Using a cluster effectively
Scheduling and Job Management

* Log into cedar.computecanada.ca:
— ssh -X yourusername@cedar.computecanada.ca
— use putty if you are working in windows

* Copy the working directory to your own and go into
it.
— cp -r /home/kamil/workshop_public/2017/scheduling .
— cd scheduling
* You can find a copy of the slides and materials for
this workshop in the following link
https://goo.gl/eXyHhL

Upcoming ARC Training Sessions

Machine Learning Using Jupyter Notebooks on
10am - 11pm MDT | Graham

Introduction to Classical Molecular Dynamics
1lam -1 pm MDT | Simulations

Exploring Containerization with Singularity
llam -1 pm MDT

https://www.westgrid.ca/events/westgrid-training-events

Scheduling and Job Management 1

Using a cluster effectively

Presentation contents

Scheduling Theory
Basic Job submission
Parallel computing and Job submission

Batch Scheduling

* |s not used when you need a service for example
a webserver that runs all the time.

* |s preferred when you have one or more jobs
(simulations) that need to be run and you wish to
get the results back sometime in the future.

* Your job automatically started by the scheduler
when enough resources are available, and you
get results back, you may be notified when your
job starts and finishes.

Typical HPC Cluster

WestGrid/

Private Internet
network
s Other . .
Admin Scheduler - Login Login
Node ’ (Node ’ ‘ f::;;':e ’ (Node 1 W Node N

many)

Internal cluster Networks: high speed
Infiniband, ethernet, and management
networks (Can be a single switch or

c2 c3

c4

c5

c6

c7

-

..

N

FileSystem
node 1

N

FileSystem
node 2

Typical small HPC Cluster

Login /
Scheduler /
Admin Node

Internal cluster Networks: high speed
Infiniband, ethernet, and management
networks (Can be a single switch or

many)

cl

c3

c4

c5

c6

c7

..

resenncse (D ’

Private
network

Bigger HPC Cluster

WestGrid/
Internet

Other
Service
nodes

Internal cluster Networks: high speed
Infiniband, ethernet, and management
networks (Can be a single switch or
many)

c3 c4 c5 c6 c7

.......................................

......................................

I

FileSystem node

FileSystem node

FileSystem node

FileSystem node

FileSystem node

FileSystem node (MDS1)

FileSystem node (MDS2)

FileSystem node (OSS1)

FileSystem node (OSS2)

FileSystem node (OSS3)

- -/ - S

FileSystem node (OSS4)

Goals of scheduling

* Fairness and policy
 Efficiency / Utilization / Throughput
* Minimize turnaround

Fairness and policy

* Does not necessarily mean everyone or every
group gets the same usage.

 An important science project may a get larger
allocation.

e Scheduler fairly allocates according to usage
policy

Efficiency, Utilization and Throughput

 We want all resources cpus, gpus, memory,
disk, software licenses, bandwidth, and more
to be all used as much as possible.

* How many gaps are there in scheduling
between jobs.

Minimize turnaround

e Goal hereis return an answer or result to a
user as fast as possible

* Important to users which use iterative process
to their goal.

* Minimize time to scientific discovery

Some insights

e The shorter the walltime which is the
maximum time a job will run before being

killed, the better we can meet the 3 goals of
scheduling.

* Jobs using large amount of resources per job
result in a reduction of fairness, efficiency,
responsiveness of the scheduling system.

* The more nodes we have the better we can
meet these goals.

Advantages of Large Clusters

_arger clusters are more fair, efficient, responsive
just by being larger.

_arger clusters are capable of running larger jobs
expanding capability, but if larger jobs are run
exclusively we loose the advantage of a large
cluster.

Shared resources such as WestGrid are better
and are used more efficiently than multiple small
clusters. The larger the scope of shared resources
the better.

Visualizing single node cluster

Node 1

Core 1

Core 2

Core 3

Core 4

Running jobs

Node 1

Core 1

Core 2

Core 3

Core 4

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Scheduling jobs in order of priority

Core 1 B
Core 2]
Core 3]
Core 4

Node 1

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Scheduling jobs in order of priority

Core 1
Core 2
Core 3
Core 4

Node 1

Node 1

Core 1

Core 2

Core 3

Core 4

A Job finishes early

Jobs are rescheduled

Node 1

Core 1

Core 2

Core 3

Core 4

Jobs are rescheduled

Core 1
Core 2
Core 3
Core 4

Node 1

Jobs are rescheduled

Core 1

Core 2

Node 1

Core 3

Core 4

Jobs are rescheduled

Core 1
Core 2
Core 3
Core 4

Node 1

Jobs are rescheduled

Core 1

Core 2

Node 1

Core 3

Core 4

Jobs are rescheduled

Core 1

Core 2

Node 1

Core 3

Core 4

Jobs are rescheduled

Core 1
Core 2
Core 3
Core 4

Node 1

Node 1

Core 1

Core 2

Core 3

Core 4

Single node cluster

Short serial jobs and Backfill

Core 1

Core 2

Node 1

Core 3

Core 4

Myths

If there is a large number of jobs in the queue my job will not
run quickly.

Most of the time these jobs belong to users with very low priority,
because they are running a large number of jobs.

Most of these jobs may not be capable of running as number of
running jobs per user may be limited.

The cluster may have empty processors available for immediate use.
Deciding if a cluster is busy by number of queued jobs does not work.

It is better not to submit to many jobs at a time so that other
users can run.
— The scheduling system is more efficient if you submit your jobs

earlier, as long as you don’t go over the usage limits.

— Fairness is insured by the scheduling system.

Tips

* Make sure your job can run on the resources
available on the cluster.

* Look at the state of cluster/account/Jobs and
now to get the information.

 |f the cluster is empty and you are able to run
shorter jobs to evade the limits.

Basic Job submission

Submitting a Job

If you have a program that you wish to run you need to
figure out the resource requirements of your Job.
These requirements include:

— walltime: maximum length of time your will take to run

— number of cpus, memory, nodes, gpus

— The partition you are submitting to.

The command to submit your job is sbatch, although
sbatch allows you to specify your requirements on the
command line, however you should put your
requirements in a job script.

sbatch jobscript.sh

Simple slurm job script

#!/bin/bash

#SBATCH --ntasks=1

#SBATCH --nodes=1

#SBATCH --time=0-00:02

#SBATCH --mail-type=ALL

#SBATCH --mail-user=no.email@ubc.ca
#SBATCH —o my-output-file-%j.out
#SBATCH --job-name=my-named-job

sleep 1000; # Replace with a line running code

Basic Slurm script commands

#!/bin/bash Sets the shell that the job will be executed on the
compute node

#SBATCH --ntasks=1 Requests for 1 processors on task, usually 1 cpu as 1 cpu
#SBATCH --n1 per task is default.

#SBATCH --time=0-05:00 Sets the maximum runtime of 5 hours for your job
#SBATCH -t 0-05:00

#SBATCH --mail-user= <email> Sets the email address for sending notifications about
your job state.

#SBATCH --mail-type=BEGIN Sets the scedualing system to send you email when the
#SBATCH --mail-type=END job enters the follwoing states:

#SBATCH --mail-type=FAIL BEGIN,END,FAIL,REQUEUE,ALL
#SBATCH --mail-type=REQUEUE

#SBATCH --mail-type=ALL

#SBATCH --job-name=my-named-job Sets the Jobs name

Slurm Jobs and

steps

Unlike PBS slurm jobs can have multiple steps

Each of these steps is like a job and may have
different resources used in it.

Use the command srun to carry out each step

Srun has a similar syntax to s

You can have prologue and e

natch

nilogue per step.

Interactive Jobs

One can ask for an interactive Job to run a program on the cluster and
interact with it while it is running.

Interactive jobs are useful for debugging.

To request and use an interactive job is a multi setp process.

We can request an allocation of resources with the salloc command
— salloc --ntasks=1--nodes=1 --time=-0-01.:20

We actually proceed to open a shell on the inside of the allocated job
— srun --pty -p interact bash

Please make sure to only run the job on the processors assigned/
allocated to your job. This will happen automatically if you use srun,
but not if you just ssh form the headnode.

SLURM Environment Variables

SLURM_JOB_NAME User specified job name

SLURM _JOB_ID Unique slurm job id
SLURM_NNODES Number of nodes allocated to the job
SLURM_NTASKS Number of tasks allocated to the job

SLURM_ARRAY_TASK_ID Array index for this job

SLURM_ARRAY_TASK_MAX Total number of array indexes for this job
SLURM_MEM_PER_CPU Memory allocated per CPU

SLURM _JOB_NODELIST List of nodes on which resources are allocated to Job
SLURM_JOB_CPUS_PER_NODE Number of CPUs allocated per Node

SLURM _JOB_PARTITION List of Partition(s) that the job is in.
SLURM_JOB_ACCOUNT Account under which this job is run.

BREAK FOR PRACTICE

Jobs Types: Parallelism

* Many Serial Jobs 1Nodes N Nodes
* Message Passing (MPI)
* Single node muti-core

(OpenMP, Gaussian)
* Hybrid/ Advanced

Visualizing Multinode cluster

Node 1

Core 1

Core 2

Core 3

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

Many Serial Jobs

Node 1

Core 1

Core 2

Core 3

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

Serial job 1 |
Serial job 2

Serial jop 3

Serial job 4

Many Serial Jobs

Use 1 cpu per job
Easiest and most efficient to schedule
Excellent scaling linear speedup

Example job would be a parameter searches
In your slurm file one can ask for a serial job with:

#SBATCH --ntasks=1

Slurm Serial Job Example

#!/bin/bash

#SBATCH --ntasks=1

#SBATCH --time=0-00:02

#SBATCH --mail-type=ALL

#SBATCH --mail-user=no.email@ubc.ca
#SBATCH —o my-output-file-%j.out
#SBATCH --job-name=my-named-job

sleep 1000; # Replace with a line running code

Tips for running more Serial Jobs

* Submit shorter serial jobs

 Many short serial jobs will run before larger
job
* Checkpoint longer jobs and submit them as

short jobs, this will also save you when the
cluster suffers hardware or power failure.

Job array

Job arrays are used when you have need to submit a large number
of Jobs using the same job script.

There is a naming convention for jobs in array, which is useful as
you don’t need to remember a large number of unique job ids or
job names: jobname|[0]

Job arrays are preferred as they don’t require as much computation
by the scheduling system to schedule, as they are evaluated as a
group instead of individually. Ask for a job array in one of the
following ways:
— #SBATCH --array=0-99
e jobarray 100 jobs numbered 0 -99
— #SBATCH --array=1,2,3,5,7
* Job array with 5 jobs with indexes [1,2,3,5,7]
— #SBATCH --array=0-99%5
e job array 100 jobs numbered 0 -99 with a maximum of 5 running at any time

Job array sample script

#!/bin/bash

#SBATCH --ntasks=1 # Number of cores/tasks
#SBATCH --time=0-00:02 # Runtime in D-HH:MM
#SBATCH --job-name=my-array-job # Sets the Jobs name
#SBATCH --array=1-12 # Ask for an Job array of
12 tasks

echo "This jobs nameis: SSLURM JOB_NAME"
echo "This jobs jobid is: SSLURM JOB_ID”

echo "This jobs taskid is: SSLURM_ARRAY_TASK_ID”
sleep 30

hostname

Node 1

Core 1

Core 2

Core 3

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

MPI Job part 1 of 4
MPI Job part 2 of 4

MPT Job _part 3 of 4

MPI Job part 4 of 4

MPI Jobs

Use the network for message passing

Each job uses multiple cpus each of which can
be on a different node.

Each process uses a different memory address
space

More difficult to write parallel code than
OpenMP as deadlocks are more common.

Can scale higher than OpenMP as clusters are
typically larger than even large SMP machines

MPI Job Submission

* This type of job can have its processes running

on any nhode, multiple processes can run on a
single node.

e #SBATCH --ntasks=X

Single node muti-core job
(OpenMP, Gaussian, Threads)

Core 1

Core 2

Core 3

Core 4

Core 1

Core 2

Core 3

OpenMP job 4 nodes=1:ppn=4

Core 4

Node 3| |Node 2| |Node 1

Core 1

Core 2

Core 3

Core 4

Single node muti-core job

All the threads must run on a single node.

The threads share a single memory address
space

Can compile serial and parallel
executables from the same source code

OpenMP is one of the easiest methods of

parallel programing, can be done
incrementally.

OpenMP job submission

This type of job must have its thread running on
one node, sharing the same memory.

Communication between parts of the job is done
via memory

#SBATCH --cpus-per-task=X

One can ask the program to run a number of
threads via an environment variable:

— export OMP_NUM_THREADS=8

Usually set it to the requested cores:

— export
OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Tips for running OpenMP Jobs

* Check the state of the cluster to see if your job
will run quickly.

* |f you have a number of OpenMP style jobs
you should consider running longer jobs using
less cpus per job instead.

— It is faster and more efficient to schedule single/
smaller processor jobs.

— This advice may not apply when you need other
resources like large amount of RAM per job.

Hybrid Job

Node 1

Core 1

Core 2

Core 3

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

Hybrid Job nodes=2:ppn=2 part 1 of 2

Hybrid Job nodes=2:ppn=2 part 2 of 2

Why use a hybrid job

* It s possible to combine OpenMP and MPI for
running on clusters of SMP machines

* Need more memory or other resource than is available
per core.

* Advanced systems of running parallel jobs can utilize
resources more efficiently. Communication between
cores is faster than between distant nodes. These
systems include Chapel language as well as Partitioned
global address space languages (PGAS) such as Unified
Parallel C, Co-array Fortran.

Slurm script commands

H#SBATCH —ntasks=X

H#SBATCH --nodes=X

H#SBATCH --nodes=X-Y

#SBATCH --cpus-per-task=X

#SBATCH --tasks-per-node=X

Requests for X tasks.
When cpus-per-task=1 (and this is the default) this requests X cores.
When not otherwise constraint these CPUs may be running on any node

Request that a minimum of X nodes be allocated to this job
Request that a minimum of X nodes and a maximum of Y nodes
be allocated to this job

Request that a minimum of X CPUs per task be allocated
to this job

Requests minimum of X task be allocated per node

Slurm script commands

Slurm script commands Description of effects

#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --cpus-per-task=X
#SBATCH --ntasks=1
#SBATCH --nodes=1

#SBATCH --ntasks=X
#SBATCH --tasks-per-node=X
#SBATCH --cpus-per-task=1

#SBATCH --ntasks=X
#SBATCH --nodes=1
#SBATCH --cpus-per-task=1

Requests 1 CPU (Serial)
cpus-per-task is set to 1 by default and may be
omitted.

Requests for X CPUs in 1 task on 1 node (OpenMP)
Both ntasks and nodes are set to 1 by default and may
be omitted

Requests for X CPUs and tasks on 1 node (OpenMP)
cpus-per-task is set to 1 by default and may be
omitted.

Requests for X CPUs and tasks on 1 node (OpenMP)
cpus-per-task is set to 1 by default and may be
omitted.

Slurm script commands

Slurm script commands Description of effects

#SBATCH --ntasks=X
#SBATCH --cpus-per-task=1

#SBATCH --ntasks=X
#SBATCH --ntasks-per-node=Y
#SBATCH --cpus-per-task=1

#SBATCH --ntasks=X
#SBATCH --nodes=1
#SBATCH --cpus-per-task=1

#SBATCH --ntasks=X
#SBATCH --nodes=1
#SBATCH --cpus-per-task=1

Requests X CPUs and tasks (MPI)
cpus-per-task is set to 1 by default and may be
omitted.

Requests for X CPUs and tasks with Y CPUs and tasks
per node (MPI)

cpus-per-task is set to 1 by default and may be
omitted.

Requests for X CPUs and tasks on the same node,
cpus-per-task is set to 1 by default and may be
omitted.

Requests for X CPUs and tasks on the 1 node
cpus-per-task is set to 1 by default and may be
omitted.

BREAK FOR PRACTICE

QUESTIONS?

Upcoming ARC Training Sessions

Machine Learning Using Jupyter Notebooks on
10am - 11pm MDT | Graham

Introduction to Classical Molecular Dynamics
1lam -1 pm MDT | Simulations

Exploring Containerization with Singularity
llam -1 pm MDT

https://www.westgrid.ca/events/westgrid-training-events

Scheduling and Job Management 2

Using a cluster effectively

Presentation contents

Job submission part 2
Understanding Jobs

Slurm Jobs and memory

It is very important to specify memory correctly

 |fyou don’t ask for enough and your job uses more ,your job will
be killed.

 If you ask for too much, it will take a much longer time to
schedule a job, and you will be wasting resources.

* |f you ask for more memory than is available on the cluster your

job will never run. The scheduling system will not stop you from

submitting such a job or even warn you.

If you don’t know how much memory your jobs will need ask for a

large amount in your first job and run:

— sstat --format=AveCPU,MaxRSS,MaxVMSize,JobID -j<jobid>
In the MaxRSS, you should see how much memory your job used.

If you don’t specify any memory then your job will get a very small
default maximum memory.

Slurm Jobs and memory

* Always ask for slightly less than total memory on
node as some memory is used for OS, and your
job will not start until enough memory is
available.

* You may specify the maximum memory available
to your job in one of 2 ways.

— Ask for a total memory used by your jobs (MB)
* #SBATCH --mem=4000

— Ask for memory used per process/core in your job (MB)
* #SBATCH --mem-per-cpu=2000

Slurm jobs and GPUS

* To request GPU use the following syntax
— #SBATCH --gres=gpu:1

* Modern slurm scheduling programs recognize
GPUs as well as the state of the GPU.

 To request a large gpu node on cedar
— #SBATCH --gres=gpu:lgpu:4

Software licenses

 Sometimes not only cluster hardware is
required to be scheduled for a job but other
resources as well, such as software licenses,

telescope or other instrument time.

* To request software licenses:
— #SBATCH --licenses=sas:2

Slurm script commands

#SBATCH --mem=4000 Requests 4000 MB of memory in total

#SBATCH --mem-per-cpu=4000 Requests 4000 MB of memory per cpu

#SBATCH --licenses=sas:2 Requests 2 SAS licenses

#SBATCH --gres=gpu:1 Requests that your job get 1 GPU allocated per
node

#SBATCH --exclusive Requests that your job run only on nodes with no

other running jobs

#SBATCH --dependency=after:job_id1l Requests that the the job start after job (jobid1)
has started

H#SBATCH --dependency=afterany:job_idl, Requests that the the job start after ether job
job_i2 (jobid1) or job (jobud2) has finished

#SBATCH --dependency=afterok:job_idl Requests that the the job start after job (jobid1)
has finished successfully

Memory, Features, Software licenses , Partitions

BREAK FOR PRACTICE

Job Submission Requiring Exclusive

Access

 Sometimes there is a need for exclusive access to
guarantee that no other job will be running on
the same nodes as your job such as during
debugging.

* To guarantee that the job will only run on nodes
without other jobs you own use:

— #SBATCH --exclusive

* Your research group may get charged for using
the whole node and not just the resources
requested, and it may take a long time to gather
resources needed for these special jobs.

Job submission multiple projects

e |f you are part of two different Compute Canada
projects and are running jobs for both, you need to
specify the accounting group for each project so that
the correct priority of the job can be determined and
so that the usage is “charged” to the correct group.

* |n order to specify an accounting group for a Job use:
— #SBATCH --account=accouting_group

* You can see your accounting group information with
the “sacctmgr show user <username> withassoc”

command.

Job dependencies

* If you want one job to start one after another
finishes use the

— #SBATCH --dependency=afterok:job id1

* |f one can break apart a long job into several
shorter jobs then the shorter jobs will often be
able to be ran faster. This is also the technique to
use if the required job runtime is longer than the
maximum walltime allowed on the cluster.

— joblid=S(sbatch anwser-g24.1.sh| awk '{print $4}')
— sbatch --dependency=aftercorr:Sjob1lid anwser-q24.2.sh

Temporary available local storage

* Some software like Gaussian needs to make many small reads and writes
to disk. The cluster (lustre) file system cannot do this well and this
becomes a performance problem for the job and the cluster its running
on.

* Each node has local disk, that is shared by all jobs running on the node.
One specifies the requests the local storage via “#PBS —| file=1000mb”.

 There is a directory created for each job when it is run. When the job
finished this directory is automatically erased. The directory name is
STMPDIR. A example of using the temporary local storage:
— H#SBATCH --tmp=200G
cd SSLURM_TMPDIR
<run my job >
mkdir my_new_dir
cp <file | wish to save> my_new_dir/

Partitions

Your job will automatically be assigned

Somewhat like queues or classes in pbs/
torque and moab.

A job can be in multiple partitions
simultaneously, and can have multiple a per
partition priorities.

A node can be in multiple partitions
simultaneously

Venn Diagram
Has only 2 legs Can Fly

Partition Venn Diagram

Has CPU cores
(Red Partition)

Has GPUs
(Blue Partition)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

— The two nodes with no gpu in the red partition
may be idle but a job that requires a GPU node
(from the blue partition) will be unable to start
if no GPU nodes are idle. A job that requires
CPUs only (Red partition) will be able to start
immediately, even when there are higher
priority blue jobs.

Partition Venn Diagram

(on a 5 node imaginary cluster)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

— The two nodes with no gpu in the red partition
may be idle but a job that requires a GPU node
(from the blue partition) will be unable to start
if no GPU nodes are idle. A job that requires
CPUs only (Red partition) will be able to start
immediately, even when there are higher
priority blue jobs.

Partition Venn Diagram

Has CPU cores
(Red Partition)

Has GPUs
(Blue Partition)

— 3 nodes with GPUs (Blue partition)

Partition Venn Diagram

(on a 5 node imaginary cluster)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)

— 2 nodes have CPUs but not GPUs (In the red
partition but not in the blue)

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

— The two nodes with no gpu in the red partition
may be idle but a job that requires a GPU node
(from the blue partition) will be unable to start
if no GPU nodes are idle. A job that requires
CPUs only (Red partition) will be able to start
immediately, even when there are higher
priority blue jobs.

Partition Venn Diagram

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

— The two nodes with no gpu in the red partition
may be idle but a job that requires a GPU node
(from the blue partition) will be unable to start
if no GPU nodes are idle. A job that requires
CPUs only (Red partition) will be able to start
immediately, even when there are higher
priority blue jobs.

Partition Venn Diagram

(on a 5 node imaginary cluster)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

— The two nodes with no gpu in the red partition
may be idle but a job that requires a GPU node
(from the blue partition) will be unable to start
if no GPU nodes are idle. A job that requires
CPUs only (Red partition) will be able to start
immediately, even when there are higher
priority blue jobs.

Partition Venn Diagram

(on a 5 node imaginary cluster)

Has CPU cores
(Red Partition)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

In the case that the two nodes with no gpus
in the red partition may be idle(green) and
3 nodes with gpus may be busy.

— Ajob that requires a GPU node (from the blue
partition) will be unable to start if no GPU
nodes are idle. A job that requires CPUs only
(Red partition) will be able to start
immediately, even when there are higher
priority jobs in the blue partition.

Node types on Cedar

Total Cores Memory Number of |Partition
Mem TB Nodes type

4GB/core cpubase
1/4 32 8GB/core 182 cpubase
1/2 32 16GB/core 24 cpularge
1.5 32 48GB/core 24 cpularge
3 32 96GB/core 4 cpularge
1/8 24 32GB/GPU 4 114 gpubase

1/4 24 64GB/GPU 4 132 gpularge

Node types on Graham

Total Cores Memory Number | Partition Type
Mem TB of Nodes

4GB/core cpubase
1/4 32 8GB/core 55 cpubase
1/2 32 16GB/core 24 cpularge
3 32 96GB/core 3 cpularge

1/8 32 32GB/GPU 4 114 gpubase

Partitions on Cedar and Graham

CPUs GPUs
By node By node
T e Interactive By GPU Interactive

e Separate partitions for GPUs and CPU request

* Nodes that are in the by core partition are also in the
by node partition, the reverse is not always true.

 There are separate interactive (testing) partitions with
dedicated nodes for interactive usage.

Partitions on Cedar and Graham

Cpubase Cpularge GPU
CPUs up to 8GB per core CPUs more than 8GB per core >
By node By node By node
By core Interactive By core Trteree i By GPU (teractive

e Separate partitions for large memory Nodes and
jobs that have more than 8 GB RAM and smaller

memory nodes and jobs.
— This is done to disallow low memory jobs from

stopping a large memory job from running quickly on
the few expensive large memory nodes we have.

Partitions why the complexity?

* |f we allowed serial jobs to run on all nodes, the chances
that there was a node that had all 32 cores not used or
coming to an end soon would be very small.

— if Y2 the cluster was empty and the job distributed randomly the
chances a any particular node to be empty = | 1

22 4.294,967,296

* As aconsequence whole node jobs would in practice all
have to wait (max walltime) time to start regardless of
priority.

* |f the whole cluster only allows allocation to jobs by node
jobs by core will not run or people would ask for a node
and use a single core.

Partitions on Cedar and Graham

 There are partitions based
upon how long the
maximum walltime your
job has.

* Yourjob ends upin the
shortest walltime partition
that has a longer walltime
than your job

* The shorter walltime
partitions include all the
nodes of longer walltime
partitions.

Maximum job walltime partition limit
A high maximum walltime is not necessary a

[. ! Partition | Maximum
good thing, clusters that allow high walltime B walltime
jobs take longer for jobs to start to run, and

are less “fair”. * bl 3 hours
There are advantages to running shorter .

jobs, such as how quickly your job can be _b2 12 hours
started. o * b3 1 day
The longer and larger a job is the greater the

chances of experiencing hardware failure, * b4 3 days
minimize this through check pompng. | * ba 7 days
Part of the resources of a cluster is dedicated

for shorter jobs. * b6 28 days

Part of CC clusters are dedicated to whole node parallel jobs, other jobs with a
short walltime of under 12 hours can run in this part at a reduced priority
compared to whole node parallel jobs.

Partitions why the complexity?

Some jobs need to run a long time
— Commercial code that does not checkpoint
— Checkpoints can take a very long time

If we allow all nodes to run long walltime jobs

— It would take a long time for resources to be come available,
researchers that need to run short jobs and analyze the result before
running another would find the system unusable.

— People that can divide their work arbitrarily would run long walltime
jobs as they have already waited a long time for their job to start,
making the situation worse.

CC has dealt with the situation in the past by having different
cluster each has different walltimes. But there are not enough
clusters to do this anymore.

The solution of concentric partitions on larger cluster allows us to
more efficiently address diverse user needs.

Partitions on Cedar and Graham

Walltime | Whole node cpu | By core cpu | Whole node gpu By gpu
A1+ A2 A2 A3 + A4 A4
B1 + B2 B2 B3 + B4 B4
C1+C2 C2 C3+C4 C4
D1+ D2 D2 D3 + D4 D4
E1+E2 E2 E3 + E4 E4
F1+F2 F3 + F4

Partitions on Cedar and Graham

Walltime Whole node cpu | By core cpu | Whole node gpu By gpu

A1+ A2 A2 A3 + A4 A4

B1 + B2 B2 B3 + B4 B4

C1+C2 Cc2 C3+C4 C4

24 hr D1 + D2 D2 D3 + D4 D4

E1+E2 E2 E3+E4 E4

3hr F1+F2 F2 F3 + F4 F4

Bacﬁn’gr:?:tjobs F1+F2+f1+f2 F3 + F4

G1+9g1 G3
PC PG

High mem

Basic mem

Partition Stats

Max walltime

Node type |
| 3 hr | 12 hr | 24 hr | 72 hr | 168 hr | 672 hr |

Regular | 1:15 | 2:31 | 2:145 | 11:187 | 86:69 | 3:2
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:1 | 0:1 |
GPU | 0:1 | 0:526 | 10:10 | 0:0 | 189:4 | 0:0 |

Regular | 60:6 | 4:2 | 45:836 | 5:90 | 11:1065] 1:4 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 1:0 |
GPU | 0:20 | 2:10 | 13:2 | 0:0 | 0:0 | 0:3
__________ |___
Number of Idle nodes by partition Type (by node:by core)
__________ |___
Regular | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
Large Mem | 3:1 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 17:1 | 11:1 | 0:0 | 0:0 | 0:0 | 0:0 |
__________ |___
Total Number of nodes by partition Type (by node:by core)
__________ |___
Regular | 851:411 | 821:391 | 756:346 | 636:276 | 180:100 | 90:50 |
Large Mem | 27:12 | 24:11 | 24:11 | 20:3 | 3:2 | 2:1

GPU | 156:78 | 144:72 | 116:58 | 104:52 | 13:12 | 13:12 |

Partitions and priority

Has CPU cores
(Red Partition)

Black dots are nodes

In this example we have:
— 5 nodes with CPUs (Red partition)
— 3 nodes with GPUs (Blue partition)
— 2 nodes have CPUs but not GPUs

A Job that requires CPUs (red partition) can
run on any of the 5 nodes

A job that requires GPUS (blue partition)
can run on any of the 3 nodes.

In the case that the two nodes with no gpus
in the red partition may be idle(green) and
3 nodes with gpus may be busy.

— Ajob that requires a GPU node (from the blue
partition) will be unable to start if no GPU
nodes are idle. A job that requires CPUs only
(Red partition) will be able to start
immediately, even when there are higher
priority jobs in the blue partition.

Partitions and priority example

@ Idle node
O Busy node

Partition A has 3 hour walltime and
includes all the nodes of this type
on the cluster

Partition B is the largest partition
that your job can runin.

Partition C is a subset of partition B
and contains jobs that have a
longer walltime and nodes that can
run those jobs.

Each small green circle represents a
idle an idle node

Each small yellow circle represents
a busy node

Partitions and priority example

Lets assume we have 3 jobs:

— Highest priority job (1) in
partition C that requires 4
nodes.

— 2" highest job in partition
job (2) in partition A that
requires 5 nodes.

— Qur job in partition B that
requires 2 nodes

@ Idle node
O Busy node

Partitions and priority example

@ Idle node

O Busy node * Job 1cannot run as there are only

3 idle nodes in partition C.

— Avreservation is created for the
idle nodes in partition C and the

first of the busy nodes that will
become available.

 Job 2 likely cannot run either as it
needs one of the nodes reserved
by job 1, and unless job 2 can
finish before job 1 starts it will not
be able to run.

 Job 3 will likely not run as well
because it requires resources
(nodes) that are reserved by other
higher priority jobs.

* Highest priority job (1) in partition
C that requires 4 nodes.

e 2" highest job (2) in partition A
that requires 5 nodes.

 Ourjob (3)in partition B that
requires 2 nodes

Partitions and priority example

@ Idle node
O Busy node

* Highest priority job (1) in partition
C that requires 4 nodes.

e 2" highest job (2) in partition A
that requires 5 nodes.

 Ourjob (3)in partition B that
requires 2 nodes

This cluster is 70% idle and
and jobs cannot run why?

The example cluster is
small and the jobs are
large in comparison

There are no short single
node jobs that can fill in
these empty nodes.

This example was created
to show a worse case
scenario

Partitions and priority lessons learned

@ Idle node
O Busy node

Submit smaller, shorter jobs

When looking at priority and why
your job is not running, look at the
priority of other jobs in the
partitions that are either a subset
or superset of your job.

The situation in Compute Canada
will get better when Niagara is up
as that system is designed for large
jobs. The types of jobs on Cedar
and Graham will become less
diverse and we will be better able
to efficiently schedule similar and
smaller jobs on Graham and Cedar.

Slurm script commands

#SBATCH --mem=4000 Requests 4000 MB of memory in total

#SBATCH --mem-per-cpu=4000 Requests 4000 MB of memory per cpu

#SBATCH --licenses=sas:2 Requests 2 SAS licenses

#SBATCH --gres=gpu:1 Requests that your job get 1 GPU allocated per
node

#SBATCH --exclusive Requests that your job run only on nodes with no

other running jobs

#SBATCH --dependency=after:job_id1l Requests that the the job start after job (jobid1)
has started

H#SBATCH --dependency=afterany:job_idl, Requests that the the job start after ether job
job_i2 (jobid1) or job (jobud2) has finished

#SBATCH --dependency=afterok:job_idl Requests that the the job start after job (jobid1)
has finished successfully

Slurm script commands

H#SBATCH --account=acc_name

#SBATCH --tmp=200G

HSBATCH --constraint=blue

#SBATCH --partition=partition_name

--prolog=<executable>

--epilog=<executable>

To submit a job to a specific accounting group such
as RAC/RAS allocation or different role

Asks for 200Gb of temporary disk space

To ask for a node feature or constraint set by
cluster admin. Here we are looking for “blue”
nodes.

To ask for the job to run in a specific partition or
gueue by name, (unlike Moab there can be more
than 1 partition per Job)

Run by srun only, runs the executable before the
step

Run by srun only, runs the executable after the
step finishes

SLURM Environment Variables

SLURM_JOB_NAME User specified job name

SLURM _JOB_ID Unique slurm job id
SLURM_NNODES Number of nodes allocated to the job
SLURM_NTASKS Number of tasks allocated to the job

SLURM_ARRAY_TASK_ID Array index for this job

SLURM_ARRAY_TASK_MAX Total number of array indexes for this job
SLURM_MEM_PER_CPU Memory allocated per CPU

SLURM _JOB_NODELIST List of nodes on which resources are allocated to Job
SLURM_JOB_CPUS_PER_NODE Number of CPUs allocated per Node

SLURM _JOB_PARTITION List of Partition(s) that the job is in.
SLURM_JOB_ACCOUNT Account under which this job is run.

BREAK FOR PRACTICE

Getting information on your Job

Command What its used for

squeue -u <username> List all current jobs for a user
squeue -u <username> -t List all pending jobs for a user
PENDING

squeue -u <username> -t List all running jobs for a user
RUNNING

Squeue -p <partitionname> List all the jobs in a partition
scontrol show job <jobid> List information on Job

scontrol show jobid -dd <jobid> List detailed information on Job

Squeue -0 "%.18i %.30P %.8j %. Formatted output of squeue: we added priority and
8u %.2t %.8p %.10M %.6D %R " made the partition field bigger (30 characters)

Getting information on your Job

Command What its used for

sstat -- List info resource used by your completed job : average
format=AveCPU,MaxRSS,MaxV cpu time, Max memory, Max virtual memory, Jobld
MSize,JobID -j <jobid>

sacct —u <username> -- List resources used by all jobs of a user
format=JoblD,JobName,AveCPU

,MaxRSS,MaxVMSize,JoblID,Elap

sed

sprio List job priority information

squeue

kamil@zeno ~1$ squeue

JOBID PARTITION NAME USERST TIME NODELISTREASON,
2020 1 meml2_shomy-array kamil R 0:04 zeno001
2020 4 meml2_shomy-array kamil R 0:04 zeno001
2019 mem12_shomy-named judy R 0:11 zeno001

Squeue command for user
Squeue -u SUSER

[kamil@zeno ~]$%$ squeue -u kamil

JOBID PARTITION NAME USER ST TIME NODES NODELIST(CREASON)
2025 meml2_sho anwser-q kamil R 0:01 1 zeno@01

597520 cpubase_b aln_ERR1 kamil PD 0:00 1 (Dependency)
597540 cpubase_b aln_SRR9 kamil PD 0:00 1 (Dependency
598316 cpubase_b aln_SRRZ2 kamil PD 0:00 1 (DependencyNeverSc

598324 cpubase_b aln_SRRZ kamil PD 0:00 1 (DependencyNeverSc

Squeue command for queued jobs
squeue -u <username> -t PENDING

[kamil@zeno ~]$ squeue -u kamil -t pending

JOBID PARTITION NAME USER ST TIME NODES NODELIST(CREASON)
597520 cpubase_b aln_ERR1 kamil PD 0:00 1 (Dependency)
597540 cpubase_b aln_SRR9 kamil PD 0:00 1 (Dependency
598316 cpubase_b aln_SRR2 kamil PD 0:00 1 (DependencyNevers
598324 cpubase_b aln_SRRZ kamil PD 0:00 1 (DependencyNevers
619783 cpubase_b alal805S kamil PD 0:00 1

617318 cpubase_b Pseudomo kamil PD 0:00 1 (Resources)
617319 cpubase_b Pseudomo kamil PD 0:00 1 (Resources)

squeue -u <username> -t RUNNING

[kamil@cedar ~]$ squeue -u kamil -t running
JOBID PARTITION
2026 meml2_sho

620930
617805
584942
574866
618505

cpubase_b
cpubase_b
cpubase_b
cpubase_b
cpubase_b

NAME
anwser-d
HRAGROO1

Ro:0
runmpi.s
Ro:-0.08
Bowtiel_

USER ST TIME NODES NODELIST(REASON)
kamil R 0:02 1 zeno001

kamil R 23:58 1 cdr57

kamil R 9:44:23 4 cdr[72,88,92,95]
kamil R 2-11:09:29 4 cdr[81-83,98]
kamil R 2-22:21:17 5 cdr[77,79-80,84,¢
kamil R 9:42:10 1 cdr2l5

squeue -p <partitionname>

JOBID PARTITION

535639
591830
615762
401219
491576
535638
491574
491575

cpubase_b
cpubase_b
cpubase_b
cpubase_b
cpubase_b
cpubase_b
cpubase_b
cpubase_b

Jobs by partition

NAME
AE17631.

bz.sh
AE21380.
CTD@95.s
gen3x1s8
AE17594 .
gen3x1s6
gen3x1s?/

USER ST
kamil PD
erming PD
kamil PD
john PD
judy R
kamil R
masao R
masao R

TIME NODES NODELIST(F

:00
:00
:00
:00
:59
:03
144
144

P PR R RPPRP R

(Resource
(Resource
(Resource
(Resource
cdr747
cdrlol
cdr79
cdr85

Squeue queries

Squeue -0 "%.18i%.30P %.8j %.8u %.2t %.8p %.10M %.6D %R " -u <username>

[kamil@cedar5 test1$ squeue —o0 '%.18i%.30P %.8j %.8u %.2t%.8p %.10M %.6D %R ' -u kamil
JOBID PARTITION NAME USERSTPRIORITY TIME NODES NODELIST(REASON

597520 cpubase bycore b1l,cpubackfillaln_ERR1 kamil PD 0.001164
597540 cpubase bycore b1l,cpubackfillaln_SRR9 kamil PD 0.001164
597592 cpubase bycore b1l,cpubackfill aln_SRR5 kamil PD 0.001164
597593 cpubase bycore b1l,cpubackfillaln_SRR8 kamil PD 0.001164

0.00
0.00
0.00
0.00

1 (Depenc
1 (Depent
1 (Depent
1 (Depent

scontrol show job <jobid>

[kamil@zeno ~]$ scontrol show job 2026

JobId=2026 JobName=anwser-qg3.sh
UserId=kamil(1005) GroupIld=slurmteam(1007) MCS_label=N/A
Priority=38885 Nice=0 Account=teaml Q0S=meml2_short
JobState=COMPLETED Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:31 TimelLimit=00:02:00 TimeMin=N/A
SubmitTime=2017-03-22T13:51:02 EligibleTime=2017-03-22T13:51:02
StartTime=2017-03-22T13:51:02 EndTime=2017-03-22T13:51:33 Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=0
Partition=meml2_short AllocNode:Sid=zeno:31494
RegNodeList=(Cnull) ExcNodelList=(null)
NodeList=zeno001
BatchHost=zeno001
NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 RegB:S:C:T=0:0:%*:*
TRES=cpu=1,mem=1948M, node=1
Socks/Node=* NtasksPerN:B:S:(C=0:0:*:* CoreSpec=*
MinCPUsNode=1 MinMemoryCPU=1948M MinTmpDiskNode=0
Features=(null) Gres=(hull) Reservation=Chull)
OverSubscribe=0K Contiguous=0 Licenses=(null) Network=(Cnull)
Command=/home/kamil/anwser-q3.sh
WorkDir=/home/kamil
StdErr=/home/kamil/slurm-ql-2026.err
StdIn=/dev/null

JOBID
130976
167003
195802
195809
195810
205281
205290
544814
544815
617580
0617581

PRIORITY
7088
6150

4990086
4996086
4996086
8206
0408
23534
23534
24194
24194

AGE
2500
2500
2500
2500
2500
2500
2500
1741
1741

373

373

Priority
sprio

FAIRSHARE
0

0
4991771
4991771
4991771
0

0

21571
21571
22768
22768

PARTITION
625
1250
833
833
833
625
625
208
208
1042
1042

TRES
cpu=2526,mem=1437
Cpu=2008 ,mem=392
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=1875,mem=1800, gr
cpu=1875,mem=2,gres/
cpu=13,mem=2
cpu=13,mem=2
cpu=10,mem=2
cpu=10,mem=2

Demonstration on cluster

* SSH cluster and show all the following commands
and how to interpret them

* sgqueue
* squeue -u SUSER

* squeue -t pending

* squeue -t running

* squeue -p <partition>

e squeue (custom format)
e scontol show job <jobid>

* Sprio -n

BREAK FOR PRACTICE

QUESTIONS?

Upcoming ARC Training Sessions

Machine Learning Using Jupyter Notebooks on
10am - 11pm MDT | Graham

Introduction to Classical Molecular Dynamics
1lam -1 pm MDT | Simulations

Exploring Containerization with Singularity
llam -1 pm MDT

https://www.westgrid.ca/events/westgrid-training-events

Scheduling and Job Management 3

Using a cluster effectively

Presentation contents

Priority, Allocations and Fairshare
Cluster limits, Reservations and Topology
Getting information on your Cluster
Trouble shooting your jobs

Priority

Can only be positive in slurm.
Only relative priority matters.

Jobs with highest or least negative priority get
reservation to run first.

Highest priority job may not run first.

A job which is using a small amount of resources that are in
great supply may easily run before a high priority job
requesting scarce or already used resources.

In Compute Canada priority is determined per group
via “fairshare” and how long your job sits in the queue

“sprio” will show priority of your job

JOBID
130976
167003
195802
195809
195810
205281
205290
544814
544815
617580
0617581

PRIORITY
7088
6150

4990086
4996086
4996086
8206
0408
23534
23534
24194
24194

AGE
2500
2500
2500
2500
2500
2500
2500
1741
1741

373

373

Priority
sprio

FAIRSHARE
0

0
4991771
4991771
4991771
0

0

21571
21571
22768
22768

PARTITION
625
1250
833
833
833
625
625
208
208
1042
1042

TRES
cpu=2526,mem=1437
Cpu=2008 ,mem=392
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=1875,mem=1800, gr
cpu=1875,mem=2,gres/
cpu=13,mem=2
cpu=13,mem=2
cpu=10,mem=2
cpu=10,mem=2

Fairshare

 Fairshare is a mechanism that allows historical
resource utilization information to be
incorporated into job feasibility and priority
decisions

* In SLURM priority ranges from 1to 0

* In Compute Canada fairshare compares your
group’s target usage to your group’s actual usage
during a time period. If your group has used less
than your group share you are given higher
priority.

Fairshare

Fairshare Interval

A
)
- 35
: 30 o
Fairshare Decay =
K “
* 29 — 2
2
A 20 @
-
go w
= 15 @
®
- 10
5
Past <% £ 5 1% S B g T is ¥
6 5 4 3 2 1 0 Present Effective
Fairshare Depth =7 Fairshare

* Fair share usage is weighted by when the usage occurred
recent usage is more important then usage at the end of

the period

Fairshare tree CPUs and GPUs and
Equivalents

We use GPU or CPU equivalent resources in all

our calculations.

— If your job uses all (memory/disk/any other resource)
on a node and half the CPUs the scheduling system
will “charge” or use in its calculations as if you used all

the CPUs on that node.
Separate accounting groups for CPUs and GPUs

For GPU jobs we only count number of GPU used
or GPU equivalent in terms of other resources.

Fairshare trees

* |tis possible for project leader to divide the
target allocations of resources for the group.

* Your priority is determined by a combination of

your grou

0’s usage compared to your group’s

target usage, as well as your subgroups usage

comparec

to subgroup target share as well as

vour individual usage in the group compared to
your individual target in the group.

* The priority of anyone's job will primarily be
influenced by the top of the tree rather than the
subgroups/individual usage.

Fairshare tree Basics

[root]

/2 Group1 //1 Group2 //1 Group3

/ Sub Group 1 // Sub Group 2 /

* Group 1 has

normalized share 50%

= (2/(2+1+1))

e Subgroup 1 has normalized

share 40%

= (4/(4+1)* Group 1 share)

= (4/(4+1)* (2/(2+1+1)))

Fairshare trees shares are
different shares on different
levels.

Fairshare tree shares don’t
mean anything other than
meaning we give them if they
add up to 100 then its percent if
they add up to the number of
cores then each share is
expressed in cores

In SLURM shares have to be
integers

Usage in a group is includes the
usage by sub groups

Normalized shares are the
fraction of the system that the

group or user receives

CC Slurm Fairshare tr

Version 1.5 (subgroups)

Legend
‘ CPU

GPU

Expired

9 | Groups share

s —

(total_cpu - sum (rac-cpu)

(J / JRAC-1-cpu / “e /50 RAC-N-cpu /
Non-RAC-cpu R

|» rAC-101cpu [/i RAC-1-C

T

Lwras-burst—1-cpu / sess / 123ras—burst—N—cpu /
RAS-default-cpu

(total_cpu - sum (rac-cpu) -
sum(ras-burst-cpu))

—

/ Ras-default-1-cpu / 'R / Ras-default-N-cpu /
1 1

Upcoming CC Slurm Fairshare tree

Version 1.6
(simplified flattened) root

/ Ras-default-1-cpu // Ras-default-N-cpu / /RAC1C u / /RACNC u /
(NAC / NNAP) NAC (NAC / NNAP) NAC 100 100* NNAP 2 200* NNAP

Legend

CPU

Group’s share -1-01- -
in CYE/GYE / 755&93/1(3911) cpu3 / / 25%6591/1(3911) Cpu1 /
9 (from LDAP)

Group’s share
10 in Slurm

Non Allocated CPUs =
Total number of CPUs -
NAC Sum (allocated CPUs)

Number of Non
NNAP Allocated Projects

Upcoming CC Slurm Fairshare tree

Version 1.6 ¢
(flattened) foo \
RAC 1-cpu / RAC-N /
100 * NNAP 50 NAP
/5 100Acf\+1 01_Cpu / /25 100 * 1/(3-+1)- 02- R /
Legend / Ras-default-1-cpu /. = n / Ras-default-N-cpu /
NAC / NNAP) NAC (NAC / NNAP) NAC
CPU
GPU
Expired

Group’s share
in CYE/GYE

9 (from LDAP)
Group’s share
10 in Slurm
Non Allocated CPUs =
Total number of CPUs -
NAC Sum (allocated CPUs)
Non Allocated GPUs =
Total number of GPUs -
NAG Sum (allocated GPUs)
Number of Non
NNAP Allocated Projects

Multi level fairness

“Another layer of "fairness
is necessary however, one
that factors in the usage of
other users drawing from
ecine Alocaton the same account. This
e 0 "4 allows a job's fair-share
factor to be influenced by
the computing resources
°U5555e °U5555'e delivered to jobs of other
users drawing from the
Acual :seg :: \ Acma.uia;;o same account.”

Aclual Usace: 0

User 1
.12 Usage

Effective usage

(No longer used by CC)

* No longer used in FS
calculations in the new “fair
tree fairshare tree”
algorithm CC uses but its
still reported by scheduling
system.

* An individual who has not
run any Jobs will have a
nonzero effective usage if
his group or its parent group

Machine Allocation

Account B Account C Account D

<

User 2 User 3

has been running jobs.
. Was used by the standard fairshare tree slurm algorithm
to achieve Multi level fairness.
st ser2 User 3 . Effective usage takes into account the Effective usage of
Actual Usage: .25 \ Actual Usage: 0 the parent group as well as the actual usage of the
individual.

Actual Usace: 0 , , - if |

“Fair tree” Fairshare tree priority
algorithim

Algorithm works by calculating “level fairshare” which is: LF = Sha’”%jse
at each level of the fairshare tree.

Orders all the accounts and users in the level.

— For each account and user in the tree, calculates the level fairshare
and does the same at the next level

Traverse the tree and order/rank/number all user accounts.
— Use zero based counting here, first user will be 0

Priority is given in the following formula: »_ (UserCount ~UserRank)
- (UserCount)

ex: If there are 3 users the priority of the middle user

P (UserCount - UserRank) _B-H)_2_ 0.67
(UserCount) 3 3

|V|Ol’e |nf0rmat|on ava||ab|e here: https://slurm.schedmd.com/SUG14/fair tree.pdf

Priority

* Job priority is the sum of all the weighted sum

of all the factors that have been enabled.
* Job_priority =(PriorityWeightAge * age_factor) + (PriorityWeightFairshare *
fair-share_factor) + (PriorityWeightPartition* partition_factor) + other stuff

* This allows us to give greater priority to jobs
that have been waiting in the queue a long time
and determine how important that is relative to
fairshare priority.

 Without an age factor a larger job by a user with
a small allocation could never run.

Group’s Status: “sshare ”

[kamil@cedar5 workshop_test]$ sshare | egrep "(--|Account|”root|no_rac_|ras_b]|cc-debug|kamil)"

Account User RawShares NormShares RawUsage NormUsage EffectvUsage FairShare
root 1.000000 56519806629365289 1.000000 0.50000¢C
no_rac_cpu 3083 ©.123572 54311297258252622 0.960925 0.960925 0.004562
ras_basic_cpu 3083 ©.123532 54311297258252622 0.960925 0.960925 0.004554
cc-debug_cpu 1 0.000031 120455 0.000000 0.000237 0.004554
cc-debug cpu kamil 1 0.000000 0 0.000000 0.000001 0.004554
def-kamil_cpu 1 0.000031 46106596622 0.000001 0.000238 0.004470
def-kamil_cpu kamil 1 0.000031 46106596622 0.000001 0.000238 0.004470
no_rac_gpu 75 0.003006 842007112518017 0.014898 0.014898 0.032224
ras_basic_gpu 75 0.002967 842007112518017 0.014898 0.014898 0.030781
cc-debug_gpu 1 0.000001 37224 0.000000 0.000004 0.030781
cc-debug_gpu kamil 1 0.000000 0 0.000000 0.000000 0.030781
def-kamil_gpu 1 0.000001 37555979258 0.000001 0.000004 0.016416
def-kamil_gpu kamil 1 0.000001 37555979258 0.000001 0.000004 0.016416

Account

User

Group’s Status: “sshare

[kamil@cedar5 workshop_test]$ sshare

III

-1 | egrep "(--|Account|”root|no_rac_|ras_bj|cc-debug|kamil)"
NormShares

RawShares

root
no_rac_cpu
ras_basic_cpu
cc-debug _cpu
cc-debug cpu
def-kamil_cpu
def-kamil_cpu
no_rac_gpu
ras_basic_gpu
cc-debug gpu
cc-debug_gpu
def-kamil_gpu
def-kamil_gpu

kamil

kamil

kamil

kamil

P O ©O 00O OFr OO0 oo o

.000000
.043194
.999243
.000236
.004386
.000236
.000000
.002127
.984848
.000236
.004386
.000236
.000000

RawUsage NormUsage EffectvUsage FairShare LevelFS
639083114320110 1.000000
404703982221822 0.633257 0.633257 0.068209
404703982221822 0.633257 1.000000 0.999243
1273287234 0.000002 0.000003 75.104409
0 0.000000 0.000000 0.026537 inf
0 0.000000 0.000000 inf
0 0.000000 0.000000 0.486678 inf
6883285083841 0.010771 0.010771 0.197479
6883285083841 0.010771 1.000000 0.984848
12668 0.000000 0.000000 128389.386733
0 0.000000 0.000000 0.508693 inf
0 0.000000 0.000000 inf
0 0.000000 0.000000 0.973463 inf

kamil@cedar5 test]$ sprio | head

[kamil@cedar5 workshop_test]$ sprio -n

JOBID PRIORITY
130976 0.00000165
167003 0.00000143
195802 0.00116324
195804 0.00116324
195807 0.00116324
195809 0.00116324
195810 0.00116324

AGE

P PR R R R PR

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

(S IO RN OO C RN O I O I O

FAIRSHARE

.0000000
.0000000
.9983542
.9983542
.9983542
.9983542
.9983542

Priority
Sprio —n

PARTITION TRES

(S IO RN OO RN C RN O I O I O

.2500000
.5000000
.3333333
.3333333
.3333333
.3333333
.3333333

cpu=0.
cpu=0.
Ccpu=0.
cpu=0.
Ccpu=0.
Ccpu=0.
cpu=0.

17 ,mem=0.
13,mem=0.
03,mem=0.
03 ,mem=0.
03 ,mem=0.
03,mem=0.

03 ,mem=0

10
03
00, gr
00, gr
00,gr
00,gr

.00,gr

JOBID
130976
167003
195802
195809
195810
205281
205290
544814
544815
617580
0617581

PRIORITY
7088
6150

4990086
4996086
4996086
8206
0408
23534
23534
24194
24194

AGE
2500
2500
2500
2500
2500
2500
2500
1741
1741

373

373

Priority
sprio

FAIRSHARE
0

0
4991771
4991771
4991771
0

0

21571
21571
22768
22768

PARTITION
625
1250
833
833
833
625
625
208
208
1042
1042

TRES
cpu=2526,mem=1437
Cpu=2008 ,mem=392
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=469,mem=45,gres/
cpu=1875,mem=1800, gr
cpu=1875,mem=2,gres/
cpu=13,mem=2
cpu=13,mem=2
cpu=10,mem=2
cpu=10,mem=2

Multiple allocations/accounting
groups

e Occurs when group gets a RAC (Resource Allocation
Committee) allocation and therefore a new allocation
that becomes the default allocation.

* Occurs when a user is part of multiple Compute
Canada research groups. One can select the default
allocation, even a default allocation per cluster and
send an email to support@westgrid.ca.

* |n order to specify a accounting group to charge and
figure out the priority use the following example in
your job submission script.

— #SBATCH --account=accounting_group name

Allocations

 What does an allocation usually mean?

— If you request average resources continually
through the time period and run jobs, you are
guaranteed to get at least your allocated
resources over the time period (year).

 What if | have not applied for an allocation?

— you have a default allocation

Allocations

* |tisimpossible for an allocation to be defined as: “Any
time you ask for the resources allocated you will receive
them”.

— If 2 users are given 50% of a cluster each, and both don’t

start running jobs until the 6th month they both cannot get
the same cluster

* Unless an extraordinary situation exist allocation will not

mean that the specified resources are available sitting
idle.

— Funding agencies don’t like to see resources sitting idle

— An example of a extraordinary situation would be an
Tsunami warning center which may need to have an
allocation sitting idle so that when a earthquake occurs they
can compute which beaches get hit and concentrate first
responder resources to save lives.

Allocations in Compute Canada

 Compute Canada (CC) Resource Allocation Committee
(RAC) is a Committee of researchers that evaluate
proposed allocations on the basis of scientific merits
and resources available. There is also a preliminary
technical evaluation which evaluates the application
on technical merits, job requirements. The technical
evaluation reports its findings and recommendations
to the RAC.

* Allocations are for done yearly, the RAC call for
proposals goes out every September.

* For more information see: https://www.westgrid.ca/
support/accounts/resource_allocations

Getting information on you and your

group
Command What its used for

sacctmgr list Users List user and their default account (accounting group)
USERS=<username>

sacctmgr show user List user and their default account (accounting group)
<username> withassoc and shows more extensive information
sshare Shows usage info for user usage and priority.

sshare - Shows even more info for user usage and priority.

Priority for your job
Compare it to other job
Fairshare target allocation to your group

Your groups usage by members

BREAK FOR PRACTICE

Usage limits on a cluster

There are 2 types of usage limits:

e Usage limits that prevent the scheduling
system from being overloaded.

e Usage limits that prevent a user from
monopolizing the cluster

— by starting jobs on all resources of a cluster which
will run for a long period of time.

— By starting jobs that last a very long time

Node 1

Core 1

Core 2

Core 3

Reservations

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

Special Reservation

Reservations

e Used for many purposes
— Used to schedule outages: Security patch that
requires an reboot
— Used to reserve resources for special occasions,
such as a workshop
— Each job also creates reservations

e One can see reservations on a cluster via
“scontrol show reservations”command

Reservations and short serial jobs

Node 1

Core 1

Core 2

Core 3

Core 4

Node 2

Core 1

Core 2

Core 3

Core 4

Node 3

Core 1

Core 2

Core 3

Core 4

Special Reservation

Topology

As more devices are added to a system the ability to have high
bandwidth and low latency communication between every device
to every other device becomes at first expensive and the
impossible.

This effect is true between cores on a chip, memory on a machine,
chips on boards, gpus, as well as nodes in a cluster.

The workaround is topology, only certain set resources are
connected with high bandwidth, low latency, non blocking
connections with each other, but the connection to other
resources of lower bandwidth, higher latency, larger blocking
factor.

The result is that jobs running on certain sets of resources are
faster than running on others, and the scheduling system needs to
take this into account.

This problem will be a much bigger in the future.

Topology on older cluster

Cl2n001
(cl2n0025

12x

CIZnZ40>

0

CE

Topology on Cedar

16x

switch

\@x

100Gb omnipath switch

16x

switch

N\

16x

0

B

switch

\@x

Topology on Graham

Infiniband switch (100Gb EDR, 54 Gb FDR)

4x EDR 4xEDR 4x EDR

8x Fdr

switch

Interconnect network on Graham

1024-core Partition 01: non-
blocking 32 * base node
|

: 2" X6B00 Chaszsizs 2 " X6800 Chassis
16° Baze node 16" Basze node

e

2 * X6800 Chassis
16 * Uoud node

freneasd

2% X6800 Chassis 1 » Home Storage
16 * Uoud node 3+ gceanstorseop 16 " Coud node

2 * X6800 Chassiz 2 * X6800 Chassis
16" Base node 16° Baze node

4096-core Partition 22: non-blocking 128 * base node

2 * X6800 Chaszsiz 2 * X6800 Chassis 2 * X6800 Chassiz 2 * X6800 Chassis
16" Basze node 16" Base node 16" Base node 16" Base node
v T - Y RN
CLLELCET ST L L LECLE LI LULEE L |
Ll

R

[

324-port EDR Switch

2 * X6800 Chassis 1* X6800 Chassis

8 " Ooud node

e

3 * X6800 Chassis

24" i em512 node

1024-core Partition 23: non-
[l blocking 32 * GPU base node
[8 * X6800 Chassis
32 * GPU base node

3 * X6800 Chassis
12 * Gatewsy node/
Login node
4 * Management node

1024~core Partition 27: non-
blocking 32 * GPU base node
8 * X6800 Chassis
32 * GPU base node

iy

LEGEND
£9000 18
— switching module
o POR
InfiniBand Switch
———= 36-port FDR Gateway
InfiniBand Switch
— 36-port EDR
InfiniBand Switch
s, Cloud network
ELETETE TR T,

switches

N * InfiniBand FDR cable

S

—_—
N
N

N * InfiniBand EDR cable

N * 10GE cable
N * 40GE cable

Solid line - front cabling

@& 848 Dotted line — back cabling

ack 4

ack 2 ack 3

¢ 0‘ Iyt
Gy

..‘A. ')@
ERem—

@-@

: H ‘

O F® | 55=(10+3+20)+2%7.5)+7

T«

Topology on Hungabee

ack 1

63 = (10 + 3 + 20) + 4*%(7.5)
70=(10+3 +20) +4%(7.5)+ 7

s e
=

..

7
o

40=(10+3+20)+7

48 = (10 + 3 + 20) + 2%(7.5)

pe

)

.(—",
Coaiaiaisssy

A

P

-
q

X

A

R

3
=20

"’
Coizaioi

A

<=

c
L v

('.)Q.'. -
B3 B4 B5 B6 B7
mm t
tcomm
blade
+
+=7
d |

ck line

Topology on Hungabee

Communication between cores and memory on hungabee’s uv1000
compute node is faster and more abundant on adjacent connected
resources than on the other side of the machine. The scheduling system
needs to take this into account and schedule your jobs to runs on
adjacent/connected resources.

The topology of hungabee uv1000 machine is strange, odd even blade
pairs, all blades in a chassis, all even and all odd blades are connected to
each other more closely than other combinations.

The topology results in strange effects, a job using 2 of 128 blades will
stop a job requiring % of the machine (64 blades from running), but will
not stop a 66 blade job from starting, the reverse is also true: a 64 blade
job will stop a 2 blade job from starting but not a 3 blade job.

The only way to know if your job should be starting but isn’t is to take the
“mdiag —n” or “jobinfo —n” output and compare it to topology diagram
and see if there is enough empty resources, appropriately connected for
your job to start.

Tip: Don’t have your jobs ask for %2 the machine, use less than % or slightly
more, and it will be scheduled quicker.

Getting information on your
Cluster

Sinfo -R

e Shows Nodes that are down and the reason
why usually some error.

[kamil@cedar5 projects]S sinfo -R | head -12
REASON USER TIMESTAMP NODELIST
Notresponding root 2017-06-23T14:10:54cdr(137-139,147,2701
root 2017-08-20T05:36:07 cdr811
Notresponding slurm 2017-08-29T02:41:01cdr119
Prologerror root 2017-08-27T14:31:25 cdr47
root 2017-08-23T01:36:00 cdr52
root 2017-08-17T14.07:09cdr;53,621
Epilogerror root 2017-07-25T16:39:47 cdr61

sinfo --states=idle

* Shows idle nodes and partitions (When a node is in multiple
partitions it shows it multiple times)

kamil@cedar5 projects1$ sinfo __states-=idle | head -15
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
cpubase_interac up 12:00:.00 7 idlecdr;552,556,682,693,695-696,848;

cpubase_bycore_bl up 3:00:00 17 idle
cdr[358 362,365-367,369-374,377-379,381-382,384;

cpubase_bycore_b2 up 12:00:00 O n/a
cpubase_bycore_b3 up1-00:.00:00 O n/a
cpubase_bycore_b4 up3-00:00:.00 O n/a
cpubase_bycore_b5 up7-00:.00:00 O n/a
cpubase_bycore_b6 up28-00.00:0 O n/a
cpubase_bynode_b1l* up 3:00:00 66 idle

cdrr358, 362 365-367,369-374,377-379,381_382,384,391,413,497,501,504,51
0,542,555,560,563,568,579,598,600,612,615,626,631,644,648,652,654,657,6
67,669,676,684,711,716 717,721,724 725,729,731_732,735,739,744,758,761

7
774 778 785 805 806,808, 837 855

Node type |

Regular | 1:1
Large Mem | 0:0
GPU | 0:1

Regular | 60:6
Large Mem | 0:0
GPU | 0:20

Partition Stats

Max walltime
| 24 hr | 72 hr | 168 hr | 672 hr |

2:145	11:187	86:69	3:2
0:0	0:0	0:1	e:1
10:10	0:0	189:4	0:0

45:836	5:90	11:1065] 1:4	
0:0	0:0	0:0	1:0
13:2	0:0	0:0	0:3
Number of Idle nodes by partition Type (by node:by core)
Regular | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
Large Mem | 3:1 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 17:1 | 0:0 | 0:0 | 0:0 | 0:0 |

Regular | 851:411
Large Mem | 27:12
GPU | 156:78

| 756:346 | 636:276 | 180:100 | 90:50 |
| 24:11 | 20:3 | 3:2 | 2:1
| 116:58 | 104:52 | 13:12 | 13:12 |

Getting information on your Cluster

Command What its used for

sinfo --states=idle Show idle node on cluster

sinfo -R Show down, drained and draining nodes and their
reason

sinfo --Node --long Show detailed node info.

scontrol show reservation Shows reservations on the cluster

partition-stats Compute Canada script to show jobs and nodes by
partition

scontrol create reservation
user=root starttime=now
duration=infinite
flags=maint
nodes=<nodeid>

BREAK FOR PRACTICE

Why does my job not run?

* List of reasons your job is not running in order
of probability.
1. There is a problem with the job
The Job is blocked
Other jobs have greater priority
Resources are not available

A

There is a problem with the scheduling system
or cluster.

Common Problems

* The Job request more resources than are

available on the system or node or practical to
run on the system.

e ex)
— You can request 10,000 cores on cedar

— Request more than 3TB of RAM per node
— Request 5 nodes each with 2TB per node

Problem with my job

1. Is the Job blocked? “squeue —u <user name>"
— Find out more? “scontrol show jobid -dd <jobid>"

2. Isthe Job on hold? Are there dependencies?

Is there a problem with my job?

3. What is my jobs priority? Compare it to other jobs
on cluster run: “sprio”

If you have much lower priority find out why:
use: “sshare”

 Wait until priority improves over time.
 Ask fellow group members to run less.
 Ask for your professor to apply for a RAC allocation.

Is there a problem with the cluster?

4. If you have high priority and your job is
gueued check to see if the resources are
available

a. Use “partition-stats” to see if there are enough
resources available on enough nodes to start
your job. Check the WestGrid webpage to see if
there is an outage scheduled.

Is there a problem with cluster

5. Is there a reservation or system outage

 Check the Compute Canada webpage / MOTD on the
system to see if there is an outage scheduled.

* Check for an reservation on the system “scontrol
show reservation”

Send email to
support@computecanada.ca

Make sure you always include the following at the beginning of the
email

— Name of the cluster, jobid, userid

— The location of the jobscript you submitted.

— Any output or error of the job run.

— Also make sure the name of the cluster is in the subject, ex: “job

123456 fails to run on the Cedar cluster”

Brief but complete description of the problem.

You should try to include the output of any commands like those
descripted in the talk earlier. Please include any output of
commands that you have run which convinced you there is a
problem. A lot of these commands give the state of the job or
cluster at the moment and this way we can analyze the situation as
you saw it.

Scheduling in the future

Many more levels of topology
Enforcing exclusivity with granularity

Data movement, backups, recovery, latency, bandwidth,
move job to data not data to job.

Failure tolerant jobs and scheduling
Power aware jobs and scheduling
Scheduling provisioning of nodes
Scheduling VMs and containers.

Cloud /Grid scheduling including both batch jobs and
services on the same system, virtual network management,
all the points above in a integrated system

QUESTIONS?

Upcoming ARC Training Sessions

Machine Learning Using Jupyter Notebooks on
10am - 11pm MDT | Graham

Introduction to Classical Molecular Dynamics
1lam -1 pm MDT | Simulations

Exploring Containerization with Singularity
llam -1 pm MDT

https://www.westgrid.ca/events/westgrid-training-events

