/* * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) * Copyright (C) 2001 Peter Kelly (pmk@post.com) * Copyright (C) 2003-2021 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #pragma once #include "Concurrency.h" #include "ECMAMode.h" #include "JSExportMacros.h" #include "PureNaN.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JSC { class AssemblyHelpers; class DeletePropertySlot; class JSBigInt; class CallFrame; class JSCell; class JSValueSource; class VM; class JSGlobalObject; class JSObject; class JSString; class Identifier; class PropertyName; class PropertySlot; class PutPropertySlot; class Structure; #if ENABLE(DFG_JIT) namespace DFG { class JITCompiler; class OSRExitCompiler; class SpeculativeJIT; } #endif #if ENABLE(C_LOOP) namespace LLInt { class CLoop; } #endif struct ClassInfo; struct DumpContext; struct MethodTable; enum class Unknown { }; template class WriteBarrierBase; template using WriteBarrierTraitsSelect = typename std::conditional::value, RawValueTraits, RawPtrTraits >::type; enum PreferredPrimitiveType : uint8_t { NoPreference, PreferNumber, PreferString }; struct CallData; typedef int64_t EncodedJSValue; inline void updateEncodedJSValueConcurrent(EncodedJSValue&, EncodedJSValue); inline void clearEncodedJSValueConcurrent(EncodedJSValue&); union EncodedValueDescriptor { int64_t asInt64; #if USE(JSVALUE32_64) double asDouble; #elif USE(JSVALUE64) JSCell* ptr; #endif #if CPU(BIG_ENDIAN) struct { int32_t tag; int32_t payload; } asBits; #else struct { int32_t payload; int32_t tag; } asBits; #endif }; #define TagOffset (offsetof(EncodedValueDescriptor, asBits.tag)) #define PayloadOffset (offsetof(EncodedValueDescriptor, asBits.payload)) #if USE(JSVALUE64) #define CellPayloadOffset 0 #else #define CellPayloadOffset PayloadOffset #endif enum WhichValueWord { TagWord, PayloadWord }; int64_t tryConvertToInt52(double); bool isInt52(double); enum class SourceCodeRepresentation : uint8_t { Other, Integer, Double, LinkTimeConstant, }; extern JS_EXPORT_PRIVATE const ASCIILiteral SymbolCoercionError; #if HAVE(OS_SIGNPOST) extern JS_EXPORT_PRIVATE std::atomic activeJSGlobalObjectSignpostIntervalCount; #endif class JSValue { friend struct EncodedJSValueHashTraits; friend struct EncodedJSValueWithRepresentationHashTraits; friend class AssemblyHelpers; friend class JIT; friend class JITSlowPathCall; friend class JITStubs; friend class JITStubCall; friend class JSInterfaceJIT; friend class JSValueSource; friend class SpecializedThunkJIT; #if ENABLE(DFG_JIT) friend class DFG::JITCompiler; friend class DFG::OSRExitCompiler; friend class DFG::SpeculativeJIT; #endif #if ENABLE(C_LOOP) friend class LLInt::CLoop; #endif public: #if USE(JSVALUE32_64) static constexpr uint32_t Int32Tag = 0xffffffff; static constexpr uint32_t BooleanTag = 0xfffffffe; static constexpr uint32_t NullTag = 0xfffffffd; static constexpr uint32_t UndefinedTag = 0xfffffffc; static constexpr uint32_t CellTag = 0xfffffffb; static constexpr uint32_t NativeCalleeTag = 0xfffffffa; static constexpr uint32_t EmptyValueTag = 0xfffffff9; static constexpr uint32_t DeletedValueTag = 0xfffffff8; static constexpr uint32_t InvalidTag = 0xfffffff7; static constexpr uint32_t LowestTag = InvalidTag; #endif static EncodedJSValue encode(JSValue); static JSValue decode(EncodedJSValue); /* read a JSValue from storage not owned by this thread * on 64-bit ports, or when JIT is not enabled, equivalent to * JSValue::decode(*ptr) */ static JSValue decodeConcurrent(const volatile EncodedJSValue *); enum JSNullTag { JSNull }; enum JSUndefinedTag { JSUndefined }; enum JSTrueTag { JSTrue }; enum JSFalseTag { JSFalse }; enum JSCellTag { JSCellType }; #if USE(BIGINT32) enum EncodeAsBigInt32Tag { EncodeAsBigInt32 }; #endif enum EncodeAsDoubleTag { EncodeAsDouble }; #if ENABLE(WEBASSEMBLY) && USE(JSVALUE32_64) enum EncodeAsUnboxedFloatTag { EncodeAsUnboxedFloat }; #endif JSValue(); JSValue(JSNullTag); JSValue(JSUndefinedTag); JSValue(JSTrueTag); JSValue(JSFalseTag); JSValue(JSCell* ptr); JSValue(const JSCell* ptr); #if USE(BIGINT32) JSValue(EncodeAsBigInt32Tag, int32_t); #endif #if ENABLE(WEBASSEMBLY) && USE(JSVALUE32_64) JSValue(EncodeAsUnboxedFloatTag, float); #endif // Numbers JSValue(EncodeAsDoubleTag, double); explicit JSValue(double); explicit JSValue(char); explicit JSValue(unsigned char); explicit JSValue(short); explicit JSValue(unsigned short); explicit JSValue(int); explicit JSValue(unsigned); explicit JSValue(long); explicit JSValue(unsigned long); explicit JSValue(long long); explicit JSValue(unsigned long long); explicit operator bool() const; bool operator==(const JSValue&) const; bool isInt32() const; bool isUInt32() const; bool isDouble() const; bool isTrue() const; bool isFalse() const; int32_t asInt32() const; uint32_t asUInt32() const; std::optional tryGetAsUint32Index(); std::optional tryGetAsInt32(); int64_t asAnyInt() const; uint32_t asUInt32AsAnyInt() const; int32_t asInt32AsAnyInt() const; double asDouble() const; bool asBoolean() const; double asNumber() const; #if USE(BIGINT32) int32_t bigInt32AsInt32() const; // must only be called on a BigInt32 #endif int32_t asInt32ForArithmetic() const; // Boolean becomes an int, but otherwise like asInt32(). // Querying the type. bool isEmpty() const; bool isCallable() const; template TriState isCallableWithConcurrency() const; bool isConstructor() const; template TriState isConstructorWithConcurrency() const; bool isUndefined() const; bool isNull() const; bool isUndefinedOrNull() const; bool isBoolean() const; bool isAnyInt() const; bool isUInt32AsAnyInt() const; bool isInt32AsAnyInt() const; bool isNumber() const; bool isString() const; bool isBigInt() const; bool isHeapBigInt() const; bool isBigInt32() const; bool isSymbol() const; bool isPrimitive() const; bool isGetterSetter() const; bool isCustomGetterSetter() const; bool isObject() const; bool inherits(const ClassInfo*) const; template bool inherits() const; const ClassInfo* classInfoOrNull() const; // Extracting the value. bool getString(JSGlobalObject*, WTF::String&) const; WTF::String getString(JSGlobalObject*) const; // null string if not a string JSObject* getObject() const; // 0 if not an object // Extracting integer values. bool getUInt32(uint32_t&) const; // Basic conversions. JSValue toPrimitive(JSGlobalObject*, PreferredPrimitiveType = NoPreference) const; bool toBoolean(JSGlobalObject*) const; TriState pureToBoolean() const; // toNumber conversion is expected to be side effect free if an exception has // been set in the CallFrame already. double toNumber(JSGlobalObject*) const; JSValue toNumeric(JSGlobalObject*) const; JSValue toBigIntOrInt32(JSGlobalObject*) const; JSBigInt* asHeapBigInt() const; // toNumber conversion if it can be done without side effects. std::optional toNumberFromPrimitive() const; JSString* toString(JSGlobalObject*) const; // On exception, this returns the empty string. JSString* toStringOrNull(JSGlobalObject*) const; // On exception, this returns null, to make exception checks faster. Identifier toPropertyKey(JSGlobalObject*) const; JSValue toPropertyKeyValue(JSGlobalObject*) const; WTF::String toWTFString(JSGlobalObject*) const; JS_EXPORT_PRIVATE WTF::String toWTFStringForConsole(JSGlobalObject*) const; JSObject* toObject(JSGlobalObject*) const; // Integer conversions. JS_EXPORT_PRIVATE double toIntegerPreserveNaN(JSGlobalObject*) const; double toIntegerWithTruncation(JSGlobalObject*) const; double toIntegerOrInfinity(JSGlobalObject*) const; int32_t toInt32(JSGlobalObject*) const; uint32_t toUInt32(JSGlobalObject*) const; uint32_t toIndex(JSGlobalObject*, const char* errorName) const; size_t toTypedArrayIndex(JSGlobalObject*, ASCIILiteral) const; uint64_t toLength(JSGlobalObject*) const; JS_EXPORT_PRIVATE JSValue toBigInt(JSGlobalObject*) const; int64_t toBigInt64(JSGlobalObject*) const; JS_EXPORT_PRIVATE uint64_t toBigUInt64(JSGlobalObject*) const; std::optional toUInt32AfterToNumeric(JSGlobalObject*) const; // Floating point conversions (this is a convenience function for WebCore; // single precision float is not a representation used in JS or JSC). float toFloat(JSGlobalObject* globalObject) const { return static_cast(toNumber(globalObject)); } // Object operations, with the toObject operation included. JSValue get(JSGlobalObject*, PropertyName) const; JSValue get(JSGlobalObject*, PropertyName, PropertySlot&) const; JSValue get(JSGlobalObject*, unsigned propertyName) const; JSValue get(JSGlobalObject*, unsigned propertyName, PropertySlot&) const; JSValue get(JSGlobalObject*, uint64_t propertyName) const; template T getAs(JSGlobalObject*, PropertyNameType) const; bool getPropertySlot(JSGlobalObject*, PropertyName, PropertySlot&) const; template typename std::invoke_result::type getPropertySlot(JSGlobalObject*, PropertyName, CallbackWhenNoException) const; template typename std::invoke_result::type getPropertySlot(JSGlobalObject*, PropertyName, PropertySlot&, CallbackWhenNoException) const; bool getOwnPropertySlot(JSGlobalObject*, PropertyName, PropertySlot&) const; bool put(JSGlobalObject*, PropertyName, JSValue, PutPropertySlot&); bool putInline(JSGlobalObject*, PropertyName, JSValue, PutPropertySlot&); JS_EXPORT_PRIVATE bool putToPrimitive(JSGlobalObject*, PropertyName, JSValue, PutPropertySlot&); JS_EXPORT_PRIVATE bool putToPrimitiveByIndex(JSGlobalObject*, unsigned propertyName, JSValue, bool shouldThrow); bool putByIndex(JSGlobalObject*, unsigned propertyName, JSValue, bool shouldThrow); JSValue getPrototype(JSGlobalObject*) const; JSValue toThis(JSGlobalObject*, ECMAMode) const; static bool equal(JSGlobalObject*, JSValue v1, JSValue v2); static bool equalSlowCase(JSGlobalObject*, JSValue v1, JSValue v2); static bool equalSlowCaseInline(JSGlobalObject*, JSValue v1, JSValue v2); static bool strictEqual(JSGlobalObject*, JSValue v1, JSValue v2); static bool strictEqualForCells(JSGlobalObject*, JSCell* v1, JSCell* v2); static TriState pureStrictEqual(JSValue v1, JSValue v2); bool isCell() const; JSCell* asCell() const; Structure* structureOrNull() const; JS_EXPORT_PRIVATE void dump(PrintStream&) const; void dumpInContext(PrintStream&, DumpContext*) const; void dumpInContextAssumingStructure(PrintStream&, DumpContext*, Structure*) const; void dumpForBacktrace(PrintStream&) const; JS_EXPORT_PRIVATE JSObject* synthesizePrototype(JSGlobalObject*) const; bool requireObjectCoercible(JSGlobalObject*) const; // Constants used for Int52. Int52 isn't part of JSValue right now, but JSValues may be // converted to Int52s and back again. static constexpr const unsigned numberOfInt52Bits = 52; static constexpr const int64_t notInt52 = static_cast(1) << numberOfInt52Bits; static constexpr const unsigned int52ShiftAmount = 12; static ptrdiff_t offsetOfPayload() { return OBJECT_OFFSETOF(JSValue, u.asBits.payload); } static ptrdiff_t offsetOfTag() { return OBJECT_OFFSETOF(JSValue, u.asBits.tag); } #if USE(JSVALUE32_64) /* * On 32-bit platforms USE(JSVALUE32_64) should be defined, and we use a NaN-encoded * form for immediates. * * The encoding makes use of unused NaN space in the IEEE754 representation. Any value * with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values * can encode a 51-bit payload. Hardware produced and C-library payloads typically * have a payload of zero. We assume that non-zero payloads are available to encode * pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are * all set represents a NaN with a non-zero payload, we can use this space in the NaN * ranges to encode other values (however there are also other ranges of NaN space that * could have been selected). * * For JSValues that do not contain a double value, the high 32 bits contain the tag * values listed in the enums below, which all correspond to NaN-space. In the case of * cell, integer and bool values the lower 32 bits (the 'payload') contain the pointer * integer or boolean value; in the case of all other tags the payload is 0. */ uint32_t tag() const; int32_t payload() const; // This should only be used by the LLInt C Loop interpreter and OSRExit code who needs // synthesize JSValue from its "register"s holding tag and payload values. explicit JSValue(int32_t tag, int32_t payload); #elif USE(JSVALUE64) /* * On 64-bit platforms USE(JSVALUE64) should be defined, and we use a NaN-encoded * form for immediates. * * The encoding makes use of unused NaN space in the IEEE754 representation. Any value * with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values * can encode a 51-bit payload. Hardware produced and C-library payloads typically * have a payload of zero. We assume that non-zero payloads are available to encode * pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are * all set represents a NaN with a non-zero payload, we can use this space in the NaN * ranges to encode other values (however there are also other ranges of NaN space that * could have been selected). * * This range of NaN space is represented by 64-bit numbers beginning with the 15-bit * hex patterns 0xFFFC and 0xFFFE - we rely on the fact that no valid double-precision * numbers will fall in these ranges. * * The top 15-bits denote the type of the encoded JSValue: * * Pointer { 0000:PPPP:PPPP:PPPP * / 0002:****:****:**** * Double { ... * \ FFFC:****:****:**** * Integer { FFFE:0000:IIII:IIII * * The scheme we have implemented encodes double precision values by performing a * 64-bit integer addition of the value 2^49 to the number. After this manipulation * no encoded double-precision value will begin with the pattern 0x0000 or 0xFFFE. * Values must be decoded by reversing this operation before subsequent floating point * operations may be peformed. * * 32-bit signed integers are marked with the 16-bit tag 0xFFFE. * * The tag 0x0000 denotes a pointer, or another form of tagged immediate. Boolean, * null and undefined values are represented by specific, invalid pointer values: * * False: 0x06 * True: 0x07 * Undefined: 0x0a * Null: 0x02 * * These values have the following properties: * - Bit 1 (0-indexed) is set (OtherTag) for all four values, allowing real pointers to be * quickly distinguished from all immediate values, including these invalid pointers. * - With bit 3 (0-indexed) masked out (UndefinedTag), Undefined and Null share the * same value, allowing null & undefined to be quickly detected. * * No valid JSValue will have the bit pattern 0x0, this is used to represent array * holes, and as a C++ 'no value' result (e.g. JSValue() has an internal value of 0). * * When USE(BIGINT32), we have a special representation for BigInts that are small (32-bit at most): * 0000:XXXX:XXXX:0012 * This representation works because of the following things: * - It cannot be confused with a Double or Integer thanks to the top bits * - It cannot be confused with a pointer to a Cell, thanks to bit 1 which is set to true * - It cannot be confused with a pointer to wasm thanks to bit 0 which is set to false * - It cannot be confused with true/false because bit 2 is set to false * - It cannot be confused for null/undefined because bit 4 is set to true */ // This value is 2^49, used to encode doubles such that the encoded value will begin // with a 15-bit pattern within the range 0x0002..0xFFFC. static constexpr size_t DoubleEncodeOffsetBit = 49; static constexpr int64_t DoubleEncodeOffset = 1ll << DoubleEncodeOffsetBit; // If all bits in the mask are set, this indicates an integer number, // if any but not all are set this value is a double precision number. static constexpr int64_t NumberTag = 0xfffe000000000000ll; // The following constant is used for a trick in the implementation of strictEq, to detect if either of the arguments is a double static constexpr int64_t LowestOfHighBits = 1ULL << 49; static_assert(LowestOfHighBits & NumberTag); static_assert(!((LowestOfHighBits>>1) & NumberTag)); // All non-numeric (bool, null, undefined) immediates have bit 1 (0-indexed) set. static constexpr int32_t OtherTag = 0x2; static constexpr int32_t BoolTag = 0x4; static constexpr int32_t UndefinedTag = 0x8; #if USE(BIGINT32) static constexpr int32_t BigInt32Tag = 0x12; static constexpr int64_t BigInt32Mask = NumberTag | BigInt32Tag; #endif // Combined integer value for non-numeric immediates. static constexpr int32_t ValueFalse = OtherTag | BoolTag | false; static constexpr int32_t ValueTrue = OtherTag | BoolTag | true; static constexpr int32_t ValueUndefined = OtherTag | UndefinedTag; static constexpr int32_t ValueNull = OtherTag; static constexpr int64_t MiscTag = OtherTag | BoolTag | UndefinedTag; // NotCellMask is used to check for all types of immediate values (either number or 'other'). static constexpr int64_t NotCellMask = NumberTag | OtherTag; // These special values are never visible to JavaScript code; Empty is used to represent // Array holes, and for uninitialized JSValues. Deleted is used in hash table code. // These values would map to cell types in the JSValue encoding, but not valid GC cell // pointer should have either of these values (Empty is null, deleted is at an invalid // alignment for a GC cell, and in the zero page). static constexpr int32_t ValueEmpty = 0x0; static constexpr int32_t ValueDeleted = 0x4; static constexpr int64_t NativeCalleeTag = OtherTag | 0x1; static constexpr int64_t NativeCalleeMask = NumberTag | 0x7; // We tag Wasm non-JSCell pointers with a 3 at the bottom. We can test if a 64-bit JSValue pattern // is a Wasm callee by masking the upper 16 bits and the lower 3 bits, and seeing if // the resulting value is 3. The full test is: x & NativeCalleeMask == NativeCalleeTag // This works because the lower 3 bits of the non-number immediate values are as follows: // undefined: 0b010 // null: 0b010 // true: 0b111 // false: 0b110 // The test rejects all of these because none have just the value 3 in their lower 3 bits. // The test rejects all numbers because they have non-zero upper 16 bits. // The test also rejects normal cells because they won't have the number 3 as // their lower 3 bits. Note, this bit pattern also allows the normal JSValue isCell(), etc, // predicates to work on a Wasm::Callee because the various tests will fail if you // bit casted a boxed Wasm::Callee* to a JSValue. isCell() would fail since it sees // OtherTag. The other tests also trivially fail, since it won't be a number, // and it won't be equal to null, undefined, true, or false. The isBoolean() predicate // will fail because we won't have BoolTag set. #endif private: template JSValue(WriteBarrierBase>); enum HashTableDeletedValueTag { HashTableDeletedValue }; JSValue(HashTableDeletedValueTag); inline const JSValue asValue() const { return *this; } JS_EXPORT_PRIVATE double toNumberSlowCase(JSGlobalObject*) const; JS_EXPORT_PRIVATE JSString* toStringSlowCase(JSGlobalObject*, bool returnEmptyStringOnError) const; JS_EXPORT_PRIVATE WTF::String toWTFStringSlowCase(JSGlobalObject*) const; JS_EXPORT_PRIVATE JSObject* toObjectSlowCase(JSGlobalObject*) const; JS_EXPORT_PRIVATE JSValue toThisSloppySlowCase(JSGlobalObject*) const; EncodedValueDescriptor u; }; typedef IntHash EncodedJSValueHash; #if USE(JSVALUE32_64) struct EncodedJSValueHashTraits : HashTraits { static constexpr bool emptyValueIsZero = false; static EncodedJSValue emptyValue() { return JSValue::encode(JSValue()); } static void constructDeletedValue(EncodedJSValue& slot) { slot = JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } static bool isDeletedValue(EncodedJSValue value) { return value == JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } }; #else struct EncodedJSValueHashTraits : HashTraits { static void constructDeletedValue(EncodedJSValue& slot) { slot = JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } static bool isDeletedValue(EncodedJSValue value) { return value == JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } }; #endif typedef std::pair EncodedJSValueWithRepresentation; struct EncodedJSValueWithRepresentationHashTraits : HashTraits { static constexpr bool emptyValueIsZero = false; static EncodedJSValueWithRepresentation emptyValue() { return std::make_pair(JSValue::encode(JSValue()), SourceCodeRepresentation::Other); } static void constructDeletedValue(EncodedJSValueWithRepresentation& slot) { slot = std::make_pair(JSValue::encode(JSValue(JSValue::HashTableDeletedValue)), SourceCodeRepresentation::Other); } static bool isDeletedValue(EncodedJSValueWithRepresentation value) { return value == std::make_pair(JSValue::encode(JSValue(JSValue::HashTableDeletedValue)), SourceCodeRepresentation::Other); } }; struct EncodedJSValueWithRepresentationHash { static unsigned hash(const EncodedJSValueWithRepresentation& value) { return WTF::pairIntHash(EncodedJSValueHash::hash(value.first), IntHash::hash(value.second)); } static bool equal(const EncodedJSValueWithRepresentation& a, const EncodedJSValueWithRepresentation& b) { return a == b; } static constexpr bool safeToCompareToEmptyOrDeleted = true; }; // Stand-alone helper functions. inline JSValue jsNull() { return JSValue(JSValue::JSNull); } inline JSValue jsUndefined() { return JSValue(JSValue::JSUndefined); } inline JSValue jsTDZValue() { return JSValue(); } inline JSValue jsBoolean(bool b) { return b ? JSValue(JSValue::JSTrue) : JSValue(JSValue::JSFalse); } #if USE(BIGINT32) ALWAYS_INLINE JSValue jsBigInt32(int32_t intValue) { return JSValue(JSValue::EncodeAsBigInt32, intValue); } #endif #if ENABLE(WEBASSEMBLY) && USE(JSVALUE32_64) ALWAYS_INLINE JSValue wasmUnboxedFloat(float f) { return JSValue(JSValue::EncodeAsUnboxedFloat, f); } #endif ALWAYS_INLINE JSValue jsDoubleNumber(double d) { ASSERT(JSValue(JSValue::EncodeAsDouble, d).isNumber()); return JSValue(JSValue::EncodeAsDouble, d); } ALWAYS_INLINE JSValue jsNumber(double d) { ASSERT(JSValue(d).isNumber()); ASSERT(!isImpureNaN(d)); return JSValue(d); } ALWAYS_INLINE JSValue jsNumber(const MediaTime& t) { return jsNumber(t.toDouble()); } ALWAYS_INLINE JSValue jsNumber(char i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned char i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(short i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned short i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(int i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(long long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned long long i) { return JSValue(i); } ALWAYS_INLINE EncodedJSValue encodedJSUndefined() { return JSValue::encode(jsUndefined()); } ALWAYS_INLINE EncodedJSValue encodedJSValue() { return JSValue::encode(JSValue()); } inline bool operator==(const JSValue a, const JSCell* b) { return a == JSValue(b); } inline bool operator==(const JSCell* a, const JSValue b) { return JSValue(a) == b; } bool isThisValueAltered(const PutPropertySlot&, JSObject* baseObject); // See section 7.2.9: https://tc39.github.io/ecma262/#sec-samevalue bool sameValue(JSGlobalObject*, JSValue a, JSValue b); #if COMPILER(GCC_COMPATIBLE) ALWAYS_INLINE void ensureStillAliveHere(JSValue value) { #if USE(JSVALUE64) asm volatile ("" : : "g"(bitwise_cast(value)) : "memory"); #else asm volatile ("" : : "g"(value.payload()) : "memory"); #endif } #else JS_EXPORT_PRIVATE void ensureStillAliveHere(JSValue); #endif // Use EnsureStillAliveScope when you have a data structure that includes GC pointers, and you need // to remove it from the DOM and then use it in the same scope. For example, a 'once' event listener // needs to be removed from the DOM and then fired. class EnsureStillAliveScope { WTF_FORBID_HEAP_ALLOCATION; WTF_MAKE_NONCOPYABLE(EnsureStillAliveScope); WTF_MAKE_NONMOVABLE(EnsureStillAliveScope); public: EnsureStillAliveScope(JSValue value) : m_value(value) { } ~EnsureStillAliveScope() { ensureStillAliveHere(m_value); } JSValue value() const { return m_value; } private: JSValue m_value; }; #if USE(JSVALUE64) || !ENABLE(CONCURRENT_JS) inline JSValue JSValue::decodeConcurrent(const volatile EncodedJSValue* encodedJSValue) { return JSValue::decode(*encodedJSValue); } inline void updateEncodedJSValueConcurrent(EncodedJSValue& dest, EncodedJSValue value) { dest = value; } inline void clearEncodedJSValueConcurrent(EncodedJSValue& dest) { dest = JSValue::encode(JSValue()); } #elif USE(JSVALUE32_64) inline JSValue JSValue::decodeConcurrent(const volatile EncodedJSValue *encodedJSValue) { for (;;) { auto v = JSValue::decode(reinterpret_cast*>(encodedJSValue)->load()); if (v.tag() != InvalidTag) return v; } } inline void updateEncodedJSValueConcurrent(EncodedJSValue& dest, EncodedJSValue value) { auto destDesc = const_cast(reinterpret_cast(&dest)); EncodedValueDescriptor desc; memcpy(&desc, &value, sizeof(value)); auto destTag = const_cast(&destDesc->asBits.tag); auto destPayload = const_cast(&destDesc->asBits.payload); *destTag = JSValue::InvalidTag; WTF::storeStoreFence(); *destPayload = desc.asBits.payload; WTF::storeStoreFence(); *destTag = desc.asBits.tag; } inline void clearEncodedJSValueConcurrent(EncodedJSValue& dest) { auto destDesc = const_cast(reinterpret_cast(&dest)); auto destTag = const_cast(&destDesc->asBits.tag); auto destPayload = const_cast(&destDesc->asBits.payload); *destTag = JSValue::EmptyValueTag; WTF::storeStoreFence(); *destPayload = 0; } #else # error "Unsupported configuration" #endif } // namespace JSC