
Intro Laptop demo Bugaboo demo Other geometries and volumes

CPU-based rendering with OSPRay
(and with various software rasterizers)

Alex Razoumov
alex.razoumov@westgrid.ca

WestGrid / Compute Canada

copy of these slides and other files at http://bit.ly/ospraybits
- will download a ZIP file

(WestGrid / Compute Canada) May 24, 2016 1 / 18

http://bit.ly/ospraybits

Intro Laptop demo Bugaboo demo Other geometries and volumes

Visualization in HPC

Traditional approach:

1 run your large simulation on CPU (or perhaps GPU) nodes

2 do rendering on GPU nodes (if available), or on separate visualization
systems, or on personal desktops

I make use of GPU hardware acceleration through standard graphics APIs
(OpenGL)

I all popular 3D scientific visualization tools are based on OpenGL

However, GPU nodes might not be available or might be busy ...

(WestGrid / Compute Canada) May 24, 2016 2 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

CPU-based rendering

It is possible to run the entire visualization pipeline on a CPU!

There are two options:
• Software rasterizer. Mesa 3D graphics library is an open-source

implementation of the OpenGL specification
I can run on a variety of hardware from GPUs (using vendor-provided

low-level device drivers) to CPUs (using various software drivers)
I of special interest to us are (1) the Gallium llvmpipe software rasterizer and

(2) the newer OpenSWR software rasterizer from Intel

• Software ray tracer. Many implementations. OSPRay is a new fast
open-source ray tracing engine for Intel CPUs that replaces traditional
rasterizers for solid surfaces and volumes

To learn more about the difference between ray tracing and rasterization
https://youtu.be/DtfEVO9Oc3U by OnlineMediaTutor

(WestGrid / Compute Canada) May 24, 2016 3 / 18

https://youtu.be/DtfEVO9Oc3U

Intro Laptop demo Bugaboo demo Other geometries and volumes

OSPRay http://www.ospray.org

• Fast, open-source, end-user ray tracing library from Intel

• Uses Intel’s SPMD Program Compiler (ISPC) to properly target different vector instruction
set architectures (SSE4, AVX, AVX2, AVX-512)

• Built on top of Embree low-level ray-tracing library (for surface geometry rendering)
I Embree does not render images by itself, useful for building ray tracers
I based on recent advances in ray tracing algorithms⇒ 1.5-6X speedup

compared to earlier software renderers
• Unlike GPU, full access to (much larger) host memory

• ParaView, VisIt, VMD already use OSPRay

• Same spirit as OpenGL (both surfaces and volumes), but different API

• For surfaces can work with non-polygonal geometry: cones, spheres, streamlines, cylinders

• Small memory footprint: can handle 108.5 triangles, 109.5 particles on a single workstation

• It’s ray tracing⇒ provides ambient occlusion and shading, speed depends on your setup

• Can use one of three backend devices
I LocalDevice for rendering on a single compute node / workstation
I COIDevice for offloading to first-generation Xeon Phi cards
I MPIDevice for MPI-parallel rendering (in ParaView’s OSPRay?)

(WestGrid / Compute Canada) May 24, 2016 4 / 18

http://www.ospray.org

Intro Laptop demo Bugaboo demo Other geometries and volumes

OSPRay in ParaView

• First implemented by TACC as a plugin pvOSPRay (precompiled Linux
binary or source code) starting from ParaView 4.3.1

• Now directly integrated starting from ParaView 5.1
I currently supports both Linux and MacOS and “experimentally” Windows;

included into precompiled ParaView 5.1+ on all platforms
I can switch OpenGL ←→ OSPRay at runtime – see the option “Enable

OSPRay on/off” in the View -> View panel
I if compiling ParaView yourself, you’ll need Intel’s SPMD Program Compiler

(ispc) and Intel’s Threading Building Blocks (tbb) library, then compile
Embree, then compile OSPRay, then compile ParaView with
PARAVIEW_USE_OSPRAY=ON – contact me for detailed instructions for
Linux

(WestGrid / Compute Canada) May 24, 2016 5 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

OSPRay in ParaView 5.1+ on a laptop

• On presenter’s laptop: paraview
--state=wavelet.pvsm or build from
scratch

• Screen max-resolution bug: in the GUI if
attempt to save a screenshot at resolution
higher than the maximum for a given
screen, get problems in the resulting image
(strange interlacing)

I with and without shadows
I both in MacOS and Linux
I with OpenGL no such problem
I one can avoid it by setting the output

image size in a Python script and running

it with pvbatch

-use-offscreen-rendering ...

• Light direction tied to the scene

• Effective in showing the depth effect in
complex geometries

(WestGrid / Compute Canada) May 24, 2016 6 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Benchmarking: hardware-driver OpenGL vs. OSPRay

• Want to fix the output resolution, have the same camera setup (the object
takes equal number of pixels), same everything

• Render 270 frames rotating the object 0.333◦ between consecutive frames
and measure the time it takes to do full 90◦ rotation

• Assume that saving images takes negligible time comparing to rendering

• The (shortened) code is on the next slide, run the (full) code with either

/Applications/ParaView.app/Contents/bin/pvbatch wavelet.py

/Applications/ParaView.app/Contents/bin/pvbatch --use-offscreen-rendering

wavelet.py

(whether we open a window or not does not affect the time significantly)

• Run benchmark on a single core

(WestGrid / Compute Canada) May 24, 2016 7 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Benchmarking: hardware-driver OpenGL vs. OSPRay

from paraview . simple import ∗
import time

wavelet1 = Wavelet ()
renderView1 = GetActiveViewOrCreate (’ RenderView ’)
renderView1 . ViewSize = [1 2 8 0 , 720]
shrink1 = Shrink (Input=wavelet1)
Hide (wavelet1 , renderView1)
Hide (shrink1 , renderView1)
glyph1 = Glyph (Input=shrink1 , GlyphType= ’ Sphere ’)
glyph1 . S c a l e F a c t o r = 1 . 9 5
glyph1 . GlyphType . Radius = 0 . 2
glyph1 . GlyphType . ThetaResolut ion = 30
glyph1 . GlyphType . PhiResolut ion = 30
renderView1 . CameraPosition = [−40.57242525131943 , 20 .7869159629548 , 43 .073450283532516]
renderView1 . CameraFocalPoint = [0 .3880089693718842 , −1.4969286758104854 , 1 .1754828437649194]
renderView1 . CameraViewUp = [0 .2571900240728232 , 0 .9264876350141374 , −0.27472523306629704]
renderView1 . CameraPara l le lSca le = 17.3205080757

renderView1 . EnableOSPRay = 1
renderView1 . Shadows = 1
renderView1 . S a m p l e s P e r P i x e l = 10 # t h e d e f a u l t i s 1

camera = GetActiveCamera ()
numberOfFrames = 270
t1 = time . time ()
f o r i in range (numberOfFrames) :

p r i n t i
camera . Azimuth (. 3 3 3)
SaveScreenshot (’/path/to/frame%04d ’%i + ’ . png ’ , magni f i ca t ion =1 , q u a l i t y =100 , view=renderView1)

t2 = time . time ()
p r i n t t2−t1 , ’ seconds elapsed ’
p r i n t f l o a t (numberOfFrames)/ f l o a t (t2−t 1) , ’ fps ’

(WestGrid / Compute Canada) May 24, 2016 8 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Benchmarking: hardware-driver OpenGL vs. OSPRay

At 1280 × 720 resolution

• OpenGL: 3.04 fps (opengl.mp4)
• OSPRay, no shadows, 1 sample per pixel: 2.67 fps
• OSPRay, shadows, 1 sample per pixel: 1.62 fps (ospray2.mp4)
• OSPRay, shadows, 3 samples per pixel: 0.95 fps
• OSPRay, shadows, 10 samples per pixel: 0.39 fps

On my laptop OSPRay is a little slower than OpenGL but not by much if we
don’t overtax it

At 2560 × 1440 resolution (4X the number of pixels) ∼4X slowdown for both
• OpenGL’s 0.67 fps vs. OSPRay’s (shadows, 1 sample pp) 0.43 fps

On a very underpowered 2010 Macbook Air at 1280 × 720 resolution
• OpenGL’s 0.88 fps vs. OSPRay’s (shadows, 1 sample pp) 0.21 fps

(WestGrid / Compute Canada) May 24, 2016 9 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

OSPRay on the cluster

• Similar to MacOS, on Linux recompiled ParaView 5.1+ has OSPRay
built-in, so can run on a GPU-less cluster?

• ParaView still requires OpenGL context at runtime (even though you can
later switch from OpenGL rasterization to OSPRay ray tracing), so if you
try to open it inside VNC, it’ll crash without a GPU ...

(WestGrid / Compute Canada) May 24, 2016 10 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

OSPRay on the cluster

• Fortunately, precompiled ParaView includes Mesa libraries compiled
with both llvmpipe and OpenSWR software rasterizers

I use paraview --mesa-llvm to pick Mesa software rendering with
llvmpipe (will work everywhere including older hardware)

I use paraview --mesa-swr-avx or paraview --mesa-swr-avx2 to
pick Mesa software rendering with OpenSWR on processors that support
AVX/AVX2 instruction sets

AVX = Advanced Vector Extensions, support in hardware from ∼2011

• WestGrid’s bugaboo cluster’s processors are based on the Westmere
microarchitecture, so no support for AVX and hence no OpenSWR –
instead we’ll use llvmpipe software rasterizer

I the rasterizer library
.../ParaView-5.1.2/lib/paraview-5.1/mesa-llvm/libGL.so.1 will be our
replacement for the hardware-driver-provided OpenGL

(WestGrid / Compute Canada) May 24, 2016 11 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Demo time
Using OSPRay inside ParaView+Mesa+llvmpipe

inside a VNC desktop on bugaboo’s compute node
1 On bugaboo.westgrid.ca submit an interactive job to the cluster

qsub -I -l nodes=b402:ppn=1,pmem=2000mb,walltime=00:60:00

When the job starts, it’ll return a prompt on the assigned compute node.

2 On the compute node start the vncserver
vncserver -geometry 1420x820
It’ll produce “New desktop is b402:1”, where the syntax is nodeName:displayNumber

3 On your laptop set up ssh forwarding to the VNC port:
ssh username@bugaboo.westgrid.ca -L 5901:b402:5901
Here the second port number 5901 = 5900 (VNC’s default) + displayNumber

4 Start TurboVNC vncviewer on your desktop, enter localhost:displayNumber, e.g.
localhost:1, and then enter the VNC password if you have set one up. A remote VNC
desktop will appear on your screen

5 Back on the compute node start ParaView
export DISPLAY=b402:1, where 1 is displayNumber
module load paraview/5.1.2
paraview --mesa-llvm

ParaView window will appear inside your VNC desktop

(WestGrid / Compute Canada) May 24, 2016 12 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

CPU-based rendering on the cluster

• Now we are switching between software-based OpenGL-like rasterizer and
software-based OSPRay ray tracing engine, with no GPU in sight

• OSPRay (even with shadows enabled) is much smoother than
Mesa+llvmpipe, producing much higher framerates at similar CPU loads
module load paraview/5.1.2

pvbatch --mesa-llvm wavelet.py

1280 × 720 resolution
I Mesa-llvm: 0.144 fps
I OSPRay, shadows, 1 sample per pixel: 2.61 fps (18X faster!)

Unfortunately, cannot test Mesa-OpenSWR on the same system ...

(WestGrid / Compute Canada) May 24, 2016 13 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Rendering streamlines

• Cones, spheres, streamlines, cylinders are other types of non-polygonal geometry supported by OSPRay
• Stream Tracer’s output in OSPRay works well but the result is not very interesting, unless enabling

“OSPRay Use Scale Array” in Properties:Miscellaneous and making a good choice for the scale array
• Stream Tracer + Tube’s output in OSPRay (cylinders) is great for showing the depth effect with shadows,

but extremely buggy both in MacOS and Linux
• On presenter’s laptop: paraview --state=stream.pvsm

(WestGrid / Compute Canada) May 24, 2016 14 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Volumetric rendering with OSPRay

• Volume rendering in OSPRay
implemented from scratch (Embree
does only surfaces)

• The dataset is 2563 “TACC Isotropic
Turbulence” from http:
//www.ospray.org/demos.html

• On presenter’s laptop: paraview
--state=turbulence.pvsm

• OpenGL’s 1.96 fps vs. OSPRay’s (no
shadows) 1.76 fps

(WestGrid / Compute Canada) May 24, 2016 15 / 18

http://www.ospray.org/demos.html
http://www.ospray.org/demos.html

Intro Laptop demo Bugaboo demo Other geometries and volumes

2563 turbulence: isosurface rendering with OpenGL

(WestGrid / Compute Canada) May 24, 2016 16 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

2563 turbulence: isosurface rendering with OSPRay

(WestGrid / Compute Canada) May 24, 2016 17 / 18

Intro Laptop demo Bugaboo demo Other geometries and volumes

Conclusions

• OSPRay + shadows is very good to highlight three-dimensionality and
depth effect in intricate scenes

• OSPRay is much faster than Mesa-llvm, almost as fast as OpenGL – great
for systems without a GPU

• OSPRay works for both surface and volume rendering
• Already included in precompiled ParaView 5.1+ binaries

I currently supports both Linux and MacOS
I “experimental” in Windows

• Current implementation is somewhat buggy but this should improve

• Not clear if the current implementation in ParaView supports OSPRay’s
MPIDevice (all my tests show that it does not) – will keep investigating

• I have not mentioned client-server OSPRay rendering

• Have not yet benchmarked OpenSWR

Questions?
(WestGrid / Compute Canada) May 24, 2016 18 / 18

	Intro
	Laptop demo
	Bugaboo demo
	Other geometries and volumes

