
Intro zfp Topological compression Summary

Lossy data compression

ALEX RAZOUMOV
alex.razoumov@westdri.ca

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 1 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Zoom controls

Please mute your microphone and camera unless you have a question

To ask questions at any time, type in Chat, or Unmute to ask via audio
please address chat questions to "Everyone" (not direct chat!)

Raise your hand in Participants

Email training@westdri.ca

Our winter/spring training schedule https://bit.ly/wg2024a
webinars, courses, summer school at SFU on June 3-7

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 2 / 34

https://bit.ly/wg2024a
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Numerical simulations produce too much data!
(challenge to write and store long-term)

Store every 100th timestep

Store only selected variables

In-situ visualization

Data compression

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 3 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Compression techniques: lossless compression of 3D data

Tools like gzip, bzip2, xz and many others

Use general-purpose algorithms; replace
recurrent bit patterns in the data by references to
a single copy of the pattern

Often included into the file format (NetCDF,
HDF5, VTK)

For typical datasets (such as CFD) ∼ 40− 50%
reduction in size

Very high compression rates when a high
redundancy is present in the data

e.g. the Mandelbulb on the right: 8003 in single
precision ⇒ 1.9G, actual NetCDF file 12M
effectively, a litmus test for the efficiency of your
data storage (if stored uncompressed)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 4 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Compression techniques: lossy compression of 3D data

Lower resolution and/or precision

4 Orthogonal transformation-based algorithms, e.g. zfp (based on local block
transforms, similar to discrete cosine transforms)

4 Topological compression

Compression via ML

1D / 2D / 3D scalar fields

Can this be applied to other data, e.g. MD trajectories?

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 5 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

zfp: compressed floating-point and integer arrays
https://computing.llnl.gov/projects/zfp

Developed at LLNL, supported by the U.S. DOE’s Exascale Computing Project

Open source https://github.com/LLNL/zfp

Lossless and lossy

Very good documentation https://zfp.readthedocs.io

Written in C/C++

Bindings in C, C++, Python, Fortran; Python interface is called zfPy

Built into ∼63 projects
https://computing.llnl.gov/projects/floating-point-compression/related-projects

For faster (de)compression supports several backends: OpenMP, CUDA, HIP (C++ runtime
for AMD and NVIDIA GPUs), FPGAs

Reported throughputs up to 2 GB/s per CPU core, 800 GB/s aggregate throughput on GPUs

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 6 / 34

https://computing.llnl.gov/projects/zfp
https://github.com/LLNL/zfp
https://zfp.readthedocs.io
https://computing.llnl.gov/projects/floating-point-compression/related-projects
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Algorithm

Details at https://zfp.readthedocs.io/en/release1.0.1/algorithm.html#lossy-compression

Relies on orthogonal transforms, keeping only significant transform coefficients

The transform coefficients are encoded into a losslessly-compressed bit stream that
can be truncated in one of three ways, giving a user three “non-expert” compression
modes:

fixed-rate mode controlled by a double-precision parameter (rate) giving a fixed number
of bits per floating number
fixed-precision mode controlled by an integer parameter (precision) specifying the
number of bit planes for the transform coefficients
fixed-accuracy mode controlled by a double-precision parameter (tolerance) specifying
the max point-wise variable error

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 7 / 34

https://zfp.readthedocs.io/en/release1.0.1/algorithm.html#lossy-compression
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using zfp via Python: tiny 1D array

import numpy as np, zfpy

first, lossless compression
initial = np.arange(1, 11, dtype=np.float32)
compressed = zfpy.compress_numpy(initial)
decompressed = zfpy.decompress_numpy(compressed)
np.testing.assert_array_equal(initial, decompressed)

they are equal

next, lossy compression
rate = 4 # number of bits per each floating number
initial = np.arange(1, 11, dtype=np.float32)
compressed = zfpy.compress_numpy(initial, rate=rate)
decompressed = zfpy.decompress_numpy(compressed)
print("rate =", rate, "-->", str(len(compressed))+"B", "decompressed =", decompressed)

file = open("compressed.zfp", "wb")
file.write(compressed)
file.close()

Note: the compressed file also includes some overhead beyond individual elements, the relative size of which will decrease for bigger data (next slide)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 8 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using zfp via Python: large 3D array
à 3D sine envelope wave function defined inside a unit cube (xi ∈ [0, 1])

f (x1, x2, x3) =
2∑

i=1

 sin2
(√

ξ2
i+1 + ξ2

i

)
− 0.5[

0.001(ξ2
i+1 + ξ2

i) + 1
]2 + 0.5

 , where ξi ≡ 15(xi − 0.5)

Discretized at 3003 Cartesian grid in double precision double300.nc ⇒ 206M
Lossless compression: double300.nc.gz - 125M, double300.nc.bz2 - 119M
NetCDF’s compression=’zlib’ 159M
NetCDF’s compression=’zlib’, significant_digits=3 (very aggressive compression) 33M

import netCDF4 as nc, zfpy

f = nc.Dataset(’double300.nc’)
rho = f.variables[’density’][:]
compressed = zfpy.compress_numpy(rho, rate=2.0)
print(len(compressed)) # in bytes => 6.4M

file = open("compressed.zfp", "wb")
file.write(compressed)
file.close()

Demo rate=2.0, rate=1.0, rate=0.5

import netCDF4 as nc, zfpy

file = open("compressed.zfp", "rb")
compressed = file.read()
file.close()
decompressed = zfpy.decompress_numpy(compressed)

f = nc.Dataset(’compressed.nc’, ’w’, format=’NETCDF4’)
nx, ny, nz = decompressed.shape
f.createDimension(’x’, nx)
f.createDimension(’y’, ny)
f.createDimension(’z’, nz)
rho = f.createVariable(’density’, ’f4’, (’x’,’y’,’z’))
rho[:,:,:] = decompressed
f.close()

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 9 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Other notable storage formats supporting zfp
https://computing.llnl.gov/projects/floating-point-compression/related-projects

https://h5z-zfp.readthedocs.io

VTK-m supports zfp for (de)compressing arrays

ZfpCompression.jl provides Julia bindings for zfp

TTK without topological compression (will demo next)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 10 / 34

https://computing.llnl.gov/projects/floating-point-compression/related-projects
https://h5z-zfp.readthedocs.io
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using zfp in Julia

ZfpCompression.jl is a wrapper around the C zfp library

Use one of tol::Real, precision::Int, and rate::Real

Optionally pass nthreads=... argument for multithreading, if ZfpCompression compiled with
OpenMP (not enabled on MacOS by default)

using ZfpCompression
initial = rand(Float32, 100, 100);

(1) lossless compression
compressed = zfp_compress(initial);
print(sizeof(initial), " ", sizeof(compressed)) # 40000 and 34040 bytes
decompressed = zfp_decompress(compressed);
initial == decompressed # true

(2) lossy compression
compressed = zfp_compress(initial, tol=1e-3);
decompressed = zfp_decompress(compressed);
maximum(abs.(initial - decompressed)) # 0.0003338

print(sizeof(initial), " ", sizeof(compressed))
40000 and 17512 bytes

typeof(compressed) # Vector{UInt8}

write("111.bin", initial) # 40000 bytes
write("111.zfp", compressed) # 17512 bytes

initial = Array{Float32,2}(undef, 100, 100);
read!("111.bin", initial);
compressed = Array{UInt8,1}(undef, 17512);
read!("111.zfp", compressed);

decompressed = zfp_decompress(compressed);
maximum(abs.(initial - decompressed)) # 0.0003338

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 11 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using zfp via TTK’s TCWriter without topological compression
In ParaView GUI

TopologicalCompressionWriter

1. Enable TTK plugin (more on it later in the talk)

2. File | Save Data, for file type select TTK Compressed Image Data (*.ttk)

3. Check ZFP compressor only, set ZFP Relative Error Tolerance

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 12 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using zfp via TTK’s TCWriter without topological compression
In pvpython

from paraview.simple import *
data = NetCDFReader(FileName=’double300.nc’)
SaveData(’double300.ttk’, proxy=data, ScalarField=[’POINTS’, ’density’],

ZFPRelativeErrorToleranceextra=50,
UseZFPcompressoronlynotopologicalcompression=1)

To enable parallel mode, rebuild TTK with “-DTTK_ENABLE_OPENMP=ON”

ZFPRelativeErrorToleranceextra 50% (default) 20% 10% 5% 3%

File size 1.6M 2.0M 2.5M 3.1M 4.4M

Compression ratio 129 103 82 66 47

Quality noisy quite noisy small noise very small
noise,
acceptable

excellent

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 13 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Deep water impact dataset
IEEE Vis 2018 contest https://sciviscontest2018.org

One timestep, all variables, single-precision compressed VTK: 1.3G

As far as I can tell, TTK’s TopologicalCompressionWriter requires double precision input ⇒ stored
sound speed as a double-precision VTK file (snd.vti)

uncompressed (5003) gzip-compressed LZMA-compressed ZLib-compressed

954M 245M 178M 258M

from paraview.simple import *
data = XMLImageDataReader(FileName=’snd.vti’)
SaveData(’zfp50.ttk’, proxy=data, ScalarField=[’POINTS’, ’sound’],

ZFPRelativeErrorToleranceextra=50,
UseZFPcompressoronlynotopologicalcompression=1)

ZFPRelativeErrorToleranceextra 90% 50% (default) 30% 20% 10% 5%

File size 1.2M 2.0M 3.3M 5.3M 8.1M 12M

Compression ratio 795 477 289 180 117 80

Telltale sign of zealous zfp compression: negative sound speeds (check zfp50.ttk and zfp10.ttk)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 14 / 34

https://sciviscontest2018.org
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topology-based analysis
This slide is based on Attila Gyulassy’s introductory topology tutorial (U. of Utah)

Phenomenon of interest in a scalar field in the data ⇒ derive its measurable
topological equivalent or abstraction

Measurable topological attributes:
measurement of connectedness: pick any two points + find an inside path to connect them

count non-contractable cycles: pick a closed loop inside that you can’t squeeze down to a point

and many others

Applications in:
molecular analysis: e.g. pick up atomic bonds, atoms from the 3D electronic probability density

materials analysis: porosity measurement, battery design, defect identification, cavity deformation

neural pathways (connectomics)

CFD: turbulence and vorticity, buble formation rate, ocean eddies

combustion analysis: ignition kernels

geological features

image segmentation

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 15 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence intervals of a 1D scalar function

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 16 / 34

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

Evolution of the topology of connected components during a filtration from −∞ to +∞

Pair thresholds (critial points) that create components with those that destroy them

Component persistence = difference in function value between component’s birth and death

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Persistence diagram

Figure copied from David Cohen-Steiner’s slides on Topological Persistence

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 17 / 34

Persistence diagram: x = function value at feature’s birth, y = function value at feature’s death

Small features are mapped closer to the diagonal

Critical points in 1D: minima and maxima

Domain segmentation (monotone regions) between critical points, based on the gradient sign

Mountains = monotone pieces around maxima, basins = monotone pieces around minima

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 2D

Sweep in function value from −∞ to +∞

Coloured regions shows the subdomain with function value
lower than the sweep value

This time single component with multiple holes that
split at the saddles

disappear at the maxima

Critical points in 2D: minima, maxima, and saddle points

Domain segmentation (monotone regions) between integral lines
(orthogonal to the contours), based on the gradient sign

Same definition for mountains and basins, but there are also
ridge lines and valley lines

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 18 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Scalar function in 3D

The topology becomes more complex
4 types of critical points: minima, maxima, and two kinds of saddles

1-saddles are located between 2 minima, 2-saddles are located between 2 maxima

Domain segmentation (monotone regions) between integral surfaces, based on the
gradient sign
Monotone regions combined into mountains and basins, with ridge lines and valley
lines and saddle connector lines, ridge surfaces (separating the mountains) and
valley surfaces (separating the basins)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 19 / 34

Figure copied from Guoning Chen’s slides on Morse-Smale Complex

https://bit.ly/lossycom

Intro zfp Topological compression Summary

TTK = the Topology ToolKit

Topological analysis of multi-dimensional scalar functions

https://topology-tool-kit.github.io
great documentation, many tutorials and step-by-step videos

Open source, development since 2014, first public release in 2017

Lead author Julien Tierny + active development community

Some workflows in this presentation were taken from the excellent half-day TTK
tutorial at IEEE VIS 2020

Interfaces:
pure C++
VTK/C++ (∼3X shorter code)
ParaView Python (∼5X shorter code) and ParaView plugin, and ParaView GUI

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 20 / 34

https://topology-tool-kit.github.io
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topological compression algorithm

1. Topological simplification
remove all topological features below a user persistence tolerance ε

2. Domain quantization
break the domain into regions by the number of components

initially, in each region the data are represented by a constant plane (that could span multiple components)

3. Approximate data in each domain with an adaptive step function
each plane’s vertical value is set to the data average over that region

each plane’s horizontal extent is set to the data extent over that region

keep the original critical points in non-simplified regions

in each region compute the max pointwise error on the grid (data minus the planes / critical points); if larger
than the specified error ⇒ subdivide that region in two (double the number of its planes approximating the
non-simplified data) and repeat the procedure

4. Lossless compression of all elements

5. Optionally combine with zfp compression

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 21 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topological simplification in 1D

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 22 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topological simplification in 2D

On presenter’s laptop:

cd ~/tmp/lossy
open s??.png

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 23 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topological compression in 1D

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 24 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Topological compression in 1D and 2D

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 25 / 34

Figure copied from Soler et al. 2018

Figure copied from Soler et al., IEEE PacificVis, 2018

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using TTK’s topological compression via ParaView GUI

1. Enable TTK plugin

2. Load double300.nc

3. File | Save Data, for file type select TTK Compressed Image Data (*.ttk)

4. Select topological persistence tolerance and max pointwise error

5. Optionally select ZFP Relative Error Tolerance

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 26 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using TTK’s topological compression via pvpython

from paraview.simple import *
data = NetCDFReader(FileName=’double300.nc’)
compress & save to TTK Topological Compression format
SaveData("double300.ttk", proxy=data, ScalarField=["POINTS", "density"],

Topologicallosspersistencepercentage=10,
Maximumpointwiseerrorpercentage=10,
ZFPRelativeErrorToleranceextra=50)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 27 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using TTK’s topological compression via C++/VTK

Step 1: install TTK (could not use x86-compiled MacOS binary ⇒ compile)

wget https://github.com/topology-tool-kit/ttk/archive/1.2.0.tar.gz
tar xvfz 1.2.0.tar.gz && cd ttk-1.2.0
brew install vtk libomp llvm cmake
mkdir ttk_install build && cd build
FLAGS=(
-DTTK_BUILD_PARAVIEW_PLUGINS=OFF
-DCMAKE_INSTALL_PREFIX=$HOME/tmp/ttk

)
export OpenMP_ROOT=$(brew --prefix)/opt/libomp
cmake .. "${FLAGS[@]}"
make -j4
make install

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 28 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using TTK’s topological compression via C++/VTK (cont.)

Step 2: write the code and compile it against TTK

#include <CommandLineParser.h>

#include <vtkSmartPointer.h>

#include <vtkNew.h>

#include <vtkImageData.h>

#include <vtkPointData.h>

#include <vtkXMLGenericDataObjectReader.h>

#include <ttkTopologicalCompressionWriter.h>

#include <string>

int main(int argc, char **argv) {

ttk::CommandLineParser parser;

std::string inputFile, outputFile, tolerance, error;

parser.setArgument("i", &inputFile, "Path to input VTI file");

parser.setArgument("o", &outputFile, "Path to output TTK file");

parser.setArgument("t", &tolerance,

"Topological persistence tolerance percentage", true);

parser.setArgument("e", &error, "Maximum error", true);

parser.parse(argc, argv);

// read the data

auto reader = vtkSmartPointer<vtkXMLGenericDataObjectReader>::New();

reader->SetFileName(inputFile.data());

reader->Update();

auto inputDataObject = reader->GetOutput();

if(!inputDataObject) {

cout << "Unable to read input file " + inputFile << endl;

return 1;

}

auto inputAsVtkDataSet = vtkDataSet::SafeDownCast(inputDataObject);

auto pointData = inputAsVtkDataSet->GetPointData();

cout << "Read ’" << pointData->GetArrayName(0) << "’ array" << endl;

vtkNew<ttkTopologicalCompressionWriter> topoWriter{};

topoWriter->SetInputArrayToProcess(0, 0, 0,

vtkDataObject::FIELD_ASSOCIATION_POINTS, pointData->GetArrayName(0));

topoWriter->SetInputData(inputAsVtkDataSet);

// set parameters

if (tolerance.length() > 0) // persistence %; default 10

topoWriter->SetTolerance(std::stod(tolerance));

if (error.length() > 0) // relative error; default 10

topoWriter->SetMaximumError(std::stod(error));

topoWriter->SetZFPTolerance(-1); // no zfp compression

topoWriter->SetSubdivide(true);

topoWriter->SetUseTopologicalSimplification(true);

cout << "Topological persistence tolerance percentage = "

<< topoWriter->GetTolerance() << endl;

cout << "Maximum error = " << topoWriter->GetMaximumError() << endl;

// write compressed TTK file

topoWriter->SetFileName(outputFile.c_str());

topoWriter->Write();

return 0;

}

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 29 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Using TTK’s topological compression via C++/VTK (cont.)

Step 3: run the code

(cd ~/tmp/lossy && make)
./main -i double300.vti -t 10 -e 10 -o double300.ttk

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 30 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Two parameters: topological persistence tolerance and max error
Both as percentages (defaults: 10% and 10%)
Original dataset: 206M, rendering similar to the lower right panel

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 31 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Deep water impact dataset
IEEE Vis 2018 contest https://sciviscontest2018.org

Recall: double-precision, single-variable VTK file (snd.vti)

uncompressed (5003) gzip-compressed LZMA-compressed ZLib-compressed

954M 245M 178M 258M

Demoing with C++/VTK:

cd ~/tmp/deepWaterImpact
../lossy/main -i snd.vti -t 10 -e 10 -o t10e10.ttk

Arguments -t 10 -e 10 (default) -t 5 -e 10 -t 10 -e 5 -t 20 -e 10 -t 30 -e 10

File name t10e10.ttk t5e10.ttk t10e5.ttk t20e10.ttk t30e10.ttk

File size 9.6M 16M 9.8M 4.2M 1.7M

Compression ratio 99 60 97 227 561

Quality looks great, colour a
little quantized

looks identical, so
t10 is already good

looks identical, so
e10 is already good

somewhat
compressed

quantized colours, defi-
nitely compressed

∼1 min to compress and ∼1 min to uncompress (or load into ParaView)
Compare two 3D distributions (snd.vti vs. t10e10.ttk): paraview --script=compare.py

Variable bounds kept constant
SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 32 / 34

https://sciviscontest2018.org
https://bit.ly/lossycom

Intro zfp Topological compression Summary

Deep water impact dataset (cont.)

SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 33 / 34

https://bit.ly/lossycom

Intro zfp Topological compression Summary

Both methods (zfp and TC) are quite comparable in output file quality and sizes

Both can reliably achieve ∼20-30X compression, without any visible data degradation – and sometimes
as high as ∼80-200X

Compression artifacts show in very different ways

Can combine the two for improved quality and compression (they operate on different bits), see some
comparison at https://topology-tool-kit.github.io/examples/persistenceDrivenCompression
TC is much slower, both during compression and decompression

however, it provides more control (two parameters vs. one)
it preserves variable bounds
in certain cases it can achieve much higher compression, esp. if interested only in certain components

Both algorithms act on scalar arrays, not files

zfp: C/C++, Fortran, Python, built into many third-party packages, can compress integer, single- and
double-precision datasets

TC: only one widely accessible implementation (TTK), available via C++, ParaView (GUI and
scripting), double precision only?

In principle, TC should be able to compress AMR (multi-resolution) data in one go, as it does not rely
on spatial wavelengths, although this would require some effort

Questions?
SFU webinar - slides at https://bit.ly/lossycom 2024-Apr-23 34 / 34

https://topology-tool-kit.github.io/examples/persistenceDrivenCompression
https://bit.ly/lossycom

	Intro
	

	zfp
	

	Topological compression
	

	Summary
	

