

Essentials of High Performance Computing for New Users: A Practical Example Using Hydrological Models

Befekadu Taddesse Woldegiorgis & Marcos Cunha Cordeiro

October 31, 2023

Preview

• Why HPC

→ Make a case using a hydrological example

 Typical workflow for running a hydrological modelling job on HPC

Demonstration

Why HPC for Hydrological Modelling?

• Modelling exercises usually involve several steps

→Sensitivity analysis, parameterization, uncertainty quantification

Simulations typically require large computational resources

→e.g. Global sensitivity analysis

Requires a large sample size for convergence

• e.g., for $n_{pars} = 40$, $n_{simulations} = 84000$, and, one minute per simulation, ~60 days are required for serial sensitivity analysis

Why HPC ? (cont'd)

- Parallel computation is required for practical use
 - →Large memory and many CPUs may be required
 - Usually impossible to accomplish on local computers
 - →Using HPC is an optimum solution
 - e.g., Cedar cluster: up to 48 cores per node, 28 days
 - Multiple nodes can be run (independently) to finish jobs in short time

Workflow to Run a Job on HPC

Common steps

- →Acquire HPC cluster information →
- →Develop your script/code
- → Log into HPC cluster
- → Transferring files
- → Testing and submitting a job
- →Monitoring jobs and retrieving results

Digital Research Alliance of Canada num	nce de recherche érique du Canada English Français
Home Support-	
Welcome to the CCDB, your gateway to account, usage Advanced Research Computing platform provided by the (the Alliance) with its regional partners BC DRI Group, I Ontario, Calcul Québec and ACENET. In order to access our computational resources, users n this page for more information about our accounts.	And allocation information for the e Digital Research Alliance of Canada Please sign in Login:
© 2008-20	23 Digital Research Alliance of Canada email Support

Workflow to Run a Job on HPC (1/14)

🚞 mehariy

/home/mehariy/

Name

t.

📲 💼 Download 👻 🗾 Edit 👻 📈 🐘 Pro

🚞 CRHM_AB_BTW

CRHM_install_using_basfile

🚞 CRHM install using bashfile

📒 mehariy

Transferring files to HPC cluster

→Using WinSCP, FileZilla, Globus

		Session File protocol: SFTP Host name:	~	Port r	umber:
		cedar.computecanada.ca			22 🚔
		User name:	Passwo	rd:	
pert	ties 👻 🎽 New 🗸		i 🕂 I	V	ed 🔫
_	_ Ciza	Changed	Rights	Owner	
	5126	2022-10-12 3-48-33 DM	nights	root	
		2023-08-18 2:23:57 PM	rwxr-x	mehariv	
		2023-08-17 3:35:11 AM	rwxr-x	mehariy	
		Cogin		ose	Help

→Using the command prompt (PowerShell)

» 🕂 📄 🤘

Using the scp command

F: 🔻 📷 🕶 📉 🔹 📥 🖛 📥 👻 🔁 🔂 🔚

Bayesian_parameter_identifiability_scripts_and_outputs

🕽 Upload 👻 🗾 Edit 👻 🔀 🖬 Properties 👻

Eortran source codes and executables

F:\Archive\

Name

Manuscripts

Archive

📒 Beaver_Model

Fortran source codes and executables

scp -r F:\BCRC_project\HYPE_AB_BTW1 username@cedar.computecanada.ca:/scratch/username/HPC/

Sensitivity_theoretical

Five_parameter_Logistic_curve

Workflow to Run a Job on HPC (2/14)

•Logging into an HPC cluster using an SSH client

→Install Putty

• an SSH client that securely connects to the remote machine and displays the screen

Reputition Putty Configuration	? ×	
Category:	Basic options for your PuTTY session Specify the destination you want to connect to Host Name (or IP address) Port	Pour plus d'information lisez : https://docs.alliancecan.ca/wiki/Cedar Écrivez à support@tech.alliancecan.ca pour obtenir de l'aide ou rapporter un problème. ====================================
	22 Connection type: Raw Telnet Rlogin SSH Serial	Multifactor authentication is now available to all users. Please help us secure Canada's digital research by activating it for your account. More details available here: https://docs.alliancecan.ca/wiki/Multifactor_authentication If you need unattended connections, please contact our technical support at support@tech.alliancecan.ca before activating multifactor authentication.
Colours ⊂ Connection – Data – Proxy – Telnet – Rlogin ⊕ SSH	Default Settings Load Save Delete	Vous pouvez maintenant configurer l'authentification multifacteur pour votre com pte avec l'Alliance. Nous comptons sur votre participation pour protéger notre infrastructure de rech erche numérique. Pour plus d'information, consultez la page https://docs.alliancecan.ca/wiki/Mult ifactor_authentication/fr.
About Help	Serial Close window on exit: Always Never Only on clean exit out Help Open Cancel	Si votre projet nécessite des connexions automatisées, écrivez à support@tech.alliancecan.ca avant d'activer cette nouvelle fonctionnal ité. [mehariy@cedar5 ~]\$ []

Workflow to Run a Job on HPC (3/14)

•You're in. What now?

→Is the software you need available on the HPC cluster?

- Remember: HPC clusters run Linux!
- Common software available

✓ e.g., R, Python, etc.

module spider r/

→Load the software and install the required libraries from the HPC

module load r/4.2.1
R -e "remotes::install_local('/localPath/sensitivity_1.29.0.tar.gz', dependencies=T)"

Workflow to Run a Job on HPC (4/14)

 \rightarrow A high level scripting language (e.g. **R**, Python) is usually required

To call the software

e.g., hydrological model

system("myExecutable.exe")

To use available packages

e.g. for sensitivity analysis, optimization, parallelization of jobs, data manipulation, etc.

To post-process results

Workflow to Run a Job on HPC (5/14)

→Do you need a custom piece of software?

- Compilation might be required
 - ✓ For example, to compile a Fortran application

module load intel/2022.1.0

make -f makefile

Workflow to Run a Job on HPC (6/14)

Preparing the project directory

→Transfer (copy) all the files needed to successfully run your model

→Create subfolders for parallel computations

- Usually each process updates the parameters and writes to the output file
 ✓ Subfolders are required to avoid overwriting and errors
- Use a shell script to generate subfolders and create symbolic links
 - create symbolic links for repetitive files that do not update during a simulation
 - ✓ A symbolic link keeps a single copy of the input file and 'points' to original file
 - A symbolic link saves space

Workflow to Run a Job on HPC (7/14)

→Create "duplicateSubfolders.sh" in the main folder

	_
tor n in \$(seq 1 16)	
do	
mkdir "MdCrk\$n"	
touch "MdCrk\$n"/filedir.txt	
echo "\$(pwd)/MdCrk\$n/" > "MdCrk\$n"/filedir.txt	
<pre>ln -sf \$(pwd)/info.txt \$(pwd)/MdCrk\$n/info.txt</pre>	
ln -sf \$(pwd)/TMAXobs.txt \$(pwd)/MdCrk\$n/TMAXobs.txt	
ln -sf \$(pwd)/TMINobs.txt \$(pwd)/MdCrk\$n/TMINobs.txt	
ln -sf \$(pwd)/Tobs.txt \$(pwd)/MdCrk\$n/Tobs.txt	
ln -sf \$(pwd)/Pobs.txt \$(pwd)/MdCrk\$n/Pobs.txt	
ln -sf \$(pwd)/Hype_ParEdit.exe	xe
<pre>ln -sf \$(pwd)/HYPE_5_5_1_IE.exe \$(pwd)/MdCrk\$n/HYPE_5_5_1_IE</pre>	.exe
<pre>cp -r \$(pwd)/CropData.txt \$(pwd)/MdCrk\$n/CropData.txt</pre>	
done	

→Make it executable and execute the shell script

chmod +x duplicateSubfolders.sh && ./duplicateSubfolders.sh

Workflow to Run a Job on HPC (8/14)

→Running multiple Fortran executables for each process

- Using a shell script wrapper for each process
 - Passing default arguments to binaries or 3rd party apps. (e.g. remove unnecessary outputs)
 - Changing path and launch the executable(s)

/bin/bash	
ifying the bash path. /bin/bash` works eve	erywhere that has bash but /usr/bin/bash only works on a
/dev/null 2>&1	<pre># Equivqlent of #@echo off of Windows operating system</pre>
	# It is used to exit immediately if a command exits wit
<pre>cratch/mehariy/HPC_presentation/MdCrk1'</pre>	#Changes directory for each parallel process
_ParEdit.exe	# Run the parameter editor
	<pre>#catch the last PID (process identification number), he</pre>
PID #wait for command1, in background, t <mark>o</mark>	end
_5_5_1_IE.exe	
/dev/null 2>&1 cratch/mehariy/HPC_presentation/MdCrk1' _ParEdit.exe PID #wait for command1, in background, to _5_5_1_IE.exe	<pre># Equivalent of #@echo off of Windows operating sys # It is used to exit immediately if a command exits #Changes directory for each parallel process # Run the parameter editor #catch the last PID (process identification number) end</pre>

bfname_parEdit_sim<-as.character(paste0("./run_par_edit_and_run_the_model_",id,".sh"))
system(bfname_parEdit_sim)</pre>

Workflow to Run a Job on HPC (9/14)

• Testing the code before submitting a job

→Test run your code at a small scale

To avoid failing of jobs after a long queue

salloc --nodes=1 --ntasks-per-node=16 --mem=8G --time=00:30:00 --account=def-cordeiro salloc.sh

Workflow to Run a Job on HPC (10/14)

If your code doesn't run

→e.g., error returned for a parallel R code calling a Fortran app.
Error in { : task 1 failed - "cannot open the connection"
Calls: %dopar% -> <Anonymous>
Execution halted

```
no_cores <- 16
cl<-parallel:: makeCluster(no_cores)
registerDoParallel(cl)
clusterEvalQ(cl, {
   .libPaths("/home/mehariy/R/x86_64-pc-linux-gnu-library/4.2")
library(bigmemory, help, pos = 2, lib.loc = "/home/mehariy/R/x86_64-pc-linux-gnu-library/4.2")
})
for (i in seq(1,dim(par_set)[1]/no_cores)) {
   print(paste("Simulation",i*no_cores,"of",dim(par_set)[1],sep = " "))
   for (j in seq(1,no_cores,1)) {
     par_set_no_cores[j,] <- par_set[(i-1)*no_cores+j,]
   }
   paralle_runs <- foreach(id = 1:no_cores, .combine = rbind) %dopar%
     {
        bigmemory_shared_object_par <- attach.big.matrix("bigmemory_par_uncert_hydr_HPC_presntation.desc")
        bigmemory_shared_object_pred <- attach.big.matrix("bigmemory pred uncert hydr HPC presntation.desc")</pre>
```

Workflow to Run a Job on HPC (11/14)

```
→Debugging a parallel R code
```

reallel:: makeCluster(no_cores,outfile="")

```
Error in { : task 1 failed - "cannot open the connection"
Calls: %dopar% -> <Anonymous>
Execution halted
Error in unserialize(node$con) : error reading from connection
Calls: <Anonymous> ... doTryCatch -> recvData -> recvData.SOCKnode -> unserialize
Error in unserialize(node$con) : error reading from connection
Calls: <Anonymous> ... doTryCatch -> recvData -> recvData.SOCKnode -> unserialize
In addition: In addition: Warning message:
Warning message:
In file(file, "rt") :
In file(file, "rt") : cannot open file '/scratch/mehariy/HPC_presentation/Observed_Q_Meadow_Creek_AB.txt
Error in unserialize(node$con) : error reading from connection
```

Alternatively, you can serialize the job

```
for (i in seq(1,dim(par_set)[1]/no_cores)) {
    #paralle_runs <- foreach(id = 1:no_cores, .combine = rbind) %dopar%{
    id <- 1</pre>
```

Workflow to Run a Job on HPC (12/14)

• Submitting a job to the HPC cluster

→Preparing a submission script

- Define parameters in the HPC cluster
- Execute the job
 - Call the script that will run your software
 - R calls a hydrological model

Submission script >> runs the R script >> calls the hydrological model

Workflow to Run a Job on HPC (13/14)

• Submitting a job to the HPC cluster

#!/bin/bash
#SBATCHnodes=1
#SBATCHtasks-per-node=16
#SBATCHmem=8G
#SBATCHtime=0-00:30:00
#SBATCHjob-name=HPC_job
#SBATCHaccount=def-cordeiro
echo "Starting run at: `date`"
module load r/4.2.1
echo "r/4.2.1 is loaded"
echo "Working in directory \$PWD"
echo "Started running the job"
R CMD BATCH HPC_demonstration.R
echo "Program finished with exit code \$? at: `date`"
exit 0

sbatch submitJob.sh

Workflow to Run a Job on HPC (14/14)

Check the status of (a) job(s)

squeue -u YourUsername

→Helps to identify whether a job has started or pending (failed)

scontrol show job 14761467

- →Helps to know when a specific job in a queue starts
- →Helps to distinguish the path from which a specific job was submitted

Demonstration

Questions ?

Befekadu.woldegiorgis@umanitoba.ca

The parallel computing job

