
ActivityPub: From Decentralized to
Distributed Social Networks

A White Paper from Rebooting the Web of Trust V

by Christine Lemmer-Webber & Manu Sporny

INTRODUCTION
ActivityPub is a protocol being developed at the W3C for the purpose of building 
federated social systems. Users can use implementations of ActivityPub like Mastodon 
and MediaGoblin as libre alternatives to large siloed social networking systems such as 
Facebook, Twitter, YouTube, and Instagram1.

In general ActivityPub follows the client-server paradigm that has been popular on the World Wide 
Web, while restoring some level of decentralization. Current implementations of ActivityPub go as 
far as to bring a level of decentralization akin to email2, but there are many opportunities to go 
further.

By attaching public keys to the profiles of actors (users) on the network and using Linked Data 
Signatures, we can add a web of trust to the federated social web and use it to enhance user 
privacy and to assert the integrity of messages sent over the network.

By using a decentralized identifier system such as Decentralized Identifiers (DIDs) we can move 
fully from a decentralized to a distributed system3, by escaping the core centralization mechanisms 
of DNS and SSL certificate authorities.

At this point, users could even optionally transition from a client-server model system to a fully 
peer-to-peer system.

ACTIVITYPUB OVERVIEW
This section is borrowed from the ActivityPub standard's Overview section; if you are 
already familiar with ActivityPub then you may skip this section.

ActivityPub provides two layers:

• A server-to-server federation protocol: so decentralized websites can share information
• A client-to-server protocol: so users can communicate with ActivityPub using servers, 

from a phone or desktop or web application or whatever

ActivityPub implementations can implement just one of these things or both of them.

However, once you've implemented one, it isn't too many steps to implement the other, and there 
are a lot of benefits to both (making your website part of the decentralized social web and able to 
use clients and client libraries that work across a wide variety of social websites).

11/22/17 ActivityPub 1.0 1

https://www.w3.org/TR/activitypub/
https://w3c-ccg.github.io/did-spec/
https://w3c-dvcg.github.io/ld-signatures/
https://w3c-dvcg.github.io/ld-signatures/
https://www.w3.org/


In ActivityPub, every actor (users are represented as "actors"
here) has:

• An inbox: How they get messages from the world
• An outbox: How they send messages to others

These are endpoints, or really, just URLs which are listed in the
ActivityPub actor's ActivityStreams description. (More on
ActivityStreams later.)

Here's an example of the record of our friend Alyssa P. Hacker:

{
  "@context":   
    "https://www.w3.org/ns/activitystreams",
  "type": "Person",
  "id": "https://social.example/alyssa/",
  "name": "Alyssa P. Hacker",
  "preferredUsername": "alyssa",
  "summary": "Lisp enthusiast hailing from MIT",
  "inbox": "https://social.example/alyssa/inbox/",
  "outbox": "https://social.example/alyssa/outbox/",
  "followers": "https://social.example/alyssa/followers/",
  "following": "https://social.example/alyssa/following/",
  "liked": "https://social.example/alyssa/liked/"
}

ActivityPub uses ActivityStreams for its vocabulary. This is pretty great because 
ActivityStreams includes all the common terms you need to represent all the activities 
and content flowing around a social network.

It's likely that ActivityStreams already includes all the vocabulary you need, but even if it doesn't, 
ActivityStreams can be extended via JSON-LD.

If you know what JSON-LD is, you can take advantage of the cool linked data approaches provided 
by JSON-LD. If you don't, don't worry, JSON-LD documents and ActivityStreams can be understood 
as plain old simple JSON. (If you're going to add extensions, that's the point at which JSON-LD really 
helps you out.)

So, okay. Alyssa wants to talk to her friends, and her friends want to talk to her! Luckily these 
"inbox" and "outbox" things can help us out. They both behave differently for GET and POST.

So the full workflow is:

• You can POST to someone's inbox to send them a message (server-to-server / federation 
only… this is federation!)

• You can GET from your inbox to read your latest messages (client-to-server; this is like 
reading your social network stream)

• You can POST to your outbox to send messages to the world (client-to-server)
• You can GET from someone's outbox to see what messages they've posted, or at least the 

ones you're authorized to see. (client-to-server and/or server-to-server)

11/22/17 ActivityPub 1.0 2

https://json-ld.org/
https://www.w3.org/TR/activitystreams-vocabulary/
https://www.w3.org/TR/activitystreams-core/
https://social.example/alyssa/liked/


Of course, if that last one (GET'ing from someone's outbox) was the only way to see 
what people have sent, this wouldn't be a very efficient federation protocol! Indeed, 
federation happens usually by servers posting messages sent by actors to actors on 
other servers' inboxes.

Let's see an example! Let's say Alyssa wants to catch up with her friend, Ben Bitdiddle. She lent 
him a book recently and she wants to make sure he returns it to her. Here's the message she 
composes, as an ActivityStreams object:

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Note",
  "to": ["https://chatty.example/ben/"],
  "attributedTo": "https://social.example/alyssa/",
  "content": "Say, did you finish reading that book I lent you?"
}

This is a note addressed to Ben. She
POSTs it to her outbox.

Since this is a non-activity object, the
server recognizes that this is an object
being newly created, and does the
courtesy of wrapping it in a Create
activity. (Activities sent around in
ActivityPub generally follow the pattern of some activity by some actor being taken on 
some object. In this case the activity is a Create of a Note object, posted by a Person.)

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Create",
  "id": "https://social.example/alyssa/posts/a29a6843-9feb-4c74-...",
  "to": ["https://chatty.example/ben/"],

11/22/17 ActivityPub 1.0 3



  "actor": "https://social.example/alyssa/",
  "object": {
    "type": "Note",
    "id": "https://social.example/alyssa/posts/49e2d03d-b53a-4c4c-...",
    "attributedTo": "https://social.example/alyssa/",
    "to": ["https://chatty.example/ben/"],
    "content": "Say, did you finish reading that book I lent you?"
  }
}

Alyssa's server looks up Ben's ActivityStreams actor object, finds his inbox endpoint, 
and POSTs her object to his inbox.

Technically these are two separate steps… one is client-to-server communication, and one is server-
to-server communication (federation). But, since we're using them both in this example, we can 
abstractly think of this as being a streamlined submission from outbox to inbox.

A while later, Alyssa checks what new messages she's gotten. Her phone polls her inbox via GET, 
and amongst a bunch of cat videos posted by friends and photos of her nephew posted by her 
sister, she sees4 the following:

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Create",
  "id": "https://chatty.example/ben/p/51086",
  "to": ["https://social.example/alyssa/"],
  "actor": "https://chatty.example/ben/",
  "object": {
    "type": "Note",
    "id": "https://chatty.example/ben/p/51085",
    "attributedTo": "https://chatty.example/ben/",
    "to": ["https://social.example/alyssa/"],

11/22/17 ActivityPub 1.0 4



    "inReplyTo": "https://social.example/alyssa/posts/49e2d03d-b53a-...",
    "content": "Argh, yeah, sorry, I'll get it back to you tomorrow.
                I was reviewing the section on register machines,
                since it's been a while since I wrote one."
  }
}

Alyssa is relieved, and likes Ben's post:

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Like",
  "id": "https://social.example/alyssa/posts/5312e10e-5110-42e5-...",
  "to": ["https://chatty.example/ben/"],
  "actor": "https://social.example/alyssa/",
  "object": "https://chatty.example/ben/p/51086"
}

She POSTs this message to her outbox. (Since it's an activity, her server knows it 
doesn't need to wrap it in a Create object.) Feeling happy about things, she decides to 
post a public message to her followers. Soon the following message is blasted to all the 
members of her followers collection, and since it has the special Public group 
addressed, is generally readable by anyone.

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Create",
  "id": "https://social.example/alyssa/posts/9282e9cc-14d0-42b3-...",
  "to": ["https://social.example/alyssa/followers/",
         "https://www.w3.org/ns/activitystreams#Public"],
  "actor": "https://social.example/alyssa/",
  "object": {
    "type": "Note",
    "id": "https://social.example/alyssa/posts/d18c55d4-8a63-4181-...",
    "attributedTo": "https://social.example/alyssa/",
    "to": ["https://social.example/alyssa/followers/",
           "https://www.w3.org/ns/activitystreams#Public"],
    "content": "Lending books to friends is nice.
                Getting them back is even nicer! :)"
  }
}

11/22/17 ActivityPub 1.0 5

https://chatty.example/ben/p/51086


BRINGING PUBLIC KEY CRYPTOGRAPHY TO THE FEDERATED SOCIAL WEB
We can dramatically improve the state of the federated social web by having each actor 
on the system hold a public and private keypair, and by having actors have their public 
key attached directly to their actor object:

{
  "@context": ["https://www.w3.org/ns/activitystreams",
               "https://w3id.org/security/v1"],
  "id": "https://schemers.example/u/alyssa",
  "type": "Person",
  "name": "Alyssa P. Hacker",
  "publicKey": [{
    "id": "https://schemers.example/u/alyssa#main-key",
    "owner": "https://schemers.example/u/alyssa",
    "publicKeyPem": "-----BEGIN PUBLIC KEY-----\r\n..."
  }]
}

This provides significant improvements to the system, which we explore below.

Signing objects
Sharing messages is common in social networks. But how can you verify that someone 
really said what they claimed?

The user Mallet is trying to cause havoc in their social network. They pretend to "share"5 the 
following post that they claim Alyssa sent to the pasta-enthusiasts group, which Ben is a member 
of.

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Announce",
  "id": "https://havoc.example/~mallet/p/90815",
  "to": ["https://pastalovers.example/groups/pasta-enthusiasts/"],
  "actor": "https://havoc.example/~mallet/",
  "object": {
    "type": "Note",
    "id": "https://social.example/alyssa/posts/63cc87ec-416e-437d-...",
    "attributedTo": "https://social.example/alyssa/",
    "to": ["https://havoc.example~mallet/"],
    "content": "Tortellini is a poor and disgusting imitation of ravioli.
                Any chef serving tortellini should hang up their aprons
                in disgrace and never cook again.",
    "signature": {
      "type": "RsaSignature2017",
      "creator": "https://social.example/alyssa/",
      "created": "2017-09-23T20:21:34Z",
      "nonce": "e3689a56da9b4bc",
      "signatureValue": "mJfe5OCb7J3WwI...8t5/m="
    }

     },
  "signature": {
    "type": "RsaSignature2017",
    "creator": "https://social.example/alyssa/",

11/22/17 ActivityPub 1.0 6



    "created": "2017-09-23T21:32:21Z",
    "nonce": "22e8e7683f56c08bb873",
    "signatureValue": "wTjLtnZVYF79pq9Ts...OU1jYPSjvcE2jNc="
  }
}

Ben's server, or even the server hosting pastalovers.example, can check the signature 
against the publicKey listed on Alyssa's actor object. This check fails, and so Mallet's 
attempt at slander of Alyssa amongst the pasta enthusiast community fails. While the 
above example looks at protecting against a malicious interaction, forwarding and 
sharing content is desirable for positive reasons.
6One common problem in federated social networks that support private interactions is that a 
conversation can become fragmented: if Ben is posting to private collection she has curated 
containing both his friends and coworkers, and members of coworkers can't see who is in the 
private family collection, when they address to include the family in the conversation they can't 
traverse the collection of family actors to deliver to all relevant participants. (This "ghost replies" 
problem happens frequently on federated networks even when messages are being sent to the 
actor's own followers, where breaks tend to happen across server boundaries.)

ActivityPub includes a solution to this via a forwarding mechanism, but the solution does not really 
work without signatures, as the forwards are happening indirectly rather than from the "same 
origin/domain", so servers are unable to check/trust that the content is as claimed. Even if the 
receiving server tries to look up the object the receiving actor's credentials, access control may not 
have been enabled for the actor who was forwarded to, since the commenter had no way of 
knowing who was in the private collection to enable access for.

This is a frequently requested feature in federated social networks, so we should ensure that the 
necessary public key infrastructure is provided7.

An easier to use web of trust?
The PGP-style "web of trust" has been around for some time now, but the term "web of 
trust" is somewhat mired by the historically most popular method by which the trust 
network has populated. Key signing parties, while effective, have never taken off 
beyond a very small set of the population. Such parties are rewarding but difficult for 
most of the population to attend and organize, and even more difficult still is learning 
the (generally) command line tooling necessary to participate in the system. While some
work has been done in this area (for example with Monkeysign and Gibberbot), it would 
be even better if building your trust network was incidental to participating in the 
network8.

To a certain extent, this could come "for free, with caveats" in ActivityPub deployments that exist 
today, where subscriptions and object lookup are done over HTTPS. Merely by sending a follow 
request (or some other action connecting users on the social graph) a certain amount of trust 
between users can be expressed. Keys can be looked up and recorded at actor profile urls, and 
users can even observe and share information about whom else they know on the social network.

There's a major caveat using HTTPS for these lookups requires trust in SSL certificate authorities. 
Better than nothing, but not great, and not the distributed systems we want. Furthermore, a 
malicious actor can still trick users; a user may believe they are subscribing to 
https://social.example/alyssa/, but perhaps Mallet tricked them into subscribing to 
https://social.example/alyssaa/ instead9.

11/22/17 ActivityPub 1.0 7

https://guardianproject.info/apps/gibber/
https://monkeysign.readthedocs.io/en/2.x/
https://www.w3.org/TR/activitypub/#inbox-delivery


Happily there are other ways to encourage stronger trust networks. Carl Ellison's paper Establishing
Identity     Without     Certification     Authorities   describes several classes of relationships amongst users, 
and many Off The Record clients (such as available in Pidgin, etc) provide interfaces for verifying 
challenges between users. Users on a federated social network could be provided an opportunity to 
perform a textual challenge, perform a brief video call where they verify a shared code (as done in 
Jitsi), or scan a QR code (as in Monkeysign and Gibberbot) to establish stronger trust that an actor 
on the network is the entity they claim to be. The level of trust gained could be signed, recorded, 
and itself propagated as appropriate throughout the network. This kind of mechanism would work 
nicely even in a system like DIDs, where a human-readable identifier does not exist.

End-to-end encryption
A malicious server administrator may still snoop on all communication of participants on
a system. Even a non-malicious administrator may be coerced into snooping on their 
users, or may have their entire system compromised without their knowledge. SSL 
Certificate Authorities may also be compromised into giving out fake certificates, 
allowing man in the middle attacks that neither the user nor server administrator may 
be aware of.

End-to-end encryption can solve this (with some tradeoffs); in this case, rather than having the 
server manage the public and private keys of a user, a user may provide a public key on their actor 
object to which only their own computer(s) hold the corresponding private key. Other actors on the 
network may then send an object encrypted to the actor's inbox. For example, an actor may receive
the following object10 in their inbox:

{
  "@context": ["https://securityns.example/",
               "https://www.w3.org/ns/activitystreams"],
  "type": "EncryptedEnvelope",
  "encryptedMessage": "-----BEGIN PGP MESSAGE-----\r\n...",
  "mediaType": "application/ld+json;      
                profile=\"https://www.w3.org/ns/activitystreams\""
}

The server would put this object in the user's inbox, but if only the user's own 
computers hold the key, even the server would be unable to read the contents held 
within the envelope.

Upon retrieving the object from the server via the client-to-server protocol, the user's client can 
decrypt the message. In this case, the message went directly to Alyssa's inbox. Upon decrypting 
the component in encryptedMessage, another object is found:

{
  "@context": "https://www.w3.org/ns/activitystreams",
  "type": "Note",
  "id": "https://chatty.example/ben/p/86187",
  "to": ["https://social.example/alyssa/"],
  "attributedTo": "https://chatty.example/ben/",
  "content": "Up for some root beer floats at my friend's house?
              Here's the address: …"
}

Note that while this improves privacy, it does come with several tradeoffs:

11/22/17 ActivityPub 1.0 8

https://www.w3.org/ns/activitystreams
http://world.std.com/~cme/usenix.html
http://world.std.com/~cme/usenix.html
http://world.std.com/~cme/usenix.html
http://world.std.com/~cme/usenix.html
http://world.std.com/~cme/usenix.html


• ActivityPub contains an entire suite of server side side-effects for federating common 
activities on a social network. For example, a Like object will increment a counter of how 
often a post has been liked, and even add that liked object to both the user's collection of 
liked objects as well as a collection of all users who have liked this object. Since servers are 
unable to observe data being sent across the network, these kinds of side effects will break. 
The server will also be unable to provide additional features such as being able to have 
server-based indexing of messages for easy search11.

In a "more peer-to-peer" system (as discussed in the Distributed identity section) this 
becomes less of an issue because the distinction between client server blurs. Nevertheless, 
for existing client-to-server implementations, this is a strong issue to consider.

• User maintenance of keys in end-to-end encryption systems is known to be a difficult user 
experience problem.

• Key recovery is even harder. DIDs explore a method for key recovery, but this will not help 
users read old messages encrypted with keys they no longer have and which the original 
senders cannot send (or do not know how to).

DISTRIBUTED IDENTITY
ActivityPub implementations at the present moment rely on HTTPS as their transport, 
which in turn relies on two centralized systems: DNS and SSL certificate authorities. Is 
there any way to bring self-sovereignty to the federated social web?

Thankfully there is; ActivityPub was written intentionally to be layerable on any protocol that can 
support HTTP GET and POST verbs. The Decentralized Identifiers specification looks to be a good fit 
for ActivityPub.

The simplest version of this can be seen simply by replacing the actor ids with DIDs. To transform 
an example from the overview from:

{
  "type": "Note",
  "attributedTo": "https://social.example/alyssa/",
  "to": ["https://chatty.example/ben/"],
  "content": "Say, did you finish reading that book I lent you?"
}

to:

{
  "type": "Note",
  "attributedTo": "did:example:d20Hg0teN72oFeo0iNYrblwqt",
  "to": ["did:example:nJx2fgreaSfCujA0kMsiEW8Oz"],
  "content": "Say, did you finish reading that book I lent you?"
}

Gosh! That was simple-ish. All we did was replace the human-readable identifiers 
representing the users with DIDs. If we look up Alyssa's DID based id, we can retrieve 
her actor object as a DDO, but this time there is extra information:

{

11/22/17 ActivityPub 1.0 9

https://w3c-ccg.github.io/did-spec/#ddos-(did-descriptor-objects)
https://w3c-ccg.github.io/did-spec/#dids-(decentralized-identifiers)
https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/did-spec/
https://www.w3.org/TR/activitypub/#server-to-server-interactions


  "@context": ["https://example.org/did/v1",
               "https://www.w3.org/ns/activitystreams"],
  "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt",
  "activityPubService": {
    "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt#services/ActivityPub",
    // ActivityPub actor information
    "type": "Person",
    "name": "Alyssa P. Hacker",
    "preferredUsername": "alyssa",
    "summary": "Lisp enthusiast hailing from MIT",
    "inbox": "https://9GaksjPhy0mWToTV.onion/alyssa/inbox/",
    "outbox": "https://9GaksjPhy0mWToTV.onion/alyssa/outbox/",
    "followers": "https://9GaksjPhy0mWToTV.onion/alyssa/followers/",
    "following": "https://9GaksjPhy0mWToTV.onion/alyssa/following/",
    "liked": "https://9GaksjPhy0mWToTV.onion/alyssa/liked/"
  },
  // DDO information
  "owner": [{
    "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt#key-1",
    "type": ["CryptographicKey", "EdDsaPublicKey"],
    "curve": "ed25519",
    "expires": "2017-02-08T16:02:20Z",
    "publicKeyBase64": "lji9qTtkCydxtez/bt1zdLxVMMbz4SzWvlqgOBmURoM="
  }, {
    "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt#key-2",
    "type": ["CryptographicKey", "RsaPublicKey"],
    "expires": "2017-03-22T00:00:00Z",
    "publicKeyPem": "----BEGIN PUBLIC KEY-----\r\n.."
  }],
  "control": [{
    "type": "OrControl",
    "signer": [
        "did:example:d20Hg0teN72oFeo0iNYrblwqt",
        "did:example:8uQhQMGzWxR8vw5P3UWH1j"
    ]
  }],
  "created": "2002-10-10T17:00:00Z",
  "updated": "2016-10-17T02:41:00Z",
  "signature": {
    "type": "RsaSignature2016",
    "created": "2016-02-08T16:02:20Z",
    "creator": "did:example:8uQhQMGzWxR8vw5P3UWH1j#key/1",
    "signatureValue": "IOmA4R7TfhkYTYW8...CBMq2/gi25s="
  }
}

Hoo! That's a lot of additions. Except here we see an example of Alyssa's profile that is 
entirely free of traditional centralized DNS authorities. We were able to look up Alyssa's 
object via her DID, but we still have access to all her endpoints, which in this case are 
pointing to Tor Hidden Services. No central DNS required!

Maybe in the future there will even be a protocol – let's call it httpeer – which supports all the 
standard HTTP verbage, but over some other peer-to-peer network. The DID spec supports service 
endpoints, and Alyssa could take advantage of these to use her DID as base of the inbox, outbox, 

11/22/17 ActivityPub 1.0 10

https://w3c-ccg.github.io/did-spec/#service-endpoint-references-(optional)
https://w3c-ccg.github.io/did-spec/#service-endpoint-references-(optional)
https://www.torproject.org/docs/hidden-services.html.en
https://9GaksjPhy0mWToTV.onion/alyssa/liked/


etc URIs. Here's a cut down and modified version of the previous example:

{
  "@context": ["https://example.org/did/v1",
               "https://www.w3.org/ns/activitystreams"],
  "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt",
  "activityPubService": {
    "id": "did:example:d20Hg0teN72oFeo0iNYrblwqt#services/ActivityPub",
    // ActivityPub actor information
    "type": "Person",
    "name": "Alyssa P. Hacker",
    "preferredUsername": "alyssa",
    "summary": "Lisp enthusiast hailing from MIT",
    "inbox": "did:example:d20Hg0teN72oFeo0iNYrblwqt/inbox/",
    "outbox": "did:example:d20Hg0teN72oFeo0iNYrblwqt/outbox/",
    "followers": "did:example:d20Hg0teN72oFeo0iNYrblwqt/followers/",
    "following": "did:example:d20Hg0teN72oFeo0iNYrblwqt/following/",
    "liked": "did:example:d20Hg0teN72oFeo0iNYrblwqt/liked/"},
  // DDO information goes here
  "httpeerService": {
    "nodeId": "dI0tuXjISZEadSH6QV9EhBEdccL4ouePdF8P57BJ"
  }
}

Now that's an identity system!

APPEND ONLY SYSTEMS AND CONTENT ADDRESSED STORAGE
Finally, it's worth mentioning the idea of moving ActivityPub to an entirely append-only, 
content-addressed system for object storage, "modification", and retrieval. Much 
success has been seen in recent years with these systems; enacting this change would 
allow for many of the side effects in the federation system to be dropped entirely. We 
leave this as a topic for a future paper.

CONCLUSIONS
ActivityPub goes a long way towards providing a standardized way to move the social 
web from isolated, centralized silos towards the decentralized nature that the World 
Wide Web is meant to encompass. Still, there is much to be done and improved. Yet 
there are risks in trying to engineer the right system all at once, and great is well 
known to be the enemy of good.

Thankfully we do not need to throw out what we have to make the improvements that are 
discussed in this paper. ActivityPub already exists and works, and we can incrementally improve the
systems we have and blur the line between the federated social web that works and more peer-to-
peer systems which are desirable. By adding public key infrastructure and distributed identifiers to 
ActivityPub we can move from a decentralized system to a distributed one and truly build a network
that is both self-sovereign and social.

ACKNOWLEDGMENTS
Thanks to Evan Prodromou and Owen Shepherd for working on initial revisions of the 
ActivityPub standard. Thanks also to Jessica Tallon for being co-editor on ActivityPub 
and everyone who helped make ActivityPub   happen  , which is no small list. (Some of 
those people caught typos in the original version of the overview, as included in 

11/22/17 ActivityPub 1.0 11

https://www.w3.org/TR/activitypub/#acknowledgements
https://www.w3.org/TR/activitypub/#acknowledgements


ActivityPub.)

Thanks to Manu Sporny and Stephen Webber for thoughts and feedback about how to make 
ActivityPub into a more robust distributed system. Thanks to Dave Longley for pointing to the 
vocabulary drift / ambiguity of the terms "decentralized" and "distributed", which lead to the 
addition of Paul Baran's diagrams and some terminology clarification. Thanks to Morgan Lemmer-
Webber for the patience and for careful proofreading of this document.

Thanks to Spec-Ops and Digital Bazaar for supporting my work/time on Verifiable 
Claims/Credentials. Though separate from my work on ActivityPub, obviously I've been thinking a 
lot about how to combine them this whole time.

Thanks also to mray for the gorgeous illustrations in the overview section.

This document and its images (with the exception of Paul Baran's drawings), like ActivityPub itself, 
are licensed under W3C's permissive document license.

ADDITIONAL CREDITS
Authors: Christopher Webber & Manu Sporny

About Rebooting the Web of Trust
This paper was produced as part of the Rebooting the Web of Trust V design workshop. On October 
3rd through October 5th, 2017, over 50 tech visionaries came together in Cambridge, Massachusetts 
to talk about the future of decentralized trust on the internet with the goal of writing 3-5 white 
papers and specs. This is one of them.

Preliminary Workshop Sponsors List: BigChainDB, Blockchain Lab, Digital Contract Design, 
IDEO, IPFS, Protocol Labs, Toni Lane Casserly

Workshop Producer: Christopher Allen

Workshop Facilitators: Christopher Allen, with additional paper editorial & layout by Shannon 
Appelcline.

What’s Next?
The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you 
have any comments, thoughts, or expansions on this paper, please post them to our GitHub issues 
page:

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2017/issues

The next Rebooting the Web of Trust design workshop is scheduled for early 2018 on the west coast
of the USA. If you’d like to be involved or would like to help sponsor these events, email: 

ChristopherA@LifeWithAlacrity.com

11/22/17 ActivityPub 1.0 12

mailto:ChristopherA@LifeWithAlacrity.com
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2017/issues
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2017
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document


11/22/17 ActivityPub 1.0 13



1  Of course, there is nothing stopping current-silos of social networking from adopting ActivityPub, would they be 
willing to un-silo their users.

2  Observant readers may note that email is no longer as decentralized of a system as it once was. Consider this a lesson 
that a protocol alone cannot build a distributed network; the community must build and maintain a healthy number of 
nodes and avoid the temptation to let a few large providers control the space of a federated network.

3  It is worth spending some time to discuss what is meant 
by "centralized" versus "distributed" versus 
"decentralized". In the figure above we see images 
from Paul Baran's 1964 paper on the subject, and from 
these shapes we can see the kinds of shapes we mean: 
social silos resemble the the spoke-like centralized 
model, client-server federated social networks resemble 
the tree-like decentralized model, and a peer-to-peer 
network resembles the mesh-like distributed model. 
Since the writing of that paper there has been significant 
vocabulary drift (perhaps because English is such a 
decentralized/distributed language) and clarifying the 
meaning of these terms can be difficult. (In one popular 
post on the Ethereum Stack Exchange, a diagram that 
looks almost exactly like Baran's diagram appears, but with the Decentralized and Distributed labels reversed!) The goal
of this paper is really to seek out the systems that promote the greatest amount of reliability, security, and user autonomy,
and some of the methods discussed, such as public key cryptography, promote both. Nonetheless, when the terms 
"decentralized" and "distributed" are used and meaning is to be sought out, look to Baran, for sometimes pictures are 
more descriptive than words.

4  Alyssa probably would likely not see the JSON-LD objects directly as described here, but the author believes that some 
narrative context still assists in the explaination of a UI-agnostic protocol.

5  Announce is essentially Share in ActivityStreams. The author of this document is not responsible for that 
terminology decision.

6 In ActivityPub, Collection objects may be used to contain sets of objects. Users of the system can curate sets of 
actors in collections that are publicly or privately readable which may be used for the addressing of distributed objects 
(similar to Google+'s circles or Diaspora's aspects). Indeed, even the actor's followers is a Collection like this!

7  Several decisions need to be made when storing signatures on objects which themselves reference other signed objects 
that may mutate, and this is currently a topic of open discussion. This may motivate more work on append only systems 
and content addressed storage. Existing implementations which operate in a mutation-prone environment must decide 
between letting signatures referencing mutated objects fail, including such objects recursively on every parent object, or 
employ some sort of content addressing of objects stored by the revision seen. The latter two options may pose some 
challenge to highly relational systems which were not originally designed with signatures in mind.

8  GNU Ring is an interesting example of a peer-to-peer social network system where a user's identity is actually their 
fingerprint. While not the first system to have this concept, it's very pleasant to see in action (and the interface is itself 
aesthetically pleasing); to build up your buddy list is quite literally to build your web of trust.

9  There are an incredible number of unicode hacks, which can trick even the most careful of technical users as well.

10  https://securityns.example/ is an imaginary json-ld context which is used only as a placeholder for the 
terms of EncryptedEnvelope and encryptedMessage. Perhaps in the future terms along these lines (maybe 
with better names) would appear in one of the other contexts/namespaces that appear in this document.

11 This is not unlike how PGP-wrapped email works. Receiving PGP-encrypted email means that a webmail interface 
would be unable to search through your messages. However, that does not mean searching is impossible; some programs
like mu / mu4e can index encrypted email locally and provide such a search interface, on a user's local machine.

https://www.djcbsoftware.nl/code/mu/mu4e.html
http://www.djcbsoftware.nl/code/mu/
http://www.unicode.org/Public/security/latest/confusables.txt
https://ring.cx/
https://github.com/w3c-dvcg/ld-signatures/issues/7
https://ethereum.stackexchange.com/a/7813
https://ethereum.stackexchange.com/a/7813
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274

	Introduction
	ActivityPub overview
	Bringing public key cryptography to the federated social web
	Signing objects
	An easier to use web of trust?
	End-to-end encryption

	Distributed identity
	Append only systems and content addressed storage
	Conclusions
	Acknowledgments
	Additional Credits
	About Rebooting the Web of Trust
	What’s Next?


