
Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel programming in Julia

ALEX RAZOUMOV
alex.razoumov@westgrid.ca

MARIE-HÉLÈNE BURLE
marie.burle@westgrid.ca

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 1 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio
please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westgrid.ca

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 2 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

2021 IEEE Vis Contest

https://scivis2021.netlify.app

Co-hosting 2021 SciVis Contest with IEEE Vis

Dataset: 3D simulation of Earth’s mantle
convection covering 500 Myrs of geological time

Contest is open to anyone (no research affiliation
necessary), dataset available now

Wanted: pretty pictures + problem-specific
analysis of descending / rising flows

Prizes + opportunity to present

July 31, 2021 - deadline for Contest entry
submissions

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 3 / 46

https://scivis2021.netlify.app
https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel Julia

We teach serial Julia in our courses, also see https://git.io/Jtdge

Today’s topic: what unique features does Julia bring to parallel programming?

Targeting both multi-core PCs and distributed-memory clusters

4 Base.Threads

4 Distributed.jl

4 ClusterManagers.jl

4 DistributedArrays.jl

4 SharedArrays.jl

- Dagger.jl
- Concurrent function calls (“lightweight threads” for

suspending/resuming computations)
- MPI.jl
- MPIArrays.jl
- LoopVectorization.jl
- FLoops.jl
- ThreadsX.jl
- Transducers.jl
- GPU-related packages

...
WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 4 / 46

https://git.io/Jtdge
https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Multi-threading

Let’s start Julia by typing “julia” in bash:
using Base.Threads # otherwise will have to preface all functions/macros with ‘Threads.‘
nthreads() # by default, Julia starts with a single thread of execution

If instead we start with “julia -t 4”
(or “JULIA_NUM_THREADS=4 julia” prior to 1.5):
using Base.Threads
nthreads() # now 4 threads

@threads for i=1:10 # parallel for loop using all threads
println("iteration $i on thread $(threadid())")

end

a = zeros(10)
@threads for i=1:10

a[i] = threadid() # should be no collision: each thread writes to its own part
end
a

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 5 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Filling an array: perfect parallel scaling1

@threads are well-suited for shared-memory data parallelism without any reduction

nthreads() # still running 4 threads

n = Int64(1e9)
a = zeros(n);

@time for i in 1:n
a[i] = log10(i)

end
runtime 129.03s 125.66s 125.60s

using Base.Threads
@time @threads for i in 1:n

a[i] = log10(i)
end
runtime 36.99s 25.75s 30.33s (4X speedup)

1
Whether I am doing this inside or outside a function is not the point here ... besides, you don’t know (more on this in slide 8)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 6 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Let’s add reduction: summation
∑106

i=1 i via threads

This code is not thread-safe:
total = 0
@threads for i = 1:Int(1e6)

global total += i
end
println("total = ", total)

race condition: multiple threads updating the same variable at the same time
a new result every time
unfortunately, @threads does not have built-in reduction support

Let’s make it thread-safe (one of many solutions):
total = Atomic{Int64}(0)
@threads for i in 1:Int(1e6)

atomic_add!(total, i)
end
println("total = ", total[])

this code is supposed to be much slower: threads waiting for others to finish updating the variable
atomic variables not really designed for this type of usage

⇒ let’s do some benchmarking

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 7 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Let’s add reduction: summation
∑106

i=1 i via threads

This code is not thread-safe:
total = 0
@threads for i = 1:Int(1e6)

global total += i
end
println("total = ", total)

race condition: multiple threads updating the same variable at the same time
a new result every time
unfortunately, @threads does not have built-in reduction support

Let’s make it thread-safe (one of many solutions):
total = Atomic{Int64}(0)
@threads for i in 1:Int(1e6)

atomic_add!(total, i)
end
println("total = ", total[])

this code is supposed to be much slower: threads waiting for others to finish updating the variable
atomic variables not really designed for this type of usage

⇒ let’s do some benchmarking

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 7 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Benchmarking in Julia

Running the loop in the global scope
(without a function):

direct summation
@time includes JIT compilation time (marginal
here)
total is a global variable to the loop

n = Int64(1e9)

total = Int64(0)

@time for i in 1:n

total += i

end

println("total = ", total)

serial runtime: 92.72s 92.75s 91.05s

Packaging the loop in the local scope of
a function:

Julia replaces the loop with the formula

n(n + 1)/2 8we don’t want this!
first function call results in compilation,

4@time here includes only runtime

function quick(n)

total = Int64(0)

@time for i in 1:n

total += i

end

return(total)

end

quick(10)

println("total = ", quick(Int64(1e9)))

serial runtime: 0.000000s + correct result

println("total = ", quick(Int64(1e15)))

serial runtime: 0.000000s + incorrect result

due to limited Int64 precision

1. force computation ⇒ compute something more complex than simple integer summation
2. exclude compilation time ⇒ package into a function + precompile it
3. make use of optimizations for type stability and other factors ⇒ package into a function
4. time only the CPU-intensive loops
5. for shorter runs (ms) may want to use @btime from BenchmarkTools

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 8 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Slowly convergent series

The traditional harmonic series

∞∑
k=1

1
k diverges

However, if we omit the terms whose denominators in decimal notation contain any digit or
string of digits, it converges, albeit very slowly (Schmelzer & Baillie 2008), e.g.

∞∑
k=1

no “9”

1
k = 22.9206766192...

∞∑
k=1

no even digits

1
k = 3.1717654734...

∞∑
k=1

no string “314”

1
k = 2299.8297827675...

For no denominators with “9”, assuming linear convergence in the log-log space, we would
need 1073 terms to reach 22.92, and almost 10205 terms to reach 22.92067661

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 9 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Checking for substrings in Julia

Checking for a substring is one possibility
if !occursin("9", string(i))

<add the term>
end

Integer exclusion is ∼4X faster (thanks to Paul Schrimpf from the Vancouver School of Economics @UBC)

function digitsin(digits::Int, num) # decimal representation of ‘digits‘ has N digits

base = 10

while (digits ÷ base > 0) # ‘digits ÷ base‘ is same as ‘floor(Int, digits/base)‘

base *= 10

end

‘base‘ is now the first Int power of 10 above ‘digits‘, used to pick last N digits from ‘num‘

while num > 0

if (num % base) == digits # last N digits in ‘num‘ == digits

return true

end

num ÷= 10 # remove the last digit from ‘num‘

end

return false

end

if !digitsin(9, i)

<add the term>

end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 10 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Timing the summation: serial code

Let’s switch to 109 terms, start with the serial code:
function slow(n::Int64, digits::Int)

total = Int64(0)
@time for i in 1:n

if !digitsin(digits, i)
total += 1.0 / i

end
end
println("total = ", total)

end

slow(10, 9)
slow(Int64(1e9), 9) # total = 14.2419130103833

$ julia serial.jl # serial runtime: 22.00s 21.85s 22.03s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 11 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Timing the summation: using an atomic variable

Threads are waiting for the atomic variable to be released ⇒ should be slow:
using Base.Threads
function slow(n::Int64, digits::Int)

total = Atomic{Float64}(0)
@time @threads for i in 1:n

if !digitsin(digits, i)
atomic_add!(total, 1.0 / i)

end
end
println("total = ", total[])

end

slow(10, 9)
slow(Int64(1e9), 9) # total = 14.2419130103833

$ julia atomicThreads.jl # runtime on 1 thread: 25.66s 26.56s 27.26s
$ julia -t 4 atomicThreads.jl # runtime on 4 threads: 17.35s 18.33s 18.86s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 12 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Timing the summation: an alternative thread-safe implementation

Each thread is updating its own sum, no waiting ⇒ should be faster:
using Base.Threads
function slow(n::Int64, digits::Int)

total = zeros(Float64, nthreads())
@time @threads for i in 1:n

if !digitsin(digits, i)
total[threadid()] += 1.0 / i

end
end
println("total = ", sum(total))

end
slow(10, 9)
slow(Int64(1e9), 9) # total = 14.2419130103833

$ julia separateSums.jl # runtime on 1 thread: 24.20s 24.52s 23.94s
$ julia -t 4 separateSums.jl # runtime on 4 threads: 10.71s 10.81s 10.72s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 13 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Timing the summation: using heavy loops
Might be the fastest of the three parallel implementations:
using Base.Threads

function slow(n::Int64, digits::Int)

numthreads = nthreads()

threadSize = floor(Int64, n/numthreads) # number of terms per thread (except last thread)

total = zeros(Float64, numthreads);

@time @threads for threadid in 1:numthreads

local start = (threadid-1)*threadSize + 1

local finish = threadid < numthreads ? (threadid-1)*threadSize+threadSize : n

println("thread $threadid: from $start to $finish");

for i in start:finish

if !digitsin(digits, i)

total[threadid] += 1.0 / i

end

end

end

println("total = ", sum(total))

end

slow(10, 9)

slow(Int64(1e9), 9) # total = 14.2419130103833

$ julia heavyThreads.jl # runtime on 1 thread: 24.05s 24.67s 24.75s
$ julia -t 4 heavyThreads.jl # runtime on 4 threads: 9.93s 10.21s 10.24s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 14 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Timing the summation: using heavy loops (cont.)

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=...
#SBATCH --mem-per-cpu=3600M
#SBATCH --time=00:10:00
module load StdEnv/2020 julia/1.5.2
julia -t $SLURM_CPUS_PER_TASK heavyThreads.jl

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 15 / 46

Cedar (avg. over 3 runs):
code computing
serial 47.8s

2 cores 27.5s
4 cores 15.9s
8 cores 18.5s
16 cores 8.9s

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing with multiple Unix processes (MPI tasks)

Distributed provides multiprocessing environment to allow programs to run on
multiple processors in shared or distributed memory

Julia’s implementation of message passing is one-sided, typically with higher-level
operations like calls to user functions on a remote process

a remote call is a request by one processor to call a function on another processor; returns a
remote/future reference

the processor that made the call proceeds to its next operation while the remote call is computing

you can obtain the remote result with fetch()

Single control process + multiple worker processes

Processes pass information via messages underneath, not via shared memory

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 16 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Launching worker processes

1. From the terminal
$ julia -p 8 # open REPL, start Julia control process + 8 worker processes
$ julia -p 8 code.jl # run the code with Julia control process + 8 worker processes

2. From a job submission script
#!/bin/bash
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=3600M
#SBATCH --time=00:10:00
srun hostname -s > hostfile # parallel I/O
sleep 5
julia --machine-file ./hostfile ./code.jl

3. From Julia
using Distributed
addprocs(8)

Important: use either (1) or (3) with Slurm on CC clusters as well: usually no need for a machine file

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 17 / 46

All three methods launch
workers ⇒ combining them
will result in 16 (or 24!)
workers

Select one method and use it

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Process control

Let’s start Julia with “julia” (single control process):
using Distributed
addprocs(4) # add 4 worker processes

println("number of cores = ", nprocs()) # 5 cores
println("number of workers = ", nworkers()) # 4 workers
workers() # list worker IDs

rmprocs(2, 3, waitfor=0) # remove processes 2 and 3 immediately
workers()

for i in workers() # remove all workers
t = rmprocs(i, waitfor=0)
wait(t) # wait for this operation to finish

end
workers()

interrupt() # will do the same (remove all workers)
addprocs(4) # add 4 new worker processes (notice the new IDs!)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 18 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

@everywhere

Let’s restart Julia with “julia” (single control process):
using Distributed
addprocs(4) # add 4 worker processes

@everywhere function showid() # define the function everywhere
println("my id = ", myid())

end
showid() # run the function on the control process
@everywhere showid() # run the function on the control process + all workers

x = 5 # local (control process only)
@everywhere println(x) # get errors: x is not defined elsewhere

@everywhere does not capture any local variables,
unlike @spawnat in the next slide

@everywhere println($x) # use the value of ‘x‘ from the control process

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 19 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

@spawnat

a=12
@spawnat 2 println(a) # will print 12 from worker 2

What @spawnat does here:
1. pass the namespace of local variables to worker 2
2. spawn function execution on worker 2
3. return a Future handle (referencing this running instance) to the control process
4. return REPL to the control process (while the function is running on worker 2)

a = 12
@spawnat 2 a+10 # Future returned but no visible calculation

r = @spawnat 2 a+10
typeof(r)
fetch(r) # get the result from the remote function; this will pause

the control process until the result is returned

fetch(@spawnat 2 a+10) # combine both in one line; the control process will pause
@fetchfrom 2 a+10 # shorter notation; exactly the same as the previous command

r = @spawnat :any log10(a) # start running on one of the workers
fetch(r)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 20 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

@spawnat

a=12
@spawnat 2 println(a) # will print 12 from worker 2

What @spawnat does here:
1. pass the namespace of local variables to worker 2
2. spawn function execution on worker 2
3. return a Future handle (referencing this running instance) to the control process
4. return REPL to the control process (while the function is running on worker 2)

a = 12
@spawnat 2 a+10 # Future returned but no visible calculation

r = @spawnat 2 a+10
typeof(r)
fetch(r) # get the result from the remote function; this will pause

the control process until the result is returned

fetch(@spawnat 2 a+10) # combine both in one line; the control process will pause
@fetchfrom 2 a+10 # shorter notation; exactly the same as the previous command

r = @spawnat :any log10(a) # start running on one of the workers
fetch(r)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 20 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Back to the slow series

Let’s restart Julia with “julia -p 2” (control process + 2 workers):
using Distributed

@everywhere function digitsin(digits::Int, num)
base = 10
while (digits ÷ base > 0)

base *= 10
end
while num > 0

if (num % base) == digits
return true

end
num ÷= 10

end
return false

end

slow(10, 9)
slow(Int64(1e9), 9) # serial run: total = 14.2419130103833, 25.0s 24.7s 26.2s
@everywhere slow(Int64(1e9), 9) # runs on 3 (control + 2 workers) cores simultaneously, 32.9s+32.6s+32.7s,

(with ~33s wallclock time) but each core performs the same calculation ...

Question: how long will the following code (last line) take?
addprocs(2) # for the total of 4 workers
>>> redefine digitsin() and slow() everywhere
@everywhere slow(Int64(1e9), 9)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 21 / 46

@everywhere function slow(n::Int64, digits::Int)
total = Int64(0)
@time for i in 1:n

if !digitsin(digits, i)
total += 1.0 / i

end
end
println("total = ", total)

end

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Back to the slow series

Let’s restart Julia with “julia -p 2” (control process + 2 workers):
using Distributed

@everywhere function digitsin(digits::Int, num)
base = 10
while (digits ÷ base > 0)

base *= 10
end
while num > 0

if (num % base) == digits
return true

end
num ÷= 10

end
return false

end

slow(10, 9)
slow(Int64(1e9), 9) # serial run: total = 14.2419130103833, 25.0s 24.7s 26.2s
@everywhere slow(Int64(1e9), 9) # runs on 3 (control + 2 workers) cores simultaneously, 32.9s+32.6s+32.7s,

(with ~33s wallclock time) but each core performs the same calculation ...

Question: how long will the following code (last line) take?
addprocs(2) # for the total of 4 workers
>>> redefine digitsin() and slow() everywhere
@everywhere slow(Int64(1e9), 9)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 21 / 46

@everywhere function slow(n::Int64, digits::Int)
total = Int64(0)
@time for i in 1:n

if !digitsin(digits, i)
total += 1.0 / i

end
end
println("total = ", total)

end

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing our slow series

Let’s restart Julia with “julia” (single control process):
using Distributed
addprocs(2) # add 2 worker processes
workers()

>>> redefine digitsin() everywhere

@everywhere function slow(n::Int, digits::Int, taskid, ntasks) # two additional arguments
println("running on worker ", myid())
total = 0.
@time for i in taskid:ntasks:n # partial sum with a stride ‘ntasks‘

if !digitsin(digits, i)
total += 1. / i

end
end
return(total)

end

a = @spawnat :any slow(Int64(1e9), 9, 1, 2)
b = @spawnat :any slow(Int64(1e9), 9, 2, 2)
print("total = ", fetch(a) + fetch(b)) # 14.241913010372754, simultaneous 11.57s+12.90s

2X speedup!
Different order of summation ⇒ slightly different numerical result
Not scalable: only limited to a small number of sums each spawned with its own Future reference

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 22 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing our slow series

Let’s restart Julia with “julia” (single control process):
using Distributed
addprocs(2) # add 2 worker processes
workers()

>>> redefine digitsin() everywhere

@everywhere function slow(n::Int, digits::Int, taskid, ntasks) # two additional arguments
println("running on worker ", myid())
total = 0.
@time for i in taskid:ntasks:n # partial sum with a stride ‘ntasks‘

if !digitsin(digits, i)
total += 1. / i

end
end
return(total)

end

a = @spawnat :any slow(Int64(1e9), 9, 1, 2)
b = @spawnat :any slow(Int64(1e9), 9, 2, 2)
print("total = ", fetch(a) + fetch(b)) # 14.241913010372754, simultaneous 11.57s+12.90s

2X speedup!
Different order of summation ⇒ slightly different numerical result
Not scalable: only limited to a small number of sums each spawned with its own Future reference

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 22 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Solution 1: use an array of Future references

We could create an array (using array comprehension) of Future references and then up add
their respective results:

r = [@spawnat p slow(Int64(1e9), 9, i, nworkers()) for (i,p) in enumerate(workers())]
print("total = ", sum([fetch(r[i]) for i in 1:nworkers()]))
runtime with 2 simultaneous processes: 10.26+12.11s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 23 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Solution 2: parallel for loop with summation reduction

There is actually a simpler solution:

using Distributed

addprocs(2)

@everywhere function digitsin(digits::Int, num)

base = 10

while (digits ÷ base > 0)

base *= 10

end

while num > 0

if (num % base) == digits

return true

end

num ÷= 10

end

return false

end

function slow(n::Int64, digits::Int)

@time total = @distributed (+) for i in 1:n

!digitsin(digits, i) ? 1.0 / i : 0

end

println("total = ", total);

end

slow(10, 9)

slow(Int64(1e9), 9) # total = 14.241913010399013

$ julia parallelFor.jl # with 2 processes: 10.82s 11.34s 11.40s
$ julia parallelFor.jl # with 4 processes: 9.48s 10.37s 9.62s (changing to addprocs(4))

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 24 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel for on Cedar

#SBATCH --ntasks=... # number of MPI tasks
#SBATCH --cpus-per-task=1
#SBATCH --nodes=1-1 # change process distribution across nodes
#SBATCH --mem-per-cpu=3600M
#SBATCH --time=0:5:0
#SBATCH --account=...
module load StdEnv/2020 julia/1.5.2
echo $SLURM_NODELIST
comment out addprocs() in the code
julia -p $SLURM_NTASKS parallelFor.jl

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 25 / 46

Cedar (avg. over 3 runs):
code computing
serial 48.2s

2 cores, same node 42.8s
4 cores, same node 12.2s
8 cores, same node 7.6s

16 cores, same node 6.8s
32 cores, same node 2.0s

32 cores across 6 nodes 11.3s

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Solution 3: use pmap to map arguments to processes

using Distributed

addprocs(2)

@everywhere function digitsin(digits::Int, num)

base = 10

while (digits ÷ base > 0)

base *= 10

end

while num > 0

if (num % base) == digits

return true

end

num ÷= 10

end

return false

end

@everywhere function slow((n, digits, taskid, ntasks))

the argument is now a tuple

println("running on worker ", myid())

total = 0.0

for i in taskid:ntasks:n # partial sum

if !digitsin(digits, i)

total += 1.0 / i

end

end

return(total)

end

slow((10, 9, 1, 1))

package arguments in a tuple

nw = nworkers()

args = [(Int64(1e9),9,j,nw) for j in 1:nw]

array of tuples to be mapped to workers

println("total = ", sum(pmap(slow, args)))

launches the function on each worker

sum(pmap(x->slow(x), args)) # alternative syntax

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 26 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Optional integration with Slurm
https://github.com/JuliaParallel/ClusterManagers.jl

To integrate Slurm launcher/flags into your Julia code

Convenience, but not a necessity

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 27 / 46

https://github.com/JuliaParallel/ClusterManagers.jl
https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

DistributedArrays

] add DistributedArrays

A DArray is split across several processes (set of workers), either on the same or
multiple nodes

this allows use of arrays that are too large to fit in memory on one node

each process operates on the part of the array it owns ⇒ very natural way to achieve parallelism
for large problems

Each worker can read any elements using their global indices

Each worker can write only to the part that it owns ⇒ automatic parallelism and
safe execution

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 28 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

DistributedArrays (cont.)
Code for presenter in learning/distributedArrays.jl

using Distributed
addprocs(4)
@everywhere using DistributedArrays

n = 10
data = dzeros(Float32, n, n); # distributed 2D array of 0’s

data # can access the entire array
data[1,1], data[n,5] # can use global indices
data.dims # global dimensions (10, 10)
data[1,1] = 1.0 # error: cannot write from the control process!
@spawnat 2 data.localpart[1,1] = 1.5 # success: can write locally

for i in workers()
@spawnat i println(localindices(data))

end

@everywhere function fillLocalBlock(data)
h, w = localindices(data)
for i in collect(h)

iLocal = i - h.start + 1
for j in collect(w)

jLocal = j - w.start + 1
data.localpart[iLocal,jLocal] = i + j

end
end

end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 29 / 46

for i in workers()

@spawnat i fillLocalBlock(data)

end

data # now the distributed array is filled

@fetchfrom 2 data.localpart # stored on worker 2

minimum(data), maximum(data) # parallel reduction

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

One-liners to generate distributed arrays

dzeros(100,100,100) # 100^3 distributed array of 0’s
dones(100,100,100) # 100^3 distributed array of 1’s
drand(100,100,100) # 100^3 uniform [0,1]
drandn(100,100,100) # 100^3 drawn from a Gaussian distribution
dfill(1.5,100,100,100) # 100^3 fixed value

dzeros((10,10), workers()[1:4], [2,2]) # 10^2, use first 4 workers,
2x2 array decomposition across processes

e = fill(1.5, (10,10)) # local array
de = distribute(e) # distribute ‘e‘ across all workers

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 30 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Building a distributed array from local pieces
Example adapted from Baolai Ge’s presentation

Let’s restart Julia with “julia” (single control process):
using Distributed
addprocs(4)
using DistributedArrays # important to load this after addprocs()
@everywhere using LinearAlgebra
@everywhere function tridiagonal(n)

la = zeros(n,n)
la[diagind(la,0)] .= 2. # diagind(la,k) provides indices of the kth diagonal of a matrix
la[diagind(la,1)] .= -1.
la[diagind(la,-1)] .= -1.
return la

end
@everywhere function upperRight(n)

la = zeros(n,n)
la[n,1] = -1.
return la

end
@everywhere function lowerLeft(n)

la = zeros(n,n)
la[1,n] = -1.
return la

end
d11 = @spawnat 2 tridiagonal(4)
d12 = @spawnat 3 lowerLeft(4)
d21 = @spawnat 4 upperRight(4)
d22 = @spawnat 5 tridiagonal(4)
d = DArray(reshape([d11 d12 d21 d22],(2,2))) # create a distributed 8x8 matrix on a 2x2 process grid

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 31 / 46

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Julia set (no relation to Julia language!)

A set of points on the complex plane that remain bound under infinite recursive
transformation f (z). We will use the traditional form f (z) = z2 + c, where c is a complex
constant.

1. pick a point z0 ∈ C

2. compute iterations zi+1 = z2
i + c until |zi| > 4

3. ξ(z0) is the iteration number at which |zi| > 4

4. limit max iterations at 255

ξ(z0) = 255 ⇒ z0 is a stable point

the quicker a point diverges, the lower its ξ(z0) is

5. plot ξ(z0) for all z0 in a rectangular region
−1 <= Re(z0) <= 1, −1 <= Im(z0) <= 1

c = 0.355 + 0.355i
For different c we will get very different fractals.

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 32 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Demo: computing and plotting the Julia set for c = 0.355 + 0.355i
Code for presenter in juliaSet/juliaSetSerial.jl

using ProgressMeter, NetCDF

function pixel(i, j, width, height, c, zoomOut)

z = (2*(j-0.5)/width-1)+(2*(i-0.5)/height-1)im

rescale to -1:1 in the complex plane

z *= zoomOut

for i = 1:255

z = z^2 + c

if abs(z) >= 4

return i

end

end

return 255

end

n = Int(8e3)

height, width = n, n

c, zoomOut = 0.355 + 0.355im, 1.2

println("Computing Julia set ...")

data = zeros(Float32, height, width);

@showprogress for i in 1:height, j in 1:width

data[i,j] = pixel(i, j, width, height, c, zoomOut)

end

println("Writing NetCDF ...")

filename = "test.nc"

isfile(filename) && rm(filename)

nccreate(filename, "xi", "x", collect(1:height), "y",

collect(1:width), t=NC_FLOAT,

mode=NC_NETCDF4, compress=9);

ncwrite(data, filename, "xi");

We experimented with plotting with Plots and ImageView, but these were very slow ...
Instead, saving to NetCDF and plotting in ParaView

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 33 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the Julia set

We have a large array ⇒ let’s use DistributedArrays and compute it in parallel
< using ProgressMeter, NetCDF

> using NetCDF

> @everywhere using Distributed, DistributedArrays

< function pixel(i, j, width, height, c, zoomOut)

> @everywhere function pixel(i, j, width, height, c, zoomOut)

> @everywhere function fillLocalBlock(data, width, height, c, zoomOut)

> h, w = localindices(data)

> for i in collect(h)

> iLocal = i - h.start + 1

> for j in collect(w)

> jLocal = j - w.start + 1

> data.localpart[iLocal,jLocal] = pixel(i, j, width, height, c, zoomOut)

> end

> end

> end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 34 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the Julia set

We have a large array ⇒ let’s use DistributedArrays and compute it in parallel
< using ProgressMeter, NetCDF

> using NetCDF

> @everywhere using Distributed, DistributedArrays

< function pixel(i, j, width, height, c, zoomOut)

> @everywhere function pixel(i, j, width, height, c, zoomOut)

> @everywhere function fillLocalBlock(data, width, height, c, zoomOut)

> h, w = localindices(data)

> for i in collect(h)

> iLocal = i - h.start + 1

> for j in collect(w)

> jLocal = j - w.start + 1

> data.localpart[iLocal,jLocal] = pixel(i, j, width, height, c, zoomOut)

> end

> end

> end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 34 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the Julia set (cont.)

< data = zeros(Float32, height, width);

< @showprogress for i in 1:height, j in 1:width

< data[i,j] = pixel(i, j, width, height, c, zoomOut)

> data = dzeros(Float32, height, width); # distributed 2D array of 0’s

> @time @sync for i in workers()

> @spawnat i fillLocalBlock(data, width, height, c, zoomOut)

> nonDistributed = zeros(Float32, height, width);

> nonDistributed[:,:] = data[:,:]; # ncwrite does not accept DArray type

>

< ncwrite(data, filename, "xi");

> ncwrite(nonDistributed, filename, "xi");

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 35 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel Julia set code
using NetCDF
@everywhere using Distributed, DistributedArrays

@everywhere function pixel(i, j, width, height, c, zoomOut)
z = (2*(j-0.5)/width-1)+(2*(i-0.5)/height-1)im

rescale to -1:1 in the complex plane
z *= zoomOut
for i = 1:255

z = z^2 + c
if abs(z) >= 4

return i
end

end
return 255

end
n = Int(8e3)
height, width, c, zoomOut = n, n, 0.355 + 0.355im, 1.2
@everywhere function fillLocalBlock(data,width, height,

c, zoomOut)
h, w = localindices(data)
for i in collect(h)

iLocal = i - h.start + 1
for j in collect(w)

jLocal = j - w.start + 1
data.localpart[iLocal,jLocal] =

pixel(i, j, width, height, c, zoomOut)
end

end
end

println("Computing Julia set ...")
data = dzeros(Float32, height, width);
distributed 2D array of 0’s
@time @sync for i in workers()

@spawnat i fillLocalBlock(data, width, height,
c, zoomOut)

end

nonDistributed = zeros(Float32, height, width);
nonDistributed[:,:] = data[:,:];
ncwrite does not accept DArray type

println("Writing NetCDF ...")
filename = "test.nc"
isfile(filename) && rm(filename)
nccreate(filename, "xi", "x", collect(1:height), "y",

collect(1:width), t=NC_FLOAT,
mode=NC_NETCDF4, compress=9);

ncwrite(nonDistributed, filename, "xi");

$ julia juliaSetSerial.jl # serial runtime: 37s 37s

$ julia -p 1 juliaSetDistributedArrays.jl # serial runtime: 28.2s 31.6s 32.3s

$ julia -p 2 juliaSetDistributedArrays.jl # with 2 processes: 14.9s 14.9s 15.8s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 36 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel Julia set code
using NetCDF
@everywhere using Distributed, DistributedArrays

@everywhere function pixel(i, j, width, height, c, zoomOut)
z = (2*(j-0.5)/width-1)+(2*(i-0.5)/height-1)im

rescale to -1:1 in the complex plane
z *= zoomOut
for i = 1:255

z = z^2 + c
if abs(z) >= 4

return i
end

end
return 255

end
n = Int(8e3)
height, width, c, zoomOut = n, n, 0.355 + 0.355im, 1.2
@everywhere function fillLocalBlock(data,width, height,

c, zoomOut)
h, w = localindices(data)
for i in collect(h)

iLocal = i - h.start + 1
for j in collect(w)

jLocal = j - w.start + 1
data.localpart[iLocal,jLocal] =

pixel(i, j, width, height, c, zoomOut)
end

end
end

println("Computing Julia set ...")
data = dzeros(Float32, height, width);
distributed 2D array of 0’s
@time @sync for i in workers()

@spawnat i fillLocalBlock(data, width, height,
c, zoomOut)

end

nonDistributed = zeros(Float32, height, width);
nonDistributed[:,:] = data[:,:];
ncwrite does not accept DArray type

println("Writing NetCDF ...")
filename = "test.nc"
isfile(filename) && rm(filename)
nccreate(filename, "xi", "x", collect(1:height), "y",

collect(1:width), t=NC_FLOAT,
mode=NC_NETCDF4, compress=9);

ncwrite(nonDistributed, filename, "xi");

$ julia juliaSetSerial.jl # serial runtime: 37s 37s

$ julia -p 1 juliaSetDistributedArrays.jl # serial runtime: 28.2s 31.6s 32.3s

$ julia -p 2 juliaSetDistributedArrays.jl # with 2 processes: 14.9s 14.9s 15.8s

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 36 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

SharedArrays

Part of the Julia Standard Library (comes with the language)

A SharedArray is shared across processes (set of workers) on the same node
full array is stored on the control process

significant cache on each worker

Similar to DistributedArrays, you can read elements using their global indices from
any worker

Unlike with DistributedArrays, with SharedArrays you
can write into any part of the array on any worker ⇒ potential for a race condition and
indeterministic outcome with a poorly written code!

are limited to a set of workers on the same node

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 37 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

SharedArrays (cont.)

using Distributed, SharedArrays
addprocs(4)

a = SharedArray{Float64}(30);

a[:] .= 1.0 # assign from the control process
@fetchfrom 2 sum(a) # correct (30.0)
@fetchfrom 3 sum(a) # correct (30.0)

@sync @spawnat 2 a[:] .= 2.0 # can assign from any worker!
@fetchfrom 3 sum(a) # correct (60.0)

b = SharedArray{Float64}((1000), init = x -> x .= 1.0) # use a function to initialize ‘b‘

@everywhere using SharedArrays # otherwise ‘localindices‘ won’t be found on worker 2
@fetchfrom 2 localindices(b) # this block is assigned for processing on worker 2

Let’s fill each element with its corresponding myd() value:

b = SharedArray{Float64}((1000), init = x -> x .= myid()) # indeterminate outcome!

b = SharedArray{Float64}((1000), init = x -> x[localindices(x)] .= myid()) # parallel init

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 38 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

2D SharedArray

using Distributed, SharedArrays
addprocs(4)

a = SharedArray{Float64}(10000,10000);
@distributed for i in 1:10000 # parallel for loop split across all workers

for j in 1:10000
a[i,j] = myid() # ID of the worker that initialized this element

end
end
a # available on all workers

a[1:10,1:10] # on the control process
@fetchfrom 2 a[1:10,1:10] # on worker 2

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 39 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Brute-force O(N2) accurate solver

Problem: place N identical particles randomly in a unit cube, zero initial velocities

Method:
force evaluation via direct summation

single variable (adaptive) time step (smaller ∆t when any two particles are close)

time integration: more accurate than simple forward Euler + one force evaluation per time step

two parameters: softening length and Courant number

In a real simulation, you would replace:
direct summation with a tree- or mesh-based O(N log N) code

current integrator with a higher-order scheme, e.g. Runge-Kutta

current timestepping with hierarchical particle updates

for long-term stable evolution with a small number of particles, use a symplectic orbit integrator

Expected solutions:
2 particles: should pass through each other, infinite oscillations

3 particles: likely form a close binary + distant 3rd particle (hierarchical triple system)

many particles: likely form a gravitationally bound system, with occasional ejection

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 40 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Serial N-body code

using Plots, ProgressMeter

npart = 20
niter = Int(1e5)
freq = 300
courant = 1e-3
softeningLength = 0.01

x = rand(npart, 3); # uniform [0,1]
v = zeros(npart, 3);

nframes = floor(Int, niter/freq) + 1;
history = zeros(Float32, npart, 3, nframes);
history[:, :, 1] = x;
soft = softeningLength^2;

println("Computing ...");
force = zeros(Float32, npart, 3);
oldforce = zeros(Float32, npart, 3);

@showprogress for iter = 1:niter
tmin = 1.e10
for i = 1:npart

force[i,:] .= 0.
for j = 1:npart

if i != j
distSquared = sum((x[i,:] .- x[j,:]).^2) + soft;
force[i,:] -= (x[i, :] .- x[j,:]) / distSquared^1.5;
tmin = min(tmin, sqrt(distSquared /

sum((v[i,:] .- v[j,:]).^2)));
end

end
end
dt = min(tmin*courant, 0.001); # limit the initial step
for i = 1:npart

x[i,:] .+= v[i,:] .* dt .+ 0.5 .* oldforce[i,:] .* dt^2;
v[i,:] .+= 0.5 .* (oldforce[i,:] .+ force[i,:]) .* dt;
oldforce[i,:] .= force[i,:];

end
if iter%freq == 0

history[:, :, trunc(Int, iter/freq)+1] = x;
end

end

println("3D animation ...");
@showprogress for i = 1:nframes

plt = plot(npart, xlim=(-0.5,1.5), ylim=(-0.5,1.5),
zlim=(-0.5,1.5), seriestype=:scatter3d,
legend=false, dpi=:300);

scatter3d!(history[1:npart,1,i], history[1:npart,2,i],
history[1:npart,3,i], markersize = 2);

png("frame" * lpad(i, 4, ’0’))
end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 41 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Solution

2 bodies 20 bodies

A frame is saved every 300 steps + variable timesteps
⇒ in these movies the time arrow represents the time step number (not time!)

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 42 / 46

file:///Users/razoumov/Documents/03-julia/nbody/twoBody.mp4
file:///Users/razoumov/Documents/03-julia/nbody/twentyBody.mp4
https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the N-body code

Many small arrays ⇒ let’s use SharedArrays and fill them in parallel
> using Distributed, SharedArrays

> addprocs(2)

< v = zeros(npart, 3);

> x = SharedArray{Float32}(npart, 3);

> x[:,:] = rand(npart, 3); # uniform [0,1]

> v = SharedArray{Float32}((npart, 3), init = x -> x .= 0.0);

< history = zeros(Float32, npart, 3, nframes);

> history = SharedArray{Float32}((npart, 3, nframes), init = x -> x .= 0.0);

< force = zeros(Float32, npart, 3);

< oldforce = zeros(Float32, npart, 3);

> force = SharedArray{Float32}(npart,3);

> oldforce = SharedArray{Float32}((npart,3), init = x -> x .= 0.0);

< for i = 1:npart

> tmin = @distributed (min) for i = 1:npart

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 43 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the N-body code

Many small arrays ⇒ let’s use SharedArrays and fill them in parallel
> using Distributed, SharedArrays

> addprocs(2)

< v = zeros(npart, 3);

> x = SharedArray{Float32}(npart, 3);

> x[:,:] = rand(npart, 3); # uniform [0,1]

> v = SharedArray{Float32}((npart, 3), init = x -> x .= 0.0);

< history = zeros(Float32, npart, 3, nframes);

> history = SharedArray{Float32}((npart, 3, nframes), init = x -> x .= 0.0);

< force = zeros(Float32, npart, 3);

< oldforce = zeros(Float32, npart, 3);

> force = SharedArray{Float32}(npart,3);

> oldforce = SharedArray{Float32}((npart,3), init = x -> x .= 0.0);

< for i = 1:npart

> tmin = @distributed (min) for i = 1:npart

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 43 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallelizing the N-body code

Many small arrays ⇒ let’s use SharedArrays and fill them in parallel
> using Distributed, SharedArrays

> addprocs(2)

< v = zeros(npart, 3);

> x = SharedArray{Float32}(npart, 3);

> x[:,:] = rand(npart, 3); # uniform [0,1]

> v = SharedArray{Float32}((npart, 3), init = x -> x .= 0.0);

< history = zeros(Float32, npart, 3, nframes);

> history = SharedArray{Float32}((npart, 3, nframes), init = x -> x .= 0.0);

< force = zeros(Float32, npart, 3);

< oldforce = zeros(Float32, npart, 3);

> force = SharedArray{Float32}(npart,3);

> oldforce = SharedArray{Float32}((npart,3), init = x -> x .= 0.0);

< for i = 1:npart

> tmin = @distributed (min) for i = 1:npart

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 43 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel N-body code

using Plots, ProgressMeter
using Distributed, SharedArrays
addprocs(4)

npart = 20
niter = Int(1e5)
freq = 300
courant = 1e-3
softeningLength = 0.01

x = SharedArray{Float32}(npart, 3);
x[:,:] = rand(npart, 3); # uniform [0,1]
v = SharedArray{Float32}((npart, 3),

init = x -> x .= 0.0);

nframes = floor(Int, niter/freq) + 1;
history = SharedArray{Float32}((npart, 3, nframes),

init = x -> x .= 0.0);
history[:, :, 1] = x;
soft = softeningLength^2;

println("Computing ...");
force = SharedArray{Float32}(npart,3);
oldforce = SharedArray{Float32}((npart,3),

init = x -> x .= 0.0);

@showprogress for iter = 1:niter
tmin = @distributed (min) for i = 1:npart

tmin = 1.e10
force[i,:] .= 0.
for j = 1:npart

if i != j
distSquared = sum((x[i,:] .- x[j,:]).^2) + soft;
force[i,:] -= (x[i, :] .- x[j,:]) / distSquared^1.5;
tmin = min(tmin, sqrt(distSquared /

sum((v[i,:] .- v[j,:]).^2)));
end

end
tmin

end
dt = min(tmin*courant, 0.001); # limit the initial step
for i = 1:npart

x[i,:] .+= v[i,:] .* dt .+ 0.5 .* oldforce[i,:] .* dt^2;
v[i,:] .+= 0.5 .* (oldforce[i,:] .+ force[i,:]) .* dt;
oldforce[i,:] .= force[i,:];

end
if iter%freq == 0

history[:, :, trunc(Int, iter/freq)+1] = x;
end

end

println("3D animation ...");
@showprogress for i = 1:nframes

plt = plot(npart, xlim=(-0.5,1.5), ylim=(-0.5,1.5),
zlim=(-0.5,1.5), seriestype=:scatter3d,
legend=false, dpi=:300);

scatter3d!(history[1:npart,1,i], history[1:npart,2,i],
history[1:npart,3,i], markersize = 2);

png("frame" * lpad(i, 4, ’0’))
end

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 44 / 46

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Parallel performance: 2-core laptop and Cedar

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 45 / 46

Laptop, 20 particles, 105 steps:
code computing animation
serial 3m47s 1m32s

2 parallel workers 3m50s 1m30s
4 parallel workers 4m17s 1m29s

Laptop, 100 particles, 103 steps:
code computing
serial 59s

2 parallel workers 36s
4 parallel workers 37s

Laptop, 300 particles, 103 steps:
code computing
serial 7m48s

2 parallel workers 4m52s
4 parallel workers 4m23s

Cedar, 100 particles, 103 steps:
code computing
serial 1m23s

2 cores 46s
4 cores 29s
8 cores 22s

16 cores 18s
32 cores 19s

module load StdEnv/2020 julia/1.5.2

sbatch/salloc --nodes=1-1 --ntasks=...
julia -p $SLURM_NPROCS nbodyDistributedShared.jl

sbatch/salloc --ntasks=1 --cpus-per-task=...
julia -p $SLURM_CPUS_PER_TASK nbodyDistributedShared.jl

https://git.io/Jtdge

Intro Threads1 Slow series Threads2 Distributed DistributedArrays Julia set SharedArrays N-body Summary

Summary

We covered Julia’s multi-threading and multi-processing
showed timings both on a 2-core laptop (with hyperthreading) and on up to 32 cores on Cedar

DistributedArrays vs. SharedArrays

Parallelized 3 computationally intensive problems: slow series, Julia set, N-body

Useful resources:
“Julia at Scale” forum https://discourse.julialang.org/c/domain/parallel

Baolai Ge’s (SHARCNET) webinar on parallel Julia https://youtu.be/xTLFz-5a5Ec

brief introduction to parallel computing in Julia (some additional concepts not covered in this webinar)
https://codingclubuc3m.github.io/2018-06-06-Parallel-computing-Julia.html

performance tips https://docs.julialang.org/en/v1/manual/performance-tips

Questions?

WestGrid webinar - slides and functions at https://git.io/Jtdge 2021-Mar-17 46 / 46

https://discourse.julialang.org/c/domain/parallel
https://youtu.be/xTLFz-5a5Ec
https://codingclubuc3m.github.io/2018-06-06-Parallel-computing-Julia.html
https://docs.julialang.org/en/v1/manual/performance-tips
https://git.io/Jtdge

	Intro
	

	Threads1
	

	Slow series
	

	Threads2
	

	Distributed
	

	DistributedArrays
	

	Julia set
	

	SharedArrays
	

	N-body
	

	Summary
	

