
Exporting Animation Scripting Remote Summary

Scientific visualization with ParaView
Part 2

Alex Razoumov
alex.razoumov@westdri.ca

4 slides, data, codes at https://bit.ly/paraviewzipp
I the link will download a file paraview.zip (∼36MB)
I unpack it to find codes/, data/ and slides{1,2}.pdf
I command line: wget https://bit.ly/paraviewzipp -O paraview.zip

4 install ParaView 5.11.x on your laptop from
http://www.paraview.org/download

slides at https://bit.ly/paraviewzipp 2023 edition 1 / 58

https://bit.ly/paraviewzipp
http://www.paraview.org/download
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

EXPORTING SCENES
(PRE-COMPUTED POLYGONS)

slides at https://bit.ly/paraviewzipp 2023 edition 2 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

ParaView Glance
https://kitware.github.io/paraview-glance

PV Glance is an open-source standalone web app for in-browser 3D sci-vis
very easy to use, ideal for sharing pre-built 3D scenes via the web

no server ⇒ up to medium-size data (server support planned in future versions)

interactive manipulation of pre-computed polygons
I volumetric images, molecular structures, geometric objects, point clouds

written in JavaScript and vtk.js + can be further customized with vtk.js and ParaViewWeb
for custom web and desktop apps

source and installation instructions
https://github.com/kitware/paraview-glance

1. Create a visualization with several layers, make all layers visible in the pipeline

2. Many options in File → Export Scene... ⇒ save as VTKJS to your laptop

3. Open https://kitware.github.io/paraview-glance/app

4. Drag the newly saved file to the dropzone on the website

5. Interact with individual layers in 3D: rotate and zoom, change visibility, representation,
variable, colourmap, opacity

slides at https://bit.ly/paraviewzipp 2023 edition 3 / 58

https://kitware.github.io/paraview-glance
https://github.com/kitware/paraview-glance
https://kitware.github.io/paraview-glance/app
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Automatically load a visualisation into Glance
https://discourse.paraview.org/t/customise-pv-glance/2831

Use the query syntax
GLANCEAPPURL?name=FILENAME&url=FILEURL
to pass name and url to the web server

E.g. using ParaView Glance website
https://kitware.github.io/paraview-glance/app?name=
sineEnvelope.vtkjs&url=https://raw.githubusercontent.
com/razoumov/publish/master/data/sineEnvelope.vtkjs
I shortened to https://bit.ly/2KtPWNf

You can parse long strings with JavaScript (next slide)

slides at https://bit.ly/paraviewzipp 2023 edition 4 / 58

https://discourse.paraview.org/t/customise-pv-glance/2831
https://kitware.github.io/paraview-glance/app?name=sineEnvelope.vtkjs&url=https://raw.githubusercontent.com/razoumov/publish/master/data/sineEnvelope.vtkjs
https://kitware.github.io/paraview-glance/app?name=sineEnvelope.vtkjs&url=https://raw.githubusercontent.com/razoumov/publish/master/data/sineEnvelope.vtkjs
https://kitware.github.io/paraview-glance/app?name=sineEnvelope.vtkjs&url=https://raw.githubusercontent.com/razoumov/publish/master/data/sineEnvelope.vtkjs
https://bit.ly/2KtPWNf
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Embed your vis into a website with an iframe
(embed.html)

<!DOCTYPE html>
<html>
<head>

<title>Sine envelope function</title>
</head>
<body>

<h1>3D sine envelope function</h1>

<script>
var app = "https://kitware.github.io/paraview-glance/app";
var dir = "https://raw.githubusercontent.com/razoumov/publish/master/data/";
var file = "sineEnvelope.vtkjs";
document.write("<iframe src=’" + app + "?name=" + file + "&url=" +

dir + file +
"’ id=’iframe’ width=’1100’ height=’900’></iframe>");

</script>

<p>More stuff in here</p>
</body>

</html>

JavaScript here only to parse long strings
slides at https://bit.ly/paraviewzipp 2023 edition 5 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

ANIMATION IN PARAVIEW

slides at https://bit.ly/paraviewzipp 2023 edition 6 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animation methods

1. Use ParaView’s built-in animation of any property of any pipeline object
I easily create snazzy animations, somewhat limited in what you can do
I in Animation View: select object, select property, create a new track with

“+”, double-click the track to edit it, press “·”

2. Use ParaView’s ability to recognize a sequence of similar files
I time animation only, very convenient
I try loading data/2d*.vtk sequence and animating it (visualize one frame

and then press “·”)

3. Script your animation in Python (covered in next section)
I steep learning curve, very powerful, can do anything you can do in the GUI
I typical usage scenario: generate one frame per input file
I a simpler exercise without input files: see next slide

slides at https://bit.ly/paraviewzipp 2023 edition 7 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animation methods

1. Use ParaView’s built-in animation of any property of any pipeline object
I easily create snazzy animations, somewhat limited in what you can do
I in Animation View: select object, select property, create a new track with

“+”, double-click the track to edit it, press “·”

2. Use ParaView’s ability to recognize a sequence of similar files
I time animation only, very convenient
I try loading data/2d*.vtk sequence and animating it (visualize one frame

and then press “·”)

3. Script your animation in Python (covered in next section)
I steep learning curve, very powerful, can do anything you can do in the GUI
I typical usage scenario: generate one frame per input file
I a simpler exercise without input files: see next slide

slides at https://bit.ly/paraviewzipp 2023 edition 7 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animation methods

1. Use ParaView’s built-in animation of any property of any pipeline object
I easily create snazzy animations, somewhat limited in what you can do
I in Animation View: select object, select property, create a new track with

“+”, double-click the track to edit it, press “·”

2. Use ParaView’s ability to recognize a sequence of similar files
I time animation only, very convenient
I try loading data/2d*.vtk sequence and animating it (visualize one frame

and then press “·”)

3. Script your animation in Python (covered in next section)
I steep learning curve, very powerful, can do anything you can do in the GUI
I typical usage scenario: generate one frame per input file
I a simpler exercise without input files: see next slide

slides at https://bit.ly/paraviewzipp 2023 edition 7 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise: animating function growth
à 3D sine envelope wave function defined inside a unit cube (xi ∈ [0, 1])

f (x1, x2, x3) =
2∑

i=1

 sin2
(√

ξ2
i+1 + ξ2

i

)
− 0.5[

0.001(ξ2
i+1 + ξ2

i ) + 1
]2 + 0.5

 , where ξi ≡ 15(xi − 0.5)

à Reproduce the movie on
the screen
https://vimeo.com/248501176

or hidden/growth.mp4 on

presenter’s laptop

slides at https://bit.ly/paraviewzipp 2023 edition 8 / 58

https://vimeo.com/248501176
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise: animating function growth (cont.)

To visualize a single frame of the movie:

1. load data/sineEnvelope.nc (discretized on a 1003 grid)
2. apply Threshold keeping only data from 1.2 to 2
3. apply Clip: origin O = (49.5, 15, 49.5), normal N = (0,−1, 0)
4. colour by the right quantity

Two possible solutions:
1. bring up Animation View to animate Clip’s O2 from 0 to 99, for best

results save animation as a sequence of PNG files
2. covered in the next section: Start/Stop Trace to record the workflow, save

the corresponding Python script, enclose parts of it into a loop changing
O2 from 0 to 99 and writing a series of PNG screenshots, run it inside
ParaView to produce 100 frames
in either case, merge PNGs using a 3rd-party tool, e.g.
ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p \

-vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" movie.mp4

slides at https://bit.ly/paraviewzipp 2023 edition 9 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Camera animation in the GUI
Good introductory resource https://www.paraview.org/Wiki/Advanced_Animations

1. Start with any static visualization

2. Click on ’Adjust Camera’ icon (one of the left-side icons on top of the
visualization window)
I adjust / write down Camera Focal Point

3. Bring up Animation View (or erase all previous timelines)

(3a) In Animation View:

select Camera - Orbit

click “+” to create a new
timeline

set Center = Camera Focal
Point, for the rest accept
default settings

adjust the number of frames

(3b) In Animation View:

select Camera - Follow Path
click “+” to create a new timeline
double-click on the white (or black) timeline
double-click on Path... in the right column

click on Camera Position

I a yellow path with spheres will appear
I drag the spheres around

also can change Camera Focus and Up Direction

4. Click “·”
slides at https://bit.ly/paraviewzipp 2023 edition 10 / 58

https://www.paraview.org/Wiki/Advanced_Animations
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animating stationary flow: streamlines through a slice

- https://vimeo.com/248501893 or hidden/radialSlice.mp4 on presenter’s laptop

- https://vimeo.com/248502086 or hidden/xySlice.mp4 on presenter’s laptop

slides at https://bit.ly/paraviewzipp 2023 edition 11 / 58

https://vimeo.com/248501893
https://vimeo.com/248502086
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animating stationary flow: streamlines through a slice (cont.)

1. Load disk_out_ref.ex2 making sure to load velocity

2. Draw a radius-z plane slice through the center, origin O = (0, 0, 0) and
normal N = (1, 0, 0)

3. Stream Tracer With Custom Source: input=disk_out_ref.ex2,
seedSource=Slice1

4. Tube filter with r = 0.015

5. Animation View: animate Slice’s O0 from -1 to 1 (full range [-5.75,5.75])

6. Use 100 frames, black background, blue2cyan colourmap, colour with
vorticity

7. Unselect “Show Plane”

8. Save animation as PNGs, encode at 10 fps

slides at https://bit.ly/paraviewzipp 2023 edition 12 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animating a stationary flow: time contours

https://vimeo.com/248509153 or hidden/timeContours.mp4 on presenter’s laptop

slides at https://bit.ly/paraviewzipp 2023 edition 13 / 58

https://vimeo.com/248509153
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Animating a stationary flow: time contours (cont.)

1. Start with the streamtracer lines, however drawn

2. Apply a Countour filter to the output of Streamtracer
I contour by Integration Time
I probe the range of values that works best

3. Apply Glyph filter to the output of Countour

4. Animation View: animate Contour | Isosurfaces

5. This video was recorded with 2000 frames at 60 fps
I such high resolution only for the final production video
I debugging animation with 100 frames is perfectly Ok

slides at https://bit.ly/paraviewzipp 2023 edition 14 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise: several timelines in one animation

1. Start with the previous integration-time-contour animation

2. Add the second timeline to the animation: Camera - Orbit from t = 0.5 to
t = 1 (while the first animation is still playing for its second half)

3. Now complete integration-time-contour animation before rotation

slides at https://bit.ly/paraviewzipp 2023 edition 15 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Combining many timelines in one animation (cont.)

In principle, can add as many timelines (with their individual time
intervals and variables!) to the animation as you want

Here is an example from WestGrid’s 2017 Visualize This competition
submission by Nadya Moisseeva (UBC)

hidden/complexAnimation.mp4 on presenter’s laptop

slides at https://bit.ly/paraviewzipp 2023 edition 16 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

PYTHON SCRIPTING
IN PARAVIEW

slides at https://bit.ly/paraviewzipp 2023 edition 17 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Batch scripting for automating visualization
Official documentation at https://www.paraview.org/Wiki/ParaView/Python_Scripting

Why use scripting?
I automate mundane or repetitive tasks, e.g., making frames for a movie
I document and store your workflow
I use ParaView on clusters from the command line and/or via batch jobs

In the GUI: View | Python Shell opens a Python interpreter
I write or paste your script there
I use the button to run an external script from a file

[/usr/bin/ /usr/local/bin/ /Applications/Paraview*.app/Contents/bin/]
pvpython will give you a Python shell connected to a ParaView server (local or
remote) without the GUI

[/usr/bin/ /usr/local/bin/ /Applications/Paraview*.app/Contents/bin/]
pvbatch --force-offscreen-rendering script.py is a serial (on some machines parallel)
application using a local ParaView server 0 make sure to save your
visualization

[/usr/bin/ /usr/local/bin/ /Applications/Paraview*.app/Contents/MacOS/]
paraview --script=codes/displayWireframe.py to start ParaView GUI and auto-run the
script

slides at https://bit.ly/paraviewzipp 2023 edition 18 / 58

https://www.paraview.org/Wiki/ParaView/Python_Scripting
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

First script

Bring up View | Python Shell
“Run Script” codes/displaySphere.py

displaySphere.py

from paraview . simple import *

sphere = Sphere ( ) # c r e a t e a sphere p i p e l i n e o b j e c t

p r i n t ( sphere . ThetaResolut ion ) # p r i n t one of the a t t r i b u t e s of the sphere
sphere . ThetaResolut ion = 16

Show ( ) # turn on v i s i b i l i t y of the o b j e c t in the view
Render ( )

Can always get help from the command line

help ( paraview . simple ) # w i l l d isplay a help page on paraview . simple module
help ( Sphere )
help (Show)
help ( sphere ) # to see t h i s o b j e c t ’ s a t t r i b u t e s
d i r ( paraview . simple )

slides at https://bit.ly/paraviewzipp 2023 edition 19 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Using filters

“Run Script” codes/displayWireframe.py

displayWireframe.py

from paraview . simple import *

sphere = Sphere ( ThetaResolut ion =36 , PhiResolut ion =18)

wireframe = ExtractEdges ( Input=sphere ) # apply E x t r a c t Edges to sphere

Show ( ) # turn on v i s i b i l i t y of the l a s t o b j e c t in the view
Render ( )

Try replacing Show() with Show(sphere)

Also try replacing Render() with
SaveScreenshot(’/path/to/wireframe.png’) and running via
pvbatch

slides at https://bit.ly/paraviewzipp 2023 edition 20 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Trace tool

Generate Python code from GUI operations

Newer ParaView:
Tools | Start / Stop
Trace

Older ParaView: Tools
| Python Shell | Trace
| Start / Stop / Show
Trace

slides at https://bit.ly/paraviewzipp 2023 edition 21 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Passing information down the pipeline
... and other useful high-level workflow functions

- GetSources() gets a list of pipeline objects

- GetActiveSource() gets the active object

- SetActiveSource() sets the active object

- GetRepresentation() returns the view representation for the active pipeline
object and the active view

- GetActiveCamera() returns the active camera for the active view

- GetActiveView() returns the active view

- CreateRenderView() creates standard 3D render view

- ResetCamera() resets the camera to include the entire scene but preserve
orientation (or does nothing ©)

There is quite a bit of overlap between these two:

help(GetActiveCamera())
help(GetActiveView())

slides at https://bit.ly/paraviewzipp 2023 edition 22 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Camera animation with scripting

1. Let’s load data/sineEnvelope.nc and draw an isosurface at ρ = 0.15

2. Compare the focal point to the center of rotation (must be the same for
object to stay in view)

v1 = GetActiveView()
print(v1.CameraFocalPoint)
print(v1.CenterOfRotation)

if not ⇒ ResetCamera()

3. Look up azimuthal rotation

dir(GetActiveCamera())
help(GetActiveCamera().Azimuth)

4. Rotate by 10◦ around the view-up vector

camera = GetActiveCamera()
camera.Azimuth(10)
Render()

slides at https://bit.ly/paraviewzipp 2023 edition 23 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Camera animation: full rotation

0 Can paste longer commands from clipboard.txt

5. Do full rotation and save to disk
nframes = 360
for i in range(nframes):

print(v1.CameraPosition)
camera.Azimuth(360./nframes) # rotate by 1 degree
SaveScreenshot(’/path/to/frame%04d’%(i)+’.png’)

6. Merge all frames into a movie at 30 fps

ffmpeg -r 30 -i frame%04d.png -c:v libx264 -pix_fmt yuv420p \
-vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" spin.mp4

slides at https://bit.ly/paraviewzipp 2023 edition 24 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Camera animation: flying towards the focal point

1. Optionally reset the view manually or with ResetCamera()

2. Now let’s fly 2/3 of the way towards the focal point

initialCameraPosition = v1.CameraPosition[:] # force a real copy
nframes = 100
for i in range(nframes):

coef = float(i+0.5)/float(1.5*nframes) # runs from 0 to 2/3
print(coef, v1.CameraPosition)
v1.CameraPosition = [((1.-coef)*a + coef*b) \

for a, b in zip(initialCameraPosition,v1.CameraFocalPoint)]
SaveScreenshot(’/path/to/out%04d’%(i)+’.png’)

3. Create a movie
ffmpeg -r 30 -i out%04d.png -c:v libx264 -pix_fmt yuv420p \

-vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" approach.mp4

slides at https://bit.ly/paraviewzipp 2023 edition 25 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise: write and run a complete off-screen script

1. Mac/Linux/Windows: create a script with standalone ParaView GUI
I use Start/Stop Trace
I load data/sineEnvelope.nc and draw an isosurface at ρ = 0.15
I save the image as PNG

2. Test-run your script with pvbatch on your laptop

$ pvbatch --force-offscreen-rendering script.py

I Linux: pvbatch should be in one of your system’s bin directories
I Mac: pvbatch should be in /Applications/ParaView*.app/Contents/bin
I Windows: pvbatch does not exist (or so I am told), but you can use pvpython

à you will need to locate it yourself
I those of you with a Compute Canada account can run this script on one of our HPC

clusters with

$ module load gcc/9.3.0 paraview-offscreen/5.10.0
$ pvbatch --force-offscreen-rendering script.py

3. Modify the script to create some animation

slides at https://bit.ly/paraviewzipp 2023 edition 26 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Extracting data from VTK objects

Do this from View | Python Shell or from pvpython (either shell will work)

# codes/e x t r a c t V a l u e s . py
from paraview . simple import *

d i r = ’/ Users/razoumov/ t r a i n i n g /paraviewWorkshop/data / ’
data = NetCDFReader ( FileName =[ d i r + ’ s t v o l . nc ’ ] )
l o c a l = servermanager . Fetch ( data ) # get the data from the server
p r i n t ( l o c a l . GetNumberOfPoints ( ) )

f o r i in range ( 1 0 ) :
p r i n t ( l o c a l . GetPoint ( i ) ) # coordinates of f i r s t 10 points

pd = l o c a l . GetPointData ( )
p r i n t ( pd . GetArrayName ( 0 ) ) # the name of the f i r s t array

r e s u l t = pd . GetArray ( ’ f ( x , y , z ) ’ )
p r i n t ( r e s u l t . GetDataSize ( ) )
p r i n t ( r e s u l t . GetRange ( ) )

f o r i in range ( 1 0 ) :
p r i n t ( r e s u l t . GetValue ( i ) ) # values a t f i r s t 10 points

This is useful for post-processing, e.g., feeding these into numpy arrays and
doing further calculations in a Python script

slides at https://bit.ly/paraviewzipp 2023 edition 27 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Creating/modifying VTK objects

Let’s say we want to plot a projection
of a cubic dataset along one of its
principal axes, or do some other
transformation for which there is no
filter

Calculator / Python Calculator filter cannot modify the geometry . . .

slides at https://bit.ly/paraviewzipp 2023 edition 28 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Programmable filter
Watch our webinar https://bit.ly/programmablefilter

1. Apply Programmable Filter with OutputDataSetType = vtkUnstructuredGrid
2. Paste the following code codes/projectionUnstructured.py into the filter

(this code was tested in ParaView 5.10.1)
numPoints = inputs[0].GetNumberOfPoints()
side = int(round(numPoints**(1./3.))) # round() in this Python returns float type
layer = side*side
rho = inputs[0].PointData[’density’] # 1D flat array
points = vtk.vtkPoints() # create vtkPoints instance, to contain 100^2 points in the projection
proj = vtk.vtkDoubleArray(); proj.SetName(’projection’) # create the projection array
for i in range(layer): # loop through 100x100 points

x, y = inputs[0].GetPoint(i)[0:2]
z, column = -20., 0.
for j in range(side):

column += rho.GetValue(i+layer*j)
points.InsertNextPoint(x,y,z) # also points.InsertPoint(i,x,y,z)
proj.InsertNextValue(column) # add value to this point

output.SetPoints(points) # add points to vtkUnstructuredGrid
output.GetPointData().SetScalars(proj) # add projection array to these points

quad = vtk.vtkQuad() # create a cell
output.Allocate(side, side) # allocate space for side^2 ’cells’
for i in range(side-1):

for j in range(side-1):
quad.GetPointIds().SetId(0,i+j*side)
quad.GetPointIds().SetId(1,(i+1)+j*side)
quad.GetPointIds().SetId(2,(i+1)+(j+1)*side)
quad.GetPointIds().SetId(3,i+(j+1)*side)
output.InsertNextCell(vtk.VTK_QUAD, quad.GetPointIds())

slides at https://bit.ly/paraviewzipp 2023 edition 29 / 58

https://bit.ly/programmablefilter
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Using 3rd-party libraries from ParaView’s Python
pvpython includes few common 3rd-party libraries such as numpy,scipy,pandas

What if you want to use other libraries that were not bundled with ParaView?

1. Let’s assume you work on a CC cluster; check your ParaView’s Python version

module load gcc/9.3.0 paraview/5.10.0
pvpython # let’s assume it says Python 3.9.6

2. Load the closest Python module, create a virtual env. and install your library there
module avail python # python/3.9.6 is one of them
module load python/3.9.6
virtualenv --no-download astro # this will install a new virtual environment into ~/astro
source ~/astro/bin/activate
pip install --no-index --upgrade pip
pip install --no-index xarray # install an external package into this new environment

3. Next time you log in to the cluster, start pvpython:

module load gcc/9.3.0 paraview/5.10.0
pvpython

4. Load your new virtual environment directly from Python:

filename = ’/home/username/astro/bin/activate_this.py’
exec(open(filename).read(), {’__file__’: filename})
from paraview.simple import *
import xarray # this xarray comes from your new virtual environment

5. For batch workflows, replace pvpython with pvbatch

slides at https://bit.ly/paraviewzipp 2023 edition 30 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Using 3rd-party libraries from ParaView’s Python
pvpython includes few common 3rd-party libraries such as numpy,scipy,pandas

What if you want to use other libraries that were not bundled with ParaView?

1. Let’s assume you work on a CC cluster; check your ParaView’s Python version

module load gcc/9.3.0 paraview/5.10.0
pvpython # let’s assume it says Python 3.9.6

2. Load the closest Python module, create a virtual env. and install your library there
module avail python # python/3.9.6 is one of them
module load python/3.9.6
virtualenv --no-download astro # this will install a new virtual environment into ~/astro
source ~/astro/bin/activate
pip install --no-index --upgrade pip
pip install --no-index xarray # install an external package into this new environment

3. Next time you log in to the cluster, start pvpython:

module load gcc/9.3.0 paraview/5.10.0
pvpython

4. Load your new virtual environment directly from Python:

filename = ’/home/username/astro/bin/activate_this.py’
exec(open(filename).read(), {’__file__’: filename})
from paraview.simple import *
import xarray # this xarray comes from your new virtual environment

5. For batch workflows, replace pvpython with pvbatchslides at https://bit.ly/paraviewzipp 2023 edition 30 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

REMOTE AND
DISTRIBUTED VISUALIZATION

slides at https://bit.ly/paraviewzipp 2023 edition 31 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Visualizing remote data
If your dataset is on a remote cluster, there are several options:

8 download data to your desktop and visualize it locally
- limited by the dataset size and your desktop’s CPU/GPU + memory

8 run ParaView remotely on a larger machine via X11 forwarding

- your desktop
ssh−Y
−−−→ larger machine running ParaView

- remote OpenGL apps with either (1) software rasterizer on the cluster (usually the default) or (2) on your laptop’s GPU
(need to re-enable INdirect GLX inside X11 server and set LIBGL_ALWAYS_INDIRECT=1)

4 run ParaView remotely on a larger machine via remote desktop
- your desktop

VNC−→ larger machine running ParaView
- you can always start a VNC server on an interactive cluster compute node by hand as described in our documentation

https://bit.ly/startVNC
- remote OpenGL apps will run either (1) using software rasterizer on the cluster (usually the default) or (2) on cluster’s

GPU(s) via VirtualGL wrapper (see our VNC docs)
- the VNC slide is coming up

4 run ParaView in client-server mode
ParaView client on your desktop
 ParaView server on larger machine

4 run ParaView via a GUI-less batch script (interactively or scheduled)
- render server can run with GPU rendering or purely in software
- data/render servers can run on single-core, or across several cores/nodes with MPI
- for interactive GUI work on clusters you should schedule interactive jobs, as opposed to running on the

login nodes

slides at https://bit.ly/paraviewzipp 2023 edition 32 / 58

https://bit.ly/startVNC
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Special remote vis cases

1. In-situ visualization = instrumenting a simulation code on the cluster to
1.1 output graphics and/or

1.2 act as on-the-fly server for a visualization frontend (ParaView/VisIt client on
your laptop)

I need to use a special library (ParaView’s Catalyst or VisIt’s libsim)
I very advanced topic for another time

2. Web-based visualization with data served from another location

slides at https://bit.ly/paraviewzipp 2023 edition 33 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

ParaView via remote desktop
https://docs.alliancecan.ca/wiki/VNC or https://docs.alliancecan.ca/wiki/JupyterHub

slides at https://bit.ly/paraviewzipp 2023 edition 34 / 58

You have several options:

(1) run a VNC server on compute nodes with SSH tunnelling, connect via a VNC client
https://docs.alliancecan.ca/wiki/VNC#Compute_Nodes

(2) VNC on gra-vdi.computecanada.ca,
connect via a VNC client (3) Remote Desktop via JupyterHub on

Béluga, point your web browser at
https://jupyterhub.beluga.

computecanada.ca

https://docs.alliancecan.ca/wiki/VNC
https://docs.alliancecan.ca/wiki/JupyterHub
https://bit.ly/paraviewzipp
https://docs.alliancecan.ca/wiki/VNC#Compute_Nodes
https://jupyterhub.beluga.computecanada.ca
https://jupyterhub.beluga.computecanada.ca


Exporting Animation Scripting Remote Summary

Cedar, Graham, Béluga, Narval clusters

General-purpose CC clusters for a variety of workloads
I entered production in phases since June 2017
I located at SFU, UofWaterloo, École de technologie supérieure (Montreal)
I 101,568 / 44,444 / 39,120 / 80,720 CPUs
I many hundred NVIDIA GPUs (with 12GB/16GB/32GB on-board memory)
I multiple types of nodes, with 128GB/256GB/0.5TB/1.5TB/3TB memory
I specs at https://docs.alliancecan.ca/wiki/Cedar

(replace Cedar with Graham or Beluga or Narval)

Batch-oriented environment for parallel and serial jobs ⇒ use Slurm
scheduler and workload manager

Identical software setup
https://docs.alliancecan.ca/wiki/Available_software

slides at https://bit.ly/paraviewzipp 2023 edition 35 / 58

https://docs.alliancecan.ca/wiki/Cedar
https://docs.alliancecan.ca/wiki/Available_software
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Interactive jobs on Cedar / Graham / Béluga

Client-server workflow is by definition interactive

On Cedar interactive jobs should automatically go to one of Slurm’s
interactive partitions (CPU or GPU)

$ sinfo -p cpubase_interac
# will list nodes and their states (idle, mixed, allocated, ...)

salloc without a script name will start an interactive shell inside a
submitted job on a compute node

$ salloc --time=1:0:0 --ntasks=4 ... --account=def-someuser
$ echo $SLURM_... # access Slurm variables
$ module load ... # set your environment
$ ./serialCode
$ srun ./mpiCode # run an MPI code
$ exit # terminate the job (go back to the login node)

You might need to specify pvserver --server-port=11112 (etc.) if
someone else is already using the default port 11111 on the same node

slides at https://bit.ly/paraviewzipp 2023 edition 36 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Question 1: should I use CPUs or GPUs for rendering?

Can render on GPUs (hardware acceleration) or CPUs (software rendering)
with both interactive and batch visualizations
I GPUs have traditionally been faster for rendering graphics
I in recent years better open-source software rendering libraries such as

OSPRay (Intel’s ray tracing) and OpenSWR (Intel’s rasterizer) have largely
closed the performance gap for many types of visualizations

⇒ I recommend starting with CPU rendering
since you already likely have many CPUs! (see next slide)

One might have to resort to software rendering if no GPUs are available,
e.g., all taken by GP-GPU jobs

I suggest doing all hands-on exercises with CPU rendering; also
included slides on GPU rendering on the cluster

slides at https://bit.ly/paraviewzipp 2023 edition 37 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Question 2: how many CPUs/GPUs do I need?

How many processors do we need? From ParaView documentation:
I structured data (Structured Points, Rectilinear Grid, Structured Grid): one CPU core per
∼20 million cells

I unstructured data (Unstructured Points, Polygonal Data, Unstructured Grid): one CPU
core per ∼1 million cells

Your main bottlenecks will be physical memory and disk read speed, and to a
lesser extent CPU/GPU rendering time ⇒ to simplify things, to decide on
the number of CPU cores for initial dataset exploration, use the dataset size
I consider 80 GB dataset
I base nodes have 128 GB memory with 32 cores ⇒ 3.5 GB/core (accounting for the OS,

system tools, etc.) ⇒ 23 cores for this dataset
I need to account for filters (and other processing), MPI buffers ⇒ minimum 32 cores
I for comfortable processing with complex filters use 48− 64 cores

On large HPC systems ParaView is known to scale to ∼ 1012 cells (Structured
Points) on ∼10,000 cores and beyond

Always do a scaling study before attempting to visualize large datasets

It is important to understand memory requirements of filters
I a typical structured→ unstructured filter increases memory footprint by ∼ 3X

slides at https://bit.ly/paraviewzipp 2023 edition 38 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Remote Render Threshold

In ParaView’s preferences can set Render View →
Remote/Parallel Rendering Options → Remote Render Threshold

beyond which rendering will be remote

default 20MB ⇒ small rendering will be done on your laptop’s GPU, interactive
rotation with a mouse will be fast, but anything modestly intensive (under 20MB)
will be shipped to your laptop and might be slow

0MB ⇒ all rendering (including rotation) will be remote, so you will be really
using the cluster’s CPU(s)/GPU(s) for everything

- good for large data processing
- not so good for interactivity, especially on a slower connection

experiment with the threshold to find a suitable value

slides at https://bit.ly/paraviewzipp 2023 edition 39 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Next few pages: remote rendering exercises

Short version:
1. create your visualization via interactive client-server using CPU rendering

2. save your visualization to PNG

Long version:

1. create your visualization via interactive client-server using CPU rendering

2. save your visualization to PNG

3. convert this workflow into a Python script

4. upload this Python script to the cluster

5. try running the script inside an interactive (salloc) job; debug if needed

6. once happy with the result, write a Slurm job submission script and submit this
rendering as a batch (sbatch) job

slides at https://bit.ly/paraviewzipp 2023 edition 40 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise 1 (on Cedar): deep impact dataset
Dataset from IEEE 2018 SciVis Contest

Dataset from Deep Water Impact simulation
by John Patchett (LANL) and Galen Gisler
(Univ. of Oslo)

I dataset details at https://bit.ly/2SXmjsq
I you can work with 269 low-resolution

(460× 280× 240) snapshots in time
I the original simulation is much higher

resolution

You can render this dataset in serial
I try to adapt the client-server instructions from

“Parallel software rendering” slide (forward a
few pages) to render on one CPU

Data in cedar:/project/6003910/razoumov/ieeevis2018/460x280x240

(115GB in total)

To simplify navigating to the dataset in ParaView, I highly recommend creating a
symbolic link:

[cedar]$ mkdir -p ~/data
[cedar]$ ln -s /project/6003910/razoumov/ieeevis2018/460x280x240/ ~/data/deepImpact

slides at https://bit.ly/paraviewzipp 2023 edition 41 / 58

https://bit.ly/2SXmjsq
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise 2 (on Cedar): Earth’s mantle convection
Dataset from IEEE 2021 SciVis Contest https://scivis2021.netlify.app

Dataset from Earth’s Mantle Convection
simulation by Hosein Shahnas and Russell
Pysklywec (U. of Toronto)
I dataset details at https:

//scivis2021.netlify.app/data
I 251 timesteps on a spherical

180× 201× 360 grid

You can render this dataset in serial
I try to adapt the client-server instructions

from “Parallel software rendering” slide
(forward a few pages) to render on one
CPU

Data in cedar:/project/6003910/razoumov/ieeevis2021/spherical

(89GB in total)

Create a symbolic link to simplify navigating to the dataset in ParaView

slides at https://bit.ly/paraviewzipp 2023 edition 42 / 58

https://scivis2021.netlify.app
https://scivis2021.netlify.app/data
https://scivis2021.netlify.app/data
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise 3 (on Cedar): airflow over a turbine blade
Dataset from WestGrid’s 2019 https://computecanada.github.io/visualizeThis

OpenFOAM decomposed dataset: 512 cores, 86 timesteps, 5 hydro variables, ∼1TB in total
I kindly provided for this competition by Joshua Brinkerhoff (UBC Okanagan)
I unstructured mesh ⇒ loading a single timestep from the 3D internal mesh requires 200GB+

physical RAM
I the 2D airfoil mesh takes only 13.7 GB virtual memory for 1 timestep + 1 variable
I data in cedar:/project/6003910/razoumov/visThis2019

Image at the top shows the isosurface of constant air speed coloured by the Y-component of
the vorticity, full animation rendering (86 timesteps) took 17 minutes on 128 Cedar CPU
cores

Create a symbolic link to simplify navigating to the dataset in ParaView

slides at https://bit.ly/paraviewzipp 2023 edition 43 / 58

https://computecanada.github.io/visualizeThis
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise 4 (on the training cluster): Mandelbulb

Visualize power-8 Mandelbulb

Use the file mandelbulb800.nc –
now sampled at 8003

Use 4–8 CPU cores on the training
cluster via salloc

1. consult the next three pages, use
critical thinking – you will need to
modify some of the commands!

2. try to recreate the picture on the
right: pay attention to the lights and
shadows

3. use View → Memory Inspector

to keep an eye on memory usage
4. optionally colour your dataset by

processID

$ unzip /home/razoumov/shared/paraview.zip data/mandelbulb800.nc
$ ls -lh data/mandelbulb800.nc

slides at https://bit.ly/paraviewzipp 2023 edition 44 / 58

https://en.wikipedia.org/wiki/Mandelbulb
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Parallel software rendering
From interactive client-server debugging to remote batch rendering

1. On the cluster start remote parallel ParaView server:

$ cd scratch # necessary on Cedar
$ module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 paraview-offscreen/5.10.0
$ salloc --time=0:60:0 --ntasks=128 --mem-per-cpu=3600 --account=def-someuser
$ mpirun -np 128 pvserver

2. Wait for it to start waiting for incoming connection:

Waiting for client...
Connection URL: cs://cdr774.int.cedar.computecanada.ca:11111
Accepting connection(s): cdr774.int.cedar.computecanada.ca:11111

3. On your laptop start SSH port forwarding:

$ ssh cedar.computecanada.ca -L 11111:cdr774:11111 # use the actual compute node

4. On your laptop start ParaView 5.10.x, click Connect, then connect to
cs://localhost:11111

slides at https://bit.ly/paraviewzipp 2023 edition 45 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Parallel software rendering (cont.)

5. Tools → Start Trace

6. Load OpenFOAM data, set Case Type = Decomposed

7. Apply Calculator: speed = mag(U)

8. Apply Contour at speed=0.8

9. Colour by (vorticity)y

10. Load Rainbow Desaturated colourmap

11. Save the image as a PNG file

12. Tools → Stop Trace

13. Save the generated script as airflow.py locally
I edit it in a text editor, simplify (most generated lines will be setting defaults)
I provide the correct output PNG path on the remote system

slides at https://bit.ly/paraviewzipp 2023 edition 46 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Parallel software rendering (cont.)

14. Upload the script to the cluster:

$ scp airflow.py cedar.computecanada.ca:scratch/

15. On the cluster try running it as a parallel interactive job:

$ cd ~/scratch
$ salloc --time=0:60:0 --ntasks=128 --mem-per-cpu=3600 --account=def-someuser
$ module load gcc/9.3.0 paraview-offscreen/5.10.0
$ mpirun -np 128 pvbatch --force-offscreen-rendering airflow.py

16. Once you are happy with the result, write a Slurm job submission script
and submit it with sbatch

slides at https://bit.ly/paraviewzipp 2023 edition 47 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

OpenGL context for off-screen rendering on a GPU
To render on a GPU from an OpenGL application such as ParaView, traditionally
you would require:

1. OpenGL support in the GPU driver, and
2. an X server that handles windows and surfaces onto which client APIs can

draw
I run X11 server (typically started by root) on the GPU compute node, set

DISPLAY=:0.$gpuindex (get GPU index from Slurm)

Latest NVIDIA GPU drivers include EGL (Embedded-System Graphics Library)
support enabling creation of an OpenGL context for off-screen rendering without
an X server.

Your OpenGL application needs to be recompiled with EGL support ⇒ use
a special version of ParaView for GPU rendering without an X server;
currently compiled into a module paraview-offscreen-gpu/5.10.0
that provides both pvserver for client-server and pvbatch for batch
rendering
Unlike X11, EGL does not require any special setting to scale to very high
resolutions, e.g., 4K (3840× 2160) – simply ask it to render a 4K image

slides at https://bit.ly/paraviewzipp 2023 edition 48 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Interactive client-server rendering on a cluster’s GPU
Details in http://bit.ly/2wrSvKV

1. On Cedar/Graham/Béluga submit an interactive job to the GPU
partition, e.g., a serial job:
$ salloc --time=0:30:0 --ntasks=1 --gpus-per-node=[type:]count \

--mem-per-cpu=3600 --account=def-someuser

When the job starts, it’ll return a prompt on the assigned compute node.
2. On the compute node inside the job start the ParaView server using a

special version of ParaView with EGL support
$ module load gcc/9.3.0 paraview-offscreen-gpu/5.10.0
$ unset DISPLAY # so that PV does not attempt to use X11 rendering context
$ pvserver # --egl-device-index=0 not needed: first available GPU

# is #0 inside the job

For multiple GPUs can use
$ nvidia-smi -L # will return 0, 1, ...

The pvserver command will return something like
Waiting for client...
Connection URL: cs://cdr347.int.cedar.computecanada.ca:11111
Accepting connection(s): cdr347.int.cedar.computecanada.ca:11111

slides at https://bit.ly/paraviewzipp 2023 edition 49 / 58

http://bit.ly/2wrSvKV
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Interactive client-server rendering on a cluster’s GPU (cont.)

3. On your desktop set up ssh forwarding to the ParaView server port:

$ ssh username@cedar.computecanada.ca -L 11111:cdr347:11111

4. On your desktop start ParaView 5.10.x and edit its connection
properties under File - Connect - Add Server (name = Cedar, server type =
Client/Server, host = localhost, port = 11111), click Configure → Manual
→ Save, then select the server from the list and click on Connect

ParaView’s client and server must have matching major versions (5.10.x)

slides at https://bit.ly/paraviewzipp 2023 edition 50 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Data partitioning in parallel ParaView
If loading unpartitioned data ⇒ dynamic load balancing is
handled automatically for structured data:

I structured points
I rectilinear grid
I structured grid

Unpartitioned unstructured data will usually be read in
serial, then must be passed through D3 (Distributed Data
Decomposition) filter for dynamic load balancing:

I particles/unstructured points
I polygonal data
I unstructured grid

Some unstructured file formats can be read in parallel, e.g.
the OpenFOAM reader will automatically read its
unstructured data in parallel, distributing it among all
available CPU cores

After passing your unstructured data through D3, you can
save it as parallel PVTU file ⇒ you’ll get a statically
distributed dataset that you can load next time with the
same number of CPU cores

Reading time ⇒ you can usually tell if your dataset is
being read in serial or in parallel

Look for vtkProcessID variable

slides at https://bit.ly/paraviewzipp 2023 edition 51 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Data partitioning in parallel ParaView (cont.)

If you have a large (many GBs) .vtu file:

1. Read your serial .vtu file into parallel ParaView on 16 cores - slow
I and hope that it does not run out of memory on the reading core!
I at this point the dataset is sitting in memory on one core
I example: serial .vtu file at 9.1GB ⇒ 1’49" reading time

2. Apply D3 filter to distribute the dataset - slowish (memory + MPI)

3. File → Save data as .pvtu with lz4 level-6 (fast) compression - fast
⇒ 16 files + 1 header file
I now you have a statically decomposed dataset

4. Restart parallel ParaView on 16 cores, read .pvtu from scratch into - fast!
I at this point the dataset is distributed across all 16 cores
I example: same (but now decomposed) .pvtu dataset at 5.1GB (fast compression) ⇒ 11" reading

time

The same I/O speeds logic applies to .vti → .pvti (but there is no need
for D3)

slides at https://bit.ly/paraviewzipp 2023 edition 52 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Exercise: parallel rendering of partitioned data

This is an extremely concise step-by-step guide for the turbine dataset:

1. Submit an interactive job
salloc --time=0:60:0 --ntasks=16 --mem-per-cpu=3600

2. Start client-server ParaView session on 16 cores

3. Load all .vtm files (all 10 timesteps)

4. Apply Merge Blocks, output type = Unstructured Grid

5. Apply Cell Data to Point Data (so that you could use Contour)

6. Apply D3

7. Save data as decomposed.pvtu, write all timesteps as series, fast compression

8. Restart client-server ParaView session on 16 cores

9. Load all decomposed.pvtu files

10. Create visualization interactively

11. Save animation as 1000× 800 PNG files - this step should take ∼ 1min of processing time

12. Merge them into a movie with ffmpeg

slides at https://bit.ly/paraviewzipp 2023 edition 53 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Remote rendering summary: some orthogonal decisions

(1) interactive vs. batch
interactive client-server for a quick look, exploration or debugging
I another option is to download a scaled-down version of your dataset, debug a

script locally on your laptop, and then run it as a batch job on the original
full-resolution dataset on the cluster

batch really preferred for production jobs and producing animations

(2) CPU vs. GPU
in general, no single answer which one is better
I you can throw many CPUs at your rendering job
I modern software rendering libraries such as OSPRay (Intel’s ray tracing) and

OpenSWR (Intel’s rasterizer) can be very fast, depending on your visualization

might have to resort to software rendering if no GPUs are available (e.g., all
are taken by GP-GPU jobs)
for initial exploration, I would use the dataset size (GBs) to figure out the best
number of CPU cores, and adjust from there

slides at https://bit.ly/paraviewzipp 2023 edition 54 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

SUMMARY

slides at https://bit.ly/paraviewzipp 2023 edition 55 / 58

https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Further resources

ParaView Discourse
https://discourse.paraview.org

Self-directed ParaView tutorial
https://docs.paraview.org/en/latest/Tutorials/SelfDirectedTutorial/index.html

ParaView User’s Guide
https://docs.paraview.org/en/latest/UsersGuide/index.html

ParaView F.A.Q.
http://www.itk.org/Wiki/ParaView:FAQ

VTK wiki with webinars, tutorials, etc.
http://www.vtk.org/Wiki/VTK

VTK for C++/Python/Java/C#/JavaScript code examples
https://kitware.github.io/vtk-examples

VTK file formats (3rd-party intro)
http://www.earthmodels.org/software/vtk-and-paraview/vtk-file-formats

slides at https://bit.ly/paraviewzipp 2023 edition 56 / 58

https://discourse.paraview.org
https://docs.paraview.org/en/latest/Tutorials/SelfDirectedTutorial/index.html
https://docs.paraview.org/en/latest/UsersGuide/index.html
http://www.itk.org/Wiki/ParaView:FAQ
http://www.vtk.org/Wiki/VTK
https://kitware.github.io/vtk-examples
http://www.earthmodels.org/software/vtk-and-paraview/vtk-file-formats
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Our visualization webinars

∼3-4 visualization webinars per academic year
0 keep an eye on our emails, Twitter,

https://westgrid.github.io/trainingMaterials/blog
I ∼50 mins + questions, usually on fairly specific or advanced topics

Many past webinars are available with slides and screencasts at
https://bit.ly/vispages

• “In-situ visualization with ParaView Catalyst2”
• “Highlights from the 2021 IEEE SciVis Contest”
• “Remote visualization on Compute Canada clusters”
• “Scientific visualization on NVIDIA GPUs”
• “Workflows with Programmable Filter / Source in ParaView”
• “The Topology ToolKit (TTK)”
• “Web-based 3D scientific visualization” (ParaViewWeb, vtk.js, ParaView Glance)
• “Photorealistic rendering with ParaView and OSPRay”
• “Batch visualization on Compute Canada clusters”
• “Molecular visualization with VMD” • “Intermediate VMD topics: trajectories, movies, scripting”
• “Using YT for analysis and visualization of volumetric data” (part 1) • “Working with data objects in YT” (part 2)
• “Scientific visualization with Plotly”
• “Novel visualization techniques from 2017 VISUALIZE THIS competition”
• “Camera animation in ParaView and VisIt”
• “3D visualization on new Compute Canada systems”
• “Using ParaViewWeb for 3D visualization and data analysis in a web browser”
• “Visualization support in WestGrid / Compute Canada”
• “Scripting and other advanced topics in VisIt visualization”
• “CPU-based rendering with OSPRay”
• “3D graphs with NetworkX, VTK, and ParaView” • “Graph visualization with Gephi”

We are always looking for topic suggestions!

slides at https://bit.ly/paraviewzipp 2023 edition 57 / 58

https://westgrid.github.io/trainingMaterials/blog
https://bit.ly/vispages
https://bit.ly/paraviewzipp


Exporting Animation Scripting Remote Summary

Documentation and getting help

Visualization in the Alliance https://ccvis.netlify.app
(online gallery)

Official documentation
https://docs.alliancecan.ca/wiki/Visualization

Western Canada research computing visualization resources
https://bit.ly/vispages

Email support@tech.alliancecan.ca and mention “visualization” in the
subject line (goes to our ticketing system)

Email me alex.razoumov@westdri.ca
ParaView documentation
I official documentation https://docs.paraview.org/en/latest
I wiki http://www.paraview.org/Wiki/ParaView
I Python batch scripting http://bit.ly/2wF5v0B
I VTK tutorials http://www.itk.org/Wiki/VTK/Tutorials

slides at https://bit.ly/paraviewzipp 2023 edition 58 / 58

https://ccvis.netlify.app
https://docs.alliancecan.ca/wiki/Visualization
https://bit.ly/vispages
https://docs.paraview.org/en/latest
http://www.paraview.org/Wiki/ParaView
http://bit.ly/2wF5v0B
http://www.itk.org/Wiki/VTK/Tutorials
https://bit.ly/paraviewzipp

	Exporting
	

	Animation
	

	Scripting
	

	Remote
	

	Summary
	


