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 The overuse of antibiotics has led to an artificial increase of selection pressure on bacteria. This 
has led to the rapid development of antibiotic resistant bacteria. Over the recent years, the 
number of antibiotic resistant strains has increased.

Wanting to aide in the arms race against such bacteria, we decided to pick a specific group of 
antibiotic resistant bacteria, and develop a technique to help reduce their threat.

Carbapenem resistant Enterobacteriaceae (CRE) also known as Carbapenem-producing 
Enterobacteriaceae (CPE) is a family of Gram-negative bacteria that are resistant to a class of 
antibiotics known as carbapenems which are only used to treat severe or high-risk infections. The 
current detection methods for it are: swabbing, which has a long turnover (sometimes up to four 
days); and Carba NP tests, which are faster but have a high false positive rates.

Our system was designed around CRISPR-mediated activation of the transcription of a fluorescent 
reporter. All the components were designed with in vitro usage in mind – which is why the 
operation of the system in a cell-free context should be possible without much work. The product 
would take the form of a tube with this cell-free solution which a sample, such as a swab, can be 
submerged into. A result would be visible under UV light in up to 30 minutes.

A photo of our finished detection kit

Custom modelling  
To show that our proposed product would positively benefit the environment where it is 
proposed to be used, we wrote a custom stochastic computational model of the environment, 
with and without the product in use, and showed that when it is in use, the model scenario result 
improved.

We understand that computer models can become quite dry, particularly when explaining the 
details of their implementation. However, we believe that it is important to do this precisely, even 
at the cost of conciseness, as a small misunderstanding can be quickly amplified to an 
unexpected result, since the model’s high complexity causes it to have a chaotic output.
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As a result of this, we created an in-browser interactive implementation of the model, which plots 
the output graph of the model based on the user inputting initial parameter states. We intend 
that this can quickly, intuitively, and interactively show the function and results of the model, 
which can help inform the goal throughout the implementation explanation, and provide a top-
level understanding even if the rest of this page were omitted.

The whole project repository is available on GitHub, and the final production code for the project 
can be found: as a standalone Python file, or as a package on PyPI

Abstract  

We designed and validated computational model of the spread of an antibiotic resistant 
pathogens in a hospital, with and without our diagnostic tool for quickly identifying it, and show 
that in a relevant scenario it reduces the presence of antibiotic resistant pathogens in our 
selected scenario, showing our product is beneficial in the real-world.

Summary of results  

Our results show that our product will be beneficial in the real world. We know this as we 
validated our model to prove that it is a sufficiently close approximation to reality, then showed 
that the use of our product improved the model metrics, most notably the total number of deaths 
and the numbers of Carbapenem resistant bacteria across the run of a model.

Above shows a violin plot of the total number of deaths over a full run (i.e. till no people are 
infected) of the model with the validated parameters (discussed below). It is evident that the 
product causes a statistically significant reduction in the number of deaths resulting from the 
various strains of the pathogen modelled by the system.

https://github.com/Warwick-iGEM-2021/modelling
https://raw.githubusercontent.com/Warwick-iGEM-2021/modelling/main/tiered_antibiotic_resistance_model/model.py
https://pypi.org/project/tiered-antibiotic-resistance-model/2.0.1/
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Above also shows a line plot of the total number of deaths over a full run (i.e. till no people are 
infected) of the model with the validated parameters (discussed below). It is again evident that the 
product causes a statistically significant reduction in the number of people infected with a strain 
of the pathogen resistant to meropenem - the drug resistance detect by our product.

Interactive web model  

In order to demonstrate the model without requiring users to download the source code and its 
dependent libraries, then run it through python, we transpiled it into Javascript, so it can be run in 
the browser. This interactive transpiled model can be used below to demonstrate how 
parameters changes can affect the model outcome. Then, in the context section, we identify the 
parameters for the model which match it to the real world to show our product will work. In 
practice, having a model with interactive variables isn’t especially rigorous, but it does help show 
the power of the model, and how it can adapt to vastly different scenarios.

{{< model >}}

Model type  

Our model is discrete time, stochastic, and compartmental:

Discrete time means that changes in the model occur at granular timesteps, like turns in a 
boards game

Below shows the code for how operations are performed on every person in the population 
each timestep, and data about them recorded

# Make a new data handler for each simulation

self.data_handler.__init__()

# Repeat the simulation for a set number of timesteps

for _ in range(NUM_TIMESTEPS):

    # For each person in the population

    for person in self.population:

        # Record the data throughout the model

        self.data_handler.record_person(person)
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Stochastic means that the model is based on random probabilities, as opposed to a 
deterministic system of equations

A set of constant probabilities define the properties of the model
Transitions between states are chosen randomly with these constant probabilities

These probabilities, and other variable aspects of the model, such as population size or how 
many drugs are used, are set as constant values at the top of the model.

Initially, the model only had a parameter for how many different antibiotics are used, and all 
the associated probabilities (e.g. likelihood of recovery, likelihood of death, etc.) with these 
antibiotics were the same. However, in the final version, the different antibiotics are named 
to more closely map to the real world, and they are allowed to have their own separate 
values for these probabilities. However, for convenience’s sake, we introduce meta-
parameters which can be used to set all the antibiotics to have the same probability in a 
given category.

Below shows code for a default setting of these probabilities, the meaning of which will be 
explained further on:

# General model parameters

NUM_TIMESTEPS = 100

POPULATION_SIZE = 500

INITIALLY_INFECTED = 10

# Ordered list of drugs used, their properties, and the properties of 

their

# resistant pathogens. Meropenem is a specific drug in the class of 

Carbapenems

DRUG_NAMES = ["Amoxycillin+", "Meropenem", "Colistin"]

PROBABILITY_MOVE_UP_TREATMENT = 0.2

TIMESTEPS_MOVE_UP_LAG_TIME = 5

ISOLATION_THRESHOLD = DRUG_NAMES.index("Colistin")

PRODUCT_IN_USE = True

PROBABILIY_PRODUCT_DETECT = 1

PRODUCT_DETECTION_LEVEL = DRUG_NAMES.index("Meropenem")

############################################################

# Use these if you want to set all drugs to the same thing #

############################################################

PROBABILITY_GENERAL_RECOVERY = 0

PROBABILITY_TREATMENT_RECOVERY = 0.3

PROBABILITY_MUTATION = 0.25

PROBABILITY_DEATH = 0.015

# Add time infected into consideration for death chance

DEATH_FUNCTION = lambda p, t: round(min(0.001*t + p, 1), 4)

PROBABILITY_SPREAD = 0.25

NUM_SPREAD_TO = 1

########################################################################

###

# Set these explicitly for more granular control, or use the above to 

set #

# them all as a group                                                   

  #
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Additionally, there are internal settings, for example how the model outputs its results.

Compartmental means that the model is expressed in terms of the transitions between a set 
of states. The logic for these transitions forms a fundamental part of the model

Extensions from the SIR model  

The model is at its core a modification of the standard “susceptible-infected-recovered” (often 
referred to as SIR) model for epidemic disease, which was first formulated in 1927 by Kermack 
and McKendrick [1].

This model can be described as three “compartments”, one for people susceptible to a pathogen, 
one for people infected with the pathogen, and one for those who have recovered from the 
pathogen.

People who are in the susceptible compartment can move into the infected when with a 
probability ( ) each time increment dependent on both the number of susceptible and 
number of infected people in the population.
People who are in the infected compartment can move into the recovered compartment 
each time increment with another probability .

Above shows a diagram of the SIR model transitions. Image source: [2]

########################################################################

###

# Lookup table of drug properties by their names

DRUG_PROPERTIES = {}

DRUG_PROPERTIES["Amoxycillin+"] = (

    PROBABILITY_TREATMENT_RECOVERY,

)

DRUG_PROPERTIES["Meropenem"] = (PROBABILITY_TREATMENT_RECOVERY,)

DRUG_PROPERTIES["Colistin"] = (PROBABILITY_TREATMENT_RECOVERY,)

# Lookup table of resistance properties by their names

NUM_RESISTANCES = len(DRUG_NAMES)

RESISTANCE_PROPERTIES = {}

RESISTANCE_PROPERTIES["None"] = (PROBABILITY_GENERAL_RECOVERY, 

PROBABILITY_MUTATION, PROBABILITY_SPREAD, NUM_SPREAD_TO, 

PROBABILITY_DEATH, DEATH_FUNCTION,)

RESISTANCE_PROPERTIES["Amoxycillin+"] = (PROBABILITY_GENERAL_RECOVERY, 

PROBABILITY_MUTATION, PROBABILITY_SPREAD, NUM_SPREAD_TO, 

PROBABILITY_DEATH, DEATH_FUNCTION,)

RESISTANCE_PROPERTIES["Meropenem"] = (PROBABILITY_GENERAL_RECOVERY, 

PROBABILITY_MUTATION, PROBABILITY_SPREAD, NUM_SPREAD_TO, 

PROBABILITY_DEATH, DEATH_FUNCTION,)

RESISTANCE_PROPERTIES["Colistin"] = (PROBABILITY_GENERAL_RECOVERY, 

PROBABILITY_MUTATION, PROBABILITY_SPREAD, NUM_SPREAD_TO, 

PROBABILITY_DEATH, DEATH_FUNCTION,)
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From this, we can derive a set of differential equations which express the system, which is self-
evident based on the above state transitions. Note that this is expressed as occurring of 
continuous time, however, this is just the limit of the time increments size going to zero.

We can then define a further metric , which is defined as the initial replacement number 

when one infectious individual is introduced into an all-susceptible population. This simplifies 
expressing the starting parameters of the model, which are themselves written as , , and 

.

Above shows a graph of the SIR model over time. Image source: [2]

Our custom model extends this concept by adding more “compartments” for additional states 
people can take when they are infected with increasingly antibiotic resistant pathogens.

There are already examples of models of this extended class for examining antibiotic resistance in 
E. coli [3] [4] [5], showing that it is a suitable methodology for this problem. However, we believe 
that a custom model written from scratch was required to integrate the mechanism of the 
product being used.



Implementation  

The key features of the model can be split up into its overall structure, and five distinct sections of 
its operation, which are enumerated in the sections below.

In each timestep of the model, each of these features are applied to change the state of the 
population. The order in which they are applied, whilst arbitrary, slightly affects the results of the 
model, in the sense that different application orders would give different results given the same 
random seed. We chose this order as we found during the validation section that it resulted in the 
closest fit to “reality”, by giving average results closest to real life data, but any application order 
can reasonably be considered an adequate model of the system. In our implementation, this 
order is:

1. Pathogen and people  

A pathogen with a probability of death and a probability of recovery spreads through the 
population. The following statements taken from reality form part of the definition of our model:

Patients have a small chance of recovering by themselves, or can be treated with antibiotics, 
which have a larger chance of curing them
Different strains of the pathogen exist, which are resistant to different antibiotics
Pathogens can mutate to more resistant strains in specific circumstances explained in the 
mutation section
When they have recovered, they become immune to the all strains of the pathogen
Patients also have a small chance of dying due to the pathogen

Hence, patients can be in any of the disjoint states: uninfected, infected (possibly with resistance), 
immune, or dead.

In the limit of time to infinity, all individuals will be either uninfected, immune or dead, as they will 
all either not be infected in the first place, or recover or die from the pathogen.

Below shows the state transition diagram of every state a person within the population can take 
(for reasons discussed later in the treatment section, pathogenic resistances to antibiotics will 
occur in a set order):

FOR EACH person in the population

    Record the state of the person

    Increase treatment

    Isolate based on treatment level

    IF product is in use

        Isolate based on product

    ENDIF

    Recovery

    Mutation

    Death

ENDFOR

Spread through the population
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Below shows a state transition diagram of a person centred around the state of being infected 
with a pathogen resistant to antibiotic  in the precedence of antibiotics:

2. Treatment and mutation  

Antibiotics are used in a specific order, which are numbered accordingly for clarity (with  being 
the first administered, and  being the last for antibiotics  ). This is to simulate the real-world, 
where different antibiotics are used in a tiered system, reserving the last for highly dangerous, 
multi-drug resistant pathogens - and is an important aspect of our model, as our product 
attempts to identify Carbapenem resistant Enterobacteriaceae (CRE), which are a type of these 
resistant pathogens.

Pathogens have a small chance of mutating to develop resistance to antibiotics being used to 
treat them, as such strains will only become dominant when there is a pressure giving them a 
survival advantage.
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Below shows the same specified diagram used above, with additional information about the 
mutation step to elucidate it:

The pathogen is modelled as being immediately symptomatic, meaning doctors can immediately 
identify a patient is infected with it, but they cannot quickly identify whether or not they have a 
resistant strain if our product is not in use.

Once a person becomes infected, treatment with the lowest tier of antibiotics begins immediately, 
as they are immediately symptomatic.

If the pathogen is resistant to the antibiotic, the patient still has the opportunity to make a 
recovery on their own, but the antibiotic will have no effect. If the pathogen is not, the patient has 
the opportunity to recover both on their own, and via the antibiotic - increasing their likelihood of 
recovery each timestep.

Since multiple antibiotics are used in a tiered system, there must be a mechanism to move to a 
higher antibiotic.

There are a number of days which can be set as a parameter for the model, before which the 
same antibiotic will be used, then after this is exceeded a probability parameter is used each day 
to decide whether they will be moved up to a higher treatment tier.

Additionally, when our product is used and it detects a person to have a certain level of 
resistance, their treatment level is immediately increased to be above that resistance level, as we 
know that any other lower treatment will be ineffective.

# Handle Mutation to higher resistance due to treatment

if decision(person.infection.mutation_probability):

    person.mutate_infection()
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# Handle increasing treatment

if person.treatment is None:

    # If the person is infected but are not being treated

    # with **anything**, start them on the lowest tier

    # treatment (we can know that the person is infected,

    # but not which tier they are on, without diagnostic

    # tools, as we can see they are sick)

    person.treatment = Treatment()
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3. Spread  

Disease can spread from infected patients to uninfected patients, and patients with a less 
resistant strain. The likelihood of this occurring, and the number of people spread to each time 
can be controlled as parameters

4. Isolation  

Patients can be put into isolation, preventing the spreading the disease. This is the main place 
where the our product differentiates itself.

Without our product, a person is put in isolation when they exceed a threshold of treatment

With our product, since it provides a fast testing mechanism for highly resistant strains, patients 
can be detected as having the resistant strain, they are put into isolation when they exceed a 
threshold of having the resistant strain

else:

    # If the person has been treated for a number of

    # consecutive days with the, a certain probability is

    # exceeded, move them up a treatment tier

    time_cond = person.treatment.time_treated > TIMESTEPS_MOVE_UP_LAG_TIME

    rand_cond = decision(PROBABILITY_MOVE_UP_TREATMENT)

    if time_cond and rand_cond:

        person.increase_treatment()

# Handle use of the product

if person.infection.get_tier() >= PRODUCT_DETECTION_LEVEL:

    if PRODUCT_IN_USE and decision(PROBABILIY_PRODUCT_DETECT):

        # If a person has the detected infection, put them on

        # a treatment course for it, (i.e. only ever change

        # it up to one above)

        if Params.DRUG_NAMES.index(person.treatment.drug) <= 

Params.PRODUCT_DETECTION_LEVEL:

            person.treatment = 

Treatment(Params.DRUG_NAMES[Params.PRODUCT_DETECTION_LEVEL+1])
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# Spread the infection strains throughout the population

updated_population = deepcopy(self.population)

for person in self.population:

    if person.infection is not None and decision(PROBABILITY_SPREAD):

        for receiver in sample(updated_population, NUM_SPREAD_TO):

            person.spread_infection(receiver)

self.population = updated_population[:]
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Below shows the same specified diagram used above, with additional information about the 
isolation step to elucidate it:

5. Recovery and death  

As discussed in section (1), each timestep, patients can recover (either naturally or via treatment), 
or patients can die.

Recovery makes the patients immune, meaning they cannot be infected again, essentially 
removing them from the system. Death also removes patients from the system.

# Isolate if in high enough treatment class (which

# is not the same as infection class - this will

# likely lag behind)

treatment_tier = Infection.get_tier_from_resistance(person.treatment.drug)

if treatment_tier >= ISOLATION_THRESHOLD:

    person.isolate()

# Handle use of the product

if person.infection.get_tier() >= PRODUCT_DETECTION_LEVEL:

    if PRODUCT_IN_USE and decision(PROBABILIY_PRODUCT_DETECT):

        # Put people into isolation if our product detects

        # them as being infected

        person.isolate()
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# Handle Recovery generally or by treatment if currently infected

general_recovery = decision(person.infection.general_recovery_probability)

treatment_recovery = (person.correct_treatment() and

                   

 decision(person.treatment.treatment_recovery_probability))

if general_recovery or treatment_recovery:

    person.recover_from_infection()

    # Don't do anything else, as infection/treatment will

    # now be set to None

    continue

# Handle deaths due to infection

death_probability = person.infection.death_function(
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The goal is to create a situation where in the limit of time, the number of uninfected and immune 
people is maximised, and the number of dead people is minimised.

Software engineering  

Model design process  

We used an iterative design process during the development of the model, as discussed on page 
21 in the book “Testing and Validation of Computer Simulation Models: Principles, Methods and 
Applications” [6].

    person.infection.death_probability,

    person.time_infected

)

if decision(death_probability):

    person.die()

    # Don't do anything else, as infection/treatment will

    # now be set to None

    continue
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Above shows a block diagram of steps in model design - taken from “Testing and Validation of 
Computer Simulation Models: Principles, Methods and Applications” [6]

We went through three iterative design stages of increasing complexity and proximity to real life 
before settling on our production code:

1. The first version was a very simple Markov model of people who could be infected forming a 
population. It did not employ the tiered system of antibiotic treatments, so did not map very 
closely to the real world. The code is available here

2. The second version was an improvement on the first in terms of mapping closer to reality by 
employing the tiered system of antibiotic treatments. It did this by adding additional 
Infection  and Treatment  classes as properties of a Person , and additional logic to move 
“upwards” across them in a specific order. The code is available here

3. The third version had a number of additional, but smaller, improvements with respect to 
closely modelling reality. There was an addition of a lag time before people could move up 

https://raw.githubusercontent.com/Warwick-iGEM-2021/modelling/main/development_versions/v1.py
https://raw.githubusercontent.com/Warwick-iGEM-2021/modelling/main/development_versions/v2.py


treatment, and the feature that the change of death increases over time being infected. The 
code is available here

4. The final production version included a fairly holistic re-write, in order to add finer 
granularity of control through parameters, allowing different infections to have different 
properties, and other additional parameters. On top of this, the version was rigorously 
tested by hand and via automated tests to identify conceptual errors. The code is available 
as the main production code on GitHub and PyPI

Note that none of these development code files have been rigorously tested in the way the final 
version has, so are likely to contain conceptual, or even syntax errors. The only purpose of 
providing access to them is to show the process of development, not to provide them as working 
models.

Automated testing  

Whilst testing strategies and reasoning for testing are discussed in the “Testing and validation” 
section, the implementation of the testing is a point of interest in its own right. We used the 
unittest  module in Python to implement tests for the source code.

An example of a test is as follows, where we check that the boundary case of no-one being 
infected to start results in no infections for the entire model one. Whilst this might seem trivial, if 
it fails it is clear something is very wrong with the model, which might be a subtle result of a 
change made during development, and hence can prevent confusion about model results not 
making sense by showing that the problem is in the model implementation, not the analysis.

An interesting note about these tests is despite the fact they are written as unit tests, which 
normally refers to tests with a fixed input, these can be thought of as being tested with different 
inputs dependent on the result of the random number generator.

class TestModel(unittest.TestCase):

    def test_empty_model(self):

        """Test that a model with no infected people always stays fully 

uninfected"""

        # Change parameters for the test setup and run the test

        Params.INITIALLY_INFECTED = 0

        m = run()

        self.assertEqual(m.data_handler.get_uninfected_data(),

                         [Params.POPULATION_SIZE]*Params.NUM_TIMESTEPS)

        self.assertEqual(m.data_handler.get_infected_data()[0],

                         [0]*Params.NUM_TIMESTEPS)

        reset_params()
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class TestModel(unittest.TestCase):

    def test_empty_model(self):

        """Test that a model with no infected people always stays fully 

uninfected"""

        # Change parameters for the test setup and run the test

        Params.INITIALLY_INFECTED = 0

        # Repeat the testing phase many times, with random number generation 

as the

        # function input differing each time

        for _ in range(100):

            m = run()

            self.assertEqual(m.data_handler.get_uninfected_data(),
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If the tests are run many times, with many different resulting random number inputs, these unit 
tests can now be thought of as property based tests. This refers to checking that a function fulfils 
a property by randomly providing it with values from its input domain, and checking that the 
resultant outputs fulfil the property. This is a strategy which was pioneered in the functional 
programming language Haskell [7], and is often considered preferable to unit based tests [8].

The whole set of property based tests we wrote can then be run using the pytest  command:

Version control and CI/CD  

Having implemented a robust testing strategy, we now had all the building blocks for a 
continuous integration/continuous development workflow, as shown below:

The build phase is relatively simple - writing the code in an editor of your choice, and running it 
with the Python interpreter, and the testing phase is discussed above.

Throughout the entire project, we used git  as version control. From this, we linked the project to 
a remote repository on GitHub, which is the main way to access the most up to data code, so 
forms both the merge and continuous delivery steps. When code is pushed to the remote 
repository, actions are automatically run to ensure that the code is both syntactically and 
conceptually correct, using the static analysis tool flake8 for the former, and by running pytest  
on all the code as discussed above for the latter.

We chose not to automate publishing the code to PyPI (discussed below), which could be 
considered the production aspect of the modelling, as the project was under active development, 
and minor changes to the repository should not necessarily be pushed - as their general stability 
and usefulness is not fully known.

Transpilation to Javascript  

In order to create the web-based version of the model, we needed to use a language which can be 
run client side in the browser. Since Python cannot do this, we needed to convert the source code 
into a language which can - with the obvious choice being Javascript, due to its ubiquitous use in 
this environment.

                             [Params.POPULATION_SIZE]*Params.NUM_TIMESTEPS)

            self.assertEqual(m.data_handler.get_infected_data()[0],

                             [0]*Params.NUM_TIMESTEPS)

        reset_params()
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Instead of manually re-writing the entire model into Javascript, we decided to use an automated 
tool to do it for us. This class of tool is called a transpiler, which converts between two languages 
in the same tier in the language complexity hierarchy (e.g. two high level languages). We 
considered a number of tools, with the main decision being between Brython, a runtime 
transpiler which translates the Python code to Javascript on the fly, and Transcrypt, a build-time 
transpiler which translates the code beforehand. We decided to use Transcrypt, as it offers better 
performance, having pre-compiled the code, and since it allows an easier integration into the 
Javascript DOM.

The transpilation process was not totally seamless, as some language properties in Python are 
not supported in Javascript, for example named parameters and adding lists, and not all of the 
libraries used were supported by Transcrypt, meaning some of the random  methods had to be 
re-implemented within the source code, and the output graphs and excel exporter functionality 
had to be removed.

In order to display the output in a visual manner, we used the Chart.js package, which is 
commonly used for client side data plotting.

Uploading to PyPI  

Since we developed our model in python, we uploaded it to PyPI, the Python package index. We 
did this as it greatly simplifies the way in which the package can be distributed. Instead of cloning 
the repository, and running the code directly through that:

The module can be installed using pip  on the command line, then just imported directly in a 
Python file:

Furthermore the parameters of the model can be set within the other Python file by directly 
manipulating the Param  object, instead of having to go into the source code and change them in 
the actual model, which is not a best practice.

The PyPI page for the project is accessible here

Testing and validation  

It is important to remember that computer models are not infallible. It is impossible for a 
computer model of a system to “perfectly” emulate the real system, as that would require total 
simulation of the entire universe, which is evidently unfeasible. However, closely approximate 
models provide a wealth of information when correctly implemented, and can provide a level of 
abstraction to make the applicable in a wide variety of cases.

To ensure that models are sufficiently accurate to the real-world scenario they are trying to 
emulate - which is required for us to use them to draw conclusions about whether our product 
will be beneficial, it is important to test and validate them.

git clone https://github.com/Warwick-iGEM-2021/modelling

cd modelling/tiered-antibiotic-resistance-model

python3 model.py

1

2

3

pip install tiered-antibiotic-resistance-model1

from tiered_antibiotic_resistance_model import *

run_and_output()

1

2

https://brython.info/
https://www.transcrypt.org/
https://www.chartjs.org/
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Levels of validation  

In the paper “Validating Computational Models” by Kathleen Carley [9], there are four levels of 
validation described for computational models:

1. Grounding  

The paper defines the grounding technique in the following ways:

“Grounding involves establishing the reasonableness of a computational model” [9]

“Grounding involved the use of story-telling, initialization, and evaluation techniques” [9]

Story-telling: “The basic goal of grounding is to establish that the simplifications made in 
designing the model do not seriously detract from its credibility and the likelihood that 
it will provide important insights” [9]
Initialization: “On the initialization front, grounding requires setting the various 
parameters and procedures so that they match real data” [9], for example comparing 
model outputs, and trends
Performance evaluation: “Simple performance evaluation is the process of determining 
whether the computational model generates the stylized results or behavior expected 
of the underlying processes” [9]

For “story-telling”, the above explanation of the implementation explains the mapping of the 
model to the real world. The variables within the model are named clearly so the “story” of the 
model can be inferred directly from the source code. Both initialization and performance 
evaluation are encompassed by the following sections on calibrating and verification.

2. Calibrating  

The paper defines the calibrating technique in the following way:

“Calibrating is the process of tuning a model to fit detailed real data. This is a multi-step, often 
iterative, process in which the model’s processes are altered so that the model’s predictions come 
to fit, with reasonable tolerance, a set of detailed real data. This approach is generally used for 
establishing the feasibility of the computational model; i.e., for showing that it is possible for the 
model to generate results that match the real data. [...]

Calibrating a model may require the researcher to both set and reset parameters and to alter the 
fundamental programming, procedures, algorithms, or rules in the computational model. 
Calibrating establishes, to an extent the validity of the internal workings of the model and its 
results (at least in a single case).” [9]

We inherently used calibration throughout the development phase of the project (see diagram in 
software engineering above), as the design process involved iteratively designing models, testing 
them on the scenario data we selected, and adding features and fixes to improve the 
resemblance of the model to “real life”.

3. Verification  

The paper defines the verification technique in the following way: “Verification is a set of 
techniques for determining the validity of a computational model’s predictions relative to a set of 
real data. To verify a model, the model’s predictions are compared graphically or statistically with 
the real data” [10]

We graphically compared the data outputs with the expected characteristic “S-curve” shape which 
is prevalent in SIR type stochastic models similar to ours. Whilst the individual lines for different 
resistance levels do not form such a curve, if their total is taken, it does - which is the expected 
behaviour, as the sum of the resistance levels gives total number infected.
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This is shown below with the boundary between the pink and the brown items in the graph 
forming the characteristic curve.

Additionally, the book notes that “A special issue in verification occurs with respect to multi-agent 
models. Multi-agent models can potentially undergo dual level verification; i.e., verification at both 
the individual and group level. To wit, does the model accurately predict group level behavior, 
individual level behavior, or both?” [9]

Since our model can be considered to be multi-agent, as it is composed of multiple Person  
classes forming a population, we needed to take account of this special issue.

4. Harmonization  

Harmonization is the final, and most complicated, stage of validation proposed in the book. It 
involves taking multiple sets of data for verification, then forming a linear model from them, and 
comparing the computational model the the linear one. Given the below reasons, we did not 
research what forming a linear model of the data entails.

We did not attempt harmonization on our model as we thought it was out of scope. We did not 
have multiple data sets for the niche case we apply our product to, and the process was 
excessively complex for the time period of the competition.

Contextualisation  

Due to the flexibility of the model, its parameters can be adjusted to simulate the spread of many 
real-world diseases. Adding such context to the model helps us better understand better how our 
product could improve the situation in such scenarios.

Selected scenario  

Adapting parameters  

Due to the flexibility of the model, its parameters can be adjusted to simulate the spread of many 
real-world diseases. Adding such context to the model helps us better understand how our 
product could improve the situation in such scenarios. We do this by anchoring some of the 
parameters and expected outputs to available data, giving us more plausible outcomes.
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Neonatal bacterial meningitis  

Here we have chosen to use neonatal bacterial meningitis (NBM) as an example. The disease, and 
the nature of its spread and treatment have numerous properties that can be simulated using the 
model. NBM can easily be spread within hospitals by medical staff and often has a deadly 
outcome [11], all of which can be simulated in the model. Furthermore, treatment involves a line 
of antibiotics, the last of which generally is treatment with meropenem, a carbapenem - a 
diagram of the molecular structure of which is shown below [12].

Above shows a diagram of the molecular structure of Meropenem [12]

However, since the model does not allow for the product to identify resistance to the last line of 
defence, requiring a later line of defence, we included colistin as the last treatment. Colistin has 
been used to treat multi-resistant NBM [14], however it is infrequently used due to its harmful 
side-effects [15].

The parameters of the model have hence been adjusted as such:

1. NBM has three lines of treatment: amoxicillin + cefotaxime/ceftriaxone, meropenem, and 
finally colistin. Therefore the model has three levels of treatment and corresponding 
resistance levels. The first level of treatment will henceforth be referred to as “Amoxicillin+” 
for the sake of conciseness.

2. There is a 100% mortality rate of untreated NBM [16]. Hence, we have set the chance of 
recovery if the pathogen is resistant to the current antibiotic in use to zero.

3. There is a 40% overall mortality rate in developed countries [16]. Therefore the parameters 
have been adjusted such that the expected outcome when our product is not in use 
averages to a 40% mortality rate.

Method  

The parameters used in the model were as follows:

NUM_TIMESTEPS = 150

POPULATION_SIZE = 5000

INITIALLY_INFECTED = 50

DRUG_NAMES = ["Amoxicillin+", "Meropenem", "Colistin"]

PROBABILITY_MOVE_UP_TREATMENT = 0.2

TIMESTEPS_MOVE_UP_LAG_TIME = 5

ISOLATION_THRESHOLD = DRUG_NAMES.index("Colistin")

1

2

3

4

5

6

7

8

9
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We ran the programme 10 times with the product in use and 10 times without. Albeit unrealistic 
in a hospital scenario, the population size was set to 5000 to minimise fluctuations between 
outcomes due to the stochastic nature of the model.

To further minimise the fluctuations, we then combined all the runs with and without the product 
respectively to create averaged runs. This meant that, for example, the deaths at timestep 20 of 
the averaged run without the product was the average of deaths at timestep 20 of each run when 
the product was not in use. If we had employed a deterministic model, these fluctuations would 
not be present, but we determined that the model was excessively complex to express as a 
deterministic model.

After each run we also calculated the Death rate (deaths as % of the population), the Mortality 
rate (deaths as % of the population that was infected), and the Infection rate (the population that 
was infected as % of the total population). We then calculated the sample mean and sample 
variance of the Death, Mortality and Infection rates of the runs with and without the product in 
use respectively. To confirm that there were statistically significant improvements in outcomes 
when using the product compared to not using the product, we conducted three one-sided 
hypothesis tests at the 1% level.

Since we used an unrealistically large population size in our initial runs, we also ran the 
programme again but with the parameters:

The graphic results of the runs with and without the product in use respectively were then 
compared to the averaged runs with populations of 5000. This confirmed that the population size 
does not adversely affect the results of the model, instead merely “smoothing the curve”, as 
Markov models with small sample sets tend to give very noisy data, given the law of large 
numbers.

Finally, we also did some further analysis into how the product affects the outcome of the model 
by looking a bit closer at the data. This involved looking at the change over time of cases of 
resistant pathogens and patients put into isolation.

Results and analysis  

PRODUCT_IN_USE = True

PROBABILIY_PRODUCT_DETECT = 1

PRODUCT_DETECTION_LEVEL = DRUG_NAMES.index("Meropenem")

PROBABILITY_GENERAL_RECOVERY = 0

PROBABILITY_TREATMENT_RECOVERY = 0.3

PROBABILITY_MUTATION = 0.25

PROBABILITY_DEATH = 0.02

# Add time infected into consideration for death chance

DEATH_FUNCTION = lambda p, t: round(min(0.001*t + p, 1), 4)

PROBABILITY_SPREAD = 0.25

NUM_SPREAD_TO = 1
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POPULATION_SIZE = 200

INITIALLY_INFECTED = 10

1

2
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Category Mean value Variance

Number of deaths 1840.6 2288

Number of infected people 4504.9 653

Infection rate 90.10% 0.0026%

Mortality rate 40.86% 0.0087%

Death rate 36.81% 0.0093%

Outputs  

In order to get a stronger understanding of the model, and prove that our product is helpful, we 
analysed the results of the model running in various scenarios.

Above is a graph showing the change of several variables over time, having averaged 10 runs 
without the product in use. “Amoxicillin+”, “Meropenem”, and “Colistin” refer to the number of 
patients carrying a pathogen with resistance to said antibiotic(s). “Infected” is virtually 
indistinguishable from “Amoxicillin+” as almost all infected patients develop resistance to 
Amoxicillin+ immediately as treatment starts due to the parameters of the model. Only the first 
100 time-steps are shown as the variables change only marginally after that.

Below are some statistics from the averaged run over a population of 5000 without the product in 
use:

The mortality rate of the averaged run without the product at 40.86% is very close to the actual 
mortality rate of NBM in developed countries. This means we have anchored the outcome 
correctly, which should give us more interesting takeaways when we compare with the outcome 
when the product is in use. The infection rate is very high, which is largely due to the model not 
simulating space (for example between departments of a hospital). Without a spatial element, 
there is no barrier to infection apart from people turning immune, dying or being put into 
isolation.
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Category Mean value Variance

Number of deaths 1635.8 270

Number of infected people 4292.7 823

Infection rate 85.85% 0.0033%

Mortality rate 38.12% 0.0013%

Death rate 32.73% 0.0011%

Above is a graph showing the change of several variables over time, having averaged 10 runs with 
the product in use. “Amoxicillin+”, “Meropenem”, and “Colistin” refer to the number of patients 
carrying a pathogen with resistance to said antibiotic(s). “Infected” is virtually indistinguishable 
from “Amoxicillin+” as almost all infected patients develop resistance to Amoxicillin+ immediately 
as treatment starts due to the parameters of the model. “Meropenem” is virtually 
indistinguishable from “Isolated” as all patients with resistance to Meropenem are put into 
isolation when the product is in use, with few patients being put into isolation that are not 
resistant to Meropenem. Only the first 100 time-steps are shown as the variables change only 
marginally after that.

Below are some statistics from the averaged run over a population of 5000 without the product in 
use:

There is a clear difference in the number of mean deaths and mean infected compared to when 
the product was not in use. The total number of infections has dropped by 4.71% and the chance 
of dying among the infected (the mortality rate) has dropped by 6.56%. This results in a drop of 
total deaths by 11.13%, a notable improvement thanks to the product.

The drop in infection rates is because of the product proactively putting patients carrying a 
pathogen resistant to Meropenem in isolation. With more people put into isolation and patients 
on average being put into isolation earlier, infection rates will inevitably fall (this is covered in 
more detail in the ‘Further Analysis’ section). Importantly, the product does not only make use of 
isolation more often, it also ensures the right patients are isolated. The marginal increase in 
patients in isolation compared to when not using the product will all be from Meropenem-
resistant or Colistin-resistant patients. Therefore, lower infection rates not only reflect an overall 
decrease in the spread of the disease, but they also reflect a decreased likelihood of a patient 



contracting a multidrug-resistant pathogen. This means the average patient with NBM is more 
likely to receive effective treatment, further causing mortality rates to drop.

The drop in mortality is therefore due to two reasons. The first is that, as we just outlined, a 
patient is less likely to carry a multidrug-resistant pathogen and is hence more likely to be treated 
effectively. The second is that once resistance to Meropenem has been detected, treatment 
immediately changes to Colistin. This means patients are not unnecessarily treated with 
Meropenem when it is not effective, decreasing their overall chance of dying.

Since the outcome of the model is largely dependent on probability, we must, however, before 
moving on verify that the product has led to the improved outcomes, rather than being a result of 
“fortuitous fluctuations”. In other words, we need to test whether these improvements are 
actually statistically significant.

Hypothesis tests  

We conducted three difference-in-means hypothesis tests to verify that the product improved the 
outcomes of the runs. We compared the mean values of infection, mortality and death rates to 
ensure all improvements were statistically significant.

The null hypothesis is the initial presumption that the two mean values we are comparing are in 
fact equal and are part of the same distribution. To verify that our product has improved the 
average outcome, we must try to reject the null hypothesis. We reject the null hypothesis if the 
probability of a type I error is lower than the significance level chosen.

The probability of a type I error is the likelihood that you reject the null hypothesis when the null 
hypothesis is in fact correct. We chose a significance level of 1%, which means that if we are able 
to reject the null hypothesis, it is because there is a less than 1% chance that we are wrong.

While the purpose of our product was to decrease the overall number of deaths, we cannot know 
it has the intended effect on infection, mortality and death rates until we have tested it. Hence, we 
conducted two-sided hypothesis tests. This means that our alternative hypothesis (as opposed to 
the null hypothesis) was that the mean values for infection, mortality and death rates were either 
higher or lower when using the product than when not using it.

We can assume that the outcomes of the model follow a normal distribution. However, we do not 
know the standard deviation of outcomes. Therefore, we were left with two options: to 
approximate a normal distribution or to calculate the test based on a student’s t-distribution. 
Since we ran the simulations 10 times using and 10 times not using the product respectively, we 
have a sample size of 10 to calculate the mean values. This is a very low sample size, which 
suggested the most appropriate distribution was a student’s t-distribution. To know the degrees 
of freedom (DoF) of the t-test, we had to conduct F-tests of equality of variances test. The null 
hypothesis of these F-tests was that the variances were equal, while the two-sided alternative 
hypothesis was that they were not equal. For these tests we used a significance level of 10%.

To test equality of variances, we use this formula if  :

And if  , we use:

Where  is the sample variance of any given outcome variable when not using the product and 
 is the equivalent when using the product.
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Category Value

Variance of the infection rate without the product 2.6

Variance of the infection rate with the product 3.3

If we the find the variances to be equal, we calculate the probability of a Type I error using this 
formula:

With .

If we the find the variances to not be equal, we calculate the probability of a Type I error using the 
same formula but changing the degrees of freedom. With equal sample sizes we can calculate 
and simplify the degrees of freedom when variances are not equal as such:

We let  be the mean value for any given outcome variable when not using the product and  
the mean value when using the product.  and  were the sample sizes, which was 10 in both 
cases. Since the initial assumption is that the null hypothesis holds,  is the hypothesised 
variance of the hypothesised real distribution, or in other words the square of the standard 
deviation of the hypothesised distribution.

Since the sample sizes are equal, we calculate the hypothesised variance using the formula:

Where  is the variance of any given outcome variable when not using the product and  is the 
equivalent when using the product.

Infection rates  

For the equality of variances test of the infection rates, we used the following variables and 
calculation:

Hence, we do not reject the null hypothesis that the variances are equal. Therefore, the 
difference-in-means test of the infection rates was conducted using the following variables and 
calculation:
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Category Value

Mean infection rate without the product 0.9010

Variance of the infection rate without the product 2.6

Mean infection rate with the product 0.8585

Variance of the infection rate with the product 3.3

Category Value

Variance of the mortality rate without the product 8.7

Variance of the mortality rate with the product 1.3

Category Value

Mean infection rate without the product 0.4086

Variance of the infection rate without the product 8.7

Mean infection rate with the product 0.3812

Variance of the infection rate with the product 1.3

Hence, we reject the null hypothesis of no difference-in-means.

Mortality rates  

For the equality of variances test of the mortality rates, we used the following variables and 
calculation:

Hence, we reject the null hypothesis that the variances are equal. Therefore, the difference-in-
means test of the mortality rates was conducted using the following variables and calculation:

Hence, we reject the null hypothesis of no difference-in-means.

Death rates  

For the equality of variances test of the mortality rates, we used the following variables and 
calculation:
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Category Value

Variance of the mortality rate without the product 9.3

Variance of the mortality rate with the product 1.1

Category Value

Mean infection rate without the product 0.3682

Variance of the infection rate without the product 9.3

Mean infection rate with the product 0.3273

Variance of the infection rate with the product 1.1

Hence, we reject the null hypothesis that the variances are equal. Therefore, the difference-in-
means test of the mortality rates was conducted using the following variables and calculation:

Hence, we reject the null hypothesis of no difference-in-means.

Thus, we see that all changes in means are statistically significant, implying that the product has 
significantly improved the expected outcome of the model.

Further analysis  

Digging deeper into how the product impacts the outcome of the model, we can look at how 
variables interact over time. While the programme does not give us granular data to the extent 
that we can conditionalise the patients on certain variables, we can see how trends relate to each 
other.
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Above is a graph showing the change of frequency in Meropenem and Colistin resistances as well 
as isolation over time, having averaged 10 runs without the product in use. As resistance to 
Colistin naturally yields resistance again Meropenem in the model, the frequency of resistance to 
Meropenem is always higher than that to Colistin. It is clear that isolation is lagging behind the 
spread of resistant pathogens, with many people who carry and could spread pathogens resistant 
to Meropenems not being put into isolation. At peak levels, resistance to Meropenem and Colistin 
reaches 496.8 and 256.5 respectively, while peak isolation reaches 295.5.

Above is a graph showing the change of frequency in Meropenem and Colistin resistances as well 
as isolation over time, having averaged 10 runs with the product in use. As resistance to Colistin 
naturally yields resistance again Meropenem in the model, the frequency of resistance to 
Meropenem is always higher than that to Colistin, however only by a slight amount. The 
frequency of resistance to Meropenem and that of being put into isolation is almost 
indistinguishable, as everyone who is resistant to Meropenem is put into isolation. The frequency 
of resistance to Meropenem is slightly higher than isolation levels while the disease is still 
spreading since patients only enter isolation the timestep after they develop Meropenem-
resistance. At peak levels, resistance to Meropenem and Colistin reaches 323.6 and 271.7 
respectively, while peak isolation reaches 313.5.

The first notable takeaway when comparing the data is the difference in frequency of resistance 
to Meropenem. At peak levels, not using the product increases the frequency of resistance to 
Meropenem by 53%. This is because patients who carry resistant pathogens are quickly put into 
isolation when using the product, preventing further spread. Notably, peak isolation is only 6% 
higher, which suggests that it is not merely putting more people into isolation that prevents 
spread.

Looking at timestep 30, isolation in the averaged run with the product is at 75.1, while isolation in 
the averaged run without the product is at 49.9, a massive 50.5% increase.

At timestep 60, isolation in the averaged run with the product is at 274.7, while isolation in the 
averaged run without the product is at 267.4, a mere 2.7% increase.

This rather qualitative look at the data suggests that the reason why the product prevents spread 
is not because it puts more people into isolation, but because it puts them into isolation earlier. 
This is important because it implies hospitals in the real world would not have to acquire higher 
capacity to accommodate patients with resistant pathogens, but can improve outcomes by using 
existing capacity more proactively.



Furthermore, the insights into isolation also explain why the product causes overall infection rates 
to decrease. While putting more people into isolation will inevitably decrease infection rates, 
putting them earlier into isolation will have the same effect.

Something else to note is the higher frequency of resistance to Colistin when using the product. 
Peak resistance when using the product reaches 271.7 compared to 256.5 when not using the 
product, a 5.9% increase. While this may not seem high, it has important implications as 
resistance again Colistin prevents the effective use of any antibiotic. Once a patient contracts a 
Colistin-resistant pathogen in this scenario, with no chance of a natural recovery, the patient is 
guaranteed to die.

Why does this happen? When the product detects resistance to Meropenem, treatment 
immediately changes to Colistin. This means that overall when using the product, more people 
are treated with Colistin than otherwise. Hence, while the frequency of Meropenem-resistance 
might be lower, the likelihood a pathogen develops resistance against Colistin if it is already 
resistant against Meropenem is much higher since resistance can only develop if it is treated with 
Colistin.

Is this a problem? Not necessarily, for two reasons. First of all, Colistin is only used when all other 
options are exhausted. In the case of a patient resistant to Meropenem, Colistin is the only 
effective treatment available to them. Since the chance of recovering without effective treatment 
is zero, not treating them is effectively letting them die. Furthermore, despite Colistin-resistance 
increasing in frequency, it is much less likely to spread. Without the product, we cannot know who 
carries Colistin-resistant pathogens, hence they are not guaranteed to be in isolation. Using the 
product, however, we always detect any patient resistant to Meropenem or any higher-tier 
antibiotic. This means all patients with resistance to Colistin are also put in isolation. Hence 
Colistin-resistance will not spread when the product is used. This is not totally true to the real 
world, and the change to fix this is discussed in the future work section, as we did not have time 
to propagate all the new data a fix to this would generate. However, we performed an informal 
test on the proposed fix (shown below), and found that the change appeared to be negligible.

Is replaced by

Using a small population  

Below, we show pairs of graphs of results with large and small population sizes for comparison

if person.infection.get_tier() >= PRODUCT_DETECTION_LEVEL:1

if person.infection.get_tier() == PRODUCT_DETECTION_LEVEL:1
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Above is a graph showing the change of several variables over time, taking the average of 10 runs 
without the product in use. “Meropenem” refers to the number of patients carrying a pathogen 
with resistance to Meropenem. Only the first 100 time-steps are shown as the variables change 
only marginally after that.

Above is a graph showing the change of several variables over time, when the population size was 
set to 200 and initially infected at 10, taking the average of 10 runs without the product in use. 
“Meropenem” refers to the number of patients carrying a pathogen with resistance to 
Meropenem. Only the first 100 time-steps are shown as the variables change only marginally after 
that.



Above is a graph showing the change of several variables over time, taking the average of 10 runs 
with the product in use. “Meropenem” refers to the number of patients carrying a pathogen with 
resistance to Meropenem. Only the first 100 time-steps are shown as the variables change only 
marginally after that.

Above is a graph showing the change of several variables over time, when the population size was 
set to 200 and initially infected at 10, taking the average of with the product in use. “Meropenem” 
refers to the number of patients carrying a pathogen with resistance to Meropenem. Only the first 
100 time-steps are shown as the variables change only marginally after that.

As you can see, the runs with lower populations sizes and fewer infected at the start provide 
similar results to the averaged runs with much higher populations. They largely have the same 
outcomes, with the simulation not using the product ending up with 88%, 37% and 32% infection, 
mortality and death rates respectively, and the simulation using the product ending up with 90%, 
35% and 32% infection, mortality and death rates respectively.

There are a few things worth noting. At surface level it seems as if the product made no difference 
in the runs with smaller population sizes, as the death rate was the same when using compared 
to when not using the product. Furthermore, in the run with the small population and with the 
product in use, the peak in cases was much earlier. The takeaway is that due to the model being 
stochastic, small sample sizes result in very different outcomes. This does not mean the product 



is less useful, it only points to the necessity of modelling with large enough sample sizes to get an 
accurate measurement of its impact.

All in all, the major trends seen in the simulations are very similar when comparing the averaged 
runs and the runs with the smaller populations. This indicates that the averaged runs give us a 
useful indicator of how the model works even with smaller populations.

Implications  

Through our analysis we have been able to find several useful takeaways. First of all, in the case of 
neonatal bacterial meningitis, the product can decrease the total amount of deaths in a 
population through two means.

1. Ensuring patients carrying a pathogen resistant to Meropenem are treated with an effective 
treatment, such as Colistin, thereby lowering mortality rates.

2. Ensuring patients carrying a pathogen resistant to Meropenem are proactively put into 
isolation, directly lowering infection rates and indirectly lowering mortality rates, by 
preventing spread of Meropenem-resistance. Notably, the product does not seem to 
increase overall isolation rates by much. Rather, it puts patients into isolation earlier. 
Therefore hospitals are not required to increase isolation capacity, the product just allows 
any existing capacity to be used more effectively.

These two mechanisms work to decrease the infection rate by 4.71% and the mortality rate by 
6.56%, overall resulting in a 11.13% lower death rate. Hypothesis testing confirmed all these 
improvements are statistically significant.

One cause for concern is the increased frequency of resistance to Colistin. At peak levels, using 
the product increased Colistin resistance by 5.9%. This is due to the product putting more people 
on Colistin treatment. While at surface level this might seem like an issue, one has to keep in mind 
two things.

1. The reason for higher use of Colistin is because all other options are exhausted. In the case 
of NBM, not treating a patient resistant to Meropenem with Colistin is effectively letting them 
die.

2. Thanks to the product putting patients resistant to Meropenem or any higher tier antibiotic 
in isolation, all patients with resistance to Colistin are also put in isolation. Hence Colistin-
resistance will not spread.

While these statistics paint a promising picture, one needs to keep in mind that these are based 
on averaged runs with a large sample size. Were you to run the programme again trying to 
simulate the spread of NBM in an actual hospital department, the population will have to be 
decreased. Instead of using 5000 patients, a more realistic scenario would be hundreds or even 
tens of patients. Since the model is stochastic, the probabilities of individual events will lead to 
very different outcomes every time the programme is ran. Therefore, it is unrealistic to always 
expect the product to have the same impact. However, the test runs with populations of 200 tell 
us something interesting. While the outcomes will vary a lot, the averaged runs are good at 
predicting overall trends in terms of resistance frequencies and infection, mortality and death 
rates. Furthermore, they allow us to estimate the average impact of the product. Therefore, the 
unrealistic large population size of the averaged runs is not a reason to dispute any insights we 
get from them.

More generally, the contextualisation shows that the model can be useful to simulate real-world 
scenarios, and both qualify and quantify the impact of using the product. Generally, the more 
parameters that can be anchored, the more realistic the simulation and the more takeaways can 
be made. The simulation of our product being used to combat neonatal bacterial meningitis could 
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Proposer Summary
Used
in final
model?

Alex
Darlington

Real hospitals only contain a fairly small number of people
susceptible within the model, maximum 250, so the population
size should be limited by that. This has the effect of increasing
variance in the Markov model, as the law of large numbers does
not apply, however, it is important for realistic simulation

Yes

Alex
Darlington

Add the use of a “last resort” drug, such as Colistin, to resolve the
issue of the product detection being too late to make any
meaningful action. For example, if a Carbapen is the final drug in
the hierarchy, detection of resistance is not useful, as the highest
possible isolation threshold is being treated with it, which is a pre-
requisite for developing resistance, so people will never be
isolated as a result, and there is no higher tier treatment to use,
so better treatment cannot be given either.

Yes

Alex
Darlington

Add an increasing risk of death if a person has been infected for a
long time, as in the real world, people become frail after having
been sick for some time.

Yes

Axel
Schoerner
Emillon

Change the detection method to only detect whether someone is
currently resistant to Carbapenems, rather than if they have any
higher tier resistance, as it is not a pre-requisite in the real world
given that mutations might not occur in the Carbapenem
treatment stage. This was not implemented as it was identified
very late in the process after most of the analysis was completed
and we would not have had time to redo it, but we performed an
informal test, and found it caused a negligible difference in the
model results.

No

just as well be applied to scenarios with other diseases, helping us understand how our product 
could make a difference there as well.

Development and future work  

Throughout the development process, we presented the modelling work to other members of our 
team and our principal investigators, along with a mathematical biologist in the field, Alex 
Darlington. Presenting our work was helpful not only for ensuring that we could explain 
everything fully and understandably, but also as we received useful suggestions about ways we 
could improve the model.

A table of suggested improvements we received during development is:

A table of suggested future work we received during development is:
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Proposer Summary
Beneficial
for future
work?

Alex
Darlington

Add a cap of the people who can be isolated at one time, as
there is a physical limitation of beds in hospital. This was
rejected as a change as isolation can be modelled as just more
regular changing of PPE, rather than necessarily having totally
discrete rooms.

No

Alex
Darlington

Add a spatial aspect to the model, for example having two
wards which cannot spread to each other, but having staff who
serve both wards and can become infected, in order to act as
transmission vectors between the two wards.

Yes

Axel
Schoerner
Emillon

Add an asymptomatic phase to the infections, where people
can have the infection and be able to transmit it, but they are
have no symptoms, so treatment will no start.

Yes

Conclusion  

Given the fact that we have tested and validated our model to be sufficiently representative of the 
real world, and the model output indicates that the use of the product reduces the presence of 
antibiotic resistant pathogenic strains in our selected scenario, we conclude that our product is 
beneficial.

There are a number of aspects in which we could expand our model into if we did not have the 
time constraints of the iGEM competition, but we believe that the model in its current state both 
achieves its goal of showing our product is beneficial, along with being a useful tool for 
understanding the issue of antibiotic resistance in its own right.

Discussion  

Some common questions about the model are answered below:

Q. Is the model realistic?

A. The model is a balance of realism with abstraction. If the model were designed to be holly 
realistic model, it would inevitably turn into a “hospital simulator”, would be too complex to 
design, and take too long to run on current computers. However, the model must not be too 
heavily abstracted, as otherwise it does not fully encode the complexities of the system. We 
carefully designed the model to only consider the aspects of the real world we thought 
relevant to its results, and abstracted away the rest, and were shown to have done this 
correctly by completing the validation process. In summary, the model is realistic “where it 
counts”, but it does not simulate unnecessary complexities

Q. Is the model useful?

A. Yes, because it provides several helpful insights:

The impact our product will have on the spread of resistance just by quickly detecting 
who to put into isolation
Whether higher or lower mortality or transmissibility of a disease increase or decrease 
the effectiveness

Q. What potential improvements are there?
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A. It would be possible to add additional features to the model to make it more realistic, for 
example:

Spatial considerations – e.g. modelling multiple wards with movement between them
Asymptomatic transmission periods of infection

however, these are beyond the scope of our project

Q. How does the model compare to other existent ones?

A. Our model is designed specifically for modelling the development of antibiotic resistance 
in a population. The techniques and type of model we employed are fairly common in the 
field of modelling pathogens, as they work particularly well! However, our model differs in 
several ways. Firstly, it includes the major feature of differentiating between whether our 
product is in use, which is a feature in no other published models, as our product is novel. 
Secondly, most academic publications only include results, whereas we openly include the 
model code at the fore-front of our research, and encourage people to use and build off our 
code. With this in mind, we designed it to be readable, and provided clear documentation for 
all its features.

Q. Why not use a deterministic model?

A. The complexity of the logic in the model is very high, so it would be exceedingly difficult to 
design a system of equations to form the deterministic model that defines it. The benefit of 
stochastic models is that they can be expressed declaratively rather than imperatively - i.e. 
only the properties, rather than a full definition of the system need be given. This makes it 
easier to both develop and validate the model. The drawback of stochastic models is that for 
small populations they can produce noisy data. However, since we showed that population 
size doesn’t affect the model results, and we averaged the model results over many (at least 
10, dependent on scenario) number of runs, the noise was negligible.

Q. Can the model be applied to current issues, i.e. the COVID pandemic?

A. Since the model is a very generic abstraction of the real world, by adjusting it’s parameters 
a vast amount of different scenarios can be modelled. The key issue in adapting it to 
different scenarios is if they fit the inherent logic and states hard-coded into it. Since COVID 
is a viral infection, as opposed to a bacterial infection, antibiotics cannot be used to treat it, 
so the tiered system of antibiotic uses fits less cleanly to it, however, they could instead be 
considered as increasingly aggressive treatment options, to which it also grows resistant. 
However, the logic around our product would not apply, as viral infections are not affected 
by carbapenem, which is the antibiotic we focus on.
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