB06dIYNmwYhg8fjtKlS2viab4aThURadb6c88w79B9pbZSxnq4PsNFokRE+Vd4eDh+/PFHLFu2DCYmBW8dnnw3VZQZfX19uLq6omPHjrC2toYQAq9evcKcOXNQsWJFjBkzBvHxml9+mogKhtdRCQAA82J6qGZjimo2pviuJe8yTJTuyZMniv+bm5tjzZo1BbJoyWsaKVxOnDiBXr16oUyZMvD09IRMJsOMGTPw5MkT7Ny5E9988w1Wr15dJG7+RETZ86hfFkcmOOPIBGcMd64odRyifMHHxweOjo5Yu3at1FHyPbXXcXn9+jU2bNgAb29vPH/+HAAUN1bs0qULtLW1AXy8xba7uzu6dOmC/fv3ayY1ERFRIbFy5UqMGzcOAHDt2jWMHDlS4kT5m1qFS+fOnXH8+HGkpaXBysoKnp6eGDlyJMqXL5/lPk2aNMGRI0fUzUlEBVBKmlxxh+LohGSJ0xDlP4sWLcL06dMBABMnTsSvv/4qcaL8T63C5ciRI2jdujVGjRoFNzc36Oh8+TBdunSBra2tOk9HRAXUt2sv8QoiokwIIeDl5YXFixcDAGbOnInZs2cX+cXlVKFW4fL48WPY29vnaJ8aNWqgRo0a6jwdERVQD0JiAQAmBjrQ1pKhmL4O2jhaSpyKSFpCCIwdOxarVq0CACxduhRTpkyROFXBoVbhsnDhQnTv3h1du3bNss+hQ4ewZ88ebNiwQe1wRFQ4HB7njHJcep4IACCTyWBtbQ2ZTIbVq1fznJYcUuuqIh8fHwQFBWXb59atW9i4caM6hyciIirUfvrpJ1y/fp1Fixry7O7QiYmJKp37QkSqE0IgMUUudQyVce1soo/i4+Mxe/ZszJw5E8WKFYNMJkPdunWljlUgqV1ZZHUCkRACL1++xNGjR3kyLpEGyeUC3Vedx+1XMVJHIaIciImJQefOnXHu3Dk8evSIS4PkkspTRVpaWtDW1laszzJ79mzF408/dHR0UKFCBdy4cQN9+vTJs+BERU1MQkqBLFrsLYvBuriB1DGIJBEeHo42bdrg3LlzKF68ODw9PaWOVOCpPOLSvHlzxSjL2bNnUa5cuUzXbdHW1kbJkiXRunVrjBgxQmNBiej/3J3jCq0CctWkgY42tApKWCINevPmDVxcXHD//n2Ym5vjxIkTnB7SAJULl4CAAMX/tbS0MGTIEMycOTMvMhHRFxjpshggys+Cg4PRpk0b/Pfff7C1tYW/vz+qVq0qdaxCQa1zXOTygnNyIBER0dckhEDPnj3x33//oUKFCjh58iQqVKggdaxCg5f9EEnsfWIK+v59GS+jsr97ulzOa3SICgKZTIYNGzbgf//7H3bu3InSpUtLHalQUalwGTp0KGQyGRYuXAgrKysMHTpUpYPLZDKsX78+VwGJCrs7r2Jw57XqJ906WBUDVwUnyn/i4+NhZPRxocXatWvj3LlzXMI/D8iEEF/8M05LSwsymQwPHjyAg4MDtLRUuxhJJpMhLS0t1yGlEBsbi+LFiyMmJgampqZSx6FC7MKTcPRddxnlSxlh3aD6X+xftqQR9HW0v0IyIlLVyZMn0bdvX+zevRvNmjWTOo7k8vI9VKURl2fPngGAYrgr/TERaY6+jjbsLU2kjkFEOXTw4EF4eHggKSkJK1asYOGSx1QqXOzs7LJ9TEREVBRt374dAwYMQGpqKrp3744tW7ZIHanQU+teRSdPntR0DiIiogJl3bp16Nu3L1JTU9G/f3/s2rUL+vr6Uscq9NQqXFxcXFCuXDn88MMPuHPnjqYzERER5WvLly/HiBEjIITA6NGjsXHjRt6f7ytRq3AZO3YskpKSsGTJEtSpUwd169bFr7/+ipCQEE3nIyIiylfkcjkCAwMBANOmTcOqVatUvmiFck+tz/Tvv/+ON2/e4MCBA3B3d8fjx48xZcoUlCtXDq6urtiyZQvi47Nfk4KIiKgg0tLSwj///IOtW7fi559/5iXPX5naJaK2tjY6d+6MHTt2IDQ0FOvWrUOzZs3g7++PQYMGwcrKCgMGDNBkViIiIkmkpaVhy5YtSF9BRF9fH3379mXRIgGV1nHJiVevXmHNmjVYsmQJUlNTuY4LFToPQ2Ox8tQTJKZo5tYXkXFJuPEiGlWsTHB8UnONHJOINCclJQWDBg3CP//8g++//x7Lli2TOlK+J/k6LqoQQsDf3x9btmzB3r17kZKSAm1tLpJFhc/GC89x6Lbmz+cqVUxP48ckotxJTExE7969ceDAAejo6KBhw4ZSRyrycl24BAUFYfPmzdi+fTtCQ0MhhEC1atUwYMAA9OvXTxMZifKVlLSPIy0dalijhYOFRo6pJZOhuYaORUSa8eHDB3Tv3h0nT56EgYEBdu/ejY4dO0odq8hTq3B5+fIltm7diq1bt+L+/fsQQsDKygoTJkzAgAEDULduXU3nJMp3apc1Q5+G5aSOQUR5IDo6Gh07dsTFixdRrFgxHDx4EC1btpQ6FkHNwqV8+fIAAAMDA/Tp0wcDBgxAu3bteDkYEREVeGlpaXB1dcWVK1dQokQJHDt2jFNE+YhahUvLli0xcOBA9OzZE8WKFdN0JiIiIsloa2tj8uTJmDx5Mo4dO4aaNWtKHYk+oVbhwiX/iYiosBFCKC5v7t27Nzp37gxjY2OJU9HnOLdDRERF3r1799CsWTO8evVK0caiJX9SacRl6NChkMlkWLhwIaysrDB06FCVDi6TybB+/fpcBSQiIspL169fh6urKyIiIjBp0iTs2rVL6kiUDZUKFx8fH8hkMnh6esLKygo+Pj4qHZyFCxER5WeBgYHo3LkzYmNj0bBhQ6xZs0bqSPQFKhUuz549AwCULl1a6TEREVFBdeLECXTv3h0JCQlo0aIFDh48CBMTE6lj0ReoVLjY2dll+5iIiKgg2bt3L/r06YPk5GR06NABu3fvhqGhodSxSAVqnZw7d+5cnD17Nts+gYGBmDt3rlqhkpKS4OnpCVtbWxgaGsLJyQl+fn4q7evv749WrVrB3NwcZmZmaNiwITZv3qxWDiIiKnxSU1MxZ84cJCcnw8PDA/v27WPRUoCoVbjMnj0bAQEB2fY5e/Ys5syZo87hMXjwYPz666/o168fVqxYAW1tbXTs2BHnzp3Ldr8DBw6gXbt2SE5OxuzZs7FgwQIYGhpi4MCBWL58uVpZiIiocNHR0cHRo0cxffp0/PPPP9DT433CChKN3WTxc8nJyWrdZPHKlSvYvn07li5diilTpgAABg4ciBo1amDatGm4cOFClvuuXLkSNjY2OHXqFPT19QEAo0aNgqOjI3x8fDBp0iT1XgwRERV4QUFBqFOnDgDAxsYGCxYskDYQqUXtdVzSF+nJTHJyMgIDA2FpaZnj4/r6+kJbWxsjR45UtBkYGGDYsGG4ePEiXr58meW+sbGxKFGihKJoAT5W1ubm5hwGpByRywXO/RuOA7feZPh4ERkvdTwiygEhBH788Ud888032Lp1q9RxKJdUHnGpWLGi0uPly5fD29s7Q7+0tDSEh4cjMTERI0aMyHGgmzdvwsHBAaampkrt6feJCAoKQtmyZTPdt2XLlli8eDFmzJiBQYMGQSaTYdu2bbh27Rp27tyZ4yxUdPk9eItRm69n20dHK+vinYjyB7lcjokTJ+KPP/4AALx580biRJRbKhcucrlcMcoik8kghIAQIkM/XV1dVK9eHa1bt8aMGTNyHCgkJAQ2NjYZ2tPbsvummzFjBp49e4YFCxZg/vz5AAAjIyPs3r0b3bp1y/Z5k5KSkJSUpHgcGxub4+xUeIS9//i9UNJYD1WsMl4eaWaki441M36fElH+kZqaihEjRijWHlu1ahW+++47aUNRrqlcuAQHByv+r6WlhUmTJmHmzJkaD5SQkKA01ZPOwMBAsT0r+vr6cHBwgLu7O3r06IG0tDSsXbsW/fv3h5+fHxo1apTlvosWLVL7ZGIqvJwqlMRf/etJHYOIcig5ORn9+vVTnH7g7e2NAQMGSB2LNECtk3OfPXsGMzMzDUf5yNDQUGnkI11iYqJie1bGjh2LS5cu4caNG9DS+nj6Tq9evVC9enVMmDABly9fznJfLy8vTJ48WfE4NjY2yykpIiLKv1JSUtCtWzccO3YMurq62LFjB9zc3KSORRqi1sm5dnZ2KF68uKazAPg4JRQSEpKhPb3N1tY20/2Sk5Oxfv16dOrUSVG0AB+nrjp06IBr164hOTk5y+fV19eHqamp0gcRERU8Ojo6qFWrFgwNDXHw4EEWLYWMSiMuc+fOhUwmw5gxY1CyZEmVF5aTyWQ5Ps+lTp06OH36NGJjY5WKh/TRkvRL2T4XERGB1NRUpKWlZdiWkpICuVye6TaiDBITUeHoHvy11xcV9ycBe+2A7t0BDw/g/09ZElH+JZPJ8PPPP2P48OGoXLmy1HFIw2QiszNsP6OlpQWZTIYHDx7AwcFBaUQj24PLZDkuFi5fvoxGjRopreOSlJSEGjVqoFSpUrh06RIA4MWLF4iPj4ejoyOAj1czmZubw9LSEnfu3FEsKPThwwdUrVoVxYoVw4MHD1TOERsbi+LFiyMmJoajL0XJgQPA4MFAVBTSZDJoCwFoaQFyOVCiBLBxI9Cli9QpiegzoaGhmDt3Ln799VfFOZEknbx8D1VpxOX06dMAgHLlyik9zgtOTk7w8PCAl5cXwsLCYG9vj40bNyI4OFjpTtMDBw7EmTNnFFc2aWtrY8qUKfjpp5/QqFEjDBw4EGlpaVi/fj1evXqFLVu25FlmKiQOHPg4svL/aafX9HL5x3+jo4Fu3YB9+4CuXb92OiLKwvPnz9G2bVs8efIEycnJWLdundSRKA+pNOLytSUmJmLGjBnYsmULoqKiUKtWLcybNw+urq6KPi1btlQqXNJt27YNK1aswOPHj5GUlIRatWph6tSp6NmzZ44ycMSliElMBGxtPxYn2f1IyGSAmRnw5g2njYjygcePH6Nt27Z4+fIlypcvj5MnT2ZYd4y+vrx8D82XhUt+wMIl/0tMSUNUfNYnXOeE4fZtMBs9XPUdNm8G+vfXyHMTkXpu374NFxcXhIWFwdHREf7+/ihdurTUsQj5YKroc3fu3MHVq1fh7u6uCJSQkIDJkyfjwIEDMDAwwNSpUzF69GiNhiVKF5eUihZLAxD+IeOl8+r4a+8GtEs/p+VLtLSAvXtZuBBJ6PLly2jfvj2io6NRp04dHD9+XK3bzFDBo1bhMn/+fJw7dw5DhgxRtE2fPh1r1qxBsWLFEB4ejjFjxqBSpUpwcXHRWFiidK+jExRFi5622rfcUiiZ+F61ogX4eM5LZGSun5OI1JOUlAQPDw9ER0ejcePGOHLkSJ6tLUb5j1qFy5UrV9CqVSvFLQBSU1Ph7e2Nhg0bIiAgAJGRkfjmm2+wYsUKFi6Up0oZ6+H6DA18jz1cB7y6938n4mZHSwsoWTL3z0lEatHX18fOnTvx888/Y8uWLShWrJjUkegrUutP1Xfv3imtKnv16lXExsZi9OjRMDAwgK2tLbp164Zbt25pLChRnureXbWiBfjYjwtaEX110dHRiv83atQI+/btY9FSBKlVuOjo6Cgtyx8QEACZTIZWrVop2kqVKoXw8PDcJyT6Gjw8Pq7TIvvCHZ9lso/93N2/Ti4iAgBs2LABFStWxPXr2d+1nQo/taaKypcvr7SWy65du1ChQgXY2dkp2l6/fo1SpUrlPiEVKS8i4uGx5oLi7sxZ0fi1cAYGHxeX69btY3GS2ROkFzUbN/JSaKKvaMWKFZg4cSIAYMeOHahXjzc+LcrUGnEZMGAAbt26BScnJzRv3hy3bt1C3759lfrcvn2bSy1Tjt18GYW3sUkQAtl+pKtnV0JzT96ly8fF5dJP8ktfITr9XzMzYP9+rpxL9JUIITB//nxF0fL9999j8eLF0oYiyak14jJ27FhcuXIFvr6+EEKgY8eOmD59umL7vXv3cOvWLcyZM0djQaloaVi+JP7s980X+5kX09PsE3ft+nFxOV/fj5c8R0Z+PBHXze3j9BBHWoi+CiEEPD09sXTpUgDAnDlzMGPGDMVFIVR0qVW46OvrY8eOHYiNjYVMJoOJiYnSdisrK9y8eRPly5fXREYqgvR0tGBhoi/NkxsYfFyjheu0EElCLpdjzJgxWL16NQDg119/xaRJkyRORfmFWoVLuqxWwzM3N4e5uXluDk1EREVUamoqnj17BplMhrVr12L48Bysak2FXq4KFwCIi4tDdHR0lneBTr8xIxVtN19EwXP3bcQlZX+38Pjk1K+UiIjyKz09PezZsweBgYFK96gjAnJRuKxfvx6//PILHj16lGUfmUyG1FS+ERFw/N5bPH77QeX+FS2M8zANEeU3cXFx2Lp1K0aMGAGZTAYjIyMWLZQptQqXv/76C2PGjIGOjg6aN2+OMmXKQEcn14M3VIgJfLwUqFsdWwxtWiHbvjraMlS15o0tiYqK6OhodO7cGefPn0dYWBh++uknqSNRPqZWtfHbb7/B3Nwc586dg4ODg6YzUSFmaaKP2mXNpI5BRPnEu3fv4Orqips3b8LMzAxt27aVOhLlc2qt4/L8+XP06tWLRQsREant9evXaNGiBW7evAkLCwucPn0ajRo1kjoW5XNqjbjY2NhkeTIuERHRlzx79gxt2rTBs2fPUKZMGfj7+6NKlSpSx6ICQK0Rl0GDBuHo0aOIi4vTdB4iIirk4uPj0aJFCzx79gyVKlXCuXPnWLSQytQqXH766Sc0aNAALi4uOHv2LD58UP1qESIiKtqMjIwwe/Zs1KhRA4GBgUr3uSP6ErVXzgU+Lsn86R2hP8fLoYmIKJ1cLofW/7/319ChQ9G/f3/o6Wn4th1U6KlVuDg7O/N+EUREpDI/Pz/88MMPOHr0KCwtLQGARQupRa3CJSAgQMMxiIiosNq/fz969eqF5ORkLFy4EL/99pvUkagAU+scFyIiIlVs3boVPXv2RHJyMnr06IHFixdLHYkKuFwtd5ucnAx/f388fPgQcXFxmDFjBgAgMTERsbGxMDc3V8xnEhFR0bJmzRp89913EEJg4MCBWL9+PVdZp1xTu6o4cOAAypUrhy5dumDKlCmYPXu2Ytvt27dhY2OD7du3ayIjEREVMMuWLcPo0aMhhMCYMWPg7e3NooU0Qq3C5fz583B3d4e+vj5WrFiBvn37Km1v2LAh7O3tsXv3bo2EJCKiguPDhw9YvXo1AMDLywt//PEHR99JY9Qqf+fNmwczMzNcv34d5ubmiIiIyNCnfv36uHz5cq4DUsGRmibHlkvP8fZ9UoZtl/+LlCAREUmhWLFiOHnyJA4cOIBx48ZJHYcKGbUKl8uXL8Pd3R3m5uZZ9ilbtiz279+vdjAqeC48jcDsg/ez7WOkx6FiosIoLS0Nly9fRpMmTQAAdnZ2LFooT6j1LpKUlARTU9Ns+0RHR3NosIiJS/q42KCVqT4617LNsN1YXwcDGnOFTKLCJjk5GQMGDMDu3buxa9cuuLm5SR2JCjG1CpeKFSvi6tWr2fa5ePEiHB0d1QpFBVu5kkaY0bma1DGI6CtISEiAh4cHDh8+DF1dXcjlcqkjUSGn1pBIz549cf78eXh7e2e6fdmyZbh79y569+6dq3BERJR/vX//Hh07dsThw4dhaGiIAwcOoGfPnlLHokJOrRGXqVOnYvfu3Rg+fDi2bduGpKSPJ2NOmzYNFy9exIULF1CnTh2MHTtWo2Ep/wn/kAS/+2+RmibHvTexUschoq8kMjISHTp0wJUrV2BiYoJDhw6hefPmUseiIkCtwqVYsWIIDAzE2LFjsXPnTqSlpQH4ONIik8nQq1cvrFq1SnEzRiq85h+6j31Bb5Ta9HR4bhNRYRYbG4uWLVvizp07KFmyJI4dO4YGDRpIHYuKCLUv8ShRogS2bt2K33//HVevXkVkZCRMTU3RoEEDWFlZaTIj5WOR8SkAgFpliqO0mSG0tWQY2Li8tKGIKE+ZmJigWbNmePfuHfz8/FCjRg2pI1ERIhNCCKlD5EexsbEoXrw4YmJivngFVVE2cMMVnH38Dr941EbPemWkjkNEX4lcLkdoaChsbTNeQUiUl++hGhvTDwsLw969e7F3716EhIRo6rBERJQP3L17F8OGDUNKysdRVi0tLRYtJAmVp4qCgoKwZ88e9OjRA3Xq1FHatmbNGkycOBHJyckfD6qjgwULFmDKlCkaDUvSSJMLXPovAokpaRm2RXzIuEouERUuV69eRfv27REZGQlra2ssWLBA6khUhKlcuGzatAl//PFHhiuFbty4gTFjxkAul6N58+YoVqwYTp8+DU9PTzRo0AAtWrTQeGj6uhYdeYB1555l20dbS/aV0hDR13T27Fl07twZ79+/h5OTE/8gJcmpXLhcuHABDRs2hKWlpVL7ypUrIYTA/PnzMX36dADApUuX0KxZM6xevZqFSwF3LTgS689/LFpqli6OzOoTCxN9OFfO+vYPRFQwHT16FD169EBiYiJatWqF/fv3w8TEROpYVMSpXLi8ePEi04WF/P39YWhoqFSFN2rUCO3atcOlS5c0k5IkkZiShmm+tyEE4F6vDJZ51JY6EhF9Jbt27UK/fv2QkpKCzp07Y9euXTAwMJA6FpHqJ+dGRETAzMxMqS00NBSvXr1CkyZNoKenp7StatWqCA0N1UhIksavfo/xX3gcrEz1MaMTl/AnKiqioqIwYsQIpKSkoHfv3tizZw+LFso3VB5xMTQ0xNu3b5Xarl27BgCoV69ehv56enrQ1dXNZTzKS0IIPH0Xh5S0jPcWeREZj3WB/wEAFvWoieJG/FoSFRUlSpTA3r174evri99//x3a2tpSRyJSULlwqVatGo4ePYq0tDTFN/Hhw4chk8nQrFmzDP1fvHgBGxsbzSUljVt24hH+PP002z496pZGa0cuKEhUFISGhsLa2hoA0KpVK7Rq1UriREQZqTxV1LdvX7x+/RrdunXDgQMHsGzZMnh7e8Pc3BwuLi4Z+p89exZVq1bVaFjSrMdvPwAATPR1YGGin+Gjnl0JzOzCKSKiwk4IAS8vL9SoUQP37t2TOg5RtlQecfnuu++wf/9+HDlyBEePHoUQAjo6OlixYkWG81tOnz6N169fw8vLS+OBSfOmd6qKbxuWkzoGEUlALpdj3LhxWLVqFYCPf3RWr15d4lREWVO5cNHW1sbx48exdetWXLp0CaVKlYKbmxvq1q2boW9YWBgmTJiAbt26aTQsERFpTmpqKoYOHYrNmzdDJpNh9erVGDlypNSxiLKVo5ssamlpYcCAARgwYEC2/Xr37o3evXvnKhgREeWdpKQk9O3bF3v27IG2tjY2bdqEvn37Sh2L6ItUPsfFxsYGo0aNwpEjR5CUxGXeiYgKqvj4eHTr1g179uyBnp4edu/ezaKFCgyVC5d69eph8+bN6NKlC8zNzdGzZ09s2bIFUVFReZmPiIjyQHx8PIyMjHD48GFO61OBovJU0aFDhxAfH49jx45h//79OHz4MPbu3QsdHR00bdoU3bt3R7du3VC+fPk8jEtERLllZGSEQ4cO4fHjx6hfv77UcYhyROURF+DjN3uPHj2wceNGhIWF4dSpUxgzZgxevHiBSZMmoVKlSqhduzZmzZqF69ev51VmIiLKoZCQEPz555+Kx6ampixaqEDKUeGitKOWFlq2bInly5fj6dOnuHXrFmbPng09PT3MmzcPDRs2RLly5TBu3Dj4+/trMjMREeVAcHAwnJ2dMXbsWKXihaggkgkhhKYP+vr1a+zbtw8HDhxAQEAAUlNTkZaWpumnyVOxsbEoXrw4YmJiYGpqKnUcjRBCYIjPVVx9FgkASEyVI00usKhHTa7jQlRIPXr0CG3btsWrV69QoUIFnDx5EhUqVJA6FhVyefkeqvaIS3ZKly6NMWPG4Pjx43j37h22bduWF09DORQZl4yAR+8Ql5yGuOQ0pMkFdLRkqGLN29QTFUZBQUFwdnbGq1evULVqVQQGBrJooQIvR+u4qMPU1JRruuRDZ6a2BACYGuiihLFe9p2JqMC5ePEiOnbsiOjoaHzzzTc4fvw4zM3NpY5FlGsqFS5Dhw5V6+AymQzr169Xa1/KW3aljKWOQER55O3bt2jXrh0+fPiApk2b4vDhwyhevLjUsYg0QqXCxcfHR62Ds3AhIvr6rKyssGDBAhw+fBh79uyBsTH/UKHCQ6XC5dmzZ3mdg3IhITkN/9t6Ha+iErLtlybX+HnYRJSPpKSkQFdXFwAwfvx4jBkzBtra2hKnItIslQoXOzu7vM5BuXDzRRROP3qncv8yJQzzMA0RSeHvv//GX3/9hZMnT6JEiRIAwKKFCqU8PzmX8l76QErZkoZY3LPWF/tXt+FcN1Fh8uuvv+L7778HAGzYsEHxf6LCSKXC5cWLF2o/QblyXB/kazHW00GTSrxqgKioEEJg7ty5mD17NgBg6tSpmDx5srShiPKYSoVL+fLlIZPJcnxwmUyG1NTUHO9HRETZE0Jg6tSp+OWXXwAA8+fPx/Tp09X6XU1UkKhUuAwcOJA/DERE+URaWhq+++47/P333wCAFStWYPz48RKnIvo68vRyaCIi0rzw8HAcO3YMWlpa+Pvvv9Vea4uoIOLJuUREBYyVlRX8/f1x9+5d9OjRQ+o4RF9VntyriIiINOvDhw8ICAhQPHZwcGDRQkWS2iMuaWlp2LlzJ/z9/fHmzRskJSVl6COTyXDy5MlcBSQiKuqio6PRsWNHXLt2DQcPHoSrq6vUkYgko1bhEhcXh3bt2uHSpUsQQkAmk0GI/1uVNf0xT+jNO0/ffcDmi8+RlCpHaEz2K+YSUcEVFhYGV1dXBAUFoUSJEorF5YiKKrWmiubPn4+LFy9izpw5CA8PhxACs2fPRkhICHbs2IGKFSvCw8Mj01EY0oy/Ap7C50Iw/rnyQrFqrqmBrsSpiEiTXr16hebNmyMoKAhWVlY4c+YMGjZsKHUsIkmpNeKyZ88eNGrUCD/99JNSu5WVFTw8PNC4cWPUrl0bS5cuhZeXl0aCkrKElDQAQKsqFvimXAloacngWt1a4lREpClPnz5F27ZtERwcjLJly+LkyZOoXLmy1LGIJKfWiMuLFy/QqFGj/zuIlpbS6EqZMmXQqVMnbNy4MfcJKVstHCwwrk1ljGllD3vLYlLHISINePXqFZydnREcHAx7e3ucO3eORQvR/6dW4WJsbAwtrf/btXjx4ggJCVHqY21tnatbBRARFVW2trZwcXFBzZo1ERgYyFunEH1CrakiOzs7paKkRo0aOHXqFJKSkqCvrw8hBE6ePAkbGxuNBSXgwtNw3HgeBQB48vaDxGmIKK9oaWlh/fr1+PDhA8zMzKSOQ5SvqDXi0qZNG5w+fVpxH6JBgwbhxYsXaNy4MaZOnYpmzZohKCgIPXv21GjYoiwxJQ1DvK9i2YnHWHbiMR69fQ8AMNTjbeuJCoMTJ05gyJAhSEv7eP6ajo4OixaiTKg14jJixAiUKlUK7969g42NDYYOHYqbN29i1apVCAoKAgD07NlTccdSyr2UNDmSUuUAAI96ZaCjLUMJIz10qMlRLaKCbu/evejTpw+Sk5PxzTffYNy4cVJHIsq31BpxqVy5Mjw9PZWmgv744w+Ehobi4sWLePPmDXbt2gUjIyO1QiUlJcHT0xO2trYwNDSEk5MT/Pz8VN5/x44daNy4MYyNjWFmZoYmTZrg1KlTamXJj+Z1r4FFPWphWntHXgJNVMBt3rwZHh4eSE5OhoeHB0aNGiV1JKJ8TaP3KrKwsICFhUWujzN48GD4+vpi4sSJqFy5Mnx8fNCxY0ecPn0azZo1y3bf2bNnY+7cuXB3d8fgwYORkpKCu3fv4vXr17nORUSkSatWrcKYMWMAAEOGDMHff/8NbW1O/xJlS6jh3r17YsWKFSIsLCzT7W/fvhUrVqwQ9+/fz/GxL1++LACIpUuXKtoSEhJEpUqVROPGjbPd9+LFi0Imk4lff/01x8/7uZiYGAFAxMTE5PpYmhCbkCzsPA8JO89DIiE5Veo4RJRLP//8swAgAIjx48eLtLQ0qSMRaUxevoeqNVX0888/Y/HixShVqlSm20uVKoWlS5diyZIlOT62r68vtLW1MXLkSEWbgYEBhg0bhosXL+Lly5dZ7vvbb7/B2toaEyZMgBACHz7wyhsiyn+ePXumOAfwxx9/xG+//aa0xAQRZU2tn5TAwEC0adMmyx80bW1ttGnTBmfPns3xsW/evAkHBweYmpoqtacvc51+8m9mTp48iQYNGuD333+HhYUFTExMYGNjg5UrV+Y4BxFRXqlQoQJ2796NJUuWYP78+byvG1EOqHWOS2hoKMqWLZttn9KlS2dYlE4VISEhma7/kt725s2bTPeLiopCeHg4zp8/j1OnTmHWrFkoV64cvL29MW7cOOjq6mZ70ltSUpLS6r+xsbE5zk5ElJW0tDS8evUKdnZ2AICOHTuiY8eOEqciKnjUXjk3LCws2z5hYWEwMDDI8bETEhKgr6+foT39WAkJmd8JOX1aKCIiAuvWrcOUKVPQq1cvHD58GNWqVcP8+fOzfd5FixahePHiio8vFWZERKpKTk7Gt99+i0aNGuHJkydSxyEq0NQqXL755hvs27cP0dHRmW6PiorC3r178c033+T42IaGhpneVToxMVGxPav9AEBXVxfu7u6Kdi0tLfTu3RuvXr3K9hYEXl5eiImJUXxkdy5NXkpMScPl/yJw8anyx9XgSEnyEFHuJCQkoHv37ti1axciIyPx6NEjqSMRFWhqTRWNGTMGbm5uaNWqFVasWIHmzZsrtp05cwYTJkxAVFQUxo4dm+Nj29jYZHrpcvq0k62tbab7lSxZEgYGBjAzM8twOaGlpSWAjwVVVvf80NfXz3Sk52sbveU6Ah69y7YPp8OJCobY2Fh07doVZ86cgaGhIfbt24d27dpJHYuoQFOrcOnWrRsmTZqE5cuXo1WrVtDX14e1tTVCQ0ORlJQEIQSmTp2K7t275/jYderUwenTpxEbG6t0gu7ly5cV2zOjpaWFOnXq4OrVq0hOToaenp5iW/p5MZpYYyavvYyMBwCUNjOEUSbL+bdwsIC+Dtd5IMrvIiIi0KFDB1y9ehWmpqY4fPjwF9ehIiIV5OZa6oMHD4oOHToIc3NzoaurKywsLESnTp3EkSNH1D7mpUuXMqzjkpiYKOzt7YWTk5Oi7fnz5+LBgwdK+y5fvlwAEGvXrlW0JSQkiIoVK4pq1arlKIdU67i0XnZa2HkeEpeehn/V5yUizQkNDRU1atQQAESpUqXEtWvXpI5E9FXl5XtorlbO7dy5Mzp37qyB8un/ODk5wcPDA15eXggLC4O9vT02btyI4OBgrF+/XtFv4MCBOHPmDIQQirZRo0Zh3bp1GDNmDB4/foxy5cph8+bNeP78OQ4ePKjRnEREWTE0NISBgQFsbGzg7++PatWqSR2JqNDQ6JL/mrJp0ybMmDEDmzdvRlRUFGrVqoVDhw4pnUuTGUNDQ5w6dQrTpk3Dhg0bEBcXhzp16uDw4cNwdXX9SumJqKgzNTXFsWPHEBMTg4oVK0odh6hQkYlPhyxyaO/evfjnn3/w8OFDxMfHKy7ze/jwIQ4cOIB+/fqhdOnSGgv7NcXGxqJ48eKIiYnJsBheXmrzSwCevovDjpGN4FQx85WJiSj/uX37NgIDAxX3HiIqyvLyPVStERe5XI5vv/0Wvr6+AD6OdHy6vkqJEiXw448/Ii0tDV5eXppJSkSUT12+fBnt27dHdHQ0SpUqhT59+kgdiajQUmsdl+XLl2PXrl0YNWoUoqKiMGXKFKXtVlZWcHZ2xuHDhzUSkogovwoICEDbtm0RHR2Nxo0bo3379lJHIirU1CpcfHx80KBBA6xatQqmpqaZ3mfD3t4ez549y3VAIqL86vDhw+jQoQM+fPiANm3a4MSJEzAzM5M6FlGhplbh8uTJEzg7O2fbp1SpUoiIiFArFBFRfrdz5050794diYmJ6Nq1Kw4dOoRixYpJHYuo0FOrcDE0NERMTEy2fZ4/f86/PIioUHrw4AG+/fZbpKamKs73U+febESUc2qdnFu3bl0cP34ciYmJmf6wRkZG4tixY1+8fJmIqCCqWrUq5s2bh+DgYPz1118ZbjNCRHlHrRGX8ePH49WrV+jZsydevXqltO3p06dwc3NDTEwMxo8fr5GQRERSE0IoXT05ffp0rFmzhkUL0Vem9r2KPD09sXjxYtjZ2cHY2BjAx5sZRkREQAiBGTNmoHXr1hoNS0QkBSEEPD09cfbsWfj5+cHExAQAMr0wgYjyllojLgCwaNEiHD9+HJ07d4aRkRG0tbUhl8vRvn17HD16FHPmzNFkTiIiScjlcvzvf//D0qVLcfnyZRw7dkzqSERFWq6W/HdxcYGLi0uW2+VyObS01K6NiIgklZqaisGDB2Pr1q2QyWRYs2YNPDw8pI5FVKTlSVUhhMCmTZvg6OiYF4cnIspzSUlJ8PDwwNatW6Gjo4Nt27ZhxIgRUsciKvJyPOKSmJiI+/fvQ0dHB46OjtDT01Pavn37dsyZMwePHz/m/C8RFUhxcXFwc3ODn58f9PX14evri86dO0sdi4iQwxGXxYsXw9zcHA0aNEDdunVRtmxZ7N69GwBw584d1K9fH/369cPjx4/h5uaGmzdv5kloIqK89PbtW9y6dQvGxsY4cuQIixaifETlERdfX194eXlBS0sLVatWBfDxLtB9+/bFrl270L9/f3z48AHdu3fH7NmzUatWrTwLTUSUlypWrAg/Pz/Ex8ejUaNGUschok+oXLisXr0aenp6OH36NBo3bgwAOH/+PFq3bg0PDw+Ymppi3759vASaiAqk169f4/Hjx2jVqhUA8I8vonxK5amioKAguLm5KYoWAGjatCnc3NyQmpoKb29vFi1EVCD9999/cHZ2RseOHREYGCh1HCLKhsqFS3R0NOzt7TO0p7exaCGigujBgwdwdnbGs2fPULp0aZQtW1bqSESUDZULF7lcDl1d3Qzt6W1GRkaaS0VE9BXcuHEDzZs3x5s3b1C9enUEBgaifPnyUsciomzk6KoiXt5MRIXF+fPn0apVK4SHh6N+/fo4c+YMbGxspI5FRF+Qo3Vc5s2bh0WLFim1paamAsh8xEUmkyEuLi4X8YiINO/27dto164d4uPj4ezsjEOHDsHU1FTqWESkApULl3LlynHEhYgKhWrVqqFDhw748OED9uzZw6luogJE5cIlODg4D2MQEeU9IQRkMhl0dHSwdetWAIC+vr7EqYgoJ3gHRCIqEtasWYMRI0ZALpcD+FiwsGghKnhydXdoIqKCYNmyZZg6dSoAoEOHDujZs6fEiYhIXSqNuPz888+Ij49X+0kuXbqEw4cPq70/EZE6hBCYOXOmomjx8vJCjx49JE5FRLmhUuEyf/58VKhQAXPmzMHTp09VOnBycjJ8fX3h6uqKpk2b4uHDh7kKSkSUE0IITJo0CfPmzQMALFy4EAsXLuRFBkQFnEpTRY8fP8aPP/6IefPmYe7cuahTpw4aNWqEevXqwcrKCmZmZkhMTERkZCQePXqEy5cv49y5c4iNjUX58uXxzz//oFevXnn9WoiIAABpaWkYNWoU1q9fDwBYuXIlxowZI3EqItIElQoXW1tbeHt748cff8SaNWuwadMm/PXXX5n+5SKEgJaWFlq0aIHRo0fDzc0NOjo8lYaIvp6goCBs2rQJWlpa2LBhAwYNGiR1JCLSkBxVFPb29li6dCmWLFmCO3fu4Pz583j16hUiIiJgaGgICwsL1KxZE87OzjAzM8ujyERE2atXrx62bt0KmUwGd3d3qeMQkQapNRQik8lQq1Yt3vadiPKN9+/fIzw8HBUqVAAAeHh4SJyIiPIC13EhogIvKioKLi4uaNmyJV6+fCl1HCLKQ7kqXG7evIlp06aha9euaNu2raL9+fPn2LlzJyIjI3MdkIgoO2/fvkXLli1x+fJlfPjwAe/evZM6EhHlIbXPmp02bRp++eUXCCEAKN85WgiBvn374pdffsGECRNyn5KIKBMvXryAi4sLHj9+DGtra/j5+aFGjRpSxyKiPKTWiIu3tzeWLVuGzp074/bt2/Dy8lLaXr58eTRs2BAHDhzQSEgios89efIEzs7OePz4Mezs7BAYGMiihagIUGvEZdWqVahatSp2794NHR0d6OnpZejj6OgIf3//XAckIvrcgwcP0Lp1a4SGhsLBwQH+/v4oW7as1LGI6CtQa8Tl/v37cHFxyXZ9FisrK4SFhakdjIgoK5aWljA3N0ft2rVx9uxZFi1ERYhaIy46OjpITk7Ots+bN29QrFgxtUIREWWnVKlS8PPzg76+PkqUKCF1HCL6itQacalZsyZOnTqFtLS0TLfHx8fD398f9erVy1U4IqJ0x44dw5o1axSPra2tWbQQFUFqFS5Dhw7F48ePMXr0aCQlJSlti42NxeDBgxEaGooRI0ZoJCQRFW2+vr7o2rUrRo8eDT8/P6njEJGE1JoqGjp0KPz9/bF+/Xrs2LFDsbx/w4YN8eDBA8TFxWHw4MFcaltF794nISQmAQCQmCKXOA1R/uLj44Nhw4ZBLpejd+/eaNmypdSRiEhCaq/jsm3bNrRq1QorV67E3bt3IYTAtWvXULVqVYwfPx6jRo3SZM5CKzQmEc5LTiElTSi1Z3YDS6KiZuXKlRg3bhwAYNiwYVizZg20tbUlTkVEUsrVbZtHjBiBESNGICEhAVFRUTA1NeUJuTn0MioeKWkC2loyWJsaAADKljREzdLFJU5GJK1FixZh+vTpAICJEyfi119/ZUFPROoVLmfPnkX58uVRrlw5AIChoSEMDQ2V+rx8+RLPnj1D8+bNc5+yCLAraYRTU1pKHYMoXwgICFAULTNnzsTs2bNZtBARADVPzm3VqhV8fHyy7bNp0ya0atVKncMTURHXsmVLTJ8+HUuXLsWcOXNYtBCRglojLun3J8qOXC7nLxsiUllqaioSExMV080LFiyQOBER5Ue5ujt0dv79918UL87zNIjoy5KSktC7d2906dIFCQkJUschonxM5RGXoUOHKj3et28fgoODM/RLS0vDy5cvcfbsWXTo0CHXAYmocIuPj0ePHj1w/Phx6Onp4fr162jWrJnUsYgon1K5cPn0nBaZTIagoCAEBQVl2lcmk6FBgwZYvnx5bvMRUSEWExODzp0749y5czAyMsL+/ftZtBBRtlQuXJ49ewbg4/ktFStWxMSJEzFhwoQM/bS1tVGiRAkYGxtrLiURFToRERFwdXXF9evXUbx4cRw5cgRNmjSROhYR5XMqFy52dnaK/3t7e6Nu3bpKbUREqgoJCYGLiwvu3bsHc3NznDhxAnXr1pU6FhEVAGpdVTRo0CBN5yhSDt8OwQ97biMpVa7SFVpEhU1ERATevHmD0qVLw8/PD1WrVpU6EhEVELlaOTcxMRFXr17FmzdvMtxsMd3AgQNz8xSF0smHb/E+MVWprU5ZM2nCEEmgRo0aOHHiBEqVKoUKFSpIHYeIChC1C5c///wTM2bMQExMTKbbhRCQyWQsXLIxtpU9+jqVg5ZMBitTfanjEOWpoKAgvH//Hs7OzgCA+vXrS5yIiAoitdZx2bNnD8aNG4eyZcti2bJlEEKgW7duWLhwIdq3bw8hBHr27IkNGzZoOm+hYmqoA1szQ1gXN+BifVSoXbx4Ea1atUKnTp1w8+ZNqeMQUQGmVuHy22+/wdLSEhcvXsSkSZMAAHXq1IGnpycOHz6MLVu2YN++fTx5l4hw8uRJuLi4IDo6GrVq1ULFihWljkREBZhahcvt27fRtWtXGBkZKdrS0tIU/+/bty9at26NuXPn5j4hERVYBw8eRKdOnRAXF4d27drh+PHjXFGbiHJFrcIlJSUFFhYWiseGhoaIjo5W6lO7dm3cuHEjV+GIqOD6559/4ObmhqSkJLi5ueHAgQNc34mIck2twsXW1hYhISGKx3Z2dhnmrZ8/fw4dnVxdtEREBZSfnx/69euHtLQ09O/fHzt37oS+Pk9AJ6LcU6uyaNCggdJoSvv27bFixQosWrQIXbt2xblz57Bnzx60bdtWY0GJqOBo0aIFXF1dUb58efz555/Q0sqz+7kSURGj1m8TDw8PJCUlKW6y6OXlhTJlyuCnn35CrVq18N1336FYsWJYsmSJJrMSUT4mhFAsqKinp4d9+/Zh1apVLFqISKPUGnFxc3ODm5ub4rGFhQWCgoKwbt06/Pfff7Czs8OAAQNQunRpjQUlovxLCIGpU6ciOTkZK1asgEwm49QQEeUJjZ2EUqJECUydOlVThyOiAiItLQ3fffcd/v77bwDAt99+i8aNG0uciogKqzwbww0MDETLli3z6vBElA+kpKSgf//++Pvvv6GlpYUNGzawaCGiPKXWiEtkZCR0dHRgamqaYdulS5cwY8YMnDp1KtfhiCj/SkxMRK9evXDw4EHo6Ohg27Zt8PDwkDoWERVyORpx2bFjBypWrAgLCwuUKFECtWvXxoULFwB8vE19jx490LRpU5w8eRLffPMNDhw4kCehiUhaHz58QKdOnXDw4EEYGBhg//79LFqI6KtQecTl5MmT+PbbbwFAsYjUnTt30LFjR5w4cQJubm4ICQnBN998g1mzZqFLly55k5iIJHfx4kUEBASgWLFiOHjwIKeFieirUXnE5bfffoOWlha2b9+O9+/f4/3799i6dSvev38PFxcXREVFYd26dbh27RqLFqJCzsXFBRs3boS/vz+LFiL6qlQuXK5evYpOnTqhV69eirZvv/0WnTp1wocPH7B69WoMHTo0T0ISkfRevXqFFy9eKB73798fTk5OEiYioqJI5cIlIiIC1atXz9Ce3ta9e3eNhSKi/OXp06dwdnZG27Zt8fbtW6njEFERpnLhkpaWBgMDgwzt6W2ZXWFERAXfvXv34OzsjODgYAghkJSUJHUkIirCuBY3EWXp+vXraNGiBUJCQlCzZk0EBgaiXLlyUscioiIsR+u4rFy5Etu3b1dqCw8PBwBUq1YtQ3+ZTIZ79+7lIh4RSSUwMBCdOnXC+/fv0bBhQxw9ehQlS5aUOhYRFXE5KlzCw8MVhcrnHj58qJFARCS9M2fOoEOHDkhISECLFi1w8OBBmJiYSB2LiEj1wkUul+dlDiLKR6pUqYIyZcqgcuXK8PX1haGhodSRiIgA5NNzXJKSkuDp6QlbW1sYGhrCyckJfn5+OT6Oi4sLZDIZxo4dmwcpiQova2trnDlzBnv37mXRQkT5Sr4sXAYPHoxff/0V/fr1w4oVK6CtrY2OHTvi3LlzKh9jz549uHjxYh6mJCpc/vrrL2zatEnx2MbGBnp6ehImIiLKKN8VLleuXMH27duxaNEiLF26FCNHjsSpU6dgZ2eHadOmqXSMxMREfP/99/D09MzjtESFw+LFi/G///0PQ4YMQVBQkNRxiIiylO8KF19fX2hra2PkyJGKNgMDAwwbNgwXL17Ey5cvv3iMJUuWQC6XY8qUKXkZlajAE0Lgxx9/xA8//AAA8PLyQu3atSVORUSUtRxdVfQ13Lx5Ew4ODhkWtGvYsCEAICgoCGXLls1y/xcvXuDnn3/Ghg0bODdPlA25XI6JEyfijz/+APBx1EXVUU0iIqnku8IlJCQENjY2GdrT2968eZPt/t9//z3q1q2LPn365Oh5k5KSlFYEjY2NzdH+RAVJWloahg8fDh8fHwDAqlWr8N1330kbiohIBfmucElISIC+vn6G9vRbCyQkJGS57+nTp7F7925cvnw5x8+7aNEizJkzJ8f7qSr8QxLuv/lYDIXFcsl0ktbOnTvh4+MDbW1teHt7Y8CAAVJHIiJSSb4rXAwNDTO9F0piYqJie2ZSU1Mxfvx4DBgwAA0aNMjx83p5eWHy5MmKx7GxsdlOSeWEXC7Q6fdAvP2sYNGSyTRyfKKc6tOnD65du4ZmzZrBzc1N6jhERCrLVeGyd+9e/PPPP3j48CHi4+Px5MkTAB9X0T1w4AD69euH0qVL5+iYNjY2eP36dYb2kJAQAICtrW2m+23atAmPHj3CmjVrEBwcrLTt/fv3CA4OhqWlJYyMjDLdX19fP9ORHk1IlQtF0eJobQItmQxmRrpoV806T56PKDOxsbHQ1dWFoaEhZDIZfvnlF6kjERHlmFqFi1wux7fffgtfX18AH0dBPp3CKVGiBH788UekpaXBy8srR8euU6cOTp8+jdjYWKUTdNOnf+rUqZPpfi9evEBKSgqaNm2aYdumTZuwadMm7N27F927d89RHk3bOboxTA10Jc1ARU9ERAQ6dOgAc3Nz7Nu3j+uzEFGBpdbl0MuXL8euXbswatQoREVFZbjs2MrKCs7Ozjh8+HCOj+3u7o60tDSsXbtW0ZaUlARvb284OTkppm9evHihdH+kPn36YO/evRk+AKBjx47Yu3cvnJyc1Hm5RAVaaGgoWrZsiatXr+LKlSt49uyZ1JGIiNSm1oiLj48PGjRogFWrVgH4eBfoz9nb26tVuDg5OcHDwwNeXl4ICwuDvb09Nm7ciODgYKxfv17Rb+DAgThz5gyEEAAAR0dHODo6ZnrMChUqSD7SQiSF58+fo23btnjy5AlsbGzg7++PKlWqSB2LiEhtao24PHnyBM7Oztn2KVWqFCIiItQKtWnTJkycOBGbN2/G+PHjkZKSgkOHDqF58+ZqHY+oKHr8+DGcnZ3x5MkTlC9fHufOnUO1atWkjkVElCtqjbgYGhoiJiYm2z7Pnz+HmZmZOoeHgYEBli5diqVLl2bZJyAgQKVjpY/IEBUlt2/fRrt27fD27Vs4OjrCz88PZcqUkToWEVGuqTXiUrduXRw/flxxifLnIiMjcezYMTRq1ChX4YhIPUlJSYiLi0OdOnVw5swZFi1EVGioVbiMHz8er169Qs+ePfHq1SulbU+fPoWbmxtiYmIwfvx4jYQkopxp0KABTp48idOnT8PS0lLqOEREGqPWVFG3bt3g6emJxYsXw87ODsbGxgAAS0tLREREQAiBGTNmoHXr1hoNS0RZO3LkCMzNzRX39Ur/l4ioMFH77tCLFi3C8ePH0blzZxgZGUFbWxtyuRzt27fH0aNH83T5fCJStnPnTnTr1g3t27dXLARJRFQY5WrlXBcXF7i4uGgqCxGpYcOGDRgxYgTkcjk6dOgAOzs7qSMREeUZtS+HJiLprVixAsOGDYNcLsfIkSOxadMm6OpyZWYiKrzUKlwcHBzQtGlTrF69GpGRkZrORERfIITA/PnzMXHiRADA999/j9WrV0NbW1vaYEREeUytwqVz5864du0axowZA1tbW7i5uWHPnj1ITk7WdD4iysTGjRsxY8YMAMCcOXOwdOnSTFewJiIqbGRCzRXaIiIi8M8//2Dz5s24evUqZDIZihcvDg8PD/Tv3/+LK+vmd7GxsShevDhiYmKUbvaoqidhHzBy0zVExidDCCAmIQUAcHt2O95kkXItISEBHTt2RNeuXTFp0iSp4xARKcnte2h21C5cPvXkyRNs2rQJW7duxbNnzyCTyWBnZ4d+/fph3rx5msj51eX2k77pYjBm7r+n1Fa2pCECprSCthb/MqacS0tLg5aWlmJkJTU1FTo6uTq/nogoT+T7wuVTFy5cwKZNm+Dt7Y3U1FSkpaVp8vBfjaYKl+YOFpjZuSoAoEwJIxjo8hwEyrmkpCT06dMH1apVw4IFC6SOQ0SUrbwsXNRexyUz//77L44fPw5/f3+kpKRo8tAFlom+DuwtTWBvacKihdQSFxeHLl26YN++ffjll194VR8RFWm5HmcODw/HP//8gy1btuDatWsQQqBEiRIYNWoUBgwYoImMREVWdHQ0OnfujPPnz8PY2BgHDhyAvb291LGIiCSjVuGSmJiIffv2YcuWLfDz80NKSgr09PTQrVs3DBgwAJ06dYKenp6msxIVKe/evYOrqytu3rwJMzMzHD16lDcuJaIiT63CxcrKCh8+fIAQAo0bN8aAAQPQu3dvlChRQtP5iIqk169fw8XFBQ8ePICFhQX8/PxQu3ZtqWMREUlOrcLFwsICkydPRv/+/VGpUiVNZyIq8i5cuIAHDx6gTJky8Pf3R5UqVaSORESUL6hVuPDkQKK85eHhgY0bN6J58+YoX7681HGIiPINLgJBlE/cunULVlZWsLa2BgAMHDhQ4kRERPmPSoXL3LlzIZPJMGbMGJQsWRJz585V6eAymUyxLDkRZe38+fPo1KkTypUrh4CAAJQsWVLqSERE+ZJKhcvs2bMhk8nQu3dvlCxZErNnz1bp4CxciL7Mz88P3bt3R3x8PMzMzLgaLhFRNlT6DXn69GkAQLly5ZQeE1Hu7N+/H7169UJycjLat2+P3bt3w8jISOpYRET5lkqFS4sWLbJ9TEQ5t3XrVgwaNAhpaWno2bMntm7dCn19faljERHla2ot+b9p0ybcvn072z53797Fpk2b1ApFVNht27YNAwYMQFpaGgYNGoTt27ezaCEiUoFahcvgwYOxb9++bPvs378fQ4YMUefwRIVes2bNULZsWYwZMwYbNmzgeS1ERCrKs9+WaWlp0NLS6D0ciQqNcuXK4dq1azA3N4dMJpM6DhFRgZFnlcXNmzd5SSfR/yeEwJQpU+Dr66tos7CwYNFCRJRDKo+4tG7dWumxj48PAgICMvRLS0vDq1evEBwcjF69euU6IFFBl5aWhtGjR2PdunXQ09ODk5MTypYtK3UsIqICSeXC5dMiRSaTITg4GMHBwRn6aWlpoWTJkvDw8MBvv/2mgYhEBVdycjIGDhyIHTt2QEtLC2vXrmXRQkSUCyoXLnK5XPF/LS0tzJ49GzNnzsyTUESFQUJCAjw8PHD48GHo6urin3/+Qc+ePaWORURUoKl1cu7p06d54zeibLx//x7dunXD6dOnYWBggL1796J9+/ZSxyIiKvDUKly4AB1R9tatW4fTp0/DxMQEhw4dQvPmzaWORERUKKhUuKQvJOfm5gYTE5McLSzHO9xSUTRhwgS8ePECffv2RYMGDaSOQ0RUaKhUuAwePBgymQyNGjWCiYmJ4nF2hBCQyWQsXKjIePPmDczNzaGnpwctLS0sX75c6khERIWOSoXLhg0bIJPJYGNjAwDw9vbO01BEBc2///6Ltm3bokGDBti+fTtXwiUiyiMqj7h8atCgQXmRhahAunPnDlxcXPD27VsYGBggMjISlpaWUsciIiqUuCY/US5cvXoVLVu2xNu3b1GrVi2cPXuWRQsRUR5Sq3B5+fIlTp06hfj4eEWbXC7H4sWL0bRpU7Rt2xaHDx/WWEii/Ojs2bNo06YNIiMj4eTkhICAAFhZWUkdi4ioUFNrIn7GjBk4ePAgQkNDFW0LFizArFmzFI/PnDmDCxcu8IoKKpSOHTsGNzc3JCYmolWrVti/fz9MTEykjkVEVOipNeJy/vx5tG3bFrq6ugA+XkG0cuVKODo64sWLF7hy5QqMjY2xdOlSjYbNj97GJuL688gMHy8i4r+8MxVYRkZGkMlk6NSpEw4fPsyihYjoK1FrxCUsLAx2dnaKx0FBQXj37h1mz56NMmXKoEyZMujevTvOnDmjsaD5Udj7RDRbfAopaSLrTrz5b6HUvHlzBAYGolatWooCnoiI8p5ahYtcLle6d1FAQABkMpnSHaRLly6tNJVUGIVEJyIlTUBbS4ayJQwzbNfT0YL7N2UkSEZ5Yc2aNWjSpAlq1qwJAKhXr57EiYiIih61Cpdy5crhypUrisf79u2DjY0NqlSpomgLDQ2FmZlZrgMWBNamBgiY2krqGJSHFi5ciB9//BFWVla4ffs2rxwiIpKIWue49OzZE+fPn4e7uzv69++Pc+fOZbjr7f3791GxYkWNhCSSihACP/zwA3788UcAwOjRo2FhYSFxKiKiokutEZcpU6bgxIkT2LNnDwCgVq1amD17tmL78+fPceXKFfzwww8aCZnfRMYlIyk1DeEfkqSOQnlILpdj3LhxWLVqFQBg2bJl+P777yVORURUtKlVuJiamuLSpUu4e/cuAKBq1arQ1tZW6rNnzx7Ur18/9wnzmX+uvIDXnjtSx6A8lpqaiqFDh2Lz5s2QyWRYvXo1Ro4cKXUsIqIiL1c3VKlRo0am7XZ2dkpXHRUmt19FAwC0ZICOlhYgAzrVspE2FGncokWLsHnzZmhra2PTpk3o27ev1JGIiAi5LFyAj2u6BAUFITY2FqampqhTpw6aNm2qiWz52qS2DhjXprLUMSiPTJw4Ef7+/pg8eTK6desmdRwiIvr/1C5cLly4gCFDhuDJkycAPp7EKJN9XLSkcuXK8Pb2RuPGjTWTkugrSExMhIGBAQDAxMREcZk/ERHlH2oVLvfu3UO7du0QHx8PFxcXtGrVCjY2NggNDcXp06dx4sQJuLq64tKlS6hWrZqmMxNpXEREBFxdXdGzZ094eXkBAIsWIqJ8SK3CZe7cuUhOTsaRI0fQvn17pW2enp44duwYunbtirlz52L79u0aCUqUV0JCQuDi4oJ79+7h+fPnGDFiBMzNzaWORUREmVBrHZeAgAC4u7tnKFrStW/fHu7u7jh9+nSuwhHlteDgYDg7O+PevXsoXbo0zp49y6KFiCgfU2vEJSYmBhUqVMi2T4UKFRATE6NWKKKv4eHDh2jbti1ev36NChUq4OTJk1/8viYiImmpNeJia2uLS5cuZdvn8uXLsLW1VSsUUV4LCgpC8+bN8fr1a1StWhWBgYEsWoiICgC1CpeuXbsiICAAM2bMQGJiotK2xMREzJo1C6dPn+ZlpJRvXb16Fe/evcM333yDs2fPonTp0lJHIiIiFag1VTRjxgwcOnQICxcuxJo1a9CwYUNYWVnh7du3ijeEihUrYsaMGZrOS6QRI0aMgKGhIbp06YLixYtLHYeIiFSk1ohLqVKlcOnSJQwaNAgfPnzAkSNH4O3tjSNHjuD9+/cYMmQILl26hJIlS2o6L5Ha/P39ERERoXjcv39/Fi1ERAWM2gvQmZubY8OGDVizZg0ePnyoWDnX0dERurq6msxIlGvbt2/HgAEDULduXZw8eRImJiZSRyIiIjXkqHCJiorCH3/8gatXr0Imk8HJyQljxoxBzZo18yofUa6tW7cOI0eOhBACVapUgaGhodSRiIhITSoXLhEREWjQoAGeP38OIQQA4PDhw/Dx8cHly5c5LUT50vLlyzF58mQAwHfffYeVK1dCS0utGVIiIsoHVP4NvnDhQgQHB6Nly5bYvn07tm/fjpYtW+Lp06f4+eef8zIjUY4JITBnzhxF0TJt2jT8+eefLFqIiAo4lUdcjhw5Ant7e5w4cQLa2toAgJ49e6JatWo4dOgQlixZkmchiXLq559/xuzZswEACxYsgJeXF+89RERUCKj85+fz58/h6uqqKFoAQFtbG66urggODs6LbERq8/DwgI2NDVasWIHp06ezaCEiKiRUHnFJTEyEhYVFhvZSpUohKSlJo6GIcsve3h4PHz6Eqamp1FGIiEiDOOFPhUJiYiI8PDxw5MgRRRuLFiKiwidHl0OfO3cuw7ks586dAwAsXbpUcbXRp6ZNm5aLeERf9uHDB3Tv3h0nT57EyZMnERwczKKFiKiQylHh4u/vD39//0y3eXp6ZmiTyWQsXChPRUdHo2PHjrh48SKKFSuGPXv2sGghIirEVC5cvL298zIHUY6FhYXB1dUVQUFBKFGiBI4dO4aGDRtKHYuIiPKQyoXLoEGD8jIHUY68evUKbdu2xaNHj2BlZQU/Pz+u4ExEVASofa8iIin9+eefePToEcqWLQt/f384ODhIHYmIiL4CFi5UIM2fPx8pKSkYP348ypUrJ3UcIiL6Sng5NBUYjx49QmpqKoCPix8uW7aMRQsRURHDwoUKhMDAQDRo0ADDhw+HXC6XOg4REUmEhQvle8ePH4erqyvev3+PZ8+eITExUepIREQkERYulK/t2bMHXbp0QUJCAjp06ICjR4/CyMhI6lhERCSRfFm4JCUlwdPTE7a2tjA0NISTkxP8/Py+uN+ePXvQu3dvVKxYEUZGRqhSpQq+//57REdH531o0rjNmzejV69eSElJgbu7O/bt28eihYioiMvVVUXJycnw9/fHw4cPERcXhxkzZgD4eN+Y2NhYmJubQ0sr57XR4MGD4evri4kTJ6Jy5crw8fFBx44dcfr0aTRr1izL/UaOHAlbW1v0798f5cqVw507d7By5UocOXIEN27cgKGhodqvlb6uNWvWYPTo0QA+fj/8/fff0NHhRXBEREWeUNP+/fuFlZWV0NLSEjKZTGhpaSm2Xb58WWhpaYmtW7fm+LiXL18WAMTSpUsVbQkJCaJSpUqicePG2e57+vTpDG0bN24UAMTff/+doxwxMTECgIiJiVFq/2H3LWHneUj87v84R8ejnDl27JjQ1dUV48ePF2lpaVLHISKiHMjqPVQT1JoqOn/+PNzd3aGvr48VK1agb9++StsbNmwIe3t77N69O8fH9vX1hba2NkaOHKloMzAwwLBhw3Dx4kW8fPkyy31btmyZoc3NzQ0A8ODBgxxnIem4urri5s2b+O2339QatSMiosJJrXeEefPmwczMDNevX8fYsWNRuXLlDH3q16+PW7du5fjYN2/ehIODQ4Yb5aXfgyYoKChHxwsNDQUAmJub5zgLfT1yuRwzZszA48ePFW3Vq1eHTCaTMBUREeU3ahUuly9fRrdu3bItBsqWLasoGnIiJCQENjY2GdrT2968eZOj4y1evBja2tpwd3fPtl9SUhJiY2OVPtKFxSbi5IO3OPngLV5FJeTo+enLUlNTMWzYMMyfPx/t2rVDfHy81JGIiCifUutsx6SkpAwjIp+Ljo5Wa4g/ISEB+vr6GdoNDAwU21W1bds2rF+/HtOmTct0VOhTixYtwpw5czLd1v3P83gTo7x2iJYWRwI0ITk5Gf369VNMEc6fP59XDhERUZbUGnGpWLEirl69mm2fixcvwtHRMcfHNjQ0RFJSUob29EXHVL0yKDAwEMOGDYOrqysWLFjwxf5eXl6IiYlRfHx6Lk160VLNxhS1yxSHc2VzdKqZcVSIciY+Ph7du3eHr68v9PT0sGvXLvTv31/qWERElI+pNeLSs2dPzJ8/H97e3hgyZEiG7cuWLcPdu3exZMmSHB/bxsYGr1+/ztAeEhICALC1tf3iMW7duoWuXbuiRo0a8PX1VekyWn19/UxHej61cWhDWJhk34dUExsbiy5duuDs2bMwNDTEvn370K5dO6ljERFRPqdW4TJ16lTs3r0bw4cPx7Zt2xQjJNOmTcPFixdx4cIF1KlTB2PHjs3xsevUqYPTp08jNjZWaTrq8uXLiu3Zefr0Kdq3bw9LS0scOXIExYoVy3EGynvTpk3D2bNnYWpqisOHD2e7Pg8REVE6taaKihUrhsDAQPTp0wcBAQE4d+4chBBYtmwZLly4gF69esHf3/+LIxiZcXd3R1paGtauXatoS0pKgre3N5ycnFC2bFkAwIsXL/Dw4UOlfUNDQ9GuXTtoaWnh+PHjsLCwUOfl0VewcOFCtG7dGqdOnWLRQkREKpMJIURuDhAREYGrV68iMjISpqamaNCgAaysrHIVqlevXti7dy8mTZoEe3t7bNy4EVeuXMHJkyfRvHlzAB/XbDlz5gw+jV+nTh3cunUL06ZNQ82aNZWOaWVlBRcXF5UzxMbGonjx4oiJiUGthYEAgKs/tuVUUS68f/8eJiYmUscgIqI89ul76Jcu5smpXK+hXqpUKbRv314TWRQ2bdqEGTNmYPPmzYiKikKtWrVw6NAhRdGSlfR1YzI7t6ZFixY5KlxIsx4/foy2bdti6tSpGDdunNRxiIiogMr1iEthxREXzbl9+zZcXFwQFhaGqlWr4saNG4rL24mIqPDJdyMurVu3VqmfTCbDyZMn1XkKKiQuX76M9u3bIzo6GnXq1MHx48dZtBARkdrUKlwCAgKy3S6TySCE4HLtRVxAQAC6dOmCDx8+oHHjxjhy5AjMzMykjkVERAWYWlcVyeXyTD+io6Nx6tQpODk5wd3dHcnJyZrOSwXE4cOH0aFDB3z48AFt2rTBiRMnWLQQEVGuafS2u6ampmjZsiWOHz+OK1euqLRiLRVODx48QGJiIrp27YpDhw5xPR0iItIIjRYu6UxMTNChQwd4e3vnxeGpAJgyZQp27twJX19fntNCREQakyeFCwBoaWkplumnomHbtm1Kd9X28PCArq6uhImIiKiwyZPC5b///sOuXbtQvnz5vDg85TNCCMyfPx/9+vVD586deW4TERHlGbWuKho6dGim7ampqXj9+jXOnTuHlJQUzJ07N1fhKP8TQsDT0xNLly4FALi4uHCUhYiI8oxahYuPj0+226tUqYLvv/8ew4cPV+fwVEDI5XKMGTMGq1evBgAsX74cEydOlDYUEREVamoVLs+ePcu0XUtLC2ZmZrwfTRGQmpqKIUOGYMuWLZDJZFi7di0LVSIiynNqFS4ymQx6enqwtrbWdB4qIMaOHYstW7ZAR0cHW7ZsQe/evaWORERERYBaJ+dWqFAB06dP13QWKkDGjRuH0qVLY+/evSxaiIjoq1FrxKVEiRIoVaqUprNQPvfpbRyqV6+OJ0+ecI0WIiL6qtQacXF2dsbly5c1nYXysXfv3qFZs2ZK96li0UJERF+bWoXLokWLcPv2bcydOxepqamazkT5zOvXr9GiRQtcuHABw4cPR0pKitSRiIioiFJrqmjJkiWoWbMm5syZgzVr1qB27dqwsrLKcDdomUyG9evXayQoSeO///5D27Zt8ezZM5QpUwaHDx/mOi1ERCQZlQsXbW1tzJ49GzNmzFBaxyUkJCTLpf1ZuBRsDx48QNu2bfHmzRtUqlQJ/v7+XA2ZiIgkpXLhIoSAEAJA1uu4UOFx48YNuLq6Ijw8HNWrV4efnx9sbGykjkVEREWcWlNFdnZ2ms5B+cxff/2F8PBw1K9fH8eOHeNVZERElC+oVbhQ4ffnn3/CysoK06ZNg6mpqdRxiIiIAOTwqqLPT76lwuXq1auQy+UAAD09PcyfP59FCxER5Ss5Klxmz54NbW1tlT90dDigU1Bs3boVjRs3xvjx4xXnMhEREeU3OaosTE1NYWZmlkdRSCpr1qzBd999ByEE3r9/D7lcDm1tbaljERERZZCjwmXSpEmYOXNmXmUhCSxduhTTpk0DAIwZMwa///47tLTUWpeQiIgoz/EdqogSQmDmzJmKouWHH37AH3/8waKFiIjyNZ6EUkT98MMPWLJkCQBg4cKF8PLykjgRERHRl7FwKaKcnJygo6OD5cuXY+zYsVLHoTyQlpbG+0oRUZ7Q1dWV7FxIFi5FVI8ePfD48WNUqFBB6iikYUIIhIaGIjo6WuooRFSImZmZwdra+qsvlaJy4ZK+vgcVTAkJCRg/fjx++uknxcrHLFoKp/SixdLSEkZGRlx/iYg0SgiB+Ph4hIWFAcBXvx0MR1yKgPfv36Nr164ICAjA5cuXcfPmTV7uXEilpaUpihbepoGI8oqhoSEAICwsDJaWll/1PYWFSyEXGRmJDh064MqVKzAxMcHKlStZtBRi6ee0GBkZSZyEiAq79N8zKSkpLFxIM96+fYt27drh9u3bKFmyJI4dO4YGDRpIHYu+Ak4PEVFek+r3DAuXQurFixdo27Yt/v33X1hbW8PPzw81atSQOhYREVGucLWxQmrcuHH4999/Ua5cOQQGBrJooQIhIiIClpaWCA4OljoK5YFGjRph9+7dUsegAo6FSyH1999/o0uXLjh37hzs7e2ljkOkkgULFqBbt24oX748ACA4OBgymUzxUbJkSbRo0QKBgYEZ9o2MjMTEiRNhZ2cHPT092NraYujQoXjx4kWGvqGhoRg3bhwqVqwIfX19lC1bFl26dMHJkydVyuno6Ah9fX2EhoZm2Fa+fHn89ttvGdpnz56NOnXqaDSHunbt2gVHR0cYGBigZs2aOHLkyBf32bp1K2rXrg0jIyPY2Nhg6NChiIiIyLTv9u3bIZPJ0L17d6X2n376CT/88AOvUqVcYeFSiISHhyv+b2lpiQMHDqBs2bISJiJSXXx8PNavX49hw4Zl2Obv74+QkBCcPXsWtra26Ny5M96+favYHhkZiUaNGsHf3x+rV6/GkydPsH37djx58gQNGjTAf//9p+gbHByMevXq4dSpU1i6dCnu3LmDY8eOoVWrVhgzZswXc547dw4JCQlwd3fHxo0b1X69uc2hrgsXLuDbb7/FsGHDcPPmTXTv3h3du3fH3bt3s9zn/PnzGDhwIIYNG4Z79+5h165duHLlCkaMGJHp65oyZQqcnZ0zbOvQoQPev3+Po0ePavQ1UREjKFMxMTECgIiJiRF2noeEnechERabKHWsLAUEBAhTU1Oxfv16qaOQhBISEsT9+/dFQkKCok0ul4u4pJSv/iGXy3OUfdeuXcLCwkKp7dmzZwKAuHnzpqLt9u3bAoDYv3+/om306NHC2NhYhISEKO0fHx8vSpcuLdq3b69o69ChgyhdurT48OFDhgxRUVFfzDl48GDxww8/iKNHjwoHB4cM2+3s7MTy5csztM+aNUvUrl1bYznU1atXL9GpUyelNicnJzFq1Kgs91m6dKmoWLGiUtvvv/8uSpcurdSWmpoqmjRpItatWycGDRokunXrluFYQ4YMEf3791f/BVC+kdnvm3SfvodqGk/OLQSOHj2KHj16IDExEf/88w8GDx7MmyWSQkJKGqrNPP7Vn/f+XFcY6an+KyYwMBD16tXLtk9CQgI2bdoEANDT0wPwcXHM7du3o1+/frC2tlbqb2hoiP/973/46aefEBkZCQA4duwYFixYAGNj4wzHNzMzy/b5379/j127duHy5ctwdHRETEwMAgMDMx1dyE5kZKTaObZu3YpRo0Zle/yjR49mmenixYuYPHmyUpurqyv27duX5fEaN26M6dOn48iRI+jQoQPCwsLg6+uLjh07KvWbO3cuLC0tMWzYsEyn8wCgYcOG+Pnnn7PNT5QdFi4FnK+vL/r27YuUlBR07twZu3btYtFCBdLz589ha2ub6bYmTZpAS0sL8fHxEEKgXr16aNOmDQDg3bt3iI6ORtWqVTPdt2rVqhBC4MmTJwA+rvrp6OioVsbt27ejcuXKqF69OgCgT58+WL9+fY4LlydPnqido2vXrnBycsq2T+nSpbPcFhoaCisrK6U2KyurTM/XSde0aVNs3boVvXv3RmJiIlJTU9GlSxf8+eefij7nzp3D+vXrERQUlG02W1tbvHz5EnK5nL+rSC0sXAowHx8fDBs2DHK5HL1798bmzZuhq6srdSzKZwx1tXF/rqskz5sTCQkJMDAwyHTbjh074OjoiLt372LatGnw8fHJ8L0uhPjic6jSBwBGjx6NLVu2KB5/+PABALBhwwb0799f0d6/f3+0aNECf/zxB0xMTFQ6dk5yZMbExCRHz6UJ9+/fx4QJEzBz5ky4uroiJCQEU6dOxejRo7F+/Xq8f/8eAwYMwN9//w1zc/Nsj2VoaAi5XI6kpCTF6qtEOcHCpYBauXIlxo0bBwAYNmwY1qxZwxVxKVMymSxHUzZSMTc3R1RUVKbbypYti8qVK6Ny5cpITU2Fm5sb7t69C319fVhYWMDMzAwPHjzIdN8HDx5AJpMprq6TyWR4+PBhtlnmzp2LKVOmKLXdv38fly5dwpUrV+Dp6aloT0tLw/bt2xUnqpqamiImJibDMaOjo1G8eHEAQOXKlVXKkZncThVZW1srndgMfFys8vNptk8tWrQITZs2xdSpUwEAtWrVgrGxMZydnTF//ny8ffsWwcHB6NKli2Kf9CuHdHR08OjRI1SqVAnAx2kyY2NjFi2kNo7TFVDpv3gmTpyIv//+m0ULFXh169bF/fv3v9jP3d0dOjo6WLVqFQBAS0sLvXr1wrZt2zJMdyQkJGDVqlVwdXVFyZIlUbJkSbi6uuLPP/9EXFxchmOn31Hb0tIS9vb2ig8AWL9+PZo3b45bt24hKChI8TF58mSsX79ecYwqVarg+vXrGY5948YNODg4AIDKOTLTtWtXpefP7KN+/fpZ7t+4ceMMl1v7+fmhcePGWe4THx+fYVon/XdO+pTXnTt3lDJ07doVrVq1QlBQkNLVjXfv3kXdunWzfC6iL9L46b6FRH6/qkgul4sjR47k+MoNKtyyO8s/v7t9+7bQ0dERkZGRirbMrioSQohVq1YJS0tLERcXJ4QQIjw8XFSqVEnUqFFDHDny/9q777AorvZv4N9lWZYuUgWlSFMURI2AYgEUu4ioKCExYiw8amIKaGJJwJYEI1hiTGwBNXbEXhAREQ2iBjUWQEUQFRQbCNLhfv/g3fmx7oKUpen5XNdeyplzZu45O+zezJw5c5wyMjIoNjaW+vfvT7q6upSamsq1TU1NpXbt2lGXLl0oPDyc7ty5Q7dv36Y1a9ZQ586dpcZWUlJCOjo69Mcff0gsu337NgGgmzdvEhHRhQsXSE5OjpYtW0a3b9+mGzdu0IIFC0heXp5u3LjRoDhk4cKFCyQvL08rV66kpKQkCggIIIFAIBbb999/T5MmTeJ+Dg0NJXl5eVq/fj2lpqbS+fPnqVevXmRvb1/tdqq7q8jJyYmWLFki031imkdz3VXEEpdqtLTEpby8nFavXs19UDOMNK05cSEisre3pz///JP7ubrE5c2bN9S2bVsKCgriyp49e0ZffvklGRoakkAgID09PfLx8aEHDx5IbCczM5Nmz55NxsbGpKCgQO3bt6fRo0dTTEyM1LjCw8NJTk6Onjx5InW5lZUVffPNN9zPkZGR1LdvX2rbti1paWmRs7MzxcbGNjgOWdm7dy9ZWlqSgoICde3alY4dOya2fPLkyeTk5CRWtnbtWurSpQspKSmRvr4+ffLJJ/To0aNqtyEtcXn06BEJBAJ6+PChrHaFaUbNlbjwiBowSuw99vr1a7Rp0wa5ubno9lPlbX2XF7pCR03Y5LGUlZVh6tSp2LZtG0aMGIGjR4+yh+gxUhUVFSEtLQ0dO3asdqBrS3bs2DHMnTsXN2/eZHecvIe+++47vHr1Chs3bmzuUBgZqOnzpup3qLq6uky32/JH7H3giouL4e3tjYiICPD5fHz66acsaWHeWyNHjsTdu3fx+PFjNuvze0hXV1diDhmGqSuWuLRgBQUFGDt2LCIjI6GgoIB9+/Zh9OjRzR0WwzSqr7/+urlDYBqJn59fc4fAvAdY4tJC5ebmws3NDXFxcVBWVsahQ4fg6ura3GExDMMwTLNiiUsL5eXlhbi4OLRp0wbHjx+Ho6Njc4fEMAzDMM2OjX5roZYtWwYzMzPExMSwpIVhGIZh/j92xqUFKS8v5yZ1+uijj5CcnAx5efYWMQzDMIwIO+PSQiQnJ8Pa2hoXL17kyljSwjAMwzDiWOLSAly7dg0DBgxAcnIy/P39G/QANoZhGIZ5n7E/6ZtZfHw8hg8fjtzcXPTs2RMHDx5k87Qwza+oCNi3Dzh4EHjxAtDSAsaMATw9gVY4sR3DMO8PdsalGUVHR2Pw4MHIzc1F3759cebMmXc+Ep5hGt3hw4CBAfDZZ5WJS2xs5b+ffVZZfuRIc0fYYCYmJli9erXM6zYnHo+HgwcPymRdKSkpaNeuHfLy8mSyvtpIT08Hj8fDtWvXWuR2wsLCoKGh0Sgx1SQwMBDdu3dv0DrOnj0LHo9X48M7396/P//8U+xp3y0JS1yayZEjRzBy5Ei8efMGQ4YMQWRkJPfIe4ZpNocPV55ZEX3AVVSI/5uTA7i7V9aTMR8fH/B4PPB4PAgEAujp6WHw4MH466+/UCHavoxcvnwZM2bMkHnd+hJ9sYheenp6GDduHO7fv1/rdWRlZWH48OG1rl/TF/H8+fPx5ZdfQk1NjSsrLy/HqlWrYGNjA0VFRbRt2xbDhw/HhQsXar1NER8fH4wZM0aszNDQEFlZWbC2tq7z+mSttSSrjenzzz9HYmIi4uLimjsUCSxxaQZEhL/++gvFxcXw8PDA4cOHoaKi0txhMR+6oiLAx6fy/9WNsxKV+/hU1pexYcOGISsrC+np6Thx4gRcXFzw1VdfYdSoUSgrK5PZdnR0dKCsrCzzug2VkpKCzMxM7Nu3D7du3YKbmxvKy8tr1bZdu3YQChv+LLWMjAwcPXoUPqJjAZWfWV5eXliyZAm++uorJCUl4ezZszA0NISzs7NMzvTw+Xy0a9fuvbopoaSkpLlDqDcFBQV4e3tj7dq1zR2KBJa4NAMej4edO3ciKCgIe/fulcmHDcM02L59wKtX1SctIkSV9cLDZR6CUChEu3bt0L59e/Ts2RMLFizAoUOHcOLECYSFhXH1cnJyMG3aNOjo6EBdXR0DBw7E9evXxdZ15MgR2NnZQVFREdra2vDw8OCWVf2LmogQGBgIIyMjCIVCGBgYYM6cOVLrApVf7O7u7lBVVYW6ujomTJiAp0+fcstFp/a3b98OExMTtGnTBl5eXrW67KKrqwt9fX0MGDAAP/74I27fvo179+4BAP744w+YmZlBQUEBnTp1wvbt28XaVr1UJLocEhERARcXFygrK8PW1hbx8fEAKs/wTJkyBbm5udxZnsDAQADA3r17YWtri/bt23Pr3rt3L8LDw7Ft2zZMmzYNHTt2hK2tLTZu3IjRo0dj2rRpePPmjdj+b9iwAYaGhlBWVsaECROQm5vLLd+6dSsOHTrEbfvs2bMSl3BEZ6EiIyPRo0cPKCkpYeDAgcjOzsaJEydgZWUFdXV1eHt7o6CggIv15MmT6NevHzQ0NKClpYVRo0YhNTX1nX0v4uzsjAcPHuCbb77h4qsqMjISVlZWUFVV5RJtEdGZpOXLl8PAwACdOnUCADx8+BATJkyAhoYGNDU14e7ujvT0dK7d2bNnYW9vDxUVFWhoaKBv37548OCB2HZrOp6Ki4sxZ84c6OrqQlFREf369cPly5dr3M+wsDAYGRlBWVkZHh4eePHihUQdNzc3HD58GIWFhbXuv6bAEpcmFB0dzd0xpKSkhHnz5r1Xf10wrdzBg0Btn8gsJwccONCo4YgMHDgQtra2iIiI4Mo8PT25L7B///0XPXv2xKBBg/Dy5UsAlU+Z9vDwwIgRI3D16lVER0fD3t5e6vr379+PVatWYcOGDbh79y4OHjwIGxsbqXUrKirg7u6Oly9fIjY2FlFRUbh//z4mTpwoVi81NRUHDx7E0aNHcfToUcTGxuKXX36p034rKSkBqPyr/cCBA/jqq6/g5+eHmzdvwtfXF1OmTEFMTEyN61i4cCH8/f1x7do1WFpa4uOPP0ZZWRkcHR2xevVqqKurIysrC1lZWfD39wcAxMXFoVevXmLr2blzJywtLaWOefDz88OLFy8QFRXFld27dw979+7FkSNHcPLkSVy9ehWzZs0CAPj7+2PChAncl35WVlaNk2wGBgZi3bp1+Oeff7gEYPXq1di5cyeOHTuGU6dO4bfffuPqv3nzBt9++y2uXLmC6OhoyMnJwcPDo9aXGyMiItChQwcsWbKEi0+koKAAK1euxPbt23Hu3DlkZGRw/SYSHR2NlJQUREVF4ejRoygtLcXQoUOhpqaGuLg4XLhwgUt6SkpKUFZWhjFjxsDJyQn//fcf4uPjMWPGDLGE6V3H07x587B//35s3boViYmJMDc3x9ChQ7nfh7clJCRg6tSp+OKLL3Dt2jW4uLhg2bJlEvV69eqFsrIyJCQk1KrvmgwxUuXm5hIAys3NJePvjpLxd0cp+3VRvdZVUVFBgYGBBIDmzZtHFRUVMo6WYSoVFhbS7du3qbCwsO6NnZyIKs+n1O7l7CzT2CdPnkzu7u5Sl02cOJGsrKyIiCguLo7U1dWpqEj899HMzIw2bNhARER9+vShTz75pNptGRsb06pVq4iIKDg4mCwtLamkpOSddU+dOkV8Pp8yMjK45bdu3SIAdOnSJSIiCggIIGVlZXr9+jVXZ+7cueTg4FBtPDExMQSAXr16RUREmZmZ5OjoSO3bt6fi4mJydHSk6dOni7Xx9PSkESNGcD8DoAMHDhARUVpaGgGgzZs3S8SZlJREREShoaHUpk0biVhsbW1pyZIlYmWdO3eu9r15+fIlAaCgoCBu//l8Pj169Iirc+LECZKTk6OsrCwikv5ei2K+evWqWJ+cPn2aq/Pzzz8TAEpNTeXKfH19aejQoVJjIyJ69uwZAaAbN25I3Y40Vd9zkdDQUAJA9+7d48p+//130tPT436ePHky6enpUXFxMVe2fft26tSpk9jnfnFxMSkpKVFkZCS9ePGCANDZs2elxvKu4yk/P58EAgHt2LGDW15SUkIGBga0YsUKIpI8vj7++GOxY4eo8ndM2vHQtm1bCgsLkxpbTZ83Vb9DZY2dcWlkRIS5c+dyp2HV1dWbNyCGqY6WVt3OuGhqNm48VRAR9xfo9evXkZ+fDy0tLaiqqnKvtLQ07pLAtWvXMGjQoFqt29PTE4WFhTA1NcX06dNx4MCBasfTJCUlwdDQEIaGhlxZly5doKGhgaSkJK7MxMREbGCrvr4+srOz3xlLhw4doKKiAgMDA7x58wb79++HgoICkpKS0LdvX7G6ffv2FdumNN26dROLAcA74ygsLISilFveqQ7zSxkZGYldaurTpw8qKiqQkpJS63WIVN0HPT09KCsrw9TUVKys6j7dvXsXH3/8MUxNTaGurg4TExMAlZf4GkpZWRlmZmbcz9LeVxsbGygoKHA/X79+Hffu3YOamhp3rGpqaqKoqAipqanQ1NSEj48Phg4dCjc3N6xZs0bsLA9Q8/GUmpqK0tJSseNDIBDA3t6+2uMjKSkJDg4OYmV9+vSRWldJSUnsUlxLwK5TNKLy8nLMnDkTmzZtAgCsWbNG7No5w7QoY8YAVS7H1KiiAqgyZqSxJSUloWPHjgCA/Px86Ovr4+zZsxL1RHfJiC6z1IahoSFSUlJw+vRpREVFYdasWfj1118RGxsLgUBQr3jfbsfj8Wp1qSIuLg7q6urQ1dUV+6Kqr6pxiBK/d8Whra2NV69eiZVZWlrW+CUoqtMY3t6Hd/Wtm5sbjI2NsWnTJhgYGKCiogLW1tYyGSgrbdtvJ3Rv32iRn5+Pjz76CDt27JBYn46ODgAgNDQUc+bMwcmTJ7Fnzx4sWrQIUVFR6N27d7XblfWddtV5+fIlF2dLwc64NJLS0lJMmjQJmzZtgpycHLZs2cKSFqZl8/QE2rYF3jUBIo9XWW/8+CYJ68yZM7hx4wbGjRsHAOjZsyeePHkCeXl5mJubi71E8yB169YN0dHRtd6GkpIS3NzcsHbtWpw9exbx8fG4ceOGRD0rKys8fPgQDx8+5Mpu376NnJwcdOnSpYF7CnTs2BFmZmYSSYuVlZXEbccXLlxo0DYVFBSk3rHUo0cP3L59W6zMy8sLd+/exREpc/gEBwdDS0sLgwcP5soyMjKQmZnJ/Xzx4kXIyclxg1Wr23ZDvXjxAikpKVi0aBEGDRoEKysriSSsNmQZX8+ePXH37l3o6upKHK9Vp8Do0aMH5s+fj3/++QfW1tbYuXNnrdYvGrBd9fgoLS3F5cuXqz0+rKysJMatVH3cjEhqaiqKiorQo0ePWsXSVFji0gjo/986uGvXLsjLy2PXrl34/PPPmzsshqmZoiKwdWvl/6tLXkTlW7c2ygy6xcXFePLkCR4/fozExET89NNPcHd3x6hRo/DZZ58BAFxdXdGnTx+MGTMGp06dQnp6Ov755x8sXLgQV65cAQAEBARg165dCAgIQFJSEm7cuIGgoCCp2wwLC8OWLVtw8+ZN3L9/H3///TeUlJRgbGwsUdfV1RU2Njb45JNPkJiYiEuXLuGzzz6Dk5OTxIBWWZo7dy7CwsLwxx9/4O7duwgJCUFERITEwNC6MDExQX5+PqKjo/H8+XPucsDQoUMRHx8v9sXt5eUFDw8PTJ48GVu2bEF6ejr+++8/+Pr64vDhw9i8ebPYmQZFRUVMnjwZ169fR1xcHObMmYMJEyagXbt23Lb/++8/pKSk4Pnz5ygtLa33flTVtm1baGlpYePGjbh37x7OnDmDb7/9ts7rMTExwblz5/D48WM8f/68QTF98skn0NbWhru7O+Li4pCWloazZ89izpw5ePToEdLS0jB//nzEx8fjwYMHOHXqFO7evQsrK6tarV9FRQUzZ87E3LlzcfLkSdy+fRvTp09HQUEBpk6dKrWN6OzOypUrcffuXaxbtw4nT56UqBcXFwdTU1Oxy2MtAUtcGgGPx4OHhweUlZVx6NAhTJgwoblDYpjacXOrvLtINDGZaMyL6F8NDeDQocp6jeDkyZPQ19eHiYkJhg0bhpiYGKxduxaHDh3inpzO4/Fw/PhxDBgwAFOmTIGlpSW8vLzw4MED6OnpAai8pXXfvn04fPgwunfvjoEDB+LSpUtSt6mhoYFNmzahb9++6NatG06fPo0jR45AS0tLoi6Px8OhQ4fQtm1bDBgwAK6urjA1NcWePXsapT9ExowZgzVr1mDlypXo2rUrNmzYgNDQUDg7O9d7nY6Ojvjf//6HiRMnQkdHBytWrAAADB8+HPLy8jh9+jRXl8fjYe/evViwYAFWrVqFTp06oX///njw4AHOnj0rMZmcubk5xo4dixEjRmDIkCHo1q0b1q9fzy2fPn06OnXqhF69ekFHR6dek9hJIycnh927d+Pff/+FtbU1vvnmG/z66691Xs+SJUuQnp4OMzOzBl8mUVZWxrlz52BkZISxY8fCysoKU6dORVFREdTV1aGsrIzk5GSMGzcOlpaWmDFjBmbPng1fX99ab+OXX37BuHHjMGnSJPTs2RP37t1DZGQk2rZtK7V+7969sWnTJqxZswa2trY4deoUFi1aJFFv165dmD59er33vbHwqC4jrj4gr1+/Rps2bZCbm4tuP1XOHHh5oSt01Go/58qTJ0+4vzAYpikUFRUhLS0NHTt2lDrAsg4rqpyn5cAB4OXLyoG4Hh6Vl4fYs4ree7///jsOHz6MyMjIOrcNDAzEwYMHG33qfqZx3bp1CwMHDsSdO3eqndW9ps+bqt+hsr4phQ3OlZHs7GzMnDkT69at40bvs6SFabUUFYFPP618MR8cX19f5OTkIC8vTyaDhJnWJysrC9u2bWuRj6JhiYsMPHr0CK6urkhJSUFubq7YKVaGYZjWRl5eHgsXLmzuMJhm5Orq2twhVIuNcWmg1NRU9OvXDykpKTA0NBS7jsswDPOhCQwMZJeJmEbFEpcGuHXrFjdAzdzcHOfPn2+0uQwYhmEYhmGJS71duXIFAwYM4B7DHhcXByMjo+YOi2EA1G2WU4ZhmPpors8ZlrjUAxFh9uzZePnyJezs7BAbG8sG4jItgmiGzZY2RTfDMO8f0edMfWeYri82OLceeDwe9u/fjwULFuD3339no+6ZFoPP50NDQ4N7jomysrLYU2YZhmEaiohQUFCA7OxsaGhocHMsNRWWuLzDtvh07v+PHz2EjpU5gMqHoW3btq2ZomKY6onO/tXmoX4MwzD1paGh0SxXG1pk4lJcXIwff/wR27dvx6tXr9CtWzcsW7ZM7FkY1Xn8+DG++eYbnDp1ChUVFXBxccGqVavEniZaFytOpkBOqIz8m2fg0H0stm/fzmbCZVo0Ho8HfX196OrqymwqdYZhmKoEAkGTn2kRaZGJi4+PD8LDw/H111/DwsICYWFhGDFiBGJiYtCvX79q2+Xn58PFxQW5ublYsGABBAIBVq1aBScnJ1y7dk3qFN7vMsK6HZIvHEfssRAAQHR0NEtcmFaBz+c32wcLwzBMo6EWJiEhgQDQr7/+ypUVFhaSmZkZ9enTp8a2QUFBBIAuXbrElSUlJRGfz6f58+fXKY7c3FwCQIGBgQSAANCcOXOovLy8bjvEMAzDMB8Y0Xdobm6uzNfd4u4qCg8PB5/Px4wZM7gyRUVFTJ06FfHx8WKPk5fW1s7ODnZ2dlxZ586dMWjQIOzdu7de8QQGBgIAFi5ciNWrV0NOrsV1GcMwDMN8MFrct/DVq1dhaWkp8VAme3t7AKh2RsaKigr8999/Uh8tb29vj9TUVOTl5dUrpqCgICxbtozdncEwDMMwzazFjXHJysriHlJYlagsMzNTaruXL1+iuLj4nW07deoktX1xcTGKi4u5n3NzcwEAy5cvx//+9z+8fv26bjvCMAzDMB8o0XcmNcIkdS0ucSksLIRQKJQoFz0yu7CwsNp2AOrVFgB+/vlnLF68WKJ84cKF7GFjDMMwDFMPL168kPkTpltc4qKkpCR25kOkqKiIW15dOwD1agsA8+fPx7fffsv9nJOTA2NjY2RkZLTIx3q/j16/fg1DQ0M8fPhQ4lIh0zhYnzc91udNj/V508vNzYWRkRE0NTVlvu4Wl7jo6+vj8ePHEuVZWVkAAAMDA6ntNDU1IRQKuXp1aQtUnqmRdramTZs27EBvYurq6qzPmxjr86bH+rzpsT5veo1xQ0uLG5zbvXt33LlzR2JMSUJCArdcGjk5OdjY2ODKlSsSyxISEmBqasqm5mcYhmGYVq7FJS7jx49HeXk5Nm7cyJUVFxcjNDQUDg4OMDQ0BABkZGQgOTlZou3ly5fFkpeUlBScOXMGnp6eTbMDDMMwDMM0mhZ3qcjBwQGenp6YP38+srOzYW5ujq1btyI9PR1btmzh6n322WeIjY0VG7E8a9YsbNq0CSNHjoS/vz8EAgFCQkKgp6cHPz+/OsUhFAoREBAg9fIR0zhYnzc91udNj/V502N93vQas8951Bj3KjVQUVERfvjhB/z999/cs4qWLl2KoUOHcnWcnZ0lEhcAePTokdizipydnbFq1SqYm5s39W4wDMMwDCNjLTJxYRiGYRiGkabFjXFhGIZhGIapDktcGIZhGIZpNVjiwjAMwzBMq/HBJS7FxcX47rvvYGBgACUlJTg4OCAqKqpWbR8/fowJEyZAQ0MD6urqcHd3x/379xs54tavvn0eERGBiRMnwtTUFMrKyujUqRP8/PyQk5PT+EG3cg05zqsaPHgweDwevvjii0aI8v3S0D7fs2cP+vTpAxUVFWhoaMDR0RFnzpxpxIhbv4b0+enTp+Hi4gJtbW1oaGjA3t4e27dvb+SIW7f8/HwEBARg2LBh0NTUBI/HQ1hYWK3b5+TkYMaMGdDR0YGKigpcXFyQmJhY90DoA+Pl5UXy8vLk7+9PGzZsoD59+pC8vDzFxcXV2C4vL48sLCxIV1eXgoKCKCQkhAwNDalDhw70/PnzJoq+dapvn2tpaZGNjQ398MMPtGnTJpozZw4pKChQ586dqaCgoImib53q2+dV7d+/n1RUVAgAzZ49uxGjfT80pM8DAgKIx+ORp6cn/fnnn/Tbb7+Rr68vbdu2rQkib73q2+eHDh0iHo9Hjo6O9Ntvv9G6detowIABBIBCQkKaKPrWJy0tjQCQkZEROTs7EwAKDQ2tVdvy8nJydHQkFRUVCgwMpHXr1lGXLl1ITU2N7ty5U6c4PqjEJSEhgQDQr7/+ypUVFhaSmZkZ9enTp8a2QUFBBIAuXbrElSUlJRGfz6f58+c3WsytXUP6PCYmRqJs69atBIA2bdok61DfGw3p86r1TUxMaMmSJSxxqYWG9Hl8fDzxeDz2hVlHDenzwYMHk4GBARUVFXFlpaWlZGZmRt26dWu0mFu7oqIiysrKIiKiy5cv1ylx2bNnDwGgffv2cWXZ2dmkoaFBH3/8cZ3i+KASl7lz5xKfz6fc3Fyx8p9++okAUEZGRrVt7ezsyM7OTqJ8yJAhZGZmJvNY3xcN6XNpXr9+TQDo22+/lWWY7xVZ9PnixYvJyMiICgoKWOJSCw3p84kTJ5K+vj6Vl5dTRUUF5eXlNXa474WG9LmDgwN17dpVarmDg4PMY30f1TVx8fT0JD09PSovLxcrnzFjBikrK4slke/yQY1xuXr1KiwtLSUesmVvbw8AuHbtmtR2FRUV+O+//9CrVy+JZfb29khNTUVeXp7M430f1LfPq/PkyRMAgLa2tkziex81tM8zMjLwyy+/ICgoqMYnqjP/pyF9Hh0dDTs7O6xduxY6OjpQU1ODvr4+1q1b15ght3oN6XNnZ2fcunULP/zwA+7du4fU1FQsXboUV65cwbx58xoz7A/W1atX0bNnT4mHLtrb26OgoAB37typ9bpa3JT/jSkrKwv6+voS5aKyzMxMqe1evnyJ4uLid7bt1KmTDKN9P9S3z6sTFBQEPp+P8ePHyyS+91FD+9zPzw89evSAl5dXo8T3Pqpvn7969QrPnz/HhQsXcObMGQQEBMDIyAihoaH48ssvIRAI4Ovr26ixt1YNOc5/+OEHpKWlYfny5Vi2bBkAQFlZGfv374e7u3vjBPyBy8rKwoABAyTKq75fNjY2tVrXB5W4FBYWSn1ugqKiIre8unYA6tX2Q1ffPpdm586d2LJlC+bNmwcLCwuZxfi+aUifx8TEYP/+/dzT2JnaqW+f5+fnAwBevHiB3bt3Y+LEiQAqHxhrY2ODZcuWscSlGg05zoVCISwtLTF+/HiMHTuWe7Dvp59+iqioKPTu3bvR4v5QyfK74INKXJSUlFBcXCxRXlRUxC2vrh2AerX90NW3z98WFxeHqVOnYujQoVi+fLlMY3zf1LfPy8rKMGfOHEyaNAl2dnaNGuP7pqGfLQKBQOwsopycHCZOnIiAgABkZGTAyMioEaJu3Rry2fLFF1/g4sWLSExM5C5dTJgwAV27dsVXX33FEvdGIKvvAuADm8dFX18fWVlZEuWiMgMDA6ntNDU1IRQK69X2Q1ffPq/q+vXrGD16NKytrREeHg55+Q8q366z+vb5tm3bkJKSAl9fX6Snp3MvAMjLy0N6ejoKCgoaLe7WrCGfLYqKitDS0gKfzxdbpqurC6DychIjqb59XlJSgi1btmDkyJFi4y0EAgGGDx+OK1euoKSkpHGC/oDJ4rtA5INKXLp37447d+7g9evXYuWi7Lp79+5S28nJycHGxgZXrlyRWJaQkABTU1OoqanJPN73QX37XCQ1NRXDhg2Drq4ujh8/DlVV1cYK9b1R3z7PyMhAaWkp+vbti44dO3IvoDKp6dixI06dOtWosbdWDfls6d69O549eybxZSkao6GjoyP7gN8D9e3zFy9eoKysDOXl5RLLSktLUVFRIXUZ0zDdu3dHYmIiKioqxMoTEhKgrKwMS0vL2q+sLrc/tXYXL16UuO+/qKiIzM3NxW6Be/DgASUlJYm1/eWXXwgAXb58mStLTk4mPp9P3333XeMH30o1pM+zsrLI1NSUDAwMKC0tralCbvXq2+dJSUl04MABiRcAGjFiBB04cIAyMzObdF9ai4Yc56tWrSIAtHHjRq6ssLCQTE1NqUuXLo0ffCtV3z4vKysjDQ0NsrS0pOLiYq48Ly+POnToQJ07d26aHWjlarodOjMzk5KSkqikpIQr2717t8Q8Ls+ePSMNDQ2aOHFinbb9QSUuRJX3ksvLy9PcuXNpw4YN5OjoSPLy8hQbG8vVcXJyordzutevX5OZmRnp6urSihUraNWqVWRoaEgGBgaUnZ3d1LvRqtS3z21tbQkAzZs3j7Zv3y72OnXqVFPvRqtS3z6XBmwel1qpb58XFBRQ165dSSAQkL+/P61du5bs7OyIz+fT8ePHm3o3WpX69vmyZcsIAPXo0YNWrVpFK1euJCsrKwJAf//9d1PvRqvy22+/0dKlS2nmzJkEgMaOHUtLly6lpUuXUk5ODhERTZ48mQCI/cFZVlZGvXv3JlVVVVq8eDH9/vvv1LVrV1JTU6Pk5OQ6xfDBJS6FhYXk7+9P7dq1I6FQSHZ2dnTy5EmxOtV9oD98+JDGjx9P6urqpKqqSqNGjaK7d+82VeitVn37HEC1Lycnpybcg9anIcf521jiUjsN6fOnT5/S5MmTSVNTk4RCITk4OEi0ZSQ1pM937NhB9vb2pKGhQUpKSuTg4EDh4eFNFXqrZWxsXO3nsihRkZa4EBG9fPmSpk6dSlpaWqSsrExOTk5iVzFqi0dEVPsLSwzDMAzDMM3ngxqcyzAMwzBM68YSF4ZhGIZhWg2WuDAMwzAM02qwxIVhGIZhmFaDJS4MwzAMw7QaLHFhGIZhGKbVYIkLwzAMwzCtBktcGIZhGIZpNVjiwjAMwzBMq8ESF6bVcHZ2Bo/Ha+4wWgQTExOYmJjUqQ3rP9n4+uuvoa2tjby8vOYOpVXz8fEBj8dDenq6WHlpaSkCAwNhYWEBoVAIHo+HgwcPIj09HTweDz4+Po0W06JFi6CmpoanT5822jaYhmOJCyNzog+Yml45OTnNHWa9mZiYiO0Ln8+HtrY2hgwZgkOHDjVbXIGBgeDxeDh79myzxVBbolirvpSVlWFtbY2FCxfi9evXDd5GdV+MDXH37l2sX78e/v7+UFNT48oLCgoQHBwMb29vdO7cGXJycjLf9ociODgYixcvhoGBAfz9/REQEIDOnTtXW1+WCbmfnx/k5OQQEBAgk/UxjUO+uQNg3l9mZmb49NNPpS5TVFRs4mhki8/nY9GiRQCAkpISJCcn4/Dhw4iKisLKlSvh5+fXqNuPjo6uc5tt27ahoKCgEaKpv3HjxsHa2hoA8PTpUxw/fhw//fQTjh49ikuXLkEoFDZzhOKWLl0KgUCA2bNni5VnZ2fD398fAGBsbIy2bdvi5cuXzRFiq/Hzzz/j+++/R/v27cXKjx49ClVVVURFRUFBQYErLy0tRVJSEtq0adNoMbVt2xbTpk3DmjVrMH/+fBgbGzfatpj6Y4kL02jMzc0RGBjY3GE0Cnl5eYl9O3XqFIYNG4Yff/wRM2fOhLKycqNt38zMrM5tjIyMGiGShhk/fjy8vLy4n4uKitC7d29cv34dO3fuxJQpU5oxOnEvXrzA3r17MX78eLGzLQCgra2NU6dO4aOPPoKmpiaGDRuGyMjIZoq0ddDX14e+vr5EeWZmJrS0tMSSFgAQCAQ1nnmRlU8//RQhISHYvHkzli5d2ujbY+qOXSpims2///6LL774AtbW1mjTpg2UlJRgY2ODX375BaWlpbVaR0VFBTZv3gx7e3toampCSUkJHTp0gJubm9RLJufOnYObmxu0tbUhFAphYWGBRYsWyeRMxJAhQ9CpUycUFBTg1q1bXPmRI0fg4uLC7aOtrS1CQkJQVlYmsY6YmBgMHz4cBgYGEAqF0NPTQ//+/bFx40axem+PcXF2dsbixYsBAC4uLtzll7frVD2lvn37dvB4PCxZskTq/iQmJoLH4+GTTz4RK8/OzsY333wDc3NzCIVCaGtrY9y4cbh582at+6o6ioqK3Pb+/fdfsWWZmZkICAhA7969oaurC6FQCBMTE8yaNQvZ2dlidU1MTLB161YAQMeOHbn+cHZ2FquXlpaGadOmwcjICEKhEPr6+vDx8cGDBw8kYtu1axeKi4vh6ekpsUxVVRWDBw+GpqZmQ3afk5iYiPHjx3Nx6ejowM7ODsuXL5eoW5f3Q3Tc5OTkwNfXF+3atYOioiJ69OiBXbt2SY2FiPDXX3+hb9++UFdXh7KyMnr16oW//vqr2vqhoaHo378/NDQ0oKysDAsLC/j6+iIjI4Or9/alPNHlw7S0NDx48EDiGJY2xoXH4yE2Npb7v+jl4+ODu3fvQk5ODiNGjJAaZ15eHlRVVSWSoR49esDc3BxhYWFS2zHNj51xYZrNpk2bcOTIEQwYMAAjRoxAQUEBzp49i/nz5+Py5cvYv3//O9cxf/58rFixAmZmZvD29oaamhoeP36M8+fP4/Tp02JfVH/88Qdmz54NDQ0NuLm5QVdXF1euXMHy5csRExODmJgYib/y6kuUIISEhMDPzw+amprw9vaGiooKDh8+DD8/P8TFxSEiIoKre+zYMbi5uUFDQwPu7u7Q19fHs2fPcP36dWzfvh0zZsyodnuiD/PY2FhMnjyZ+7DX0NCots3YsWMxc+ZM7NixAz/++KPE8u3btwMAJk2axJWlpqbC2dkZjx49wpAhQzBmzBhkZ2dj//79iIyMRHR0NBwcHOrSVdWSlxf/eDp37hyCg4MxaNAgODg4QCAQ4OrVq/jjjz8QGRmJxMRE7jLC119/jbCwMFy/fh1fffUV1w9VE7mEhAQMHToUb968wahRo2BhYYH09HTs2LEDJ06cQHx8PExNTbn6ostzvXv3lsn+VefatWtwdHQEn8+Hu7s7jI2NkZOTg9u3b2Pjxo1YuHAhV7c+70dJSQlcXV2Rn5+PSZMm4c2bN9i7dy+8vb3x/PlzfPnll1xdIsInn3yCXbt2wcLCAt7e3lBQUEBUVBSmTp2K27dvY+XKlVz9iooKTJw4EeHh4Wjfvj0+/vhjqKurIz09HXv37sXw4cOrPfMn+l1dvXo1gMr3EKj5GA4ICEBYWBgePHggNi6le/fusLCwgIuLCyIjI/Hw4UMYGhqKtd25cyfevHmDadOmSay3T58+2L59O+7cuQNLS8tqt880E2IYGUtLSyMAZGZmRgEBARKv+Ph4IiJ68OABlZWVibWtqKigzz//nADQ+fPnxZY5OTnR24espqYmGRgY0Js3byTiePHiBff/W7dukby8PNna2tLz58/F6v38888EgFauXFmr/TM2NiahUChRfvr0aeLxeKSiokIFBQV07949kpeXJ11dXcrIyODqFRUVUb9+/QgAbdu2jSsfO3YsAaBr165JrPvtmI2NjcnY2FisLCAggABQTEyM1Lil9d+nn35KACghIUGsvKysjPT09Khdu3Zi75GjoyPx+Xw6efKkWP2UlBRSU1MjGxsbqdt+myjWXbt2iZUXFhaSra0tAaB9+/aJLXv69Cnl5eVJrGvr1q0EgJYtWyZWPnnyZAJAaWlpEm1KSkrIxMSE1NTUKDExUWxZXFwc8fl8GjVqlFi5jo4OtW/fvlb7N3To0Gq3/S7ffvstAaCDBw9KLHv7OKjr+2FsbEwAaMCAAVRcXMyVP3z4kLS1tUkoFNKjR4+48o0bNxIAmjJlCpWUlHDlxcXF5ObmRgDoypUrXPlvv/1GAGjQoEFUUFAgtu2CggKx38nq3h9pxzbR/32uTJ48Waxc2nEtsmfPHgJAgYGBEst69epFCgoKlJ2dLbFszZo1BID++usvqetlmhdLXBiZE33AVPdatWpVje3//fdfqR821SUuJiYmVFRUVOM658yZQwDo3LlzEsvKy8tJR0eHPvroo1rtn7GxMfH5fC4RW7BgAY0bN47k5eUJAIWEhBAR0ZIlSwgABQUFSazjwoULBIAGDhzIlYkSl5SUlFrFIIvEJTIykgDQl19+KVZ+/PhxAkBff/01V5aYmEgA6PPPP5e6ftEX7o0bN94ZvyjWcePGcf04c+ZMMjIyIgDk4eFB5eXl71wPUWWyq66uTs7OzmLlNSUuERERBICWLFkidZ1jx44lOTk5ys3NJaLKL2oA1LNnz1rFJIvEJTIyssZ69Xk/RInL238UEBEtXbpUIoHv1q0bl4i/7b///iMA5Ofnx5VZWVkRn8+nO3fuvHM/myJxKSkpIT09PTI2NhY7nq5fv04AyNPTU2q73bt313h8MM2LXSpiGs3QoUNx8uTJapeXlJRg3bp12L17N5KTk5Gfnw8i4pZnZma+cxteXl5Yv349rK2t4eXlBRcXF/Tp0wdKSkpi9S5evAgA3OnztwkEAiQnJ9d211BeXs6NKZGTk0Pbtm0xcOBAzJ49G6NHjwYAXL16FQAkxlUAlaeiFRUVce3aNbF9iYiIQO/eveHt7Y1Bgwahf//+0NbWrnVcdTVo0CDo6+tj9+7dCAkJ4S7P/P333wDELxOJ+vDp06dSB12L+i85OZm7U+hd9u/fL3FJ0NPTE3v27JF6i2tERAQ2bNiAxMREvHr1CuXl5dyy2hwvIqJ9SUlJkbovT548QUVFBe7cuYNevXrhxYsXAGq+bFEXq1evlpgSwMfHByYmJpgwYQJWr14NDw8PTJw4EYMHD8aAAQMk7r6p7/shLy+PPn36SNTv378/gP87bgsKCnDjxg0YGBggKChIor5oHJpoO/n5+UhKSoK5uTksLCxq0w2NTiAQYMqUKfjll1+4wfNA5WVqAJg+fbrUdqKxSs+fP2+aQJk6YYkL02zGjx+PI0eOwNLSEhMnToSuri4EAgFycnKwZs0aFBcXv3Mda9asQceOHREaGoply5Zh2bJlUFRUxIQJExAcHMx96YtuTZU2uLE+hEIhioqKaqwjmotET09PYhmPx4Oenh4eP37MlXl6euLgwYMICQnBn3/+id9//x08Hg8uLi4IDg5G9+7dZRJ7VXw+H97e3ggODkZkZCRGjhyJ/Px8HDx4EF26dEHPnj25uqI+PHbsGI4dO1btOt+8eVPr7e/atQteXl4oKytDSkoK/P39sW/fPnTq1Enijo7g4GD4+/tDR0cHQ4YMQYcOHbgEdfXq1bU6Xt7elx07dtRYT7Qvou286z2vrdWrV0sMAHZ2doaJiQkcHBxw9uxZ/PTTT9i5cydCQ0MBAHZ2dggKCoKLi4vYPtT1/dDW1oacnOR9GaLjNDc3FwDw6tUrEBEeP37MJek1rV/U7u0Eq7nNmDEDQUFB2Lx5M4YNG4aioiLs2LEDHTt2hKurq9Q2hYWFANCodwYy9ccSF6ZZXL58GUeOHMHQoUNx7Ngx8Pl8btnFixexZs2aWq1HXl4e/v7+8Pf3R2ZmJmJjYxEaGopt27bhyZMn3C2p6urqACqTibdvZW0som0+ffpUYj4IIsLTp0+5OiLu7u5wd3dHXl4eLly4gIiICGzZsgXDhg1DcnKyzP7ir2rSpEkIDg7G33//jZEjR2L//v0oKCgQO9tSdX9+++03fPHFFzKNQV5eHl27dsWBAwdgY2OD5cuXw8PDg0ucysrKsHTpUujr6+PatWvQ1dXl2hIRVqxYUaftifblyJEjGDVq1Dvra2hoQCAQyGxulndNTNe/f3+cOHEChYWFSEhIwJEjR7B+/XqMHDkSN2/ehKmpab3fj+fPn6OiokIieRHNFisa4Cxa/0cffYQrV668c72idlWT8ZagY8eOGDJkCA4fPozs7GxERUXh1atX8PPzq3biOtH7rKOj05ShMrXEbodmmkVqaioAYOTIkWJJCwDExcXVa50GBgb4+OOPcfLkSZibm+P06dPcX06iOytEp9ebQo8ePQBA6m3ZCQkJKCoqqvYsipqaGoYNG4aNGzfCx8cHT58+RUJCQo3bE/Vj1csntWFrawsbGxscOnQIeXl5+Pvvv6XeBi3qw/j4+Dqtvy4UFRWxcuVKEBG+//57rvz58+fIzc1Fnz59xJIWALhy5Qr3PldVU3/UZ1+sra2RlpaGkpKSWrdpKCUlJTg7OyM4OBgLFixAYWEhoqKiANT//SgrK5PaRvR7Jzpu1dTUYGVlhaSkpFrNdK2qqoouXbogLS0Nd+/erVNMDVGb497X1xelpaXYunUrNm/eDD6fX+McQSkpKQAAGxsb2QbLyARLXJhmIToDcf78ebHyW7du4eeff67VOoqLi/HPP/9IlL958wb5+fkQCATcX5WzZs2CvLw8vvzyS7G5JERycnK4a/uy4u3tDXl5eYSEhIiNvygpKcF3330HAGJzUpw7d07qh69ojpJ3zTYsui7/8OHDOsc6adIkFBYWYu3atThz5gycnJwkbh+1t7eHg4MDdu3ahT179kiso6KigptToyHc3d3Rs2dPREVFcV+murq6UFJSQmJioticO69evRK7fbeqmvrD3d0dRkZGCAkJwblz5ySWl5aWShybTk5OKC4uxvXr1+u9b7URHx8v9ZKU6IyI6DhoyPuxYMECsQTs0aNHWLNmDYRCodiEgHPmzEFBQQGmT58u9RJgWlqa2Nmj2bNno7y8HLNmzZJIJouKihplNuHaHPdubm4wMDDAqlWrEBsbi5EjR8LAwKDa+gkJCZCXl4ejo6PM42Uajl0qYpqFvb097O3tsXfvXmRlZaF3797IyMjA4cOHMXLkSISHh79zHYWFhejbty8sLS3x0UcfwcjICPn5+Th69CiePHkCf39/bsp4a2trrF+/HjNnzkSnTp0wYsQImJmZIS8vD/fv30dsbCx8fHzw559/ymwfzczMEBQUBD8/P3Tr1g0TJkyAiooKjhw5gpSUFLi7u4s9EmHOnDnIzMxEv379uOchnT9/HpcuXULv3r3Rr1+/GrcnmnhuwYIFuHXrFtq0aQMNDY1aXUbw9vbG999/j8WLF6OiokLiMpHIrl274OLiAi8vL6xevRo9e/aEkpISMjIyEB8fj2fPnslkHEhgYCBGjx6NH3/8ETExMZCTk8OsWbMQHBwMW1tbuLm54fXr1zhx4gSMjY2lfgkNHDgQK1euxIwZMzBu3DioqKjA2NgYkyZNglAoRHh4OIYPHw4nJycMHDgQNjY24PF4ePDgAeLi4qClpSU2YNvDwwOrV69GVFQU7OzsJLbn7+/PDea8ceMGV6aqqgoAmDZt2jvfQwAICgpCTEwMBgwYgI4dO0JRURGJiYmIjo6GqakpPDw8uLr1eT/09fXx5s0bdOvWDW5ubtw8Li9evMDatWvFxqj4+vri4sWL2Lp1Ky5cuABXV1cYGBjg6dOnSE5ORkJCAnbu3MnNjzNz5kzExsZi7969sLCwwOjRo6Guro6MjAxERkZiy5YtGDNmzDv7oC4GDhyI8PBwjBs3DsOHD4eioiJ3jIjIy8tj6tSp3Lip6gblApWDjC9evIjBgwdDRUVFprEyMtKs9zQx7yXRbYtDhw6tsV52djZ9/vnnZGBgQIqKimRjY0O///473b9/v1a3PZaUlFBQUBANGTKEOnToQAoKCqSnp0cDBgygnTt3UkVFhcQ2L126RF5eXmRgYEACgYC0tbWpZ8+e9P3331NSUlKt9q+6eVyqc+jQIXJyciI1NTUSCoVkY2NDwcHBVFpaKlZv9+7dNGHCBDIzMyNlZWVq06YN2draUlBQkMT8JdXdMhoWFkY2NjYkFAoJgFidmm4bJSJydXUlAKSoqMjdBizNy5cvadGiRWRtbU1KSkqkqqpKFhYW5O3tTREREbXqk+rmcamqV69eBICio6OJqPL9Xr58OVlYWJBQKCQjIyPy8/OjvLy8avtjxYoVZGFhQQKBgACQk5OT2PJHjx7RV199xa1TXV2drKysaNq0adx2q+rSpQt16dJFaryiW42re4WGhtaqb06ePEmfffYZderUidTU1EhVVZW6dOlCCxYsoGfPnknUr8v7Ieqnly9f0owZM0hPT4+EQiHZ2trSzp07q41pz5495OrqSm3btiWBQEDt27cnZ2dnCg4OloipoqKCNm/eTL179yYVFRVSVlYmCwsL+t///ic2n5GsbocuLS2lefPmkZGRETclwdt1iIju3btHAKh9+/YS80dVFRYWVu08OkzLwCOqcv8pwzAMU60tW7Zg2rRpOH/+PPr27dvc4dRZ1enzPzTh4eHw9PTEDz/8UO1jLoDKgdFPnz5FUlKSxPg7pmVgiQvDMEwtlZeXw9bWFgYGBjh16lRzh1NnH2riQkRwdHTElStXcP/+fYnxWyLR0dFwdXVFRESE2CU5pmVhY1wYhmFqic/n46+//sKJEyeQl5fXZLfWM/Vz48YNHD16FP/88w8uXrwIX1/fapMWoHIumpUrV7KkpYVjZ1wYhmE+EB/aGZewsDBMmTIFbdq0wejRo7F+/XpusDTTerHEhWEYhmGYVoPN48IwDMMwTKvBEheGYRiGYVoNlrgwDMMwDNNqsMSFYRiGYZhWgyUuDMMwDMO0GixxYRiGYRim1WCJC8MwDMMwrQZLXBiGYRiGaTX+H/cDoGFebkBrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 303 ms (started: 2024-10-26 13:26:14 +00:00)\n" ] } ], "source": [ "#if not imbalanced\n", "ml.plotROC(y_test, X_test, rs1, pos_label=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "mlmiVRrH-PPs" }, "source": [ "**ROC Eğrisinin Bileşenleri:**\n", "\n", "Y ekseni(True Pozitif Oranı): Bu, modelin doğru bir şekilde pozitif olarak tanımladığı gerçek pozitiflerin oranını gösterir. Gerçek pozitiflerin toplam gerçek pozitif sayısına oranıdır (TP / (TP + FN)).\n", "\n", "X ekseni(False Pozitif Oranı: Bu, yanlışlıkla pozitif olarak tanımlanan gerçek negatiflerin oranını ölçer. False pozitiflerin toplam gerçek negatif sayısına oranıdır (FP / (FP + TN)).\n", "\n", "Çapraz kesikli diagonal çizgi: Bu, tahmin gücü olmayan rastgele bir sınıflandırıcının performansını temsil eder. Bu doğrultuda performans gösteren bir model, rastgele tahminden daha iyi olmayacaktır (AUC = 0,5).\n", "\n", "Mavi çizgi (ROC eğrisi): Bu, threshold değiştikçe gerçek pozitif oranın ve yanlış pozitif oranının nasıl değiştiğini temsil eder. Sınıflar arasında ayrım yapmada iyi olan bir model, bu eğriyi grafiğin sol üst köşesine yaklaştıracaktır.\n", "\n", "Genel Yorum:\n", "\n", "Eğri sol üst köşeye doğru eğilir; bu, modelimizin pozitif ve negatif sınıfları ayırt etme konusunda iyi bir yeteneğe sahip olduğunu gösteriyor. Çok fazla False Pozitif ortaya çıkmadan yüksek bir True Pozitif oranına ulaşmışız.\n", "\n", "AUC'un 0,84 olması güzel bir sonuçtur ve modelimizin iyi bir ayrım gücüne sahip olduğunu gösterir. Bu, negatifleri pozitif olarak yanlış sınıflandırmasından çok daha sık olarak pozitif sınıfı doğru bir şekilde tanımlayabildiği anlamına gelir.\n", "\n", "Optimum eşik (kırmızı nokta), True pozitif oran ile False pozitif oran arasında bir denge olduğunu gösterir. Bu eşikte model, hala çok sayıda gerçek pozitif yakalamaya devam ederken, yanlış pozitifleri en aza indirme açısından iyi bir performans sergiliyor. Bu muhtemelen hedefinize bağlı olarak nihai karar eşiğinizi belirleyeceğiniz yerdir (örneğin, yanlış pozitifleri en aza indirmek veya gerçek pozitifleri maksimuma çıkarmak). " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 62, "status": "ok", "timestamp": 1729949176390, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "BbXscH6yF6Zm", "outputId": "29148c33-794d-46d5-e3e1-d0c398282763" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.7508487523340689\n", "Optimal threshold by Youden's J: 1.0\n", "Optimal threshold by min distance: 1.0\n", "time: 5.68 ms (started: 2024-10-26 13:26:14 +00:00)\n" ] } ], "source": [ "from sklearn.metrics import roc_curve\n", "\n", "# Get the FPR, TPR, and thresholds from the ROC curve\n", "fpr, tpr, thresholds = roc_curve(y_test,y_pred)\n", "\n", "# Calculate the area under the ROC curve (AUC)\n", "from sklearn.metrics import roc_auc_score\n", "print(roc_auc_score(y_test,y_pred))\n", "\n", "# 1. Youden's J statistic: maximize TPR - FPR\n", "J = tpr - fpr\n", "optimal_idx = np.argmax(J)\n", "optimal_threshold_youden = thresholds[optimal_idx]\n", "\n", "# 2. Minimum distance to the top-left corner (TPR=1, FPR=0)\n", "distances = np.sqrt((1 - tpr)**2 + fpr**2)\n", "optimal_idx_distance = np.argmin(distances)\n", "optimal_threshold_distance = thresholds[optimal_idx_distance]\n", "\n", "print(f\"Optimal threshold by Youden's J: {optimal_threshold_youden}\")\n", "print(f\"Optimal threshold by min distance: {optimal_threshold_distance}\")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8IF8eOksHTKr" }, "source": [ "#### PR-Recall ve PR-AUC" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 591 }, "executionInfo": { "elapsed": 47, "status": "ok", "timestamp": 1729949176390, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "siFU_XE0ejvy", "outputId": "7084b65f-7bca-4791-eaa0-d9790b5521b0" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAIsCAYAAADxp0cQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0cUlEQVR4nOzdd3QUVRvH8e8mkE4SgVBCryIdkSKhKr0oKkUEIQqKIkqR8qIiXVQQwS6CoYgioNIUpCOEKkUBC0U6kU5CEggkmfePMRuWFJKQZFJ+n3Pm7O7MnTvP7G42s8/eYjMMw0BERERERERERETEAk5WByAiIiIiIiIiIiK5lxKUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELKMEpYiIiIiIiIiIiFhGCUoRERERERERERGxjBKUIkBgYCClS5dO1T4bNmzAZrOxYcOGDIlJkjZ69GhsNpvDutKlSxMYGJjsfseOHcNmszF58uQMjC79JXa+WVFKXoPMrj8rPneBgYF4eXlZHYZdRsST0tdq1qxZ2Gw2jh07lq7HFxERERGR7EUJSrFE3JfSuMXNzY2KFSvSv39/zp49a3V4uV7p0qUdXh9PT0/q1q3LnDlzrA5NJFuIjIxk9OjR+gFDREREHKT0e1BcY4i4xdnZmUKFCtGpUyf+/PPPVB3zyJEj9O3bl7Jly+Lm5oa3tzcBAQFMmzaNa9eupfcpioikSR6rA5DcbezYsZQpU4br16+zefNmPv30U3766Sf279+Ph4dHpsXxxRdfEBsbm6p9GjduzLVr13BxccmgqKxVs2ZNXn31VQBCQkKYMWMGvXr1Iioqiueee87i6CQ3+vvvv3FySt3vam+88Qb/+9//MiiipEVGRjJmzBgAmjZtmunHFxERkawtpd+DXnnlFerUqcPNmzf5/fff+eyzz9iwYQP79++nSJEidzzOjz/+SOfOnXF1daVnz55UrVqVGzdusHnzZoYOHcqBAweYPn16Rp6qiEiKKEEplmrTpg0PPPAAAH369KFAgQJMmTKFJUuW0K1bt0T3iYiIwNPTM13jyJs3b6r3cXJyws3NLV3jyEqKFStGjx497I8DAwMpW7Ys77//vhKUYglXV9dU75MnTx7y5Mk5/+qio6OJjY3NsT+MiIiI5BYp/R7UqFEjOnXqZH9877338uKLLzJnzhyGDRuW7DGOHj3Kk08+SalSpVi3bh1Fixa1b3vppZc4fPgwP/74Y7qcT0Z8RxOR3EVdvCVLeeihhwDznynEj4125MgR2rZtS758+ejevTsAsbGxTJ06lSpVquDm5kbhwoXp27cvly9fTlDvihUraNKkCfny5cPb25s6derw9ddf27cnNgbl/PnzqV27tn2fatWqMW3aNPv2pMagXLhwIbVr18bd3Z2CBQvSo0cPTp8+7VAm7rxOnz5Nx44d8fLyws/PjyFDhhATE5Psc9S+fXvKli2b6LYHH3zQfqEDsHr1aho2bIivry9eXl7ce++9vPbaa8nWnxQ/Pz8qVarEkSNHHNan5+uwadMmOnfuTMmSJXF1daVEiRIMGjQoQ7qevP/++5QqVQp3d3eaNGnC/v37Hbb//vvv9qSsm5sbRYoU4dlnn+XixYsO5a5evcrAgQMpXbo0rq6uFCpUiBYtWrB7926Hctu3b6d169b4+Pjg4eFBkyZNCA4OThDX5s2bqVOnDm5ubpQrV47PP/88VeeV0e8/AMMwGD9+PMWLF8fDw4NmzZpx4MCBRMteuXKFgQMHUqJECVxdXSlfvjzvvPNOghbLsbGxTJs2jWrVquHm5oafnx+tW7fm119/tZe5fVzDmzdvMmbMGCpUqICbmxsFChSgYcOGrF692l4msTEoo6OjGTduHOXKlcPV1ZXSpUvz2muvERUV5VCudOnStG/fns2bN1O3bl3c3NwoW7bsHYc6OHbsGH5+fgCMGTPG3jVr9OjRDuXu9PzfOmbq1KlT7fH+8ccfAPz111906tSJ/Pnz4+bmxgMPPMDSpUsdjpGS5yil8YD55ePVV1+1v5733nsvkydPxjCMZJ8TgAMHDvDQQw/h7u5O8eLFGT9+fKpbrouIiORUt38PSkqjRo0AElyTJ+bdd98lPDycmTNnOiQn45QvX54BAwYA8dcds2bNSlDu9uuYuOurP/74g6eeeop77rmHhg0bMnnyZGw2G8ePH09Qx4gRI3BxcXH4jpDS62MRyR1yTrMSyRHi/tEWKFDAvi46OppWrVrZ/+nFdXno27cvs2bN4plnnuGVV17h6NGjfPTRR+zZs4fg4GB7q8hZs2bx7LPPUqVKFUaMGIGvry979uxh5cqVPPXUU4nGsXr1arp168bDDz/MO++8A8Cff/5JcHCw/Z94YuLiqVOnDhMnTuTs2bNMmzaN4OBg9uzZg6+vr71sTEwMrVq1ol69ekyePJk1a9bw3nvvUa5cOV588cUkj9G1a1d69uzJzp07qVOnjn398ePH2bZtG5MmTQLMZED79u2pXr06Y8eOxdXVlcOHD6f5n350dDSnTp3innvucVifnq/DwoULiYyM5MUXX6RAgQLs2LGDDz/8kFOnTrFw4cI0xZ2YOXPmcPXqVV566SWuX7/OtGnTeOihh9i3bx+FCxcGzPfAP//8wzPPPEORIkXs3V8OHDjAtm3b7EmvF154gUWLFtG/f38qV67MxYsX2bx5M3/++Sf3338/AOvWraNNmzbUrl2bUaNG4eTkRFBQEA899BCbNm2ibt26AOzbt4+WLVvi5+fH6NGjiY6OZtSoUfaY7iQz3n8Ab775JuPHj6dt27a0bduW3bt307JlS27cuOFQLjIykiZNmnD69Gn69u1LyZIl2bJlCyNGjCAkJISpU6fay/bu3ZtZs2bRpk0b+vTpQ3R0NJs2bWLbtm0OSfdbjR49mokTJ9KnTx/q1q1LWFgYv/76K7t376ZFixZJxt+nTx9mz55Np06dePXVV9m+fTsTJ07kzz//5IcffnAoe/jwYTp16kTv3r3p1asXX375JYGBgdSuXZsqVaokWr+fnx+ffvopL774Io899hiPP/44ANWrV0/T8x8UFMT169d5/vnncXV1JX/+/Bw4cICAgACKFSvG//73Pzw9PVmwYAEdO3bku+++47HHHkvVc5SSeAzD4JFHHmH9+vX07t2bmjVr8vPPPzN06FBOnz7N+++/n+Rz/u+//9KsWTOio6Pt8U6fPh13d/ck9xEREclNEvselJi4ieVuvyZPzLJlyyhbtiwNGjS46/gS07lzZypUqMBbb72FYRi0b9+eYcOGsWDBAoYOHepQdsGCBbRs2dIed0qvj0UkFzFELBAUFGQAxpo1a4zz588bJ0+eNObPn28UKFDAcHd3N06dOmUYhmH06tXLAIz//e9/Dvtv2rTJAIx58+Y5rF+5cqXD+itXrhj58uUz6tWrZ1y7ds2hbGxsrP1+r169jFKlStkfDxgwwPD29jaio6OTPIf169cbgLF+/XrDMAzjxo0bRqFChYyqVas6HGv58uUGYLz55psOxwOMsWPHOtRZq1Yto3bt2kke0zAMIzQ01HB1dTVeffVVh/XvvvuuYbPZjOPHjxuGYRjvv/++ARjnz59Ptr7ElCpVymjZsqVx/vx54/z588a+ffuMp59+2gCMl156yV4uvV+HyMjIBLFMnDjR4bwMwzBGjRpl3P7xVapUKaNXr17JntfRo0cNwOE9ZhiGsX37dgMwBg0alGws33zzjQEYv/zyi32dj4+Pw3Nyu9jYWKNChQpGq1atEpxrmTJljBYtWtjXdezY0XBzc3M41z/++MNwdnZOcL63y6z337lz5wwXFxejXbt2Dufz2muvGYDDazBu3DjD09PTOHjwoEMd//vf/wxnZ2fjxIkThmEYxrp16wzAeOWVVxIc79Zj3P4a16hRw2jXrl2y8d7+Xtm7d68BGH369HEoN2TIEAMw1q1b53C821/vc+fOJfr3d7vz588bgDFq1KgE21L6/Me9X729vY1z5845lH344YeNatWqGdevX7evi42NNRo0aGBUqFDBvi4lz1FK41m8eLEBGOPHj3co16lTJ8NmsxmHDx+2r7v9tRo4cKABGNu3b7evO3funOHj42MAxtGjR5ONUUREJKdI6feguO8aX375pXH+/HnjzJkzxsqVK43y5csbNpvN2LFjR7LHCQ0NNQDj0UcfTVFccdcdQUFBCbbdfk0Td33VrVu3BGUffPDBBNeTO3bsMABjzpw5hmGk7vpYRHIPdfEWSzVv3hw/Pz9KlCjBk08+iZeXFz/88APFihVzKHd7i6KFCxfi4+NDixYtuHDhgn2pXbs2Xl5erF+/HjBbwV29epX//e9/CcaLvL3b5618fX2JiIhItBtkUn799VfOnTtHv379HI7Vrl07KlWqlOj4Li+88ILD40aNGvHPP/8kexxvb2/atGnDggULHLpVfvvtt9SvX5+SJUvazwFgyZIlaepGuWrVKvz8/PDz86NatWrMnTuXZ555xt5CE9L/dbi1NVVERAQXLlygQYMGGIbBnj17Un0OSenYsaPDe6xu3brUq1ePn376KdFYrl+/zoULF6hfvz6AQ/dtX19ftm/fzpkzZxI91t69ezl06BBPPfUUFy9etD9HERERPPzww/zyyy/ExsYSExPDzz//TMeOHe2vIcB9991Hq1at7nhOmfX+W7NmDTdu3ODll192eO0GDhyYoOzChQtp1KgR99xzj8P7o3nz5sTExPDLL78A8N1332Gz2Rg1alSCOu70d3rgwAEOHTqUbMy3inuNBw8e7LA+bkKo25+nypUr27tSgdk68t57773j85QSKX3+n3jiCXuXcYBLly6xbt06unTpwtWrV+3P68WLF2nVqhWHDh2yd+tPzXN0p3h++uknnJ2deeWVVxzKvfrqqxiGwYoVK5Ks+6effqJ+/foOrSH8/PzsQ3aIiIjkNin9HvTss8/i5+eHv78/rVu3JjQ0lLlz5zr0pEpMWFgYAPny5cuwc7j92gHM3l67du1y6IL+7bff4urqyqOPPgqk/PpYRHIXJSjFUh9//DGrV69m/fr1/PHHH/zzzz8JkjF58uShePHiDusOHTpEaGgohQoVsifR4pbw8HDOnTsHxHeVqFq1aqri6tevHxUrVqRNmzYUL16cZ599lpUrVya7T9xYK/fee2+CbZUqVUowFkvcOHu3uueeexIdu/F2Xbt25eTJk2zduhUwz3PXrl107drVoUxAQAB9+vShcOHCPPnkkyxYsCDF/+zr1avH6tWrWblyJZMnT8bX15fLly87TM6R3q/DiRMnCAwMJH/+/PZx8Jo0aQJAaGhoiuJOiQoVKiRYV7FiRXuXGTCTQAMGDKBw4cK4u7vj5+dHmTJlEsTy7rvvsn//fkqUKEHdunUZPXq0Q1InLjHUq1evBM/RjBkziIqKIjQ0lPPnz3Pt2rVEY0vsPXW7zHr/xdVze5x+fn4JuhodOnSIlStXJjjv5s2bAzi8P/z9/cmfP/+dTtPB2LFjuXLlChUrVqRatWoMHTqU33///Y7xOzk5Ub58eYf1RYoUwdfXN8HzdGuyOE5K/06Tk5rnP+59F+fw4cMYhsHIkSMTPLdxSd645zalz1FK4jl+/Dj+/v4Jvujcd9999u1JOX78eJrf2yIiIjlRSr4HgTm0zurVq/nhhx/o2bMnoaGhODnd+Wu8t7c3YI6XnlFuv0YBs9u3k5MT3377LWAOEbNw4ULatGljjyml18cikrtoDEqxVN26dZMcXy6Oq6trgn/CsbGxFCpUiHnz5iW6z+1ftFOrUKFC7N27l59//pkVK1awYsUKgoKC6NmzJ7Nnz76ruuM4Ozuned8OHTrg4eHBggULaNCgAQsWLMDJyYnOnTvby7i7u/PLL7+wfv16fvzxR1auXMm3337LQw89xKpVq+54/IIFC9oTSa1ataJSpUq0b9+eadOm2VufpefrEBMTQ4sWLbh06RLDhw+nUqVKeHp6cvr0aQIDAzP9V9QuXbqwZcsWhg4dSs2aNfHy8iI2NpbWrVs7xNKlSxcaNWrEDz/8wKpVq5g0aRLvvPMO33//PW3atLGXnTRpEjVr1kz0WF5eXgkmaMlod/P+S6nY2FhatGiR5AyTFStWvKv6GzduzJEjR1iyZAmrVq1ixowZvP/++3z22Wf06dMn2X2Ta5l5q6SeJyMFk8Kkpd7E3D5OY9x7asiQIUm2ro1LwKb0OcqM94OIiIjES8n3IIBq1arZr8k7duxIZGQkzz33HA0bNqREiRJJ7uft7Y2/v3+CiSCTktS1UXITKCY2lrS/vz+NGjViwYIFvPbaa2zbto0TJ07Yx/UHUnx9LCK5ixKUki2VK1eONWvWEBAQkOwkC+XKlQNg//79CVpM3YmLiwsdOnSgQ4cOxMbG0q9fPz7//HNGjhyZaF2lSpUC4O+//7bPwhfn77//tm9PD56enrRv356FCxcyZcoUvv32Wxo1aoS/v79DOScnJx5++GEefvhhpkyZwltvvcXrr7/O+vXr7Rc6KdWuXTuaNGnCW2+9Rd++ffH09EzX12Hfvn0cPHiQ2bNn07NnT/v61HSzT6nEursePHjQPpP75cuXWbt2LWPGjOHNN99Mdj+AokWL0q9fP/r168e5c+e4//77mTBhAm3atLGfu7e3d7LPuZ+fH+7u7oke4++//77jOWXW+y+unkOHDjnMJn/+/PkErf/KlStHeHj4Hd9r5cqV4+eff+bSpUupbkWZP39+nnnmGZ555hnCw8Np3Lgxo0ePTjJBWapUKWJjYzl06JC95R/A2bNnuXLlSro9TylNgKZF3POeN2/eFP0dp/Y5SkqpUqVYs2YNV69edWhF+ddff9m3J7dvWt/bIiIiEu/tt9/mhx9+YMKECXz22WfJlm3fvj3Tp09n69atPPjgg8mWjesJc+XKFYf1yfWQSErXrl3p168ff//9N99++y0eHh506NDBvj2l18cikruoi7dkS126dCEmJoZx48Yl2BYdHW3/x9qyZUvy5cvHxIkTuX79ukO55FpAXbx40eGxk5OTfQbepFq6PfDAAxQqVIjPPvvMocyKFSv4888/adeuXYrOLaW6du3KmTNnmDFjBr/99ptD924wuyjfLu4XyrS21hs+fDgXL17kiy++ANL3dYhrwXXr62IYBtOmTUtTrMlZvHixfYw+gB07drB9+3batGmTZCyAw6zTYP6ifHv3k0KFCuHv729/jmvXrk25cuWYPHky4eHhCWI5f/68/ZitWrVi8eLFnDhxwr79zz//5Oeff77jOWXW+6958+bkzZuXDz/80OH5uf25AfP9sXXr1kTjv3LlCtHR0YA5xqJhGIwZMyZBudT8nXp5eVG+fPlk399t27ZNNN4pU6YApNvz5OHhASS8yE8PhQoVomnTpnz++eeEhIQk2B73noK0PUdJadu2LTExMXz00UcO699//31sNpv97yepfbdt28aOHTsc4kyq9bWIiIgkrly5cjzxxBPMmjWLf//9N9myw4YNw9PTkz59+nD27NkE248cOWK/1vb29qZgwYL2McLjfPLJJ6mO8YknnsDZ2ZlvvvmGhQsX0r59ezw9Pe3bU3p9LCK5i1pQSrbUpEkT+vbty8SJE9m7dy8tW7Ykb968HDp0iIULFzJt2jQ6deqEt7c377//Pn369KFOnTo89dRT3HPPPfz2229ERkYm2V27T58+XLp0iYceeojixYtz/PhxPvzwQ2rWrOnQ6upWefPm5Z133uGZZ56hSZMmdOvWjbNnzzJt2jRKly7NoEGD0vU5aNu2Lfny5WPIkCE4OzvzxBNPOGwfO3Ysv/zyC+3ataNUqVKcO3eOTz75hOLFi9OwYcM0HbNNmzZUrVqVKVOm8NJLL6Xr61CpUiXKlSvHkCFDOH36NN7e3nz33Xd3PdZfYsqXL0/Dhg158cUXiYqKYurUqRQoUMDeFdnb25vGjRvz7rvvcvPmTYoVK8aqVas4evSoQz1Xr16lePHidOrUiRo1auDl5cWaNWvYuXMn7733HmAmt2fMmEGbNm2oUqUKzzzzDMWKFeP06dOsX78eb29vli1bBsCYMWNYuXIljRo1ol+/fkRHR/Phhx9SpUqVO46tmFnvPz8/P4YMGcLEiRNp3749bdu2Zc+ePaxYsYKCBQs6lB06dChLly6lffv2BAYGUrt2bSIiIti3bx+LFi3i2LFjFCxYkGbNmvH000/zwQcfcOjQIXs3+k2bNtGsWTP69++faCyVK1emadOm1K5dm/z58/Prr7+yaNGiJMsD1KhRg169ejF9+nSuXLlCkyZN2LFjB7Nnz6Zjx440a9YsXZ4nd3d3KleuzLfffkvFihXJnz8/VatWTfV4uEn5+OOPadiwIdWqVeO5556jbNmynD17lq1bt3Lq1Cl+++03IG3PUVI6dOhAs2bNeP311zl27Bg1atRg1apVLFmyhIEDB9pbQyRm2LBhzJ07l9atWzNgwAA8PT2ZPn06pUqVuuN7W0RERBwNHTqUBQsWMHXqVN5+++0ky5UrV46vv/6arl27ct9999GzZ0+qVq3KjRs32LJlCwsXLiQwMNBevk+fPrz99tv06dOHBx54gF9++YWDBw+mOr5ChQrRrFkzpkyZwtWrVxM0pEjN9bGI5CJWTB0uEhQUZADGzp07ky3Xq1cvw9PTM8nt06dPN2rXrm24u7sb+fLlM6pVq2YMGzbMOHPmjEO5pUuXGg0aNDDc3d0Nb29vo27dusY333zjcJxSpUrZHy9atMho2bKlUahQIcPFxcUoWbKk0bdvXyMkJMReZv369QZgrF+/3uFY3377rVGrVi3D1dXVyJ8/v9G9e3fj1KlTKTqvUaNGGan5s+zevbsBGM2bN0+wbe3atcajjz5q+Pv7Gy4uLoa/v7/RrVs34+DBg3est1SpUka7du0S3TZr1iwDMIKCguzr0ut1+OOPP4zmzZsbXl5eRsGCBY3nnnvO+O233xIcL7HnqVSpUkavXr2SPa+jR48agDFp0iTjvffeM0qUKGG4uroajRo1Mn777TeHsqdOnTIee+wxw9fX1/Dx8TE6d+5snDlzxgCMUaNGGYZhGFFRUcbQoUONGjVqGPny5TM8PT2NGjVqGJ988kmCY+/Zs8d4/PHHjQIFChiurq5GqVKljC5duhhr1651KLdx40ajdu3ahouLi1G2bFnjs88+S9X7IjPefzExMcaYMWOMokWLGu7u7kbTpk2N/fv3J/oaXL161RgxYoRRvnx5w8XFxShYsKDRoEEDY/LkycaNGzfs5aKjo41JkyYZlSpVMlxcXAw/Pz+jTZs2xq5du+xlbq9//PjxRt26dQ1fX1/D3d3dqFSpkjFhwgSHehM7p5s3bxpjxowxypQpY+TNm9coUaKEMWLECOP69esO5ZL6O2jSpInRpEmTOz5PW7Zssb+Wt75vUvr83/p+TcyRI0eMnj17GkWKFDHy5s1rFCtWzGjfvr2xaNGiVD1HqXk/XL161Rg0aJDh7+9v5M2b16hQoYIxadIkIzY21qFcYu+F33//3WjSpInh5uZmFCtWzBg3bpwxc+ZMAzCOHj2a6DmKiIjkNCn9HhT3XWPhwoWJbm/atKnh7e1tXLly5Y7HPHjwoPHcc88ZpUuXNlxcXIx8+fIZAQEBxocffuhw/RMZGWn07t3b8PHxMfLly2d06dLFOHfunMN1jGHEXyOcP38+yWN+8cUXBmDky5fPuHbtWqJlUnp9LCK5g80w7nKkfxEREREREREREZE00hiUIiIiIiIiIiIiYhklKEVERERERERERMQySlCKiIiIiIiIiIiIZZSgFBEREREREREREcsoQSkiIiIiIiIiIiKWUYJSRERERERERERELJPH6gCyqtjYWM6cOUO+fPmw2WxWhyMiIiKSKoZhcPXqVfz9/XFy0m/S2ZGuR0VERCS7S+k1qRKUSThz5gwlSpSwOgwRERGRu3Ly5EmKFy9udRiSBroeFRERkZziTtekSlAmIV++fID5BHp7e1scjYiIiEjqhIWFUaJECfs1jWQ/uh4VERGR7C6l16RKUCYhrhuNt7e3LghFREQk21LX4OxL16MiIiKSU9zpmlQDEomIiIiIiIiIiIhllKAUERERERERERERyyhBKSIiIiIiIiIiIpbRGJQiIiIiIiIiIhksJiaGmzdvWh2GSLpydnYmT548dz3uuRKUIiIiIiIiIiIZKDw8nFOnTmEYhtWhiKQ7Dw8PihYtiouLS5rrUIJSRERERERERCSDxMTEcOrUKTw8PPDz87vrlmYiWYVhGNy4cYPz589z9OhRKlSogJNT2kaTVIJSRERERERERCSD3Lx5E8Mw8PPzw93d3epwRNKVu7s7efPm5fjx49y4cQM3N7c01aNJckREREREREREMphaTkpOldZWkw51pEMcIiIiIiIiIiIiImmiBKWIiIiIiIiIiIhYRglKERERERERERHJNGvXruW+++4jJibG6lAkGTdu3KB06dL8+uuvGX4sJShFRERERERERMRBYGAgHTt2THJ76dKlsdls2Gw2PDw8qFatGjNmzEhR3cOGDeONN97A2dkZgFmzZtnrcnJyonjx4jzzzDOcO3fOvk/cdpvNhre3N3Xq1GHJkiUpPp9KlSrh6urKv//+m+i5TJ06NcH60aNHU7NmTYd1//77Ly+//DJly5bF1dWVEiVK0KFDB9auXZviWNJi4cKFVKpUCTc3N6pVq8ZPP/2UbPnAwECH5yxuqVKlir3Mra/hrctLL70EgIuLC0OGDGH48OEZem6QBROU4eHhjBo1itatW5M/f35sNhuzZs1K8f5Xrlzh+eefx8/PD09PT5o1a8bu3bszLmARERERyXF0TSoiInJnY8eOJSQkhP3799OjRw+ee+45VqxYkew+mzdv5siRIzzxxBMO6729vQkJCeHUqVN88cUXrFixgqefftqhTFBQECEhIfz6668EBATQqVMn9u3bd8c4N2/ezLVr1+jUqROzZ89O/Yn+59ixY9SuXZt169YxadIk9u3bx8qVK2nWrJk9qZcRtmzZQrdu3ejduzd79uyhY8eOdOzYkf379ye5z7Rp0wgJCbEvJ0+eJH/+/HTu3NleZufOnQ5lVq9eDeBQpnv37mzevJkDBw5k2PlBFkxQXrhwgbFjx/Lnn39So0aNVO0bGxtLu3bt+Prrr+nfvz/vvvsu586do2nTphw6dCiDIhYRERGRnEbXpCIiklEMwyAiIsKSxTCMdD2XfPnyUaRIEcqWLcvw4cPJnz+/PcmVlPnz59OiRQvc3Nwc1ttsNooUKYK/vz9t2rThlVdeYc2aNVy7ds1extfXlyJFilCxYkXGjRtHdHQ069evv2OcM2fO5KmnnuLpp5/myy+/TNvJAv369cNms7Fjxw6eeOIJKlasSJUqVRg8eDDbtm1Lc713Mm3aNFq3bs3QoUO57777GDduHPfffz8fffRRkvv4+PhQpEgR+/Lrr79y+fJlnnnmGXsZPz8/hzLLly+nXLlyNGnSxF7mnnvuISAggPnz52fY+QHkydDa06Bo0aKEhITYn7w6deqkeN9FixaxZcsWFi5cSKdOnQDo0qULFStWZNSoUXz99dcZFbaIiIiI5CC6JhURkYwSGRmJl5eXJccODw/H09Mz3euNjY3lhx9+4PLly7i4uCRbdtOmTTz11FN3rNPd3Z3Y2Fiio6MTbIuOjmbmzJkAdzze1atXWbhwIdu3b6dSpUqEhoayadMmGjVqdMcYbnXp0iVWrlzJhAkTEn0OfX19k9x33rx59O3bN9n6V6xYkWRMW7duZfDgwQ7rWrVqxeLFi+8Yd5yZM2fSvHlzSpUqlej2Gzdu8NVXXzF48GBsNpvDtrp167Jp06YUHystslyC0tXVlSJFiqRp30WLFlG4cGEef/xx+zo/Pz+6dOnCV199RVRUFK6urukVqoiIiIjkULomFRERubPhw4fzxhtvEBUVRXR0NPnz56dPnz7J7nP8+HH8/f2TLXPo0CE+++wzHnjgAfLly2df361bN5ydnbl27RqxsbGULl2aLl26JFvX/PnzqVChgn3sxSeffJKZM2emOkF5+PBhDMOgUqVKqdoP4JFHHqFevXrJlilWrFiS2/79918KFy7ssK5w4cKJjqeZmDNnzrBixYpkfyRdvHgxV65cITAwMME2f39/jh8/nqJjpVWWS1DejT179nD//ffj5OTYc71u3bpMnz6dgwcPUq1aNYuiS9z58+DrC3nzWh2JiIiIiKSH7HRNGhtrcOFCZLrV5+HhkaDVhYhIbhcVBbGxEBNjLq6uHoSGhlsSi6urBymdONswzCW58q++OpRevQIJCQlh+PChvPhiP8qUKZ/sPteuXcPFxc2hTGwshIaG4uXlRWxsLNevXycgoCHTp89wKPfee+/z8MPN+eeffxgyZBDvv/8BPj75iYmBfv1eYN68r+xl457jmTO/5Kmnetjr6datBw891ISpUz90SH7GvUa3io01b2NiIDraSLLcnXh45KNMmXx3LJdcvbcf99bY7iQoaDa+vr506NDRXj5u/zx5wGYzW1i2adMm0eSxu7s7kZHpd72QmByVoAwJCaFx48YJ1hctWhQwM8ZJXQxGRUURFRVlfxwWFpYxQd5mwABYswaeegp69YKaNc03hoiIiORQf/8NBw9C5cpQrpzV0UgGSOs1qRXXoxcuRFK4cPp39RMRkXilSsFnn0H8UIo2IOt/9l68COHhsGdP4ttv3IDr1wty9Wp5vLzKM3LkQrp1q4aHxwOULVs5yXp9fAry22+XHS6Djh8HT898zJ27G5vNiYIFi+Lm5k5EhOPxIyOLcPVqefz8yjNsWBBdurRlwYI/yJ+/EE88MZbWrYfYy+7ZA//88wfbt29j584djBgRPxN1TEwMkybN57HHngMgb15v/v47NMG5Hjp0BScnH/bsgWvXKmCz2Vi37i+S6CWdpBUr5jFxYvJdvKdNW0GtWom36syfvwi7dp3l3nvj1/3221l8fIok+frEMQyDzz//kpYtn+bAgYTd4WvUgDNnjrNmzRq+//77ROu4dOkSfn5+yR/oLuWoBOW1a9cS7S4TN/DqrQOr3m7ixImMGTMmw2JLTHQ0bNtmtqKcNs1cqlUzE5Xdu0MaexWJiIhIVrZjB7z5JjRvDl98YXU0kgHSek1qxfWoiIhIeilSpAQtWnTl449H8N57S5Isd++9tTh69I8E6202J0qUKJ/i41WpUpf77qvNl19OYMiQaeTPX4j8+Qs5lFmyZCa1ajVm2LCPHdYvWxbE0qUz7QnKUqXu5c8/dyU4xt9/76ZkSTMr6OOTn/r1W7Fo0cc8+eQruLs7JpmvXr1Cvny+icbauPEjVK2afBdvP7+ku3hXq/YgO3eu5amnBtrXbd++mmrVHky2ToDduzdy8uRhHnmkd5JlgoKCKFSoEO3atUt0+/79+6lVq9Ydj3U3clSC0t3d3eFX5zjXr1+3b0/KiBEjHAYcDQsLo0SJEukf5C3y5DEbUKxaBbNnw5IlsG8fDBkCw4dDv37wwQcZGoKIiIhktqefNpd0nkVTso60XpNacT1asKAHZ89G3HU9ERERlC1bBoCzZ89lyAQMIiLZVVQUhIRA6dJw28TVWVqBAhAeHorNtve29QUoUaIELi5QvDjcmrcaM2YANWpUJSbmVx544IFE6+3UqRVz58522O/338HZ2bGuxJQt61jm9dcH0qnTY7z77rAEYzjevHmT1avnMnr0WDp3ruqwrWrVPlSrNgUXlwNUqVKFUaMG0bRpI1asmMBjjz1OTEwM8+d/w759WwkK+oSq/+0+e/bHNG4cwAsv1GX06LFUq1ad6Oho1qxZzeeff8r+/X8mEXm+/5a0efPNATz0UBPWr3+Ptm3b8e238/nrr1+ZO3e6PbbXXhvBmTOnmTVrjsO+U6fOpG7deg7PQWws/Pab/RFBQUH06tWLPHkSTxNu2rSJcePGpTn+lMhRCcq42RZvF7cuuUFYXV1dLRmsPE8eaNvWXC5fhm+/hTlzYOtW8w89TmSk+Qdbr566gIuIiOQI+oeeY6X1mtSK61EnJxuFCt19MjEiAsAcm8rT01xERMTk7AxOTuats7PV0aSczQYbN27ggQccs4a9e/dmxowZQPx5xalWrTItW7ZkzJg3+emnnxKt9+mnu/O//w3j8OG/ufe/Pstxwzbf6fm5/Xjt2rWmTJkyvP32BD755BOHsosXL+XixYs88cRjCeqtWvU+7rvvPmbNmsmUKVNo1KgBK1asYOzYsbz//ns4OTlRrVo11q5dS40a8Ym9ChXKsnv3biZMmMDQoa8SEhKCn58ftWvX5tNPP82w17dRowZ8/fXXvPHGG7zxxmtUqFCBxYsXO8R29mwIJ0+ecIghNDSU77//jmnTpiUZ25o1azhx4gTPPvtsotu3bt1KaGgonTp1Ss9TSsBmGFn35/tff/2VOnXqEBQUlOgsQrfr3LkzmzZt4syZMw6Dkj///PPMmzePS5cupfiiLywsDB8fH0JDQ/H29k7rKaTZ33+bv1YULGg+njcPevSAe++FLl0gf37H8r16wT33mPeDg2HnzqTr7t4d4oYO2LEDtmxJumyXLhB3Db1nD2zcmHTZxx4j1eMwiIiISMaw+lomJ7HqmjQ7vYYRERF4eXkBEB4erhaUIiK3uH79OkePHqVMmTL24T5yu6FDhxIWFsbnn39udSi5UkxM/NietWolnxju2rUrNWrU4LXXXkuyTHLv8ZRez2TbFpQhISGEhoZSrlw58v43BXanTp1YtGgR33//vT2ze+HCBRYuXEiHDh0saSGZVrcOfApmc3B3dzNxmVir2nbt4hOUP/4IEycmXXfTpvEJytWr4Y03ki5bt258gnLjRhg0KOmyVarEJyh37IBly6BnT6hQIel9REREcpXYWLNvkr8/LF+e8BdHyXZy+jWpiIhIRnj99df55JNPiI2NdfgxT7KWGzduUK1aNQYllwxKJ1kyQfnRRx9x5coVzpw5A8CyZcs4deoUAC+//DI+Pj6MGDGC2bNnc/ToUUqXLg2YF4P169fnmWee4Y8//qBgwYJ88sknxMTEZPsBx4cMgb59YdEiWL/enGDnVvluGcqgRg3o1i3punx94+9XqZJ82bgWnGAmTZMre+ukPp9/Dl9+CePHQ4MGZgvPLl0cjy0iIpLrhISY01SePg1ZvEWc6JpUREQko/j6+ibbIk+yBhcXF95IrlVbOsqSXbxLly7N8ePHE90Wd/EXGBiY4GIQ4PLlywwdOpTFixdz7do16tSpw+TJk5McnDUp2alLTVa0eDFMnw4//2w2FgFwdYWOHc1kZatW8WNMiIiI5BrBwdCwIZQpA//8k6GH0rXM3bP6mjQ7vYbq4i0ikjR18ZasJjVdvFMiPbp4Z8kEZVaQnS4Is7IzZ8zxM2fPhgMHzHVly8Lhw5obQEREcqG4QaWbNYN16zL0ULqWyf6y02uoBKWISNKUoJSsJismKLNkF2/JOfz9YehQs4v67t1morJs2fjkZFSUOX5mtWqJt6hs2xYefti8f/o0TJmS9LGaN4c2bcz7587BO+8kXbZxY3j0UfP+lSuJj+sZx88PXnwRfHySLiMiIpIix46Zt7e0tBMRERERye2UoJRMYbNB7drmcqvly2HtWnNJTMGC8QnKc+eST1C6u8cnKC9fTr5sbGx8gjI8PPmynTqZ3dNFRETumhKUIiIiIiIJKEEplmrSBD7+GE6cSHx7/frx9wsVguHDk66rUaP4+/nzJ1+2YcP4+/nyJV3WyQlefx3UCl9ERNKFEpQiIiIiIgkoQSmWKlgQ+vVLWdlixeDtt1NW1s8v5WV9fFJWNjYWliwxJ/rR+JkiIpImRYpAqVLmeCciIiIiIgKA5lEWSQHDgGeegccfh7fesjoaERHJtubONVtR3tqUX0REREQkl1OCUiQFbDZ44AHz/htvQFCQtfGIiIiIiIiI5GRNmzZl4MCBSW4PDAykY8eOSZYvXbo0U6dOzbD4JH0pQSmSQi+/HD9W5XPPwU8/WRuPiIiIiIiISEYJDAzEZrPx9m1joi1evBjbXY57FhMTw9tvv02lSpVwd3cnf/781KtXjxkzZqS4jmnTpjFr1qy7ikOyDiUoRVJh4kTo2RNiYqBzZ9ixw+qIREQk2/jmG3NA5ZdftjoSERERkRRxc3PjnXfe4fLly+la75gxY3j//fcZN24cf/zxB+vXr+f555/nypUrKa7Dx8cHX1/fdI1LrKMEpUgq2GwwYwa0agWRkdCuHRw8aHVUIiKSLfzzD5w5AxERVkciIiIiWUDEjYgkl+vR11Nc9trNaykqmxbNmzenSJEiTJw4Mdly3333HVWqVMHV1ZXSpUvz3nvvJVt+6dKl9OvXj86dO1OmTBlq1KhB7969GTJkSJL7/Pjjj/j4+DBv3jwgYRdvyd40i7dIKuXNC4sWQbNm8Pvv8OefULGi1VGJiEiWd+yYeVu6tJVRiIiISBbhNdEryW1tK7Tlx6d+tD8uNLkQkTcjEy3bpFQTNgRusD8uPa00FyIvJChnjDJSHaOzszNvvfUWTz31FK+88grFixdPUGbXrl106dKF0aNH07VrV7Zs2UK/fv0oUKAAgYGBidZbpEgR1q1bR79+/fDz87tjHF9//TUvvPACX3/9Ne3bt0/1eUjWpxaUImng5QU//girV8Ojj1odjYiIZAtKUIqIiEg29Nhjj1GzZk1GjRqV6PYpU6bw8MMPM3LkSCpWrEhgYCD9+/dn0qRJSdY5ZcoUzp8/T5EiRahevTovvPACK1asSLTsxx9/TL9+/Vi2bJmSkzmYWlCKpFGhQuYSJyQEChQAFxfrYhIRkSxMCUoRERG5RfiI8CS3OTs5Ozw+N+RckmWdbI5tz44NOHZXcSXmnXfe4aGHHkq0C/aff/7Jo7e13AkICGDq1KnExMTg7OycYJ/KlSuzf/9+du3aRXBwML/88gsdOnQgMDDQYaKcRYsWce7cOYKDg6lTp066n5dkHWpBKZIO/vgD6tWDwECIjbU6GhERyXJiY+H4cfO+EpQiIiICeLp4Jrm45XFLcVn3vO4pKns3GjduTKtWrRgxYsRd1XMrJycn6tSpw8CBA/n++++ZNWsWM2fO5OjRo/YytWrVws/Pjy+//BLDSH0Xdck+lKAUSQenTpktKL/5BoYNszoaERHJckJC4OZNyJMH/P2tjkZEREQk1d5++22WLVvG1q1bHdbfd999BAcHO6wLDg6mYsWKibaeTErlypUBiLhlQsFy5cqxfv16lixZwssvv3wX0UtWpy7eIumgZUv48kvo2RPee8/87jl4sNVRiYhIlhEZCU2aQEyMmaQUERERyWaqVatG9+7d+eCDDxzWv/rqq9SpU4dx48bRtWtXtm7dykcffcQnn3ySZF2dOnUiICCABg0aUKRIEY4ePcqIESOoWLEilSpVcihbsWJF1q9fT9OmTcmTJw9Tp07NiNMTi6kFpUg6efppePdd8/6rr8LXX1sbj4iIZCEVKsCGDbBpk9WRiIiIiKTZ2LFjib1tXLP777+fBQsWMH/+fKpWrcqbb77J2LFjk5zBG6BVq1YsW7aMDh06ULFiRXr16kWlSpVYtWoVeRL5Mffee+9l3bp1fPPNN7z66qvpfVqSBdgMdeJPVFhYGD4+PoSGhuLt7W11OJJNGAYMGgTTpkHevPDTT9C8udVRiYhkc7Gx5qKWh6mia5nsLzu9hhEREXh5eQEQHh6Op+fdjXUmIpKTXL9+naNHj1KmTBnc3NzuvINIBouJgT17zPu1akEqeuInKrn3eEqvZ9SCUiQd2WwwZQp06WIONfbmm2bSUkRE7sKgQeDlBa1amb8AHTyY/T5cNYOaiIiIiEiSlKAUSWdOTjBnDgwdCj/+aCYtRUTkLrz9NlSpAqtWwcCBcO+9UL489O9vftBGRlod4Z21bg3Fi8OKFVZHIiIiIiKS5ShBKZIBXF3N8SjvuSd+XXS0dfGIiGRrbm4wdy5MngwPP2yOofHPP/Dxx9C+PcyYEV82JiZrtq785x84fRrU7VVEREREJAElKEUywdSp0KgRRERYHYmISDYxbx4MH24mHG02qFzZnIFszRq4eBEWL4a+faFkSWjTJn6/oCAoVw5eegk2brQsfAcxMXDihHm/dGlLQxERERERyYqUoBTJYOfPw7hxsG1b/NiUIiKSjG3boHdvsyn6V18l3J4vHzz6KHz2GRw7Zs6QHefnn+HoUfjkE2jaFL7/PrOiTlpIiPnhnycP+PtbHY2IiIiISJajBKVIBvPzg+XLwd3dnNW7b9+s2ftQRCRLOHECOnaEqCgzCfn008mXv32g36AgWLIEHnnEfDxokPVjVB47Zt6WKKGZyEVEREREEqEEpUgmePBB+PZbcwKdoCAYOdLqiEREsqDwcDOxePYs1Khhtp50SuWlipeXWcc335jdv0+cgEmTMibelIpLUJYpY2kYIiIiIiJZlRKUIpmkQwf4/HPz/oQJZu9DERH5T2ys2Vryt9+gUCFYutRMNqaVh4c5qQ6Ys4AfP54+caZFXIJS40+KiIiIiCRKCUqRTNSnD4wZY97v3x/27bM2HhGRLOONN8yJb1xczNuSJe++zk6dzHEo3d3hzz/vvr608veHJk2gVi3rYhARERERycI0EJJIJhs5Ev79F8qXh2rVrI5GRCSLqFnTTCROn26Oi5EebDb48ktzUp2CBdOnzrR49llzERERERFGjx7Np59+yrlz5/jhhx/o2LGj1SFJFqAWlCKZzGaDjz+GwYOtjkREJAvp0gUOH4YePdK33jJlrE1OioiIiGRTgYGB2Gw2bDYbLi4ulC9fnrFjxxIdHZ3mOv/880/GjBnD559/TkhICG3atLnrOEePHk3NmjXvuh6xlhKUIha4ddLZK1ege3c4edKycERErHHyJJw+Hf/Y3z/jjmUY5uze33yTccdI6rg3bmTuMUVERETSSevWrQkJCeHQoUO8+uqrjB49mklpmIAwJiaG2NhYjhw5AsCjjz5KkSJFcHV1Te+QJZtSglLEYs8/D19/Da1bw9q1sGFD/LJ/v2PZjRsdt2/cCFevZnbEIiLpIDwc2reHOnVg796MP97SpdCxI7z0Ely8mPHHi3P6NLi5QdmyZrJSREREcj3DgIgIa5bUXo64urpSpEgRSpUqxYsvvkjz5s1ZunQpUVFRDBkyhGLFiuHp6Um9evXYsGGDfb9Zs2bh6+vL0qVLqVy5Mq6urjz77LN06NABACcnJ2y3tNyZMWMG9913H25ublSqVIlPbptV9tSpU3Tr1o38+fPj6enJAw88wPbt25k1axZjxozht99+s7f2nDVrVlpfGrGQxqAUsdjkyRAcDH/8Ac2bO27r2BF++CH+8cMPQ0yMY5miRc0EZ9OmGR2piEg6iY01u3L//jsULgz582f8Mdu3h+rVzWOOHAm3XfRmmGPHzG8CNptj83kRERHJtSIjwcvLmmOHh4OnZ9r3d3d35+LFi/Tv358//viD+fPn4+/vzw8//EDr1q3Zt28fFSpUACAyMpJ33nmHGTNmUKBAAYoWLUrTpk155plnCAkJsdc5b9483nzzTT766CNq1arFnj17eO655/D09KRXr16Eh4fTpEkTihUrxtKlSylSpAi7d+8mNjaWrl27sn//flauXMmaNWsA8PHxuavnSKyhBKWIxUqWhFWr4JVXzMlzblWihOPjypUdE5QXL0JIiJm4/OADs2GQiEiW9/rrZndrV9f0m7H7TpydzQ/Kpk3h88+hb1+oUSPjj3vsmHlbunTGH0tEREQkgxiGwdq1a/n555/p1q0bQUFBnDhxAv//hugZMmQIK1euJCgoiLfeeguAmzdv8sknn1DjlmsuX19fAIoUKWJfN2rUKN577z0ef/xxAMqUKcMff/zB559/Tq9evfj66685f/48O3fuJP9/P2yXL1/evr+Xlxd58uRxqFOyHyUoRbKAKlXM7t138vvvjo8jIszE5ty5UK9exsQmIpJuDANmzoS33zYfz5wJ9etn3vGbNDEn41mwAAYMgPXrM75VoxKUIoL5xT4yMjJd6vLw8HDoFiki2Y+Hh9mS0apjp8by5cvx8vLi5s2bxMbG8tRTT9GpUydmzZpFxYoVHcpGRUVRoEAB+2MXFxeqV6+ebP0REREcOXKE3r1789xzz9nXR0dH21tC7t27l1q1atmTk5IzKUEpko15eprf74cPh1v/N4SEmF2/RUSyjOhos4v1n3+aj197zZwhLLNNmgTLlpmD+C5caCYsM5ISlCK5nmEYNGzYkC1btqRLfQEBAWzatElJSpFszGa7u27WmalZs2Z8+umnuLi44O/vT548efj2229xdnZm165dODs7O5T3uqXvuru7+x0/q8L/y9R+8cUX1Lut1U1c3e7u7ulxKpLFaZIckRzg1uTk3r1QrpzZgzI62rKQRCS3CwmBefPiH+fJAxUqmFfjgwbBuHHWxFWyJPzvf+b9IUPg+vWMPZ4SlCK5XmRkZLolJwGCg4PTrTWmiMideHp6Ur58eUqWLEmePGYbt1q1ahETE8O5c+coX768w5LabtaFCxfG39+ff/75J0FdZcqUAaB69ers3buXS5cuJVqHi4sLMbdP1iDZjlpQiuQwy5fDtWvw1ltmA6Fvvkk4lqWISIYIDTVn9po3D9atMyfDefBBcwZrgA8/hAIFrG8yMHQobN4MAweaM2xnJCUoReQWZ8+exTONn4EREREULlw4nSMSEUm9ihUr0r17d3r27Ml7771HrVq1OH/+PGvXrqV69eq0a9cuVfWNGTOGV155BR8fH1q3bk1UVBS//vorly9fZvDgwXTr1o233nqLjh07MnHiRIoWLcqePXvw9/fnwQcfpHTp0hw9epS9e/dSvHhx8uXLh6urawadvWQUJShFcpg33jBbVPbpY84OXrMmzJkDqfwfISK5hWHAq6+arRtffNFcFxtrTiDj7w9lypjJtVtv/fzix26MioIVK8yk5LJl5uM4DRrApUvxCcrMmAwnJdzdzdnJMkPTplCsWPxzICK5mqenZ5oTlCIiWUlQUBDjx4/n1Vdf5fTp0xQsWJD69evTvn37VNfVp08fPDw8mDRpEkOHDsXT05Nq1aoxcOBAwGwhuWrVKl599VXatm1LdHQ0lStX5uOPPwbgiSee4Pvvv6dZs2ZcuXKFoKAgAgMD0/FsJTPYDMMwrA4iKwoLC8PHx4fQ0FC8vb2tDkck1Y4cga5dYdcu8/Grr5qtKl1crI1LRLIQwzBn2vroI3Bygj/+gHvvhTNnzKRaUp580myeDfDtt+bjOPfdZ44t+dRTZjIzOwgLgxz4v17XMtlfdnoNIyIi7OOOhYeHKwl3i/R6bvQci2Rf169f5+jRo5QpUwa3jO69IZICMTGwZ495v1YtuG0o0VRL7j2e0usZtaAUyaHKlTNbUA4fDtOmwXvvmXmD3r2tjkxEsoTYWHjpJfjsM7M15BdfmMlJgPz5zS7ax47B0aOOt6dPQ/Hi8fV06GDu1769mZisWTPjZ8ZOTx9+CCNHwnffwcMPWx2NiGQTqZmVOyIiIoOjERERyf6UoBTJwVxdYepUs4fh/PnwzDPx26KjzTkrRCQXio2Fvn1hxgwzmRgUBL16xW93c4NmzRLf98YNx27cHh7mzNzZKSl5q4MHzbEzBwwwZxlLzw/GiAjIm1dN10VymPSelVtEREQ0i7dIrtCxo5mgdPrvL/7iRXNoub59YcsWs5eniOQSMTFmU+oZM8wPhTlzHJOTd+LiAvnyOa7LrslJgDFjzIl7DhyATz9N37rff99M9g4enL71ioil0jord0BAAB4eHhkQkYiISPanBKVILvT993D+PEyfDgEBZu/M8ePh+HGrIxORDLd0KcyaZQ40M28e9OhhdUTWyp/f/AAEePNN88MxvRw7Zv4CdM896VeniGQpZ8+eJTw8PEXLpk2bsGXnH3REREQykBKUIrlQ797m8HK9eoGnJxw6ZA7BVro0PPSQOU+GiORQHTuaibhvvnGc3CY3e+45c9byK1fMD8P0cuyYeVu6dPrVKSJZStys3ClZlJwUEc1RLDlVery3laAUyYWcnMzh5WbNgn//NW/jhpvbtAn8/OLLnjtnDlcnItnYzZvmeIhgdsceMwY6d7Y2pqzE2dmcLAfMpuW//ZY+9R49at4qQSkiIpKrOf83RfKNGzcsjkQkY8RNHJc3b94016EpMkRyOS8vsyVlr15mF+9t2xwTlJ06meufftosU6GCdbGKSBrcuAFPPWUOPvvjj+akNpJQo0Zm69LFi+Hnn80WlXcjJgZOnDDvK0EpIiKSq+XJkwcPDw/Onz9P3rx5cXJSWzGxVkxM/P3r183f69PCMAwiIyM5d+4cvr6+9mR8WihBKSJ2pUqZS5zLl2HfPrPX44QJ5tKggZmo7NIFfH2tilREUuTGDfOPdckSc3Kb3buhYUOro8q6pk2Dzz+HQoXuvq4zZyA62pwV3N//7usTERGRbMtms1G0aFGOHj3KcQ38L1lAbCxcuGDeP3YsfkLdtPL19aVIkSJ3VYcSlCKSpHvuMb9jx82psWqVOev3li0wYACMHg3Dh1sdpYgkKirKbAK9fDm4upotA5WcTF7JkulXV9z4kyVLpv0naREREckxXFxcqFChgrp5S5YQGQnt2pn3d+++u05WefPmvauWk3GUoBSRZLm7Q9eu5nLmjDnp7+zZcOAAFC8eX+7CBTh7FqpUsS5WEfnP9evw+OOwYgW4uZm/MrRoYXVUuYu3tzk2Rv78VkciIiIiWYSTkxNubm5WhyFCTIw5lBuYbRmywttSAx+ISIr5+8PQoWa3719/hccei982cyZUrQoPPAAffWQOdyciFoiMhEcfNZOT7u7muJNKTqbc8uXQvLnZRPxu1KgBc+bA1KnpEZWIiIiISI6mBKWIpJrNBrVrOzYDP3vWHGpt1y54+WUoWjS+1aWIZKJLl8w/RE9PM0n50ENWR5S9XL4Ma9eaz52IiIiIiGQKJShFJF1MmWImI6dNg/vvh5s3YcECqFnTnBBXRDJJ8eLmH9/PP0OTJlZHk/3EPWe7dkFYWNrrCQkxPwhFREREROSOlKAUkXTj5wevvGJ+r9+92+zheP48fPaZ1ZGJ5GAxMfD66+ZM3XEeeggCAqyLKTsrWRLKljWf1+DgtNfTsKE5mM/27ekXm4iIiIhIDqUEpYhkiFq1YNs2eO01c3xKEckA585By5bw1lvQq5c5W5XcvaZNzdsNG9K2f0wMnDgBsbFQrFh6RSUiIiIikmMpQSkiGcbNDSZMiJ/E1jCgf39YtszauERyhK1bzfEU1q0zx5v87DMoWNDqqHKGu01QnjkD0dGQN685IK+IiIiIiCRLCUoRyTTffw8ffwyPPAKDB8ONG1ZHJJINGQZ8+CE0bgynT0OlSrBjBzz5pNWR5Rx3Ow7lsWPmbcmS4OycbmGJiIiIiORUSlCKSKbp0AEGDjTvv/++OUTb0aOWhiSSvcTEQPfu5mCv0dHQqZOZnKxc2erIcpaSJc1BdFu2hIsXU79/XIKydOn0jEoyWVRUFMOHD8ff3x93d3fq1avH6tWrU7Tv/Pnzuf/++3Fzc8PPz4/evXtzQUMwiIiIiCRJCUoRyTQuLmZicskSuOce2LnTHKty0SKrIxPJJpydzTET8uQx/5gWLIB8+ayOKmfaswd++gnKlEn9vkpQ5giBgYFMmTKF7t27M23aNJydnWnbti2bN29Odr9PP/2Ubt26kT9/fqZMmcJzzz3H/Pnzefjhh7l+/XomRS8iIiKSveSxOgARyX0eeQT27jV7pG7dCp07w8iRMHas1ZGJZFE3b5rjGQJMmWJOiFOnjrUx5XQ2W9r3VYIy29uxYwfz589n0qRJDBkyBICePXtStWpVhg0bxpYtWxLd78aNG7z22ms0btyY1atXY/vvfdSgQQM6dOjAF198wcsvv5xp5yEiIiKSXShBKSKWKFkSNm40E5OTJ8fPSSGSKxiG2V3byclcAMLD4dIlMxl56zJvntmab9Uqs+Wki4uSk5np9Gmz1aq7e8r3adTIHGS3bt2Mi0sy1KJFi3B2dub555+3r3Nzc6N379689tprnDx5khIlSiTYb//+/Vy5coWuXbvak5MA7du3x8vLi/nz5ytBKekiIiLC6hDsPDw8HN7vIiIiaaEEpYhYJm9eePtteP55KFs2fn2RIpDUdXdAAKxcGf+4TBlIalivWrXgl1/iH1etCsePm/ednc05Rnr1gvbtwdX17s5FBDDHhbTZ4idGWbUKvv3WbFF3/DicPWsmruJmiNq40XwjAgQFmWNLJmXVKmjbNkPDl9u0amU+7z/+mLrnPjDQXCTb2rNnDxUrVsTb29thfd3/ks579+5NNEEZFRUFgHsiCW13d3f27NlDbGwsTk6Jj7IUFRVlrwMgLC2TNEmuULhwYatDsAsICGDTpk1KUoqIyF3RGJQiYrlbk5NgNiRLarl2zbFsRETSZSMjky4bGgrLlplzjPj7w2uvZew5Sg5z6hTMmgWjR8Mzz0CzZma23M0Ndu+OL/fnn/Dll7BuHRw5Yr75bp2+/ubN+Puurubi5WUO0lqoEBQrBtWqwfffKzlphbgE1IYNloYhmS8kJISiRYsmWB+37syZM4nuV6FCBWw2G8HBwQ7r//77b86fP8+1a9e4fPlyksedOHEiPj4+9iWxJKjkXh4eHgQEBFgdRgLBwcFE3n7RJSIikkpqQSkiWc7vv5s9YBPj5ub4eMcOs6dsYm5vFblhg9nADcwE5YIFMHcunDnjOFGvYcC//0Ii301FYPlyeOopuHo18e1Hj8Z3wW7cGMaNg1KlzPEI/f3NN2bevOZya+us5583F8k6mjaFmTNTl6C8dg1CQszkZty4oZLtXLt2DddEmta7/fdP6Nrtv5b9p2DBgnTp0oXZs2dz33338dhjj3H69Glefvll8ubNy82bN5PcF2DEiBEMHjzY/jgsLExJSrGz2Wxs2rQpyyQDIyIislRLThERyd6UoBSRLOf2FpXJSc0cFKVKOT6+/36YMAHWro1vKAWwbRs0bAgtWphdwDt2TN3wc5LD5c9vJqGqV4d69cw3YenS8UnIWzPbtWqZi2RPcYPj7toFYWGOCeWk/PqrmZiuUAEOHszQ8CTjuLu7O3S1jhM3C3diXbjjfP7551y7do0hQ4bYJ9jp0aMH5cqV4/vvv8fLyyvJfV1dXRNNjIrEsdlseHp6Wh2GiIhIulOCUkRyNWdnaNnScd3mzRAbCz//bC7e3tCli5msDAi4u8l9JZuKiYkfV7JBA1i/3kxOqoVczla8OJQvD4cPmx8MKelmHzeDd8mSGRqaZKyiRYty+vTpBOtDQkIA8Pf3T3JfHx8flixZwokTJzh27BilSpWiVKlSNGjQAD8/P3x9fTMqbJEsIzY2FiDJ8VZFRERup/8YIiK3GTrUzEe8+abZIC4sDGbMMCfmbdLE7L0puciOHeYMS/v2xa9r2FDJydwirhVlSrt5xyUoU9O8W7KcmjVrcvDgwQST1Gzfvt2+/U5KlixJ48aNKVWqFFeuXGHXrl00b948I8IVyVJiY2NxdnbG2dnZnqgUERG5EyUoRUQSUa4cjBljzmuyYYM5Ia+HhzlepXpW5RKGAdOnm5npv/6C//3P6ojECkpQ5kqdOnUiJiaG6dOn29dFRUURFBREvXr17ONCnjhxgr/++uuO9Y0YMYLo6GgGDRqUYTGLZBUXLlxI9L6IiEhy1MVbRCQZTk5mq8kmTeD1182ZweOGoTMMc9IdNaTLga5dg/79zRm4wRyIdNYsKyMSqzRrBn37wsMPp6y8EpQ5Qr169ejcuTMjRozg3LlzlC9fntmzZ3Ps2DFmzpxpL9ezZ082btyIccvMbm+//Tb79++nXr165MmTh8WLF7Nq1SrGjx9PnbgJtERymIiIiETvi4iIpJQSlCIiKVS+vOPjjz+Gr76C+fOVi8hRjh2DJ56A3bvNDPWECTBsmHlfch9/f/jss5SXV4Iyx5gzZw4jR45k7ty5XL58merVq7N8+XIaN26c7H7VqlXjhx9+YOnSpcTExFC9enUWLFhA586dMylykcyn2bxFRORu2Yxbf/IVu7CwMHx8fAgNDcU7JbN2ikiuEhlpzjZ+9iz4+poN7R57zOqo5K799Zc5E9KlS1CggJl91phxklIxMeDmZjatPnnSnGTHQrqWyf6y02sYERFhn6E8PDw8R880nZvONTmGYdCoUSOCg4OTLHP16tVkZ64XERFrRERA3MdzeHjGDmOW0usZNQcREUkDDw/Yts2cyPnKFXj8cXjlFYiKsjoyuSvly0PNmvDAA2YLSiUnBeDmTdi6Nb7Lf1Ju3DDHKu3RA4oWzZzYREQsYrPZ2LRpE+Hh4Q7L2bNnHcqIiIikRJZMUEZFRTF8+HD8/f1xd3enXr16rF69OkX7rlmzhmbNmlGwYEF8fX2pW7cuc+fOzeCIRSQ3Kl0aNm0yZ/0G+PBDaNDAnAFcspHQ0PjMcp48sHCh+cKWLGltXJJ1nD1r/nE/9xzcNquzA3d3GDcO5s4FZ+fMi09ExCI2mw1PT88Ei4iISGplyQRlYGAgU6ZMoXv37kybNg1nZ2fatm3L5s2bk91v6dKltGzZkhs3bjB69GgmTJiAu7s7PXv25P3338+k6EUkN8mbF959F5YvN3sE794d36pSsoGQEKhfH26dWTd/frObrkic4sXN1rWxsXCHaxEREREREUm9LJeg3LFjB/Pnz2fixIlMmjSJ559/nnXr1lGqVCmGDRuW7L4fffQRRYsWZd26dfTv35+XXnqJtWvXUq5cOWZp9lURyUDt2sHevdCwodmi0tfX6ojkjs6fN7tw//UXLFtmjjspkpSmTc3bDRuSLnP8OBw9anYJFxERERGRFMtyCcpFixbh7OzM888/b1/n5uZG79692bp1KydPnkxy37CwMO655x5cXV3t6/LkyUPBggVxd3fP0LhFRIoXh/XrzQmf4/z1l7lIFnP5MrRsCX/8Yc7SvHGj2XJSJCkpSVCOGWPOnvX225kRkYiIiIhIjpHlEpR79uyhYsWKCWb2qVu3LgB79+5Nct+mTZty4MABRo4cyeHDhzly5Ajjxo3j119/vWPrSxGR9JAnDzj998kaGQmdOkHt2jBnjrVxyS2uXoU2bcwmr4UKwdq1ZlJJJDlNmpi3u3YlPQ7lsWPmbZkymRKSiIiIiEhOkcfqAG4XEhJC0URmvoxbd+bMmST3HTlyJEePHmXChAmMHz8eAA8PD7777jseffTRZI8bFRVF1C3T74YlNwi+iEgKREZC4cJw4AD06gXr1sHHH4PGjrdQZKTZH3/7drPF5Jo1UKmS1VFJdhA3DuXhw+Y4lG3bJiwTl6AsXTozIxPJFQzDIDIy0uowAIiIiLA6BBERkRwnyyUor1275tBFO47bfxMWXLt2Lcl9XV1dqVixIp06deLxxx8nJiaG6dOn06NHD1avXk39+vWT3HfixImMGTPm7k9AROQ/BQvCqlXw1lswejTMnm3mxRYsgGrVrI4ul9qyxVy8vc0XRy+EpEbTpmaCcuPGhAnK6GiIG4ZGCUqRdGUYBg0bNmTLli1WhyIiIiIZJMslKN3d3R1aMsa5fv26fXtS+vfvz7Zt29i9ezdO//Wx7NKlC1WqVGHAgAFs3749yX1HjBjB4MGD7Y/DwsIoUaJEWk9DRAQAZ2cYORIaN4annjLHo6xbFz74APr0AZvN6ghzmebNzQxxkSJm33uR1BgwAJ59Fh54IOG2M2fMJGXevOa4piKSbiIjI7NkcjIgIAAPDw+rwxAREckRslyCsmjRopw+fTrB+pCQEAD8k7jov3HjBjNnzmTYsGH25CRA3rx5adOmDR999BE3btzAxcUl0f1dXV0TbbkpIpIemjQxhzzs2RNWroS5c808h7Oz1ZHlAtHR5qQ4fn7m48cftzYeyb6qVk16W1z37lKl4geiFZF0d/bsWTyzyFgpHh4e2PRLo4iISLrIcgnKmjVrsn79esLCwhwmyolr/VizZs1E97t48SLR0dHExMQk2Hbz5k1iY2MT3SYikln8/ODHH2HaNOjSRcnJTBETA888A1u3mpPhlCpldUSSU2n8SZFM4enpmWUSlCIiIpJ+stxP/J06dbKPHRknKiqKoKAg6tWrZ+92feLECf766y97mUKFCuHr68sPP/zAjRs37OvDw8NZtmwZlSpVSrZ7uIhIZnBygkGDoFix+HVDh5qT5xiGdXHlSIYBL7wAX31lJo/277c6IskJduyAF1+E9993XF+1Krz+OnTtak1cIiIiIiLZWJZrQVmvXj06d+7MiBEjOHfuHOXLl2f27NkcO3aMmTNn2sv17NmTjRs3Yvz3jd7Z2ZkhQ4bwxhtvUL9+fXr27ElMTAwzZ87k1KlTfPXVV1adkohIkoKDYfJk8/769TBjBvj6WhpSzmAYMHCg+YQ6OcG8eebs3SJ369Ah+OwzcxzKQYPi199/v7mIiIiIiEiqZbkWlABz5sxh4MCBzJ07l1deeYWbN2+yfPlyGjdunOx+r7/+OvPmzSNv3ryMGTOGkSNH4u3tzaJFi+jevXsmRS8iknINGsDUqea8Gt99B7VqmQ205C4YBowYYc5EBPDll2rVJumnSRPzdvduCA21NhYRERERkRzCZhjqVJiYsLAwfHx8CA0NdRgLU0QkI+zcaebQjh6FPHngueegYUNz5m+A2Fiz92hSKlWCXr0yJ9Ysb+xYGDXKvP/pp2Y3b5H0VKECHD4My5fHt8zduhWKFoUSJbLMALO6lsn+stNrGBERgZeXF2AOsZSe40RmZN2S/vR6iYhkfRER8N9HNeHhkJEf1Sm9nslyXbxFRHKjOnVgzx7o0wcWLTLzahcvxicoAd5+O+n927d3TFAuXw7NmmXsP5osKTwcvv7avD9lipKTkjGaNjUTlBs2mAnK6Gho3Ni8PXXKcZBZEZFcLCIiwuoQAM24LiKSHShBKSKSRfj4wIIF5rJ9O9Ss6bj91uHuble5cvz9gwehQwczOdmpEwQGmrkTpyw5qEc68/KCjRth6VKzGapIRmja1BzfdP168/GZM2ZyMm9esxWliIgAULhwYatDACAgIIBNmzYpSSkikoUpQSkikoXYbGZX79uHTHRyMhsEpsTp01CuHBw5ArNnm0upUtCzp7mUL5/+cWcphQsrOSkZK24cyj174MoVc5Z4MP/QcsUvASIiSfPw8CAgIIDg4GCrQ7ELDg4mMjJS3c1FRLIwJShFRHKYZs3MiYa3bIFZs8wWmcePw7hx5vLzz9CypdVRpiPDgO7doVEjs0u3WkdIRitePD7Tf+JEfIKydGmrIhIRyTJsNhubNm0iMjLS6lCIiIjIMq04RUQkeUpQiojkQDYbBASYywcfwOLFZkvKnTvN7t5xVqwwZxL38bEs1Ls3cyZ88405DXqLFrmgiahkCbt2Qdwg34sXm7dKUIqIAGaSUq0VRUQkNdQPSUQkh3N3h27dYOVKsyWlm5u53jBgwADo39/a+O7K4cMwcKB5f8IEJScl89w6A6FaUIqIiIiI3BUlKEVEchEvr/j7R46Yy1dfxTcAy1aio6FHD4iIMCctGTzY6ogkN4qONsdUACUoRURERETSSAlKEZFcqnx5GD7cvN+3L1y4YG08qTZhgjnduY+P2X9dk5NIZnvhBcifH8qUgddeg9q1rY5IRERERCRb0rc5EZFcbNQoqFIFzp3LZl29t283Z/wB+OQTKFnS2ngkd4qNhatXoVAhM2FeqZLVEYmIiIiIZEtKUIqI5GKurmbjQ2dn+PZbWLjQ6ohSaNcucxDNbt3gqaesjkZyq6ZNzdsNG6yMQkREREQk21OCUkQkl6td2+ydCvDii3D2rLXxpEi/fhAcDB9/bHUkkps1aWLe7toFBw5YG4uIiIiISDaWx+oARETEem+8AUuWQOHCEBNjdTQpVL++1RFIblesWPz9qlXNVr0iIiIiIpJqakEpIiK4uMDatfDzz+Dvb3U0STh7Flq3hj/+sDoSkXhxM3dr/EkRERERkTRTC0oREQGgYEHHxzdvQt681sSSgGFA795mBvXZZ2HrVrDZrI5KBNavN8dIeOMNqyPJtQ4fPkxwcDCnTp3iwoULeHh44OfnR7Vq1WjQoAHu7u5WhygiIiIid6AEpYiIOAgLgyFDzAaLixdnkTzg9Onw449mU88vvsgiQYlgtqD8+muro8h1Tp48yYwZM5g1axanTp0CwLiti73NZiNPnjy0bNmSvn370q5dO2z67BARERHJkpSgFBERBydOwKxZZgvKuXOhZ0+LAzp4EAYPNu+//TZUq2ZtPCJimfPnzzNq1ChmzJhBdHQ05cuXp0ePHjzwwAMULlyY/Pnzc+3aNS5dusTff//Ntm3bWLduHT/99BMVKlTg3Xff5ZFHHrH6NERERETkNkpQioiIg6pVYfRoeP11eOUVePhhx7lAMtXNm9CjB0RGmoEMGGBRICKSFZQrVw4nJydeeeUVevToQc2aNe+4T0REBIsWLWLGjBk89thjTJ48mUGDBmV8sCKSpURERGT6MT08PNRyW0QkhZSgFBGRBIYNM7t379wJzz1n9q625Pp63DgzCF9fs1mnk+Z2E8nNBgwYwKuvvoqvr2+K9/H09KRXr1706tWLdevWERoamnEBikiWVbhw4Uw/Zs2aNdm0aVOOS1Iq8SoiGUEJShERSSBPHjMfeP/9sGIFBAWZc9Nkquho2LjRvP/551C8eCYHICJZzbhx4+5q/4ceeiidIhGR7MDDw4OAgACCg4MtOf7evXvJly+fJcfOSAEBATky8Soi1lKCUkREElW5stmAcdgwGDQImjeHkiXTqXLDgGvX4OJFc7l0Kf7+xYvw0ktmq8m1a2H5cujYMZ0OLCIiIrmFzWZj06ZNREZGZupxDcOgUaNG7N27N1OPm1mCg4M5f/48np6eVoeS4dRaVCTzKEEpIiJJGjwYfvgBDh2Co0fTmKAMDoZPP4X33wc/P3Pd0KHw3ntJ7/Poo2aCMk8eJSdFJIGtW7fy+uuvs3PnTmw2G/Xq1WPChAnUrVvX6tBEJIux2WyWJNJ2796d6YnRjBYREWHvKm9Fl3krqLWoSOZRglJERJLk7Axffw0eHlCoUCp33r8fXnsNli0zHw8fHp+g9PExb/PkgQIF4pf8+c1bD490OwcRyVn27dvHww8/zPXr1+3r1q5dy5YtW9ixYwdVqlSxMDoREZNVidGMZHWXeSsEBwcTGRmZ415LkaxICUoREUlW6dKp3OHECRg1CmbPNrtyOztDr15w6y/tgwbBwIHg5WXR7Dsikl29/fbbXL9+nddff52XX34ZgI8//phx48bxzjvvMGfOHIsjFBHJmazqMm+FW1uLikjmUIJSRERSbOFCc3nvvYR5RU9bJPdMGQkff0xM1E1C8Ic2bWHYMFwql3dsgenllalxi0jOsWnTJho2bOgwYc6YMWPYsGEDG+Mm1hIRkQyRE1uGikjW4GR1ACIikj38+y8EBpoJypIloUQJx+X18W6wahVERXGpQQdKcIoSK6ZToll5Chc2h5K8dMnqsxCR7O7s2bPUr18/wfp69epx9uxZCyISERERkbulBKWIiKRIkSLw8cdm40cXF3BxMXDJE2PeukCevE7w0UewYgX88MN/ZcwFYMkSqFkTtmyx9DREJJu7efMmXom0wvb09OTmzZsWRCQiIiIid0sJShERSbHAQLgaZhA1dwFRpe4lKjoPUeMmERUFH3wANGkCrVvjV8hGVBT2ZfduKF8eTp6Exo1hxw6rz0RERERERESyCo1BKSIiKXPlCixdCh9+CL/+aq7z84OCBe+4a61aZpKyb18IDYUHHsjYUEUkZ/vqq6/Ytm2bw7rDhw8D0LZt2wTlbTYbP/74Y6bEJiIiIiKppwSliIjcWY8e5uCTN26Yj728YMgQGDwY8uVLURX58sG8eXD9Ojj9134/IgL27oWAgIwJW0RypsOHD9sTkrdbuXJlgnW222f1EhEREZEsRQlKERFxdPUqrFljzmoT96XeZjOTk1WqQJcu8MILOE7LnTI2G7i7xz9+6SWYOxdGj4bXXgNn53Q5AxHJwY4ePWp1CCIiIiKSzpSgFBERCA+H5cthwQJzkpvr12HPHnNWG4DXX4f//c9MUKaT6GgzYRkbC2++CRs2mC0sixRJt0OISA5UqlQpq0MQERERkXSmBKWISG4VFWVOrb1gAfz4o5mUjFOhApw/H/+4UqV0P3yePBAUBM2awYsvwrp1UKOGmaRs3jzdDyciIiIiIiJZlGbxFhHJrT75BLp2he++M5OT5cub/az37oW//4YWLTIljJ49YdcuqFYNzp2Dli3hjTfMFpYiIre7//77mT59usO6c+fO8fvvv1sUkYiIiIjcLSUoRURyq1dege7dza7bu3fDwYMwYYLZjDGTJ5SoVAm2bzdn+TYM+OILuHgxU0MQkWxi7969/Pvvvw7rPv30U2rVqmVRRCIiIiJyt9TFW0QktzAM+PZbeOwxcHU1Z6T56iuro7Jzd4fPPjO7fOfPD4ULm+tDQ2HRIujcGby9rY1RRERERERE0p9aUIqI5AZRUdCnD3TrZk6dbRhWR5Skrl0de5cvWGCGXqQI9OgBq1dDTIx18YmIiIiIiEj6UgtKEZGcLiQEHn8ctm0DJ6cMmfAmI3l6miH/9Zc5gc68eVCsGDz9NPTqle1OR0RERESykYiIiAyr28PDA1smD60kklUpQSkikpPt2GF26T5zBnx9Yf58aNXK6qhS5amnzIafO3bA7NnmKZw+DW+/De++C//+C35+VkcpIiIiIjlR4bhxhzJAQEAAmzZtUpJShBQmKE+cOJHmA5QsWTLN+4qIyF2YPducdSYqCipXhiVLzJm6syGbDerVM5f334dly8zTs9kck5PjxkGbNvDAA9bFKiIZb/Pmzbz77rsOjwEmTZqEkcQQFsOGDcuU2EREJPvz8PAgICCA4ODgDD1OcHAwkZGReHp6ZuhxRLIDm5HUVdwtnJyc0pTRt9lsREdHpykwq4WFheHj40NoaCjempVBRLKbCxegQgW4cgUefRTmzoV8+ayOKt3Fxpq91gFOnoRSpcwu4fv2QenSloYmYrmcei3j5JT6IdRtNhsxqRy8NioqijfffJO5c+dy+fJlqlevzvjx42lx6yC5SVizZg0TJkxg3759REdHU7FiRV5++WWefvrpVMWQnV7DiIgIvLy8AAgPD0/XL9sZWbeISFIMwyAyMjJD6o6IiLC3zNTnmlghIgL++9dKeLj5HSqjpPR6JkUtKHv27KkmxyIi2UnBgmZf6C1bYNSo+CxeDnPraTk7Q7Vq8Pvv0Lu3OZlODj1tkVwtKCgoU44TGBjIokWLGDhwIBUqVGDWrFm0bduW9evX07BhwyT3W7p0KR07duTBBx9k9OjR2Gw2FixYQM+ePblw4QKDBg3KlPhFROTu2Gw2JQ5FMlGKWlDmRtnpF2sREcBsNnjxIjRtanUkljl8GGrUgMhI+Phj6NfP6ohErKNrmbTbsWMH9erVY9KkSQwZMgSA69evU7VqVQoVKsSWLVuS3Ldly5YcOHCAf/75B1dXVwCio6OpVKkSnp6e/PbbbymOIzu9hmpBKSKScvpcE6tlxRaUalsiIpITLF0KDz5oztZ9+LDV0VimfHl45x3z/tCh8M8/1sYjItnTokWLcHZ25vnnn7evc3Nzo3fv3mzdupWTJ08muW9YWBj33HOPPTkJkCdPHgoWLIi7u3uGxi0iIiKSXSlBKSKS3W3fDp07mz+D3X8/3HOP1RFZql8/sxFpZCQ884w5TqWISGrs2bOHihUrJviVv27dugDs3bs3yX2bNm3KgQMHGDlyJIcPH+bIkSOMGzeOX3/99Y4T9URFRREWFuawiIiIiOQGKRqD8tlnn01T5TabjZkzZ6ZpXxERSYGQELPV5I0b5mQ4ixZBnhR9tOdYTk7w5ZfmeJS//GKORdmqldVRiUhmePbZZ+nYsSOPPPLIXdUTEhJC0aJFE6yPW3fmzJkk9x05ciRHjx5lwoQJjB8/HjBng/3uu+949NFHkz3uxIkTGTNmzF1ELiIiIpI9pehb7KxZs9JUuRKUIiIZKCrKTE6eOQOVK5szdefy5GScMmXgs8/Ax0fJSZHcZNasWZQuXfquE5TXrl1z6KIdx83Nzb49Ka6urlSsWJFOnTrx+OOPExMTw/Tp0+nRowerV6+mfv36Se47YsQIBg8ebH8cFhZGiRIl7uJMRERERLKHFH2TPXr0aEbHISIiqWEY8NJLsG0b+PrCkiWQL5/VUWUpPXpYHYGIZFfu7u5ERUUlWH/9+nX79qT079+fbdu2sXv3bpyczNGUunTpQpUqVRgwYADbt29Pcl9XV9dEE6MiIiIiOV2KEpSlSpXK6DhERCQ1oqLgxAmzP/P8+ebsMJKkM2dgxw7o2NHqSEQkOyhatCinT59OsD4kJAQAf3//RPe7ceMGM2fOZNiwYfbkJEDevHlp06YNH330ETdu3MDFxSVjAhcRERHJpjRJjohIduTmBj/9BGvWqA/zHRw5AlWqwJNPwl9/WR2NiGQHNWvW5ODBgwkmqYlr/VizZs1E97t48SLR0dHExMQk2Hbz5k1iY2MT3SYiIiKS2931YGUnT57kzJkziXaDAWjcuPHdHkJEROKEh4OXl3k/Tx5o1szaeLKBsmWhfn1YuRJ69YLgYA3VKZIT/PLLL4muP3bsWKLbUnNN2qlTJyZPnsz06dMZMmQIYM6wHRQURL169ezjQp44cYLIyEgqVaoEQKFChfD19eWHH35g7Nix9paS4eHhLFu2jEqVKiXbPVxEREQkt0rzV7Rly5YxdOhQDh06lGw5/UosIpJOIiOhcWOoWxc++ADURTBFbDb44guoWtXs5j15Mvzvf1ZHJSJ3q2nTpthstgTrZ8+ezezZs+2PDcPAZrOl6pq0Xr16dO7cmREjRnDu3DnKly/P7NmzOXbsmMMEkD179mTjxo0YhgGAs7MzQ4YM4Y033qB+/fr07NmTmJgYZs6cyalTp/jqq6/u4oxFREREcq40JSg3bNjAY489RpEiRejfvz8ffvghTZo0oVKlSmzevJkDBw7Qvn17ateund7xiojkToYBvXvDnj1w6hS88QYUL251VNlG8eIwbRoEBsKoUdC+vZmwFJHsKygoyOGxYRg8++yzPProozz66KN3Xf+cOXMYOXIkc+fO5fLly1SvXp3ly5ffsSXm66+/TpkyZZg2bRpjxowhKiqK6tWrs2jRIp544om7jktEREQkJ7IZcT/5pkLr1q3Ztm0bf//9N4ULF8bJyYnRo0fz5ptvAjBx4kTGjx9PcHBwkmP0ZHVhYWH4+PgQGhqKt7e31eGISG737rswfLjZN3ntWrMlpaSKYcAjj8Dy5VC7NmzdCnnzWh2VSMbJjdcyt1+TZnfZ6TWMiIjA678hSMLDw/H09MwWdYuIWEGfa2K1iIj4kcPCwyEj34IpvZ5J0yQ5O3fupGPHjhQuXNi+LjY21n5/xIgR1KpVK8dcHIqIWGrlyvg+yR98oORkGtls8PnncM89sGsXfPyx1RGJiIiIiIgIpDFBGRkZSbFixeyPXV1dE8xyWL9+fYKDg+8uOhGR3O7gQXP6acOA556DF16wOqJszd8fPvwQXn7ZfDpFRERERETEemkag7JIkSKcP3/e/rhYsWIcOHDAoczFixc1QY6I5G6GASEh4OEBvr6p3z86Gh5/HEJDoUED+Ogjsxmg3JXu3c1FREREREREsoY0taCsUaMG+/fvtz9u1qwZ69ev55tvviEiIoKff/6ZBQsWUL169XQLVEQkXV24AJs2wZEjcO1a+tW7ciX06QMPPmgmJYsVM/sUV6pkztBy6FDK68qTxxx7skoV+O47zdqdAWJjYds2q6MQkfTSq1evbDv+uYiIiEhulqYWlI888gj9+/fn+PHjlCpVitdee43vvvuOHj16xFecJw/jx49Pt0BFRNLVxo3QqVP843vuMfv/Fitm3j7/vJlkBHPU4NBQKFwY/v0XDhyAP/4wbw8cgLlzoXx5s+zu3TBzZny9zs4QEwN//20ut47N++23sHMn1K8P9eqZU03f3kKybVto1cqsR9JVRIT59AYHw44dcP/9VkckInfr9pm9RURERCR7SFOC8tlnn+XZZ5+1Py5Tpgw7d+5kypQp/PPPP5QqVYoXXnhBv2CLSNaxYYPZIrFhQ/OxYUC5cnD6NFy/Dpcvm0vccBXt28fvu3IldO6cdN379sUnKFu0gKgoqFzZbPlYsaKZ3NyxA/bsgTJl4vdbuNBsGRmnaFEzWWmzwcSJ5r6g5GQG8fQ0c84xMWbj1r17wSlN/QpERERERNImIiIiwToPDw9sGtpJchmbYRiG1UFkRSmdBl1Esri9e2HECDPJWK2amSS8NeFnGHDlCpw5Yy6nT5u3Tz4JZcuaZWbMMCeniYkx961QwUw+VqliJiKbNIEiRVIf2/ffw+rVsH07/P67WX+c/Plh82a47767OXu5g/PnzZxxRITZ+LVWLasjEkk/OflaJjo6mq+//pqdO3dis9moW7cuTz75JHnypOm39ywrO72GEREReHl5ARAeHo6np2e2qFtExAq3fq4lJiAggE2bNilJKRkmIgLi3oLh4WbjjYyS0uuZnHUVJyIS559/YORI+Ppr83GePNCokdla8tZPX5vN7N59zz1mwjExffrAM8/AxYvg4wOurukT4+OPmwvEZ8i2bTNbWxYtaiZCJUP5+UHTpvDjj2auWAlKkawvMjKSJk2asHv3buJ+Z7fZbHz00UesX78ed3d3iyMUERFJnoeHBwEBAQQHBye6PTg4mMjISP0gI7lKmjqzvffeexQsWJAzZ84kuv3MmTP4+fnxwQcf3FVwIiKpdu4cvPyyOSlNXHLyySfhzz/h44/T/tOQszMUKpR+ycnbeXqaCdShQ82u3x98YCZVJcO1aGHerlljbRwikjKTJk1i165d3Hvvvbz99tu8/fbbVKpUiZ07d/Lee+9ZHZ6IiMgd2Ww2Nm3aRHh4uMNy9uxZq0MTsUyaunjXr18fT09P1q5dm2SZFi1aEBERwZYtW+4qQKtkpy41InKLxYvhscfM+y1bmmM5avYTScYff5iNZ93czGFI3dysjkgkfeTUa5kaNWpw4cIFDh48aG9ZEh4eTqVKlShYsCB79+61NsB0lJ1eQ3XxFhG5e/q8k8ySFbt4p6kF5aFDh6iSVFfI/1SpUoVDhw6lpXoRkZSLijLHmYzz6KPQt6/ZHO7nn5WclDu67z5z4vbr181hP0Ukazty5AiPPPKIw5c2Ly8vHnnkEY4cOWJhZCIiIiKSVmnqP3jt2rU7ZvLd3NwIDw9PU1AiInd08ybMmgXjx5s/+fzzjzk+pM0Gn31mdXSSjdhs8Mkn5ozeDzxgdTQicieRkZEULVo0wfrChQsTGRlpQUQiIiIicrfSlKAsWbLkHbtub926leLFi6cpKBGRJEVHw9y5MG4cHD1qrvP3h7//hrp1rY1Nsq1HH7U6AhERERERkdwrTQnKdu3aMXXqVL788kueffbZBNtnzJjB5s2bGTBgwF0HKCICQEwMfPMNjBkDhw+b6woXhhEjzC7dGjhQRCTX2L9/PwsWLEiwDmDhwoUkNsR6ly5dMiU2EREREUm9NE2Sc/78eWrUqMHZs2dp0qQJLVq0oFixYpw+fZpVq1bxyy+/4O/vz+7du/Hz88uIuDNcdhqUXCRXOHjQHCwwNhYKFoT//Q9efBE8PKyOTHKINWtgwQLo2BHatrU6GpG7l1OvZZycnLDZbAnWx13S3r7NMAxsNhsxMTGZEl96yk6voSbJERG5e/q8k8ySFSfJSVMLSj8/P9avX0+PHj3YsGEDGzZswGaz2S8M69Spw7x587JtclJEsoDYWNi1C+rUMR9XrAgvvwxFikD//vGfpiLpZOVK+OILs7GuEpQiWdebb76ZaIJSRERERLKvNCUoAe6991527tzJzp072bFjB6Ghofj6+lK3bl0e0CwDIpJWhgFLl8KoUbBvH/z5p5mcBJg61dLQJGdr3hzeew9Wrzbfhsp/iGRNo0ePtjoEEREREUlnTndbQZ06dXjppZd47bXX6NevX7okJ6Oiohg+fDj+/v64u7tTr149Vq9eneL9v/32Wx588EE8PT3x9fWlQYMGrFu37q7jEpEMEBlpZoRmzjSTknXqmH1sf/vNbGf+35hiIhmtcWNwcYGTJ+HQIaujEZGkPPvssyxdutTqMEREREQkHaW5BWWcP/74g7/++ouIiAiefvrp9IiJwMBAFi1axMCBA6lQoQKzZs2ibdu2rF+/noYNGya77+jRoxk7diydOnUiMDCQmzdvsn//fk6fPp0usYlIChkGnDoFJ06Yy8mT8bctWpjdtAHOn4eWLR339fSEAQPg1Vchf/7Mj11yJQ8PCAiA9evNnHlcw10RyVpmzZpF6dKleeSRR6wORURERETSSZoTlDt37uS5555j37599nVxCcpffvmF1q1bM3/+/FRfPO7YsYP58+czadIkhgwZAkDPnj2pWrUqw4YNY8uWLUnuu23bNsaOHct7773HoEGD0nBWIpIuQkKgSxfYvDnx7fnyxSco/f2halUoUQJKloTy5aFXL9AYtmKBFi3iE5QvvWR1NCIiIiIiIrlDmhKUBw4c4KGHHsLJyYlBgwbx119/sWLFCvv2Ro0aUbBgQRYuXJjqBOWiRYtwdnbm+eeft69zc3Ojd+/evPbaa5w8eZISJUokuu/UqVMpUqQIAwYMwDAMhxmwRCQT2Wzwzz+QJ0984rFkyfj7NWrEl82b1xxrUiQLaNECXnvNTFJGR5tvYREREREREclYaRqDctSoUQDs2rWLyZMnUydult3/2Gw2HnzwQXbu3Jnquvfs2UPFihUTTD1et25dAPbu3ZvkvmvXrqVOnTp88MEH+Pn5kS9fPooWLcpHH32U6jhE5C4UKQLLlpkT3PzzD2zYAHPmwIQJ0Lcv1K9vdYQiiapVyxxVoGhR0MggIiIiIiIimSNNbUM2btzIE088Qfny5ZMsU7JkSVauXJnqukNCQihatGiC9XHrzpw5k+h+ly9f5sKFCwQHB7Nu3TpGjRpFyZIlCQoK4uWXXyZv3rz07ds3yeNGRUURFRVlfxwWFpbq2EVyrRs3YNAgcwC/p54y191/v7UxiaSBszMcPgz33GN1JCKSnMWLF3Ps2LEUl7fZbMycOTPjAhIRERGRu5KmBOXVq1cpVKhQsmWuXbtGTExMquu+du0arq6uCda7ubnZtycmPDwcgIsXLzJ//ny6du0KQKdOnahWrRrjx49PNkE5ceJExowZk+p4RXK9s2ehc2fYtAlmzzb7yGr8SMnGlJwUyfr27t2bbK+a2ylBmbkiIiKydH0iIiKS9aQpQVmiRAmHyXESs3v3bsqVK5fqut3d3R1aMsa5fv26fXtS+wHkzZuXTp062dc7OTnRtWtXRo0axYkTJyhZsmSi+48YMYLBgwfbH4eFhSU51qWI/GfnTnj8cXO2bm9vmDdPyUnJMW7cMIdTzZvX6khE5HaBgYH06tXL6jAkCYULF7Y6BBEREclm0pSgbN++PR988AFr1qyhefPmCbYvWLCAbdu2MXLkyFTXXbRoUU4nMvBXSEgIAP7+/onulz9/ftzc3PD19cXZ2dlhW1xrz8uXLyeZoHR1dU205aaIJGHOHHj+eYiKgnvvhSVLzFuRHODFF2HuXPjmG+jQwepoROR2pUuXpkmTJlaHIbfw8PAgICCA4ODgDDtGQEAAHh4eGVa/iIiIWCdNCcrXXnuNRYsW0bZtW3r16sW///4LwCeffMLWrVv55ptvKF26tEOLxJSqWbMm69evJywszGGinO3bt9u3J8bJyYmaNWuyc+dObty4gYuLi31b3LiVfmrZJXL3DMMcb3LaNPNxhw5mJsfHx9q4RNJZRASsXq0EpYhISthsNjZt2kRkZGSGHcPDwwObzZZh9YuIiIh10jSLt5+fHxs3bqROnTrMnDmTH3/8EcMw6N+/P/PmzaNOnTqsW7cOnzQkLDp16kRMTAzTp0+3r4uKiiIoKIh69erZu12fOHGCv/76y2Hfrl27EhMTw+zZs+3rrl+/zrx586hcuXKSrS9FJBVsNogbamHUKFi8WMlJyXFatDBvV6+2Ng4RkezEZrPh6emZYYuSkyIiIjlXmlpQApQtW5bg4GD27t3Ltm3buHTpEt7e3tSrV486deqkOaB69erRuXNnRowYwblz5yhfvjyzZ8/m2LFjDoOb9+zZk40bN2IYhn1d3759mTFjBi+99BIHDx6kZMmSzJ07l+PHj7Ns2bI0xyQimC0n474YjB8PbdtCo0bWxiSSQR56CJyc4K+/zCFWixe3OiIREREREZGcK80Jyjg1a9ZMtNt1bGwsc+bMITAwMNV1zpkzh5EjRzJ37lwuX75M9erVWb58OY0bN052P3d3d9atW8ewYcP48ssviYiIoGbNmvz444+0atUq1XGIyH++/RamT4effgJXV3B2VnJScjRfX6hTB7ZvN1tRPvOM1RGJSJygoKAkh/wRERERkezJZtzaBDGdzJs3j7Fjx3L48GFiYmLSu/pMERYWho+PD6GhoQ5jYYrkOjNmmJPhGAZMnQoDBlgdkUimGDnSbCzcrRt8/bXV0YikXk68ljEM4667+aZHHZklJ76GIiKStIiICLy8vAAIDw/H09PT4ogkp4qIgP/eaoSHQ0a+1VJ6PZOqMSgvXrzImDFjeOSRR3j88cd5//33uXbtmn370qVLqVKlCj179uTw4cM8/vjjaT8DEbHep5/Cc8+Zycl+/aB/f6sjEsk0zZubt2vWQGystbGIiKlq1aosXLgwTfuePHmSF154gXfeeSedoxIRERGRu5XiLt5nz56lbt26nDp1yj7u45IlS/jhhx9Yu3Ytffr04auvvgKgY8eOjBo1iurVq2dM1CKS8T78EF55xbw/aBC89178GJQiucCDD0Lr1tC4Mdy4AW5uVkckIhUqVKBr164MHz6cp59+mk6dOlG1atUkW0RevHiR1atX89VXX7F69Wry58/P3LlzMzlqEREREbmTFCcoJ0yYwMmTJ2nbtq19XMkvv/ySn3/+mYcffpjNmzfTuHFjpk2bRo0aNTIqXhHJDFOmwKuvmveHDYO331ZyUnIdFxdYscLqKETkVosXL2bjxo2MHDmScePGMX78eDw9PalZsyaFCxfG19eX69evc+nSJf7++2+OHj0KwD333MPw4cMZNmyYveuciIiIiGQdKR6D8t577yVv3rzs37/fvs4wDKpWrcpff/3F008/zaxZszIqzkynMX8k1zp3Du69F65cgddfh3HjlJwUEcmGcvq1zIEDBwgKCmLdunX8/vvvxN42FkOBAgVo1KgRjz32GF26dMHV1dWiSNMup7+GIiLiSGNQSmbJimNQprgF5cmTJ3nuuecc1tlsNpo3b85ff/3F6NGj0xysiGQhhQrBqlWwdi0MH67kpOR6586Z41A+/ri6eYtkJVWqVGHy5MmA+YXuzJkzXLx4EXd3d/z8/PD397c4QhERERFJqRQnKK9fv06BAgUSrM+fPz8ApUuXTregRCSTGQacOgUlSpiP69QxF5FczjCgVi04c8ZMUj78sNURiUhiPD09qVChAhUqVLA6FBERkXQRERGR4rIeHh5Jjscskl2kahZvEcmBDAPeeAOqVoUdO6yORiRLsdnik5Jr1lgbi4iIiIjkHoULF8bLyytFS6NGjUjh6H0iWVaKW1ACbN68mXfffTfBOoBJkyYl+gcxbNiwuwhPRDKUYZjduCdNMh//+ivUrWttTCJZTIsWMHcurF4NEydaHY2IiIiI5FQeHh4EBAQQHBycqv2Cg4OJjIzUmJWSraV4khwnp9Q3trTZbMTExKR6v6xAg5JLjmcYMGgQTJtmPv7oI3jpJWtjEsmCQkLA399sTXn+PCQy2olIlqRrmexPr6GISO5jGAaRkZEpKhsREUHhwoUBTaojqZOtJ8kJCgpKl8BEJAuIjYVXXoGPPzYff/45PP+8tTGJZFFFi5ojIOzfb84d1aWL1RGJiIiISE5ls9mUaJRcKcUJyl69emVkHCKSWWJj4cUXYfp0s0nYjBnw7LNWRyWSpbVoYSYoV69WglJERERERCS9aZIckdzm5k04fhycnGDWLCUnRVKgRQvzdvVqa+MQERERERHJiZSgFMltXF3hhx9g5Uro2dPqaESyhcaNYfZs2LLF6khEpEuXLnzzzTeEhoZaHYqIiIiIpBMlKEVyg+ho+Pprc2IcAHf3+CZhInJHnp5mPt/f3+pIRGT16tV0796dQoUK0bx5cz766CNOnDhhdVgiIiIicheUoBTJ6W7ehO7dzWXkSKujERERuSsXLlxg9erV9O3blyNHjvDKK69QpkwZ7r//fsaOHcvevXutDlFEREREUkkJSpGc7MYNePJJWLAA8uaFOnWsjkgk27p2DSZPho4dzUbJImINZ2dnHn74YT744AOOHj3K7t27GfnfD3CjR4+mdu3alClThoEDB7Ju3TpiYmIsjlhERERE7sRmGHF9PuVWYWFh+Pj4EBoaire3t9XhiKReVJQ53fDSpeDiAt9/D+3aWR2VSLYVEwN+fnD5MmzdCvXrWx2RSPJy47XMyZMn+eGHH1i6dCm//PILMTEx+Pr60q5dOx599FFatWqFl5eX1WGmWG58DUVEJOUiIiLs/9fCw8Px9PS0OCLJLiIiIO6SKDzcHNIqo6T0ekYtKEVyouvX4YknzOSkqyssWaLkpMhdcnaGhx4y72s2b5GsqUSJErzyyiusWbOGc+fOMWfOHB566CEWL15M586dKVSokNUhioiIiEgi8qRHJRs3bmTjxo28+eab6VGdiNwNwzCTkz/9ZE6Gs3QpNG9udVQiOUKLFvDdd2aCUkO6imRtvr6+dO/ene7du3Pjxg3Wrl3L0qVLrQ5LREQkQ0RERGRY3R4eHthstgyrXwTSKUG5YcMGxo4dqwSlSFZgs5ldu3/5xUxONmtmdUQiOUaLFubt1q1w9Srky2dtPCKSMi4uLrRp04Y2bdpYHYqIiEiGKFy4cIbVHRAQwKZNm5SklAylLt4iOVGvXvDPP0pOiqSzsmXNJToaNm60OhoRERERyc08PDwICAjI8OMEBwcTGRmZ4ceR3C1dWlCKiMWuXoWBA+GttyDulzM/P0tDEsmpmjeH6dNhzRpo397qaEREREQkt7LZbGzatCnDkocREREZ2jJT5FZKUIpkd2Fh0KYNbNkCf/0Fmzeb3bxFJEO0aAFz5kBUlNWRiIiIiEhuZ7PZNHu35Ajp0sW7Zs2a9OzZMz2qEpHUuHIFWrY0k5O+vjBtmpKTIhmsQwe4fBk+/dTqSEQkI0VFRTF8+HD8/f1xd3enXr16rF69+o77lS5dGpvNluhSoUKFTIhcREREJPtJlxaUjz76KI8++mh6VCUiKRURYTbl+vVXyJ/f7G9aq5bVUYnkeK6uVkcgIpkhMDCQRYsWMXDgQCpUqMCsWbNo27Yt69evp2HDhknuN3XqVMLDwx3WHT9+nDfeeIOWLVtmdNgiIiIi2ZK6eItkV5MmmcnJggXN5GSNGlZHJJLrXLwIBQpYHYVI7nT8+HF+/fVXbDYbDzzwACVLlky3unfs2MH8+fOZNGkSQ4YMAaBnz55UrVqVYcOGsWXLliT37dixY4J148ePB6B79+7pFqOIiEhmioiISLDOw8NDM3tLutEs3iLZ0enT8O675v1PP1VyUiSTnT9v/tmVKAHXrlkdjUjuM2DAAMqVK0eXLl3o3LkzZcuWZfDgwelW/6JFi3B2dub555+3r3Nzc6N3795s3bqVkydPpqq+r7/+mjJlytCgQYN0i1FERCQzFS5cGC8vL4elUaNGGIZhdWiSQyhBKZIdXbkClStDQAA88YTV0YjkOgULmuNQXrsG69ZZHY1I7jJ79mw+/PBDXF1dadWqFa1atcLV1ZVp06bx1Vdfpcsx9uzZQ8WKFfH29nZYX7duXQD27t2bqrr+/PNPnnrqqTuWjYqKIiwszGERERGxioeHBwEBAUluDw4OzrAZxCX3UYJSJDuqUgV27IAfftCkOCIWsNmgfXvz/vLl1sYiktvMnDkTd3d3duzYwU8//cRPP/3Ejh07cHNzY8aMGelyjJCQEIoWLZpgfdy6M2fOpLiuefPmASnr3j1x4kR8fHzsS4kSJVJ8HBERkfRms9nYtGkT4eHhDsvZs2etDk1yICUoRbIrJyfw87M6CpFcq0MH83b5clDPFpHMs3//fh5//HGqVKliX1elShUee+wxfv/993Q5xrVr13BNZEYsNzc3+/aUiI2NZf78+dSqVYv77rvvjuVHjBhBaGiofUltV3IREZH0ZrPZ8PT0TLCIpDclKEWyk+XLYfRocwZvEbFUs2bg4QGnTsFvv1kdjUjuERoaStmyZROsL1u2bLp1iXZ3dycqKirB+uvXr9u3p8TGjRs5ffp0iifHcXV1xdvb22ERERERyQ2UoBTJLm7cgMGDYcwYeP99q6MRyfXc3KBFC/P+smXWxiKSmxiGgbOzc4L1zs7O6TZQf9GiRQkJCUmwPm6dv79/iuqZN28eTk5OdOvWLV3iEhEREcmp8tzNzjt27GDnzp1cuXKFmJiYBNttNhsjR468m0OISJxPP4VDh6BQIRgwwOpoRARzHMolS8zGzfp3J5J5IiIiOHfunMO68PBwAM6fP59oorJQoUIprr9mzZqsX7+esLAwh1aM27dvt2+/k6ioKL777juaNm2a4oSmiIiISG6VpgTlpUuX6NixI8HBwcn+Uq0EpUg6uXTJbDkJMG4c5MtnbTwiAkC7dtCzZ/x4lCKSOSZPnszkyZMTrDcMgyJFiiRYb7PZiI6OTnH9nTp1YvLkyUyfPp0hQ4YAZsIxKCiIevXq2SevOXHiBJGRkVSqVClBHT/99BNXrlxJcfduERERkdwsTQnKwYMHs3nzZpo2bUqvXr0oXrw4efLcVWNMEUnO+PFw+TJUrQrPPmt1NCLyn6JFYfZsq6MQyV0aN26MzWbL0GPUq1ePzp07M2LECM6dO0f58uWZPXs2x44dY+bMmfZyPXv2ZOPGjYn+YD9v3jxcXV154oknMjRWERERkZwgTVnF5cuXU7duXdauXZvhF4giud6hQ/DRR+b9994D/RggIiK52IYNGzLlOHPmzGHkyJHMnTuXy5cvU716dZYvX07jxo3vuG9YWBg//vgj7dq1w8fHJxOiFREREcne0pTpuHbtWqb8ei0iwBtvwM2b0Lo1tGxpdTQichvDgL174ccfYcgQc/IcEck4c+bMoWbNmlSvXj1Dj+Pm5sakSZOYNGlSkmWSSpZ6e3tz7dq1DIpMREREJOdJ0yzeNWvW5NixY+kciogk6u234cknIZGxtkQka+jQwZwkJ5MadonkaoGBgSxevNjqMEREREQkHaUpQTlq1CiWLl3Ktm3b0jseEbldmTLwzTdQpYrVkYhIImw2czZvgGXLrI1FREREREQkO0pTF+9///2Xdu3a0aRJE7p3787999+Pt7d3omV79ux5VwGK5FphYZDE35WIZC3t28Pnn8Py5eaQsRoBRUREREREJOXSlKAMDAzEZrNhGAazZs1i1qxZCcajNAwDm82mBKVIWkRGmjN2N2oEH3wABQpYHZGIJOPhh8HdHU6cgH37IIOHxhMREREREclR0pSgDAoKSu84RORWU6bAyZMQHAyenlZHIyJ34O5uJimXLzcXJShFMtbevXuZM2dOqvbRj+YiIiIiWZfNMAzD6iCyorCwMHx8fAgNDU2y+7pIhggJgQoVICLCHHvyySetjkhEUmD6dOjbF+rXh61brY5GJOdeyzg5OSXouZOcuF49MTExGRhVxsipr6GIiGRvEREReHl5ARAeHo6nGtVkOxER8N9LSPj/27vz+Jju/Y/j78ki+4ISidrXoq5qiTZ2Vaobra0LcusWLUWtlxalal+qdbWXqq0LpUWL29q32ItuP0upiEssLRJJZJPz+2NuhjSLZLKcSfJ6Ph7nYeZ7vufMZ/JlfPOZ7xKTv+OistufsWsEJYB8NGaM9dOiSROpWzezowGQTU88Yf3z+HHrf/Kp/+EDyHstWrRQixYtzA4DAAAAeSRXCcrw8HB99tlnOnr0qKKjo+Xr66sGDRroxRdfVOXKlfMoRKAY+fFH6ZNPrI9nzWKnDaAQKV/eOnKyYUOpRAmzowGKtpYtW2rs2LFmhwEAAIA8YneCcs6cORoxYoSSk5N15yzxr776ShMmTNC0adM0aNCgPAkSKBYMQxo61Ppn167Sww+bHRGAHGrSxOwIAAAAAKDwcbLnonXr1umNN96Qn5+fJk6cqD179ujMmTPau3evJk2aJD8/Pw0ZMkTr16/P63iBoisyUvr1V+vQqylTzI4GQC4YhvUAAAAAANydXSMoZ82apVKlSunw4cO69957beWVKlVScHCwXnzxRT3wwAOaNWuWnkhdlAtA1oKCpN9+k/bskapUMTsaAHaaOFFavFj68EOpbVuzowEAAAAAx2fXCMrDhw+rW7duaZKTd6pQoYK6du2qH374IVfBAcWOt7f02GNmRwEgF86elU6flr791uxIgKKpV69eatCggdlhAAAAIA/ZlaBMTEy86zby3t7eSkxMtCsooFhZsUKaMYP5oEAR8eST1j/XreOfNZAfFi1apKefftrsMAAAAJCH7EpQ1qxZU99++62Sk5MzPJ+cnKx169apZs2auQoOKPIOHZJCQ6Xhw6UvvzQ7GgB54NFHJTc36cwZ6f/+z+xoAAAAAMDx2ZWg7Nmzp06cOKF27dqlm8Z96NAhPf744zpx4oR69eqVJ0ECRVJkpNSxoxQfL3XoIHXubHZEAPKAl5fUurX1MdO8AQAAAODu7EpQDho0SE8//bS2bdumxo0by8fHR9WqVZOPj4+Cg4O1ZcsWPf300xo0aFBexwsUDfHxUqdO0vnz0n33SZ9/Ljk7mx0VgDzy1FPWP9etMzcOAAAAACgM7EpQOjs7a82aNVq8eLFatmypEiVKKCIiQiVKlFCrVq20ZMkSrV69Wk5Odt0eKNoMQ+rTR9q/XypZUvrmG8nPz+yoAOSh1HUo9+6V/vjD3FgAAAAAwNG55Obinj17qmfPnnkVC1A8zJghLVtmHTG5cqVUvbrZEQHIYxUqSE88Yf0zPt7saAAAAADAseUqQQnADl5e1uTke+9JbdqYHQ2AfML0bgAAAADIHhKUQEF77TWpVSupdm2zIwEAAAAAADBdthaJdHJykouLi06ePGl77uzsfNfDxYX8JyBJunpVun799vP77pMsFtPCAVAwbt2Sdu+W/vffJ4B8ULVqVVWrVk1nzpxJd+7333+3nQcAAIDjylYGsXnz5rJYLPL09EzzHEA2JCVJXbtK585ZN8SpVcvsiAAUkIEDpXnzpMGDpdmzzY4GKJrCw8NlsViUlJSU7lxSUpLtPAAAABxXthKU27dvz/I5gCwMGSJt2WJdezIhwexoABSgRx+1Jii//VaaNYuB00B+SB05Wb58+XTnMhtZCQAAAMfCHGwgP82fL82da3386adS/frmxgOgQLVtK5UoIZ0+LZ04wdKzQH6oVKlSpudcXFyyPA8AAADHkK01KLMrPDxcCxYs0LJlyxQTE5OXtwYKnx07pP79rY8nTpQ6djQ1HAAFz9vbuieWZB1FCQAAAABIz64E5aRJk1SlShVdu3bNVrZ9+3bVq1dP/fr1U2hoqBo2bKirV6/mWaBAoXLmjPTcc1JystS9uzR6tNkRATDJk09a/1y3ztw4AAAAAMBR2ZWgXLNmjSpXrqySJUvaykaOHKmUlBSNHz9er776qk6dOqX33nsvr+IECpfXX5f+/FN68EFp4UIWngOKsdQEZViYxPd2QN7bvHmzOnTooDJlysjV1VXOzs7pDhcXVjUCAABwZHb11sLDw9WlSxfb8wsXLujgwYMaOnSo3nrrLUnSiRMntHr1ak2YMCFvIgUc1Z9/Slu3SrduWUdLStInn1ind8+eLXl6mhsfAFNVrizVqyf98ou0cePtjwkAuffVV1+pW7duSklJUaVKlVS7dm2SkQAAOCDDMBQXF5ejazw9PWVhsE+xYVcPLjo6Wv7+/rbnO3fulMVi0VNPPWUra9iwoT766KNcBwg4nIQE61CoTZukzZulH36QDEOqWfN25qFsWWnlSnPjBOAwZs2SfH2lRo3MjgQoWiZMmCAPDw+tXbtWrVu3NjscAACQAcMw1LRpU+3ZsydH14WEhGjXrl1pkpQpKSmSJCenPN1SBQ7ArgRlQECAzp49a3u+adMmubm5KTg42FYWHx9PphtFzz/+IX3+uXTzZtryunWt2/UmJUmurubEBsBhtW1rdgRA0XTixAn16NGD5CQAAA4sLi4ux8lJSQoLC1NcXJy8vLwkWZOTzs7OkqRbt26RpCxi7EpQNmrUSGvXrtW6devk7u6uFStWqFWrVnJzc7PVOXPmjIKCgvIsUKBAJSRIW7ZI339vnaad+sHn5GRNTpYrZ804PPqo9eDvOoBs4nsMIO+ULl1aniylAgBAoXHp0iVbwjEzsbGxCggISFf+xx9/pHlctmzZPI8P5rErQTl69GitX79ezzzzjCTJYrFo9B27FCckJGjnzp3q1KlT3kQJFIS4OGtC8quvpG+/laKjreVdu0ohIdbHw4ZJAwdaR0wyQhhADly+LI0eLR07Ju3ezUcIkBc6d+6szZs3Kzk5mbUnAQAoBLy8vO6aoLxTbGxsho9R9NjVk2vYsKH27dunZcuWSZK6du2qxo0b284fOXJErVq10gsvvJA3UQL56cgRadIkacMGa5IyVWCg9Oyz0j333C6rWbPg4wNQJBiGtHy5FBsrrV5t/XgBkDuTJk3SoUOH1K1bN82ePVsVK1Y0OyQAAIqV7CQNc5NYzGgkJYomi2EYhtlB/FVCQoLGjh2rZcuW6dq1a6pfv74mTpyotjlcxKtt27bavHmz+vfvr7lz5+bo2ujoaPn5+SkqKkq+vr45uhYO7to1ayKyfHnr8z17bo+QrFRJeu4569Gkye2p3QCQB8aNkyZMsH7X8euvEgO+kJ+KQ1+matWqSkpK0oULFyRJ/v7+8vPzS1fPYrHo9OnTBR1erhWHNgQAFD6xsbHy9va269qYmJi7jqA0DEPNmjVTWFhYpnVu3LhhdwywDppI/fHFxEg5GNSaY9ntzzhk9iU0NFSzZs3Siy++qDlz5sjZ2VkdOnTQ7t27s32Pr7/+Wnv37s3HKFGoJCZKn30mtWtn3WF7woTb55o0kcaPlw4elM6ckWbOlB55hOQkgDw3dKhUpox08qT0ySdmRwMUfikpKXJxcVHFihVVsWJF+fr6yjCMdEfqjp8AACD3PD09FZI6yCcHQkJCsrV2tMVi0a5duxQTE5PmuHTpUpo6KFqyNYJy6dKlkqROnTrJx8fH9jw7evbsmaOADhw4oODgYE2fPl3Dhg2TZN0RvF69eipbtmy2dn6Kj4/Xfffdp5dfflljx45lBGVxFhkp/fvf0kcfSXd8mKlNG2nzZvPiAlBsffCBdSnbwEDpt9/y99tKFG/0ZQo/2hAA4KgMw1DcnUukZYOnp2euEot3jtzMzkhMZM4RR1Bma3JZaGioLBaLmjRpIh8fH9vzrBiGIYvFkuME5apVq+Ts7Kw+ffrYytzd3dW7d2+NHj1a586dU4UKFbK8x7Rp05SSkqJhw4Zp7NixOXp9FCGDBkkffmjdMley7rTdt6/UvTtrSQIwTd++0uzZ1gHbc+ZYN84BAAAAChOLxUKCEHkqWwnKTz75RBaLRYGBgZKkRYsW5VtAR44cUc2aNdNlVVM34Tl69GiWCcqIiAhNmTJFn3zyiTw8PPItTjighATJ1fX21GxfX2tyMiREev11644Urq7mxgig2CtRQpo4UXrxRWnBAmnECNaiBPJCcnKyTpw4oejoaPn6+qpWrVrs7A0AAFBIZHsE5Z169eqVH7FIkiIjI22J0DullqUugp6ZoUOH6oEHHlD37t1z9LoJCQlKSEiwPY+Ojs7R9TBRZKR1CvdHH0mLFkkdOljLBwyQOnWSGjY0Nz4A+Ivu3aWLF6W//53kJJBbV69e1ciRI/X5558rPj7eVu7h4aEXXnhBkydPVunSpU2MEAAAAHfjcL8W3bx5U25ubunK3d3dbeczs23bNn311Vfav39/jl938uTJGj9+fI6vg0kMQ9q/X3r/fWnlSik52Vr+2We3E5QBAdYDAByMk5M0ZIjZUQCF39WrV9WkSROdOnVKpUqVUrNmzRQYGKiLFy/q0KFD+vjjj7Vjxw7t3btXpUqVMjtcAAAAZMKubYrDwsI0ZMgQXbx4McPzkZGRGjJkiPbt25fje3t4eKQZyZgq9RvxzKZtJycna+DAgerRo4caNWqU49cdNWqUoqKibMe5c+dyfA8UAMOQXntNql1bevhh6YsvrMnJkBBpxQpp8WKzIwSAHDEM6ehRs6MACqd33nlHp06d0vDhw3X27Fl99913WrRokf7zn//o7NmzGjlypH777Te9++67ZocKAACALNiVoJw1a5a+/fZblStXLsPzgYGBWrdunWbPnp3jewcGBioyMjJdeWpZUFBQhtctXbpUJ06cUN++fRUeHm47JOnGjRsKDw/PcocpNzc3+fr6pjlgosREad8+aebMtMOMLBbpyBHp5EnJzU0KDZV++EHavVvq2pU1JgEUKgkJUsuW1pUofvrJ7GiAwmft2rVq2bKlpk6dmm6hfk9PT02ePFktW7bU6tWrTYoQAAAA2WHXFO+DBw+qTZs2WdZp3ry5Nm3alON7N2jQQNu2bbMtcJ4qddp2gwYNMrwuIiJCSUlJCgkJSXdu6dKlWrp0qVavXq2OHTvmOCYUgOvXpT17pLAwa7LxwAEpdR0pJydp/HjJx8f6fMwYKSXFOmqyZEnTQgaA3HJzs65EYRjSqFHS+vVmRwQULhcuXNDzzz+fZZ2HH35Ye/bsKaCIAAAAYA+7EpSXL19W+fLls6xTrlw5Xb58Ocf37ty5s2bMmKH58+dr2LBhkqwb2CxatEjBwcG2HbwjIiIUFxen2rVrS5K6d++eYfKyU6dO6tChg1555RUFBwfnOJ5898MPUlSU5OFhPdzd0/7p42MdNZgRw7Am8aKjpZgYqVq12+c2bZKOH7feOzpaunHDWj/V++9bt5KVrNOis5qOP2OG5O1tffz559LOnZnXffddKXUh+sWLpW++sY6GvPNISLD+uW6dVKmStW7//tZ736l0aWsSMiREunXrdnnqGpMAUAS8+6709dfShg3Sjh1SixZmRwQUHn5+fjp79myWdc6ePSs/P78CiggAAAD2sCtB6e/vr4iIiCzrnD17Vt6pSa0cCA4OVpcuXTRq1ChdvnxZ1atX15IlSxQeHq6FCxfa6vXs2VM7duyQ8b+kW+3atW3Jyr+qUqWK446cHD1a2rgx43MWS9rE3N//bk08urhYE5LR0VJSkvWcs7P1cWoy86OPrL/xZubO6ffbtklLl2Zed+LE2wnKXbukf/8787qjRt1OUP7yi5TVlKrY2NuPmzaVDh60JiObNrX+WatW5slZACgiatSQ+vSRPvxQGjlS2ruXjz4gu1q0aKGVK1cqNDRUjz76aLrzW7Zs0cqVKx23HwgAAABJdiYomzRpotWrV+vcuXO2EY13ioiI0Jo1a9S6dWu7glq6dKnGjBmjZcuW6dq1a6pfv77WrVun5s2b23U/h1apklSnjnUk5M2baf90d0/7W+rly9L58+nvYbFIXl7W6zw9rWUhIdakpZ+f5OtrTTA6O9++xuWOpu/UKe3oy79KvackPfmkFBiYed07Ryg8+6z1N+8SJayHq+vtxyVKSBUr3q7br5/06quZ3xcAirCxY6UlS6T9+63f6zz7rNkRAYXDuHHjtH79erVr104dOnRQixYtFBAQoEuXLmn79u36z3/+I09PT40dO9bsUAEAAJAFi2HcOe83e3bu3KlWrVqpfPnymjhxotq2bWvb3Gbjxo166623FBkZqa1btxbapGJ0dLT8/PwUFRVlzoY5hmGdCu3ufrssPFy6etU6UtLHx5p49POzJied7NrvCADgIMaMsQ5Yr1XLOgDdxa6vEIHbTO/LFJDdu3crNDRUv//+uyTJYrHYZthUq1ZNixcvznCN8sKguLQhAADZERsba5upGxMTk26DPGRfbOztibIxMda0Un7Jbn/GrgSlJM2ZM0dDhw61dQDv7Aw6OTnpvffeU//+/e25tUOgQwgAKEjR0VLVqtZNc9avlypXNjsiFHbFqS9jGIbCwsJ05MgR20aLDzzwgEJCQmQpxGsmFKc2BADgbkhQ5h1HTFDaPT5j0KBBatWqlT766CMdPHhQUVFR8vf3V+PGjdWvXz/Vq1fP3lsDAFDs+Ppa9yCrVSvtihwA7s5isahp06Zq2rSp2aEAAADADrmaQFa/fn3Nmzcvr2IBAKBYq1PH7AiAoiE8PFybNm2Su7u7OnXqZNfGjQAAACg4LFwIAICDiY+XZs+W/vzT7EgAxzZp0iRVqVJF165ds5Vt375d9erVU79+/RQaGqqGDRvq6tWrJkYJAACAu7E7QZmcnKzZs2ercePG8vX1lcsdq/kfPXpUr732mk6ePJknQQIAUJx07iwNGSJNnmx2JIBjW7NmjSpXrqySJUvaykaOHKmUlBSNHz9er776qk6dOqX33nvPvCABAECei42NzfZh59YrKGB2JShv3rypVq1aadiwYTp79qx8fX3TNHiVKlW0aNEiLV26NM8CBQCguEjdY+6DD6SICHNjARxZeHi46tyxNsKFCxd08OBB9e/fX2+99Zbmzp2rNm3aaPXq1SZGCQAA8lpAQIC8vb2zdTRr1owkZSFgV4Jy0qRJCgsL0+TJk3Xx4kX94x//SHPez89PLVq00Pfff58nQQIAUJy0by+1bCklJkrjxpkdDeC4oqOj5e/vb3u+c+dOWSwWPfXUU7ayhg0bKoJMPwAAhZ6np6dCQkJyfF1YWJiuXLnCqEoHZ1eCcsWKFWrVqpVGjBghi8Uii8WSrk7VqlXpDAIAYAeLRZo61fp4yRLpl1/MjQdwVAEBATp79qzt+aZNm+Tm5qbg4GBbWXx8fIZ91btJSEjQyJEjFRQUJA8PDwUHB2vTpk3Zvn7FihV6+OGH5eXlJX9/fz3yyCPaunVrjuMAAABWFotFu3btUkxMTLaOS5cu2a7964hLRlU6HrsSlBEREXrooYeyrOPj46OoqCi7ggIAoLhr3Fh67jnJMKQpU8yOBnBMjRo10tq1a7Vu3Tpt3rzZ9iW6m5ubrc6ZM2cUFBSU43uHhoZq1qxZevHFFzVnzhw5OzurQ4cO2r17912vffvtt/X888+rQoUKmjVrliZOnKj69evr/PnzOY4DAADcZrFY5OXlla2jTJkymY64DAsLU1xcXAFHj6y43L1Kej4+Prp8+XKWdU6fPq0yZcrYFRQAAJBGj5a++kpascKapLz3XrMjAhzL6NGjtX79ej3zzDOSrL+0jB492nY+ISFBO3fuVKdOnXJ03wMHDmj58uWaPn26hg0bJknq2bOn6tWrpxEjRmjPnj2ZXrtv3z5NmDBBM2fO1BtvvGHHuwIAAHkhdcTlnYnI2NhYBQQEmBgVMmNXgrJJkyb69ttvdf369TTr/qQ6d+6cNmzYkOPOIAAAuK1hQ6l1a8nXV4qPNzsawPE0bNhQ+/bt07JlyyRJXbt2VePGjW3njxw5olatWumFF17I0X1XrVolZ2dn9enTx1bm7u6u3r17a/To0Tp37pwqVKiQ4bXvvfeeypUrp0GDBskwDMXGxsrb29uOdwcAAHIrdcQlHJ9dU7yHDx+ua9euqU2bNgoLC1NycrIkKS4uTlu2bFG7du2UnJysIUOG5GmwAAAUN999J61eLVWvbnYkgGP629/+phkzZmjGjBlpkpOS9Uv11atXq23btjm655EjR1SzZk35+vqmKU+9/9GjRzO9dsuWLWrUqJHef/99lSlTRj4+PgoMDNTcuXNzFAMAAEBxYtcIyubNm2vu3LkaNGiQmjdvbiv38fGRJDk7O2vevHl68MEH8yZKAACKKVdXsyMAip/IyEgFBgamK08tu3DhQobXXbt2TX/88YfCwsK0detWjRs3ThUrVtSiRYv0+uuvy9XVVX379s30dRMSEpSQkGB7Hh0dnct3AgAAUDjYlaCUpFdffVUtW7bURx99pP379+vq1avy9fVVcHCwXnvtNdWtWzcv4wQAoFg7c0ZatEgaO1Zysft/b6BwW7p0qSSpU6dO8vHxsT3Pjp49e2a77s2bN9NstJPK3d3ddj4jMTExkqQ///xTy5cvV7du3SRJnTt31v3336+JEydmmaCcPHmyxo8fn+04AQAAigq7fsXZuXOnfH191aBBA82ZMyevYwIAAHdITpYeeUS6eFGqV0/q2tXsiABzhIaGymKxqEmTJvLx8bE9z4phGLJYLDlKUHp4eKQZyZgq/n+LwXp4eGR6nSS5urqqc+fOtnInJyd169ZN48aNU0REhCpWrJjh9aNGjUqzRFJ0dHSma10CAAAUJXYlKFu1aqW+fftq3rx5eR0PAAD4CxcXqU8facIEaeZMqUsX6S45GaBI+uSTT2SxWGxTrRctWpQvrxMYGKjz58+nK4+MjJQkBQUFZXhdqVKl5O7uLn9/fzk7O6c5V7ZsWUnWaeCZJSjd3NwyHLkJAABQ1NmVoCxbtqxtigsAAMh/r70mTZ0qHTgg7dkjhYSYHRFQ8EJDQ9M879WrV768ToMGDbRt2zZFR0en2Shn//79tvMZcXJyUoMGDXTw4EElJiaqRIkStnOp61aWKVMmX2IGAAAozOzaxbtt27bavn27DMPI63gAAEAGAgKkl16yPp4509xYgKKuc+fOunXrlubPn28rS0hI0KJFixQcHGybdh0REaHjx4+nubZbt266deuWlixZYiuLj4/XZ599pjp16mQ6+hIAAKA4sytBOWXKFP3555/q06ePrl69mtcxAQCADKQuTbdmjXTqlKmhAA4hLCxMQ4YM0cWLFzM8HxkZqSFDhmjfvn05um9wcLC6dOmiUaNGacSIEZo/f75at26t8PBwTZs2zVavZ8+euu+++9Jc27dvX9WtW1f9+/fX8OHD9cEHH6h58+Y6e/asZsyYkfM3CQAAUAzYNcX7pZdekr+/vz755BN9+umnqlKligICAtItUm6xWLRly5Y8CRQAgOKuTh3p8cel//xHmjNH+uADsyMCzDVr1iz99NNPmjVrVobnAwMDtW7dOp0/f14rVqzI0b2XLl2qMWPGaNmyZbp27Zrq16+vdevWqXnz5lle5+Hhoa1bt2rEiBH65JNPFBsbqwYNGmj9+vVq165djmIAAAAoLuxKUG7fvt32OCEhQcePH083vUXSXXdVBAAAOTNkiBQWJpUqZXYkgPkOHjyoNm3aZFmnefPm2rRpU47v7e7urunTp2v69OmZ1rmzT3ynsmXLavHixTl+TQAAgOLKrgRlSkpKXscBAACyoU0b6b//lXx8zI4EMN/ly5dVvnz5LOuUK1dOly9fLqCIAAAAYA+71qAEAADmsFhITgKp/P39FRERkWWds2fPytvbu4AiAgAAgD1ylKDcu3evWrduLR8fH/n6+qpt27bav39/fsUGAAAyYRjStm3S1q1mRwKYp0mTJlq9erXOnTuX4fmIiAitWbNGjzzySAFHBgAAHF1sbGy6wzAMs8MqtrKdoPz555/Vpk0bbd++XbGxsYqJidGWLVvUunVr/frrr/kZIwAA+IuPP5Zat5beeMOarASKoyFDhiguLk4hISFaunSpIiMjJVl3716yZIlCQkJ08+ZNDR061ORIAQCAowkICJC3t3eao1mzZiQpTZLtBOWUKVMUHx+vN998UxcvXtTFixc1ZswY3bx5U1OnTs3PGAEAwF8895zk6Sn99JO0ZYvZ0QDmaN68uWbNmqULFy7o73//u+699165uLjo3nvv1csvv6yLFy9qzpw5d915GwAAFA+enp4KCQnJ9HxYWJji4uIKMCKkshjZTA1XrFhRlStX1s6dO9OUt2jRQuHh4Tp79my+BGiW6Oho+fn5KSoqSr6+vmaHAwBAOq+/Ls2dKz3+uLRhg9nRwNEUp77MTz/9pI8++kgHDx5UVFSU/P391bhxY/Xr10/16tUzOzy7Fac2BACgoBiGkS4JGRsbq4CAAElSTEyMvLy8zAitwMTGSqlLdMfESPn5drPbn8n2Lt6XLl1S9+7d05UHBwezDiUAACYYPFj617+k//xH+r//k+rUMTsiwBz169fXvHnzzA4DAAAUAhaLpcgnIAujbE/xTkpKynAHRC8vLyUlJeVpUAAA4O6qVZM6dbI+njXL3FgAAAAAwF452sUbAAA4ltS9P5Ytky5dMjcWwAzJycmaPXu2GjduLF9fX7m43J4gdPToUb322ms6efKkiRECAADgbrI9xVuSPv30U+3bty9N2alTpyRJHTp0SFffYrFo/fr1uQgPAABk5ZFHpCZNpKtXpYgI6X9L5wDFws2bN/XYY49pz549uueee+Tr66vY2Fjb+SpVqmjRokUqVaqUJk6caGKkAAAAyEqOEpSnTp2yJST/6rvvvktXZrFY7IsKAABk2+rVUtmykhPzIlDMTJo0SWFhYZoyZYqGDx+u8ePH65133rGd9/PzU4sWLfT999+ToAQAAHBg2U5QnjlzJj/jAAAAdipXzuwIAHOsWLFCrVq10ogRIyRl/OV41apVdeTIkYIODQAAADmQ7QRlpUqV8jMOAACQSzdvSl99Jb3wAqMpUTxERESoU+pOUZnw8fFRVFRUAUUEAAAAe+RoijcAAHBMKSnS3/4m/fab5OcnPfWU2REB+c/Hx0eXL1/Oss7p06dVpkyZAooIAAAA9mB8BQAARYCTk9Sxo/XxzJmmhgIUmCZNmujbb7/V9evXMzx/7tw5bdiwQc2bNy/YwAAAAJAjjKAEAKCIGDhQmj1b2rFDevddqWRJa3n37lKpUtbHBw9aj79ycrLuBt6gQYGFC+Ta8OHD1apVK7Vp00bvv/++kpOTJUlxcXHau3evXn/9dSUnJ2vIkCEmRwoAAICskKAEAKCIuPdeqVs36bPPpLfeul3eosXtBOX69dL48ZnfY80a6Zln8jVMIM80b95cc+fO1aBBg9KMkvTx8ZEkOTs7a968eXrwwQfNChEAAADZQIISAIAiZPJkycVFiom5Xebre/txnTrSc8+lvy4mRvrhB6lt29tlq1dLycnW9Szd3fMvZiA3Xn31VbVs2VIfffSR9u/fr6tXr8rX11fBwcF67bXXVLduXbNDBAAAwF1YDMMwzA7CEUVHR8vPz09RUVHyvfM3OwAAiqiEBMnNzfrYMKR69aT/+z/rVPHu3aVevaTGjSWLxdw4kT3FoS+zc+dO+fr6qkERXZugOLQhAACOIDY2Vt7e3pKkmJgYeXl5mRxR/oqNlf73dhUTI+Xn281uf4ZNcgAAgKTbyUlJSky0TvUuX166dk368EPrGpX33Wcdpfnf/5oXJ5CqVatWmj9/vtlhAAAAIJdIUAIAgHTc3KRJk6SzZ6WNG6UXX5Q8PKQTJ6TRo6Xhw82OEJDKli0rd9YfAAAAKPRYgxIAAGTK2dm6LmXbtlJ0tLRqlbRkiRQaanZkgNS2bVtt375dhmHIwtoDAAAAhRYjKAEAQLb4+kovvyzt2CG1a3e7/Pp100JCMTdlyhT9+eef6tOnj65evWp2OAAAALATIygBAIBdwsOtCcuzZ6WTJ62jLYGC9NJLL8nf31+ffPKJPv30U1WpUkUBAQHpRlNaLBZt2bLFpCgBAEBhEhsbm+26np6ezOLIIyQoAQCAXcqUkX78Ubp6VVq7Vnr2WbMjQnGzfft22+OEhAQdP35cx48fT1ePXxwAAEB2BQQEZLtuSEiIdu3aRV8jDzDFGwAA2MXLS+rXz/p45kxzY0HxlJKSkq3j1q1bZocKAAAcmKenp0JCQnJ8XVhYmOLi4vIhouKHBCUAALDbgAFSiRLSnj3Svn1mRwMAAADknMVi0a5duxQTE5Ot49KlS2aHXOSQoAQAAHYLDJReeMH6eNYsc2NB8bF37161bt1aPj4+8vX1Vdu2bbV//36zwwIAAIWYxWKRl5dXtg/kLRKUAAAgV4YMsf751VfSmTPmxoKi7+eff1abNm20fft2xcbGKiYmRlu2bFHr1q3166+/mh0eAAAA7ECCEgAA5Mr990tt20opKdLHH5sdDYq6KVOmKD4+Xm+++aYuXryoixcvasyYMbp586amTp1qdngAAACwg8UwDMPsIBxRdHS0/Pz8FBUVJV9fX7PDAQDAoe3ZI50+LXXrZl2TEuYrqn2ZihUrqnLlytq5c2ea8hYtWig8PFxnz541KbK8V1TbEACAwi42Nlbe3t6SpJiYmEI35Ts2Vvpf+IqJsW5+mV+y259hBCUAAMi1Rx6RevQgOYn8d+nSJTVp0iRdeXBwMAvWAwAAFFIkKAEAQJ5KTrYeQH5ISkqyjVi4k5eXl5KSkkyICAAAALlFghIAAOSZxYulGjWkFSvMjgQAAABAYeFidgAAAKDo+O9/pfBwaeZM6YUXJIvF7IhQFH366afat29fmrJTp05Jkjp06JCuvsVi0fr16wskNgAAAOQcCUoAAJBnXn1VmjRJOnJE2rFDatnS7IhQFJ06dcqWkPyr7777Ll2ZhUw5AACAQyNBCQAA8kzp0lJoqPThh9ZRlCQokdfOnDljdggAAADIYyQoAQBAnho8WProI2ndOun4cal2bbMjQlFSqVIls0MAAABAHmOTHAAAkKdq1pSeesr6+L33TA0FAAAAQCFAghIAAOS5oUOtfy5ZIl27Zm4sAAAAABwbCUoAAJDnmjWTRo6Utm6VSpY0OxoAAAAAjow1KAEAQJ6zWKQpU8yOAgAAAEBhwAhKAACQ71JSzI4AAAAAgKMiQQkAAPLNH39Ir78uNWlCkhIAAABAxkhQAgCAfOPqat0o5+BB6bvvzI4GAAAAgCMiQQkAAPKNn5/0yivWxzNnmhsLAAAAAMdEghIAAOSrgQMlZ2frjt5Hj5odDQAAAABHQ4ISAADkq0qVpM6drY9nzTI3FgAAAACOhwQlAADId0OHWv/84gvp/HlzYwEAAADgWBwyQZmQkKCRI0cqKChIHh4eCg4O1qZNm+563ddff61u3bqpatWq8vT0VK1atTR06FBdv349/4MGAACZatRIatZMSk6WPvjA7GgAAAAAOBIXswPISGhoqFatWqXBgwerRo0aWrx4sTp06KBt27apadOmmV7Xp08fBQUF6aWXXlLFihX1888/a+7cudqwYYMOHz4sDw+PAnwXAADgTqNHS9u3S6+/bnYkAAAAAByJwyUoDxw4oOXLl2v69OkaNmyYJKlnz56qV6+eRowYoT179mR67apVq9SyZcs0ZQ8++KB69eqlzz77TP/4xz/yM3QAAJCF9u2tBwAAAADcyeGmeK9atUrOzs7q06ePrczd3V29e/fW3r17de7cuUyv/WtyUpI6deokSTp27FiexwoAAOxz65b07rvStWtmRwIAAADAbA6XoDxy5Ihq1qwpX1/fNOWNGzeWJB09ejRH97t48aIk6Z577smT+AAAQO69/rr01ltSx45SfLzZ0QAAAAAwk8MlKCMjIxUYGJiuPLXswoULObrf1KlT5ezsrM6dO2dZLyEhQdHR0WkOAACQP/r1k3x9pZ07pZdeso6oBAAAAFA8OVyC8ubNm3Jzc0tX7u7ubjufXZ9//rkWLlyooUOHqkaNGlnWnTx5svz8/GxHhQoVchY4AADItvr1pbVrpRIlpK++kgYNkgzD7KiA2xISEjRy5EgFBQXJw8NDwcHB2rRp012ve/vtt2WxWNIdqX1ZAAAApOdwm+R4eHgoISEhXXn8/+Z/ZXcn7l27dql3795q166d3n333bvWHzVqlIYMGWJ7Hh0dTZISAIB81LKltGyZ1L279K9/SeXLS6NGmR0VYBUaGqpVq1Zp8ODBqlGjhhYvXqwOHTpo27Ztatq06V2v//DDD+Xt7W177uzsnJ/hAgAAFGoOl6AMDAzU+fPn05VHRkZKkoKCgu56jx9//FFPP/206tWrp1WrVsnF5e5v083NLcORmwAAIP907SpdvGgdQTl6tBQYKIWGmh0VirsDBw5o+fLlmj59uoYNGyZJ6tmzp+rVq6cRI0Zoz549d71H586dWQMdAAAgmxxuineDBg108uTJdGtA7t+/33Y+K6dPn1b79u1VtmxZbdiwIc031wAAwPEMHCiNHCl5eEilS5sdDSCtWrVKzs7O6tOnj63M3d1dvXv31t69e3Xu3Lm73sMwDEVHR8tg7QIAAIC7crgEZefOnXXr1i3Nnz/fVpaQkKBFixYpODjYNu06IiJCx48fT3PtxYsX9dhjj8nJyUnff/+9ypQpU6CxAwAA+0yeLB05Ij31lNmRANKRI0dUs2ZN+fr6pilv3LixJOno0aN3vUfVqlXl5+cnHx8fvfTSS7p06dJdr2HTRgAAUFw53BTv4OBgdenSRaNGjdLly5dVvXp1LVmyROHh4Vq4cKGtXs+ePbVjx44030q3b99ev//+u0aMGKHdu3dr9+7dtnMBAQFq27Ztgb4XAACQPRaLVKvW7ednzkjJydJd9rgD8kVkZKQCAwPTlaeWXbhwIdNrS5YsqQEDBujhhx+Wm5ubdu3apX/96186cOCADh06lC7peafJkydr/PjxuX8DAAAAhYzDJSglaenSpRozZoyWLVuma9euqX79+lq3bp2aN2+e5XU//vijJGnatGnpzrVo0YIEJQAAhcAvv0ht21qnfO/ZI5UrZ3ZEKG5u3ryZ4drkqTtx37x5M9NrBw0alOb5c889p8aNG+vFF1/UvHnz9M9//jPTa9m0EQAAFFcON8Vbsnb+pk+frsjISMXHx+vAgQNq165dmjrbt29Pt6aPYRiZHtu3by/AdwAAAOxVpozk5WUdRdmhg8QsVxQ0Dw8PJSQkpCuPj4+3nc+JF154QeXKldPmzZuzrOfm5iZfX980BwAAQHHgkAlKAABQfAUESN9/b01UHjkiPfeclJhodlQoTgIDAxUZGZmuPLUsKCgox/esUKGCrl69muvYAAAAiiISlAAAwOFUqyZt2GAdSbl5s9SrF0lKFJwGDRro5MmT6Tap2b9/v+18ThiGofDwcDZwBAAAyAQJSgAA4JAeekj66ivJxUVavlxq1ky6csXsqFAcdO7cWbdu3dL8+fNtZQkJCVq0aJGCg4Nt60JGRETo+PHjaa69ksFf0g8//FBXrlxR+/bt8zdwAACAQsohN8kBAACQpHbtpNWrpR49pBIlpJIlzY4IxUFwcLC6dOmiUaNG6fLly6pevbqWLFmi8PBwLVy40FavZ8+e2rFjR5p10StVqqRu3brp/vvvl7u7u3bv3q3ly5erQYMG6tu3rxlvBwAAwOGRoAQAAA7tySelo0clZ2fraErJOt07JUX636bKQJ5bunSpxowZo2XLlunatWuqX7++1q1bp+bNm2d53Ysvvqg9e/boq6++Unx8vCpVqqQRI0bozTfflKenZwFFDwAAULhYjL9uhQ1JUnR0tPz8/BQVFcUOigAAOJg33pB27JC+/FKqXt3saBwTfZnCjzYEAMAxxcbGytvbW5IUExMjLy8vkyPKmdhY6X/hKybGuu57fsluf4Y1KAEAQKHy55/Sp59ad/hu2NC6PiUAAACAwosEJQAAKFRKl7ZO+W7WTLpxQ3r+ealvX+nmTbMjAwAAAGAPEpQAAKDQKV9e2rpVeustyWKR5s+XgoOlY8fMjgwAAABATpGgBAAAhZKLi/TOO9LGjVJAgPTzz1KbNlJ8vNmRAQAAAMgJEpQAAKBQe/RR65TvNm2kOXPY2RsAAAAobFzMDgAAACC3ypWTNm2yTvdOtWuXVKeOdc1KAAAAAI6LEZQAAKBIuDM5GREhde4svfeeaeEAAAAAyCYSlAAAoMg5eFC6fFn68EMpLs7saAAAAABkhQQlAAAocjp2lKpWlf78U1qyxOxoAAAAAGSFBCUAAChynJ2lwYOtj2fPllJSTA0HAAAAQBZIUAIAgCLp73+X/P2l336Tvv3W7GgAAAAAZIYEJQAAKJK8vaW+fa2PZ840NxYAAAAAmSNBCQAAiqzXX5dcXKRdu6Tjx82OBgAAAEBGXMwOAAAAIL+ULy/NmycFB0u1a5sdDQAAAIqa2NjYXN/D09NTFoslD6IpvEhQAgCAIu2VV8yOAAAAAEVVQEBAru8REhKiXbt2FeskJVO8AQBAsXHzptkRAAAAoLDz9PRUSEhInt0vLCxMcXFxeXa/wogRlAAAoMi7ccO6HuX69dKpU5Kfn9kRAQAAoLCyWCzatWtXrpOKsbGxeTICsyggQQkAAIo8Ly/pwAHpjz+khQulIUPMjggAAACFmcVikZeXl9lhFBlM8QYAAEWek9PtpOScOVJysrnxAAAAALiNBCUAACgWXnpJKlNGioiQVq0yOxoAAAAAqUhQAgCAYsHdXerf3/p45kzJMMyNBwAAAIAVCUoAAFBsvPaaNVF56JC0e7fZ0QAAAACQSFACAIBipEwZqWdP6+P33zc3FgAAAABW7OINAACKlSFDpAoVpFdfNTsSAAAAABIJSgAAUMzUqiW99ZbZUQAAAABIxRRvAABQrN26ZXYEAAAAQPFGghIAABRL27ZJISHSlClmRwIAAAAUbyQoAQBAsXThgrRnjzR3rpSQYHY0AAAAQPFFghIAABRLXbtK994rXbwoff652dEAAAAAxRcJSgAAUCy5ukoDB1ofz5olGYa58QAAAADFFQlKAABQbL3yiuTtLf3yi7Rxo9nRAAAAAMUTCUoAAFBs+ftLvXtbH8+aZWooAAAAQLFFghIAABRrgwZJTk7WEZQ//2x2NAAAAEDx42J2AAAAAGaqUkV66y2pTh3pvvvMjgYAAAAofkhQAgCAYm/8eLMjAAAAAIovpngDAADc4do1syMAAAAAihcSlAAAAP+zZIl1yve335odCQAAAFB8MMU7F1JSUpSYmGh2GMiBEiVKyMmJvDwAIGO//CJFRUl9+ki//iqVKmV2RAAAAEDRR4LSTomJiTpz5oxSUlLMDgU54OTkpCpVqqhEiRJmhwIAcEATJkjr1knHj0sDB0qffmp2RAAAAEDRR4LSDoZhKDIyUs7OzqpQoQIj8gqJlJQUXbhwQZGRkapYsaIsFovZIQEAHIyHh7R4sfTII9Jnn0nPPSd16mR2VAAAACjqYmNjc30PT0/PQpvrIEFph+TkZMXFxSkoKEienp5mh4McKFOmjC5cuKDk5GS5urqaHQ4AwAEFB0sjRkhTpkj9+knNmkn33GN2VAAAACjKAgICcn2PkJAQ7dq1q1AmKRn6Z4dbt25JEtOEC6HUNkttQwAAMvL221LdutLly9KAAWZHAwAAgKLI09NTISEheXa/sLAwxcXF5dn9ChIjKHOhMGakizvaDACQHW5u1h29H3lEKl9eunVLcnY2OyoAAAAUJRaLRbt27cp1UjE2NjZPRmCaiQQlAABABh58UDp9Wrr3XrMjAQAAQFFlsVjk5eVldhimY4o38pXFYtGaNWvyvC4AAAXhzuRkSopkGObFAgAAABRVJCiLkdDQUFksFlksFpUoUULVq1fXhAkTlJycnG+vGRkZqccffzzP6wIAUJB++826Wc7y5WZHAgAAABQ9TPEuZtq3b69FixYpISFBGzZsUP/+/eXq6qpRo0alqZeYmJgnmwCVK1cuX+oCAFCQVqyQ9uyRjh2TWraUAgPNjggAAAAoOhhBmZdiYzM/4uOzX/fmzezVtYObm5vKlSunSpUq6dVXX9Wjjz6qb775RqGhoerYsaPeffddBQUFqVatWpKkc+fOqWvXrvL391epUqX0zDPPKDw8PM09P/nkE9WtW1dubm4KDAzUgDu2O71z2nZiYqIGDBigwMBAubu7q1KlSpo8eXKGdSXp559/VuvWreXh4aHSpUurT58+iomJsZ1PjXnGjBkKDAxU6dKl1b9/fyUlJdn1swEAIDMjR0oNG0rXrkl9+zLVGwAAAMhLJCjzkrd35sdzz6WtW7Zs5nX/Os25cuWM6+UBDw8PJSYmSpK2bNmiEydOaNOmTVq3bp2SkpLUrl07+fj4aNeuXQoLC5O3t7fat29vu+bDDz9U//791adPH/3888/65ptvVL169Qxf6/3339c333yjL7/8UidOnNBnn32mypUrZ1g3NjZW7dq1U8mSJXXw4EGtXLlSmzdvTpP8lKRt27bp9OnT2rZtm5YsWaLFixdr8eLFefKzAQAglaurdVdvV1fp22+lTz81OyIAAACg6GCKdzFlGIa2bNmi77//Xq+//rquXLkiLy8vffzxx7ap3Z9++qlSUlL08ccfy2KxSJIWLVokf39/bd++XY899pgmTpyooUOHatCgQbZ7N2rUKMPXjIiIUI0aNdS0aVNZLBZVqlQp0/g+//xzxcfHa+nSpbbdrObOnaunnnpKU6dOVUBAgCSpZMmSmjt3rpydnVW7dm098cQT2rJli1555ZU8+TkBAJCqXj1p/Hhp9Gjp9del1q2l8uXNjgoAAAAo/EhQ5qU7ph+n4+yc9vnly5nXdfrLwNa/TKnOjXXr1snb21tJSUlKSUnRCy+8oLffflv9+/fX/fffn2bdyR9//FGnTp2Sj49PmnvEx8fr9OnTunz5si5cuKA2bdpk67VDQ0PVtm1b1apVS+3bt9eTTz6pxx57LMO6x44d09/+9jdbclKSQkJClJKSohMnTtgSlHXr1pXzHT/bwMBA/fzzz9n+eQAAkBPDh0urV0sHD0qvvCKtXy/97zs8AAAAAHYiQZmX7kimmVb3Llq1aqUPP/xQJUqUUFBQkFxcbv8V8PrL68TExOjBBx/UZ599lu4+ZcqUkdNfE6l30bBhQ505c0b/+c9/tHnzZnXt2lWPPvqoVq1aZd+bkeTq6prmucViUUpKit33AwAgKy4u0uLF1vUoL160rklZqpTZUQEAAACFGwnKYsbLyyvTNSL/qmHDhlqxYoXKli0rX1/fDOtUrlxZW7ZsUatWrbJ1T19fX3Xr1k3dunVT586d1b59e129elWl/vLb3X333afFixcrNjbWljgNCwuTk5OTbQMfAADMUKeOtHWr1KiRdU1KAAAAALnDJjnI1Isvvqh77rlHzzzzjHbt2qUzZ85o+/btGjhwoP773/9Kkt5++23NnDlT77//vn777TcdPnxYH3zwQYb3mzVrlr744gsdP35cJ0+e1MqVK1WuXDn5+/tn+Nru7u7q1auXfvnlF23btk2vv/66evToYZveDQCAWR55hOQkAAAAkFdIUCJTnp6e2rlzpypWrKhnn31W9913n3r37q34+HjbiMpevXrpvffe07x581S3bl09+eST+u233zK8n4+Pj6ZNm6aHHnpIjRo1Unh4uDZs2JDhVHFPT099//33unr1qho1aqTOnTurTZs2mjt3br6+ZwAAciIxURo7Vnr/fbMjQV5LSEjQyJEjFRQUJA8PDwUHB2vTpk05vk/btm1lsVg0YMCAfIgSAACgaLAYhmGYHYQjio6Olp+fn6KiotJNb46Pj9eZM2dUpUoVubu7mxQh7EHbAQDy0tKlUq9e1o1yvvxS6tzZ7Ihuy6ovg7t7/vnntWrVKg0ePFg1atTQ4sWLdfDgQW3btk1NmzbN1j2+/vpr9ezZU7Gxserfv3+Ov2ilDQEAQHbExsbK29tbknU/kb/uMZK+vvS/6oqJydOtT9LJbn+GEZQAAAB26tFD6tdPMgzppZeknTvNjgh54cCBA1q+fLkmT56s6dOnq0+fPtq6dasqVaqkESNGZOse8fHxGjp0qEaOHJnP0QIAABR+JCgBAADsZLFIc+dKHTtKCQnS009LP/9sdlTIrVWrVsnZ2Vl9+vSxlbm7u6t3797au3evzp07d9d7TJs2TSkpKRo2bFh+hgoAAFAkkKAEAADIBWdn6fPPpZAQKSpKevxxKRv5KziwI0eOqGbNmummITVu3FiSdPTo0Syvj4iI0JQpUzR16lR5eHhk+3UTEhIUHR2d5gAAACgOSFACAADkkoeH9M03Up060vnz0hNPSMnJZkcFe0VGRiowMDBdeWrZhQsXsrx+6NCheuCBB9S9e/ccve7kyZPl5+dnOypUqJCj6wEAAAorEpQAAAB5oFQp6bvvpOrVpfHjJRcXsyOCvW7evCk3N7d05akb7N28eTPTa7dt26avvvpK7733Xo5fd9SoUYqKirId2ZlKDgAAUBTQdQYAAMgjFSpI//d/kqur2ZEgNzw8PJSQkJCuPD4+3nY+I8nJyRo4cKB69OihRo0a5fh13dzcMkyMAgAAFHWMoAQAAMhDdyYnz56VJk607vKNwiMwMFCRkZHpylPLgoKCMrxu6dKlOnHihPr27avw8HDbIUk3btxQeHi44uLi8i1uAACAwooEJQAAQD6IjZWaNpXGjLEmKVF4NGjQQCdPnky3Sc3+/ftt5zMSERGhpKQkhYSEqEqVKrZDsiYvq1Spoo0bN+Zr7AAAAIWRQyYoExISNHLkSAUFBcnDw0PBwcHatGlTtq49f/68unbtKn9/f/n6+uqZZ57R77//ns8RAwAApOXlJf3zn9bHY8dKH39sbjzIvs6dO+vWrVuaP3++rSwhIUGLFi1ScHCwbfOaiIgIHT9+3Fane/fuWr16dbpDkjp06KDVq1crODi4YN8MAABAIeCQa1CGhoZq1apVGjx4sGrUqKHFixerQ4cO2rZtm5o2bZrpdTExMWrVqpWioqI0evRoubq6avbs2WrRooWOHj2q0qVLF+C7QEYsFotWr16tjh07Kjw8XFWqVNGRI0cyHYkAAEBh1r+/dOGCNGmS1LevFBAgPfWU2VHhboKDg9WlSxeNGjVKly9fVvXq1bVkyRKFh4dr4cKFtno9e/bUjh07ZPxvDn/t2rVVu3btDO9ZpUoVdezYsSDCBwAAKHQcbgTlgQMHtHz5ck2ePFnTp09Xnz59tHXrVlWqVEkjRozI8tp58+bpt99+07p16zRixAi98cYb2rhxoyIjIzVz5swCegeOKzQ0VBaLRRaLRa6urqpSpYpGjBhhW/AdAADkvYkTpdBQKSVF6tZN2rfP7IiQHUuXLtXgwYO1bNkyDRw4UElJSVq3bp2aN29udmgAAACZio2NTXcYhWBBdIcbQblq1So5OzurT58+tjJ3d3f17t1bo0eP1rlz52zTajK6tlGjRml2Taxdu7batGmjL7/8UpMmTcr3+B1d+/bttWjRIiUlJemHH35Qr169ZLFYNHXqVLNDAwCgSLJYpPnzpUuXpP/8R3riCSksTMpkoB0chLu7u6ZPn67p06dnWmf79u3Zuldh+KUgNjE203POTs5yd3HPVl0ni5M8XD3sqhuXFJfpz8piscjT1dOuujeTbirFSMk0Dq8SXnbVjU+O162UW3lS19PVUxaLRZKUkJyg5JTkPKnr4eohJ4t1TErirUQl3UrKk7ruLu5ydnLOcd2kW0lKvJWYaV03Fze5OLnkuG5ySrISkhMyrVvCuYRcnV1zXPdWyi3FJ2c+mMPV2VUlnEvkuG6KkaKbSTfzpK6Lk4vcXNwkWT9r4pIy34grJ3Vz8u+ez4iM6/IZwWdEQX5GxCbGSv/bqDHg3oDblVMk3ZJCQkK0c+dO3Uy23jcmwZDkLSm1n2LJ9PUKisMlKI8cOaKaNWvK19c3TXnjxo0lSUePHs0wQZmSkqKffvpJL7/8crpzjRs31saNG3Xjxg35+PjkT+CyLoafGWdnyd09e3WdnCQPj7vX9fLKuDwrbm5uKleunCSpQoUKevTRR7Vp0yZNnTpVKSkpmjp1qubPn6+LFy+qZs2aGjNmjDp37my7/tdff9XIkSO1c+dOGYahBg0aaPHixapWrZoOHjyo0aNH68iRI0pKSlKDBg00e/ZsNWzYMOeBAgBQhLi6SitXSq1aSUlJkp+f2REBaXlP9s70XIcaHbT+hfW252VnlM00sdGiUgttD91ue155TmX9EfdHhnUfCnpIB185aHte5191dDbqbIZ165Spo19f+9X2vNGCRvq/K/+XYd1KfpUUPjjc9rz54uY6dOFQhnXv8bxHV4ZfsT1//LPHtePsjgzrerp6Knb07Y75c18+pw2/bciwriQZ424nR3qs7qFV/7cq07oxo2JsyYq+6/pqyY9LMq17edhllfEqI0ka8v0QzTs0L9O6ZwadUWX/ypKkN7e8qRl7Z2Ra95dXf1HdsnUlSZN2TdL4HeMzrXvgHwfUqLx1UMicfXM0YnPmM9229dqmlpVbSpLm/zBfA/4zINO6655fpydqPiFJ+uznz/T3tX/PtO6Xnb9Ul7pdJEmrj61W11VdM6276JlFCm0QKkn6/tT3evKLJzOtO/fxuerfuL8kaVfELrVa0irTutMenabhIcMlSYcjD6vxx40zrTuuxTi93fJtSdKxK8dU78N6mdYd9vAwTX/M+uVIRFSEqsypkmnd1x56Tf964l+SpD/i/lDZGWUzrdvrb720uONiSdYEXlb/7jvX6ayVXVbanvMZYcVnBJ8RDv0Z8WYGlQ9I2iCFhYXp+LnjqrvY2oZK9JRk/fsaFxcnb287Ekx5zOGmeEdGRiowMDBdeWrZhQsXMrzu6tWrSkhIsOtaybrweXR0dJojp7y9Mz+eey5t3bJlM6/7+ONp61aunHG93Prll1+0Z88elShhzbxPnjxZS5cu1UcffaRff/1Vb7zxhl566SXt2GH9AD5//ryaN28uNzc3bd26VT/88INefvllJSdbv5G5ceOGevXqpd27d2vfvn2qUaOGOnTooBs3buQ+WAAACjkvL2nDBmnHDimD7goAAACQp/7+99tJ3Lp16poYyd1ZDAebc1KtWjXVqlVLGzak/abh999/V7Vq1TR79mwNHjw43XXnzp1TxYoVNXXq1HRrVX7yySfq3bt3lpuxvP322xo/Pv03AFFRUelGc8bHx+vMmTOqUqWK3O8YFmnJYkRshw7S+ttfKsnLS4rLZER9ixbSnTOGypSR/sjgS6WctlxoaKg+/fRTubu7Kzk5WQkJCXJyctKXX36pJ598UqVKldLmzZv18MMP2675xz/+obi4OH3++ecaPXq0li9frhMnTsjV1fWur5eSkiJ/f399/vnnevJJ6zcQZm+Sk1nbAQBQ1ERHR8vPzy/DvgwKh4JsQ6Zv5rwu0zeZvskU75zX5TPCvrp8RljxGZHzus4WZz3a6lGFhYX97+L/nTAkyVNNHnpYYWGb5OSUf1O8s9ufcbgp3h4eHkpISP+XIXUjF4875z7/5TpJdl0rSaNGjdKQIUNsz6OjozNd6zIzMTGZn3N2Tvv88uXM6zr9ZVxreHiOwshSq1at9OGHHyo2NlazZ8+Wi4uLnnvuOf3666+Ki4tT27Zt09RPTEzUAw88IMk6vb5Zs2aZJicvXbqkt956S9u3b9fly5d169YtxcXFKSIiIu/eAAAAAPLcnb8om1X3zoRBXta9M8GRl3XvTMjkZV03Fze5yS3P65ZwLmH7hdasuq7OrrZf7POyrouTi1xKZO9X25zUdXZyzvbf4ZzUdbI45Utdi8WSL3UlPiPsqctnRM7r8hlhldefEbt27VJcJiPkPD1vJ7TN5nAJysDAQJ0/fz5deWRkpCQpKCgow+tKlSolNzc3W72cXCtZ12Z0c8veP9zM5GRNyPyqe/d7eal69eqSrCNL//a3v2nhwoWqV8+6vsH69etVvnz5NNek/lyySvBKUq9evfTnn39qzpw5qlSpktzc3PTwww8rMTHzbzUAAAAAAACQPywWi7zyMrGUTxwuQdmgQQNt27ZN0dHRaYZ+7t+/33Y+I05OTrr//vt16FD6xW3379+vqlWr5usGOYWRk5OTRo8erSFDhujkyZNyc3NTRESEWrRokWH9+vXra8mSJUpKSspwFGVYWJjmzZunDh06SLJOu/8jo7npAAAAAAAAwP843CY5nTt31q1btzR//nxbWUJCghYtWqTg4GDbtOuIiAgdP3483bUHDx5Mk6Q8ceKEtm7dqi5duhTMGyhkunTpImdnZ/373//WsGHD9MYbb2jJkiU6ffq0Dh8+rA8++EBLllh3CBswYICio6PVvXt3HTp0SL/99puWLVumEydOSJJq1KihZcuW6dixY9q/f79efPHFu466BAAAAAAAQPHmcCMog4OD1aVLF40aNUqXL19W9erVtWTJEoWHh2vhwoW2ej179tSOHTvSLHz72muvacGCBXriiSc0bNgwubq6atasWQoICNDQoUPNeDsOz8XFRQMGDNC0adN05swZlSlTRpMnT9bvv/8uf39/NWzYUKNHj5YklS5dWlu3btXw4cPVokULOTs7q0GDBgoJCZEkLVy4UH369FHDhg1VoUIFTZo0ScOGDTPz7QEAAAAAAMDBOdwu3pJ1U5sxY8bo008/1bVr11S/fn298847ateuna1Oy5Yt0yUoJem///2v3njjDW3cuFEpKSlq2bKlZs+ebVt3Mbuy2mWInaALL9oOAFBcsIt34UcbAgCAwi67/RmHTFA6AhKURRNtBwAoLkhuFX60IQAAKOyy259xuDUoAQAAAAAAABQfJCgBAAAAAAAAmIYEJQAAAAAAAADTkKDMBZbvLHxoMwAAAAAAAMdCgtIOzs7OkqTExESTI0FOpbZZahsCAAAAAADAXC5mB1AYubi4yNPTU1euXJGrq6ucnMjzFgYpKSm6cuWKPD095eLCX30AAAAAAABHQJbGDhaLRYGBgTpz5ozOnj1rdjjIAScnJ1WsWFEWi8XsUAAAAAAAACASlHYrUaKEatSowTTvQqZEiRKMeAUAAAAAAHAgJChzwcnJSe7u7maHAQAAAAAAABRaDCUDAAAAAAAAYBoSlAAAAAAAAABMQ4ISAAAAAAAAgGlYgzIThmFIkqKjo02OBAAAIOdS+zCpfRoUPvRHAQBAYZfdPikJykzcuHFDklShQgWTIwEAALDfjRs35OfnZ3YYsAP9UQAAUFTcrU9qMfhaPUMpKSm6cOGCfHx8ZLFY8uU1oqOjVaFCBZ07d06+vr758hrIHdrIsdE+jo82cny0kWPLTfsYhqEbN24oKChITk6s6lMYFUR/VOJzwFHRLo6LtnFMtIvjom0cU0G1S3b7pIygzISTk5PuvffeAnktX19f/pE6ONrIsdE+jo82cny0kWOzt30YOVm4FWR/VOJzwFHRLo6LtnFMtIvjom0cU0G0S3b6pHydDgAAAAAAAMA0JCgBAAAAAAAAmIYEpYnc3Nw0btw4ubm5mR0KMkEbOTbax/HRRo6PNnJstA8KAn/PHBPt4rhoG8dEuzgu2sYxOVq7sEkOAAAAAAAAANMwghIAAAAAAACAaUhQAgAAAAAAADANCUoAAAAAAAAApiFBCQAAAAAAAMA0JCjzQUJCgkaOHKmgoCB5eHgoODhYmzZtyta158+fV9euXeXv7y9fX18988wz+v333/M54uLH3jb6+uuv1a1bN1WtWlWenp6qVauWhg4dquvXr+d/0MVIbv4N3alt27ayWCwaMGBAPkRZvOW2jVasWKGHH35YXl5e8vf31yOPPKKtW7fmY8TFT27aaPPmzWrVqpXuuece+fv7q3Hjxlq2bFk+R1y8xMTEaNy4cWrfvr1KlSoli8WixYsXZ/v669evq0+fPipTpoy8vLzUqlUrHT58OP8CRqFEn9Qx0Q91XPRBHRP9TsdFf9MxFdp+poE81717d8PFxcUYNmyY8e9//9t4+OGHDRcXF2PXrl1ZXnfjxg2jRo0aRtmyZY2pU6cas2bNMipUqGDce++9xh9//FFA0RcP9rZR6dKljfvvv98YM2aMsWDBAmPgwIFGiRIljNq1axtxcXEFFH3RZ2/73Omrr74yvLy8DElG//798zHa4ik3bTRu3DjDYrEYXbp0MT766CPjgw8+MPr27WssXbq0ACIvPuxto7Vr1xoWi8V45JFHjA8++MCYO3eu0bx5c0OSMWvWrAKKvug7c+aMIcmoWLGi0bJlS0OSsWjRomxde+vWLeORRx4xvLy8jLffftuYO3euUadOHcPHx8c4efJk/gaOQoU+qWOiH+q46IM6Jvqdjov+pmMqrP1MEpR5bP/+/YYkY/r06baymzdvGtWqVTMefvjhLK+dOnWqIck4cOCArezYsWOGs7OzMWrUqHyLubjJTRtt27YtXdmSJUsMScaCBQvyOtRiKTftc2f9ypUrGxMmTKBzmA9y00Z79+41LBYLHY98lps2atu2rREUFGTEx8fbypKSkoxq1aoZ9evXz7eYi5v4+HgjMjLSMAzDOHjwYI46jitWrDAkGStXrrSVXb582fD39zeef/75/AgXhRB9UsdEP9Rx0Qd1TPQ7HRf9TcdVWPuZTPHOY6tWrZKzs7P69OljK3N3d1fv3r21d+9enTt3LstrGzVqpEaNGtnKateurTZt2ujLL7/M17iLk9y0UcuWLdOVderUSZJ07NixPI+1OMpN+6SaNm2aUlJSNGzYsPwMtdjKTRu99957KleunAYNGiTDMBQTE1MQIRc7uWmj6OholSxZUm5ubrYyFxcX3XPPPfLw8MjXuIsTNzc3lStXzq5rV61apYCAAD377LO2sjJlyqhr165au3atEhIS8ipMFGL0SR0T/VDHRR/UMdHvdFz0Nx1XYe1nkqDMY0eOHFHNmjXl6+ubprxx48aSpKNHj2Z4XUpKin766Sc99NBD6c41btxYp0+f1o0bN/I83uLI3jbKzMWLFyVJ99xzT57EV9zltn0iIiI0ZcoUTZ06lf/c8klu2mjLli1q1KiR3n//fZUpU0Y+Pj4KDAzU3Llz8zPkYic3bdSyZUv9+uuvGjNmjE6dOqXTp0/rnXfe0aFDhzRixIj8DBvZdOTIETVs2FBOTmm7cY0bN1ZcXJxOnjxpUmRwJPRJHRP9UMdFH9Qx0e90XPQ3iyYz+5ku+XbnYioyMlKBgYHpylPLLly4kOF1V69eVUJCwl2vrVWrVh5GWzzZ20aZmTp1qpydndW5c+c8ia+4y237DB06VA888IC6d++eL/HB/ja6du2a/vjjD4WFhWnr1q0aN26cKlasqEWLFun111+Xq6ur+vbtm6+xFxe5+Xc0ZswYnTlzRu+++64mTpwoSfL09NRXX32lZ555Jn8CRo5ERkaqefPm6crvbN/777+/oMOCg6FP6pjohzou+qCOiX6n46K/WTSZ2c8kQZnHbt68mWaYcip3d3fb+cyuk2TXtcgZe9soI59//rkWLlyoESNGqEaNGnkWY3GWm/bZtm2bvvrqK+3fvz/f4oP9bZQ6rebPP//U8uXL1a1bN0lS586ddf/992vixIl0FPNIbv4dubm5qWbNmurcubOeffZZ3bp1S/Pnz9dLL72kTZs2qUmTJvkWN7InL/8fQ9FFn9Qx0Q91XPRBHRP9TsdFf7NoMrOfSYIyj3l4eGQ4Jz8+Pt52PrPrJNl1LXLG3jb6q127dql3795q166d3n333TyNsTizt32Sk5M1cOBA9ejRI82aWch7uf2cc3V1TTPSw8nJSd26ddO4ceMUERGhihUr5kPUxUtuPucGDBigffv26fDhw7apHV27dlXdunU1aNAgfvlyAHn1/xiKNvqkjol+qOOiD+qY6Hc6LvqbRZOZ/UzWoMxjgYGBioyMTFeeWhYUFJThdaVKlZKbm5td1yJn7G2jO/344496+umnVa9ePa1atUouLuT684q97bN06VKdOHFCffv2VXh4uO2QpBs3big8PFxxcXH5FndxkpvPOXd3d5UuXVrOzs5pzpUtW1aSdToOcs/eNkpMTNTChQv1xBNPpFl3xtXVVY8//rgOHTqkxMTE/Aka2ZYX/4+h6KNP6pjohzou+qCOiX6n46K/WTSZ2c8kQZnHGjRooJMnTyo6OjpNeeo3AA0aNMjwOicnJ91///06dOhQunP79+9X1apV5ePjk+fxFkf2tlGq06dPq3379ipbtqw2bNggb2/v/Aq1WLK3fSIiIpSUlKSQkBBVqVLFdkjWjmOVKlW0cePGfI29uMjN51yDBg105cqVdJ2O1DVqypQpk/cBF0P2ttGff/6p5ORk3bp1K925pKQkpaSkZHgOBatBgwY6fPiwUlJS0pTv379fnp6eqlmzpkmRwZHQJ3VM9EMdF31Qx0S/03HR3yyaTO1nGshT+/btMyQZ06dPt5XFx8cb1atXN4KDg21lZ8+eNY4dO5bm2ilTphiSjIMHD9rKjh8/bjg7OxsjR47M/+CLidy0UWRkpFG1alUjKCjIOHPmTEGFXKzY2z7Hjh0zVq9ene6QZHTo0MFYvXq1ceHChQJ9L0VVbv4NzZ4925BkzJ8/31Z28+ZNo2rVqkadOnXyP/hiwt42Sk5ONvz9/Y2aNWsaCQkJtvIbN24Y9957r1G7du2CeQPFzMGDBw1JxqJFi9Kdu3DhgnHs2DEjMTHRVrZ8+XJDkrFy5Upb2ZUrVwx/f3+jW7duBREyCgH6pI6Jfqjjog/qmOh3Oi76m4VDYepnkqDMB126dDFcXFyM4cOHG//+97+NRx55xHBxcTF27Nhhq9OiRQvjr/nh6Ohoo1q1akbZsmWNadOmGbNnzzYqVKhgBAUFGZcvXy7ot1Gk2dtGf/vb3wxJxogRI4xly5alOTZu3FjQb6PIsrd9MiLJ6N+/f36GWyzZ20ZxcXFG3bp1DVdXV2PYsGHG+++/bzRq1MhwdnY2NmzYUNBvo0izt40mTpxoSDIeeOABY/bs2caMGTOM++67z5BkfPrppwX9Noq0Dz74wHjnnXeMV1991ZBkPPvss8Y777xjvPPOO8b169cNwzCMXr16GZLSJCOSk5ONJk2aGN7e3sb48eONf/3rX0bdunUNHx8f4/jx4ya9Gzgi+qSOiX6o46IP6pjodzou+puOqzD2M0lQ5oObN28aw4YNM8qVK2e4ubkZjRo1Mr777rs0dTL7j+3cuXNG586dDV9fX8Pb29t48sknjd9++62gQi827G0jSZkeLVq0KMB3ULTl5t/QX9E5zB+5aaNLly4ZvXr1MkqVKmW4ubkZwcHB6a5F7uWmjT777DOjcePGhr+/v+Hh4WEEBwcbq1atKqjQi41KlSpl+n9Kakcxo46jYRjG1atXjd69exulS5c2PD09jRYtWqQZ7QYYBn1SR0U/1HHRB3VM9DsdF/1Nx1UY+5kWwzCMnE4LBwAAAAAAAIC8wCY5AAAAAAAAAExDghIAAAAAAACAaUhQAgAAAAAAADANCUoAAAAAAAAApiFBCQAAAAAAAMA0JCgBAAAAAAAAmIYEJQAAAAAAAADTkKAEAAAAAAAAYBoSlAAAAAAAAABMQ4ISQKHy9ttvy2KxaPv27XZdX7lyZVWuXDlPY8ovixcvlsVi0eLFi80OJUvbt2+XxWLR22+/nW+vkdN2Kyw/OwAAULhl1Ecpzv2QCxcuyMvLS5MmTTI7FIdz9epV+fn5acSIEWaHAjgkEpQAMhQeHi6LxZLm8PT0VFBQkNq0aaOxY8fq9OnTZodZ6FksFrVs2dLsMAAAAEyRUZ/T1dVV5cuXV9euXXXo0CGzQzTFX38mdzukjH+WJUqUUIUKFfTCCy/op59+ynEcq1atksVi0bp167JV/80335Snp6cGDhwoSWrZsmWO3kfqIITKlSunKXd2dtY999yjxx57TGvXrs3x+7ibu8X53nvv2eqmDpiwWCz64osvMrxfv3790g2qKFWqlAYOHKj3339fZ8+ezfP3ABR2LmYHAMCxVatWTS+99JIkKSEhQZcvX9aBAwf0zjvvaNKkSRoxYoTeffddW8covw0YMEDdu3dXxYoV7bp+y5YteRwRAAAAcuvOPmdsbKx++OEHrVy5UmvWrNHmzZvVvHlzkyMsWOPGjUtX9t577ykqKirDc3e682cZExOjffv26YsvvtDXX3+tLVu2KCQkJNtxrF27Vl5eXnr00UfvWve3337T0qVL9eabb8rb21uSFBoamu7L+DVr1ujHH39Ur1690o0+vfO5s7Oz3nrrLUlSYmKijh8/rm+++UabNm3SjBkzNHTo0Gy/j+waOnSoLfY7NWnSJMP6b731ljp37ixXV9ds3X/w4MGaOnWqJk6cqAULFuQqVqCoIUEJIEvVq1fPcOru7t271aNHD02ePFnOzs565513CiSee+65R/fcc4/d11erVi0PowEAAEBeyKjPOWXKFI0aNUpjxozRjh07zAnMJBn1vxcvXqyoqKi7LquT0c/yrbfe0rvvvqs333wz20slJScna/369WrXrp3c3d3vWn/+/PlKSUlRjx49bGWhoaHp6oWHh+vHH3/MMHl5JxcXl3TvY+PGjWrfvr3Gjh2rV199VZ6enple37JlS4WHhys8PPyusacaNmyYypUrl6261apV0+nTp/XRRx/p9ddfz9Y1pUuX1uOPP64vvvhCM2fOlK+vb7ZjA4o6pngDsEvTpk313Xffyc3NTdOmTdO5c+fS1Vm7dq3atGmjkiVLyt3dXfXq1dOMGTN069atDO+5du1aPfbYYypdurTc3d1VuXJl9ejRQ7/88outTmZrUG7btk2PP/64goKC5ObmpoCAADVr1kzz589PUy+ztQxjY2M1btw41a5dW+7u7ipVqpSeeOIJhYWFpat7Zwyff/65GjRoIA8PDwUGBmrQoEG6efPmXX9+qes2StKOHTvSTCHJaL2ijRs36pFHHpGnp6dKly6tXr166c8//0xTJ3VaT2hoqI4dO6ZOnTqpdOnSslgsaTpm2W2XlJQUffzxx2rcuLFKlSolDw8P3XvvvXrqqacy7dgeOnRIbdu2lY+Pj/z8/NSpU6dMO4VhYWF64oknVKpUKbm7u6t27doaN26c4uLi7vrzS3X16lX169dPAQEB8vT0VKNGjbR69epsXw8AABxX7969JUk//PBDunOJiYmaNWuWGjZsKC8vL/n4+KhZs2b65ptvMrxXYmKiZs+erUaNGsnHx0fe3t6qU6eOhgwZomvXrtnqbdu2TS+//LJq1aolb29veXt766GHHkrXpyxsUhNoBw8ezPY1u3bt0rVr1/TMM8/ctW5KSoqWLFmiBg0aqEaNGnbHeTePPfaYatWqpbi4OP3666/59jrZMXToUJUsWVITJ07UjRs3sn1d165dFRsbq5UrV+ZjdEDhQ4ISgN1q1aqlrl27KjExUWvWrElzbtSoUerYsaNOnDihZ599Vq+99po8PDw0fPhwde/ePd29hg4dqo4dO+qHH35Qx44d9cYbb6hp06bavHmzNm/enGUc69evV5s2bbR//361a9dOQ4cO1dNPP62EhAQtW7bsru8jPj5erVu31oQJE+Tl5aXBgwfrmWee0bZt29SiRYtMOw9z585Vnz59VLduXb366qsqWbKk3n//ff3jH/+462tWrlzZNj2nUqVKGjdunO1o0KBBmrrffPONnnrqKQUFBem1115TtWrVtHTp0kw7i6dOnVKTJk105coVhYaGqlevXipRooSknLXLqFGj9Morr+jq1at64YUXNHjwYLVu3Vq//vprhm1y8OBBNW/eXCVKlFDfvn310EMPac2aNXr00UcVHx+fpu7KlSvVokULbd++XR07dtTgwYPl6empCRMmqHXr1unqZyQuLk4tW7bUv//9b1WrVk2DBg1SrVq11K1bN61atequ1wMAgMLBxSXtxL+EhARbn88wDPXu3VsvvfSSzp49q2eeeUZz585NU//mzZtq3bq1hgwZoqioKP3973/Xq6++qpo1a+rf//53mvUAp06dqp07d6pRo0YaMGCAXnrpJf3xxx/q27dvrqcUp37JnZ8bC95NTpZlWrNmjZydnfXkk0/ete7PP/+sK1euZDoVOj8U1BJTmSlZsqT++c9/6vLly5oxY0a2r3v44YclsfQUkI4BABk4c+aMIclo165dlvUWLlxoSDJ69OhhK9u4caPt2piYGFt5SkqK0a9fP0OSsWrVKlv5t99+a0gy7r//fuOPP/5Ic/+kpCTj4sWLtufjxo0zJBnbtm2zlT377LOGJOPo0aPp4vvr/SpVqmRUqlQpTdn48eMNScaLL75opKSk2MoPHz5slChRwvD39zeio6PTxeDn52ccP37cVh4XF2fUrFnTcHJyMs6fP5/ZjywNSUaLFi0yPLdo0SJDkuHi4mLs3r3bVp6cnGy0bNnSkGTs3bvXVp7aZpKMsWPHprtfTtulVKlSRlBQkBEbG5vuXn/++aft8bZt22yvu3z58jT1evToYUgyvvjiC1tZVFSU4efnZ7i5uRk//vijrfzWrVtGt27dDEnGhAkT0twno3ZLbYdXXnklTfl3331ni2fRokXpYgcAAI4jqz7npEmTDEnGE088kaZ89OjRhiRjzJgxafpu0dHRxkMPPWSUKFEiTV9s6NChtv5qcnJymntdv37duHHjhu3577//ni6OpKQko23btoazs7Nx9uzZNOcy6qOk9uH+2g9J7buMGzcuw5/F3VSqVMnI6lf4rH6WY8eONSQZrVq1yvbrVa5c2WjZsmW26v7rX/8yJBkLFiy4a91evXql68//VaVKlQw3N7d05Zs3bzYsFovh5eVlxMXFZfk6LVq0SNc2WdWVZAwdOtQYN25cmuPDDz9MUze1Hb/44gvj5s2bRoUKFQwvL680v7P07ds3y/dYsmRJo2LFitmKDSguGEEJIFeCgoIkSX/88YetLPVb6/nz58vLy8tWbrFYNGXKlHQ73s2bN0+SNGfOHJUuXTrN/V1cXBQQEJCtWDw8PNKV/fV+GVmyZIlcXV1tsaV64IEH1KtXL12/fj3dCFFJthF7d77+888/r5SUlAynItnrhRdeSLOYubOzs3r16iUp42k65cqV05tvvpmuPKftIkklSpSQs7NzunuVKlUqXVnz5s3VrVu3NGUvv/xyujjXrl2rqKgovfzyy6pfv76t3MnJSdOmTZOLi0uG09z/aunSpSpRooQmTJiQprxdu3Zq06bNXa8HAACO49SpU3r77bf19ttva/jw4WrdurVGjx6tgIAATZ8+3VYvJSVFH374oapVq6bx48en6bv5+Pho7NixSkxM1Ndffy3Juo7i/Pnz5efnpzlz5qTr1/j5+aXZFKVKlSrpYnNxcVG/fv1069Ytbdu2ze73OGDAAB07dkwDBgyw+x7Z8defZfPmzTVhwgS5u7vr3XffzdY9fvzxR4WHh2drerck/fe//5WkbPfbsyM5Odn2Pt5880117txZ7du3l2EYeueddzLs++fWzJkzNX78+DTHRx99lGl9d3d3jR8/XrGxsRo/fny2XycgIEAXLlyQYRh5ETZQJLBJDoA8t2/fPnl5eemTTz7J8LyHh4eOHz9ue37gwAG5ubmpRYsWdr1e9+7d9fXXX6tJkyZ64YUX1KZNGzVr1ixbm+lER0fr999/13333ad777033flWrVppwYIFOnr0aJoFvyXpwQcfTFc/9R7Xr1+3671kJKev87e//c02pftOOW2X7t27a968eapXr566d++uVq1a6eGHH860M5jdOI8cOSJJGS6KXrFiRVWtWlUnT57UjRs35OPjk+FrRUdH68yZM6pTp06GC5k3a9aMaTMAABQip0+fTpfgKVeunHbt2qXq1avbyk6cOKFr164pKCgow4TQlStXJMnWpzl+/Lhu3LihRx99VCVLlrxrHDdu3NCMGTO0Zs0anT59WrGxsWnOX7hwIcfvLVVuN3vMrjt/lq6urgoICNALL7ygf/7zn7r//vuzdY+1a9dKUrYTlKlro/v7++c84EzcunXL9j6cnJxUsmRJtW7dWv3799fTTz+dpm5W070zOrdt27YM+6KRkZHZ3iQnVa9evTRz5kwtWLBAQ4YMSfP3NTOlSpVScnKyrl+/nq2/l0BxQIISQK6kdtLKlCljK7t69aqSk5Oz/Bbxzs5eVFSUypcvLycn+wZ1d+nSRWvWrNGsWbP00Ucf6V//+pcsFotatWqlmTNnplvT8U7R0dGSMv+2NzAwME29O2W0617qGkmZbQRkj5y+TmbvJaftMmfOHFWpUkWLFi3SxIkTNXHiRLm7u6tr166aOXNmug52duPMzs/85MmTio6OzjJBKUlly5bN8HxefnsPAADyX7t27fTdd99JsiYZlyxZopEjR+rpp5/WgQMHbKMcr169Kkn69ddfs9wkJbVPExUVJUkqX778XWNITExUy5YtdfjwYT3wwAPq0aOHSpcuLRcXF4WHh2vJkiVKSEjI1fssCHf+LO21Zs0a3X///RmOKM1I6hfY2VlHPLvc3Nyyfb/Utd3vtHjxYl2/fl2DBw9Ody6jTTPt5eTkpMmTJ+vpp5/W6NGj9eWXX971mtRNNbPahRwobkhQAsiV1N2cGzVqZCvz9fWVxWJJM+07K/7+/rp48aJSUlLsTlI+88wzeuaZZ3Tjxg2FhYXp66+/1sKFC9W+fXsdP348029zU5Nqly5dyvD8xYsX09QrDDL7Bjmn7eLi4qJhw4Zp2LBhunDhgnbs2KFFixZp6dKlunjxor7//nu74suLn3nqucuXL2d4PrN7AwAAx1emTBkNGzZMUVFRmjhxot566y299957km73AZ577rlsbYqX2gc8f/78XeuuXbtWhw8fVu/evfXxxx+nObd8+XItWbIkZ2+kkIqIiNCRI0c0ZsyYbF+TOlghNYFc0DLaeGj79u0KDw8vkE2JnnrqKTVr1kwrV67M1k7pV69elY+Pj9zc3PI9NqCwYA1KAHY7efKkvvzyS7m5ualTp0628uDgYP3555/67bffsnWfxo0bKyEhQTt27Mh1TD4+Pmrfvr3mz5+v0NBQXbp0Sfv378+0vq+vr6pWrapTp05l2HFNTcBmNQozN5ycnPJ0tGVWctoudwoKCtLzzz+v7777TtWrV9fmzZtt3/zm1AMPPCDp9s/2TufOndPp06dVtWrVTEdPStZ2q1Klik6dOmVLaN5p165ddsUGAAAcx+jRoxUUFKR58+YpPDxcknTffffJ19dXhw4dUlJS0l3vUatWLfn6+urgwYO6du1alnVPnz4tKeNpzcWpb/HNN99Iyv70bkm2qeMnTpzIl5gKg2nTpkmSRo4cmWW92NhY/fe//832dHuguCBBCcAuYWFhateunRISEvTPf/4zzbSZgQMHSrJukJK6Hs2dLl68qGPHjtme9+/fX5J105m/fuuanJx819FwO3fuzDDJlzq6zt3dPcvre/XqpaSkJI0aNSrNQtU//fSTFi9eLD8/P3Xs2DHLe9irVKlStkXF81tO2iUhIUF79uxJVyc2NlYxMTFydXXN1WhXPz8/LVq0KM3ULMMwNHLkSCUnJys0NPSu9+nRo4cSExM1duzYNOUbN25k/UkAAIoADw8PjRw5UklJSXrnnXckWWd4vPrqqzp79qyGDRuWYZLyl19+sfUDXVxc1LdvX0VFRWnQoEHp+oxRUVGKiYmRJFWqVEmStHv37jR1duzYoQULFuT6/fzxxx86fvx4tmezmGXt2rW69957M1xfPDPNmjWTk5NTlgMDiromTZqoU6dO2rZtmzZv3pxpvR9++EG3bt2ye/19oKhiijeALKXuAihZ1+W5fPmyDhw4oJ9//lnOzs5666230q350r59e40ZM0bvvPOOqlevrvbt26tSpUr6888/derUKe3atUsTJ07UfffdJ0nq0KGDhg0bphkzZqhGjRrq1KmTypYtq/Pnz2vLli0aNmxYhmvHpBo4cKAuXLigpk2bqnLlyrJYLNq9e7cOHDigJk2aqGnTplm+xxEjRmj9+vVatmyZjh07pjZt2ujy5ctasWKFkpOTtWDBgixH8+VG69at9eWXX6pjx4564IEH5OzsrKeffjrN7tZ5JSftcvPmTYWEhKhmzZp68MEHVbFiRcXExGjdunW6ePGihg0bZveUFF9fXy1YsEDPP/+8goOD1a1bN5UpU0abN2/WDz/8oMaNG2v48OF3vc+IESP09ddfa8GCBfr111/VvHlznTt3Tl9++aWeeOIJrV+/3q74AACA4+jTp4+mTp2qpUuXavTo0bbduw8fPqz3339f69evV/PmzW19x59//lk//vij9u7da1uresKECdq3b5+WLVumffv26fHHH5ebm5t+//13fffdd9q9e7caNGigp556SpUrV9a0adP0yy+/qF69ejpx4oTWrVunTp06ZWtKeVbmzp2r8ePHa9y4cQUy7dge169f144dO/TKK6/k6LqSJUuqRYsW2r17t+Lj4+86QKComjx5sr755hvbaNyMbNq0SZLybQAEUFiRoASQpTt3AfTw8JC/v79q166tMWPGqFevXqpWrVqG102YMEHNmzfX+++/ry1btuj69esqXbq0qlSporffflsvvvhimvrTp0/Xww8/rLlz52rVqlWKj49XYGCgWrdurbZt22YZ46hRo/T111/rhx9+0Pfffy9XV1dVrlxZU6dO1WuvvSZnZ+csr3d3d9fWrVs1depUrVixQrNnz5anp6datGih0aNH3zXBmRtz5syRJG3dulXffvutUlJSdO+99+ZLglLKfrt4eXlp6tSp2rJli3bt2qXLly+rZMmSqlWrliZPnqzu3bvnKo4uXbqoXLlymjx5sr7++mvFxcWpcuXKGjNmjEaOHJmtTq2Xl5d27NihUaNGafXq1Tp8+LDq1q2rFStWKCoqigQlAABFgLu7u0aNGqXXX39d48eP19KlS+Xm5qb//Oc/WrhwoZYuXaqvvvpKCQkJCggIUJ06ddSvX78002fd3d21adMmzZ07V59++qkWLFggZ2dnVaxYUf369bNtmOLt7a2tW7dq+PDh2rlzp7Zv3666devqs88+U0BAQK4TlIXBhg0blJSUZFfyrF+/furWrZu++eYbde3aNe+DKwRq1aql3r17a/78+ZnW+eyzz9SgQQM1bty4ACMDHJ/FuHM+IwAAAAAAKJa6deum77//XleuXJGrq2uOrk1KSlKtWrVUrVo12yhBpLV582a1bdtWS5YsUc+ePc0OB3AoJCgBAAAAACjmEhMTVaZMGXXo0EFffPGFXfdYsWKFunfvrrCwMD3yyCN5HGHh16xZM8XExOiHH36wez13oKhiijcAAAAAAMVciRIlFBUVlat7dOvWTRERERluyFjcXb16VW3atNFTTz1FchLIACMoAQAAAAAAAJiGtD0AAAAAAAAA05CgBAAAAAAAAGAaEpQAAAAAAAAATEOCEgAAAAAAAIBpSFACAAAAAAAAMA0JSgAAAAAAAACmIUEJAAAAAAAAwDQkKAEAAAAAAACYhgQlAAAAAAAAANP8PyaKBp0jnaRaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 679 ms (started: 2024-10-26 13:26:14 +00:00)\n" ] } ], "source": [ "ml.plot_precision_recall_curve(y_test, X_test, rs1)" ] }, { "cell_type": "markdown", "metadata": { "id": "prr3oMKv9bhF" }, "source": [ "Bu Precision-Recall eğrisi şu şekilde yorumlanabilir:\n", "\n", "**Sol Grafik**: Bu grafik, threshold değiştikçe precision ve recall'un nasıl değiştiğini gösterir.\n", "\n", "Precision: Threshold arttıkça preciison genellikle artar çünkü model olumlu tahminlerine daha fazla güvenir. Ancak eşik değeri 1'e yaklaştıkça, olumlu tahminlerin sayısındaki azalma nedeniyle kesinlik düşebilir.\n", "\n", "Recall: Threshold arttıkça recall azalma eğilimindedir. Bunun nedeni, threshold daha katı hale geldikçe (daha yüksek), daha az pozitif vakanın tahmin edilmesi ve bunun da daha fazla False Negatif'e yol açmasıdır.\n", "\n", "Eğrilerin kesişme noktası (0,6 civarında) precision ile recall arasında bir dengeyi gösteriyor. Bu bölge etrafında bir threshold seçmeyi veya birini diğerine göre önceliklendirmeyi tercih edebiliriz.\n", "\n", "**Sağ Grafik**: Bu grafik, farklı thresholdlar boyunca precison ve recall arasındaki dengeyi gösterir. Siyah çizgi modelimizin gerçek performansını temsil eder; eğrinin altındaki alan (AUC, burada 0.77) genel performansı yansıtır.\n", "\n", "**Genel Yorum**: 0,77'lik PR AUC değeri, modelimizin precison ve recall'u arasında iyi bir dengeye sahip olduğunu ve rastgele şanstan daha iyi performans sergilediğini gösteriyor." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 498 }, "executionInfo": { "elapsed": 45, "status": "ok", "timestamp": 1729949176391, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "bTSq1G40ejvy", "outputId": "5b8810b5-bd82-4f27-e661-8e4eacd8b265" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAG9CAYAAAB6eV2bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSaklEQVR4nO3deViU5f4/8Pcw7MriggSK4EbmiibgUix2lLLFFrdcKzuambkh/rQMNZfUjmZ5OlYaoi1abqVZHfcd3G1x+4ayKJDhwqDAsN2/PzhMDDPDzDyzw/t1XXPF3M/2mSecN/ez3I9MCCFAREREOjnZugAiIiJ7x7AkIiLSg2FJRESkB8OSiIhID4YlERGRHgxLIiIiPRiWREREejAsiYiI9GBYEhER6cGwJCIi0sPuwvLevXtITEzE448/jsaNG0Mmk2HdunUGL3/37l2MGzcOfn5+aNCgAWJjY3HmzBnLFUxERHWes60LqCkvLw/z589Hy5Yt0bVrVxw4cMDgZSsqKvDkk0/i/PnzmDFjBpo2bYqPP/4YMTExOH36NNq1a2fUurKzs+Hl5QWZTCbhkxARka0IIVBQUIDAwEA4OZmhXyjsTHFxscjJyRFCCHHy5EkBQCQlJRm07KZNmwQA8e2336rabt68KXx9fcWLL75oVB1ZWVkCAF988cUXXw78ysrKMuq7Xxe761m6ubnhgQcekLTs5s2b4e/vj+eff17V5ufnhyFDhuCLL76AUqmEm5ubQevy8vICAGRlZcHb21tSPUREZBsKhQJBQUGq73JT2V1YmuLs2bPo3r27Rpc7IiICn376Ka5cuYLOnTsbtK6qQ69eXl5wdvfUmO7hIufhWSIiO2eu7+k6FZY5OTmIiorSaA8ICAAAZGdn6wxLpVIJpVKpeq9QKAAARaXl6Lr4Z435ewQ3wrev9WJgEhHVA3Z3NawpioqKtB5mdXd3V03XZfHixfDx8VG9goKCat3WqYw7KCotN61gIiJyCHWqZ+nh4aHWO6xSXFysmq7LrFmzMG3aNNX7quPdHi5yXJgfp2ovLClHjwV7zFg1ERHZuzoVlgEBAcjJydFor2oLDAzUuaybm5vWXqlMJoOna53aTUREZKQ6dRg2LCwMZ86cQUVFhVp7amoqPD09ERoaaqPKiIjIkTlsWObk5ODSpUsoLS1VtQ0aNAh//vkntm7dqmrLy8vDt99+i6efftrg20aIiIiqs8vji6tWrcLdu3eRnZ0NANixYweuX78OAJg0aRJ8fHwwa9YsJCcn49q1awgJCQFQGZY9e/bEyy+/jAsXLqhG8CkvL8e8efNs9XGIiMjB2WVYvv/++8jIyFC937p1q6q3OHLkSPj4+GhdTi6XY9euXZgxYwY+/PBDFBUVITw8HOvWrcODDz5oldqJiKjukQkhhK2LsEcKhQI+Pj7Iz89XG8GnsKQMHd6pvO/ywvw4XvxDRGSHdH2HS+Ww5yyJiIishWFJRESkB8OSiIhID4YlERGRHgxLIiIiPRiWREREejAsiYiI9GBYEhER6cGwJCIi0oNhSUREpAfHaiOjCSFQVFqu1ubhIodMJrNRRURElsWwpFrVDEYhgMGrj+NCjkJtvh7BjfDta70YmERUJzEsSU31cNQVjNqcyriDotJyDixPRHUSv9lIRQiBQauP43TGHb3zdgjwxrev9UJRaTl6LNhjheqIiGyHYVnPVe9JFpaUaw3KqmCsfoS16hwlj7oSUX3AsKzHautJnnr7H/B0lQPgxTtERAzLesaQnmSP4EZo0sCVAUlE9D8My3qEPUkiImkYlnVcXelJ8t5OIrIlhmUd5sg9SUNuYeG9nURkLQzLOqRm78uRepJS7u/kvZ1EZC38lqkj9N0jaW89SSnhyHs7ichWGJZ1RFGp9l4kYH89SUMHP6h5fyfv7SQiW2FYOrCaF+9Uqd6LBGzfkzT08LCucCQisjWGpYOqrXfm6Sq36Xk8Yw6x2tvhYSIibRiWDkrXYdcewY3g4SLXsoR1GDO+rL0dHiYi0oVh6UAMOexqy95ZYUm5pPFliYjsHcPSQdjrYVch/v655hWq9hLiRESmYlg6CHs97FpzVJ0qPMRKRHUJw9IB2WuP7XBCLJo0dAVgvbqqH4625naJqH5hWNoxXecobX21a3WNPV1VPzf39YCTk+WDqrZDvxwCj4gswT6+cUmDMVeV2pKTkwxXFw1Q/WwNug79AhwCj4gsg98odspez1FqY62QrFK9N/vbvDg4ySp73hwCj4gshWHpAOz1HKWt2KI3S0T1G8PSAdjTOUp7wZAkImviN7Ad0XVBDxER2RbD0k44ygU9RET1kZOtC6BKjnRBDxFRfcOepR3iBT1ERPaFYWmHeEEPEZF94TcyUS1qPrgaYG+fqD5iWBLpoOuiKw6pR1T/MCxtpGaPhbeK2J62/yfaLrrikHpE9Q//tdsAbxOxD9XDUQhg8OrjuJCj0Drvqbf/AUBz4HYiqh9MCss//vgDR48exfXr15GXlwdPT0/4+fmhc+fO6N27Nzw8PMxVZ52i6zYRgLeKWIsxf7BUPZuztgHcq69X23zmPs/pKOdSde2P6uyxbqKajA7LrKwsrFmzBuvWrcP169cBVP6DqE4mk8HZ2Rn9+/fH+PHj8eSTT/Ifgw7VbxMB+MVhSTVHSNIWlB0CvP93PvLvttr+nxjaO63tPKchgaI+v/bt2Nu5VEP/ILG3uom0MTgs//rrLyQmJmLNmjUoKytD27ZtMXLkSPTo0QP+/v5o3LgxioqKcPv2bVy+fBkpKSnYt28fdu3ahXbt2mHp0qV45plnLPlZHBJvE7EcQ4NM6n2txvROdZ3nNOcheWufS9UX8rr+IKmJ54DJERj829mmTRs4OTnhzTffxMiRIxEWFqZ3mfv372Pz5s1Ys2YNnnvuObz//vuYOnWqKfUSGcSYXk2TBq5G92oKS8oN6p3qe3RYbYfk9anaTlGp9R9PZmzI1zyCAvCxauRYDA7LyZMnY/r06fD19TV45Q0aNMCYMWMwZswY7Nu3D/n5+VJqJDKKoUEGGNuT/Pvnml/y5hh1SVug1KZqO9o2ZYlzmoYcxtZG6h8kRPbE4LB89913TdpQ3759TVqeqDaWDjIAOg85GhsGup4uY45D8oUl5WY7pynlMLY2PA9PdQFPElgJH79lWeYKMkMdTohFk4auAAwPg9qCzBS1/aFQnb5zg8bcSqPaHnuNVE8wLK2A91Val5QgM0RjT1fVz819PQx6ALWhQWbKLUO6/lCo7ZxmzcO0hoajKYexiRyZRcNyxowZ2Lp1K9LS0iy5GbvHx29ZnpQgM5aTkwxXFw1Q/WwIfUFmjtCp/tl/mxcHpxrrrL5aY3u31g5Ha92nSmQsi4ZlXl4e0tPTLbkJh8PHb1mGlCCTuh2pLNXj1ffZDe3dArbrOeoLcd6LSbbGw7BWxvsqLceSISmVNXq8QO2f3dDeLWDdP+CMCXHei0m2ZtRv3iuvvGLUyo8cOWLU/ER1jbV6vIayVO9WCkNCnPdikr0wKizXrVsHmUymMbxdbXjYhOo7W4ektXq3xtJ3rrWm6leR2zroqf4xKiy9vb3RvHlzfP755wbN/+677+LHH3+UVBgRmYe99W6rGFKXrkO1PIdJ1mZUWHbv3h0nT55ERESEQb+kfn5+kopSKpV45513sGHDBty5cwddunTBggUL0K9fP73L7tmzBwsXLsSvv/6KsrIyhIaGYtKkSRg1apSkWojqAnsKyer01aXrUG31c5iO8gQWcmxGh+XBgwdx6dIlPPTQQ5aqCS+99BI2b96MKVOmoF27dli3bh0GDBiA/fv345FHHtG53Pfff49nn30WvXr1wty5cyGTyfDNN99g9OjRyMvL47i0RA6m5qHa4mr3jJpztCIifYwKy4EDB+LWrVsoKioyaP5XX30VMTExRhV04sQJbNy4EcuWLUN8fDwAYPTo0ejUqRMSEhJw7NgxncuuWrUKAQEB2LdvH9zc3AAA48ePR/v27bFu3TqGJZGDqXmotnr0mTJaEZGxjPpNevTRR/Hoo48aPH+fPn3Qp08fowravHkz5HI5xo0bp2pzd3fH2LFjMXv2bGRlZSEoKEjrsgqFAo0aNVIFJQA4OzujadOmRtVARPaj+qFaKaMVEZmD3f3ZdfbsWYSGhsLb21utPSIiAgBw7tw5nWEZExODJUuWYM6cORgzZgxkMhm++uornDp1Ct98843Fa6+OY8ESmZ8xoxURmZPdhWVOTg4CAgI02qvasrOzdS47Z84cXLt2DQsXLsSCBQsAAJ6entiyZQsGDhxY63aVSiWUSqXqvUIhfaBrjgVLZBn2emUv1X1Oti6gpqKiIrXDqFXc3d1V03Vxc3NDaGgoBg0ahK+//hpffPEFevTogZEjRyIlJaXW7S5evBg+Pj6ql67eq0GfgWPBElmMk5OMQUlWZ3c9Sw8PD7UeXpXi4mLVdF3eeOMNpKSk4MyZM3Byqvw7YMiQIejYsSMmT56M1NRUncvOmjUL06ZNU71XKBQmBWYVjgVLROT47K5nGRAQgJycHI32qrbAwECty5WUlGDt2rV48sknVUEJAC4uLnjiiSdw6tQplJSU6Nyum5sbvL291V7mUDUWrKerM4OSiMhB2V1YhoWF4cqVKxrnDKt6hWFhYVqXu3XrFsrKylBernkxTWlpKSoqKrROIyIi0sfuwnLQoEEoLy/Hp59+qmpTKpVISkpCZGSk6tBoZmYmLl26pJqnWbNm8PX1xbZt29R6kPfu3cOOHTvQvn37Wg/hEhER6WJ35ywjIyMxePBgzJo1Czdv3kTbtm2RnJyM9PR0rF27VjXf6NGjcfDgQdWg7nK5HPHx8Xj77bfRs2dPjB49GuXl5Vi7di2uX7+OL774wlYfiYhsgAOvkznZXVgCwPr16zFnzhy1sWF37tyJqKioWpd766230KpVK6xcuRLz5s2DUqlEly5dsHnzZrzwwgtWqp6IbIUDr5OlmBSWffv2hUwmQ3JyMlq0aKE2LSsrSzUwwN69e41ar7u7O5YtW4Zly5bpnOfAgQNa24cPH47hw4cbtT0iqhsMGXgdAAdfJ6OZFJYHDhyATCZDYWGhxrTCwkLVdCIia9A38DoADr5OkpgUlvv37wcAtGzZUmNay5YtVdOJiKxB6sDrAAdfp9qZ9FsRHR2tc5qHh0et04mILMGQgdcBDr5OxuGfUERUZ+kaeB3g4OtkHIYlEdVZHHidzMXgsHzllVckbUAmk6ndH0lEZE0MSTIHg8Ny3bp1kjbAsCQiIkdncFheu3bNknUQERHZLYPDMjg42JJ1OLzqNzlXH2aLiBwHh8gjXXiBjxkIITBo9XGtD3wmIsfBIfJIF5OeOlJWVoYVK1YgIiIC3t7ecHb+O3vPnTuH119/HVeuXDG5SHtXVFquNSh7BDeCh4vcBhURkaE8XOToEdxIo71qkAIiwISeZVFREfr3749jx46hadOm8Pb2xv3791XTW7VqhaSkJDRu3BgLFiwwS7GO4NTb/4Cna2VA8jAOkf2TyWSqwQmAykOxHKSAapLcs1y0aBGOHj2KxYsXIzc3F6+++qradB8fH0RHR+Pnn382uUhH4ukqh6erMzxdnRmURA5CJpOp/t1W/bFLVJ3ksNy0aRNiY2ORkJDwv1EwNIOhdevWyMzMNKlAIiIiW5MclpmZmejRo0et83h5eSE/P1/qJoiIbKqwpByFJWUoLClTPWie6ifJ5yy9vLxw8+bNWudJS0uDn5+f1E0QEVkdHyBN2kjuWfbs2RM7duzA3bt3tU7PysrCrl27EBUVJXUTRERWV9sDpG/dL1H1NNnbrF8k9yxnzJiB2NhYPPbYY/jwww9RVlYGoPKhz8ePH8ekSZNQVlaGadOmma1YIiJLq/mkkqKScoQvrOxh1rxKlr3N+kNyWEZFRWHVqlWYPHmyWu/Ry8sLACCXy/Hxxx/j4YcfNr1KIiIrqfmkkuJa7rWs7YHR1Uf1qsLbyRyXSSP4TJgwATExMVi9ejVSU1Nx+/ZteHt7IzIyEq+//jo6duxorjqJiKym+pNKtD0TU9+9mLpG9WJP1HGZPNzdQw89hJUrV5qjFiIiu2PoMzFrjg+tbVSv2nqiZN/4f4yISI/aQrKwpBxCAINXH8eFHIXG9FNv/wOA5vlOciwmh+W2bduwbt06nD17Fvn5+fDx8UG3bt3w8ssv49lnnzVDiURE9kXX7SU19QhuhCYNXDnGbB0gOSzLysowfPhwbNmyBUIIODs7o0mTJsjNzcWOHTuwc+dOvPDCC/jqq6/UBlgnInJ0usKvQ4D3/85JVr7nBT11h+T7LBcvXozNmzfj0UcfxeHDh1FcXIycnBwUFxfj0KFDeOSRR7Blyxa899575qyXiMjmal70c2F+5euHNx9BAzdnjg9dB0nu8iUlJaF9+/bYs2ePWs/RyckJjzzyCPbs2YMuXbrg888/x9tvv22WYomI7IGhF/1Q3SG5Z5mTk4Onn35a5yFWFxcXPP3008jJyZFcHBGRvXJykkkKSo4365gk9yyDgoJw7969Wue5f/8+WrZsKXUTRER1AsebdXySe5avvvoqvvnmG509xxs3bmDTpk0az7kkIqpvahtvllfKOgaDe5Y1n0s5ZMgQHD16FN26dcOUKVPwyCOPwN/fH3/++ScOHz6MlStX4pFHHsHgwYPNXjQRkSOpeUFQcWntIwCR/TE4LENCQrQeKhBC4K233tLa/v3332Pnzp2qQdaJiOqjmhcE8Zogx2NwWI4ePZrH1YmIJOJVs47N4LBct26dBcsgIqqfCkv4ZBJHwKF1iIisrLbh8niFrH2SfDUsERFJU9sVsLxC1j6Z1LMsKCjAqlWrsGfPHmRnZ0OpVGrMI5PJkJaWZspmiIjqrMMJsWjS0FXvMzLJtiSH5V9//YXevXsjLS0N3t7eUCgU8PHxQUlJCYqKigAAgYGBcHFxMVuxRER1QfVbSZr7evDiHwcg+TDs3LlzkZaWhvXr1+POncqHnE6dOhX3799HamoqIiIiEBISgt9//91sxRIR1QVVt5JcXTSAQekgJIflrl278Nhjj2HkyJEaJ6LDw8Px448/Ij09HfPmzTO5SCKiukbq2LJkGyYNpN6tWzfVe7lcrjr8CgCNGjXCE088gW+++ca0Cu3Y3wMi82Q8EVFdJvmcpY+PD0pLS1XvGzVqhOvXr6vN4+3tjT///FN6dXbI0CekExFR3SG5Z9m6dWukp6er3nfr1g27d+/GrVu3AABFRUXYsWNHnXvqSG2XdPcIbgQPF7kVqyEiImuQ3LPs378/VqxYgcLCQnh6emL8+PEYNGgQunbtil69euHMmTNIT0/HwoULzVmvXam65LsKR94gIqqbJPcsX3vtNXz22WcoLCwEADz//PNYtmwZ7t+/jy1btiA3NxfTpk3DjBkzzFasvfFwlcPT1Vn1YlASEdVNknuWAQEBGDp0qFrb9OnTMWXKFOTl5aFZs2YMDyIiqhPMPjasXC6Hv7+/uVdLRERkMxxInYjITgkhNC4q5LURtmFwWLZu3VrSBjg2LBGR8YQQGLT6OE5n3FFrr+2pJNrCFWDAmoPBYVlRUSFpZ4vqNyYSEZFelQOelGsEJfD3U0k8XZ3VwlEIYPDq47iQo9BYho/9Mp3BYVn9nkoiIjKv2gY8OfX2PzTadfU8takesCQN9xwRkR3QNeBJj+BGaNLAVW16bT3PDgHe/+tFgo/9MiOGJRGRHaj+2K7f5sWhaoz1qvON+nqenq5ytfnJvBiWRER2oOqxXVU/16Sv58mAtCyGJRGRnajtkV36ep5kWQxLIiIHoK/nSZbFsCQichAMSduRPJA6ERFRfcGeJRFRPcIh9KQxKSzLysrw0Ucf4euvv8alS5dQWFiIsrIyAMC5c+fw6aefYsqUKQgNDTVLsUREJE1hSbnOUX44wo9+kg/DFhUVITY2FvHx8cjIyIC3t7fa0HatWrVCUlIS1q9fb/S6lUolZs6cicDAQHh4eCAyMhK7d+82ePlNmzahV69eaNCgAXx9fdG7d2/s27fP6DqIiBxZzXszOyb+rHU4vKoRfkg3yWG5aNEiHD16FIsXL0Zubi5effVVtek+Pj6Ijo7Gzz//bPS6X3rpJSxfvhwjRozAypUrIZfLMWDAABw5ckTvsnPnzsWLL76IoKAgLF++HAsWLECXLl1w48YNo+sgInJkugKwQ4A3fp8XpxpGj/STfBh206ZNiI2NRUJCAgBo7b63bt0aZ8+eNWq9J06cwMaNG7Fs2TLEx8cDAEaPHo1OnTohISEBx44d07lsSkoK5s+fj3/961+YOnWqUdslIqpr9N2bWf1ru7Dk72DlOUxNksMyMzMTzz33XK3zeHl5IT8/36j1bt68GXK5HOPGjVO1ubu7Y+zYsZg9ezaysrIQFBSkddkPPvgADzzwACZPngwhBO7fv4+GDRsatX0iorpC372ZuobQ4zlMTZIPw3p5eeHmzZu1zpOWlgY/Pz+j1nv27FmEhobC29tbrT0iIgJA5YVDuuzduxfh4eH48MMP4efnBy8vLwQEBGDVqlVG1UBEVFc4Ocl03p+p6zAtz2Fqktyz7NmzJ3bs2IG7d+/C19dXY3pWVhZ27dqlt/dZU05ODgICAjTaq9qys7O1Lnfnzh3k5eXh6NGj2LdvHxITE9GyZUskJSVh0qRJcHFxwfjx43VuV6lUQqlUqt4rFJonwYmI6pKah2mLS/mUEl0k9yxnzJiBO3fu4LHHHsPRo0dVt4wUFhZi7969iIuLQ1lZGaZNm2bUeouKiuDm5qbR7u7urpquzb179wAAt27dwpo1axAfH48hQ4bghx9+QIcOHbBgwYJat7t48WL4+PioXroO9RIR1RVVh2mvLhqAhm7OqieXkCbJYRkVFYVVq1bh119/RVRUFBYtWgSg8vBs//798ccff+Djjz/Gww8/bNR6PTw81Hp4VYqLi1XTdS0HAC4uLhg0aJCq3cnJCUOHDsX169eRmZmpc7uzZs1Cfn6+6pWVlWVU3UREjqi2w7T0N5MGJZgwYQJiYmKwevVqpKam4vbt2/D29kZkZCRef/11dOzY0eh1BgQEaL3NIycnBwAQGBiodbnGjRvD3d0dvr6+kMvV/zpq1qwZgMpDtS1bttS6vJubm9YeLRERkcnD3T300ENYuXKlOWoBAISFhWH//v1QKBRqF/mkpqaqpmvj5OSEsLAwnDx5EiUlJXB1/ftYfNV5TmMvNiIiIgJMOAy7d+9ec9ahMmjQIJSXl+PTTz9VtSmVSiQlJSEyMlJ1LjEzMxOXLl1SW3bo0KEoLy9HcnKyqq24uBhffvklOnTooLNXSkREVBvJPct+/fqhRYsWGD58OEaMGIHOnTubpaDIyEgMHjwYs2bNws2bN9G2bVskJycjPT0da9euVc03evRoHDx4UG2IvfHjx2PNmjWYOHEirly5gpYtW2LDhg3IyMjAjh07zFIfERHVP5J7lm+88QaUSiWWLl2KsLAwdOvWDcuXL1edWzTF+vXrMWXKFGzYsAFvvvkmSktLsXPnTkRFRdW6nIeHB/bt24fhw4fj888/x4wZM+Dk5IQffvgBTzzxhMl1ERFR/SQT1btmRiovL8ePP/6IDRs2YOfOnSgqKoJcLkffvn0xatQoPP/88/D09DRnvVajUCjg4+OD/Px8tXOnefeUqvuQTr39DzRtyIuCiKhuKCwpQ4d3KsfzvjA/Dp6ujvsUR13f4VKZ9PBnuVyOp556Cps2bUJubi7WrFmDRx55BHv27MGYMWPg7++PUaNGmVwkERGRLZkUltV5eXnhlVdewf79+5GRkYHZs2ejpKQEX331lbk2QUREZBNm7WMLIbBnzx588cUX2LZtG0pLSzXueSQiInI0ZgnLc+fOYcOGDdi4cSNyc3MhhECHDh0watQojBgxwhybICIishnJYZmVlYUvv/wSX375JS5cuAAhBPz9/TF58mSMGjUK3bp1M2edRERENiM5LENCQgBUDnA+bNgwjBo1Cv3794eTk9lOgxIREdkFyWEZExOD0aNH44UXXuADlomIqE6THJaWGu6OiIjI3jjuHadERGQxhSXlAICqYWtk1Z7ipa3Nw0UOmazuPurL4LB85ZVXIJPJsGjRIvj7++OVV14xaDmZTKY2pisREdmn6uO5VY1UZqgewY3w7Wu96mxgGhyW69atg0wmw8yZM+Hv749169YZtBzDkojIMRSVlkte9lTGHRSVljv0EHm1MfhTXbt2DQDQvHlztfdERFQ3NPb8+znAv82LAwB0SvxZ9d5JBlQI9bbi0nKje6GOyOCwDA4OrvU9ERE5NicnGa4uGqD6GYDG+5ptTnXzqKsGyTdFzp8/H4cOHap1nsOHD2P+/PlSN0FERFbm5CRTC8aa73W11XWSw3Lu3Lk4cOBArfMcOnQI8+bNk7oJIiIiu2DR4XZKSko4kDoRETk8k8KytkuES0pKcPjwYTRr1syUTRAREdmcUdf4tm7dWu39ihUrkJSUpDFfeXk58vLyUFxcjH/+85+mVUhERGRjRoVlRUWFqjcpk8kghICofhfr/7i4uKBjx47o27cv5syZY55KiYiIbMSosExPT1f97OTkhKlTp+Kdd94xd01ERER2RfJQC9euXYOvr68ZSyEiIrJPksOSgxIQEVF9YXBYzp8/HzKZDBMnTkTjxo0NHmxAJpPxvCURETk0g8Ny7ty5kMlkGDp0KBo3boy5c+catBzDkoiIHJ3BYbl//34AQMuWLdXeExER1XUGh2V0dHSt74mIiOoqiw53R0REVBdIDstff/0Vn3/+ORQKhaqtqKgIEyZMQPPmzdGmTRusXr3aLEUSERHZkuSwXLBgAebMmQMvLy9V2+zZs/HJJ5+goKAA169fx8SJE7F7926zFGovqj8ctfrPRERUd0kOyxMnTiA2NlY1/F1ZWRmSkpIQERGBmzdv4tq1a/Dz88PKlSvNVqw9qHo46tVFA+rd89yIiOoryWH5119/ISgoSPX+5MmTUCgUeO211+Du7o7AwEAMHDgQ58+fN0uh9qQ+PviUiKg+kxyWzs7OUCqVqvcHDhyATCZDbGysqq1JkybIy8szrUIiIiIbkxyWISEhavdafvvtt2jVqpXaMHg3btxAkyZNTKuQiIjIxiSH5ahRo3D+/HlERkYiKioK58+fx/Dhw9Xm+eWXX9CuXTuTiyQiIrIlyWH5xhtvYPDgwTh16hSOHDmCJ554ArNnz1ZN//3333H+/Hn07dvXLIUSERHZiuSnjri5uWHTpk1QKBSQyWRqt5AAgL+/P86ePYuQkBBTayQiIrIpyWFZxdvbW2t706ZN0bRpU1NXT0REZHMmh+X9+/exfft2nDt3DgqFAt7e3ggLC8Ozzz6LBg0amKNGIiIimzIpLLds2YJx48bh7t27EEKo2mUyGXx9ffHZZ5/h+eefN7lIIiKyf4Ul5aqfPVzkqkFr6gLJYXns2DEMGzYMcrkcr776KmJjYxEQEIDc3Fzs378fycnJGDZsGA4ePIhevXqZs2YiIrIT1fpJ6LFgz98/BzfCt6/1qjOBKTksFy1aBDc3Nxw9ehRdu3ZVmzZ06FC8/vrr6N27NxYtWoQdO3aYXCgREdmfotJyre2nMu6gqLQcnq4mn+2zC5JvHTl+/DiGDh2qEZRVunTpgiFDhuDYsWOSiyMiIvtW/YESv82Lw6m3/2HDaixHcuQXFhbC39+/1nn8/f1RWFgodRNERGTnqh4uUfVz9WGz69I5TMlhGRISgt27d2PRokU659m7dy/vsyQiquOqP1hC1znMDgHe/zuH+fd0RwpQyYdhhwwZgtOnT2PMmDHIzs5Wm5aTk4OXXnoJp0+fxtChQ00ukoiIHIOuc5gXchTomPgzOrzz92vw6uNqd1LYM5mQWGlhYSFiY2Nx8uRJuLq6om3btvD398eff/6JP/74AyUlJYiIiMD+/fvh4eFh7rotTqFQwMfHB/n5+ToHXiAiInV595SqHuXhhMqnUD26dL/O+S/Mj7PIRUDm/g6XXKGnpycOHTqEJUuWIDk5GRcuXMCFCxcAAK1bt8aYMWOQkJAANzc3k4skIiLHUP2Cn+a+6h2l3+bFwUlWeS6z+iFaRyC5Z1lTQUGBagSfmuPEOiL2LImIpKmoqIyVqnOZNd8XlpShwzs/A3CcnqXR5yzT0tLwyiuvoHPnzujSpQv++c9/Ij09HV5eXmjevHmdCEoiIpLOyUmmdtFPzfeOyKg4z8jIQGRkJO7cuaM6Kfvbb7/hu+++w+nTpxEUFGSRIomIiGzJqJ7lwoULcfv2bYwcORIpKSlISUnB6NGjkZeXV+stJERERI7MqJ7l3r17ERYWhuTkZFVbREQEfvnlF+zevdvsxRERUf0ghNC47cSe7sM0Kiyzs7MxcOBAjfaYmBj85z//MVtRRERUPxSWlEMIYPDq47iQo1CbZk+DsRsVlkqlEr6+vhrtPj4+KCkpMVdNRERUh+ka5aemUxl3cOt+CTxd5QBs29OsG8PBExGRw9A1yk/VkHiFJeUIX1gZovby2C+jw3Lnzp3Izc1Vazt16hQA4PXXX9eYXyaT4d///rfE8oiIqK6p+aSSqrtKqnqO9vjYL6MGJXByMn4oWZlMhvJy7R/cnnFQAiIiy6k5UEHNaa1n7wJQGabFpX+P+GPoIAY2He5u/37d4/sREREZqrZBCmp77JetGBWW0dHRlqpDjVKpxDvvvIMNGzbgzp076NKlCxYsWIB+/foZtZ5+/fphz549mDhxIlatWmWhaomIyNzsbcQfyY/osqSXXnoJy5cvx4gRI7By5UrI5XIMGDAAR44cMXgdW7duxfHjxy1YJRER1RcGh2VmZqbJG7tx44beeU6cOIGNGzdi8eLFWLZsGcaNG4d9+/YhODgYCQkJBm2nuLgY06dPx8yZM00tmYiIyPCwbNeuHSZOnIhr164ZtYHS0lJ8/fXX6NixI9auXat3/s2bN0Mul2PcuHGqNnd3d4wdOxbHjx9HVlaW3nUsXboUFRUViI+PN6pWIiIibQwOyyVLlmDTpk1o27YtoqOj8dFHH+HkyZMoLS3VmPf69evYsmULXnvtNQQEBGDkyJEIDg7G8OHD9W7n7NmzCA0N1bh6KSIiAgBw7ty5WpfPzMzEe++9hyVLljjkQ6eJiMj+GHyBz5QpU1TnEteuXYvJkydDJpPByckJvr6+8PX1RXFxMW7fvo3i4mIAlbeNxMXFYfr06ejbt69B28nJyUFAQIBGe1VbdnZ2rctPnz4d3bp1w7Bhwwz9aAAqLypSKpWq9wqFopa5iYioPjHqalhfX1/Mnz8fiYmJ+PHHH7F3714cO3YM169fR1ZWFjw8PNC8eXN07twZ0dHRGDhwIIKDg40qqKioCG5ubhrt7u7uqum67N+/H1u2bEFqaqpR2wSAxYsXY968eUYvR0REdZ+kYRDkcjmeeuopPPXUU+auBx4eHmo9vCpVvVVdh1bLysrw5ptvYtSoUQgPDzd6u7NmzcK0adNU7xUKBZ/PSUREAOxwbNiAgACtV83m5OQAAAIDA7Uut379ely+fBmffPIJ0tPT1aYVFBQgPT0dzZo1g6enp9bl3dzctPZoiYiI7O4+y7CwMFy5ckXjnGHVodWwsDCty2VmZqK0tBR9+vRBq1atVC+gMkhbtWqF//73vxatnYiILKuwpByFJWW4r6x8FZZovowYxdVgRo0Naw2pqano2bMnli1bprr1Q6lUolOnTmjSpAlSUlIAVIZjYWEh2rdvDwC4dOkSLl26pLG+5557DgMGDMA///lPREZGar14SBuODUtEZB/uK8vQMfFng+e/MD8OZcWFthsb1hoiIyMxePBgzJo1Czdv3kTbtm2RnJyM9PR0tfs0R48ejYMHD6r+gmjfvr0qOGtq1aoVnn32WWuUT0REZqbrKSTWZHdhCVQeNp0zZ47a2LA7d+5EVFSUrUsjIiIrq/lILwDo9L+eZvVHfFXxcJGjoNi8NdjdYVh7wcOwRET2o+YjvWp7xBdg40d0ERER2ULNULT2U0ns7mpYIiIie2Nyz/LEiRM4efIk7t69i/JyzZOwMpkMc+bMMXUzRERENiP5nOXt27fx7LPP4ujRo7Xe0yKTybSGqL3jOUsiIsdlN+csp02bhiNHjiAmJgZjxoxBixYt4OzMU6BERFT3SE63nTt3IiIiAnv37oVMZt0TrURERNYk+QKfoqIiREVFMSiJiKjOkxyWYWFhGgOWExER1UWSwzIxMRHff/+9aqxWIiKiukryOcvc3Fw8+eSTiI6OxogRI9C9e3edVxyNHj1acoFERES2JvnWEScnJ8hkMrXbRmqevxRC8NYRIiKyOru5dSQpKcnkjRMRETkCyWE5ZswYc9ZBRERktzg2LBERkR4mD7mTnp6OL7/8EufOnYNCoYC3tzfCwsIwYsQIhISEmKFEIiIi2zLpeZYrV65EQkICysrKNMaHdXFxwdKlSzF58mSTi7QFXuBDROS4zP0dLvkw7M6dOzF16lT4+PhgwYIFOHbsGK5du4bjx49j0aJF8PHxwbRp0/DDDz+YXCQREZEtSe5Z9u3bF7/88gvOnTuHFi1aaEzPyspCt27d0LVrV+zdu9fkQq2NPUsiIsdlNz3LM2fOYOjQoVqDEgCCgoIwZMgQnD59WnJxRERE9kByWJaUlKBBgwa1ztOwYUOUlJRI3QQREZFdkByWoaGh2LFjB8rKyrROLysrw86dOxEaGiq5OCIiInsgOSxHjx6Ny5cvIy4uTuNQ66lTp/DEE0/g8uXLHLyAiIgcnuQLfMrLy/HCCy/g+++/h0wmg6enJ5o1a4abN2+isLAQQggMHDgQW7ZsgZOT4419wAt8iIgcl91c4COXy7F9+3asW7cOMTExcHV1RWZmJlxdXREbG4vk5GRs27bNIYOSiIioOpMGJajL2LMkInJcdtOzJCIiqi8YlkRERHoYHJZOTk5wdnbGlStXVO/lcrnel7OzyWO1ExER2ZTBSRYVFaW66rX6eyIiorqOF/jowAt8iIgcFy/wISIisjKzn1BMT0/H7t274e7ujueeew4NGzY09yaIiIisSnLPctGiRWjVqhXu3Lmjajtw4AA6deqE1157DS+99BK6d++O27dvm6VQIiIiW5Ecltu3b0dISAgaNWqkaps5cyYqKiowb948TJgwAX/88Qc++OADc9RJRERkM5LDMj09HR06dFC9z87OxsmTJzFx4kS8/fbbWLVqFR577DFs27bNLIUSERHZiuSwVCgU8PX1Vb0/dOgQZDIZnn76aVVb9+7dkZmZaVKBREREtiY5LP39/ZGRkaF6v3v3bri5uSEyMlLVVlxczHsxiYjI4Um+GjY8PBzfffcddu7cCXd3d2zatAmxsbFwc3NTzXPt2jUEBgaapVAiIiJbkdyznD17NsrKyjBw4EDExcWhuLgYs2fPVk1XKpU4dOiQWk+TiIjIEUnuWXbv3h0pKSnYsGEDAGDIkCGIiIhQTT979ixiY2MxfPhw06skIiKyIQ53pwOHuyMiclwc7o6IiMjKDD4Mu379egDAc889By8vL9V7Q4wePdr4yoiIiOyEwYdhnZycIJPJcPHiRYSGhqre10YIAZlMhvLycrMUa008DEtE5LjM/R1ucM/y888/h0wmQ0BAAAAgKSnJ5I0TERE5Al7gowN7lkREjosX+BAREVmZ5LA8evQopk2bhtzcXK3Tc3JyMG3aNKSkpEgujoiIyB5IDsvly5djx44deOCBB7RODwgIwM6dO7FixQrJxREREdkDyWF58uRJPPLII7XOExUVxZ4lERE5PMlhefPmTTRv3rzWeR544AHcvHlT6iaIiIjsguSw9PX11fusyoyMDDRs2FDqJoiIiOyC5LDs2bMntm3bhqysLK3TMzMzsX37dvTu3VtycURERPZAclhOmzYNhYWF6NOnD9avX4+cnBwAlVfBJicno0+fPigqKsL06dPNViwREZEtSH5EV1RUFJYvX47p06fj5ZdfBgDIZDJUjXHg5OSElStXIioqyjyVEhER2YjJI/j88ssvWL16NU6ePIn8/Hz4+voiIiICr732Gjp16mSuOq2OI/gQETkuc3+Hc7g7HRiWRESOi8PdERERWZlJYVlWVoYVK1YgIiIC3t7ecHb++xTouXPn8Prrr+PKlSsmF0lERGRLksOyqKgIsbGxiI+PR0ZGBry9vVH9iG6rVq2QlJRk1EOiqyiVSsycOROBgYHw8PBAZGQkdu/erXe5rVu3YujQoWjdujU8PT3x4IMPYvr06bh7967RNRAREVWRHJaLFi3C0aNHsXjxYuTm5uLVV19Vm+7j44Po6Gj8/PPPRq/7pZdewvLlyzFixAisXLkScrkcAwYMwJEjR2pdbty4cbh48SJGjhyJDz/8EI8//jhWrVqFXr16oaioyOg6iIiIABNuHdm0aRNiY2ORkJAAoPK2kZpat26Ns2fPGrXeEydOYOPGjVi2bBni4+MBAKNHj0anTp2QkJCAY8eO6Vx28+bNiImJUWt7+OGHMWbMGHz55ZcagU5ERGQIyT3LzMxM9OjRo9Z5vLy8kJ+fb9R6N2/eDLlcjnHjxqna3N3dMXbsWBw/flzniEEANIISAJ577jkAwMWLF42qg4iIqIrksPTy8tI7SHpaWhr8/PyMWu/Zs2cRGhqqcalvREQEgMoLh4xR9bzNpk2bGrUcERFRFZPGht2xY4fOi2eysrKwa9cuo0fwycnJQUBAgEZ7VVt2drZR61uyZAnkcjkGDRpU63xKpRIKhULtRUREBJgQljNmzMCdO3fw2GOP4ejRoygrKwMAFBYWYu/evYiLi0NZWRmmTZtm1HqLiorg5uam0e7u7q6abqivvvoKa9euxfTp09GuXbta5128eDF8fHxUr6CgIKPqJiKiusuksWFXrVqFyZMnq/Uevby8AAByuRwff/wxHn74YaPW6+HhAaVSqdFeXFysmm6Iw4cPY+zYsYiLi8PChQv1zj9r1iy1YFcoFAxMIiICYEJYAsCECRMQExOD1atXIzU1Fbdv34a3tzciIyPx+uuvo2PHjkavMyAgADdu3NBor3qqSWBgoN51nD9/Hs888ww6deqEzZs3qw2WoIubm5vWHi0REZHksDx06BC8vb0RFhaGlStXmq2gsLAw7N+/HwqFQu0in9TUVNX02qSlpeHxxx9Hs2bNsGvXLj58moiITCb5nGVsbCw+/fRTc9YCABg0aBDKy8vV1q1UKpGUlITIyEjVodHMzExcunRJbdnc3Fz0798fTk5O+Pnnn42+EpeIiEgbyT3LZs2aqS66MafIyEgMHjwYs2bNws2bN9G2bVskJycjPT0da9euVc03evRoHDx4UG2IvccffxxXr15FQkICjhw5ojbij7+/P/r162f2eomIqO6THJb9+vXDgQMHIITQOnqPKdavX485c+Zgw4YNuHPnDrp06YKdO3fqvQ3l/PnzAIClS5dqTIuOjmZYEhGRJJKfZ5mdnY1evXqhf//+WLJkCRo3bmzu2myKz7MkInJcdvPw5759++LWrVv47bff4OrqilatWsHf31+jlymTybB3716TC7U2hiURkeOym7B0cjLs2iCZTIby8nIpm7AphiURkeMy93e45HOWFRUVJm+ciIjIEUi+dYSIiKi+MDosjx8/jr59+8LLywve3t7o16+fasAAIiKiusioc5a//vorIiMjVeO0VvHw8MCJEyckDW9nr3jOkojIcZn7O9yonuV7772H4uJivPXWW8jNzUVubi7mzJmDoqIiLFmyxORiiIiI7JFRPcuWLVsiJCQEhw4dUmuPjo5Geno6MjIyzF6grbBnSUTkuGzas/zzzz/Rs2dPjfbIyEj8+eefJhdDRERkj4wKy9LSUq1P8WjQoAFKS0vNVhQREZE94a0jREREehg9KMEXX3yBlJQUtbY//vgDADBgwACN+WUyGX744QeJ5REREdmeURf4GDrEndoGONwdERFZmU2Hu7t27ZrJGyQiInI0RoVlcHCwpeogIiKyW7zAh4iISA+GJRERkR4MSyIiIj0YlkRERHowLImIiPRgWBIREenBsCQiItKDYUlERKQHw5KIiEgPhiUREZEeDEsiIiI9GJZERER6MCyJiIj0YFgSERHpwbAkIiLSg2FJRESkB8OSiIhID4YlERGRHgxLIiIiPRiWREREejAsiYiI9GBYEhER6cGwJCIi0oNhSUREpAfDkoiISA+GJRERkR4MSyIiIj0YlkRERHowLImIiPRgWBIREenBsCQiItKDYUlERKQHw5KIiEgPhiUREZEeDEsiIiI9GJZERER6MCyJiIj0YFgSERHpwbAkIiLSg2FJRESkB8OSiIhID4YlERGRHgxLIiIiPewyLJVKJWbOnInAwEB4eHggMjISu3fvNmjZGzduYMiQIfD19YW3tzcGDhyIq1evWrhiIiKqy+wyLF966SUsX74cI0aMwMqVKyGXyzFgwAAcOXKk1uXu3buH2NhYHDx4ELNnz8a8efNw9uxZREdH49atW1aqnoiI6hqZEELYuojqTpw4gcjISCxbtgzx8fEAgOLiYnTq1AnNmjXDsWPHdC67dOlSzJw5EydOnEB4eDgA4NKlS+jUqRMSEhKwaNEig+tQKBTw8fFBfn4+vL29TftQRERkVeb+Dre7nuXmzZshl8sxbtw4VZu7uzvGjh2L48ePIysrq9Zlw8PDVUEJAO3bt8djjz2Gb775xqJ1ExFR3WV3YXn27FmEhoZq/CUQEREBADh37pzW5SoqKvDLL7+gR48eGtMiIiKQlpaGgoICs9dLRER1n92FZU5ODgICAjTaq9qys7O1Lnf79m0olUpJywKVFxUpFAq1FxEREWCHYVlUVAQ3NzeNdnd3d9V0XcsBkLQsACxevBg+Pj6qV1BQkNG1ExFR3WR3Yenh4QGlUqnRXlxcrJquazkAkpYFgFmzZiE/P1/1qu3cKBER1S/Oti6gpoCAANy4cUOjPScnBwAQGBiodbnGjRvDzc1NNZ8xywKVPVJtvVIiIiK7C8uwsDDs378fCoVC7SKf1NRU1XRtnJyc0LlzZ5w6dUpjWmpqKlq3bg0vLy+D66i6o4bnLomIHE/Vd7fZ7o4UdiYlJUUAEMuWLVO1FRcXi7Zt24rIyEhVW0ZGhrh48aLasu+9954AIE6ePKlqu3TpkpDL5WLmzJlG1ZGVlSUA8MUXX3zx5cCvrKwsiWmkzu4GJQCAIUOGYNu2bZg6dSratm2L5ORknDhxAnv37kVUVBQAICYmBgcPHlT7q6GgoADdunVDQUEB4uPj4eLiguXLl6O8vBznzp2Dn5+fwTVUVFQgOzsbXl5eKCgoQFBQELKysjhAgQ4KhYL7qBbcP/pxH9WO+0e/6vuo6rs7MDAQTk6mX55jd4dhAWD9+vWYM2cONmzYgDt37qBLly7YuXOnKih18fLywoEDBzB16lQsWLAAFRUViImJwYoVK4wKSqDysG6LFi0AADKZDADg7e3NX1I9uI9qx/2jH/dR7bh/9KvaRz4+PmZbp132LO0Nh77Tj/uodtw/+nEf1Y77Rz9L7iO7u3WEiIjI3jAsDeDm5obExETeWlIL7qPacf/ox31UO+4f/Sy5j3gYloiISA/2LImIiPRgWBIREenBsCQiItKDYUlERKRHvQ5LpVKJmTNnIjAwEB4eHoiMjMTu3bsNWvbGjRsYMmQIfH194e3tjYEDB+Lq1asWrtj6pO6jrVu3YujQoWjdujU8PT3x4IMPYvr06bh7967li7YiU36HquvXrx9kMhneeOMNC1RpW6buo02bNqFXr15o0KABfH190bt3b+zbt8+CFVuXKftnz549iI2NRdOmTeHr64uIiAhs2LDBwhVb171795CYmIjHH38cjRs3hkwmw7p16wxe/u7duxg3bhz8/PzQoEEDxMbG4syZM8YXYpZB8xzUsGHDhLOzs4iPjxeffPKJ6NWrl3B2dhaHDx+udbmCggLRrl070axZM7FkyRKxfPlyERQUJFq0aCHy8vKsVL11SN1HTZo0EZ07dxZz5swRn332mXjzzTeFq6uraN++vSgsLLRS9ZYndf9Ut2XLFtGgQQMBQEycONGC1dqGKfsoMTFRyGQyMXjwYLF69Wrx0UcfifHjx4v169dboXLrkLp/vvvuOyGTyUTv3r3FRx99JFatWiWioqIEALF8+XIrVW95165dEwBEy5YtRUxMjAAgkpKSDFq2vLxc9O7dWzRo0EDMnTtXrFq1SnTo0EF4eXmJK1euGFVHvQ3L1NRUAagP2F5UVCTatGkjevXqVeuyS5YsEQDEiRMnVG0XL14UcrlczJo1y2I1W5sp+2j//v0abcnJyQKA+Oyzz8xdqk2Ysn+qzx8SEiLmz59fJ8PSlH10/PhxIZPJ6tQXf02m7J9+/fqJwMBAUVxcrGorLS0Vbdq0EV26dLFYzdZWXFwscnJyhBBCnDx50qiw3LRpkwAgvv32W1XbzZs3ha+vr3jxxReNqqPehuWMGTOEXC4X+fn5au2LFi0SAERmZqbOZcPDw0V4eLhGe//+/UWbNm3MXqutmLKPtFEoFAKAmDZtmjnLtBlz7J958+aJli1bisLCwjoZlqbso6FDh4qAgABRXl4uKioqREFBgaXLtTpT9k9kZKTo2LGj1vbqT2iqS4wNy8GDBwt/f39RXl6u1j5u3Djh6emp9oeGPvX2nOXZs2cRGhqqMX5gREQEAODcuXNal6uoqMAvv/yCHj16aEyLiIhAWloaCgoKzF6vLUjdR7rk5uYCAJo2bWqW+mzN1P2TmZmJ9957D0uWLIGHh4elyrQpU/bR3r17ER4ejg8//BB+fn7w8vJCQEAAVq1aZcmSrcqU/RMTE4Pff/8dc+bMwR9//IG0tDS8++67OHXqFBISEixZtsM4e/YsunfvrvHUkYiICBQWFuLKlSsGr8sunzpiDTk5OQgICNBor2rLzs7Wutzt27ehVCr1Lvvggw+asVrbkLqPdFmyZAnkcjkGDRpklvpszdT9M336dHTr1g3Dhg2zSH32QOo+unPnDvLy8nD06FHs27cPiYmJaNmyJZKSkjBp0iS4uLhg/PjxFq3dGkz5HZozZw6uXbuGhQsXYsGCBQAAT09PbNmyBQMHDrRMwQ4mJydH69Oqqu/fzp07G7SuehuWRUVFWscPdHd3V03XtRwAScs6Gqn7SJuvvvoKa9euRUJCAtq1a2e2Gm3JlP2zf/9+bNmyBampqRarzx5I3Uf37t0DANy6dQsbN27E0KFDAQCDBg1C586dsWDBgjoRlqb8Drm5uSE0NBSDBg3C888/j/Lycnz66acYOXIkdu/ejZ49e1qsbkdhzu+wehuWHh4eUCqVGu3FxcWq6bqWAyBpWUcjdR/VdPjwYYwdOxZxcXFYuHChWWu0Jan7p6ysDG+++SZGjRqF8PBwi9Zoa6b+O3NxcVE7EuHk5IShQ4ciMTERmZmZaNmypQWqth5T/o298cYbSElJwZkzZ1SHGYcMGYKOHTti8uTJdf4PMUOY6zsMqMf3WQYEBCAnJ0ejvaotMDBQ63KNGzeGm5ubpGUdjdR9VN358+fxzDPPoFOnTti8eTOcnevO32dS98/69etx+fJljB8/Hunp6aoXABQUFCA9PR2FhYUWq9uaTPl35u7ujiZNmkAul6tNa9asGYDKQ7WOTur+KSkpwdq1a/Hkk0+qnY9zcXHBE088gVOnTqGkpMQyRTsQc3yHVam3YRkWFoYrV65AoVCotVf9NRYWFqZ1OScnJ3Tu3BmnTp3SmJaamorWrVvDy8vL7PXagtR9VCUtLQ2PP/44mjVrhl27dqFhw4aWKtUmpO6fzMxMlJaWok+fPmjVqpXqBVQGaatWrfDf//7XorVbiyn/zsLCwvDXX39pfOlXncfz8/Mzf8FWJnX/3Lp1C2VlZSgvL9eYVlpaioqKCq3T6puwsDCcOXMGFRUVau2pqanw9PREaGio4Ssz5rLduiQlJUXj/qbi4mLRtm1btcuuMzIyxMWLF9WWfe+99wQAcfLkSVXbpUuXhFwuFzNnzrR88VZiyj7KyckRrVu3FoGBgeLatWvWKtmqpO6fixcvim3btmm8AIgBAwaIbdu2iezsbKt+Fksx5XdoxYoVAoD49NNPVW1FRUWidevWokOHDpYv3gqk7p+ysjLh6+srQkNDhVKpVLUXFBSIFi1aiPbt21vnA1hZbbeOZGdni4sXL4qSkhJV28aNGzXus/zrr7+Er6+vGDp0qFHbrrdhKUTlPTjOzs5ixowZ4pNPPhG9e/cWzs7O4uDBg6p5oqOjRc2/KRQKhWjTpo1o1qyZWLp0qVixYoUICgoSgYGB4ubNm9b+GBYldR917dpVABAJCQliw4YNaq///ve/1v4YFiN1/2iDOnifpRDS91FhYaHo2LGjcHFxEfHx8eLDDz8U4eHhQi6Xi127dln7Y1iM1P2zYMECAUB069ZNrFixQrz//vvioYceEgDEF198Ye2PYVEfffSRePfdd8WECRMEAPH888+Ld999V7z77rvi7t27QgghxowZIwCo/XFeVlYmevbsKRo2bCjmzZsn/v3vf4uOHTsKLy8vcenSJaNqqNdhWVRUJOLj48UDDzwg3NzcRHh4uPjpp5/U5tH1RZeVlSUGDRokvL29RcOGDcVTTz0l/u///s9apVuN1H0EQOcrOjraip/Askz5HaqproalKfvozz//FGPGjBGNGzcWbm5uIjIyUmNZR2fK/vnyyy9FRESE8PX1FR4eHiIyMlJs3rzZWqVbTXBwsM7vk6pw1BaWQghx+/ZtMXbsWNGkSRPh6ekpoqOj1Y4KGkomhBCGH7QlIiKqf+rtBT5ERESGYlgSERHpwbAkIiLSg2FJRESkB8OSiIhID4YlERGRHgxLIiIiPRiWREREejAsiYiI9GBYUr0SEhKCkJAQtbZ169ZBJpNh3bp1Rq1r+/btkMlkOHbsmPkKNIP09HTIZDK89NJLRi0nk8kQExNjkZqMFRMTA5lMZtI65s6dC5lMhgMHDpinKC1stc/WrFkDuVyOX3/91erbrq8YlmSUqi/i6i8XFxc0b94cQ4YM0frosrqotLQUCQkJiIuLQ+/evVXt2vaPq6srgoKCMHz4cPzyyy82q9kcAUSWce7cOcyePRtxcXHw8/PTG8JjxoxBcHAwZsyYYb0i67m68yResqo2bdpg5MiRAID79+/j9OnT+Pbbb7F9+3bs2bMHUVFRNq7QsjZs2ID/+7//w+rVq7VOr75/7t27h5SUFHz99dfYunUr9u7diz59+listubNm+PixYvw8fExarmLFy/C09PTQlVRbbZv347FixfD1dUVoaGhyMvLq3V+FxcXTJ06FW+++SaOHj1q0d8nqsSwJEnatm2LuXPnqrW99957mDVrFubMmYODBw/apjAr+c9//oOgoCDExsZqna5t/7z99ttYuHAh3nrrLYseGnRxcUH79u2NXk7KMmQegwcPxjPPPIPOnTvj1q1bCAgI0LvMsGHDMG3aNKxevZphaQU8DEtmM3bsWADA6dOnNaaVlJRg+fLl6N69Oxo0aAAvLy88+uij+P7777Wuq6SkBCtWrEB4eDi8vLzQsGFDdOjQAdOmTcOdO3dU8+3fvx+vvPIKHnzwQTRs2BANGzZEjx498Omnn1rmQwL47bffcOrUKbzwwgtGHdacNGkSAODkyZOqtrKyMixfvhxdu3aFh4cHfHx8EBsbix07dmgsX1FRgTVr1iAiIgKNGzeGh4cHWrRogaefflotfLWds5TJZKo/YKofIq45T/VDf2PHjoVMJsOhQ4e0fp7ly5dDJpPhs88+U2v/5ZdfMGzYMAQEBMDV1RXBwcGYNGkSbt26Zeiu0io/Px9LlixBdHQ0AgMD4erqisDAQIwePRppaWm1Lrt27Vp07twZ7u7uaN68OaZOnYqCggKt81qq/tp07NgR3bt3h4uLi8HL+Pn5ISYmBps3b8a9e/csVhtVYliS2Tk7qx+wUCqViIuLw/Tp0yGEwNixYzFy5EhkZGRg4MCBWLVqldr8RUVF6Nu3L6ZNm4b8/Hy8/PLLmDBhAkJDQ/HJJ58gIyNDNe+SJUtw6NAhhIeH44033sDIkSORl5eH8ePHY/r06Rb5fHv37gUA9OzZU9LyVQErhMCgQYMwffp0FBcXY+LEiRg+fDjOnz+PZ555BitWrFBbbtasWfjnP/+J27dvY/jw4ZgyZQr69u2L33//HXv27Kl1m4mJiQgODlb9XPV69tlndS4zatQoAMAXX3yhdfqGDRvg5uaGwYMHq9q+//57RERE4Pvvv0dMTAymTJmCzp07Y9WqVejVq5faHzrGunjxIt555x14eHjgueeew5QpU9CjRw989dVXiIiIUPu9qG758uV48803ER4ejilTpiAgIAAffPAB+vfvj9LSUrV5zVF/1R8rNS8ks4RevXqhuLjY7i4yq5NMfCYn1TPXrl0TAERcXJzGtEWLFgkA4sknn1Rrnz17tgAg5syZIyoqKlTtCoVC9OjRQ7i6uoobN26o2qdPny4AiFGjRomysjK1dd29e1cUFBSo3l+9elWjjtLSUtGvXz8hl8tFRkaG2rTg4GARHBys1paUlCQAiKSkJL2fX4jKJ9sD0Pqw79r2zzvvvCMAiNjYWCGEEMnJyaqHYSuVStV8GRkZomnTpsLZ2VmkpaWp2hs3biwCAwPF/fv3NdZ969YtjRrGjBmjNo++h1CjxoO5KyoqRMuWLUWjRo1EcXGx2ry//vqrACAGDRqkasvLyxPe3t6iefPmIj09XW3+r7/+WgAQb7zxhs7t66v17t27ap+zyr59+4STk5N49dVX1doTExMFAOHq6irOnz+v9rmGDx8uAIj333/fpPpr7jMh/t7/NX/PDJWTk2PwQ9K/++47AUC88847krZFhmNYklGqvgjatGkjEhMTRWJiooiPjxexsbECgPD39xcXLlxQzV9eXi4aNWok2rRpoxaUVb7//nsBQHz00UdCiMqg8/LyEj4+PuL27duS69yyZYsAINatW6fWbo6w7NWrlwAgFAqFxjRd++fRRx8VAIS7u7s4duyYEEKIvn37CgAiNTVVYz0LFy4UAMT8+fNVbY0bNxYhISEawaWrBlPDUgghZs2aJQCILVu2qLUnJCQIAGL79u2qtuXLlwsAYv369VrX3717d9G0adNaaze01po6d+4sQkJC1NqqwrJmiAohRHp6upDL5aJTp04m1a9tn5WUlIiLFy+KP/74w+D6qzMmLFNSUgQA8corr0jaFhmOF/iQJGlpaZg3b55a2wMPPIDDhw+jbdu2qrbLly/jzp07CAwM1JgfAP766y8AwKVLl1T/LSgowD/+8Q80atRIbx0FBQV4//33sX37dqSlpeH+/ftq07Ozs43+bPrcunULcrkcXl5eOuepvn9cXFzg7++P4cOH4//9v/+Hzp07AwDOnj0LT09PREREaCxfdeHQuXPnVG3Dhg3Dxx9/jE6dOmHYsGGIjY1Fr1694OHhYcZPp27UqFFYvHgxNmzYgOeffx5A5bnTr776Ck2aNMGAAQNU86akpAAAUlNTtZ5DLC4uRl5eHvLy8tC0aVNJ9Rw4cAAffPABUlNTkZeXh7KyMtU0V1dXrcs8+uijGm3BwcEICgrC77//jpKSEri6upqtfqkXWEnRuHFjANB79SyZjmFJksTFxeGnn34CUBl4ycnJmDlzJp555hmcOHECDRs2BADcvn0bAPD777/j999/17m+qpDLz88HUHn7gz4lJSWIiYnBmTNn0K1bN4waNQpNmjSBs7Mz0tPTkZycDKVSadLn1MbDwwPl5eUoLS3VeUFG9f2ji0KhQFBQkNZpVVdDKhQKVdvKlSvRqlUrJCUlYcGCBViwYAHc3d0xZMgQ/Otf/5IcQLV56KGH8PDDD2PXrl24c+cOGjVqhAMHDuD69et4/fXX1T5/1f/rf//737Wu8/79+5Jq/fbbbzF06FA0bNgQcXFxCAkJgaenp2pACV3nLP39/XW2p6eno6CgAE2aNLF4/ZZQVFQEALzlxwoYlmQyPz8/xMfHIz8/HwsWLMDbb7+NDz74AADg7e0NAHjhhRewefNmvevy9fUFANy4cUPvvN999x3OnDmDsWPHYs2aNWrTNm7ciOTkZOM+iIH8/PwAVIaDri9iQ3h7e+PmzZtap+Xm5qrmqeLs7Iz4+HjEx8cjOzsbBw8eRFJSEtavX4/c3Fz8/PPPkmupzahRozBlyhR88803GD9+PDZs2KBqr/l5AODXX39Fp06dzF7H3Llz4e7ujtOnT6Ndu3Zq0zZu3KhzuT///FNnu0wmUx0hsHT9llAV8FW/k2Q5vBqWzGb27NkIDAzExx9/jPT0dACVPRNvb2+cOnVK48pDbR588EF4e3vj5MmTeq88rDpUNnDgQI1phw8fNv4DGKjqMOrly5dNWk+3bt1QWFiIEydOaEyruhUkLCxM67KBgYF48cUX8dNPP6Ft27bYs2ePqpehi1wuBwCUl5cbVeeLL74IZ2dnfPHFFygqKsLWrVvRtm1bjauBIyMjAQDHjx83av2GSktLw0MPPaQRlDk5Obh69arO5bT9LmRkZCArKwsdO3ZUHb61dP2WUPU7WPU7SZbDsCSz8fDwwMyZM1FaWop3330XQGVvaMKECcjIyEB8fLzWwPztt99UPSxnZ2eMHz8e+fn5mDx5ssYXe35+vuqesqpbIY4cOaI2z8GDBzXu/TOn6OhoAJXntkwxZswYAJW3hFTfL1lZWVi+fDmcnZ0xYsQIAJW332i7PeD+/fu4d+8eXFxc4ORU+z/nqvNbWVlZRtXZrFkz9O/fH0ePHsUHH3wAhUKhGp2oupdffhleXl546623tB5yLywsVJ0XlCI4OBh//PGHWk+xuLgYEyZMqPUPsfXr16sNMyiEwOzZs1FeXq52n6m56i8tLcWlS5f03vtpDlW/g1W/k2Q5PAxLZjVu3DgsWbIE69evx+zZs9GmTRvMmzcPZ86cwYcffogffvgBUVFRaNasGW7cuIFff/0V58+fx/Hjx9GsWTMAwPz585GSkoINGzYgJSUFTzzxBNzc3HD16lX89NNPOHLkCMLCwvD0008jJCQES5cuxW+//YZOnTrh8uXL2LlzJ5577jmDDvtK8dhjj8HLywu7d+82aWzOUaNGYevWrfjuu+/QpUsXPPXUU7h//z42bdqE27dv41//+hdat24NoPLcVJ8+fRAaGoqHH34YLVu2xL1797Bz507k5uYiPj4ebm5utW6vb9++2Lx5M1544QU88cQTcHd3R9euXfH0008bVOuuXbuQmJgIAFrD0s/PD19//TUGDx6Mrl274vHHH0f79u2hVCqRnp6OgwcPonfv3nrP5eoyadIkTJo0Cd26dcOgQYNQVlaG3bt3QwiBrl274vz581qXi4uLQ69evTBs2DD4+flh7969OHXqFHr27KkaKMKc9d+4cQMPPfQQgoODVUdY9Ll06RLee+89AH+fh7x06ZJamNcc6F8Igb179+Khhx5CaGioQdshE9j4alxyMLXdR1jlo48+Ut0nWaWsrEx88sknok+fPsLb21u4ubmJli1biscff1z85z//Effu3VNbR3FxsXj//fdFWFiY8PDwEA0bNhQdOnQQ06dPF3fu3FHNd/XqVfHCCy8IPz8/4enpKcLDw8XGjRvF/v37BQCRmJiotl5z3DoihBATJkwQcrlcZGdnG71/qistLRXvv/++6Ny5s3BzcxNeXl4iOjpafPfdd2rzlZSUiCVLloj+/fuLFi1aCFdXV+Hv7y+ioqLEV199pXZbjq5bR0pLS0VCQoJo2bKlcHZ21pgHtdyuUFhYKLy9vQUA0atXr1o/06VLl8TYsWNFcHCwcHV1FY0aNRKdO3cWb775pjhx4oRB+0XbrSMVFRVi9erVomPHjsLd3V088MADYuzYseLmzZta56+6dWT//v3is88+Ex07dhRubm4iICBATJ48WeutP8bWr22fSbnPsur3tbZXTQcOHBAAxAcffGDwdkg6mRBCWDGbieqEy5cvo1OnTpg7dy7eeustW5dD9dDIkSPx448/Ii0tTXVhHFkOz1kSSfDggw/i1VdfxYoVK3SOMUpkKVeuXMHGjRvx9ttvMyithOcsiSSaN2+e6l49Xo1I1nT9+nUkJiZi4sSJti6l3uBhWCIiIj14GJaIiEgPhiUREZEeDEsiIiI9GJZERER6MCyJiIj0YFgSERHpwbAkIiLSg2FJRESkB8OSiIhIj/8PoA3wEytcCvwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 238 ms (started: 2024-10-26 13:26:15 +00:00)\n" ] } ], "source": [ "from sklearn.metrics import precision_recall_curve, PrecisionRecallDisplay\n", "pred_prob = rs1.best_estimator_.predict_proba(X_test)\n", "precision, recall, thresholds = precision_recall_curve(y_test, pred_prob[:,1])\n", "PrecisionRecallDisplay(precision, recall,pos_label=1).plot()" ] }, { "cell_type": "markdown", "metadata": { "id": "fTE1lPj-HgQX" }, "source": [ "#### Gain ve Lift" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 525, "status": "ok", "timestamp": 1729950782001, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "b2VmF7qrejvz", "outputId": "ff31a728-80a7-42bd-885a-dc10567a7ac1" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 855 µs (started: 2024-10-26 13:53:01 +00:00)\n" ] } ], "source": [ "#best estimatör RidgeClassifer olup bunun da predict_proba'sı olmadığı için bunu şimdilik çalışıtrmıyoruz. istenirse 2. en iyi model için yapılabilir\n", "# ml.plot_gain_and_lift(hrs1.best_estimator_[\"clf\"],X_test,y_test,pos_label=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "6BjnlGhYjm36" }, "source": [ "### En güvenilir modeli kurmak" ] }, { "cell_type": "markdown", "metadata": { "id": "q0sErzuMejvz" }, "source": [ "Not: Eğer işbirimi bizden en güvenilir modeli kurmamızı istiyorsa o zaman accuracy yerine log_loss'a bakarız. Şimdi direkt en düşük log-loss'u elde etmeyi hedefleyecek şekilde modelimizi kuralım(scoring'e neg_log_loss vereceğiz)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-05-21T17:32:55.752736Z", "start_time": "2022-05-21T17:32:53.590829Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 447 }, "executionInfo": { "elapsed": 268897, "status": "ok", "timestamp": 1729949445264, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "lH_PmofBejvz", "outputId": "aa4904da-1901-4085-beec-e1807f214448" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 50 folds for each of 100 candidates, totalling 5000 fits\n", "CPU times: user 24.7 s, sys: 667 ms, total: 25.3 s\n", "Wall time: 4min 27s\n" ] }, { "data": { "text/html": [ "
RandomizedSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n",
       "                   error_score='raise',\n",
       "                   estimator=Pipeline(steps=[('log',\n",
       "                                              FunctionTransformer(func=<function logTransformer at 0x7e7147611b40>,\n",
       "                                                                  kw_args={'col_name': 'Fare'})),\n",
       "                                             ('ct',\n",
       "                                              ColumnTransformer(n_jobs=-1,\n",
       "                                                                remainder='passthrough',\n",
       "                                                                transformers=[('nominals',\n",
       "                                                                               Pipeline(steps=[('ohe',\n",
       "                                                                                                OneHotEncoder(drop...\n",
       "                                         'clf__class_weight': ['balanced'],\n",
       "                                         'clf__early_stopping': [True, False],\n",
       "                                         'clf__eta0': [0.005, 0.01, 0.02],\n",
       "                                         'clf__l1_ratio': [0.3, 0.5, 0.7],\n",
       "                                         'clf__learning_rate': ['adaptive'],\n",
       "                                         'clf__penalty': ['l1'],\n",
       "                                         'clf__tol': [0.0005, 0.001, 0.002,\n",
       "                                                      0.005],\n",
       "                                         'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n",
       "                                                                                              3]),\n",
       "                                                               None],\n",
       "                                         'ct__numerics__scl': [StandardScaler()]}],\n",
       "                   scoring='neg_log_loss', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "RandomizedSearchCV(cv=RepeatedKFold(n_repeats=10, n_splits=5, random_state=1),\n", " error_score='raise',\n", " estimator=Pipeline(steps=[('log',\n", " FunctionTransformer(func=,\n", " kw_args={'col_name': 'Fare'})),\n", " ('ct',\n", " ColumnTransformer(n_jobs=-1,\n", " remainder='passthrough',\n", " transformers=[('nominals',\n", " Pipeline(steps=[('ohe',\n", " OneHotEncoder(drop...\n", " 'clf__class_weight': ['balanced'],\n", " 'clf__early_stopping': [True, False],\n", " 'clf__eta0': [0.005, 0.01, 0.02],\n", " 'clf__l1_ratio': [0.3, 0.5, 0.7],\n", " 'clf__learning_rate': ['adaptive'],\n", " 'clf__penalty': ['l1'],\n", " 'clf__tol': [0.0005, 0.001, 0.002,\n", " 0.005],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,\n", " 3]),\n", " None],\n", " 'ct__numerics__scl': [StandardScaler()]}],\n", " scoring='neg_log_loss', verbose=1)" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4min 27s (started: 2024-10-26 13:26:15 +00:00)\n" ] } ], "source": [ "%%time\n", "params= [\n", " {\n", " 'clf' : [SGDClassifier(loss='log_loss',max_iter=mi,random_state=42)],\n", " 'clf__alpha' : [0.001, 0.002, 0.005],\n", " 'clf__tol' : [0.0005, 0.001,0.002,0.005],\n", " 'clf__penalty' : ['l1'],\n", " 'clf__l1_ratio' : [0.3, 0.5, 0.7],\n", " 'clf__learning_rate': ['adaptive'],\n", " 'clf__eta0' : [0.005, 0.01, 0.02],\n", " 'clf__early_stopping':[True,False],\n", " 'clf__class_weight': ['balanced'],\n", " 'ct__numerics__ouh': [OutlierHandler(featureindices=[0,3]),None], #Age ve Fare için, her ne kadar Fare'de LogTrans yapmış olsak da\n", " 'ct__numerics__scl' : [StandardScaler()]\n", " }\n", "]\n", "\n", "rs_logloss = RandomizedSearchCV(estimator=pipe, param_distributions = params, cv = mycv, n_jobs=-1, verbose = 1,\n", " scoring = 'neg_log_loss',error_score='raise',n_iter=100)\n", "rs_logloss.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2022-05-21T17:33:02.443968Z", "start_time": "2022-05-21T17:33:02.403084Z" }, "colab": { "base_uri": "https://localhost:8080/", "height": 331 }, "executionInfo": { "elapsed": 76, "status": "ok", "timestamp": 1729949445265, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "Q79xPBkOejvz", "outputId": "3044f3bd-2d86-46c6-c53c-db12af42d113" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "summary": "{\n \"name\": \"ml\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"param_ct__numerics__scl\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"StandardScaler()\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_ct__numerics__ouh\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"OutlierHandler(featureindices=[0, 3])\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__tol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00027386127875258305,\n \"min\": 0.0005,\n \"max\": 0.001,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.001\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__penalty\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"l1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__learning_rate\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"adaptive\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__l1_ratio\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1673320053068151,\n \"min\": 0.3,\n \"max\": 0.7,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__eta0\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.02,\n \"max\": 0.02,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.02\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__early_stopping\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__class_weight\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"balanced\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf__alpha\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00044721359549995795,\n \"min\": 0.001,\n \"max\": 0.002,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.002\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"param_clf\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"SGDClassifier(loss='log_loss', max_iter=4000, random_state=42)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00028592388557907887,\n \"min\": -0.4521859132006727,\n \"max\": -0.4516333807559988,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.4516333807559988\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std_test_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.000653367761716468,\n \"min\": 0.04128092684102299,\n \"max\": 0.04276699187980182,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.04271444814648045\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", "type": "dataframe" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
param_ct__numerics__sclparam_ct__numerics__ouhparam_clf__tolparam_clf__penaltyparam_clf__learning_rateparam_clf__l1_ratioparam_clf__eta0param_clf__early_stoppingparam_clf__class_weightparam_clf__alphaparam_clfmean_test_scorestd_test_score
53StandardScaler()None0.0005l1adaptive0.70.02Falsebalanced0.001SGDClassifier(loss='log_loss', max_iter=4000, ...-0.4516330.042714
24StandardScaler()None0.0005l1adaptive0.30.02Falsebalanced0.001SGDClassifier(loss='log_loss', max_iter=4000, ...-0.4516330.042714
84StandardScaler()None0.0005l1adaptive0.50.02Falsebalanced0.002SGDClassifier(loss='log_loss', max_iter=4000, ...-0.4517450.041281
77StandardScaler()OutlierHandler(featureindices=[0, 3])0.0010l1adaptive0.30.02Falsebalanced0.001SGDClassifier(loss='log_loss', max_iter=4000, ...-0.4521860.042767
14StandardScaler()OutlierHandler(featureindices=[0, 3])0.0010l1adaptive0.50.02Falsebalanced0.001SGDClassifier(loss='log_loss', max_iter=4000, ...-0.4521860.042767
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " param_ct__numerics__scl param_ct__numerics__ouh \\\n", "53 StandardScaler() None \n", "24 StandardScaler() None \n", "84 StandardScaler() None \n", "77 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "14 StandardScaler() OutlierHandler(featureindices=[0, 3]) \n", "\n", " param_clf__tol param_clf__penalty param_clf__learning_rate \\\n", "53 0.0005 l1 adaptive \n", "24 0.0005 l1 adaptive \n", "84 0.0005 l1 adaptive \n", "77 0.0010 l1 adaptive \n", "14 0.0010 l1 adaptive \n", "\n", " param_clf__l1_ratio param_clf__eta0 param_clf__early_stopping \\\n", "53 0.7 0.02 False \n", "24 0.3 0.02 False \n", "84 0.5 0.02 False \n", "77 0.3 0.02 False \n", "14 0.5 0.02 False \n", "\n", " param_clf__class_weight param_clf__alpha \\\n", "53 balanced 0.001 \n", "24 balanced 0.001 \n", "84 balanced 0.002 \n", "77 balanced 0.001 \n", "14 balanced 0.001 \n", "\n", " param_clf mean_test_score \\\n", "53 SGDClassifier(loss='log_loss', max_iter=4000, ... -0.451633 \n", "24 SGDClassifier(loss='log_loss', max_iter=4000, ... -0.451633 \n", "84 SGDClassifier(loss='log_loss', max_iter=4000, ... -0.451745 \n", "77 SGDClassifier(loss='log_loss', max_iter=4000, ... -0.452186 \n", "14 SGDClassifier(loss='log_loss', max_iter=4000, ... -0.452186 \n", "\n", " std_test_score \n", "53 0.042714 \n", "24 0.042714 \n", "84 0.041281 \n", "77 0.042767 \n", "14 0.042767 " ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 37.3 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "ml.gridsearch_to_df(rs_logloss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 63, "status": "ok", "timestamp": 1729949445265, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "HlQQSfV5ejvz", "outputId": "f9084305-68f8-4a47-dffa-7879936d4583" }, "outputs": [ { "data": { "text/plain": [ "-0.4516333807559988" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 2.51 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "rs_logloss.best_score_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 53, "status": "ok", "timestamp": 1729949445265, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "8yn2OFZXejvz", "outputId": "296e0a07-1eab-4f4a-de09-e4ffe91e74af" }, "outputs": [ { "data": { "text/plain": [ "0.7757847533632287" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 21 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "#lets import accuracy_score\n", "from sklearn.metrics import accuracy_score\n", "accuracy_score(y_test,rs_logloss.predict(X_test))" ] }, { "cell_type": "markdown", "metadata": { "id": "n49Cl7CTejv0" }, "source": [ "### Feature Importance" ] }, { "cell_type": "markdown", "metadata": { "id": "PN7k2qcKYBkP" }, "source": [ "Normalde, hangi feature'un en çok katkısı olduğunu katsayılar üzerinden anlayabiliyoruz. Tabi yukarıda birkçaz kez ifade ettiğim gibi, multicollinearity olmadığından emin olmak lazım, yoksa bu katsayılar yanlış yorumlanabilir.\n", "\n", "Bunun için coef\\_ attribute'üne bakmak gerekir. (Genel kültür: bir attribute'ün sonunda \"_\" varsa, bu bu attribute'ün fit sonrasında oluştuğu anlamına gelir.)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 116 }, "executionInfo": { "elapsed": 47, "status": "ok", "timestamp": 1729949445266, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "9Z4oRFGan4KC", "outputId": "7fe83167-e007-4a6a-892b-930fd8bf1aea" }, "outputs": [ { "data": { "text/html": [ "
RidgeClassifier(alpha=0.001, class_weight='balanced', random_state=42,\n",
       "                solver='cholesky')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "RidgeClassifier(alpha=0.001, class_weight='balanced', random_state=42,\n", " solver='cholesky')" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 6.73 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "hrs1.best_estimator_[\"clf\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 44, "status": "ok", "timestamp": 1729949445266, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "B_vp2Smcejv0", "outputId": "4609ce5d-691d-4f70-e97c-cc64a7d6d2e8" }, "outputs": [ { "data": { "text/plain": [ "array([-0.94590509, 0.11997351, -0.09282952, 0.21395336, -0.3194661 ,\n", " -0.26057368, 0.08512421, 0.0736427 , 0.07574321, -0.2388772 ,\n", " -1.04697817, -0.37509795, -0.17225053, -0.10040772, -0.02086392,\n", " 0.11593916, -0.20351425])" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "time: 4.65 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "hrs1.best_estimator_[\"clf\"].coef_[0]" ] }, { "cell_type": "markdown", "metadata": { "id": "fWMnstkYgJea" }, "source": [ "Burada önemli olan bir detay var, o da bu katsayıların one-hot-encoding yapıldıktan sonra elde edilen feature sayısı kadar olduğudur, ilk haldedeki feature sayısı kadar değil.\n", "Toplam etkiyi görmek için bunların mutlak değerlerinin toplamına veya ortalamasına bakılabilir." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 39, "status": "ok", "timestamp": 1729949445267, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "ndoVaNIXnBBu", "outputId": "62cf2ec5-24fc-4081-e283-d70f6d025d91" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Feature Importance\n", "2 CabinGrup 2.475503\n", "0 Sex 0.945905\n", "1 Embarked 0.426756\n", "3 Age 0.172251\n", "6 Fare 0.115939\n", "4 SibSp 0.100408\n", "5 Parch 0.020864\n", "time: 8.11 ms (started: 2024-10-26 13:30:43 +00:00)\n" ] } ], "source": [ "best_model = hrs1.best_estimator_\n", "# ColumnTransformer’dan sonra oluşan sütun isimlerini alalım\n", "# OneHotEncoder kullandığımız için sütun isimleri encoder’da saklanıyor\n", "ohe = best_model.named_steps['ct'].named_transformers_['nominals'].named_steps['ohe']\n", "ohe_feature_names = ohe.get_feature_names_out(list(noms))\n", "\n", "feature_names = ohe_feature_names.tolist() + nums\n", "coefficients = best_model.named_steps['clf'].coef_\n", "\n", "\n", "importance_dict = {}\n", "for orig_feat in list(noms) + nums:\n", " orig_indices = [i for i, col in enumerate(feature_names) if col.startswith(orig_feat)]\n", " importance_dict[orig_feat] = np.sum(np.abs(coefficients[:, orig_indices]))\n", "\n", "importance_df = pd.DataFrame(list(importance_dict.items()), columns=['Feature', 'Importance'])\n", "print(importance_df.sort_values(by='Importance', ascending=False))" ] }, { "cell_type": "markdown", "metadata": { "id": "rfFaGL8U99qP" }, "source": [ "## Modeli kaydetme" ] }, { "cell_type": "markdown", "metadata": { "id": "AQoht7Rl-B7y" }, "source": [ "Modelimizden memnun olduğumuz noktada onu sonraki kullanımlar için kaydedelim." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 301, "status": "ok", "timestamp": 1729949683232, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "NEzHy8y0B4BJ", "outputId": "aee974e9-e2ef-4993-c133-4db5f731056d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 4.06 ms (started: 2024-10-26 13:34:42 +00:00)\n" ] } ], "source": [ "import pickle\n", "\n", "with open('hrs1.pkl', 'wb') as f:\n", " pickle.dump(hrs1, f)\n", "\n", "# To load the model later:\n", "# with open('hrs1.pkl', 'rb') as f:\n", "# loaded_hrs1 = pickle.load(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 393, "status": "ok", "timestamp": 1729949940298, "user": { "displayName": "Volkan Yurtseven", "userId": "15726953944641946140" }, "user_tz": -180 }, "id": "YZSE03G6CYKM", "outputId": "438b8007-b4a6-478d-df48-3b13ea01fa7a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time: 2.69 ms (started: 2024-10-26 13:38:59 +00:00)\n" ] } ], "source": [ "#nolur nolmaz diye X_train v.s de kaydedelim\n", "for i, obj in enumerate([X_train, X_test, y_train, y_test]):\n", " filename = os.path.join(f\"{type(obj).__name__}_{i}.pkl\") # use f-string and index to create unique filenames\n", " with open(filename, 'wb') as f:\n", " pickle.dump(obj, f)" ] }, { "cell_type": "markdown", "metadata": { "id": "u9i57zPNejv0" }, "source": [ "# Kaynaklar" ] }, { "cell_type": "markdown", "metadata": { "id": "DpOIf6GLejv1" }, "source": [ "- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\n", "- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html\n", "- https://scikit-learn.org/stable/modules/sgd.html\n", "- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html\n", "- https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc\n", "- https://medium.com/analytics-vidhya/your-guide-for-logistic-regression-with-titanic-dataset-784943523994\n", "- https://www.kaggle.com/code/mnassrib/titanic-logistic-regression-with-python/notebook\n", "- https://www.analyticsvidhya.com/blog/2021/07/titanic-survival-prediction-using-machine-learning/\n", "- https://becominghuman.ai/titanic-survival-dataset-part-2-2-logistic-regression-7ebe9e30bf54" ] } ], "metadata": { "colab": { "provenance": [], "toc_visible": true }, "finalized": { "timestamp": 1657623638864, "trusted": true }, "hide_input": false, "kernelspec": { "display_name": "Python (.mlenv)", "language": "python", "name": ".mlenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.9" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "671.818px", "left": "347px", "top": "176.051px", "width": "304.474px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }