
Using	a	cluster	effec/vely		
Scheduling	and	Job	Management	

	
•  Log	into	cedar.computecanada.ca:	

–  ssh	-X	yourusername@cedar.computecanada.ca	
–  use	puAy	if	you	are	working	in	windows	

•  Copy	the	working	directory	to	your	own	and	go	into	
it.	
–  cp	-r	/home/kamil/workshop_public/2017/scheduling	.	
–  	cd	scheduling	

•  You	can	find	a	copy	of	the	slides	and	materials	for	
this	workshop	in	the	following	link	
hAps://goo.gl/eXyHhL	
	
	

Upcoming	ARC	Training	Sessions	

October	25	
10am	-	11pm	MDT	

Machine	Learning	Using	Jupyter	Notebooks	on	
Graham	
	

November	1	
11am	–	1	pm	MDT	

Introduc@on	to	Classical	Molecular	Dynamics	
Simula@ons	

November	21	
11am	–	1	pm	MDT	

Exploring	Containeriza@on	with	Singularity	
	

hIps://www.westgrid.ca/events/westgrid-training-events	

Scheduling	and	Job	Management	1	

Using	a	cluster	effec/vely		

Presenta/on	contents	

Scheduling	Theory	
Basic	Job	submission	

Parallel	compu/ng	and	Job	submission	
	

Batch	Scheduling	

•  Is	not	used	when	you	need	a	service	for	example	
a	webserver	that	runs	all	the	/me.		

•  Is	preferred	when	you	have	one	or	more	jobs	
(simula/ons)	that	need	to	be	run	and	you	wish	to	
get	the	results	back	some/me	in	the	future.	

•  Your	job	automa/cally	started	by	the	scheduler	
when	enough	resources	are	available,	and	you	
get	results	back,	you	may	be	no/fied	when	your	
job	starts	and	finishes.	

Typical	HPC	Cluster	

Typical	small	HPC	Cluster	

Bigger	HPC	Cluster	

Goals	of	scheduling	

•  Fairness	and	policy	
•  Efficiency	/	U/liza/on	/	Throughput	
•  Minimize	turnaround	

Fairness	and	policy	

•  Does	not	necessarily	mean	everyone	or	every	
group	gets	the	same	usage.	

•  An	important	science	project	may	a	get	larger	
alloca/on.	

•  Scheduler	fairly	allocates	according	to	usage	
policy	

Efficiency,	U/liza/on	and	Throughput	

•  We	want	all	resources	cpus,	gpus,	memory,	
disk,	soaware	licenses,	bandwidth,	and	more	
to	be	all	used	as	much	as	possible.	

•  How	many	gaps	are	there	in	scheduling	
between	jobs.	

Minimize	turnaround	

•  Goal	here	is	return	an	answer	or	result	to	a	
user	as	fast	as	possible	

•  Important	to	users	which	use	itera/ve	process	
to	their	goal.	

•  Minimize	/me	to	scien/fic	discovery	

Some	insights		

•  The	shorter	the	wall/me	which	is	the	
maximum	/me	a	job	will	run	before	being	
killed,	the	beAer	we	can	meet	the	3	goals	of	
scheduling.		

•  Jobs	using	large	amount	of	resources	per	job	
result	in	a	reduc/on	of	fairness,	efficiency,	
responsiveness	of	the	scheduling	system.	

•  The	more	nodes	we	have	the	beAer	we	can	
meet	these	goals.	

	

Advantages	of	Large	Clusters	

•  Larger	clusters	are	more	fair,	efficient,	responsive	
just	by	being	larger.	

•  Larger	clusters	are	capable	of	running	larger	jobs	
expanding	capability,	but	if	larger	jobs	are	run	
exclusively	we	loose	the	advantage	of	a	large	
cluster.	

•  Shared	resources	such	as	WestGrid	are	beAer	
and	are	used	more	efficiently	than	mul/ple	small	
clusters.	The	larger	the	scope	of	shared	resources	
the	beAer.		

Visualizing	single	node	cluster	

Running	jobs	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

A	Job	finishes	early	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Single	node	cluster	

Short	serial	jobs	and	Backfill	

Myths	
If	there	is	a	large	number	of	jobs	in	the	queue	my	job	will	not	
run	quickly.	

–  Most	of	the	/me	these	jobs	belong	to	users	with	very	low	priority,	
because	they	are	running	a	large	number	of	jobs.	

–  Most	of	these	jobs	may	not	be	capable	of	running	as	number	of	
running	jobs	per	user	may	be	limited.		

–  The	cluster	may	have	empty	processors	available	for	immediate	use.	
–  Deciding	if	a	cluster	is	busy	by	number	of	queued	jobs	does	not	work.	

It	is	beAer	not	to	submit	to	many	jobs	at	a	/me	so	that	other	
users	can	run.	

–  The	scheduling	system	is	more	efficient	if	you	submit	your	jobs	
earlier,	as	long	as	you	don’t	go	over	the	usage	limits.		

–  Fairness	is	insured	by	the	scheduling	system.	
	

Tips	

•  Make	sure	your	job	can	run	on	the	resources	
available	on	the	cluster.	

•  Look	at	the	state	of	cluster/account/Jobs	and	
how	to	get	the	informa/on.	

•  If	the	cluster	is	empty	and	you	are	able	to	run	
shorter	jobs	to	evade	the	limits.	

Basic	Job	submission	

Submifng	a	Job	

•  If	you	have	a	program	that	you	wish	to	run	you	need	to	
figure	out	the	resource	requirements	of	your	Job.	
These	requirements	include:	
–  wall/me:		maximum	length	of	/me	your	will	take	to	run	
–  number	of	cpus,	memory,	nodes,	gpus			
–  The		par//on	you	are	submifng	to.	

•  The	command	to	submit	your	job	is	sbatch,	although	
sbatch	allows	you	to	specify	your	requirements	on	the	
command	line,	however		you	should	put	your	
requirements	in	a	job	script.	

•  	sbatch		jobscript.sh		

Simple	slurm	job	script	

#!/bin/bash	
#SBATCH	--ntasks=1	
#SBATCH	--nodes=1	
#SBATCH	--/me=0-00:02	
#SBATCH	--mail-type=ALL	
#SBATCH	--mail-user=no.email@ubc.ca	
#SBATCH	–o	my-output-file-%j.out	
#SBATCH	--job-name=my-named-job	
sleep	1000;		#	Replace	with	a	line	running	code	

Basic	Slurm	script	commands	
Slurm	script	command	 Descrip@on	

#!/bin/bash	 Sets	the	shell	that	the	job	will	be	executed	on	the	
compute	node	

#SBATCH	--ntasks=1	
#SBATCH	--n1	
	

Requests	for	1	processors	on	task,	usually	1	cpu	as	1	cpu	
per	task	is	default.	

#SBATCH --time=0-05:00
#SBATCH -t 0-05:00

Sets	the	maximum	run/me	of	5	hours	for	your	job	

#SBATCH	--mail-user=	<email>		 Sets	the	email	address	for	sending	no/fica/ons	about	
your	job	state.	

#SBATCH	--mail-type=BEGIN	
#SBATCH	--mail-type=END	
#SBATCH	--mail-type=FAIL	
#SBATCH	--mail-type=REQUEUE	
#SBATCH	--mail-type=ALL	

Sets	the	scedualing	system	to	send	you	email	when	the	
job	enters	the	follwoing	states:	
BEGIN,END,FAIL,REQUEUE,ALL	

#SBATCH	--job-name=my-named-job	 Sets	the	Jobs	name	

Slurm	Jobs	and	steps	

•  Unlike	PBS	slurm	jobs	can	have	mul/ple	steps	
•  Each	of	these	steps	is	like	a	job	and	may	have	
different	resources	used	in	it.	

•  Use	the	command	srun	to	carry	out	each	step		
•  Srun	has	a	similar	syntax	to	sbatch	
•  You	can	have	prologue	and	epilogue	per	step.	

Interac/ve	Jobs	
•  One	can	ask	for	an	interac/ve	Job	to	run	a	program	on	the	cluster	and	

interact	with	it	while	it	is	running.	
•  Interac/ve	jobs	are	useful	for	debugging.	
•  To	request	and	use	an	interac/ve	job	is	a	mul/	setp	process.	
•  We	can	request	an	alloca/on	of	resources		with	the	salloc	command	

–  salloc --ntasks=1 --nodes=1 --time=0-01:20	
•  We	actually	proceed	to	open	a	shell	on	the	inside	of	the	allocated	job	

–  srun	--pty	-p	interact	bash	
•  Please	make	sure	to	only	run	the	job	on	the	processors	assigned/

allocated	to	your	job.	This	will	happen	automa/cally	if	you	use	srun,	
but	not	if	you	just	ssh	form	the	headnode.

SLURM	Environment	Variables		
Environment	Variable	 Descrip@on	

SLURM_JOB_NAME	 User	specified	job	name	

SLURM_JOB_ID	 Unique		slurm	job	id	

SLURM_NNODES	 Number	of	nodes	allocated	to	the	job	

SLURM_NTASKS	 Number	of	tasks	allocated	to	the	job	
SLURM_ARRAY_TASK_ID	 Array	index	for	this	job	

SLURM_ARRAY_TASK_MAX	 Total	number	of	array	indexes	for	this	job	

SLURM_MEM_PER_CPU		 Memory	allocated	per	CPU	

SLURM_JOB_NODELIST		 List	of	nodes	on	which	resources	are	allocated	to	Job		
SLURM_JOB_CPUS_PER_NODE	 Number	of	CPUs	allocated	per	Node	

SLURM_JOB_PARTITION	 List	of	Par//on(s)	that	the	job	is	in.	

SLURM_JOB_ACCOUNT	 Account	under	which	this	job	is	run.	

BREAK	FOR	PRACTICE	
Running	basic	Jobs	

Jobs	Types:	Parallelism	

•  Many	Serial	Jobs	
•  Message	Passing	(MPI)	
•  Single	node	mu/-core	
				(OpenMP,	Gaussian)	
•  Hybrid/	Advanced	
	

	1	Nodes	 	N	Nodes	

1	cpu	 Serial	 MPI	

X	cpus	 OpenMP	 Hybrid	

Visualizing	Mul/node		cluster	

Many	Serial	Jobs	

Many	Serial	Jobs	

•  Use	1	cpu	per	job	
•  Easiest	and	most	efficient	to	schedule	
•  Excellent	scaling	linear	speedup	
•  Example	job	would	be	a	parameter	searches	
•  In	your	slurm	file	one	can	ask	for	a	serial	job	with:		
•  #SBATCH	--ntasks=1	

	

	

Slurm	Serial	Job	Example	

#!/bin/bash	
#SBATCH	--ntasks=1	
#SBATCH	--/me=0-00:02	
#SBATCH	--mail-type=ALL	
#SBATCH	--mail-user=no.email@ubc.ca	
#SBATCH	–o	my-output-file-%j.out	
#SBATCH	--job-name=my-named-job	
sleep	1000;		#	Replace	with	a	line	running	code	

Tips	for	running	more	Serial	Jobs	

•  Submit	shorter	serial	jobs	
•  Many	short	serial	jobs	will	run	before	larger	
job	

•  Checkpoint	longer	jobs	and	submit	them	as	
short	jobs,	this	will	also	save	you	when	the	
cluster	suffers	hardware	or	power	failure.	

Job	array		
•  Job	arrays	are	used	when	you	have	need	to	submit	a	large	number	

of	Jobs	using	the	same	job	script.	
•  There	is	a	naming	conven/on	for	jobs	in	array,	which	is	useful	as	

you	don’t	need	to	remember	a	large	number	of	unique	job	ids	or	
job	names:	jobname[0]	

•  Job	arrays	are	preferred	as	they	don’t	require	as	much	computa/on	
by	the	scheduling	system	to	schedule,	as	they	are	evaluated	as	a	
group	instead	of	individually.	Ask	for	a	job	array	in	one	of	the	
following	ways:	
–  #SBATCH		--array=0-99			

•  job	array	100	jobs	numbered	0	-99		
–  #SBATCH		--array=1,2,3,5,7		

•  Job	array	with	5	jobs	with	indexes	[1,2,3,5,7]	
–  #SBATCH		--array=0-99%5	

•  job	array	100	jobs	numbered	0	-99	with	a	maximum	of	5	running	at	any	/me	

	Job	array	sample	script	
#!/bin/bash	
#SBATCH	--ntasks=1																													#	Number	of	cores/tasks	
#SBATCH	--/me=0-00:02																					#	Run/me	in	D-HH:MM	
#SBATCH	--job-name=my-array-job			#	Sets	the	Jobs	name	
#SBATCH	--array=1-12																										#	Ask	for	an	Job	array	of	
12	tasks	
echo	"This	jobs	name	is:				$SLURM_JOB_NAME"	
echo	"This	jobs	jobid	is:				$SLURM_JOB_ID”	
echo	"This	jobs	taskid	is:		$SLURM_ARRAY_TASK_ID”	
sleep	30	
hostname	

MPI	job	

MPI	Jobs	

•  Use	the	network	for	message	passing		
•  Each	job	uses	mul/ple	cpus	each	of	which	can	
be	on	a	different	node.	

•  Each	process	uses	a	different	memory	address	
space	

•  More	difficult	to	write	parallel	code	than	
OpenMP	as	deadlocks	are	more	common.	

•  Can	scale	higher	than	OpenMP	as	clusters	are	
typically	larger	than	even	large	SMP	machines	

MPI	Job	Submission	

•  This	type	of	job	can	have	its	processes	running	
on	any	node,	mul/ple	processes	can	run	on	a	
single	node.	

•  #SBATCH	--ntasks=X	

	

Single	node	mu/-core	job		
(OpenMP,	Gaussian,	Threads)	

Single	node	mu/-core	job		

•  All	the	threads	must	run	on	a	single	node.	
•  The	threads	share	a	single	memory	address	
space	

•  Can compile serial and parallel
executables from the same source code

•  OpenMP	is	one	of	the	easiest	methods	of	
parallel	programing,	can	be	done	
incrementally.	

	
	

OpenMP	job	submission	
•  This	type	of	job	must	have	its	thread	running	on	
one	node,	sharing	the	same	memory.	

•  Communica/on	between	parts	of	the	job	is	done	
via	memory	

•  #SBATCH	--cpus-per-task=X	
•  One	can	ask	the	program	to	run	a	number	of	
threads	via	an	environment	variable:	
–  export	OMP_NUM_THREADS=8		

•  Usually	set	it	to	the	requested	cores:	
–  export	
OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK	

Tips	for	running	OpenMP	Jobs	

•  Check	the	state	of	the	cluster	to	see	if	your	job	
will	run	quickly.	

•  If	you	have	a	number	of	OpenMP	style	jobs	
you	should	consider	running	longer	jobs	using	
less	cpus	per	job	instead.		
–  It	is	faster	and	more	efficient	to	schedule	single/
smaller	processor	jobs.	

– This	advice	may	not	apply	when	you	need	other	
resources	like	large	amount	of	RAM	per	job.	

Hybrid	Job	

Why	use	a	hybrid	job	

•  It’s possible to combine OpenMP and MPI for
running on clusters of SMP machines

•  Need	more	memory	or	other	resource	than	is	available	
per	core.	

•  Advanced	systems	of	running	parallel	jobs	can	u/lize	
resources	more	efficiently.	Communica/on	between	
cores	is	faster	than	between	distant	nodes.	These	
systems	include	Chapel	language	as	well	as	Par//oned	
global	address	space	languages	(PGAS)	such	as	Unified	
Parallel	C,	Co-array	Fortran.	

		

Slurm	script	commands	

Slurm	script	command	 Descrip@on	

#SBATCH	–ntasks=X	
	

Requests	for	X	tasks.	
When	cpus-per-task=1	(and	this	is	the	default)	this	requests	X	cores.	
When	not	otherwise	constraint	these	CPUs	may	be	running	on	any	node	

#SBATCH	--nodes=X		 Request		that	a	minimum	of	X	nodes	be	allocated	to	this	job	

#SBATCH	--nodes=X-Y	
	

Request		that	a	minimum	of	X	nodes	and	a	maximum	of	Y	nodes	
be	allocated	to	this	job	

#SBATCH	--cpus-per-task=X	 Request		that	a	minimum	of	X	CPUs	per	task	be	allocated	
to	this	job	

#SBATCH	--tasks-per-node=X	 Requests	minimum	of	X	task	be	allocated	per	node	

Slurm	script	commands	

Slurm	script	commands	 Descrip@on	of	effects	

#SBATCH	--ntasks=1	
#SBATCH	--cpus-per-task=1	

Requests	1	CPU	(Serial)	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

#SBATCH	--cpus-per-task=X	
#SBATCH	--ntasks=1	
#SBATCH	--nodes=1		

Requests	for	X	CPUs	in	1	task	on	1	node	(OpenMP)		
Both	ntasks	and	nodes	are	set	to	1	by	default	and	may	
be	omiAed	

#SBATCH	--ntasks=X	
#SBATCH	--tasks-per-node=X	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and	tasks	on	1	node	(OpenMP)		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	
	

Requests	for	X	CPUs	and	tasks	on	1	node	(OpenMP)		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

Slurm	script	commands	

Slurm	script	commands	 Descrip@on	of	effects	

#SBATCH	--ntasks=X	
#SBATCH	--cpus-per-task=1	

Requests	X	CPUs	and	tasks	(MPI)	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

#SBATCH	--ntasks=X	
#SBATCH	--ntasks-per-node=Y	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and	tasks	with	Y	CPUs	and	tasks	
per	node	(MPI)	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and		tasks	on	the	same	node,	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	
	

Requests	for	X	CPUs	and	tasks	on	the	1	node		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omiAed.	

BREAK	FOR	PRACTICE	
Serial,	mpi,	openmp,	hybrid,	jobarrays	

QUESTIONS?	

Upcoming	ARC	Training	Sessions	

October	25	
10am	-	11pm	MDT	

Machine	Learning	Using	Jupyter	Notebooks	on	
Graham	
	

November	1	
11am	–	1	pm	MDT	

Introduc@on	to	Classical	Molecular	Dynamics	
Simula@ons	

November	21	
11am	–	1	pm	MDT	

Exploring	Containeriza@on	with	Singularity	
	

hIps://www.westgrid.ca/events/westgrid-training-events	

Scheduling	and	Job	Management	2	

Using	a	cluster	effec/vely		

Presenta/on	contents	

Job	submission	part	2	
Understanding	Jobs	

	
	

Slurm	Jobs	and	memory	
It	is	very	important	to	specify	memory	correctly	
•  If	you	don’t	ask	for	enough	and	your	job	uses	more	,your	job	will	

be	killed.	
•  If	you	ask	for	too	much,	it	will	take	a	much	longer	/me	to	

schedule	a	job,	and	you	will	be	was/ng	resources.		
•  If	you	ask	for	more	memory	than	is	available	on	the	cluster	your	

job	will	never	run.	The	scheduling	system	will	not	stop	you	from	
submifng	such	a	job	or	even	warn	you.	

•  If	you	don’t	know	how	much	memory	your	jobs	will	need	ask	for	a	
large	amount	in	your	first	job	and	run:	
–  	sstat	--format=AveCPU,MaxRSS,MaxVMSize,JobID		-j	<jobid>	

•  	In	the	MaxRSS,	you	should	see	how	much	memory	your	job	used.	
•  If	you	don’t	specify	any	memory	then	your	job	will	get	a	very	small	

default	maximum	memory.	

Slurm	Jobs	and	memory	

•  Always	ask	for	slightly	less	than	total	memory	on	
node	as	some	memory	is	used	for	OS,	and	your	
job	will	not	start	un/l	enough	memory	is	
available.	

•  You	may	specify	the	maximum	memory	available	
to	your	job	in	one	of	2	ways.		
–  Ask	for	a	total	memory	used	by	your	jobs	(MB)	

•  #SBATCH	--mem=4000	
–  Ask	for	memory	used	per	process/core	in	your	job	(MB)	

•  #SBATCH	--mem-per-cpu=2000	

Slurm	jobs	and	GPUS	

•  To	request	GPU	use	the	following	syntax	
– #SBATCH		--gres=gpu:1	

•  Modern	slurm	scheduling	programs	recognize	
GPUs	as	well	as	the	state	of	the	GPU.		

•  To	request	a	large	gpu	node	on	cedar		
– #SBATCH	--gres=gpu:lgpu:4	

	

Soaware	licenses	

•  Some/mes	not	only	cluster	hardware	is	
required	to	be	scheduled	for	a	job	but	other	
resources	as	well,	such	as	soaware	licenses,	
telescope		or	other	instrument	/me.	

•  To	request	soaware	licenses:		
– #SBATCH	--licenses=sas:2	

Slurm	script	commands	
PBS	script	command	 Descrip@on	

#SBATCH	--mem=4000	 Requests	4000	MB	of	memory	in	total	

#SBATCH	--mem-per-cpu=4000	 Requests	4000	MB	of	memory	per	cpu	

#SBATCH	--licenses=sas:2	 Requests	2	SAS	licenses	

#SBATCH		--gres=gpu:1	 Requests	that	your	job	get	1	GPU	allocated	per	
node	

#SBATCH		--exclusive	 Requests	that	your	job	run	only	on	nodes	with	no	
other	running	jobs		

#SBATCH	--dependency=aaer:job_id1	 Requests	that	the	the	job	start	aaer	job	(jobid1)	
has	started	

#SBATCH	--dependency=aaerany:job_id1,	
job_i2	

Requests	that	the	the	job	start	aaer	ether	job	
(jobid1)	or	job	(jobud2)	has	finished	

#SBATCH	--dependency=aaerok:job_id1	
	

Requests	that	the	the	job	start	aaer	job	(jobid1)	
has	finished	successfully	

BREAK	FOR	PRACTICE	
Memory,	Features,	Soaware	licenses	,	Par//ons	

Job	Submission	Requiring	Exclusive	
Access		

•  Some/mes	there	is	a	need	for	exclusive	access	to	
guarantee	that	no	other	job	will	be	running	on	
the	same	nodes	as	your	job	such	as	during	
debugging.	

•  To	guarantee	that	the	job	will	only	run	on	nodes	
without		other	jobs	you	own	use:	
–  #SBATCH		--exclusive	

•  Your	research	group	may	get	charged	for	using	
the	whole	node	and	not	just	the	resources	
requested,	and	it	may	take	a	long	/me	to	gather	
resources	needed	for	these	special	jobs.	

Job	submission	mul/ple	projects	

•  If	you	are	part	of	two	different	Compute	Canada	
projects	and	are	running	jobs	for	both,	you	need	to	
specify	the	accoun/ng	group	for	each	project	so	that	
the	correct	priority	of	the	job	can		be	determined	and	
so	that	the	usage	is	“charged”		to	the	correct	group.	

•  In	order	to	specify	an	accoun/ng	group	for	a	Job	use:			
–  #SBATCH	--account=accou@ng_group	

•  You	can	see	your	accoun/ng	group	informa/on	with	
the	“sacctmgr	show	user	<username>	withassoc”	
command.		

Job	dependencies	
•  If	you	want	one	job	to	start	one	aaer	another	
finishes	use	the		
–  #SBATCH	--dependency=acerok:job_id1	

•  If	one	can	break	apart	a	long	job	into	several	
shorter	jobs	then	the	shorter	jobs	will	oaen	be	
able	to	be	ran	faster.	This	is	also	the	technique	to	
use	if	the	required	job	run/me	is	longer	than	the	
maximum	wall/me	allowed	on	the	cluster.	
–  job1id=$(sbatch	anwser-q24.1.sh|	awk	'{print	$4}')	
–  sbatch	--dependency=acercorr:$job1id	anwser-q24.2.sh	

Temporary	available	local	storage	
•  Some	soaware	like	Gaussian	needs	to	make	many	small	reads	and	writes	

to	disk.	The	cluster	(lustre)	file	system	cannot	do	this	well	and	this	
becomes	a	performance	problem	for	the	job	and	the	cluster	its	running	
on.	

	
•  Each	node	has	local	disk,	that	is	shared	by	all	jobs	running	on	the	node.	

One	specifies	the	requests	the	local	storage	via	“#PBS	–l	file=1000mb”.	
	
•  There	is	a	directory	created	for	each	job	when	it	is	run.	When	the	job	

finished	this	directory	is	automa/cally	erased.	The	directory	name	is	
$TMPDIR.	A	example	of	using	the	temporary	local	storage:	
–  #SBATCH	--tmp=200G	

cd	$SLURM_TMPDIR	
<run	my	job	>	
mkdir	my_new_dir		
cp	<file	I	wish	to	save>		my_new_dir/	

Par//ons	

•  Your	job	will	automa/cally	be	assigned		
•  Somewhat	like	queues	or	classes	in	pbs/
torque	and	moab.	

•  A	job	can	be	in	mul/ple	par//ons	
simultaneously,	and	can	have	mul/ple	a	per	
par//on	priori/es.	

•  A	node	can	be	in	mul/ple	par//ons	
simultaneously		

Venn	Diagram	
Has	only	2	legs	 Can	Fly	

BuAerfly	

Bee	

Crow	

Sparrow	

Kangaroo	

Ostrich	

Emu	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

–  The	two	nodes	with	no	gpu	in	the	red	par//on	
may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

–  The	two	nodes	with	no	gpu	in	the	red	par//on	
may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

–  The	two	nodes	with	no	gpu	in	the	red	par//on	
may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	(In	the	red	

par//on	but	not	in	the	blue)	
•  A	Job	that	requires	CPUs	(red	par//on)	can	

run	on	any	of	the	5	nodes	
•  A	job	that	requires	GPUS	(blue	par//on)	

can	run	on	any	of	the	3	nodes.	
–  The	two	nodes	with	no	gpu	in	the	red	par//on	

may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

–  The	two	nodes	with	no	gpu	in	the	red	par//on	
may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

–  The	two	nodes	with	no	gpu	in	the	red	par//on	
may	be	idle	but	a	job	that	requires	a	GPU	node	
(from	the	blue	par//on)	will	be	unable	to	start	
if	no	GPU	nodes	are	idle.	A	job	that	requires	
CPUs	only	(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	blue	jobs.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//on	Venn	Diagram	
(on	a	5	node	imaginary	cluster)	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

•  In	the	case	that	the	two	nodes	with	no	gpus	
in	the	red	par//on	may	be	idle(green)	and	
3	nodes	with	gpus	may	be	busy.		

–  A	job	that	requires	a	GPU	node	(from	the	blue	
par//on)	will	be	unable	to	start	if	no	GPU	
nodes	are	idle.	A	job	that	requires	CPUs	only	
(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	jobs	in	the	blue	par//on.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Node	types	on	Cedar	
Total	
Mem	TB	

Cores	 Memory	 GPUS	 Number	of	
Nodes	

Par@@on	
type	

1/8	 32	 4GB/core	 576	 cpubase	
1/4		 32	 8GB/core	 182	 cpubase	
1/2	 32	 16GB/core	 24	 cpularge	
1.5	 32	 48GB/core	 24	 cpularge	
3	 32	 96GB/core	 4	 cpularge	
1/8	 24	 32GB/GPU	 4	 114	 gpubase	
1/4	 24	 64GB/GPU	 4	 132	 gpularge	

Node	types	on	Graham	
Total	
Mem	TB	

Cores	 Memory	 GPUS	 Number	
of	Nodes	

Par@@on	Type	

1/8	 32	 4GB/core	 800	 cpubase	
1/4		 32	 8GB/core	 55	 cpubase	
1/2	 32	 16GB/core	 24	 cpularge	
3	 32	 96GB/core	 3	 cpularge	
1/8	 32	 32GB/GPU	 4	 114	 gpubase	

Par//ons	on	Cedar	and	Graham	

•  Separate	par//ons	for	GPUs	and	CPU	request		
•  Nodes	that	are	in	the	by	core	par//on	are	also	in	the	
by	node	par//on,	the	reverse	is	not	always	true.		

•  There	are	separate	interac/ve	(tes/ng)	par//ons	with	
dedicated	nodes	for	interac/ve	usage.			

By	node	

By	core	 Interac/ve	

By	node	

By	GPU	 Interac/ve	

CPUs	 GPUs	

													Cpubase	
CPUs	up	to	8GB	per	core			

														Cpularge	
CPUs	more	than	8GB	per	core			

Par//ons	on	Cedar	and	Graham	

•  Separate	par//ons	for	large	memory	Nodes	and	
jobs	that	have	more	than	8	GB	RAM	and	smaller	
memory	nodes	and	jobs.	
–  This	is	done	to	disallow	low	memory	jobs	from	
stopping	a	large	memory	job	from	running	quickly	on	
the	few	expensive	large	memory	nodes	we	have.	

By	node	

By	core	 Interac/ve	

By	node	

By	GPU	
Interac/ve	

GPUs	

By	node	

By	core	
Interac/ve	

Par//ons		why	the	complexity?	
•  If	we	allowed	serial	jobs	to	run	on	all	nodes,	the	chances	

that	there	was	a	node	that	had	all	32	cores	not	used	or	
coming	to	an	end	soon	would	be	very	small.			
–  if	½	the	cluster	was	empty	and	the	job	distributed	randomly	the	
chances	a	any	par/cular	node	to	be	empty	=																										

•  As	a	consequence	whole	node	jobs	would	in	prac/ce	all	
have	to	wait	(max	wall/me)	/me	to	start	regardless	of	
priority.		

•  If	the	whole	cluster	only	allows	alloca/on	to	jobs	by	node	
jobs	by	core	will	not	run	or	people	would	ask	for	a	node	
and	use	a	single	core.	

1
232

=
1

4,294, 967, 296

Par//ons	on	Cedar	and	Graham	
•  There	are	par//ons	based	

upon	how	long	the	
maximum	wall/me	your	
job	has.		

•  Your	job	ends	up	in	the	
shortest	wall/me	par//on	
that	has	a	longer	wall/me	
than	your	job	

•  The	shorter	wall/me	
par//ons	include	all	the	
nodes	of	longer	wall/me	
par//ons.			

3	hr	

12	hr	

24	hr	

72	hr	

168	hr	

672	hr	

Maximum	job	wall/me	par//on	limit	
•  A	high	maximum	wall/me	is	not	necessary	a	

good	thing,	clusters	that	allow	high	wall/me	
jobs	take	longer	for	jobs	to	start	to	run,	and	
are	less	“fair”.	

•  There	are	advantages	to	running	shorter	
jobs,	such	as	how	quickly	your	job	can	be	
started.	

•  The	longer	and	larger	a	job	is	the	greater	the	
chances	of	experiencing	hardware	failure,	
minimize	this	through	check	poin/ng.	

•  Part	of	the	resources	of	a	cluster	is	dedicated	
for	shorter	jobs.	

	
	

Par@@on	
name	

Maximum	
wall@me	

*_b1	 3	hours	

*_b2	 12	hours	

*_b3	 1	day	

*_b4	 3	days	

*_b4	 7	days	

*_b6	 28	days	

•  Part	of	CC	clusters	are	dedicated	to	whole	node	parallel	jobs,	other	jobs	with	a	
short	wall/me	of	under	12	hours	can	run	in	this	part	at	a	reduced	priority	
compared	to	whole	node	parallel	jobs.	

	
	

Par//ons		why	the	complexity?	
•  Some	jobs	need	to	run	a	long	/me	

–  Commercial	code	that	does	not	checkpoint	
–  Checkpoints	can	take	a	very	long	/me		

•  If	we	allow	all	nodes	to	run	long	wall/me	jobs		
–  It	would	take	a	long	/me	for	resources	to	be	come	available,	

researchers	that	need	to	run	short	jobs	and	analyze	the	result	before	
running	another	would	find	the	system	unusable.	

–  People	that	can	divide	their	work	arbitrarily	would	run	long	wall/me	
jobs	as	they	have	already	waited	a	long	/me	for	their	job	to	start,	
making	the	situa/on	worse.		

•  CC	has	dealt	with	the	situa/on	in	the	past	by	having	different	
cluster	each	has	different	wall/mes.	But	there	are	not	enough	
clusters	to	do	this	anymore.	

•  The	solu/on	of	concentric	par//ons	on	larger	cluster	allows	us	to	
more	efficiently	address	diverse	user	needs.		

Par//ons	on	Cedar	and	Graham	

Par//ons	on	Cedar	and	Graham	

Par//on	Stats	
(CC	script)	

Node type | Max walltime
 | 3 hr | 12 hr | 24 hr | 72 hr | 168 hr | 672 hr |
----------|---
 Number of Queued Jobs by partition Type (by node:by core)
----------|---
Regular | 1:15 | 2:31 | 2:145 | 11:187 | 86:69 | 3:2 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:1 | 0:1 |
GPU | 0:1 | 0:526 | 10:10 | 0:0 | 189:4 | 0:0 |
----------|---
 Number of Running Jobs by partition Type (by node:by core)
----------|---
Regular | 60:6 | 4:2 | 45:836 | 5:90 | 11:1065| 1:4 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 1:0 |
GPU | 0:20 | 2:10 | 13:2 | 0:0 | 0:0 | 0:3 |
----------|---
 Number of Idle nodes by partition Type (by node:by core)
----------|---
Regular | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
Large Mem | 3:1 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 17:1 | 11:1 | 0:0 | 0:0 | 0:0 | 0:0 |
----------|---
 Total Number of nodes by partition Type (by node:by core)
----------|---
Regular | 851:411 | 821:391 | 756:346 | 636:276 | 180:100 | 90:50 |
Large Mem | 27:12 | 24:11 | 24:11 | 20:3 | 3:2 | 2:1 |
GPU | 156:78 | 144:72 | 116:58 | 104:52 | 13:12 | 13:12 |
----------|---

Par//ons	and	priority	

•  Black	dots	are	nodes	
•  In	this	example	we	have:	

–  5	nodes	with	CPUs	(Red	par//on)	
–  3	nodes	with	GPUs	(Blue	par//on)	
–  2	nodes	have	CPUs	but	not	GPUs	

•  A	Job	that	requires	CPUs	(red	par//on)	can	
run	on	any	of	the	5	nodes	

•  A	job	that	requires	GPUS	(blue	par//on)	
can	run	on	any	of	the	3	nodes.	

•  In	the	case	that	the	two	nodes	with	no	gpus	
in	the	red	par//on	may	be	idle(green)	and	
3	nodes	with	gpus	may	be	busy.		

–  A	job	that	requires	a	GPU	node	(from	the	blue	
par//on)	will	be	unable	to	start	if	no	GPU	
nodes	are	idle.	A	job	that	requires	CPUs	only	
(Red	par//on)	will	be	able	to	start	
immediately,	even	when	there	are	higher	
priority	jobs	in	the	blue	par//on.	

Has	CPU	cores	
(Red	Par//on)	

Has	GPUs	
(Blue	Par//on)	

Par//ons	and	priority	example	

•  Par//on	A	has	3	hour	wall/me	and	
includes	all	the	nodes	of	this	type	
on	the	cluster	

•  Par//on	B	is	the	largest	par//on	
that		your	job	can	run	in.	

•  Par//on	C	is	a	subset	of	par//on	B	
and	contains	jobs	that	have	a	
longer	wall/me	and	nodes	that	can	
run	those	jobs.	

•  Each	small	green	circle	represents	a	
idle	an	idle	node	

•  Each	small	yellow	circle	represents	
a	busy	node	

C		

Idle	node	

Busy	node	

B		

A		

Par//ons	and	priority	example	

Lets	assume	we	have	3	jobs:	
– Highest	priority	job	(1)	in	
par//on	C	that	requires	4	
nodes.	

–  2nd	highest	job	in	par//on	
job	(2)	in	par//on	A	that	
requires	5	nodes.	

– Our	job	in	par//on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		

Par//ons	and	priority	example	

•  Highest	priority	job	(1)	in	par//on	
C	that	requires	4	nodes.	

•  2nd	highest	job	(2)	in	par//on	A	
that	requires	5	nodes.	

•  Our	job	(3)	in	par//on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		

•  Job	1	cannot	run	as	there	are	only	
3	idle	nodes	in	par//on	C.	
–  A	reserva/on	is	created	for	the	

idle	nodes	in	par//on	C	and	the	
first	of	the	busy	nodes	that	will	
become	available.	

•  Job	2	likely	cannot	run	either	as	it	
needs	one	of	the	nodes	reserved	
by	job	1,	and	unless	job	2	can	
finish	before	job	1	starts	it	will	not	
be	able	to	run.		

•  Job	3	will	likely	not	run	as	well	
because	it	requires	resources	
(nodes)	that	are	reserved	by	other	
higher	priority	jobs.		

Par//ons	and	priority	example	

•  Highest	priority	job	(1)	in	par//on	
C	that	requires	4	nodes.	

•  2nd	highest	job	(2)	in	par//on	A	
that	requires	5	nodes.	

•  Our	job	(3)	in	par//on	B	that	
requires	2	nodes	

C		

Idle	node	

Busy	node	

B		

A		
This	cluster	is	70%	idle	and	
and	jobs	cannot	run	why?	

–  The	example	cluster	is	
small	and	the	jobs	are	
large	in	comparison	

–  There	are	no	short	single	
node	jobs	that	can	fill	in	
these	empty	nodes.	

–  This	example	was	created	
to	show	a	worse	case	
scenario	

Par//ons	and	priority	lessons	learned	

•  Submit	smaller,	shorter	jobs		
•  When	looking	at	priority	and	why	

your	job		is	not	running,	look	at	the	
priority	of	other	jobs	in	the	
par//ons	that	are	either	a	subset	
or	superset	of	your	job.	

•  The	situa/on	in	Compute	Canada	
will	get	beAer	when	Niagara	is	up	
as	that	system	is	designed	for	large	
jobs.	The	types	of	jobs	on	Cedar	
and	Graham	will	become	less	
diverse	and	we	will	be	beAer	able	
to	efficiently	schedule	similar	and	
smaller	jobs	on	Graham	and	Cedar.	
	

C		

Idle	node	

Busy	node	

B		

A		

Slurm	script	commands	
PBS	script	command	 Descrip@on	

#SBATCH	--mem=4000	 Requests	4000	MB	of	memory	in	total	

#SBATCH	--mem-per-cpu=4000	 Requests	4000	MB	of	memory	per	cpu	

#SBATCH	--licenses=sas:2	 Requests	2	SAS	licenses	

#SBATCH		--gres=gpu:1	 Requests	that	your	job	get	1	GPU	allocated	per	
node	

#SBATCH		--exclusive	 Requests	that	your	job	run	only	on	nodes	with	no	
other	running	jobs		

#SBATCH	--dependency=aaer:job_id1	 Requests	that	the	the	job	start	aaer	job	(jobid1)	
has	started	

#SBATCH	--dependency=aaerany:job_id1,	
job_i2	

Requests	that	the	the	job	start	aaer	ether	job	
(jobid1)	or	job	(jobud2)	has	finished	

#SBATCH	--dependency=aaerok:job_id1	
	

Requests	that	the	the	job	start	aaer	job	(jobid1)	
has	finished	successfully	

Slurm	script	commands	

PBS	script	command	 Descrip@on	

#SBATCH	--account=acc_name	 To	submit	a	job	to	a	specific	accoun/ng		group	such	
as	RAC/RAS		alloca/on	or	different	role		

#SBATCH	--tmp=200G	 Asks	for	200Gb	of	temporary	disk	space		

#SBATCH		--constraint=blue	 To	ask	for	a	node	feature	or	constraint	set	by	
cluster	admin.	Here	we	are	looking	for	“blue”	
nodes.	

#SBATCH		--par//on=par//on_name	 To	ask	for	the	job	to	run	in	a		specific	par//on	or	
queue	by	name,	(unlike	Moab	there	can	be	more	
than	1	par//on	per	Job)	

--prolog=<executable>	 Run	by	srun	only,	runs	the	executable	before	the	
step	

--epilog=<executable>	 Run	by	srun	only,	runs	the	executable	aaer		the	
step	finishes	

SLURM	Environment	Variables		
Environment	Variable	 Descrip@on	

SLURM_JOB_NAME	 User	specified	job	name	

SLURM_JOB_ID	 Unique		slurm	job	id	

SLURM_NNODES	 Number	of	nodes	allocated	to	the	job	

SLURM_NTASKS	 Number	of	tasks	allocated	to	the	job	
SLURM_ARRAY_TASK_ID	 Array	index	for	this	job	

SLURM_ARRAY_TASK_MAX	 Total	number	of	array	indexes	for	this	job	

SLURM_MEM_PER_CPU		 Memory	allocated	per	CPU	

SLURM_JOB_NODELIST		 List	of	nodes	on	which	resources	are	allocated	to	Job		
SLURM_JOB_CPUS_PER_NODE	 Number	of	CPUs	allocated	per	Node	

SLURM_JOB_PARTITION	 List	of	Par//on(s)	that	the	job	is	in.	

SLURM_JOB_ACCOUNT	 Account	under	which	this	job	is	run.	

BREAK	FOR	PRACTICE	
Job	submission	prac/ce	

Gefng	informa/on	on	your	Job	
Command	 What	its	used	for	

squeue	-u	<username>	 List	all	current	jobs	for	a	user	

squeue	-u	<username>	-t	
PENDING	

List	all	pending	jobs	for	a	user	

squeue	-u	<username>	-t	
RUNNING		

List	all	running	jobs	for	a	user	

Squeue	-p	<par//onname>	 List	all	the	jobs	in	a	par//on	

scontrol	show	job	<jobid>	 List	informa/on	on	Job	

scontrol	show	jobid	-dd	<jobid>	 List	detailed	informa/on	on	Job	

Squeue	-o		"%.18i	%.30P	%.8j	%.
8u	%.2t	%.8p	%.10M	%.6D	%R	"		

FormaAed	output	of	squeue:	we	added	priority	and	
made	the	par//on	field	bigger	(30	characters)	

Gefng	informa/on	on	your	Job	
Command	 What	its	used	for	

sstat	--
format=AveCPU,MaxRSS,MaxV
MSize,JobID		-j	<jobid>	

List	info	resource	used	by	your	completed	job	:		average	
cpu	/me,		Max	memory,	Max	virtual	memory,	JobId	

sacct	–u	<username>	--	
format=JobID,JobName,AveCPU
,MaxRSS,MaxVMSize,JobID,Elap
sed	

List	resources	used	by	all	jobs	of	a	user	

sprio	 List	job	priority	informa/on	

squeue	

kamil@zeno ~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
2020_1 mem12_sho my-array kamil R 0:04 1 zeno001
2020_4 mem12_sho my-array kamil R 0:04 1 zeno001
2019 mem12_sho my-named judy R 0:11 1 zeno001

Squeue command for user  
Squeue -u	$USER	

[kamil@zeno ~]$ squeue -u kamil

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
2025 mem12_sho anwser-q kamil R 0:01 1 zeno001
597520 cpubase_b aln_ERR1 kamil PD 0:00 1 (Dependency)
597540 cpubase_b aln_SRR9 kamil PD 0:00 1 (Dependency
598316 cpubase_b aln_SRR2 kamil PD 0:00 1 (DependencyNeverSatisfied)
598324 cpubase_b aln_SRR2 kamil PD 0:00 1 (DependencyNeverSatisfied)

Squeue	command	for	queued	jobs	
squeue	-u	<username>	-t	PENDING	

[kamil@zeno ~]$ squeue -u kamil -t pending
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
597520 cpubase_b aln_ERR1 kamil PD 0:00 1 (Dependency)
597540 cpubase_b aln_SRR9 kamil PD 0:00 1 (Dependency
598316 cpubase_b aln_SRR2 kamil PD 0:00 1 (DependencyNeverSatisfied)
598324 cpubase_b aln_SRR2 kamil PD 0:00 1 (DependencyNeverSatisfied)
619783 cpubase_b ala1805S kamil PD 0:00 1 (Priority)
617318 cpubase_b Pseudomo kamil PD 0:00 1 (Resources)
617319 cpubase_b Pseudomo kamil PD 0:00 1 (Resources)

squeue	-u	<username>	-t	RUNNING		
[kamil@cedar ~]$ squeue -u kamil -t running
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
2026 mem12_sho anwser-q kamil R 0:02 1 zeno001
620930 cpubase_b HRAGR001 kamil R 23:58 1 cdr57
617805 cpubase_b Ro:0 kamil R 9:44:23 4 cdr[72,88,92,95]
584942 cpubase_b runmpi.s kamil R 2-11:09:29 4 cdr[81-83,98]
574866 cpubase_b Ro:-0.08 kamil R 2-22:21:17 5 cdr[77,79-80,84,91]
618505 cpubase_b Bowtie2_ kamil R 9:42:10 1 cdr215

Jobs	by	par//on	
squeue	-p	<par//onname>	

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
535639 cpubase_b AE17631. kamil PD 0:00 1 (Resources)
591830 cpubase_b bz.sh erming PD 0:00 1 (Resources)
615762 cpubase_b AE21380. kamil PD 0:00 1 (Resources)
401219 cpubase_b CTD095.s john PD 0:00 1 (Resources)
491576 cpubase_b gen3x1s8 judy R 2-08:04:59 1 cdr747
535638 cpubase_b AE17594. kamil R 1-11:46:03 1 cdr101
491574 cpubase_b gen3x1s6 masao R 4-20:06:44 1 cdr79
491575 cpubase_b gen3x1s7 masao R 4-20:06:44 1 cdr85

Squeue	queries				
	

Squeue -o "%.18i %.30P %.8j %.8u %.2t %.8p %.10M %.6D %R "		-u	<username>	
	

[kamil@cedar5 test]$ squeue -o "%.18i %.30P %.8j %.8u %.2t %.8p %.10M %.6D %R " –u	kamil
JOBID PARTITION NAME USER ST PRIORITY TIME NODES NODELIST(REASON)
597520 cpubase_bycore_b1,cpubackfill aln_ERR1 kamil PD 0.001164 0:00 1 (Dependency)
597540 cpubase_bycore_b1,cpubackfill aln_SRR9 kamil PD 0.001164 0:00 1 (Dependency)
597592 cpubase_bycore_b1,cpubackfill aln_SRR5 kamil PD 0.001164 0:00 1 (Dependency)
597593 cpubase_bycore_b1,cpubackfill aln_SRR8 kamil PD 0.001164 0:00 1 (Dependency)	

scontrol	show	job	<jobid>	
[kamil@zeno ~]$ scontrol show job 2026
JobId=2026 JobName=anwser-q3.sh
 UserId=kamil(1005) GroupId=slurmteam(1007) MCS_label=N/A
 Priority=38885 Nice=0 Account=team1 QOS=mem12_short
 JobState=COMPLETED Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:31 TimeLimit=00:02:00 TimeMin=N/A
 SubmitTime=2017-03-22T13:51:02 EligibleTime=2017-03-22T13:51:02
 StartTime=2017-03-22T13:51:02 EndTime=2017-03-22T13:51:33 Deadline=N/A
 PreemptTime=None SuspendTime=None SecsPreSuspend=0
 Partition=mem12_short AllocNode:Sid=zeno:31494
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=zeno001
 BatchHost=zeno001
 NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=1,mem=1948M,node=1
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryCPU=1948M MinTmpDiskNode=0
 Features=(null) Gres=(null) Reservation=(null)
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=/home/kamil/anwser-q3.sh
 WorkDir=/home/kamil
 StdErr=/home/kamil/slurm-q1-2026.err
 StdIn=/dev/null
 StdOut=/home/kamil/slurm-q1-2026.out

Priority		
sprio		

 JOBID PRIORITY AGE FAIRSHARE PARTITION TRES
130976 7088 2500 0 625 cpu=2526,mem=1437
167003 6150 2500 0 1250 cpu=2008,mem=392
195802 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195809 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195810 4996086 2500 4991771 833 cpu=469,mem=45,gres/
205281 8206 2500 0 625 cpu=1875,mem=1800,gr
205290 6408 2500 0 625 cpu=1875,mem=2,gres/
544814 23534 1741 21571 208 cpu=13,mem=2
544815 23534 1741 21571 208 cpu=13,mem=2
617580 24194 373 22768 1042 cpu=10,mem=2
617581 24194 373 22768 1042 cpu=10,mem=2

Demonstra/on	on	cluster		

•  SSH	cluster	and	show	all	the	following	commands	
and	how	to	interpret	them	
•  squeue	
•  squeue	-u	$USER		
•  squeue	-t	pending		
•  squeue	-t	running	
•  squeue	-p	<par//on>	
•  squeue						(custom	format)	
•  scontol	show	job	<jobid>	
•  Sprio	-n	

BREAK	FOR	PRACTICE	
Job	informa/on	prac/ce	

QUESTIONS?	

Upcoming	ARC	Training	Sessions	

October	25	
10am	-	11pm	MDT	

Machine	Learning	Using	Jupyter	Notebooks	on	
Graham	
	

November	1	
11am	–	1	pm	MDT	

Introduc@on	to	Classical	Molecular	Dynamics	
Simula@ons	

November	21	
11am	–	1	pm	MDT	

Exploring	Containeriza@on	with	Singularity	
	

hIps://www.westgrid.ca/events/westgrid-training-events	

Scheduling	and	Job	Management	3	

Using	a	cluster	effec/vely		

Presenta/on	contents	

Priority,	Alloca/ons	and	Fairshare	
Cluster	limits,	Reserva/ons	and	Topology		

Gefng	informa/on	on	your	Cluster	
Trouble	shoo/ng	your	jobs	

Priority	
•  Can	only	be	posi/ve	in	slurm.	
•  Only	rela/ve	priority	maAers.	
•  Jobs	with	highest	or	least	nega/ve	priority	get	
reserva/on	to	run	first.	

•  	Highest	priority	job	may	not	run	first.		
A	job	which	is	using	a	small	amount	of	resources	that	are	in	
great	supply	may	easily	run	before	a		high	priority	job	
reques/ng	scarce	or	already	used	resources.	

•  In	Compute	Canada		priority	is	determined	per	group	
via	“fairshare”	and	how	long	your	job	sits	in	the	queue	

•  “sprio”	will	show	priority	of	your	job		

Priority		
sprio		

 JOBID PRIORITY AGE FAIRSHARE PARTITION TRES
130976 7088 2500 0 625 cpu=2526,mem=1437
167003 6150 2500 0 1250 cpu=2008,mem=392
195802 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195809 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195810 4996086 2500 4991771 833 cpu=469,mem=45,gres/
205281 8206 2500 0 625 cpu=1875,mem=1800,gr
205290 6408 2500 0 625 cpu=1875,mem=2,gres/
544814 23534 1741 21571 208 cpu=13,mem=2
544815 23534 1741 21571 208 cpu=13,mem=2
617580 24194 373 22768 1042 cpu=10,mem=2
617581 24194 373 22768 1042 cpu=10,mem=2

Fairshare	

•  Fairshare	is	a	mechanism	that	allows	historical	
resource	u/liza/on	informa/on	to	be	
incorporated	into	job	feasibility	and	priority	
decisions	

•  In		SLURM	priority	ranges	from	1	to	0	
•  In	Compute	Canada	fairshare	compares	your	
group’s	target	usage	to	your	group’s	actual	usage	
during	a	/me	period.	If	your	group	has	used	less	
than	your	group	share	you	are	given	higher	
priority.	

Fairshare	

•  Fair	share	usage	is	weighted	by	when	the	usage	occurred	
recent	usage	is	more	important	then	usage	at	the	end	of	
the	period	

Fairshare	tree	CPUs	and	GPUs	and	
Equivalents	

•  We	use	GPU	or	CPU	equivalent	resources	in	all	
our	calcula/ons.	
–  If	your	job	uses	all	(memory/disk/any	other	resource)	
on	a	node	and	half	the	CPUs	the	scheduling	system	
will	“charge”	or	use	in	its	calcula/ons	as	if	you	used	all	
the	CPUs	on	that	node.			

•  Separate	accoun/ng	groups	for	CPUs	and	GPUs		
•  For	GPU	jobs	we	only	count	number	of	GPU	used	
or	GPU	equivalent	in	terms	of	other	resources.		

Fairshare	trees	
•  It	is	possible	for	project	leader	to	divide	the	
target	alloca/ons	of	resources	for	the	group.	

•  Your	priority	is	determined	by	a	combina/on	of	
your	group’s	usage	compared	to	your	group’s	
target	usage,	as	well	as	your	subgroups	usage	
compared	to	subgroup	target	share	as	well	as	
your	individual	usage	in	the	group	compared	to	
your	individual	target	in	the	group.	

•  The	priority	of	anyone's	job	will	primarily	be	
influenced	by	the	top	of	the	tree	rather	than	the	
subgroups/individual	usage.	

Fairshare	tree	Basics	
•  Fairshare	trees	shares	are	

different	shares	on	different	
levels.	

•  Fairshare	tree	shares	don’t	
mean	anything	other	than	
meaning	we	give	them	if	they	
add	up	to	100	then	its	percent	if	
they	add	up	to	the	number	of	
cores	then	each	share	is	
expressed	in	cores	

•  In		SLURM	shares	have	to	be	
integers	

•  Usage	in	a	group	is	includes	the	
usage	by	sub	groups	

•  Normalized	shares	are	the	
frac/on	of	the	system	that	the	
group	or	user	receives	

•  Group	1	has	
normalized	share	50%	
=		(2/(2+1+1))		

•  Subgroup	1	has	normalized	
share	40%		
	=	(4/(4+1)*	Group	1	share)	
	=	(4/(4+1)*	(2/(2+1+1)))	

CC	Slurm	Fairshare	tree	

Upcoming	CC	Slurm	Fairshare	tree	

RAC-1-cpu

root

...Ras-default-1-cpu
(NAC / NNAP)

Legend

CPU

9

Group’s share
in CYE/GYE
(from LDAP)

10

Group’s share
in Slurm

NAC

Non Allocated CPUs =
Total number of CPUs -
Sum (allocated CPUs)

NNAP
Number of Non
Allocated Projects

Version 1.6
 (simplified flattened)

NAC
Ras-default-N-cpu

(NAC / NNAP) NAC
...

100 100* NNAP
RAC-N-cpu

200 200* NNAP

RAC-1-01-cpu
75=100* 3/(3+1) 3

RAC-1-01-cpu
25=100* 1/(3+1) 1

Upcoming	CC	Slurm	Fairshare	tree	
root

...RAC-1-cpu RAC-N-cpu
100 50

...Ras-default-1-cpu Ras-default-N-cpu
(NAC / NNAP) (NAC / NNAP)

...RAC-1-gpu RAC-N-gpu RAC-Z-gpu

...Ras-default-1-gpu Ras-default-N-gpu ...Ras-default-O-gpu Ras-default-Z-gpu

Legend

CPU

GPU

Expired

9

Group’s share
in CYE/GYE
(from LDAP)

10

Group’s share
in Slurm

NAC

Non Allocated CPUs =
Total number of CPUs -
Sum (allocated CPUs)

NAG

Non Allocated GPUs =
Total number of GPUs -
Sum (allocated GPUs)

NNAP
Number of Non
Allocated Projects

Version 1.6
 (flattened)

RAC-1-01-cpu RAC-1-02-cpu
3 1

100 * NNAP 50 * NNAP
RAC-O-cpu

00

75 = 100 * 3/(3+1) 25 = 100 * 1/(3+1)

NAC NAC

Ras-default-O-cpu
00

10 5

...

RAC-O-gpu
0 0

0

0

Ras-default-Z-cpu

...

...

0 0

10 * NNAP 5 * NNAP

RAC-Z-gpu
00

(NAG / NNAP)(NAG / NNAP) NAG NAG 0 0 0

Mul/	level	fairness	

“Another	layer	of	"fairness"	
is	necessary	however,	one	
that	factors	in	the	usage	of	
other	users	drawing	from	
the	same	account.	This	
allows	a	job's	fair-share	
factor	to	be	influenced	by	
the	compu/ng	resources	
delivered	to	jobs	of	other	
users	drawing	from	the	
same	account.”	

Effec/ve	usage		
(No	longer	used	by	CC)	

•  No	longer	used	in	FS	
calcula/ons	in	the	new	“fair	
tree		fairshare	tree”	
algorithm	CC	uses	but	its	
s/ll	reported	by	scheduling	
system.	

•  An	individual	who	has	not	
run	any	Jobs	will	have	a	
nonzero	effec/ve	usage	if	
his	group	or	its	parent	group	
has	been	running	jobs.	

•  Was	used	by	the	standard	fairshare	tree	slurm	algorithm	
to	achieve	Mul/	level	fairness.	

•  Effec/ve	usage	takes	into	account	the	Effec/ve	usage	of	
the	parent	group	as	well	as	the	actual	usage	of	the	
individual.	

hAps://slurm.schedmd.com/priority_mul/factor.html	

“Fair	tree”	Fairshare	tree	priority	
algorithim	

•  Algorithm	works	by	calcula/ng	“level	fairshare”	which	is:																																
at	each	level	of	the	fairshare	tree.	

•  Orders	all	the	accounts	and	users	in	the	level.	
–  For	each	account	and	user	in	the	tree,	calculates	the	level	fairshare	

and	does	the	same	at	the	next	level		
•  Traverse	the	tree	and	order/rank/number	all	user	accounts.	

–  Use	zero	based	coun/ng	here,	first	user	will	be	0	
•  Priority	is	given	in	the	following	formula:	

ex:	If	there	are	3	users	the	priority	of	the	middle	user		

	
•  More	informa/on	available	here:		hAps://slurm.schedmd.com/SUG14/fair_tree.pdf	

P =
UserCount −UserRank()

UserCount()

LF = ShareUse

P =
UserCount −UserRank()

UserCount()
=
(3−1)
(3)

=
2
3
= 0.67

Priority	
•  Job	priority	is	the	sum	of	all	the	weighted	sum	
of	all	the	factors	that	have	been	enabled.	

•  Job_priority	=(PriorityWeightAge	*	age_factor)	+	(PriorityWeightFairshare	*	
fair-share_factor)	+	(PriorityWeightPar//on*	par//on_factor)	+	other	stuff		

•  This	allows	us	to	give	greater	priority	to	jobs	
that	have	been	wai/ng	in	the	queue	a	long	/me	
and	determine	how	important	that	is	rela/ve	to	
fairshare	priority.	

•  Without	an	age	factor	a	larger	job	by	a	user	with	
a	small	alloca/on	could	never	run.	

Group’s	Status:	“sshare	”	
[kamil@cedar5 workshop_test]$ sshare | egrep "(--|Account|^root|no_rac_|ras_b|cc-debug|kamil_)"
 Account User RawShares NormShares RawUsage NormUsage EffectvUsage FairShare
-------------------- ---------- ---------- ----------- ----------- ----------- ------------- ----------
root 1.000000 56519806629365289 1.000000 0.500000
 no_rac_cpu 3083 0.123572 54311297258252622 0.960925 0.960925 0.004562
 ras_basic_cpu 3083 0.123532 54311297258252622 0.960925 0.960925 0.004554
 cc-debug_cpu 1 0.000031 120455 0.000000 0.000237 0.004554
 cc-debug_cpu kamil 1 0.000000 0 0.000000 0.000001 0.004554
 def-kamil_cpu 1 0.000031 46106596622 0.000001 0.000238 0.004470
 def-kamil_cpu kamil 1 0.000031 46106596622 0.000001 0.000238 0.004470
 no_rac_gpu 75 0.003006 842007112518017 0.014898 0.014898 0.032224
 ras_basic_gpu 75 0.002967 842007112518017 0.014898 0.014898 0.030781
 cc-debug_gpu 1 0.000001 37224 0.000000 0.000004 0.030781
 cc-debug_gpu kamil 1 0.000000 0 0.000000 0.000000 0.030781
 def-kamil_gpu 1 0.000001 37555979258 0.000001 0.000004 0.016416
 def-kamil_gpu kamil 1 0.000001 37555979258 0.000001 0.000004 0.016416

Group’s	Status:	“sshare	-l”	
[kamil@cedar5 workshop_test]$ sshare -l | egrep "(--|Account|^root|no_rac_|ras_b|cc-debug|kamil_)"
 Account User RawShares NormShares RawUsage NormUsage EffectvUsage FairShare LevelFS
-------------------- ---------- ---------- ----------- ----------- ----------- ------------- ---------- ----------
root 0.000000 639083114320110 1.000000
 no_rac_cpu 1320 0.043194 404703982221822 0.633257 0.633257 0.068209
 ras_basic_cpu 1320 0.999243 404703982221822 0.633257 1.000000 0.999243
 cc-debug_cpu 1 0.000236 1273287234 0.000002 0.000003 75.104409
 cc-debug_cpu kamil 1 0.004386 0 0.000000 0.000000 0.026537 inf
 def-kamil_cpu 1 0.000236 0 0.000000 0.000000 inf
 def-kamil_cpu kamil 1 1.000000 0 0.000000 0.000000 0.486678 inf
 no_rac_gpu 65 0.002127 6883285083841 0.010771 0.010771 0.197479
 ras_basic_gpu 65 0.984848 6883285083841 0.010771 1.000000 0.984848
 cc-debug_gpu 1 0.000236 12668 0.000000 0.000000 128389.386733
 cc-debug_gpu kamil 1 0.004386 0 0.000000 0.000000 0.508693 inf
 def-kamil_gpu 1 0.000236 0 0.000000 0.000000 inf
 def-kamil_gpu kamil 1 1.000000 0 0.000000 0.000000 0.973463 inf

Priority		
sprio	–n		

kamil@cedar5 test]$ sprio | head

[kamil@cedar5 workshop_test]$ sprio -n
JOBID PRIORITY AGE FAIRSHARE PARTITION TRES

130976 0.00000165 1.0000000 0.0000000 0.2500000 cpu=0.17,mem=0.10
167003 0.00000143 1.0000000 0.0000000 0.5000000 cpu=0.13,mem=0.03
195802 0.00116324 1.0000000 0.9983542 0.3333333 cpu=0.03,mem=0.00,gr
195804 0.00116324 1.0000000 0.9983542 0.3333333 cpu=0.03,mem=0.00,gr
195807 0.00116324 1.0000000 0.9983542 0.3333333 cpu=0.03,mem=0.00,gr
195809 0.00116324 1.0000000 0.9983542 0.3333333 cpu=0.03,mem=0.00,gr
195810 0.00116324 1.0000000 0.9983542 0.3333333 cpu=0.03,mem=0.00,gr

Priority		
sprio		

 JOBID PRIORITY AGE FAIRSHARE PARTITION TRES
130976 7088 2500 0 625 cpu=2526,mem=1437
167003 6150 2500 0 1250 cpu=2008,mem=392
195802 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195809 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195810 4996086 2500 4991771 833 cpu=469,mem=45,gres/
205281 8206 2500 0 625 cpu=1875,mem=1800,gr
205290 6408 2500 0 625 cpu=1875,mem=2,gres/
544814 23534 1741 21571 208 cpu=13,mem=2
544815 23534 1741 21571 208 cpu=13,mem=2
617580 24194 373 22768 1042 cpu=10,mem=2
617581 24194 373 22768 1042 cpu=10,mem=2

Mul/ple	alloca/ons/accoun/ng	
groups	

•  Occurs	when	group	gets	a	RAC	(Resource	Alloca/on	
CommiAee)	alloca/on	and	therefore	a	new	alloca/on	
that	becomes	the	default	alloca/on.	

•  Occurs	when	a	user	is	part	of	mul/ple	Compute	
Canada	research	groups.	One	can	select	the	default	
alloca/on,	even	a	default	alloca/on	per	cluster	and	
send	an	email	to	support@westgrid.ca.	

•  In	order	to	specify	a	accoun/ng	group	to	charge	and	
figure	out	the	priority	use	the	following	example	in	
your	job	submission	script.	
–  #SBATCH	--account=accoun@ng_group_name	

Alloca/ons	

•  What	does	an	alloca/on	usually	mean?	
–  If	you	request	average	resources	con/nually	
through	the	/me	period	and	run	jobs,	you	are	
guaranteed	to	get	at	least	your	allocated		
resources	over	the	/me	period	(year).	

•  What	if	I	have	not	applied	for	an	alloca/on?	
– you	have	a	default	alloca/on	

Alloca/ons	
•  It	is	impossible	for	an	alloca/on	to	be	defined	as:	“Any	
/me	you	ask	for	the	resources	allocated	you	will	receive	
them”.	
–  If	2	users	are	given	50%	of	a	cluster	each,	and	both	don’t	
start	running	jobs	un/l	the	6th	month	they	both	cannot	get	
the	same	cluster	

•  Unless	an	extraordinary	situa/on	exist	alloca/on	will	not	
mean	that	the	specified	resources	are	available	sifng	
idle.		
–  Funding	agencies	don’t	like	to	see	resources	sifng	idle	
–  An	example	of	a	extraordinary	situa/on	would	be	an	
Tsunami	warning	center	which	may	need	to	have	an	
alloca/on	sifng	idle	so	that	when	a	earthquake	occurs	they	
can	compute	which	beaches	get	hit	and	concentrate	first	
responder	resources	to	save	lives.		

Alloca/ons	in	Compute	Canada	
•  Compute	Canada	(CC)	Resource	Alloca/on	CommiAee	
(RAC)	is	a	CommiAee	of	researchers	that	evaluate	
proposed	alloca/ons	on	the	basis	of	scien/fic	merits	
and	resources	available.	There	is	also	a	preliminary	
technical	evalua/on	which	evaluates	the	applica/on	
on	technical	merits,	job	requirements.	The	technical	
evalua/on	reports	its	findings	and	recommenda/ons	
to	the	RAC.			

•  Alloca/ons	are	for	done	yearly,	the	RAC	call	for	
proposals	goes	out	every	September.	

•  For	more	informa/on	see:	hAps://www.westgrid.ca/
support/accounts/resource_alloca/ons	

Gefng	informa/on	on	you	and	your	
group	

Command	 What	its	used	for	

	sacctmgr	list	Users	
USERS=<username>	

List	user	and	their	default	account	(accoun/ng	group)	

	sacctmgr	show	user	
<username>	withassoc	

List	user	and	their	default	account	(accoun/ng	group)	
and	shows	more	extensive	informa/on	
	

sshare	 Shows	usage	info	for	user	usage	and	priority.	

sshare	-l	 Shows	even	more	info	for	user	usage	and	priority.	

BREAK	FOR	PRACTICE	

Priority	for	your	job	
Compare	it	to	other	job		
Fairshare	target	alloca/on	to	your	group	
Your	groups	usage	by	members	

Usage	limits	on	a	cluster	

There	are	2	types	of	usage	limits:	
•  Usage	limits	that	prevent	the	scheduling	
system	from	being	overloaded.	

•  Usage	limits	that	prevent	a	user	from	
monopolizing	the	cluster	
–  	by	star/ng	jobs	on	all	resources	of	a	cluster	which	
will	run	for	a	long	period	of	/me.		

– By	star/ng	jobs	that	last	a	very	long	/me	

	
	

Reserva/ons	

Reserva/ons	

•  Used	for	many	purposes	
– Used	to	schedule	outages:		Security	patch	that	
requires	an	reboot	

– Used	to	reserve	resources	for	special	occasions,	
such	as	a	workshop	

– Each	job	also	creates	reserva/ons		
•  One	can	see	reserva/ons	on	a	cluster	via	
“scontrol	show	reserva/ons”command	

Reserva/ons	and	short	serial	jobs	

Topology	
•  As	more	devices	are	added	to	a	system	the	ability	to	have	high	

bandwidth	and	low	latency	communica/on	between	every	device	
to	every	other	device	becomes	at	first	expensive	and	the	
impossible.		

•  This	effect	is	true	between	cores	on	a	chip,	memory	on	a	machine,	
chips	on	boards,	gpus,	as	well	as	nodes	in	a	cluster.	

•  The	workaround	is	topology,	only	certain	set	resources	are	
connected	with	high	bandwidth,	low	latency,	non	blocking	
connec/ons	with	each	other,		but	the	connec/on	to	other	
resources	of	lower	bandwidth,	higher	latency,	larger	blocking	
factor.	

•  The	result	is	that	jobs	running	on	certain	sets	of	resources	are	
faster	than	running	on	others,	and	the	scheduling	system	needs	to	
take	this	into	account.	

•  This	problem	will	be	a	much	bigger	in	the	future.		

Topology	on	older	cluster	

Topology	on	Cedar	

Topology	on	Graham	

Interconnect	network	on	Graham	

Topology	on	Hungabee	

Topology	on	Hungabee	
•  Communica/on	between	cores	and	memory	on	hungabee’s	uv1000	

compute	node		is	faster	and	more	abundant	on	adjacent	connected	
resources	than	on	the	other	side	of	the	machine.	The	scheduling	system	
needs	to	take	this	into	account	and	schedule	your	jobs	to	runs	on	
adjacent/connected	resources.			

•  The	topology	of	hungabee	uv1000	machine	is	strange,	odd	even	blade	
pairs,	all	blades	in	a	chassis,	all	even	and	all	odd	blades	are	connected	to	
each	other	more	closely	than	other	combina/ons.	

•  The	topology	results	in	strange	effects,	a	job	using	2	of	128	blades	will	
stop	a	job	requiring	½	of	the	machine	(64	blades	from	running),		but	will	
not	stop	a	66	blade	job	from	star/ng,	the	reverse	is	also	true:	a	64	blade	
job	will	stop	a	2	blade	job	from	star/ng	but	not	a	3	blade	job.		

•  The	only	way	to	know	if	your	job	should	be	star/ng	but	isn’t	is	to	take	the	
“mdiag	–n”	or	“jobinfo	–n”	output	and	compare	it	to	topology	diagram	
and	see	if	there	is	enough	empty	resources,	appropriately	connected	for	
your	job	to	start.	

•  Tip:	Don’t	have	your	jobs	ask	for	½	the	machine,	use	less	than	½	or	slightly	
more,	and	it	will	be	scheduled	quicker.	

Gefng	informa/on	on	your	
Cluster	

Sinfo	-R	

•  Shows	Nodes	that	are	down	and	the	reason	
why	usually	some	error.		

[kamil@cedar5	projects]$	sinfo		-R	|	head	-12	
REASON USER TIMESTAMP NODELIST
Not responding root 2017-06-23T14:10:54 cdr[137-139,147,270]
batch job complete f root 2017-08-20T05:36:07 cdr811
Not responding slurm 2017-08-29T02:41:01 cdr119	
Prolog error root 2017-08-27T14:31:25 cdr47
batch job complete f root 2017-08-23T01:36:00 cdr52
batch job complete f root 2017-08-17T14:07:09 cdr[53,62]	
 Epilog error root 2017-07-25T16:39:47 cdr61	

sinfo		--states=idle	
•  Shows	idle	nodes	and	par//ons	(When	a	node	is	in	mul/ple	

par//ons	it	shows	it	mul/ple	/mes)	
	
kamil@cedar5 projects]$ sinfo --states=idle | head -15
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
cpubase_interac up 12:00:00 7 idle cdr[552,556,682,693,695-696,848]
cpubase_bycore_b1 up 3:00:00 17 idle
cdr[358,362,365-367,369-374,377-379,381-382,384]
cpubase_bycore_b2 up 12:00:00 0 n/a
cpubase_bycore_b3 up 1-00:00:00 0 n/a
cpubase_bycore_b4 up 3-00:00:00 0 n/a
cpubase_bycore_b5 up 7-00:00:00 0 n/a
cpubase_bycore_b6 up 28-00:00:0 0 n/a
cpubase_bynode_b1* up 3:00:00 66 idle
cdr[358,362,365-367,369-374,377-379,381-382,384,391,413,497,501,504,51
0,542,555,560,563,568,579,598,600,612,615,626,631,644,648,652,654,657,6
67,669,676,684,711,716-717,721,724-725,729,731-732,735,739,744,758,761
,774,778,785,805-806,808,837,855]	

Par//on	Stats	
(CC	script)	

Node type | Max walltime
 | 3 hr | 12 hr | 24 hr | 72 hr | 168 hr | 672 hr |
----------|---
 Number of Queued Jobs by partition Type (by node:by core)
----------|---
Regular | 1:15 | 2:31 | 2:145 | 11:187 | 86:69 | 3:2 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:1 | 0:1 |
GPU | 0:1 | 0:526 | 10:10 | 0:0 | 189:4 | 0:0 |
----------|---
 Number of Running Jobs by partition Type (by node:by core)
----------|---
Regular | 60:6 | 4:2 | 45:836 | 5:90 | 11:1065| 1:4 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 1:0 |
GPU | 0:20 | 2:10 | 13:2 | 0:0 | 0:0 | 0:3 |
----------|---
 Number of Idle nodes by partition Type (by node:by core)
----------|---
Regular | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
Large Mem | 3:1 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 17:1 | 11:1 | 0:0 | 0:0 | 0:0 | 0:0 |
----------|---
 Total Number of nodes by partition Type (by node:by core)
----------|---
Regular | 851:411 | 821:391 | 756:346 | 636:276 | 180:100 | 90:50 |
Large Mem | 27:12 | 24:11 | 24:11 | 20:3 | 3:2 | 2:1 |
GPU | 156:78 | 144:72 | 116:58 | 104:52 | 13:12 | 13:12 |
•  ----------|---	

Gefng	informa/on	on	your	Cluster	

Command	 What	its	used	for	

sinfo		--states=idle	 Show	idle	node	on	cluster	
sinfo	-R	 Show	down,	drained	and	draining	nodes	and	their	

reason	
sinfo		--Node	--long	 Show	detailed	node	info.	
scontrol	show	reserva/on	 Shows	reserva/ons	on	the	cluster	
par//on-stats	 Compute	Canada	script	to	show	jobs	and	nodes	by	

par//on	

scontrol	create	reserva/on	
user=root	starfme=now		
			dura/on=infinite	
flags=maint	
nodes=<nodeid>	
	

BREAK	FOR	PRACTICE	
Cluster	informa/on	

Why	does	my	job	not	run?	

•  List	of	reasons	your	job	is	not	running	in	order	
of	probability.	
1.  There	is	a	problem	with	the	job	
2.  The	Job	is	blocked	
3.  Other	jobs	have	greater	priority	
4.  Resources	are	not	available	
5.  There	is	a	problem	with	the	scheduling	system	

or	cluster.	

Common	Problems	

•  The	Job	request	more	resources	than	are	
available	on	the	system	or	node	or	prac/cal	to	
run	on	the	system.	

•  ex)		
– You	can	request	10,000	cores	on	cedar	
– Request	more	than	3TB	of	RAM	per	node	
– Request	5	nodes	each	with	2TB	per	node	

	

Problem	with	my	job	

1.  Is	the	Job	blocked?	“squeue	–u	<user	name>”	
– Find	out	more?	“scontrol	show	jobid	-dd	<jobid>”	

2.  Is	the	Job	on	hold?	Are	there	dependencies?	
	

Is	there	a	problem	with	my	job?	

3.  What	is	my	jobs	priority?	Compare	it	to	other	jobs	
on	cluster	run:	“sprio”	
If	you	have	much	lower	priority	find	out	why:		
use:	“sshare”	

•  Wait	un/l	priority	improves	over	/me.		
•  Ask	fellow	group	members	to	run	less.	
•  Ask	for	your	professor	to	apply	for	a	RAC	alloca/on.	

Is	there	a	problem	with	the	cluster?	

4.  If	you	have	high	priority	and	your	job	is	
queued	check	to	see	if	the	resources	are	
available	
a.  Use	“par//on-stats”	to	see	if	there	are	enough	

resources	available	on	enough	nodes	to	start	
your	job.	Check	the	WestGrid	webpage	to	see	if	
there	is	an	outage	scheduled.	

Is	there	a	problem	with	cluster	

5.  Is	there	a	reserva/on	or	system	outage	
•  Check	the	Compute	Canada	webpage	/	MOTD	on	the	

system	to	see	if	there	is	an	outage	scheduled.	
•  Check	for	an	reserva/on	on	the	system	“scontrol	

show	reserva/on”	

Send	email	to	
support@computecanada.ca	

•  Make	sure	you	always	include	the	following	at	the	beginning		of	the	
email	
–  Name	of	the	cluster,	jobid	,	userid	
–  The	loca/on	of	the	jobscript	you	submiAed.	
–  Any	output	or	error	of	the	job	run.	
–  Also	make	sure	the	name	of	the	cluster	is	in	the	subject,	ex:	“job	

123456	fails	to	run	on	the	Cedar	cluster”	
•  Brief	but	complete	descrip/on	of	the		problem.		
•  You	should	try	to	include	the	output	of	any	commands	like	those	

descripted	in	the	talk	earlier.	Please	include	any	output	of	
commands	that	you	have	run	which	convinced	you	there	is	a	
problem.	A	lot	of	these	commands	give	the	state	of	the	job	or	
cluster	at	the	moment	and	this	way	we	can	analyze	the	situa/on	as	
you	saw	it.	

Scheduling	in	the	future	
•  Many	more	levels	of	topology	
•  Enforcing	exclusivity	with	granularity	
•  Data	movement,	backups,	recovery,	latency,	bandwidth,	

move	job	to	data	not	data	to	job.	
•  Failure	tolerant	jobs	and	scheduling	
•  Power	aware	jobs	and	scheduling	
•  Scheduling	provisioning	of	nodes	
•  Scheduling	VMs	and	containers.	
•  Cloud	/Grid	scheduling	including	both	batch	jobs	and	

services	on	the	same	system,	virtual	network	management,	
all	the	points	above	in	a	integrated	system				

QUESTIONS?	

Upcoming	ARC	Training	Sessions	

October	25	
10am	-	11pm	MDT	

Machine	Learning	Using	Jupyter	Notebooks	on	
Graham	
	

November	1	
11am	–	1	pm	MDT	

Introduc@on	to	Classical	Molecular	Dynamics	
Simula@ons	

November	21	
11am	–	1	pm	MDT	

Exploring	Containeriza@on	with	Singularity	
	

hIps://www.westgrid.ca/events/westgrid-training-events	

