
A Brief Introduction to
the Boost MPI Library

Patrick Mann, Director of Operations
May 9, 2018

Summary

The C++ Boost library has considerably extended the capabilities of such basic C++ components as
the Standard Library. Over the years much of this functionality has been integrated into new versions
of the language. Of particular interest for the HPC community is the Boost MPI library. It provides an
object-oriented interface to MPI allowing the programmer to concentrate on the parallel architecture
rather than the implementation details of packing and sending data.

I’m still learning Boost MPI but I’ll review some of the capabilities and give a few simple examples
illustrating the basic functionality. It looks very nice to me, and indeed seems to be resulting in
significantly cleaner code with essentially no performance penalty.

Overview

1. C++ - the language, new versions, templates, issues
2. MPI - basics
3. Boost - short introduction
4. Boost/MPI - a few simple examples showing the

approach and advantages.

C++

1998 c++98 Based on Stroustrup’s book Gnu full support

2003 c++03 Fixed problems in c++98
Standard Template Library developed independently.

Gnu full support

2011 c++11 Core: multithreading, generic programming, uniform initialization and performance.
Significant updates to the C++ Standard Library based on the Standard Template
Library. Included performance requirements.
Useful things like “auto” and lambda functions.

Gnu full support

2014 c++14 Bug fixes and minor extras. Gnu full support

2017 c++17 Started to remove deprecated features (trigraphs, auto_ptr, ..)
A lot of additional detail capabilities.

Gnu full support

2020 c++20 In progress

C++ Working group ISO/IEC JTC 1/SC 22

● SC22 is a standardization subcommittee of the ISO/IEC Joint Technical Committee

C++ Philosophy

Bjarne Stroustrup: “The C++ Programming Language” is still a great text!

“It’s not what a language allows you to do, but what it encourages you to do.”

● Flexible allowing programmers to choose their own style.
● Features should be useful in the real world.
● Useful features are more important than protecting against misuse.
● Performance is important

○ nothing between C++ and assembly
○ unused features should not impact performance
○ ...

Templates

Compile-time polymorphism: compiler uses a template to
write code.
● Compiler optimizes resultant code.
● Modern compilers are tuned to minimize abstraction

penalties.
Standard Template Library (1994) first library of generic
algorithms and data structures for C++.
● Mostly superseded by the C++ Standard Library

○ Containers, iterators, localization, general, strings, i/o, threads, some
numerics

Issues

Code bloat - lots of code generated, compilation can be
slow. Concomitant increase in memory use.
● Less of a problem with fast modern compilers and

hardware.
Error messages a pain!
Iterators are great, but as usual in c++ easy to mis-use
them.
● ie) sorting can be very slow with poor choice of iterators.

Old C++ MPI Bindings

MPI-1 included C++ bindings: MPI::Init(argc,argv)
● Almost no-one used these
● The MPI forum didn’t have enough C++ expertise so bugs

had crept in.
● C++ bindings were 1:1 so no real advantage.
● Boost uses the old, original MPI C bindings.

And then MPI-3 came along and no-one felt like adding the C++
bindings.
● SO: MPI-3 does not include the old C++ bindings.

Boost Compiling & Linking
Just use the MPI scripts: mpiCC and mpirun

● of course MPI needs to be installed.

Need to link boost libraries both before and after the object file.
● Anyone else having this problem? (Using gnu c++ and OpenMPI on a Mint linux box)

CPPFLAGS = -std=c++11
CXX = mpiCC
LDFLAGS = -lboost_mpi -lboost_serialization

%: %.cpp
$(CXX) $(CPPFLAGS) $(LDFLAGS) $@.cpp $(LDFLAGS) -o $@

mpirun -np 16 executable_name

Receive from all

#include <iostream>
#include <boost/mpi.hpp> // standard naming
namespace mpi = boost::mpi; // useful
using namespace std;

int main()
{
 mpi::environment env {};
 mpi::communicator world;
 int rank = world.rank();
 int tag = 31; // always tag the messages
 int master = 0;
 if(rank == master){
 int i;
 world.recv(mpi::any_source, tag, i); // receive whichever comes in first
 cout << "received from " << i << '\n';
 } else {
 world.send(master, tag, rank); // send rank (integer) to master
 }
}

Classic MPI send/receive

if(rank == sender){
 char* msg = (char *) "Message from sender";
 int n_msg = strlen(msg) + 1;

 MPI_Send(&n_msg, 1, MPI_INT, receiver, tag, MPI_COMM_WORLD);
 MPI_Send(msg, n_msg, MPI_CHAR, receiver, tag, MPI_COMM_WORLD);
} else if(rank == receiver){
 int n_msg;

 MPI_Recv(&n_msg, 1, MPI_INT, sender, tag, MPI_COMM_WORLD, &status);
 char* msg = new char[n_msg+1];
 MPI_Recv(msg, n_msg, MPI_CHAR, sender, tag, MPI_COMM_WORLD, &status);
 msg[n] = ‘\0’;

 cerr << "send1: " << rank << "(receiver): received message \""
 << msg << "\"\n";
 Delete[] msg; // remember to delete temp variables
}

As usual need to
package up the
data, send a byte
stream, and then
un-package.

Careful with
memory
management, null
terminator, …

Very bug-prone
approach, and
hard to debug.

Boost Send String

#include <boost/mpi.hpp>
namespace mpi = boost::mpi;

int main(int argc, char *argv[])
{
 mpi::environment env{argc, argv};
 mpi::communicator world;
 int tag = 10; // Usual MPI - tag any message
 if (world.rank() == 0) // receiver
 {
 std::string s;
 world.recv(mpi::any_source, tag, s); // receive string from anywhere
 std::cout << s << '\n';
 } else {
 std::string s = "Hello, world!"; // sender
 world.send(0, tag, s); // send string s to process 0
 }
}

Boost MPI handles classes/objects: does it’s own packing and unpacking.

Classic MPI: Class send/recv I
class TestClass
{
private:
 int i;
 double a;
 string desc;

public:
 TestClass();
 TestClass(string serial_string){ …. } // constructor from string
 ~TestClass(){}

 string Serialize(){
 const char DELIMITER = ' ';
 stringstream s;
 s << i << DELIMITER << a << DELIMITER << desc;
 return s.str();
 }

 friend ostream& operator << (ostream&, TestClass&);
};

Need some sort of
serialize for every class.

And a constructor from
the serialized data.

Class send/recv II

if(rank == sender){
 TestClass tclass;

 string serialized = tclass.Serialize(); // Serialize the class
 const char* tclass_serial = serialized.data(); // Switch to char stream

 int n = strlen(tclass_serial); // As usual send length and then data
 MPI_Send(&n, 1, MPI_INT, receiver, tag, MPI_COMM_WORLD);
 MPI_Send(tclass_serial, n, MPI_CHAR, receiver, tag, MPI_COMM_WORLD);

} else if(rank == receiver){
 int n;
 MPI_Recv(&n, 1, MPI_INT, sender, tag, MPI_COMM_WORLD, &status);
 char* msg = new char[n+1];
 MPI_Recv(msg, n, MPI_CHAR, sender, tag, MPI_COMM_WORLD, &status);
 msg[n] = '\0'; // careful with tmp variables
 TestClass tclass_received(msg); // load back into class instance
 delete[] msg;
 ...
}

Boost Class Send/Receive

#include <boost/serialization.hpp>

class TestClass
{
private:
 int i; double a; string desc;

public:
 TestClass();
 ...

 friend class boost::serialization::access; // serialization needs access to private data

 template<class Archive> // use boost serialization templates
 void serialize(Archive &ar, const unsigned int version){
 ar & i;
 ar & a;
 ar & desc;
 }
 ...
};

Still need to serialize, but use the built-in Boost
serialization templates.
No need to explicitly write formatters or constructors.

Class Send/Receive II

if(rank == sender){
 std::vector<TestClass> tvector;
 tvector.push_back(TestClass(1,2.0,"hi"));
 tvector.push_back(TestClass(10,10.0, "hi again"));
 world.send(receiver, tag, tvector);

} else if(rank == receiver){
 std::vector<TestClass> treceive;
 world.recv(sender, tag, treceive); // pack/unpack, mem allocation, ..
 for(auto &tvalue: treceive){ // I really like “auto”
 s << tvalue << '\n';
 }
}

This one sends/receives a vector of the “TestClass” objects.

● Really nice - pack/unpack handled by serialization library.
○ Memory management by constructor/destructors.

● And a little C++-11 (or -14) with “auto” and “vector<..> ” container.

Gather/Scatter I

vector<vector<double>> chunk_vec;
if(rank == 0){

cout << "vec_norm " << rank << ": master scattering chunks with stride="
 << stride << " n_processors=" << n_processors << endl;

for(int process=0; process<n_processors; ++process){
int istart = process*stride;
int iend = istart + stride;
vector<double> chunk;
for(int i=istart; i<iend; ++i){

chunk.push_back(vec[i]); // fill the chunk
}
chunk_vec.push_back(chunk); // put the chunk in the chunk vector

}
}

Elementary distributed sum of vector:
● first chunk the vector
● Then scatter chunks to processors for summing.

Gather/Scatter Chunks II

int scatter_process = 0;
vector<double> received_vec;
// Scatter all the chunk_vec’s from scatter_process to all other processes.
mpi::scatter(world, chunk_vec, received_vec, scatter_process);

double sum = abs_sum(received_vec); // every process sums it’s chunk

if(rank == scatter_process){ // send my sum back, and receive all sums

vector<double> chunk_sums;
 mpi::gather(world, sum, chunk_sums, scatter_process);
 return vec_sum(chunk_sums); // sum the chunk sums (no parallelization)

} else { // other processes send sums back
 mpi::gather(world, sum, scatter_process);
}

Broadcast to Processor Set
Broadcast is straightforward. This example creates a couple of local processor sets and broadcasts within
each one.

int main(int argc, char *argv[])
{
 mpi::environment env{argc, argv};
 mpi::communicator world;
 /* All processes that pass the same integer to split(..) are linked
 to the same communicator. In this case any process with rank<2
 (processes 0 and 1) is one communicator, and any other process is
 another communicator. */
 const int comm1 = 100;
 const int comm2 = 200;
 const int comm_id = world.rank() < 2 ? comm1 : comm2;
 mpi::communicator local = world.split(comm_id);
 string s = "Hello from world rank " + to_string(world.rank())
 + ", local rank " + to_string(local.rank()) + ", comm_id=" + to_string(comm_id);
 // Broadcast from local rank 0 to all processes in the local communicator.
 mpi::broadcast(local, s, 0); // process with rank 0 in the LOCAL communicator.
 cout << world.rank() << ": " << s << '\n';
}

Broadcast Cont’d

$ mpirun -np 4 multiple_communicators
0: Hello from world rank 0, local rank 0, comm_id=100
1: Hello from world rank 0, local rank 0, comm_id=100
2: Hello from world rank 2, local rank 0, comm_id=200
3: Hello from world rank 2, local rank 0, comm_id=200

● Note that the rank within the local communicator starts at 0. So each message is sent from local
processor 0 to the processors in that local communicator

Boost MPI Functionality

Pretty complete!
● Non-blocking/asynchronous

○ irecv(..), isend(..), wait_all(..), test(..)

● Status
● Reduce(..): takes a function to analyze data

○ All_reduce
● Broadcast
● Multiple communicators and processor groups.

Timing and Performance

I have not run any direct comparisons! TODO.
● Literature suggests minimal performance hits from

Boost.
● Compilers are optimized from templates.

Boost Docs

● https://www.boost.org/ (the source!)
● https://theboostcpplibraries.com/ (nice textbook)
● https://theboostcpplibraries.com/boost.mpi
● https://github.com/WestGrid/boostWebinar (codes & Makefile for the examples)

And of course tons of stuff out on the web.

Useful Boost libraries:
● boost.Serialization (and string serialization)
● boost.Timer, boost.DateTime
● boost.Log (file out, standard out, severity, …)
● boost.ProgramOptions (options from

command-line and file)

Interesting Boost Libraries
(I haven’t tried them):

● ODEint (ODE solvers)
● Python (interface from C++)
● Random
● RegEx
● Sort
● uBLAS (matrix, vector, BLAS,

dense and sparse, ..)
● Compute (OpenCL, GPUs)

Any experiences with these or others?

https://www.boost.org/
https://theboostcpplibraries.com/
https://theboostcpplibraries.com/boost.mpi
https://github.com/WestGrid/boostWebinar

