
Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Batch visualization on
Compute Canada clusters

ALEX RAZOUMOV
alex.razoumov@westgrid.ca

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 1 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

To ask questions

Websteam: email info@westgrid.ca

Vidyo: use the GROUP CHAT to ask questions

Please mute your microphone unless you have a question

Feel free to ask questions via audio at any time

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 2 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

4th annual Visualize This! competition
https://computecanada.github.io/visualizeThis

This year’s theme: distributed rendering

Two options: use (1) your own data or (2) our “default” CFD dataset (∼1TB)

Open to anyone affiliated with a Canadian post-secondary institution (college or university)
or research organization

Submissions due Nov-30; we have 1st, 2nd, 3rd prizes
WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 3 / 44

https://computecanada.github.io/visualizeThis
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Scientific visualization

Assuming you have data on an HPC cluster, you have several orthogonal rendering
choices (24 = 16 options?):

Local vs. remote

GUI-interactive vs. batch

GPU vs. CPU

Serial vs. parallel

ë Today we’ll be concentrating on remote CPU-based batch visualization, both serial
and parallel, depending on your dataset size

ë Another common use on HPC clusters is GUI-interactive client-server (=remote)
visualization, both serial and parallel, both GPU- and CPU-based

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 4 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Why remote visualization?

Dataset could be too big to download

Dataset and its analysis workflow cannot fit into desktop’s memory

Desktop rendering is too slow (limited CPU/GPU power)

Added benefit: reading data with parallel I/O is much faster

Special use cases:
I in-situ visualization = instrumenting a simulation code on the cluster to output

graphics and/or connect to a visualization frontend (ParaView, VisIt) on the fly
I required visualization software is licensed on Compute Canada systems (not common

use)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 5 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

What is batch rendering?

Batch = offscreen (no GUI interaction)
1. commands in an interactive shell
2. precompiled rendering script, often submitted as a Slurm job

Usual benefits of scripting:
automate mundane or repetitive or long tasks, e.g. making mutiple frames for a
movie
document your workflow, and make it reproducible
do visualization on clusters without any GUI elements and/or much interactive
resources, e.g., via a job scheduled from the command line

Workflow in any Linux-compatible visualization tool with a programming interface (in a
compiled or interpreted language) can be scripted on a cluster

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 6 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Open-source sci-vis tools with scripting interfaces

Python 1D/2D/basic 3D plotting libraries: Matplotlib, Plotly, Bokeh

YT Python library for multi-resolution 3D volumetric rendering and analysis

Many domain-specific packages support scripting, e.g.
I VMD (Visual Molecular Dynamics) provides Python and Tcl interfaces
... for batch visualization help with any domain-specific tool, please contact us

General-purpose tools
I VTK (Visualization Toolkit) library has C++, Tcl/Tk, Java and Python interfaces – can be

used as a standalone renderer
I Mayavi2, a serial 3D interactive scientific data visualization package, has an embedded

Python shell
I both ParaView and VisIT provide Python scripting (and compiled language interfaces

for in-situ visualization)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 7 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Open-source sci-vis tools with scripting interfaces

Python 1D/2D/basic 3D plotting libraries: Matplotlib, Plotly, Bokeh

YT Python library for multi-resolution 3D volumetric rendering and analysis

Many domain-specific packages support scripting, e.g.
I VMD (Visual Molecular Dynamics) provides Python and Tcl interfaces
... for batch visualization help with any domain-specific tool, please contact us

General-purpose tools
I VTK (Visualization Toolkit) library has C++, Tcl/Tk, Java and Python interfaces – can be

used as a standalone renderer
I Mayavi2, a serial 3D interactive scientific data visualization package, has an embedded

Python shell
I both ParaView and VisIT provide Python scripting (and compiled language

interfaces for in-situ visualization)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 7 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Installing Python packages into your virtual environment

Initial setup:

$ module avail python # several versions available
$ module load python/3.7.4
$ virtualenv --no-download ~/astro # install Python tools in your ~/astro
$ source ~/astro/bin/activate
(astro) $ pip install --no-index --upgrade pip # upgrade pip
(astro) $ pip install --no-index numpy matplotlib plotly # into ~/astro
(astro) $ pip install --no-index cython yt mpi4py
...

Usual workflow:
$ source ~/astro/bin/activate # load the environment
(astro) $ python
...
(astro) $ deactivate

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 8 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Matplotlib with a batch script

In Python’s matplotlib can script the entire workflow without opening windows
1. use a “hardcopy” backend (offscreen output) such as PNG, SVG, PDF, PS
2. save the image at the end

More details at http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

See http://matplotlib.org/gallery.html for plotting examples covering
many 1D/2D use cases

Run on the command line (tiny visualizations on the login node) or submit to the
scheduler:

#!/bin/bash
#SBATCH --time=00:05:00 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem=1000 # in MB
#SBATCH --account=def-someuser
source ~/astro/bin/activate
python matplotlib.py

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 9 / 44

http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://matplotlib.org/gallery.html
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Matplotlib with a batch script (cont.)
Example adapted from https://matplotlib.org/3.1.1/gallery

import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
mpl.use(’Agg’) # enable PNG backend

n_angles, n_radii, min_radius = 36, 8, 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x, y = (radii * np.cos(angles)).flatten(), (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()
triang = tri.Triangulation(x, y) # create Delaunay triangulation
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), # mask off unwanted triangles

y[triang.triangles].mean(axis=1)) < min_radius)

plt.figure(figsize=(8,8))
plt.tripcolor(triang, z, shading=’flat’) # pseudocolor of unstructured triangular grid
plt.title(’tripcolor of Delaunay triangulation, flat shading’, fontdict = {’fontsize’ : 15})
plt.savefig(’delaunay.png’)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 10 / 44

https://matplotlib.org/3.1.1/gallery
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Plotly Python library

Open-source project from
Plot.ly
https://plot.ly/python

Produces dynamic html5
visualizations for the web

APIs for Python (with/without
Jupyter), R, JavaScript,
MATLAB

Can work offline (free) or by sending your data to your account on plot.ly (limited
public plotting is free, paid unlimited private plotting and extra tools)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 11 / 44

https://plot.ly/python
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Plotly with a batch script
Example adapted from Plotly tutorials

1. Offline plotting into a file
2. Set auto_open=False

import plotly.offline as py # offline plotting
import plotly.graph_objs as go
from numpy import pi, sin, cos, mgrid
dphi, dtheta = pi/250, pi/250 # 0.72 degrees

define two 2D grids: both phi and theta are 252x502 numpy arrays
[phi, theta] = mgrid[0:pi+dphi*1.5:dphi, 0:2*pi+dtheta*1.5:dtheta]
r = sin(4*phi)**3 + cos(2*phi)**3 + sin(6*theta)**2 + cos(6*theta)**4
x = r*sin(phi)*cos(theta) # x is also 252x502
y = r*cos(phi) # y is also 252x502
z = r*sin(phi)*sin(theta) # z is also 252x502

surface = go.Surface(x=x, y=y, z=z, colorscale=’Viridis’)
layout = go.Layout(title=’parametric plot’)
fig = go.Figure(data=[surface], layout=layout)
py.plot(fig, filename=’parametric.html’, auto_open=False)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 12 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Visualizing 3D volumetric data with HTTP://YT-PROJECT.ORG

Python package for analyzing and visualizing volumetric, multi-resolution data
I library for non-interactive use, no 3D interactivity found in such tools as ParaView and VisIt

- there is an ongoing project VIEWYT to develop Qt widgets for interacting with YT plots
I discretization: structured, unstructured, variable-resolution (curvilinear), particle data
I slice and projection plots

I volume rendering with full control of scene setup, camera position, transfer function

I very easy to learn, wonderful documentation at https://yt-project.org/doc
I great for batch off-screen rendering (including HPC clusters); parallelized with mpi4py

Initially written for analysing Enzo output data, adapted to understand other data formats
from astrophysics and beyond
I documentation strongly focused on astrophysical data (do not let this deter you)
I currently has readers for ∼ 25 file formats
I can import generic data on uniform and AMR/nested grids, particles, unstructured meshes
I popular in astrophysics, seismology, nuclear engineering, molecular dynamics, oceanography

Watch our recent 2-part webinar series “Using YT for analysis and visualization of
volumetric data” (part 1) and “Working with data objects in YT” (part 2) at
https://westgrid.github.io/trainingMaterials/tools/visualization

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 13 / 44

https://yt-project.org/doc
https://westgrid.github.io/trainingMaterials/tools/visualization
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Rotating cosmological volume with grid annotations in YT
More on parallel YT at https://yt-project.org/doc/analyzing/parallel_computation.html

1. Download/uncompress the data from http://yt-project.org/data

2. On the cluster, save this as grids.py:
import yt, numpy as np

yt.enable_parallelism() # turn on MPI parallelism via mpi4py

ds = yt.load("Enzo_64/DD0043/data0043")

sc = yt.create_scene(ds, (’gas’, ’density’))

cam = sc.camera

cam.resolution = (1024, 1024) # resolution of each frame

sc.annotate_domain(ds, color=[1, 1, 1, 0.005]) # draw the domain boundary [r,g,b,alpha]

sc.annotate_grids(ds, alpha=0.005) # draw the grid boundaries

sc.save(’frame0000.png’, sigma_clip=4)

for i in cam.iter_rotate(np.pi, 900): # rotate by 180 degrees over 900 frames

sc.save(’frame%04d.png’ % (i+1), sigma_clip=4)

3. Write the job submission script yt-mpi.sh:
#!/bin/bash

#SBATCH --time=12:00:00 # walltime in d-hh:mm or hh:mm:ss format

#SBATCH --ntasks=4 # number of MPI processes

#SBATCH --mem-per-cpu=3800

#SBATCH --account=def-someuser

source ~/astro/bin/activate

srun python nested.py

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 14 / 44

https://yt-project.org/doc/analyzing/parallel_computation.html
http://yt-project.org/data
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Rotating cosmological volume with grid annotations in YT (cont.)

Submit the job

$ sbatch yt-mpi.sh

Performance: serial â 1.47 frames/min., parallel on 4 cores â 4.05 frames/min.

Make a Quicktime-compatible MP4 right on the cluster

$ ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p -vf "
scale=trunc(iw/2)*2:trunc(ih/2)*2" grids.mp4

Download it to your laptop

$ rsync -av --progress cedar.computecanada.ca:path/to/grids.mp4 .

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 15 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Rotating cosmological volume with grid annotations in YT (cont.)

Online (highly compressed)
https://vimeo.com/301503962

On presenter’s laptop grids.mp4

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 16 / 44

https://vimeo.com/301503962
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

ParaView and VisIT

Built to visualize extremely large (GBs to
TBs) datasets on distributed-memory
machines

Scale to many (103 − 105) cores via MPI

Work equally well on a laptop

Open source, under active development

Multi-platform (Linux / Mac / Windows)

Scalar, vector, tensor fields

Wide variety of discretizations: structured,
unstructured, particles, irregular in 2D/3D

Nice interactive GUI and Python scripting

Client-server and batch offscreen modes

Support over 100 input data formats

Support parallel I/O

Huge array of visualization features

Based on VTK

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 17 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

I assume you are already familiar with ParaView basics

main elements of the GUI

how to load a dataset (and
convert your data into a
Paraview-readable format)

how to switch between different
views (representations)

how to colour visualization by a
variable

how to use filters to build a
pipeline

If not, see our regular ParaView workshop materials at
http://bit.ly/paraviewzip (slides, datasets and codes in one ZIP file)

and http://www.paraview.org/documentation

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 18 / 44

http://bit.ly/paraviewzip
http://www.paraview.org/documentation
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

ParaView’s distributed parallel architecture

Three logical units of ParaView – these units can be embedded in the same application on
the same computer, but can also run on different machines:

Data Server – The unit responsible for data reading, filtering, and writing. All of the
pipeline objects seen in the pipeline browser are contained in the data server. The
data server can be parallel.

Render Server – The unit responsible for rendering. The render server can also be
parallel, in which case built-in parallel rendering is also enabled.

Client – The unit responsible for establishing visualization. The client controls the
object creation, execution, and destruction in the servers, but does not contain any of
the data, allowing the servers to scale without bottlenecking on the client. If there is a
GUI, that is also in the client. The client is always a serial application.

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 19 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote visualization

If your dataset is on cluster.computecanada.ca, you have several options:

1. download data to your desktop and visualize it locally

2. run ParaView remotely on the cluster via X11 forwarding
your desktop ssh −X

−−−−→ larger machine running ParaView

3. run ParaView remotely on the cluster via VNC
your desktop VNC−−−→ larger machine running ParaView

4. run ParaView in client-server mode
ParaView client on your desktop
 ParaView server on the cluster

5. run ParaView via a GUI-less batch script (interactively or scheduled)

For remote options (2) - (5), some setup details may vary across the systems

- render server can run with or without GPU rendering
- data/render servers can run on single-core, or across several cores/nodes with MPI
- for interactive GUI work on clusters it’s best to schedule interactive jobs, as opposed to running on the

login nodes

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 20 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

ParaView workflow 1:
small-scale visualization

1. Debug serial visualization script in standalone ParaView on a laptop

2. Run it locally from the GUI and from the command line

3. Modify it to create animation

4. Copy the script to Cedar and run it there on the login node

5. Run the script with a serial Slurm job

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 21 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Example 1

3D sine envelope wave function defined inside a unit cube (xi ∈ [0, 1])

f (x1, x2, x3) =

2∑
i=1

sin2
(√

ξ2
i+1 + ξ2

i

)
− 0.5[

0.001(ξ2
i+1 + ξ2

i) + 1
]2 + 0.5

 , where ξi ≡ 30(xi − 0.5)

discretized on a 1003 Cartesian grid

You’ll find the code generateSineEnvelope.py inside the ZIP file
$ conda install numpy netcdf4
$ python generateSineEnvelope.py

This will produce the file sineEnvelope.nc that ParaView can read
I you can also find it in our regular ParaView workshop materials

http://bit.ly/paraviewzip under data/

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 22 / 44

http://bit.ly/paraviewzip
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Demo time

1. Run generateSineEnvelope.py ⇒ this will produce sineEnvelope.nc

2. Start ParaView 5.7.0 on my laptop

3. Tools → Start Trace

4. Load sineEnvelope.nc

5. Switch to Volume representation, edit transfer function and colourmap

6. File → Save Screenshot... as PNG file

7. Tools → Stop Trace and save the script as volume.py

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 23 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Running the script

For your convenience, I added the optimized version volume1.py to the ZIP file

Multiple ways to run this script:

I open ParaView’s built-in Python interpreter View→ Python Shell, then Run Script

I [/usr/bin/ /usr/local/bin/ /Applications/ParaView-5.7.0-RC3.app/Contents/bin/]
pvpython will give you a Python shell connected to a ParaView server without the GUI
– can copy and paste commands here

I [/usr/bin/ /usr/local/bin/ /Applications/ParaView-5.7.0-RC3.app/Contents/bin/]
pvbatch volume1.py will run the script

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 24 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Extending the script
Typing commands inside ParaView’s Python shell after running the script

>>> help(GetActiveCamera)
Help on function GetActiveCamera in module paraview.simple:

GetActiveCamera()
Returns the active camera for the active view. The returned object
is an instance of vtkCamera.

>>> dir(GetActiveCamera()) # list all the fields and methods of the object
[’AddObserver’, ’ApplyTransform’, ’Azimuth’, ’BreakOnError’, ’ComputeViewPlaneNormal’, ’

DebugOff’, ’DebugOn’, ’DeepCopy’, ’Dolly’, ’Elevation’, ’FastDelete’, ’
GetAddressAsString’, ’GetCameraLightTransformMatrix’, ’GetClassName’, ’
GetClippingRange’, ’GetCommand’, ’GetCompositeProjectionTransformMatrix’, ’GetDebug’,
’GetDirectionOfProjection’, ’GetDistance’, ’GetEyeAngle’, ’GetEyePlaneNormal’, ’
GetEyePosition’, ’GetEyeSeparation’, ’GetEyeTransformMatrix’, ’GetFocalDisk’, ’
GetFocalPoint’, ’GetFreezeFocalPoint’, ’GetFrustumPlanes’, ’GetGlobalWarningDisplay’,
’GetLeftEye’, ’GetMTime’, ’GetModelTransformMatrix’, ’GetModelViewTransformMatrix’, ’
GetModelViewTransformObject’, ’GetOrientation’, ’GetOrientationWXYZ’, ’
GetParallelProjection’, ’GetParallelScale’, ’GetPosition’, ’
GetProjectionTransformMatrix’, ’GetProjectionTransformObject’, ’GetReferenceCount’, ’
GetRoll’, ’GetScreenBottomLeft’, ’GetScreenBottomRight’, ’GetScreenTopRight’, ’
GetThickness’, ’GetUseHorizontalViewAngle’, ’GetUseOffAxisProjection’, ’
GetUserTransform’, ’GetUserViewTransform’, ’GetViewAngle’, ...]

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 25 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Extending the script (cont.)

>>> help(GetActiveCamera().Azimuth)
Help on built-in function Azimuth:

Azimuth(...)
V.Azimuth(float)
C++: void Azimuth(double angle)

Rotate the camera about the view up vector centered at the focal
point. Note that the view up vector is whatever was set via
SetViewUp, and is not necessarily perpendicular to the direction
of projection. The result is a horizontal rotation of the
camera.

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 26 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Extending the script (cont.)

Let’s replace the current line

SaveScreenshot(path+’volume.png’, renderView1, ImageResolution=[1100, 768])

inside volume1.py with the following:

camera = GetActiveCamera()
numberFrames = 90
for i in range(numberFrames):

camera.Azimuth(1) # rotate by 1 degree
print(’writing frame%04d’%(i)+’.png’)
SaveScreenshot(path+’frame%04d’%(i)+’.png’, renderView1, ImageResolution

=[1100, 768])

save it as volume2.py, and run the script again

$ /path/to/pvbatch volume2.py

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 27 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Creating local animation

This will produce 90 files frame{0000..0089}.png each rotated by a one degree
compared to the previous one

Can merge them into a movie with a third-party tool, e.g.

$ ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p -vf "scale=
trunc(iw/2)*2:trunc(ih/2)*2" volume.mp4

$ ls -lh volume.mp4
-rw-r--r--@ 1 razoumov staff 273K 14 Sep 14:35 volume.mp4

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 28 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote script execution on the login node

[laptop]$ scp sineEnvelope.nc volume2.py razoumov@cedar.computecanada.ca:scratch/tmp/

[cedar1]$ cd ~/scratch/tmp
[cedar1]$ sed -i -e ’s|/Users/razoumov/Documents/09-batchVisWebinar|/scratch/razoumov/

tmp|’ volume2.py
[cedar1]$ module load paraview-offscreen/5.5.2
[cedar1]$ pvbatch volume2.py
[cedar1]$ ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p -vf "scale=trunc(

iw/2)*2:trunc(ih/2)*2" remoteVolume.mp4

[laptop]$ scp razoumov@cedar.computecanada.ca:scratch/tmp/remoteVolume.mp4 .

Not opening any remote graphics windows, just shipping the final movie (tiny file!)
I not using X11 forwarding (unnecessary network traffic)
I no need for an X11 server on your laptop

Please don’t do any heavy graphics on the login node(s) (shared among many users)

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 29 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote script execution on compute nodes
from paraview.simple import *
sineEnvelopenc = NetCDFReader(FileName=[’/scratch/razoumov/tmp/sineEnvelope.nc’])
renderView1 = GetActiveViewOrCreate(’RenderView’)
renderView1.CameraPosition, renderView1.CameraFocalPoint = [-70.9, 194.6, 321.9], [49.5, 49.5, 49.5]
renderView1.CameraViewUp, renderView1.CameraParallelScale = [0.08354, 0.89439, -0.43940], 90.
sineEnvelopencDisplay = Show(sineEnvelopenc, renderView1)
sineEnvelopencDisplay.SetRepresentationType(’Volume’)
densityLUT, densityPWF = GetColorTransferFunction(’density’), GetOpacityTransferFunction(’density’)
densityPWF.Points = [0.01944, 0.0, 0.5, 0.0, 1.521604, 0.0, 0.5, 0.0, 1.99497, 1.0, 0.5, 0.0]
densityLUT.ApplyPreset(’Red to Blue Rainbow’, True) # colourmap
camera = GetActiveCamera()
for i in range(90):

camera.Azimuth(1) # rotate by 1 degree
print(’writing frame%04d’%(i)+’.png’)
SaveScreenshot(’/scratch/razoumov/tmp/frame%04d’%(i)+’.png’, renderView1, ImageResolution=[1100, 768])

#!/bin/bash
#SBATCH --time=00:05:00 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem=3600 # in MB
#SBATCH --account=def-someuser
module load paraview-offscreen/5.5.2
pvbatch volume2.py

$ cd ~/scratch/tmp
$ sbatch paraview-serial.sh
$ ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p -vf "scale=trunc(iw/2)*2:

trunc(ih/2)*2" remoteVolume.mp4

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 30 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote script execution on compute nodes (cont.)

How does this work on a GPU-less node?

Answer: paraview-offscreen/5.5.2 was compiled with
OSMesa off-screen rendering library (software-based OpenGL

without X11 dependency)

Different from OSPRay (Intel’s CPU-based ray tracing library)

We will talk about GPU rendering later

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 31 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

ParaView workflow 2:
large-scale visualization

1. Debug parallel visualization script in client-server mode (remote debugging)
I cannot run the script locally – can only debug it on the cluster

2. Simplify the script on your laptop with a text editor

3. Copy the script to Cedar and run it there inside a parallel interactive job

4. Modify it to create animation

5. Eventually do parallel batch rendering with Slurm

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 32 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Distributed-memory (parallel) rendering
https://computecanada.github.io/visualizeThis

Let’s render this year’s Visualize This! “default” CFD dataset

OpenFOAM decomposed dataset: 512 cores, 86 timesteps, 5 hydro variables, ∼1TB in total
I kindly provided for this competition by Joshua Brinkerhoff (UBC Okanagan)
I unstructured mesh ⇒ loading a single timestep from the 3D internal mesh requires 200GB+ physical RAM
I the 2D airfoil mesh takes only 13.7 GB virtual memory for 1 timestep + 1 variable

Image above shows the isosurface of constant air speed coloured by the Y-component of the
vorticity, full animation rendering (86 timesteps) took 17 minutes on 128 Cedar CPU cores

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 33 / 44

https://computecanada.github.io/visualizeThis
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Demo time
1. On the cluster start remote parallel ParaView server:
$ cd scratch/tmp # necessary on Cedar
$ salloc --time=0:60:0 --ntasks=128 --mem-per-cpu=3600 --account=def-someuser --

partition=cpubase_interac
$ module load paraview-offscreen/5.5.2
$ mpirun -np 128 pvserver

2. Wait for it to start waiting for incoming connection:
Waiting for client...
Connection URL: cs://cdr774.int.cedar.computecanada.ca:11111
Accepting connection(s): cdr774.int.cedar.computecanada.ca:11111

3. On your laptop start SSH port forwarding:
$ ssh cedar.computecanada.ca -L 11111:cdr774:11111 # use the actual compute node

4. On your laptop start ParaView 5.5.2, click Connect, then connect to
cs://localhost:11111

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 34 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

5. Tools → Start Trace

6. Load OpenFOAM data, set Case Type = Decomposed

7. Apply Calculator: speed = mag(U)

8. Apply Contour at speed=0.8

9. Colour by (vorticity)y

10. Load Rainbow Desaturated colourmap

11. Save the image as a PNG file

12. Tools → Stop Trace

13. Save the generated script as airflow.py locally
I edit it in a text editor, simplify (most generated lines will be setting defaults)
I provide the correct output PNG path on the remote system
I I put the optimized version of airflow.py inside the ZIP file

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 35 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

14. Upload the script to the cluster:
$ scp airflow.py cedar.computecanada.ca:scratch/tmp/

15. On the cluster try running it as a parallel interactive job:
$ cd ~/scratch/tmp
$ salloc --time=0:60:0 --ntasks=128 --mem-per-cpu=3600 --account=def-someuser --

partition=cpubase_interac
$ module load paraview-offscreen/5.5.2
$ mpirun -np 128 pvbatch --force-offscreen-rendering airflow.py

16. Once you are happy with the result, write a Slurm job submission script and submit
it with sbatch

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 36 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote batch animation

Option 1: (not useful for this OpenFOAM dataset) put your Python script into a loop

I read/write new files at the beginning/end of each loop iteration
I pay close attention to garbage collection: don’t want to keep objects from previous

iterations ⇒ use Delete() command
I merge frames with ffmpeg

Option 2: (perfect for OpenFOAM) read all timesteps as a sequence/database

I instead of File → Save Screenshot... use File → Save Animation...
I important to save animation as PNG, as opposed to AVI or OGV

I script it with Tools → Start/Stop Trace

I merge frames with ffmpeg

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 37 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

OpenGL context for off-screen rendering on a GPU

To render on a GPU from an OpenGL application such as ParaView, traditionally you would
require:

1. OpenGL support in the GPU driver, and
2. an X server that handles windows and surfaces onto which client APIs can draw

I run X11 server (typically started by root) on the GPU compute node, set
DISPLAY=:0.\$gpuindex (get GPU index from Slurm)

Latest NVIDIA GPU drivers include EGL (Embedded-System Graphics Library) support enabling
creation of an OpenGL context for off-screen rendering without an X server.

paraview-offscreen-gpu/5.4.1 was compiled with EGL support ⇒ use its
pvserver for client-server and pvbatch for batch rendering on GPU(s) without an X
server
unlike X11, EGL does not require any special setting to scale to very high resolutions, e.g.,
4K – simply set the image size to 3840× 2160

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 38 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

GPU rendering

In all previous examples replace paraview-offscreen/5.5.2 with
paraview-offscreen-gpu/5.4.1, e.g.

client-server (ParaView client must match the same major version (5.4.x))

$ salloc --time=0:30:0 --gres=gpu:1 --mem-per-cpu=3600 --account=def-someuser
...
$ module load paraview-offscreen-gpu/5.4.1
$ pvserver # --egl-device-index=0 not needed: first GPU is #0 inside the job

batch rendering
$ salloc --time=0:30:0 --ntasks=1 --gres=gpu:1 --mem-per-cpu=3600 --account=def-someuser
$ module load paraview-offscreen-gpu/5.4.1
$ pvbatch volume2.py

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 39 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Should I use CPUs or GPUs for rendering on clusters?

GPUs have traditionally been faster for rendering graphics ...

In recent years better open-source software rendering libraries such as OSPRay and
OpenSWR (Intel’s ray tracer and rasterizer, respectively) and better OSMesa
implementations have largely closed the performance gap for many types of
visualizations

Due to the rising popularity of GP-GPU computing, on Compute Canada clusters
GPUs are in much higher demand than CPUs

If you want to take advantage of parallel I/O and store large datasets in memory,
you’ll end up using many CPU cores anyway – why not use them for rendering?

Occasionally might see the error “Only EGL 1.4 and greater allows OpenGL as client
API”
I this is an issue with the NVIDIA driver (GPU may be stuck in a strange state) ...
I rebooting the node is the only known fix

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 40 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

How many CPUs/GPUs do I need?

In addition to rendering time, your other bottlenecks will be physical memory and disk read
speed ⇒ to simplify things, for initial dataset exploration I suggest using the dataset size
to decide on the number of CPUs

128GB base node with 32 cores minus the OS and utilities ⇒ ∼3.5 GB/core is a good
starting point for estimating the number of cores for your visualization, based on the
dataset size from a single time step

You could ask for more memory/core, but you don’t want to starve other users of
memory!

Let’s say, just loading your data takes ∼200 GB memory (single step from Visualize
This! default dataset)
⇒ 58 cores
⇒ however, we also need to account for MPI buffers, filters, other data processing, possibly

structured to unstructured conversion (∼3X memory footprint along the interfaces)
⇒ could barely work with 64 cores
⇒ for comfortable processing with complex filters use 128 cores

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 41 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Python scripting in VisIt

Launching VisIt’s Python scripts from the Unix command line without the GUI

$ /path/to/VisIt -nowin -cli -s script.py

I flag -nowin for offscreen (typically OSMesa) rendering
I similar to ParaView’s pvbatch
I very useful for running a batch rendering job on a cluster

Launching VisIt’s Python scripts from the GUI
I VisIt has a built-in Python 2.7 shell through Controls → Launch CLI... that will start

VisIt’s Python interpreter in a terminal and attach it to the running VisIt session on a
specific port on your laptop with a one-time security key

I alternatively, Controls → Command... provides a text editor with Python syntax
highlighting and an Execute button, lets save up to eight snippets of Python code

Recording scripts from the GUI
I Controls → Command... window lets you record your GUI actions into Python code

that you can use in your scripts, similar to ParaView’s Trace Tool

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 42 / 44

http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Remote VisIt workflows

For small datasets
I use “recorder” to create a script on your laptop and debug it locally
I copy the script to the cluster
I run it there as a batch job

For large datasets
I start parallel client-server VisIt – very different from ParaView!
I use “recorder” to save a script on your laptop, edit/clean it locally
I copy the script to the cluster
I run it there as a parallel batch job with -nowin -cli -s script.py

Watch our “Scripting and other advanced topics in VisIt visualization” webinar from
November 2016 at
https://westgrid.github.io/trainingMaterials/tools/visualization

Read https://docs.computecanada.ca/wiki/VisIt

WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 43 / 44

https://westgrid.github.io/trainingMaterials/tools/visualization
https://docs.computecanada.ca/wiki/VisIt
http://bit.ly/2mlOTq72pi

Intro Matplotlib Plotly yt ParaView Remote Small Large GPU VisIt Summary

Summary

We covered a large array of tools: Matplotlib, Plotly, YT, ParaView, VisIt

Any Linux visualization package with a programming interface in any language can
be scripted to run on an HPC cluster

We discussed:
I using local or client-server GUI interaction to create and debug visualization scripts and

then run them as batch jobs
I CPU vs. GPU computing
I computational resources needed for a large visualization

Email alex.razoumov@westgrid.ca to request a free full-day scientific visualization
workshop at your institution

Questions?
WestGrid webinar - ZIP file with slides etc http://bit.ly/2mlOTq72pi Sep 18, 2019 44 / 44

http://bit.ly/2mlOTq72pi

	Intro
	

	Matplotlib
	

	Plotly
	

	yt
	

	ParaView
	

	Remote
	

	Small
	

	Large
	

	GPU
	

	VisIt
	

	Summary
	

