
Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

In-situ visualization with ParaView Catalyst2

ALEX RAZOUMOV
alex.razoumov@westdri.ca

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 1 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio
please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westdri.ca

Our fall training schedule https://bit.ly/wg2022b
webinars, local workshops, autumn school

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 2 / 31

https://bit.ly/wg2022b
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Why Catalyst

Modern parallel simulations can produce huge amounts of data ⇒ I/O bottleneck
large HPC codes cannot afford to write full data to disk every time step

In-situ visualization idea: instead of writing full 3D variables to disk, only write either:
1. some derived data needed for visualization (e.g. 2D polygonal isosurfaces), or

2. images directly from the simulation code

⇒ much smaller disk output, no need to write full 3D datasets every time step

- sometimes refereed to as “co-processing”

Wait ... writing images or smaller datasets to disk directly from simulation codes is nothing
new: we’ve been doing it for the last 50 years

Let’s rephrase: in-situ in a ParaView Catalyst / VisIt LibSim context refers to exposing your
in-memory simulation data arrays to Catalyst (at runtime, without writing any data to disk)
and then using familiar interactive Python pipelines to process and visualize data

1. instrument your simulation code once
- Catalyst is extremely diligent about not duplicating any data arrays in memory, passing only pointers

and data description via its API

2. modify and apply your analysis/visualization pipelines without recompiling your code

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 3 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Why Catalyst

Modern parallel simulations can produce huge amounts of data ⇒ I/O bottleneck
large HPC codes cannot afford to write full data to disk every time step

In-situ visualization idea: instead of writing full 3D variables to disk, only write either:
1. some derived data needed for visualization (e.g. 2D polygonal isosurfaces), or

2. images directly from the simulation code

⇒ much smaller disk output, no need to write full 3D datasets every time step

- sometimes refereed to as “co-processing”

Wait ... writing images or smaller datasets to disk directly from simulation codes is nothing
new: we’ve been doing it for the last 50 years

Let’s rephrase: in-situ in a ParaView Catalyst / VisIt LibSim context refers to exposing your
in-memory simulation data arrays to Catalyst (at runtime, without writing any data to disk)
and then using familiar interactive Python pipelines to process and visualize data

1. instrument your simulation code once
- Catalyst is extremely diligent about not duplicating any data arrays in memory, passing only pointers

and data description via its API

2. modify and apply your analysis/visualization pipelines without recompiling your code

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 3 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Why Catalyst

Modern parallel simulations can produce huge amounts of data ⇒ I/O bottleneck
large HPC codes cannot afford to write full data to disk every time step

In-situ visualization idea: instead of writing full 3D variables to disk, only write either:
1. some derived data needed for visualization (e.g. 2D polygonal isosurfaces), or

2. images directly from the simulation code

⇒ much smaller disk output, no need to write full 3D datasets every time step

- sometimes refereed to as “co-processing”

Wait ... writing images or smaller datasets to disk directly from simulation codes is nothing
new: we’ve been doing it for the last 50 years

Let’s rephrase: in-situ in a ParaView Catalyst / VisIt LibSim context refers to exposing your
in-memory simulation data arrays to Catalyst (at runtime, without writing any data to disk)
and then using familiar interactive Python pipelines to process and visualize data

1. instrument your simulation code once
- Catalyst is extremely diligent about not duplicating any data arrays in memory, passing only pointers

and data description via its API

2. modify and apply your analysis/visualization pipelines without recompiling your code

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 3 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Why Catalyst

Modern parallel simulations can produce huge amounts of data ⇒ I/O bottleneck
large HPC codes cannot afford to write full data to disk every time step

In-situ visualization idea: instead of writing full 3D variables to disk, only write either:
1. some derived data needed for visualization (e.g. 2D polygonal isosurfaces), or

2. images directly from the simulation code

⇒ much smaller disk output, no need to write full 3D datasets every time step

- sometimes refereed to as “co-processing”

Wait ... writing images or smaller datasets to disk directly from simulation codes is nothing
new: we’ve been doing it for the last 50 years

Let’s rephrase: in-situ in a ParaView Catalyst / VisIt LibSim context refers to exposing your
in-memory simulation data arrays to Catalyst (at runtime, without writing any data to disk)
and then using familiar interactive Python pipelines to process and visualize data

1. instrument your simulation code once
- Catalyst is extremely diligent about not duplicating any data arrays in memory, passing only pointers

and data description via its API

2. modify and apply your analysis/visualization pipelines without recompiling your code

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 3 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Catalyst history
Circa 2012-2013 - development of the original Catalyst library

relied heavily on users mapping their simulation code’s data structures to VTK data objects;
required good knowledge of the VTK data model

it was relatively easy to make mistakes duplicating data arrays in memory, as there are different
ways to initialize VTK data APIs depending on the data object type

ParaView / VTK codebase is continually changing ⇒ simulation code maintainers had to
continuously update their Catalyst adaptor, or even maintain multiple code builds to work with
different ParaView versions

2020 - first release of Catalyst2 (the focus of this webinar)
for user-provided simulation data (meshes and fields) description switched to Conduit API
https://llnl-conduit.readthedocs.io

converting of a Conduit mesh description to an appropriate VTK data object is done inside the
Catalyst2 library (not exposed to user) ⇒ the Catalyst adaptor inside the simulation code should
be relatively stable across many versions of ParaView / VTK

Core Catalyst API: converting data structures to VTK,
few functions to initialize / update / finalize the in-situ
analysis (standalone GitHub repo)

Combined ParaView-Catalyst API: the ParaView-based
implementation of the Catalyst API = core Catalyst API
library + collection of Catalyst-related libraries from a
specific ParaView build

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 4 / 31

https://llnl-conduit.readthedocs.io
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Catalyst history
Circa 2012-2013 - development of the original Catalyst library

relied heavily on users mapping their simulation code’s data structures to VTK data objects;
required good knowledge of the VTK data model

it was relatively easy to make mistakes duplicating data arrays in memory, as there are different
ways to initialize VTK data APIs depending on the data object type

ParaView / VTK codebase is continually changing ⇒ simulation code maintainers had to
continuously update their Catalyst adaptor, or even maintain multiple code builds to work with
different ParaView versions

2020 - first release of Catalyst2 (the focus of this webinar)
for user-provided simulation data (meshes and fields) description switched to Conduit API
https://llnl-conduit.readthedocs.io

converting of a Conduit mesh description to an appropriate VTK data object is done inside the
Catalyst2 library (not exposed to user) ⇒ the Catalyst adaptor inside the simulation code should
be relatively stable across many versions of ParaView / VTK

Core Catalyst API: converting data structures to VTK,
few functions to initialize / update / finalize the in-situ
analysis (standalone GitHub repo)

Combined ParaView-Catalyst API: the ParaView-based
implementation of the Catalyst API = core Catalyst API
library + collection of Catalyst-related libraries from a
specific ParaView build

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 4 / 31

https://llnl-conduit.readthedocs.io
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

We will work with Conduit mesh description (exposing data to Catalyst)
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

in the second example

1. Start with a much simpler, pre-built Python miniapp acting as a simulation code

2. Continue with a local or remote C simulation code generating UnstructuredGrid data

3. If we have time: ParaView Live (primarily for debugging)

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 5 / 31

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Let’s start with a basic ParaView Python script:

from paraview.simple import *

wavelet1 = Wavelet()

slice1 = Slice(registrationName=’Slice1’, Input=wavelet1)
slice1.SliceType = ’Plane’
slice1.SliceType.Normal = [0, 0, 1]

sliceDisplay = Show(slice1)

ResetCamera() # fit the object into the view

paraview --script=sample3a.py

No file output for now

Here we generate a VTK source Wavelet() on the fly

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 6 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

This same code can be used in a Catalyst Python script to set up a visualization pipeline

should switch our data source from Wavelet() to take in data generated by a simulation

We’ll use a miniapp paraview.demos.wavelet_miniapp that acts as a simulation
producing a time-value vtkImageData dataset

run this miniapp for 3 timesteps alongside a ParaView Catalyst script

in Catalyst, the simulation data is available on named channels
use --channel to name the output of paraview.demos.wavelet_miniapp (inside the
miniapp the output is not named)

inside the Catalyst script use registrationName to specify the data channel

this argument to Wavelet() is an optional argument to any source/filter in ParaView; if
specified, it’ll override the function itself ⇒ now Wavelet() does not produce a wavelet but the
simulation data as its output

< wavelet1 = Wavelet()

> wavelet1 = Wavelet(registrationName="Wavelet1")

pvbatch -m paraview.demos.wavelet_miniapp --script sample3b.py \
--script-version 2 --timesteps 3 --channel Wavelet1

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 7 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Let’s add some output with 10 time steps:

> from paraview import print_info
> view = GetActiveView()
>
> def catalyst_execute(info):
> fname = "output-%d.png" % info.timestep
> print_info("time=%f, saving file: %s", info.time, fname)
> SaveScreenshot(fname, view, ImageResolution=[1000, 1000])

pvbatch -m paraview.demos.wavelet_miniapp --script sample3c.py \
--script-version 2 --timesteps 10 --channel Wavelet1

Try replacing Wavelet(...) with Sphere(...) or any other source ... the result won’t
change

catalyst_execute() is executed every time step

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 8 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Optionally in Catalyst scripts you define catalyst_initialize() and
catalyst_finalize() – these are executed once, at the start and the end of your pipeline,
e.g.

def catalyst_initialize():
print_info("in ’%s::catalyst_initialize’", __name__)

def catalyst_finalize():
print_info("in ’%s::catalyst_finalize’", __name__)

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 9 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Extractors

There is an even better way to output images and data in Catalyst!

In ParaView’s GUI, starting with 5.9, you can use Extractors to create various Catalyst
functions that get triggered when you run catalyst_execute from your simulation code
(typically, once per timestep)

1. In ParaView GUI start from scratch and create Sources | Wavelet (could be anything actually;
we just want to create a screenshot)

2. Optionally rename the input (Wavelet is good for the wavelet example; important step for
actual simulation codes)

3. In the pipeline browser select apply Slice and then apply Extractors | Image | PNG

4. File | Save Catalyst State to save it as extract-image.py

5. In the saved script, look for CreateExtractor() function and all attributes of a handle
produced by this function, and copy these to our Catalyst script replacing
catalyst_execute

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 10 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Image extractor

< def catalyst_execute(info):
< fname = "output-%d.png" % info.timestep
< print_info("time=%f, saving file: %s", info.time, fname)
< SaveScreenshot(fname, view, ImageResolution=[1000, 1000])

> # create an image extractor
> png1 = CreateExtractor(’PNG’, view, registrationName=’PNG1’)
> png1.Trigger = ’TimeStep’
> png1.Writer.FileName = ’RenderView1_{timestep:06d}.png’
> png1.Writer.ImageResolution = [1000, 1000]
> png1.Writer.Format = ’PNG’

pvbatch -m paraview.demos.wavelet_miniapp --script sample4a.py \
--script-version 2 --timesteps 3 --channel Wavelet1

Now all output goes to datasets/RenderView1_00000*

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 11 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Data extractor
1. In ParaView GUI create Sources | Wavelet and apply Filters | Slice or run sample3a.py

2. In the pipeline browser select the Slice, apply Extractors | Data | VTP (aka VTK Polygonal Data)

3. File | Save Catalyst State – save it as extract-data.py

4. In your Catalyst script use the relevant lines to replace the image extractor with a data extractor
< # create an image extractor

< png1 = CreateExtractor(’PNG’, view, registrationName=’PNG1’)

< png1.Trigger = ’TimeStep’

< png1.Writer.FileName = ’RenderView1_{timestep:06d}.png’

< png1.Writer.ImageResolution = [1000, 1000]

< png1.Writer.Format = ’PNG’

> # create a data extractor

> vtp1 = CreateExtractor(’VTP’, slice1, registrationName=’VTP1’)

> vtp1.Trigger = ’TimeStep’

> vtp1.Writer.FileName = ’Slice1_{timestep:06d}.Pvt’

pvbatch -m paraview.demos.wavelet_miniapp --script sample4b.py \
--script-version 2 --timesteps 3 --channel Wavelet1

Now in datasets/ we also have 2D polygonal data, in pvtp file format (parallel VTK Polygonal)
for a partitioned dataset with parallel pvbatch, the extractor will write it into multiple files
you can also apply Extractors | Data to the 3D dataset in the pipeline browser – the result will be a 3D VTK
Image Data sequence

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 12 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Starting with Catalyst2 API

1. Download and compile core Catalyst2 library from
https://gitlab.kitware.com/paraview/catalyst.git

2a. Optionally compile ParaView server from source
https://www.paraview.org/download

at runtime you’ll need quite a few Catalyst-related libraries from a ParaView build of the same
version you will use to create Catalyst scripts

Catalyst instructions mention that you can use precompiled ParaView, however there are
numerous online reports of problems that only go away when you compile ParaView from source
(I ran into similar issues); likely related to the included MPI version

2b. Alternatively, on clusters you can use our precompiled paraview-offscreen module, but
then you’ll be tied to a specific ParaView version, and you might still run into problems

3. In ParaView’s source code play with ParaView-v5.10.1/Examples/Catalyst2/

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 13 / 31

https://gitlab.kitware.com/paraview/catalyst.git
https://www.paraview.org/download
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Modified C example

For this demo on Cedar, I modified the C example from ParaView-v5.10.1/Examples/
Catalyst2/CFullExample/{*.c,*.h,catalyst_pipeline.py}

file descriptions in the next slide

in FEDataStructures.c defined a 3D “sine envelope” wave function inside a unit cube (xi ∈ [0, 1])

f (x1, x2, x3) =

2∑
i=1

 sin2
(√

ξ2
i+1 + ξ2

i

)
− 0.5[

0.001(ξ2
i+1 + ξ2

i) + 1
]2 + 0.5

 , where ξi ≡ 15(xi − 0.5)

as a CellData 3D array called “density”

for time evolution I simply shift the function along the x-axis with periodic BCs

to CatalystAdaptor.h added an “IO” pipeline to write out data (more on this later)

modified FEDriver.c to run only one timestep

Two versions of the same code: standalone-mpi/{imageData,unstructuredData},
both included in the ZIP file (link below)

Compile and then run either serial or parallel code
cd standalone-mpi/unstructuredData && make && ./bin/CFullExampleV2 <flags_and_parameters>

mpirun -np <number_of_cores> ./bin/CFullExampleV2 <flags_and_parameters>

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 14 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Code components

Let’s take a look at these source files inside standalone-mpi/unstructuredData:

(I intentionally kept all the original file and function names)

FEDriver.c the main loop of the simulation

FEDataStructures.c define simulation data: InitializeGrid(),
InitializeAttributes(),UpdateFields()

CatalystAdaptor.h interface with Catalyst library: do_catalyst_
initialization(),do_catalyst_
execute(),do_catalyst_finalization()

catalyst_pipeline.py Catalyst script called at runtime

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 15 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Compiling and running parallel C simulation code on a cluster
Details with self-hosted ParaView in compilingOnCedar.txt inside the ZIP file (link below)

Via Slurm with manually compiled core Catalyst2 library and paraview-offscreen module

For best performance, do not run on a parallel filesystem!
1. compile core Catalyst2 library in /tmp on a login node
2. tar it along with your simulation code into an archive in your $HOME
3. unpack into $SLURM_TMPDIR at runtime

cd ~/scratch
module load gcc/9.3.0 openvkl/0.10.0 paraview-offscreen/5.10.0
salloc --ntasks=2 --time=0:30:0 --mem-per-cpu=3600 --account=def-razoumov-ac
cd $SLURM_TMPDIR
tar xvfz ~/catalyst-packed.tgz --strip-components=2 # unpack catalyst/ standalone-mpi/
cd standalone-mpi/unstructuredData
mpicc -O2 -c FEDriver.c FEDataStructures.c -DPARAVIEW_IMPL_DIR=\"\" -DUSE_CATALYST=1 \

-I$SLURM_TMPDIR/catalyst/include/catalyst-2.0
mpicc FEDataStructures.o FEDriver.o -o bin/CFullExampleV2 -L../catalyst/lib64 \

-lcatalyst -lm -Wl,-rpath,../catalyst/lib64 \
-Wl,-rpath,$EBROOTOPENVKL/lib64,-rpath,$SLURM_TMPDIR/catalyst/lib64

export CATALYST_IMPLEMENTATION_PATHS=$EBROOTPARAVIEW/lib64/catalyst
export CATALYST_IMPLEMENTATION_NAME=paraview
mpirun -np 2 ./bin/CFullExampleV2 catalyst_pipeline.py # each MPI rank will print

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 16 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Compiling and running serial C simulation code in MacOS (laptop)

With manually compiled core Catalyst2 library and manually compiled ParaView

cd $DEMO/standalone/unstructuredData
sed -i ’’ ’/mpi.h/d’ FEDriver.c FEDataStructures.c
sed -i ’’ ’/MPI_/d’ FEDriver.c FEDataStructures.c
gcc -O2 -c FEDataStructures.c FEDriver.c -DPARAVIEW_IMPL_DIR=\"\" -DUSE_CATALYST=1 \

-I$DEMO/catalyst/include/catalyst-2.0
gcc FEDataStructures.o FEDriver.o -o bin/CFullExampleV2 -L$DEMO/catalyst/lib \

-lcatalyst -Wl,-rpath,$DEMO/catalyst/lib
export CATALYST_IMPLEMENTATION_PATHS=$DEMO/paraview/lib/catalyst
export CATALYST_IMPLEMENTATION_NAME=paraview
./bin/CFullExampleV2 catalyst_pipeline.py

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 17 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

The default ParaView Catalyst script

catalyst_pipeline.py that came with the example does not do much ...

from paraview.simple import *

print("executing catalyst_pipeline")

registrationName must match the channel name used in Catalyst Adaptor
producer = TrivialProducer(registrationName="grid")

familiar function, triggered when there is new data in the channel
def catalyst_execute(info):

global producer

print("-----------------------------------")
print("executing (cycle={}, time={})".format(info.cycle, info.time))
producer.UpdatePipeline()
print("bounds:", producer.GetDataInformation().GetBounds())
print("velocity-magnitude-range:", producer.PointData["velocity"].GetRange(-1))
print("density-range:", producer.CellData["density"].GetRange(0))

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 18 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Representative dataset
We want to replace catalyst_pipeline.py with an actual visualization pipeline script
processing our data in some way and then writing output with an image/data Extractor

1. load a representative dataset and process it in the GUI
2. apply an Extractor
3. File | Save Catalyst State to save your script

In the previous (miniapp) example we could create a representative dataset in the GUI via
Sources | Wavelet, as it happened to produce exactly the same data type as the miniapp

Our representative dataset must:
1. be of the same dataset type, e.g. vtkUnstructuredGrid, vtkImageData, etc.
2. have the same attributes defined over the grids as the simulation adaptor code will provide to

Catalyst during simulation runs
+ to generate the script in the GUI, we must use the same ParaView version as the version of

ParaView Catalyst that the simulation code will run with

In Catalyst1 there used to be a script gridwriter.py one could always run with the
simulation code, that would generate a representative dataset

In Catalyst2 a generic gridwriter.py is currently being developed (the one you can find
on GitHub is not yet functional)

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 19 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Where do we get a representative dataset?

Two options:

1. Create via a combination of Sources (for grids) and Calculators (for 3D variables), perhaps
using a Programmable Filter for Unstructured Grids – straightforward but slow manual
process

2. Add a data writer to your Catalyst Adaptor following the C++ example in
ParaView-v5.10.1/Examples/Catalyst2/CxxImageDataExample

Let’s take a look at CatalystAdaptor.h in our modified C example:
here we create a Conduit node to describe our data and pass it to the Catalyst API

node passed to catalyst_initialize() + see next slide

info in the node used at every time step to store all data in the named channel to disk

array data never duplicated; nodes used merely for description

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 20 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

ParaView-Catalyst Blueprint based on Conduit Mesh Blueprint
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://kitware.github.io/paraview-docs/latest/cxx/ParaViewCatalystBlueprint.html

Catalyst API provides 3 main functions to pass data and control from a simulation code to the
ParaView-Catalyst implementation: catalyst_initialize(), catalyst_execute(), and
catalyst_finalize()

Each of the three functions below is passed a Conduit Node object
think of it as a light-weight container with hierarchical construction (nodes inside nodes)

a top-level node named catalyst_load is used to load a specific Catalyst implementation, e.g.
ParaView-Catalyst

if PV-Catalyst, it looks for a top-level node named catalyst
catalyst_initialize() can process the following children of catalyst:

- scripts/name is the path to the Python script to load for in-situ analysis

- pipelines is an object node with child nodes that provide type and parameters for pipelines

catalyst_execute() can process the following children of catalyst:
- state/timestep and state/time to specify the timestep and time

- channels/[channel-name] to specify a named channel

- channels/[channel-name]/type to specify the channel type (“mesh” or “multimesh”)

- channels/[channel-name]/data to communicate the simulation data on this channel, takes its own separate Conduit node
with a hierarchical structure to describe the mesh topology, point coordinates, maybe cell connectivity, and fields

catalyst_finalize() takes an empty node

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 21 / 31

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://kitware.github.io/paraview-docs/latest/cxx/ParaViewCatalystBlueprint.html
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

ParaView-Catalyst Blueprint (cont.)

Useful for debugging:
conduit_node_print(<Conduit_Node>) - shows what information was

passed to Catalyst

e.g. in our example could use one of the following lines:

conduit_node_print(catalyst_exec_params);
conduit_node_print(mesh);

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 22 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Representative dataset ⇒ Catalyst script ⇒ in-situ visualization

Adjust the number of time steps, recompile and then run

./bin/CFullExampleV2 --output dataset-%04ts.vtpd

Catalyst always produces a partitioned dataset

if run in parallel, would produce multiple files per timestep

1. Load one of the timesteps into ParaView

2. Apply Resample To Image at 503

3. Apply Filters | Contour at ρ = 0.15

4. Apply Extractors | Image | PNG

5. File | Save Catalyst State to save it as extract-image.py

6. Make sure registrationName in the script matches the data channel name in the simulation code
alternatively, could do this by renaming the first data object in the pipeline browser

7. Run

./bin/CFullExampleV2 extract-image.py

8. Check datasets/ directory

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 23 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

In-situ visualization with data output

Repeat steps 1-3 from last slide, but this time:

4. Apply Extractors | Data | VTP

5. File | Save Catalyst State to save it as extract-data.py

6. Make sure registrationName in the script matches the data channel name in the
simulation code

alternatively, could do this by renaming the first data object in the pipeline browser

7. Run

./bin/CFullExampleV2 extract-data.py

8. Check the file sizes of the original 3D and the latest 2D data

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 24 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

ParaView Live

Idea: load data from your live simulation on the cluster into a ParaView server (without
writing this data to disk!) and view it in a ParaView client on your computer

For simplicity assuming that both the ParaView server + client are running on your computer
as part of the ParaView application

In principle, it might be tempting to set up a ParaView server (talking to the simulation) on a
remote machine with a higher bandwidth to the cluster, and the ParaView client on your
computer, but it is actually not a good idea, since all heavy processing should be done in-situ
by the simulation code, and you should be sending much smaller, derived datasets to the
ParaView server

In what follows, our ParaView application will act as a server (with a GUI on top) that your
live simulation on the cluster is connecting to (avoiding the term “client” on purpose)

This is not for production visualization, but rather for interactive work: either (1)
creating/debugging Catalyst scripts or (2) debugging your simulation

Ideally, all production visualization should be done non-interactively via Catalyst scripts

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 25 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Create a ParaView Live Catalyst script

Repeat steps 1-3 from previous in-situ slides, but this time:

4. Apply Extractors | Image | PNG

5. File | Save Catalyst State to save it as extract-live.py, checking "Enable Catalyst Live"

this flag will expose (with an option to download) other data structures in the pipeline

make sure registrationName in the script matches the data channel name in the simulation
code

6. Optionally, copy this script to the cluster (not needed for a local demo)

7. Before running the simulation, need to set up a ParaView server

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 26 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

ParaView Live with a simulation code on Cedar
1. On Cedar prepare your simulation

cd ~/scratch

module load gcc/9.3.0 openvkl/0.10.0 paraview-offscreen/5.10.0

salloc --time=0:30:0 --mem-per-cpu=3600 --account=def-razoumov-ac

cd $SLURM_TMPDIR

tar xvfz ~/catalyst-packed.tgz --strip-components=2 # unpack catalyst/ standalone-mpi/

cd standalone-mpi

>>> modify FEDriver.c to run many timesteps

mpicc -O2 -c FEDriver.c FEDataStructures.c -DPARAVIEW_IMPL_DIR=\"\" -DUSE_CATALYST=1 \

-I$SLURM_TMPDIR/catalyst/include/catalyst-2.0

mpicc FEDataStructures.o FEDriver.o -o bin/CFullExampleV2 -L../catalyst/lib64 -lcatalyst -lm \

-Wl,-rpath,../catalyst/lib64,-rpath,$EBROOTOPENVKL/lib64,-rpath,$EBROOTPARAVIEW/lib64

export CATALYST_IMPLEMENTATION_PATHS=$EBROOTPARAVIEW/lib64/catalyst

export CATALYST_IMPLEMENTATION_NAME=paraview

>>> write down the node’s name

2. On your computer organize port forwarding; default ports are 22222 on both sides; here
assuming local port 22223 and remote port 22225
ssh username@cedar.computecanada.ca -R 22225:cdr528:22223

Optionally, might need to clear local ports if port forwarding fails:
sudo lsof -i :22223 # check which processes occupy the port

sudo kill -9 <pid>
WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 27 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

ParaView Live with a simulation code on Cedar (cont.)

3. Launch ParaView GUI and then Catalyst | Connect and confirm to accept connections from
Catalyst on port 22223

4. Catalyst | Pause Simulation

5. Back inside the job on Cedar start your simulation

>>> optionally modify extract-live.py: options.Port = 22223 # if using non-default port 22223

./bin/CFullExampleV2 extract-live.py

6. Wait for the connection between the simulation and the server (your laptop’s ParaView) to be
established

7. Click on greyed-out *data* icons in the pipeline to send this data to the server

+ be super-super-careful: the data size could be huge for large datasets!!!

+ this is where the pipeline inside extract-live.py matters

8. Enable the corresponding visual layer in the pipeline browser

9. Do interactive visualizaton as usual

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 28 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Demo: ParaView Live with a local simulation code
1. Launch ParaView GUI and then Catalyst | Connect and confirm to accept connections from Catalyst on

port 22222

2. Catalyst | Pause Simulation

3. Start your simulation
export CATALYST_IMPLEMENTATION_PATHS=/Users/razoumov/tmp/joshua/paraview/lib/catalyst

export CATALYST_IMPLEMENTATION_NAME=paraview

./bin/CFullExampleV2 extract-live.py

4. Wait for the connection between the simulation and the server (your laptop’s ParaView) to be
established

5. Click on greyed-out *data* icons in the pipeline to send this data to the server
+ be super-super-careful: the data size could be huge for large datasets!!!

+ this is where the pipeline inside extract-live.py matters

+ in this specific demo we have three data objects to pull the data from: choose wisely

6. Enable the corresponding visual layer in the pipeline browser

7. Do interactive visualizaton as usual

8. Without a breakpoint Catalyst | Continue will run to the end of the simulation

9. Catalyst | Set Breakpoint (seems buggy at the moment ... no apparent breakpoint) followed by Catalyst
| Continue

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 29 / 31

https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Summary
Steep learning curve ... however, once implemented in a simulation code, you do not even need to
recompile the code to switch to a new pipeline

Catalyst Python pipelines can be created interactively in the GUI

Catalyst can produce both images and derived (⇒ smaller) data
writes partitioned data, one file / MPI rank

Can be used from a variety of languages: C, C++, Fortran, Python, Julia

Catalyst has been shown to scale to millions of CPU cores

Design philosophy: use Conduit nodes to pass pointers to existing arrays in memory
arrays will not be duplicated
you need to describe the mesh type / coordinates / topology
do not need to know the underlying VTK data model
internally, supports all VTK data types: ImageData, StructuredGrid, UnstructuredGrid, ...

Make sure to use latest Catalyst2 (a significant rewrite of the original library)

Be careful when enabling data in ParaView Live

Official Catalyst User’s Guide https://www.paraview.org/download is a good read but in places
few years out of date

Universal in-situ project https://sensei-insitu.org – data producers talking to generic in-situ
endpoints via a unified API, can combine multiple endpoints in a single simulation (next slide)

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 30 / 31

Questions?

https://www.paraview.org/download
https://sensei-insitu.org
https://bit.ly/3KKCcvS

Intro Local miniapp demos Remote/local C code demo ParaView Live Summary

Figure borrowed from SENSEI tutorial at Supercomputing 2019
https://sensei-insitu.org/tutorials

WestDRI webinar - slides & files at https://bit.ly/3KKCcvS 2022-Sep-28 31 / 31

https://sensei-insitu.org/tutorials
https://bit.ly/3KKCcvS

	Intro
	

	Local miniapp demos
	

	Remote/local C code demo
	

	ParaView Live
	

	Summary
	

