
Intro Viewers Creating databases Catalyst+Cinema

Image-based approach to large-scale visualization
(Cinema Science)

ALEX RAZOUMOV
alex.razoumov@westdri.ca

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 1 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio
please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westdri.ca

Our fall training schedule https://bit.ly/wg2023b
webinars, local workshops, autumn school

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 2 / 19

https://bit.ly/wg2023b
https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Why Cinema?

Modern parallel simulations can produce huge amounts of data ⇒ hard to visualize
interactively, as each frame may take a while to render

client-server parallel rendering (ParaView, VisIt) may somewhat alleviate the problem, but you
don’t have a large computer at your interactive disposal at all times
client-server: interactive exploration, creating ParaView Python scripts
batch rendering for production visualization
one easy way to reproduce this problem: turn on OSPRay ray tracing, enable SamplesPerPixel=30
to reduce noise, try to rotate your object

Image-based visualization: instead of live rendering, pre-render all images for your full set of
viewing parameters (viewing angles, time, features on/off, etc.), and then explore these
images in a Cinema-enabled environment as if you were rendering live

can pre-render via parallel batch jobs on an HPC cluster
store images in a specially formatted database

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 3 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Why Cinema?

Modern parallel simulations can produce huge amounts of data ⇒ hard to visualize
interactively, as each frame may take a while to render

client-server parallel rendering (ParaView, VisIt) may somewhat alleviate the problem, but you
don’t have a large computer at your interactive disposal at all times
client-server: interactive exploration, creating ParaView Python scripts
batch rendering for production visualization
one easy way to reproduce this problem: turn on OSPRay ray tracing, enable SamplesPerPixel=30
to reduce noise, try to rotate your object

Image-based visualization: instead of live rendering, pre-render all images for your full set of
viewing parameters (viewing angles, time, features on/off, etc.), and then explore these
images in a Cinema-enabled environment as if you were rendering live

can pre-render via parallel batch jobs on an HPC cluster
store images in a specially formatted database

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 3 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Cinema history

The original Cinema project https://github.com/Kitware/cinema (“An Image-based
Approach to Extreme Scale In Situ Visualization and Analysis”) was released in 2014

JavaScript package, write visualization pages to open in a web browser
last updated in March 2015, no longer maintained?

Cinema Science https://cinemascience.github.io is a project from the “Data Science
at Scale” group at LANL

Cinemasci Python toolkit https://github.com/cinemascience/cinemasci
documentation https://cinemasciencewebsite.readthedocs.io

last updated in July 2022

Cinema Engine v2.0 https://github.com/cinemascience/pycinema is a Python
toolkit for creating, filtering, transforming and viewing Cinema databases

introduces the concepts of filter graphs and workspaces to Cinema
authored mostly by the “Data Science at Scale” group at LANL
documentation https://pycinema.readthedocs.io

sample datasets https://github.com/cinemascience/pycinema-data (1.1G download)
last updated in May 2023

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 4 / 19

https://github.com/Kitware/cinema
https://cinemascience.github.io
https://github.com/cinemascience/cinemasci
https://cinemasciencewebsite.readthedocs.io
https://github.com/cinemascience/pycinema
https://pycinema.readthedocs.io
https://github.com/cinemascience/pycinema-data
https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Spec D Cinema database

Latest (4th-generation) specification

The database is a directory databaseName.cdb with a file data.csv (exactly this name)
listing all parameters and related image/data filenames in the CSV format

The database directory may be flat or may contain other subdirectories with data inside

Files can be images or data

Let’s check a very simple example:

cd ~/tmp/pycinema-data/
tree sphere.cdb
bat sphere.cdb/data.csv

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 5 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Cinemasci Python toolkit
Installation

virtualenv ~/cinemasci-env
source ~/cinemasci-env/bin/activate
pip install --upgrade pip
pip install cinemasci # will install most of its dependencies too, including jupyter
pip install opencv-python # needed for some examples in their tutorial
python -m ipykernel install --user --name=cinemasci --display-name "cinemasci" # optional
jupyter nbextension install --py widgetsnbextension --user # optional
jupyter nbextension enable widgetsnbextension --user --py # optional
...
deactivate

Usage: several options
source ~/cinemasci-env/bin/activate

cd ~/tmp

(1) python -m cinemasci.server --port 8200 --viewer view --data pycinema-data/sphere.cdb

(2) cinema view --viewer view -d pycinema-data/sphere.cdb --browser firefox

(3) jupyter notebook

--- start cinemasci notebook

import cinemasci.pynb

viewer = cinemasci.pynb.CinemaViewer()

viewer.load("pycinema-data/sphere.cdb")

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 6 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Cinema:View (--viewer view) shows an interactive 3D view with variable sliders
sometimes shows an empty page for me, even when there is no problem with the database ... can
be traced to a broken pipe error inside Python ...

Cinema:Explorer (--viewer explorer) presents individual images on a grid with an
interactive parallel coordinates graph at the top

quite often does not load for me at all ... ⇒ won’t show it here

Another standalone viewer https://github.com/cinemascience/cinema_view
also allows you to compare several databases side by side (must have same number of files)
works great every time!
must enable local file access in your web browser
https://github.com/cinemascience/cinema_view

git clone https://github.com/cinemascience/cinema_view
cd cinema_view
add your database to ./cinema/view/1.1/databases.json
allow local file access in your web browser
open cinema_view.html

Another standalone viewer https://github.com/cinemascience/cinema_scope
Qt-based ⇒ need Qt to compile and use it

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 7 / 19

https://github.com/cinemascience/cinema_view
https://github.com/cinemascience/cinema_view
https://github.com/cinemascience/cinema_scope
https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Pycinema Python toolkit

Installation
virtualenv ~/pycinema-env
source ~/pycinema-env/bin/activate
pip install --upgrade pip
pip install pycinema # will install most of its dependencies too, including jupyter
python -m ipykernel install --user --name=pycinema --display-name "pycinema" # optional (but see below)
...
deactivate

Usage

trying to run any of the included examples/ipynb/*.ipynb leads to internal errors ...
the command-line tool works really well

source ~/pycinema-env/bin/activate

cinema view ~/tmp/pycinema-data/sphere.cdb

cinema explorer ~/tmp/pycinema-data/sphere.cdb

cinema supportedPythonScript.py # see script examples in pycinema/examples/theater

in their source code on GitHub; more details at

https://pycinema.readthedocs.io/en/latest/scripts.html

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 8 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Cinema databases from ParaView Extractors

Let’s start with a demo using the Cinema tutorial dataset from SC’20
git clone https://github.com/cinemascience/cinema_tutorial_2020-SC

In ParaView: File | Open ~/tmp/cinema_tutorial_2020-SC/data/nyxBaryonDensity/*.vti all 18
timesteps as a collection, hit Apply

Surface view, colour by baryonDensity

Extractors | Image | PNG, in Properties set Camera Mode = Phi-Theta, use default (=6) Phi / Theta
Resolution for now, click Apply ⇒ this one will create 62 ∗ 18 = 648 images

Creare the database directory

mkdir -p ~/tmp/case01/nyxBaryonDensity.cdb

File | Save Extracts..., set Extracts Output Directory = ~/tmp/case01/nyxBaryonDensity.cdb,
click Generate Cinema Specification, wait a couple of mins to write all 648 images into our 3D
(time+Phi+Theta) database

Check the images and data.csv

source ~/pycinema-env/bin/activate
cinema view ~/tmp/case01/nyxBaryonDensity.cdb

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 9 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

PNG Extractor Properties

If Camera Mode = Static and Trigger=TimeStep
⇒ generate a 1D time sequence (no rotation)

As far as I can tell, Trigger=TimeStep and Trigger=TimeValue produce the same output

Camera Mode = Python is undocumented
- probably a placeholder for future development?

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 10 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Scripting the Extractor
1. Repeat the previous workflow up until (but not including) File | Save Extracts...

- create a visualization + a PNG Extractor

2. File | Save State... to a Python script export.py

3. These should already be there:
pNG1 = CreateExtractor(’PNG’, renderView1, registrationName=’PNG1’)
pNG1.Trigger = ’TimeStep’
pNG1.Writer.FileName = ’RenderView1_{timestep:06d}{camera}.png’
pNG1.Writer.ImageResolution = [1920, 1080]
pNG1.Writer.Format, pNG1.Writer.ResetDisplay = ’PNG’, 1
pNG1.Writer.CameraMode = ’Phi-Theta’
pNG1.Writer.PhiResolution, pNG1.Writer.ThetaResolution = 10, 10

4. Optionally can control the start/end timesteps:
pNG1.Trigger.UseStartTimeStep, pNG1.Trigger.UseEndTimeStep = 1, 1
pNG1.Trigger.StartTimeStep, pNG1.Trigger.EndTimeStep = 0, 2

5. Add the following:
SaveExtracts(ExtractsOutputDirectory=’/Users/razoumov/tmp/case06’, GenerateCinemaSpecification=1)

6. Run the script: pvpython export.py

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 11 / 19

Ideal for
running on
HPC!

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Creating custom databases

Extractors are very limited: only time + Phi + Theta

What if you want other variables? What if you want to turn on/off layers or switch
representations via sliders?

For 1D databases, you can use keyframe animation

For multidimensional databases, you can code everything in Python with very little effort!

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 12 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Creating custom databases

Extractors are very limited: only time + Phi + Theta

What if you want other variables? What if you want to turn on/off layers or switch
representations via sliders?

For 1D databases, you can use keyframe animation

For multidimensional databases, you can code everything in Python with very little effort!

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 12 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

Creating custom databases

Extractors are very limited: only time + Phi + Theta

What if you want other variables? What if you want to turn on/off layers or switch
representations via sliders?

For 1D databases, you can use keyframe animation

For multidimensional databases, you can code everything in Python with very little effort!

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 12 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

1D Cinema database via Animation

1. In ParaView load sineEnvelope.nc, apply Contour filter, rescale to custom range [0,2]

2. View | Animation View, animate Contour | Isosurfaces, click + to create a timeline, set the
range [0,2], set 100 frames

3. File | Save Animation... to ~/tmp/case03/frame*.png, select full HD resolution

4. Edit and then run the following script:
use fixed precision for all variables in the database for smooth sliders!

#! /usr/bin/env python
import sys, os, pandas as pd, numpy as np
from glob import glob

if len(sys.argv) == 4:
inputDir = sys.argv[1]
startValue = float(sys.argv[2])
endValue = float(sys.argv[3])

else:
sys.stderr.write("Usage: generateCinemaDB.py "+

"imageDir startValue endValue\n")
sys.exit(0)

print(’Converting the directory to Cinema database ...’)

files = glob(inputDir+"/*.png")
files.sort()
files = [os.path.basename(f) for f in files]

density = np.linspace(startValue, endValue, len(files))
density = ["{:7.4f}".format(rho) for rho in density]

df = pd.DataFrame({’density’: density, ’FILE’: files})
df.to_csv(inputDir+"/data.csv", index=False)

~/Documents/10-cinema/generateSingleVariable.py ~/tmp/case03 0 2

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 13 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

3D Cinema database via Python scripting
Animating 2 angles and the isosurface

1. In ParaView load sineEnvelope.nc, apply Contour filter

2. File | Save State... as a Python script

3. Simplify the script

4. Add custom lines at the end (see next slide) and then run the script:
pvpython generateMultiVariable.py

5. On presenter’s laptop the complete database is in ~/tmp/case04

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 14 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

3D Cinema database via Python scripting (cont.)
import numpy as np, pandas as pd
nphi, ntheta, ncontour = 50, 3, 5; counter, tilt = 0, 35
phi, theta, contour, files = [], [], [], [] # these will form dataframe columns
density = np.linspace(0.1, 1.9, ncontour); camera = GetActiveCamera()
for j in range(ntheta):

if j==0:
elevation = 0 # "camera-centred" track

if j==1:
camera.Elevation(-tilt) # "camera-below" track
elevation = -tilt
camera.SetViewUp(0,np.cos(np.radians(tilt)),np.sin(np.radians(tilt))) # view-up (rotation) vector

if j==2:
camera.Elevation(70) # "camera-above" track
elevation = tilt
camera.SetViewUp(0,np.cos(np.radians(tilt)),-np.sin(np.radians(tilt))) # view-up (rotation) vector

for i in range(nphi):
if i==0:

azimuth = 0
else:

camera.Azimuth(360./(nphi-1))
azimuth += 360./(nphi-1)

print("camera = %3.4f %3.4f %3.4f"%(camera.GetPosition()), " frame = %1d/%1d"%((counter+1,nphi*ntheta*ncontour)))
for k in density:

contour1.Isosurfaces = [k]
counter += 1
filename = ’frame%04d’%(counter)+’.png’
SaveScreenshot(dir+filename)
phi.append("{:7.4f}".format(azimuth)) # fixed-length string
theta.append(elevation)
contour.append("{:6.4f}".format(k)) # fixed-length string
files.append(filename)

df = pd.DataFrame({’phi’: phi, ’theta’: theta, ’contour’: contour, ’FILE’: files})
df.to_csv(dir+"data.csv", index=False)

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 15 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

More complex case: CPU-intensive rendering with OSPRay
Animating a layer on/off, material selection, azimuthal angle

OSPRay is CPU intensive and may take a while at high quality ⇒ can be a miserable
interactive experience (Progressive Rendering will help) ⇒ perfect case for pre-rendering

Let’s load the state file glass.py without the custom Cinema lines at the end

comment out the Cinema lines, set renderView1.SamplesPerPixel=1
explore the scene: contour and 2 clips

Add custom lines at the end (see next slide) and then run the script: pvpython glass.py

On presenter’s laptop the complete database is in ~/tmp/case05

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 16 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

More complex case: CPU-intensive rendering with OSPRay (cont.)

import numpy as np, pandas as pd
nphi = 50
counter = 0
phi, clip, material, files = [], [], [], [] # these will form dataframe columns
camera = GetActiveCamera()
for clipState in [’show’, ’hide’]:

if clipState==’hide’:
Hide(clip1)

for composition in [’Glass_Thick’, ’Metal_Lead_brushed’]:
contour1Display.OSPRayMaterial = composition
for i in range(nphi):

if i==0:
azimuth = 0

else:
camera.Azimuth(360./(nphi-1))
azimuth += 360./(nphi-1)

print("camera = %3.4f %3.4f %3.4f"%(camera.GetPosition()), " frame = %1d/%1d"%((counter+1,nphi*2*2)))
counter += 1
filename = ’frame%04d’%(counter)+’.png’
SaveScreenshot(dir+filename)
phi.append("{:7.4f}".format(azimuth)) # fixed-length string
clip.append(clipState)
material.append(composition)
files.append(filename)

df = pd.DataFrame({’phi’: phi, ’clip’: clip, ’material’: material, ’FILE’: files})
df.to_csv(dir+’data.csv’, index=False)

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 17 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

General thoughts so far

It makes sense to pre-render only those frames that are expensive to render, otherwise
interactive live visualization will work just fine

For multiple variables, the number of combinations/frames grows very quickly

consider nφ = 30, nθ = 30 (smooth rotation!) ⇒ 900 frames per every combinations of the rest of
your parameters ⇒ this can easily grow to 10∼4.5 frames
not only will it take a very long time to render, but will use a lot of disk space as well ...

My suggestion: use nφ = 30, nθ = 1 and few other parameters in moderation

Litmus test: compare the size of the original dataset to the size of your Cinema database

Use fixed precision for all variables in the database, otherwise the sliders in pycinema will
become very choppy

Can easily script everything on an HPC cluster and submit as a batch job

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 18 / 19

https://bit.ly/45mknMw

Intro Viewers Creating databases Catalyst+Cinema

In-situ writing to a Cinema database via ParaView Catalyst

Watch our webinar “In-situ visualization with ParaView Catalyst2” from September 2022
https://bit.ly/vispages

1. Instrument your simulation code with the Catalyst library

2. Generate a representative dataset, e.g. ./simCode --output dataset-%04ts.vtpd
(if coded; otherwise, can create it by hand)

3. Load it into ParaView and create your visualization interactively

4. Apply Extractors | Image | PNG

5. File | Save Catalyst State to save it as extract-image.py

check "Generate Cinema specification to summarize generated extracts in a file named data.csv
under the Extracts Output Directory”

6. Make sure registrationName in the script matches the data channel name in the
simulation code

7. Run ./simCode extract-image.py to generate PNG images

WestDRI webinar - slides & files at https://bit.ly/45mknMw 2023-Oct-17 19 / 19

https://bit.ly/vispages
https://bit.ly/45mknMw

	Intro
	

	Viewers
	

	Creating databases
	

	Catalyst+Cinema
	

