
DataLad for Research Data Management

DataLad for Research Data Management

Ian Percel

University of Calgary, Research Computing Services

February 14, 2023

DataLad for Research Data Management

Outline

1 Research Data Management for Workflows

2 What is DataLad?

3 DataLad and HPC: The Serial Case

4 DataLad and HPC: The Distributed Case

5 Q&A

DataLad for Research Data Management

Research Data Management for Workflows

Data Organized by File Systems

Some data is collected directly into custom databases

Most data is organized using files and directories

This presentation is primarily about imposing order on data
captured as files organized in directories

DataLad for Research Data Management

Research Data Management for Workflows

Tracking Computational Workflows

A workflow is defined in terms of a network of dependent tasks,
task input data, and task output data

For our purposes, we will consider workflows (like those common in
neuroimaging and bioinformatics) that express all variable inputs
and outputs as files

Tracking workflows can be a particularly difficult task as the inputs
and outputs vary and the workflow can change over time

input 1

input 2

task 1
output

1
task 2

auxiliary
input 3

output
2

DataLad for Research Data Management

Research Data Management for Workflows

DataLad as Distributed Workflow Tracking Utility

Using a POSIX file system and log files alone make for a
clunky, ad hoc tracking system (most WfMS have awkward
and custom workflow tracking)

DataLad is a git annex-based utility that can naturally
represent different possible file organization schemes, data
parallel organizational units, dataset versioning and workflow
versioning using standard functionality

DataLad also makes it easy to share task sequences for
(re)producing data from inputs and/or data itself

In order to support parallel and distributed workflows, we will
need some ideas not in the DataLad Handbook (cf. FAIRly
Big Wagner et al 2022)

DataLad for Research Data Management

What is DataLad?

What is DataLad?

DataLad for Research Data Management

What is DataLad?

DataLad extends git and git-annex

Origins in a decentralized Version Control System (leads to a
lot of ideas about commits, parallel branches, and included
data sources)

git provides plumbing for tracking changes

Annexing allows for remote storage of any (or all) files while
keeping provenance information local

Overall very lightweight for what it does

DataLad for Research Data Management

What is DataLad?

DataLad Interface

DataLad uses Python to extend existing git and git-annex
functionality with simplified, data-oriented wrappers

Command Line or Python library (no GUI)

Can think of git/git-annex/DataLad as a Single-File Database
like SQLite (but it is a directory and everything under it)

git commands reference the nearest parent (that includes a
.git database) to your current working directory

Access provided by the git, git-annex, and datalad

executables

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Dataset Creation with datalad

create

$ datalad create geodlpipeline

create(ok): /Users/ian.percel/dlexamples/geophys/geodlpipeline (dataset)

$ ls -a geodlpipeline

. .. .datalad .git .gitattributes

$ cd geodlpipeline

$ datalad create -d . inputs

add(ok): inputs (file)

add(ok): .gitmodules (file)

save(ok): . (dataset)

create(ok): inputs (dataset)

action summary:

add (ok: 2)

create (ok: 1)

save (ok: 1)

$ ls -a

. .. .datalad .git .gitattributes .gitmodules inputs

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Commits with datalad save

$ cp -R ../ geopipeline/dags .

$ ls

dags inputs

$ ls -l dags

total 24

drwxr-xr-x@ 9 ian.percel staff 288 31 Jan 15:38 __pycache__

-rw-r--r--@ 1 ian.percel staff 4157 31 Jan 15:38 pipeline1.py

-rw-r--r--@ 1 ian.percel staff 3580 31 Jan 15:38 pipeline2.py

drwxr-xr-x@ 7 ian.percel staff 224 31 Jan 15:38 tasks

drwxr-xr-x@ 2 ian.percel staff 64 31 Jan 15:38 utils

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Commits with datalad save

$ datalad save

add(ok): dags/__pycache__/FAIRly.cpython-38.pyc (file)

...

add(ok): dags/pipeline1.py (file)

add(ok): dags/pipeline2.py (file)

[14 similar messages have been suppressed; disable with datalad.ui.suppress-similar-results=off]

save(ok): . (dataset)

action summary:

add (ok: 24)

save (ok: 1)

$ cp ../ geopipeline/inputs/OPUNAKE3D -PR3461 -FS.3D.Final_Stack.sgy inputs

$ cd inputs

$ datalad save

add(ok): OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy (file)

save(ok): . (dataset)

action summary:

add (ok: 1)

save (ok: 1)

$ ls -l

total 0

lrwxr-xr-x 1 ian.percel staff 136 31 Jan 15:40 OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy

-> .git/annex/objects/F2/0p/MD5E-s10402944680--f5656874eb2da17c08e6c90b58c372ad.sgy/MD5E...

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Branching with git checkout -b

$ git checkout -b test1

Switched to a new branch ‘test1’

$ touch example_addition

$ datalad save

add(ok): example_addition (file)

save(ok): . (dataset)

action summary:

add (ok: 1)

save (ok: 1)

$ ls

dags example addition inputs outputs

$ git checkout master

Switched to branch ‘master’

$ ls

dags inputs outputs

$ git branch -D test1

Deleted branch test1 (was 575eb96).

Branches allow for multiple different versions to coexist. However,
changing to another branch in a super dataset does not alter the
state of sub datasets.

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Editing, Annexes, and configurations
$ cd dags

$ touch example_addition

$ datalad save

...

$ echo "some new input" >> example_addition

-bash: example addition: Permission denied

$ git annex unlock example_addition

unlock example addition ok

(recording state in git...)

$ echo "some new input" >> example_addition

$ datalad save

add(ok): dags/example_addition (file)

save(ok): . (dataset)

action summary:

add (ok: 1)

save (ok: 1)

Passing the text2git configuration to via datalad create -c

text2git eliminates the need to unlock frequently edited or
executed files but precludes the use of remote storage. Generally,
text2git is a good option for your code base but data files usually
shouldn’t be edited once they are finished being written and so it is
appropriate to use an annex.

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Computational Reproducibility with
datalad run

$ git checkout -b runbranchtest

Switched to a new branch ‘runbranchtest’

$ cd outputs

$ git checkout -b runbranchtest

Switched to a new branch ‘runbranchtest’

$ dataset =/Users/ian.percel/dlexamples/geophys/geodlpipeline

$ input_dl=${dataset }/ inputs/OPUNAKE3D -PR3461 -FS.3D.Final_Stack.sgy
$ output_dl=${dataset }/ outputs/OPUNAKE3D -PR3461 -FS.3D.Final_Stack_smoothed.sgy
$ script=${dataset }/src/filter.py
$ sigma=7

$ datalad run -m "filter input segy" -d ${dataset} -i ${input_dl} -o ${output_dl} \

"python3 .11 ${script} {inputs} {outputs} ${sigma}"

[INFO] Making sure inputs are available (this may take some time)

[INFO] == Command start (output follows) =====

[INFO] == Command exit (modification check follows) =====

run(ok): /Users/ian.percel/dlexamples/geophys/geodlpipeline (dataset) [python3.11 ...src/filter.py...]

add(ok): OPUNAKE3D-PR3461-FS.3D.Final_Stack_smoothed.sgy (file)

save(ok): outputs (dataset)

add(ok): outputs (dataset)

add(ok): .gitmodules (file)

save(ok): . (dataset)

This generates a computationally actionable git log entry and
datalad rerun can be used to act on that

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Merging with git merge

$ pip3 uninstall apache -airflow

...

$ pip3 install prefect

$ git checkout -b transition_to_prefect

$ ls

pycache pipeline1.py pipeline1.py pipeline3.py tasks utils

$ datalad remove __pycache__ utils pipeline1.py pipeline2.py pipeline3.py tasks

$ vim dl_util.py

$ vim geo_util.py

$ vim pipeline.py

a couple hours pass

$ datalad save

...many lines of deletes and saves

$ git merge --strategy=ours master

Already up to date.

$ git checkout master

$ git merge transition_to_prefect

Updating 763f678..3230ed0

Fast-forward

.gitmodules | 4 ++++

dags/__pycache__/FAIRly.cpython-38.pyc | 1 -

...

dags/dl_util.py | 1 +

dags/geo_util.py | 1 +

dags/pipeline.py | 1 +

...

29 files changed, 8 insertions(+), 24 deletions(-)

DataLad for Research Data Management

What is DataLad?

DataLad Concepts: Saving to remote with datalad push

and git push

push sends data to a remote repository. In general, for an annexed
dataset

git push sends the git history only

datalad push --to <remote> --data nothing sends the
git history and references (not files) to a specified remote repo

datalad push --to <remote> --data anything sends
both git history and annexed files to a specified remote repo

After data is stored on a known remote, the actual file content can
be dropped locally to reduce local storage while retaining pointers
for relationships and the file can be pulled back later.

DataLad for Research Data Management

DataLad and HPC: The Serial Case

DataLad and HPC: The Serial(ish) Case

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Git and Parallelism

Git is not generally thread safe for .git database updates

There is a mechanism for limited buffering when multiple
non-conflicting concurrent* updates are committed

For two concurrently submitted updates that do conflict, one
is rejected and has to pull, merge, and push again

To use DataLad to track parallel processing of disjoint
datasets, some care needs to be taken

We will build from the sequential case to a simple parallel one over
the following examples

*throughout this presentation we use concurrent to mean that a process begins
execution before another related process has completed. That is, there is a
common time interval where both processes are attempting to do their work
and there is potential competition for resources like access to a git database

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Workflow Schemes: Strict Serial Pipeline

One job at a time (e.g. job array with one at a time execution)

Single DataLad database (on storage accessible to all nodes)

Sequential calls to DataLad run

input 1

input 2

task 1
output

1

.git DB
update1

task 2

.git DB
update2

output
2

With appropriate task serialization and one dataset at a time submission, there

will be no overlap here and everything is simple.

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Simple Workflow Parallelization with Datalad Tracking:
Data Parallel Smoothing in Geophysics

We will begin by examining our geophysics pipeline in prefect:

from p r e f e c t import f low , t a s k

import g e o u t i l as gu
import d l u t i l as du

@task
def r e a d d a t a t r c s (d a t a s e t p a t h , f i l e n a m e , l t r , i t r) :

r e t u r n gu . r e a d s e g y t r c s (d a t a s e t=d a t a s e t p a t h , f i l e n a m e=f i l e n a m e ,
l t r =l t r , i t r = i t r)

@task
def r e a d d a t a e x t r a s (f i l e n a m e) :

r e t u r n gu . r e a d s e g y e x t r a (f i l e n a m e=f i l e n a m e)

@task
def d a t a s e t s a v e (d a t a s e t) :

du . d a t a s e t s a v e r e c u r s i v e (d a t a s e t)
. . .

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Simple Workflow Parallelization with Datalad Tracking:
Data Parallel Smoothing in Geophysics

We will begin by examining our geophysics pipeline in prefect:

@flow
def t r a c e p r o c e s s i n g (d a t a s e t p a t h , i n p u t p a t h , o u t p u t p a t h , f i g u r e p a t h , tmp path ,
tmp out path , s c r i p t p a t h , t r a c e b a t c h s t a r t l i s t , t r a c e b a t c h l e n g t h) :

t r a c e d a t a f u t u r e s =[]
f o r i t r i n t r a c e b a t c h s t a r t l i s t :

t r a c e d a t a f u t u r e s . append (r e a d d a t a t r c s . submit (d a t a s e t p a t h , i n p u t p a t h ,
t r a c e b a t c h l e n g t h , i t r))

e x t r a f u t u r e s =[]
e x t r a f u t u r e s=r e a d d a t a e x t r a . submit (i n p u t p a t h)
#wai t on data read and tmp w r i t e
d a t a s e t s a v e . submit (d a t a s e t p a t h , w a i t f o r=t r a c e d a t a f u t u r e s)
. . .

i f n a m e == ” m a i n ” :
#se t pa ramete r s
. . .
#run p i p e l i n e
t r a c e p r o c e s s i n g (d a t a s e t , input , output , f i g u r e , tmp , tmp out , s c r i p t ,

i n i t r , l e n t r)

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Simple Workflow Parallelization with Datalad Tracking:
Data Parallel Smoothing in Geophysics

SEGY 1

read 1

.

.

.

read n

traces 1

.

.

.

traces n

datalad

save

.git DB
commit

DataLad for Research Data Management

DataLad and HPC: The Serial Case

Simple Workflow Parallelization with Datalad Tracking:
Data Parallel Smoothing in Geophysics

.

.

.

traces 1

traces n

smoothing

.

.

.

smoothing

smooth
traces 1

.

.

.

smooth
traces n

datalad

save

.

.

.

datalad

save

.git DB
commit

1

.

.

.

.git DB
commit

n

How do the parallel commits resolve? It depends on how big n is.

DataLad for Research Data Management

DataLad and HPC: The Serial Case

How do the parallel commits resolve?

Git has the ability to enforce interleaving semantics (arbitrary serial
ordering) up to some limit. Researchers on FAIRly Big Project have
found this limit to be around 1000 concurrent commits when things start
to get lost. For small numbers (i.e n < 10), we have direct evidence of
successful resolution:

14:09:49.155 | INFO | Flow run 'rich-boobook'

- Created task run 'process_trcs_dl-5' for task 'process_trcs_dl'

14:09:49.158 | INFO | Flow run 'rich-boobook' - Submitted task run 'process_trcs_dl-5' for execution.

processing traces with filter script

input .../geodlpipeline/tmp/OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy_1500_250.tmp

output(b4) .../geodlpipeline/tmp_out/OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy_1500_250.tmp.out

... some really scary warnings: "'' failed with exitcode 128",

"fatal: Unable to create '.git/index.lock': File exists.",

'Another git process seems to be running in this repository', ...time passes...

14:09:58.793 | INFO | Task run 'process_trcs_dl-5' - Finished in state Completed()

outlogs= [['input ../tmp/OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy_250_250.tmp',

'run(ok): /Users/ian.percel/dlexamples/geophys/geodlpipeline (dataset) ...',

'add(ok): tmp_out/OPUNAKE3D-PR3461-FS.3D.Final_Stack.sgy_0_250.tmp.out (file)',

... 'save(ok): . (dataset)']]

DataLad for Research Data Management

DataLad and HPC: The Serial Case

A Scheduled Pipeline Example: FSL for diffusion imaging
correction

For this new example, we need to submit tasks as jobs to a SLURM
scheduler because the tasks depend on specialized computing resources.

bvec
bval
nifti

eddy Outlier
Detection

Outlier Report,
Dropout Free

nifti, bval, bvec

topup

Distortion Correction

nifti with
unwarped b0

eddy Motion
Correction

Motion Corrected
nifti, bval, bvec

DataLad for Research Data Management

DataLad and HPC: The Serial Case

A Scheduled Pipeline Example: FSL eddy and topup

Script # Task # Command Resource Duration
1 1 fslmerge 1 cpu core < 1 min
1 2 bet 1 cpu core < 1 min
1 3 eddy cuda11.2 v100 GPU 25 min

2 1 fslroi 1 cpu core < 10 min
2 2 fslmerge 1 cpu core < 10 min
2 3 topup 1 cpu core 10 hours
2 4 fslmaths 1 cpu core < 10 min
2 5 bet 1 cpu core < 10 min

3 1 eddy cuda11.2 v100 GPU 25 min
3 2 fslroi 1 cpu core < 1 min
3 2 cut 1 cpu core < 1 min

DataLad for Research Data Management

DataLad and HPC: The Serial Case

A Scheduled Pipeline Example: FSL Eddy

Two timing estimates:

1 Three scripts run as one job on GPU node → 11 hour GPU
request per subject

2 GPU jobs run separately →

11 subjects per 5.5 hour GPU request for script 1
11 single-core job runs submitted in parallel (likely to schedule quickly,
run in 10 hours) for script 2
11 subjects per 5.5. hour GPU request for script 3 →
11 subjects/22hours of computing →
2 hours of wall-time per subject without accounting for scheduling delays
(only 1 hour of which is GPU time)

HPC scheduling with accurate resource requests can
maximize throughput and reduce time to schedule.

DataLad for Research Data Management

DataLad and HPC: The Serial Case

A Scheduled Pipeline Example: FSL Eddy

For a single subject, datalad run structure is trivial and slurm scripts can be
submit sequential steps in the pipeline.

#SBATCH --time =1:00:00

#SBATCH --mem =10G

#SBATCH -N1 -n1 -c1

#SBATCH --gres=gpu:1

topdir =...

subj =...

dataset=${topdir }/${subj}
coderepo =...

slurmrepo =...

container =...

apptainer exec --nv -B /project/dir ${container} \

datalad run -m "${subj} Outlier Detection" -d ${dataset} \

"bash ${coderepo }/ preprocessing_1.sh"

sbatch ${slurmrepo }/${subj}/ preprocessing_2.sh

This is no higher throughput than putting all three in one job. Only

improvement is better utilization of GPU nodes.

DataLad for Research Data Management

DataLad and HPC: The Serial Case

A Scheduled Pipeline Example: FSL Eddy

For parallel processing of subjects in the cpu-only stage (topup), datalad run

structure will get back to our concurrent datalad save problem.

#SBATCH --time =1:00:00

#SBATCH --mem =10G

#SBATCH -N1 -n1 -c1

#SBATCH --gres=gpu:1

topdir =...

subj_list =...

coderepo =...

slurmrepo =...

ccontainer =...

for subj in ${subj_list}
do

dataset=${topdir }/${subj}
apptainer exec --nv -B /project/dir ${container} \

datalad run -m "${subj} Outlier Detection" -d ${dataset} \

"bash ${coderepo }/ preprocessing_1.sh"

sbatch ${slurmrepo }/${subj}/ preprocessing_2.sh
done

This improves throughput and the 25 min offset in submit time may save

us from concurrency headaches.

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

DataLad and HPC: The Distributed Case

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

FAIRly Big

Important development in using DataLad as part of workflows
on HPC and HTC

https://www.biorxiv.org/content/10.1101/2021.10.

12.464122v1

Wagner, A.S., Waite, L.K., Wierzba, M. et al. FAIRly big: A
framework for computationally reproducible processing of
large-scale data. Sci Data 9, 80 (2022).
https://doi.org/10.1038/s41597-022-01163-2

https://github.com/psychoinformatics-de/

fairly-big-processing-workflow

The remainder of this talk will outline the main ideas for
implementing this strategy as they apply to job scheduled
computing.

https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
https://www.biorxiv.org/content/10.1101/2021.10.12.464122v1
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

Workflow Schemes: FAIRly Big Data Parallel WF

Several data parallel jobs running (potentially) simultaneously

Multiple ephemeral DataLad databases (one to track operations in
each job)

Central
DataLad

Repo

datalad

clone
· · · datalad

clone

Repo 1
Branch:

job-1

· · ·
Repo n
Branch:

job-n

Workflow on Subj 1
in Branch job-1

· · · Workflow on Subj n
in Branch job-n

Storage
Repo 1

... Storage
Repo n

datalad

push

· · ·

datalad

push

Repo 1
Branch:

job-1

· · ·
Repo n
Branch:

job-n

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

Workflow Schemes: FAIRly Big Data Parallel WF

Only concurrency bottleneck left is the git push

Still face concurrency challenges at this point, but the amount of
operations and data transfers to serialize is much smaller

Wagner et al. tackle this with a global file lock. File locks are
notoriously troublesome over NFS

Other approaches for interleaving are possible

Central
DataLad

Repo

git push · · · git push

Repo 1
Branch:

job-1

· · ·
Repo n
Branch:

job-n

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

Data Parallel Pipeline Example: FSL Eddy Outlier Removal

topdir =...

subj_list =...

source_root =...

target_root =...

coderepo =...

slurmrepo =...

centralrepo =...

container =...

for subj in ${subj_list}
do

dlsource=${source_root }/${subj}
datalad clone ${dlsource} ${topdir }/${subj}/ds
dataset=${topdir }/${subj}/ds

git checkout -b "job -${subj}"

apptainer exec --nv -B /project/dir ${container} \

datalad run -m "${subj} Outlier Detection" -d ${dataset} \

"bash ${coderepo }/ preprocessing_1.sh"

datalad push --to ${target_root }/${subj}

flock $dslockfile git push $centralrepo

sbatch ${slurmrepo }/${subj}/ preprocessing_2.sh
done

DataLad for Research Data Management

DataLad and HPC: The Distributed Case

Data Parallel Pipeline: Improvements left out

datalad contianers-run

Improved batch size optimization

Improve fine-grained history by recording individual tasks

automate git merge and git annex fsck

DataLad for Research Data Management

Q&A

Q&A

Questions?

DataLad for Research Data Management

Q&A

Git design features that impact DataLad performance

Git architecture uses a Content Addressable File System (CAFS)
written in C that is layered on top of local storage

For extremely large collections of files it becomes possible to have
hash sum value collisions

The working directory is expressed by git as symlinks to files stored
in a central CAFS

Versions of your project are expressed through trees of pointers to
centrally stored files

Extremely long (recorded) histories of tiny changes will hurt
performance and expand storage utilized to retain each version

Main Idea: choosing appropriate sizes for elements of your data
management design can mean the difference between DataLad being a
very efficient and flexible utility and DataLad being a clumsy and
inefficient one

	Research Data Management for Workflows
	What is DataLad?
	DataLad and HPC: The Serial Case
	DataLad and HPC: The Distributed Case
	Q&A

