
How	to	deal	with	common	
Scheduling	Problems	

Troubleshooting,	Make	sure	you	
gather	data	that	may	be	lost	

•  Keep	any	error	messages	you	received.		
•  What	environment	setting	were	set,	which	
module	have	you	loaded	when	you	submitted	the	
job?	

•  When	did	the	problem	occur?	
•  The	state	of	a	cluster	changes,	jobs	start	and	
finish,	nodes	fail	and	are	repaired.	What	were	the	
output	of	commands	that	you	ran	on	the	system	
that	make	you	think	there	is	a	problem	or	that	
you	think	analyst	should	see.	

Keep	a	record	of	any	output	with	
script	command.	

“script	<filename	to	write>”		
Do	your	work	
“exit”	to	stop	writing	the	script.		
	
If	you	need	to	add	more	information	to	the	file		
Use	“Script	–a	<filename>”	
tip:	Put	a	date	and	time	in	the	file	name	

Memory	Request	Problems	
•  The	Memory	your	jobs	requests	is	what	the	
system	must	have	available	for	your	job	to	use.	
–  If	your	requests	to	use	1.5	TiB	it	will	never	run	on	a	
node	with	1.5TiB	of	RAM	as	some	RAM	will	be	used	by	
the	operating	system,	and	there	will	not	be	enough	
resources	to	run	your	job.	

–  Recommended	that	all	request	for	RAM	in	1000’s	of	
MiB		

•  1.5TiB=1,572,864	MiB	and	if	you	request	1,500,00	MiB	there	
would	be	72,864	MiB	to	run	the	OS	and	services.		

•  This	recommendation	is	also	good	for	smaller	single	core	
jobs	as	well,	On	a	32	core		128	GiB	RAM	node,	the	scheduler	
can	fit	31	jobs	asking	for	1	core	and	4GiB	of	RAM	or	32	jobs	
asking	for	1	core	an	4000MiB.	

Running	out	of	Memory	

•  Ask	for	more	memory	
•  Be	careful	don’t	ask	for	to	much	

– Asking	for	more	memory	makes	your	job	more	
difficult	to	schedule.	

– CC	cluster	only	have	4GB	RAM	per	core	on	most	
nodes.	

– You	can	ask	for	more	memory	than	the	cluster	has	
– Your	group	will	be	assessed	as	having	used	more	
resources,	(for	the	purpose	priority	and	allocation)	

Core	Equivalent	

Compute	Canada	core	equivalent	documentation	

Node	types	on	Cedar	
Number	
of	Nodes	

%	of	
total	

Memory	per	
core	(GiB)	

Total	
Mem	(GiB)	

Cores	 GPUS	 Partition	
type	

640	 54.2%	 4	 192	 48		
cpubase	576	 32.5%	 4	 128	 32	

182	 10.3%	 8	 256	 32	
24	 1.4%	 16	 512	 32	

cpularge	24	 1.4%	 48	 1536	 32	
4	 0.2%	 96	 3072	 32	
114	 46.3%	 4	(32	per	GPU)	 128	 24	 4	 gpubase	
132	 53.7%	 8	(64	per	GPU)	 256	 24	 4	 gpularge	

512 GiB node 16GiB/core

1.5 GiB node 48GiB/core

3 TiB node 48GiB/core

Sept 2018 Setup large mem
partitions on Cedar

B
y

no
de

 o
nl

y
B

y
co

re
 (a

llo
w

ed
)

B
y

N
od

e
(a

llo
w

ed
)

28 days (b6)

28 days (b6)

7 days (b5)

3 days (b4)

7 days (b5)

3 days (b4)

12 hours (b2)

24 hours (b3)

24 hours (b3)

12 hours (b2)

2
2
1

1
1

2
2

3
3

6
6
1

1
2
2

6
6

1
2

Virtual	and	Physical	memory	

•  Your	program	can	ask	to	use	a	chunk	of	
memory.	This	is	virtual	or	requested	
MaxVMSize	

	
•  MaxRSS	is	the	amount	of	memory	used	by	
your	code.	

Find	out	how	much	memory	a	job	
used.	

Command	 Flags	 What	its	used	for	

sstat		 Display	various	status	information	of	a	
running	job	

–j	<jobid>	 Displays	information	about	the	specified	job	
--format=	
AveCPU,MaxRSS,MaxVMSize,JobID	

limits	the	information	to	that	about	memory	
(MaxVMSize	is	requested	memory)	
(MaxRSS	is	memory	used)	

sacct	 Displays	slurm	accounting	data	

–j	<jobid>	 Displays	information	about	the	specified	job	

-u	$USER	
	

Displays	information	about	jobs	belong	to	a	
specific	user	

--format=	
JobID,AveCPU,MaxRSS,MaxVMSize	

limits	the	information	to	that	about	memory	

salloc	 Submit	to	run	Job	Interactively		

Same	flags	as	sbatch	 Note	not	all	sbatch	flags	work	

Interactive	Jobs	for	debugging	
Use	salloc	instead	of	sbatch	to	launch	interactive	
jobs.	

salloc --ntasks=4 --mem-per-cpu 4000 -t 0-00:20

List	environment	variables	with	printenv	
printenv | grep ^S

To	check	memory	usage	use		
top –u $USER

Look	at	the	jobs	cgroup,		
cat /sys/fs/cgroup/cpuset/slurm/uid_$SLURM_JOB_UID/
job_$SLURM_JOB_ID/step_$SLURM_STEPID/tasks

Remember	that	you	are	logged	in	only	on	one	
machine	and	your	job	may	span	more	than	one	

Running	out	of	runtime	

If	your	jobs	are	running	out	of	time.	
•  Ask	for	more	time.		
•  Don’t	ask	for	to	much	runtime.	
•  Asking	for	more	runtime	may	limit	you	to	how	
many	resources	can	run	your	job.	This	may	
interact	with	how	much	memory	you	asked	
for.	

Partitions	on	Cedar	and	Graham	
•  There	are	partitions	based	

upon	how	long	the	
maximum	walltime	your	
job	has.		

•  Your	job	ends	up	in	the	
shortest	walltime	partition	
that	has	a	longer	walltime	
than	your	job	

•  The	shorter	walltime	
partitions	include	all	the	
nodes	of	longer	walltime	
partitions.			

3	hr	

12	hr	

24	hr	

72	hr	

168	hr	

672	hr	

512 GiB node 16GiB/core

1.5 GiB node 48GiB/core

3 TiB node 48GiB/core

Sept 2018 Setup large mem
partitions on Cedar

B
y

no
de

 o
nl

y
B

y
co

re
 (a

llo
w

ed
)

B
y

N
od

e
(a

llo
w

ed
)

28 days (b6)

28 days (b6)

7 days (b5)

3 days (b4)

7 days (b5)

3 days (b4)

12 hours (b2)

24 hours (b3)

24 hours (b3)

12 hours (b2)

2
2
1

1
1

2
2

3
3

6
6
1

1
2
2

6
6

1
2

Partition	Stats	
(CC	script)	

Node type | Max walltime
 | 3 hr | 12 hr | 24 hr | 72 hr | 168 hr | 672 hr |
----------|---
 Number of Queued Jobs by partition Type (by node:by core)
----------|---
Regular | 1:15 | 2:31 | 2:145 | 11:187 | 86:69 | 3:2 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:1 | 0:1 |
GPU | 0:1 | 0:526 | 10:10 | 0:0 | 189:4 | 0:0 |
----------|---
 Number of Running Jobs by partition Type (by node:by core)
----------|---
Regular | 60:6 | 4:2 | 45:836 | 5:90 | 11:1065| 1:4 |
Large Mem | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 1:0 |
GPU | 0:20 | 2:10 | 13:2 | 0:0 | 0:0 | 0:3 |
----------|---
 Number of Idle nodes by partition Type (by node:by core)
----------|---
Regular | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
Large Mem | 3:1 | 0:0 | 0:0 | 0:0 | 0:0 | 0:0 |
GPU | 17:1 | 11:1 | 0:0 | 0:0 | 0:0 | 0:0 |
----------|---
 Total Number of nodes by partition Type (by node:by core)
----------|---
Regular | 851:411 | 821:391 | 756:346 | 636:276 | 180:100 | 90:50 |
Large Mem | 27:12 | 24:11 | 24:11 | 20:3 | 3:2 | 2:1 |
GPU | 156:78 | 144:72 | 116:58 | 104:52 | 13:12 | 13:12 |
----------|---

My	job	is	not	running	right	now	
•  scontrol show job <jobid>

– pay	special	attention	to	JobState,	and	Reason	
•  Look	at	resource	availability	with	CC’s	
partitions-stats	command,	make	sure	you	
look	up	the	resources	the	resources	available	
to	your	jobs	memory	and	time	requirements.	

•  Looks	at	the	jobs	priority	with	the	sprio	
command.	

	
	

Fixing	priority	

•  Priority	is	based	upon	your	groups	recent	
usage	compared	to	allocation	in	the	recent	
past.		
– Wait	and	ask	group	members	to	use	less	
resources.	

– Ask	your	PI	to	apply	for	a	RAC	allocation.	
– Change	your	job	to	ask	for	resources	that	are	in	
less	demand.	Ex:	checkpointing.	

Checkpointing		
•  Some	programs	can	save	its	state	and	restart	from		
save	state.		

•  This	allows	long	running	jobs	to	be	broken	up	into	
smaller	runs.	

•  This	minimizes	effect	of	hardware	failures,	system	
downtime	etc…	on	your	ability	to	get	your	work	done.	
This	is	particularly	important	for	simulations	using	
large	amount	of	hardware.	

•  If	your	application	does	allow	this	make	sure	to	
understand	how	long	a	checkpoint	and	or	restart	
takes.	If	it	takes	a	long	time	to	do,	don’t	do	it	very	
often.	

Big	high	priority	jobs	in	the	
scheduler	leave		“holes”	that	can	
be	filled	with	smaller	shorter	Jobs	

How	to	ask	support	for	help		
•  Read	status	page	and	any	support	notices	

http://status.computecanada.ca/.	
•  Being	able	to	ask	for	help	in	a	helpful	manner	will	likely	result	in	

your	questions	being	help	in	a	much	more	responsive	manner.	
•  An	email	“Something	is	wrong”,	“Nothing	works”	will	take	a	long	

time	to	resolve.	
–  A	analyst	responsible	for	a	system	will	fix	problems	with	the	system	

they	are	responsible	for,	before	they	start	answering	asking	you	
questions	in	order	to	determine	which	system	you	are	having	a	
problem.	The	problem	could	be	with	the	cluster,	cloud,	website,	
network	etc..		

•  In	the	subject	of	the	email,	include	the	system/cluster	name	a	a	few	
words	of	what	may	be	wrong.	
–  “job	123456	fails	to	run	on	the	Cedar	cluster”	will	much	more	likely	to	

handled	by	a	person	who	can	help	quickly.	

Don’t	make	the	Analysts	play	detective	
unnecessarily	

•  Compute	Canada	has	multiple	clusters.	
•  Your	Compute	Canada	user	name	may	not	be	
apparent	from	your	email.	

•  You	may	have	1000s	of	job	queued,	running,	
completed,	failed	on	the	system	with	which	one	
did	you	have	an	issue?		

•  When	did	this	happen?	
•  Which	jobscript	did	you	launch	your	job	with,	
have	you	modified	it	since?		

•  What	version	of	software	are	you	running?	
	

TO:	support@computecanda.ca	
Subject:	Job	123456	gives	errors	on	the	CC	Cedar	cluster	
	
Hello,	My	name	is	Alice,	user	asmith	.	Today	at	10:00	am	MST		I	submitted	a	job	123456		on	
the	Cedar	cluster.	The	Job	script	is	located	/my/job/script/path	I	have	not	changed	it	since	
submitting	my	job,	since	it	is	short	I	included	it	in	the	email	bellow.		

#!/bin/bash	
#SBATCH	--account=def-asmith-ab	
#SBATCH	--nodes=1	
#SBATCH	--ntasks-per-node=16	
#SBATCH	--time=00:05:00	
{	time	mpiexec	-n	1	./sample1	;	}	2>out.time	

	
A	list	of	the	following	modules	were	loaded	at	the	time	follow:	

[asmith@cedar5]$ module list
Currently Loaded Modules:
 1) nixpkgs/16.09 (S) 5) intel/2016.4 (t)
 2) icc/.2016.4.258 (H) 6) imkl/11.3.4.258 (math)
 3) gcccore/.5.4.0 (H) 7) openmpi/2.1.1 (m)
 4) ifort/.2016.4.258 (H) 8) StdEnv/2016.4 (S)	
	

The	job	ran	quickly	and	the	myjob-123456.out	and	myjob-123456.err	files	were	created.		
There	was	no	output	in	the	myjob-123456.out		file	but	there	was	an	message	in	the	
myjob-123456.err	output	

[asmith@cedar5	scheduling]$	cat	myjob-123456.err	
slurmstepd:	error:	***	JOB	123456	ON	cdr692	CANCELLED	AT	2018-09-06T15:19:16	DUE	TO	TIME	LIMIT	***	

Can	you	tell	me	how	to	fix	this	problem?	

	

User	debugging	questions		

Any	questions.	
	
If	there	is	time	and		we	have	a	volunteer	who	
consents	for	others	to	listen	and	learn	and	that	
there	will	be	a	recording	made	of	this	and	
posted	on	line.	We	can	do	a	live	debugging	
session	example.			

The	end	

SLURM	SCRIPT	REFERENCE	
MATERIAL	BELLOW	

Material	bellow	will	not	be	in	the	presentation	unless	diagram	is	needed	
to	answer	a	question.	

Basic	Slurm	script	commands	
Slurm	script	command	 Description	

#!/bin/bash	 Sets	the	shell	that	the	job	will	be	executed	on	the	
compute	node	

#SBATCH	--ntasks=1	
#SBATCH	--n1	
	

Requests	for	1	processors	on	task,	usually	1	cpu	as	1	cpu	
per	task	is	default.	

#SBATCH --time=0-05:00
#SBATCH -t 0-05:00

Sets	the	maximum	runtime	of	5	hours	for	your	job	

#SBATCH	--mail-user=	<email>		 Sets	the	email	address	for	sending	notifications	about	
your	job	state.	

#SBATCH	--mail-type=BEGIN	
#SBATCH	--mail-type=END	
#SBATCH	--mail-type=FAIL	
#SBATCH	--mail-type=REQUEUE	
#SBATCH	--mail-type=ALL	

Sets	the	scedualing	system	to	send	you	email	when	the	
job	enters	the	follwoing	states:	
BEGIN,END,FAIL,REQUEUE,ALL	

#SBATCH	--job-name=my-named-job	 Sets	the	Jobs	name	

Slurm	script	commands	

Slurm	script	command	 Description	

#SBATCH	–ntasks=X	
	

Requests	for	X	tasks.	
When	cpus-per-task=1	(and	this	is	the	default)	this	requests	X	cores.	
When	not	otherwise	constraint	these	CPUs	may	be	running	on	any	node	

#SBATCH	--nodes=X		 Request		that	a	minimum	of	X	nodes	be	allocated	to	this	job	

#SBATCH	--nodes=X-Y	
	

Request		that	a	minimum	of	X	nodes	and	a	maximum	of	Y	nodes	
be	allocated	to	this	job	

#SBATCH	--cpus-per-task=X	 Request		that	a	minimum	of	X	CPUs	per	task	be	allocated	
to	this	job	

#SBATCH	--tasks-per-node=X	 Requests	minimum	of	X	task	be	allocated	per	node	

Slurm	script	commands	

Slurm	script	commands	 Description	of	effects	

#SBATCH	--ntasks=1	
#SBATCH	--cpus-per-task=1	

Requests	1	CPU	(Serial)	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

#SBATCH	--cpus-per-task=X	
#SBATCH	--ntasks=1	
#SBATCH	--nodes=1		

Requests	for	X	CPUs	in	1	task	on	1	node	(OpenMP)		
Both	ntasks	and	nodes	are	set	to	1	by	default	and	may	
be	omitted	

#SBATCH	--ntasks=X	
#SBATCH	--tasks-per-node=X	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and	tasks	on	1	node		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	
	

Requests	for	X	CPUs	and	tasks	on	1	node		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

Slurm	script	commands	

Slurm	script	commands	 Description	of	effects	

#SBATCH	--ntasks=X	
#SBATCH	--cpus-per-task=1	

Requests	X	CPUs	and	tasks	(MPI)	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

#SBATCH	--ntasks=X	
#SBATCH	--ntasks-per-node=Y	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and	tasks	with	Y	CPUs	and	tasks	
per	node		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	

Requests	for	X	CPUs	and		tasks	on	the	same	node,	
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

#SBATCH	--ntasks=X	
#SBATCH	--nodes=1	
#SBATCH	--cpus-per-task=1	
	

Requests	for	X	CPUs	and	tasks	on	the	1	node		
cpus-per-task		is	set	to	1	by	default	and	may	be	
omitted.	

Slurm	script	commands	

Slurm	script	command	 Description	

#SBATCH	--ntasks=1	
#SBATCH	--cpus-per-task=1	

Requests	1	cpu	in	1	task.	(Serial)	
cpus-per-task		is	set	to	1	by	default	and	may	be	omitted.	

#SBATCH	--cpus-per-task=N	
#SBATCH	--ntasks=1	
#SBATCH	--nodes=1		

Requests	for	X	processors	on	the	same	node	(OpenMP)		
Both	ntasks	and	nodes	are	set	to	1	by	default	and	may	
be	omitted	

#SBATCH	--ntasks=X	
	

Requests	for	X	processors	which	may	be	running	on	any	
node		(MPI).		

#SBATCH	--nodes=X		
#SBATCH	--ntasks=Y	

Requests	minimum	of	X	nodes	for	the		Y	tasks.		
(MPI	job)	

#SBATCH		--array=0-4		 Requests	Job	array	of	5	jobs	with	indexes		0-4	

#SBATCH		--array=1,3,5,7,9		 Requests	Job	array	of	5	jobs	with	indexes		1,3,5,7,9	

#SBATCH		--array=0-X%Y	
ex:	#SBATCH	--array=0-4%2	

Requests	Requests	Job	array	of	X	jobs	with	only	a	
maximum	of	Y	jobs	running	at	the	same	time		

Slurm	script	commands	
PBS	script	command	 Description	

#SBATCH	--mem=4000	 Requests	4000	MB	of	memory	in	total	

#SBATCH	--mem-per-cpu=4000	 Requests	4000	MB	of	memory	per	cpu	

#SBATCH	--licenses=sas:2	 Requests	2	SAS	licenses	

#SBATCH		--gres=gpu:1	 Requests	that	your	job	get	1	GPU	allocated	per	
node	

#SBATCH		--exclusive	 Requests	that	your	job	run	only	on	nodes	with	no	
other	running	jobs		

#SBATCH	--dependency=after:job_id1	 Requests	that	the	the	job	start	after	job	(jobid1)	
has	started	

#SBATCH	--dependency=afterany:job_id1,	
job_i2	

Requests	that	the	the	job	start	after	ether	job	
(jobid1)	or	job	(jobud2)	has	finished	

#SBATCH	--dependency=afterok:job_id1	
	

Requests	that	the	the	job	start	after	job	(jobid1)	
has	finished	successfully	

Slurm	script	commands	

PBS	script	command	 Description	

#SBATCH	--account=acc_name	 To	submit	a	job	to	a	specific	accounting		group	such	
as	RAC/RAS		allocation	or	different	role		

#SBATCH	--tmp=200G	 Asks	for	200Gb	of	temporary	disk	space		

#SBATCH		--constraint=blue	 To	ask	for	a	node	feature	or	constraint	set	by	
cluster	admin.	Here	we	are	looking	for	“blue”	
nodes.	

#SBATCH		--
partition=partition_name	

To	ask	for	the	job	to	run	in	a		specific	partition	or	
queue	by	name,	(unlike	Moab	there	can	be	more	
than	1	partition	per	Job)	

--prolog=<executable>	 Run	by	srun	only,	runs	the	executable	before	the	
step	

--epilog=<executable>	 Run	by	srun	only,	runs	the	executable	after		the	
step	finishes	

SLURM	Environment	Variables		
Environment	Variable	 Description	

SLURM_JOB_NAME	 User	specified	job	name	

SLURM_JOB_ID	 Unique		slurm	job	id	

SLURM_NNODES	 Number	of	nodes	allocated	to	the	job	

SLURM_NTASKS	 Number	of	tasks	allocated	to	the	job	
SLURM_ARRAY_TASK_ID	 Array	index	for	this	job	

SLURM_ARRAY_TASK_MAX	 Total	number	of	array	indexes	for	this	job	

SLURM_MEM_PER_CPU		 Memory	allocated	per	CPU	

SLURM_JOB_NODELIST		 List	of	nodes	on	which	resources	are	allocated	to	Job		
SLURM_JOB_CPUS_PER_NODE	 Number	of	CPUs	allocated	per	Node	

SLURM_JOB_PARTITION	 List	of	Partition(s)	that	the	job	is	in.	

SLURM_JOB_ACCOUNT	 Account	under	which	this	job	is	run.	

Getting	information	on	your	Job	
Command	 What	its	used	for	
squeue	-u	<username>	 List	all	current	jobs	for	a	user	
squeue	-u	<username>	-t	PENDING	 List	all	pending	jobs	for	a	user	
squeue	-u	<username>	-t	RUNNING		 List	all	running	jobs	for	a	user	

squeue	-p	<partitionname>	 List	all	the	jobs	in	a	partition	
scontrol	show	job	<jobid>	 List	information	on	Job	
scontrol	show	jobid	-dd	<jobid>	 List	detailed	information	on	Job	
sstat	--
format=AveCPU,MaxRSS,MaxVMSize,Job
ID		-j	<jobid>	

List	info	resource	used	by	your	completed	job	:		average	
cpu	time,		Max	memory,	Max	virtual	memory,	JobId	

sacct	–u	<username>	--	
format=JobID,JobName,AveCPU,MaxRSS,
MaxVMSize,JobID,Elapsed	

List	resources	used	by	all	jobs	of	a	user	

sprio	 List	job	priority	information	

Controlling	jobs	
Command	 What	its	used	for	
scancel	<jobid>	 Cancel	job	
scancel	-u	<username>	 Cancel	all	the	jobs	for	a	user	
scancel	-t	PENDING	-u	<username>	 Cancel	all	the	pending	jobs	for	a	user:	

Scancel	-name	JobName	 Cancel	one	or	more	jobs	by	name	
scontrol	hold	<jobid>	 Hold	a	job,	prevent	it	form	starting	
scontrol	resume	<jobid>	 Release	a	job	hold,	allowing	the	job	to	try	to	start	
scontrol	requeue	<jobid>	 Requeue		a	running,	suspended	or	finished	job	into	pending	state	

scontrol	requeuehold<jobid>	 First	requeue	the	job	than	put	a	hold	on	it.	

squeue	-u	<username>	-ho	%A	-t	R	 List	running	jobs	by	user	

squeue	--start	 Show	expected	start	time	of	jobs.	(This	can	change)	

Getting	information	on	you	and	your	
group	

Command	 What	its	used	for	

	sacctmgr	list	Users	
USERS=<username>	

List	user	and	their	default	account	(accounting	group)	

	sacctmgr	show	user	
<username>	withassoc	

List	user	and	their	default	account	(accounting	group)	
and	shows	more	extensive	information	
	

sshare	 Shows	usage	info	for	user.	

Getting	information	on	your	Cluster	

Command	 What	its	used	for	

sinfo		--states=idle	 Show	idle	node	on	cluster	
sinfo	-R	 Show	down,	drained	and	draining	nodes	and	their	

reason	
sinfo		--Node	--long	 Show	detailed	node	info.	
scontrol	show	reservation	 Shows	reservations	on	the	cluster	
scontrol	create	reservation	
user=root	starttime=now		
			duration=infinite	
flags=maint	
nodes=<nodeid>	

Administrating	your	Cluster	
Command	 What	its	used	for	

scontrol	create	reservation	user=root	
starttime=now	duration=infinite	
flags=maint	nodes=<nodeid>	

Create	a	maintaince	reservation	on	
node	nodeid	

sacctmgr	modify	account	where	
name=def-<account>	set	rawusage=0	

Zero	account	usage	fairshare	stats	
	

sacctmgr	modify	user	where	account=def-
<account>	name=<uname>	set	
RawUsage=0	
	

Zero	user	usage	fairshare	stats	
	

OTHER	REFERENCE	MATERIAL	BELLOW	
	
	

Material	bellow	will	not	be	in	the	presentation	unless	diagram	is	needed	
to	answer	a	question.	

Typical	HPC	Cluster	

Visualizing	single	node	cluster	

Running	jobs	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

Scheduling	jobs	in	order	of	priority	

A	Job	finishes	early	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Jobs	are	rescheduled	

Single	node	cluster	

Short	serial	jobs	and	Backfill	

Scheduling	Cores	and	Memory	

Scheduling	Cores	and	Memory	

Scheduling	Cores	and	Memory	

Scheduling	Cores	and	Memory	

Scheduling	Cores	and	Memory	

Scheduling	Cores	and	Memory	

Visualizing	Multinode		cluster	

Many	Serial	Jobs	

MPI	job	

Single	node	muti-core	job		
(OpenMP,	Gaussian,	Threads)	

Hybrid	Job	

Maximum	job	walltime	partition	limit	
•  A	high	maximum	walltime	is	not	necessary	a	

good	thing,	clusters	that	allow	high	walltime	
jobs	take	longer	for	jobs	to	start	to	run,	and	
are	less	“fair”.	

•  There	are	advantages	to	running	shorter	
jobs,	such	as	how	quickly	your	job	can	be	
started.	

•  The	longer	and	larger	a	job	is	the	greater	the	
chances	of	experiencing	hardware	failure,	
minimize	this	through	check	pointing.	

•  Part	of	the	resources	of	a	cluster	is	dedicated	
for	shorter	jobs.	

	
	

Partition	
name	

Maximum	
walltime	

*_b1	 3	hours	

*_b2	 12	hours	

*_b3	 1	day	

*_b4	 3	days	

*_b4	 7	days	

*_b6	 28	days	

•  Part	of	CC	clusters	are	dedicated	to	whole	node	parallel	jobs,	other	jobs	with	a	
short	walltime	of	under	12	hours	can	run	in	this	part	at	a	reduced	priority	
compared	to	whole	node	parallel	jobs.	

	
	

Fairshare	

•  Fair	share	usage	is	weighted	by	when	the	usage	occurred	
recent	usage	is	more	important	then	usage	at	the	end	of	
the	period	

Group’s	Status:	“sshare	-l”	
[kamil@cedar5 workshop_test]$ sshare -l | egrep "(--|Account|^root|no_rac_|ras_b|cc-debug|kamil_)"
 Account User RawShares NormShares RawUsage NormUsage EffectvUsage FairShare LevelFS
-------------------- ---------- ---------- ----------- ----------- ----------- ------------- ---------- ----------
root 0.000000 639083114320110 1.000000
 no_rac_cpu 1320 0.043194 404703982221822 0.633257 0.633257 0.068209
 ras_basic_cpu 1320 0.999243 404703982221822 0.633257 1.000000 0.999243
 cc-debug_cpu 1 0.000236 1273287234 0.000002 0.000003 75.104409
 cc-debug_cpu kamil 1 0.004386 0 0.000000 0.000000 0.026537 inf
 def-kamil_cpu 1 0.000236 0 0.000000 0.000000 inf
 def-kamil_cpu kamil 1 1.000000 0 0.000000 0.000000 0.486678 inf
 no_rac_gpu 65 0.002127 6883285083841 0.010771 0.010771 0.197479
 ras_basic_gpu 65 0.984848 6883285083841 0.010771 1.000000 0.984848
 cc-debug_gpu 1 0.000236 12668 0.000000 0.000000 128389.386733
 cc-debug_gpu kamil 1 0.004386 0 0.000000 0.000000 0.508693 inf
 def-kamil_gpu 1 0.000236 0 0.000000 0.000000 inf
 def-kamil_gpu kamil 1 1.000000 0 0.000000 0.000000 0.973463 inf

Jobs	by	partition	
squeue	-p	<partitionname>	

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
535639 cpubase_b AE17631. kamil PD 0:00 1 (Resources)
591830 cpubase_b bz.sh erming PD 0:00 1 (Resources)
615762 cpubase_b AE21380. kamil PD 0:00 1 (Resources)
401219 cpubase_b CTD095.s john PD 0:00 1 (Resources)
491576 cpubase_b gen3x1s8 judy R 2-08:04:59 1 cdr747
535638 cpubase_b AE17594. kamil R 1-11:46:03 1 cdr101
491574 cpubase_b gen3x1s6 masao R 4-20:06:44 1 cdr79
491575 cpubase_b gen3x1s7 masao R 4-20:06:44 1 cdr85

Priority		
sprio		

 JOBID PRIORITY AGE FAIRSHARE PARTITION TRES
130976 7088 2500 0 625 cpu=2526,mem=1437
167003 6150 2500 0 1250 cpu=2008,mem=392
195802 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195809 4996086 2500 4991771 833 cpu=469,mem=45,gres/
195810 4996086 2500 4991771 833 cpu=469,mem=45,gres/
205281 8206 2500 0 625 cpu=1875,mem=1800,gr
205290 6408 2500 0 625 cpu=1875,mem=2,gres/
544814 23534 1741 21571 208 cpu=13,mem=2
544815 23534 1741 21571 208 cpu=13,mem=2
617580 24194 373 22768 1042 cpu=10,mem=2
617581 24194 373 22768 1042 cpu=10,mem=2

