How to deal with common Scheduling Problems

Troubleshooting, Make sure you gather data that may be lost

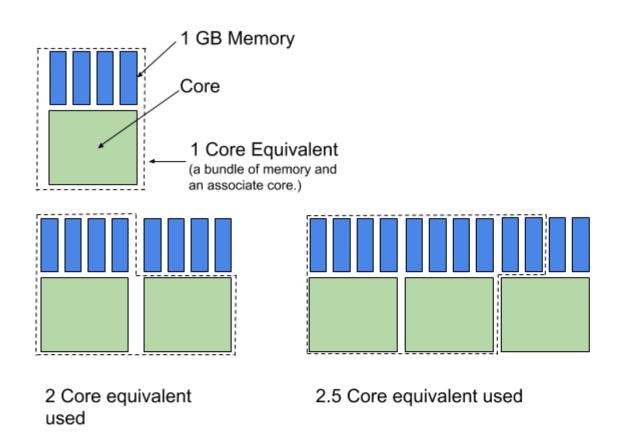
- Keep any error messages you received.
- What environment setting were set, which module have you loaded when you submitted the job?
- When did the problem occur?
- The state of a cluster changes, jobs start and finish, nodes fail and are repaired. What were the output of commands that you ran on the system that make you think there is a problem or that you think analyst should see.

Keep a record of any output with script command.

- "script <filename to write>"
- Do your work
- "exit" to stop writing the script.

If you need to add more information to the file Use "Script –a <filename>"

tip: Put a date and time in the file name

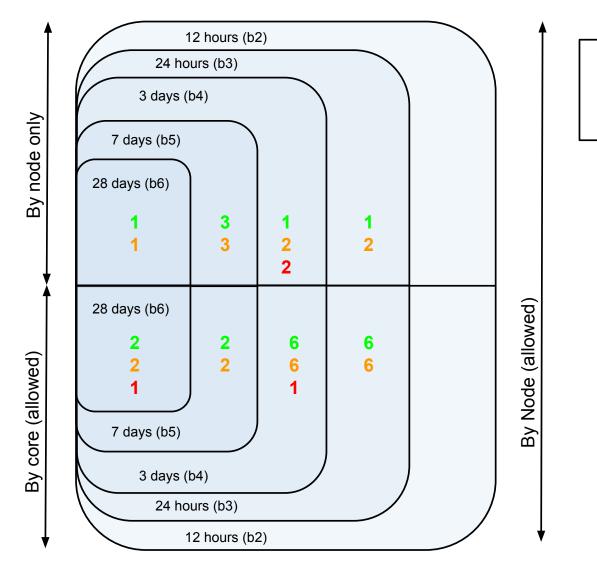

Memory Request Problems

- The Memory your jobs requests is what the system must have available for your job to use.
 - If your requests to use 1.5 TiB it will never run on a node with 1.5TiB of RAM as some RAM will be used by the operating system, and there will not be enough resources to run your job.
 - Recommended that all request for RAM in 1000's of MiB
 - 1.5TiB=1,572,864 MiB and if you request 1,500,00 MiB there would be 72,864 MiB to run the OS and services.
 - This recommendation is also good for smaller single core jobs as well, On a 32 core 128 GiB RAM node, the scheduler can fit 31 jobs asking for 1 core and 4GiB of RAM or 32 jobs asking for 1 core an 4000MiB.

Running out of Memory

- Ask for more memory
- Be careful don't ask for to much
 - Asking for more memory makes your job more difficult to schedule.
 - CC cluster only have 4GB RAM per core on most nodes.
 - You can ask for more memory than the cluster has
 - Your group will be assessed as having used more resources, (for the purpose priority and allocation)

Core Equivalent



Compute Canada core equivalent documentation

Node types on Cedar

Number of Nodes	% of total	Memory per core (GiB)	Total Mem (GiB)	Cores	GPUS	Partition type
640	54.2%	4	192	48		
576	32.5%	4	128	32		cpubase
182	10.3%	8	256	32		
24	1.4%	16	512	32		
24	1.4%	48	1536	32		cpularge
4	0.2%	96	3072	32		
114	46.3%	4 (32 per GPU)	128	24	4	gpubase
132	53.7%	8 (64 per GPU)	256	24	4	gpularge

Sept 2018 Setup large mem partitions on Cedar

512 GiB node 16GiB/core 1.5 GiB node 48GiB/core 3 TiB node 48GiB/core

Virtual and Physical memory

 Your program can ask to use a chunk of memory. This is virtual or requested MaxVMSize

• MaxRSS is the amount of memory used by your code.

Find out how much memory a job used.

Command	Flags	What its used for
sstat		Display various status information of a running job
	-j <jobid></jobid>	Displays information about the specified job
	format= AveCPU,MaxRSS,MaxVMSize,JobID	limits the information to that about memory (MaxVMSize is requested memory) (MaxRSS is memory used)
sacct		Displays slurm accounting data
	-j <jobid></jobid>	Displays information about the specified job
	-u \$USER	Displays information about jobs belong to a specific user
	format= JobID,AveCPU,MaxRSS,MaxVMSize	limits the information to that about memory
salloc		Submit to run Job Interactively
	Same flags as sbatch	Note not all sbatch flags work

Interactive Jobs for debugging

Use salloc instead of sbatch to launch interactive jobs.

salloc --ntasks=4 --mem-per-cpu 4000 -t 0-00:20
List environment variables with printenv

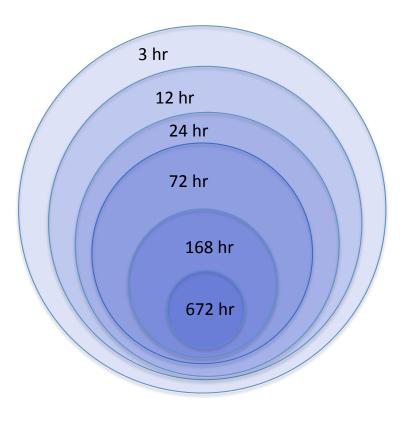
printenv | grep ^S

To check memory usage use

top -u \$USER

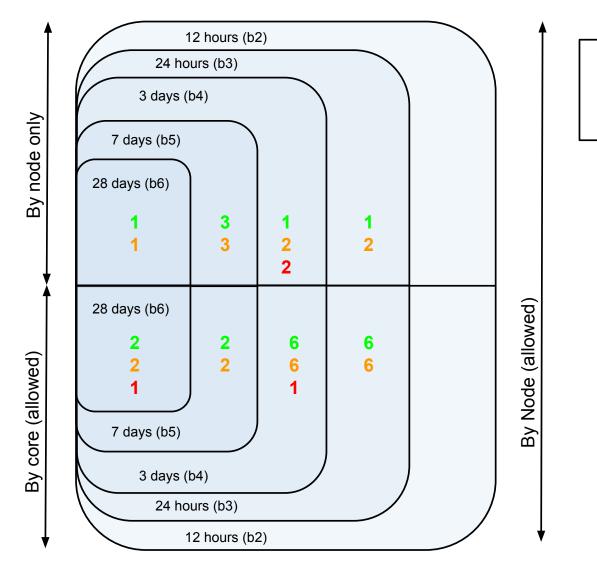
Look at the jobs cgroup,

cat /sys/fs/cgroup/cpuset/slurm/uid_\$SLURM_JOB_UID/ job_\$SLURM_JOB_ID/step_\$SLURM_STEPID/tasks


Remember that you are logged in only on one machine and your job may span more than one

Running out of runtime

If your jobs are running out of time.


- Ask for more time.
- Don't ask for to much runtime.
- Asking for more runtime may limit you to how many resources can run your job. This may interact with how much memory you asked for.

Partitions on Cedar and Graham

- There are partitions based upon how long the maximum walltime your job has.
- Your job ends up in the shortest walltime partition that has a longer walltime than your job
- The shorter walltime partitions include all the nodes of longer walltime partitions.

Sept 2018 Setup large mem partitions on Cedar

512 GiB node 16GiB/core 1.5 GiB node 48GiB/core 3 TiB node 48GiB/core

Partition Stats

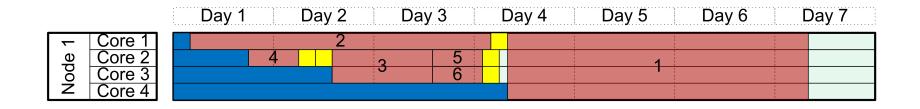
(CC script)

Node type 	3 hr	M: 12 hr	ax walltin 24 hr	ie 72 hr	168 hr	672 hr
Numb	er of Queue	d Jobs by pa	artition T	ype (by	node:by core	2)
Regular Large Mem GPU	1:15 0:0 0:1	2:31 0:0 0:526	2:145 0:0 10:10	11:187 0:0 0:0	86:69 0:1 189:4	3:2 0:1 0:0
Numbe	r of Runnin	g Jobs by pa	artition T	ype (by	node:by core	2)
Regular Large Mem GPU	60:6 0:0 0:20	4:2 0:0 2:10	45:836 0:0 13:2	5:90 0:0 0:0	11:1065 0:0 0:0	1:4 1:0 0:3
Num	ber of Idle	nodes by p	artition T	ype (by	node:by core	2)
Regular Large Mem GPU	0:0 3:1 17:1	0:0 0:0 11:1	0:0 0:0 0:0	0:0 0:0 0:0	0:0 0:0 0:0	0:0 0:0 0:0
Tota	l Number of	nodes by p	artition T	Type (by	node:by core	2)
Regular Large Mem GPU	851:411 27:12 156:78	24:11	756:346 24:11 116:58	636:276 20:3 104:52	180:100 3:2 13:12	90:50 2:1 13:12

My job is not running right now

- scontrol show job <jobid>

 pay special attention to JobState, and Reason
- Look at resource availability with CC's partitions-stats command, make sure you look up the resources the resources available to your jobs memory and time requirements.
- Looks at the jobs priority with the sprio command.


Fixing priority

- Priority is based upon your groups recent usage compared to allocation in the recent past.
 - Wait and ask group members to use less resources.
 - Ask your PI to apply for a RAC allocation.
 - Change your job to ask for resources that are in less demand. Ex: checkpointing.

Checkpointing

- Some programs can save its state and restart from save state.
- This allows long running jobs to be broken up into smaller runs.
- This minimizes effect of hardware failures, system downtime etc... on your ability to get your work done. This is particularly important for simulations using large amount of hardware.
- If your application does allow this make sure to understand how long a checkpoint and or restart takes. If it takes a long time to do, don't do it very often.

Big high priority jobs in the scheduler leave "holes" that can be filled with smaller shorter Jobs

How to ask support for help

- Read status page and any support notices <u>http://status.computecanada.ca/</u>.
- Being able to ask for help in a helpful manner will likely result in your questions being help in a much more responsive manner.
- An email "Something is wrong", "Nothing works" will take a long time to resolve.
 - A analyst responsible for a system will fix problems with the system they are responsible for, before they start answering asking you questions in order to determine which system you are having a problem. The problem could be with the cluster, cloud, website, network etc..
- In the subject of the email, include the system/cluster name a a few words of what may be wrong.
 - "job 123456 fails to run on the Cedar cluster" will much more likely to handled by a person who can help quickly.

Don't make the Analysts play detective unnecessarily

- Compute Canada has multiple clusters.
- Your Compute Canada user name may not be apparent from your email.
- You may have 1000s of job queued, running, completed, failed on the system with which one did you have an issue?
- When did this happen?
- Which jobscript did you launch your job with, have you modified it since?
- What version of software are you running?

TO: support@computecanda.ca Subject: Job 123456 gives errors on the CC Cedar cluster

Hello, My name is Alice, user asmith . Today at 10:00 am MST I submitted a job 123456 on the Cedar cluster. The Job script is located /my/job/script/path I have not changed it since submitting my job, since it is short I included it in the email bellow.

#!/bin/bash
#SBATCH --account=def-asmith-ab
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16
#SBATCH --time=00:05:00
{ time mpiexec -n 1 ./sample1 ; } 2>out.time

A list of the following modules were loaded at the time follow:

[asmith@cedar5]\$ module list Currently Loaded Modules: 1) nixpkgs/16.09 (S) 5) intel/2016.4 (t) 2) icc/.2016.4.258(H) 6) imkl/11.3.4.258(math) 3) gcccore/.5.4.0 (H) 7) openmpi/2.1.1(m) 4) ifort/.2016.4.258(H) 8) StdEnv/2016.4(S)

The job ran quickly and the myjob-123456.out and myjob-123456.err files were created. There was no output in the myjob-123456.out file but there was an message in the myjob-123456.err output

[asmith@cedar5 scheduling]\$ cat myjob-123456.err

slurmstepd: error: *** JOB 123456 ON cdr692 CANCELLED AT 2018-09-06T15:19:16 DUE TO TIME LIMIT ***

Can you tell me how to fix this problem?

User debugging questions

Any questions.

If there is time and we have a volunteer who consents for others to listen and learn and that there will be a recording made of this and posted on line. We can do a live debugging session example.

The end

Material bellow will not be in the presentation unless diagram is needed to answer a question.

SLURM SCRIPT REFERENCE MATERIAL BELLOW

Basic Slurm script commands

Slurm script command	Description
#!/bin/bash	Sets the shell that the job will be executed on the compute node
#SBATCHntasks=1 #SBATCHn1	Requests for 1 processors on task, usually 1 cpu as 1 cpu per task is default.
#SBATCHtime=0-05:00 #SBATCH -t 0-05:00	Sets the maximum runtime of 5 hours for your job
#SBATCHmail-user= <email></email>	Sets the email address for sending notifications about your job state.
#SBATCHmail-type=BEGIN #SBATCHmail-type=END #SBATCHmail-type=FAIL #SBATCHmail-type=REQUEUE #SBATCHmail-type=ALL	Sets the scedualing system to send you email when the job enters the follwoing states: BEGIN,END,FAIL,REQUEUE,ALL
#SBATCHjob-name=my-named-job	Sets the Jobs name

Slurm script command	Description
#SBATCH –ntasks=X	Requests for X tasks. When cpus-per-task=1 (and this is the default) this requests X cores. When not otherwise constraint these CPUs may be running on any node
#SBATCHnodes=X	Request that a minimum of X nodes be allocated to this job
#SBATCHnodes=X-Y	Request that a minimum of X nodes and a maximum of Y nodes be allocated to this job
#SBATCHcpus-per-task=X	Request that a minimum of X CPUs per task be allocated to this job
#SBATCHtasks-per-node=X	Requests minimum of X task be allocated per node

Slurm script commands	Description of effects
#SBATCHntasks=1 #SBATCHcpus-per-task=1	Requests 1 CPU (Serial) cpus-per-task is set to 1 by default and may be omitted.
#SBATCHcpus-per-task=X	Requests for X CPUs in 1 task on 1 node (OpenMP)
#SBATCHntasks=1	Both ntasks and nodes are set to 1 by default and may
#SBATCHnodes=1	be omitted
#SBATCHntasks=X	Requests for X CPUs and tasks on 1 node
#SBATCHtasks-per-node=X	cpus-per-task is set to 1 by default and may be
#SBATCHcpus-per-task=1	omitted.
#SBATCHntasks=X	Requests for X CPUs and tasks on 1 node
#SBATCHnodes=1	cpus-per-task is set to 1 by default and may be
#SBATCHcpus-per-task=1	omitted.

Slurm script commands	Description of effects
#SBATCHntasks=X #SBATCHcpus-per-task=1	Requests X CPUs and tasks (MPI) cpus-per-task is set to 1 by default and may be omitted.
#SBATCHntasks=X #SBATCHntasks-per-node=Y #SBATCHcpus-per-task=1	Requests for X CPUs and tasks with Y CPUs and tasks per node cpus-per-task is set to 1 by default and may be omitted.
#SBATCHntasks=X #SBATCHnodes=1 #SBATCHcpus-per-task=1	Requests for X CPUs and tasks on the same node, cpus-per-task is set to 1 by default and may be omitted.
#SBATCHntasks=X #SBATCHnodes=1 #SBATCHcpus-per-task=1	Requests for X CPUs and tasks on the 1 node cpus-per-task is set to 1 by default and may be omitted.

Slurm script command	Description
#SBATCHntasks=1 #SBATCHcpus-per-task=1	Requests 1 cpu in 1 task. (Serial) cpus-per-task is set to 1 by default and may be omitted.
#SBATCHcpus-per-task=N #SBATCHntasks=1 #SBATCHnodes=1	Requests for X processors on the same node (OpenMP) Both ntasks and nodes are set to 1 by default and may be omitted
#SBATCHntasks=X	Requests for X processors which may be running on any node (MPI).
#SBATCHnodes=X #SBATCHntasks=Y	Requests minimum of X nodes for the Y tasks. (MPI job)
#SBATCHarray=0-4	Requests Job array of 5 jobs with indexes 0-4
#SBATCHarray=1,3,5,7,9	Requests Job array of 5 jobs with indexes 1,3,5,7,9
#SBATCHarray=0-X%Y ex: #SBATCHarray=0-4%2	Requests Requests Job array of X jobs with only a maximum of Y jobs running at the same time

PBS script command	Description
#SBATCHmem=4000	Requests 4000 MB of memory in total
#SBATCHmem-per-cpu=4000	Requests 4000 MB of memory per cpu
#SBATCHlicenses=sas:2	Requests 2 SAS licenses
#SBATCHgres=gpu:1	Requests that your job get 1 GPU allocated per node
#SBATCHexclusive	Requests that your job run only on nodes with no other running jobs
#SBATCHdependency=after:job_id1	Requests that the the job start after job (jobid1) has started
#SBATCHdependency=afterany:job_id1, job_i2	Requests that the the job start after ether job (jobid1) or job (jobud2) has finished
#SBATCHdependency=afterok:job_id1	Requests that the the job start after job (jobid1) has finished successfully

PBS script command	Description
#SBATCHaccount=acc_name	To submit a job to a specific accounting group such as RAC/RAS allocation or different role
#SBATCHtmp=200G	Asks for 200Gb of temporary disk space
#SBATCHconstraint=blue	To ask for a node feature or constraint set by cluster admin. Here we are looking for "blue" nodes.
#SBATCH partition=partition_name	To ask for the job to run in a specific partition or queue by name, (unlike Moab there can be more than 1 partition per Job)
prolog= <executable></executable>	Run by srun only, runs the executable before the step
epilog= <executable></executable>	Run by srun only, runs the executable after the step finishes

SLURM Environment Variables

Environment Variable	Description
SLURM_JOB_NAME	User specified job name
SLURM_JOB_ID	Unique slurm job id
SLURM_NNODES	Number of nodes allocated to the job
SLURM_NTASKS	Number of tasks allocated to the job
SLURM_ARRAY_TASK_ID	Array index for this job
SLURM_ARRAY_TASK_MAX	Total number of array indexes for this job
SLURM_MEM_PER_CPU	Memory allocated per CPU
SLURM_JOB_NODELIST	List of nodes on which resources are allocated to Job
SLURM_JOB_CPUS_PER_NODE	Number of CPUs allocated per Node
SLURM_JOB_PARTITION	List of Partition(s) that the job is in.
SLURM_JOB_ACCOUNT	Account under which this job is run.

Getting information on your Job

Command	What its used for
squeue -u <username></username>	List all current jobs for a user
squeue -u <username> -t PENDING</username>	List all pending jobs for a user
squeue -u <username> -t RUNNING</username>	List all running jobs for a user
squeue -p <partitionname></partitionname>	List all the jobs in a partition
scontrol show job <jobid></jobid>	List information on Job
scontrol show jobid -dd <jobid></jobid>	List detailed information on Job
sstat format=AveCPU,MaxRSS,MaxVMSize,Job ID -j <jobid></jobid>	List info resource used by your completed job : average cpu time, Max memory, Max virtual memory, JobId
sacct –u <username> format=JobID,JobName,AveCPU,MaxRSS, MaxVMSize,JobID,Elapsed</username>	List resources used by all jobs of a user
sprio	List job priority information

Controlling jobs

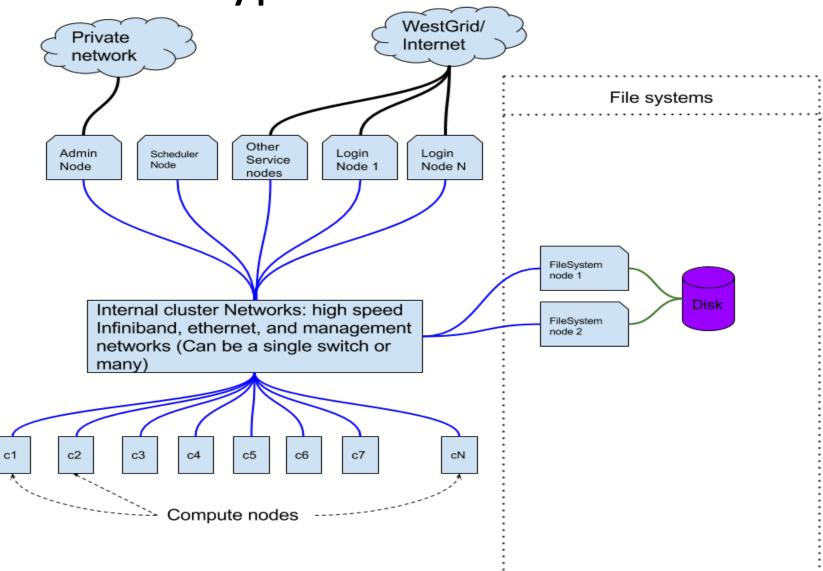
Command	What its used for
scancel <jobid></jobid>	Cancel job
scancel -u <username></username>	Cancel all the jobs for a user
scancel -t PENDING -u <username></username>	Cancel all the pending jobs for a user:
Scancel -name JobName	Cancel one or more jobs by name
scontrol hold <jobid></jobid>	Hold a job, prevent it form starting
scontrol resume <jobid></jobid>	Release a job hold, allowing the job to try to start
scontrol requeue <jobid></jobid>	Requeue a running, suspended or finished job into pending state
scontrol requeuehold <jobid></jobid>	First requeue the job than put a hold on it.
squeue -u <username> -ho %A -t R</username>	List running jobs by user
squeuestart	Show expected start time of jobs. (This can change)

Getting information on you and your group

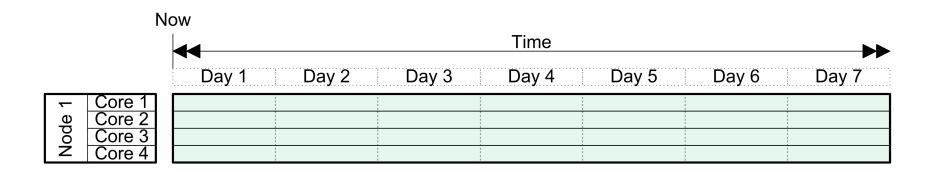
Command W	Vhat its used for
sacctmgr list Users Li USERS= <username></username>	ist user and their default account (accounting group)
6	ist user and their default account (accounting group) nd shows more extensive information
sshare S	hows usage info for user.

Getting information on your Cluster

Command	What its used for
sinfostates=idle	Show idle node on cluster
sinfo -R	Show down, drained and draining nodes and their reason
sinfoNodelong	Show detailed node info.
scontrol show reservation	Shows reservations on the cluster
<pre>scontrol create reservation user=root starttime=now duration=infinite flags=maint nodes=<nodeid></nodeid></pre>	

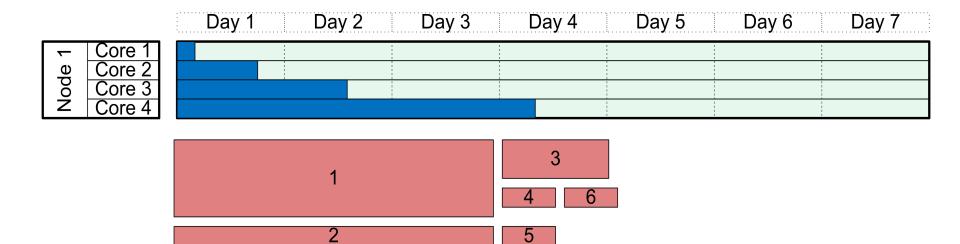

Administrating your Cluster

Command	What its used for
scontrol create reservation user=root starttime=now duration=infinite flags=maint nodes= <nodeid></nodeid>	Create a maintaince reservation on node nodeid
<pre>sacctmgr modify account where name=def-<account> set rawusage=0</account></pre>	Zero account usage fairshare stats
<pre>sacctmgr modify user where account=def- <account> name=<uname> set RawUsage=0</uname></account></pre>	Zero user usage fairshare stats


Material bellow will not be in the presentation unless diagram is needed to answer a question.

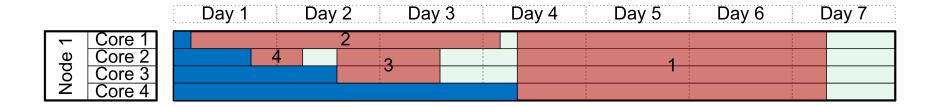
OTHER REFERENCE MATERIAL BELLOW

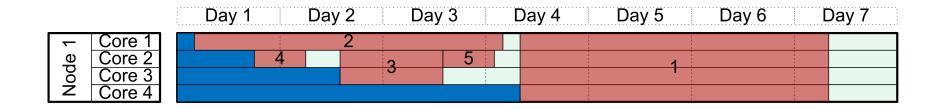
Typical HPC Cluster



Visualizing single node cluster

Running jobs

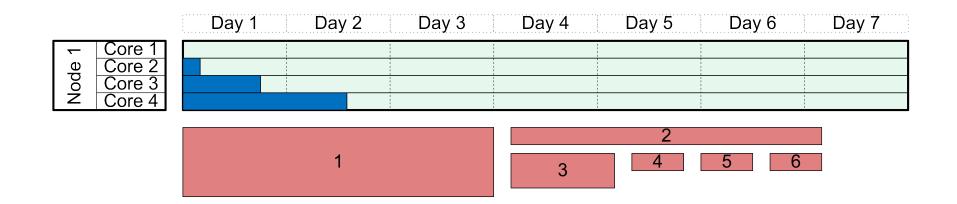

	Day 1		Day 2	Day 3		Day 4		Day 5		Day 6		Day 7
- Core 1		:			1		:		1 1 1		1	
<u> </u>												
8 Core 3												
Z Core 4							:		1			

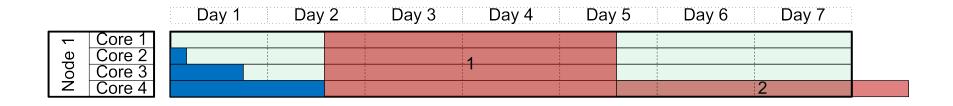


		Day 1	Day 2		Day 3	 Day 4		Day 5	Day 6	Day 7
—	Core 1								1 1 1 1 1	
ode	Core 2			-				1		
I X	Core 3			-						
Z	Core 4						-			

	-	Day 1	 Day 2	 Day 3	 Day 4	Day 5	Day 6	Day 7
Core 1			2					
<u>v</u> Core 2						1		
8 Core 3						1		
Z Core 4								

	Day 1		Day 2		Day 3	 Day 4	Day 5	Day 6	Day 7
Core 1			2						
<u>v</u> Core 2				2			1		
8 Core 3		·		<u> </u>					
Z Core 4									

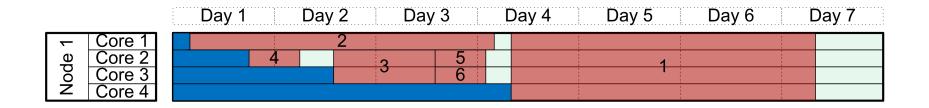



	Day 1		Day 2		Day 3	ן	Day 4		Day 5	Day 6	Day 7
Core 1		-	2					-			
Ocre 2		4		2	5				1		
8 Core 3				3	6				I		
Z Core 4											

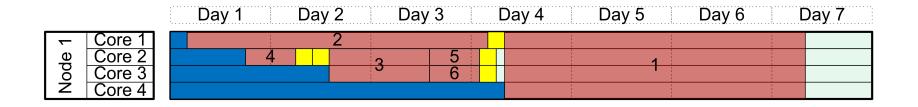
A Job finishes early

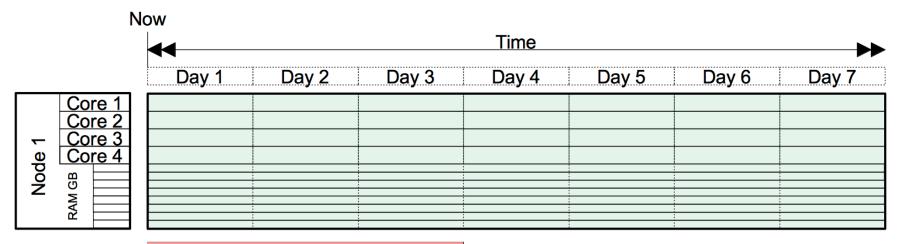
		 Day 1		Day 2		Day 3	Ľ	Day 4		Day 5	Day 6	Day 7
	Core 1		-	2	1							
<u>e</u>	Core 2		4		2	5	•			1		
ode	Core 3		·		<u> </u>	6						
Z	Core 4								-			

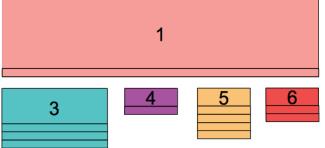
	Day 1	 Day 2	 Day 3		Day 4	Day 5	Day 6	Day 7
Core 1 a Core 2 Core 3 Core 4				1				

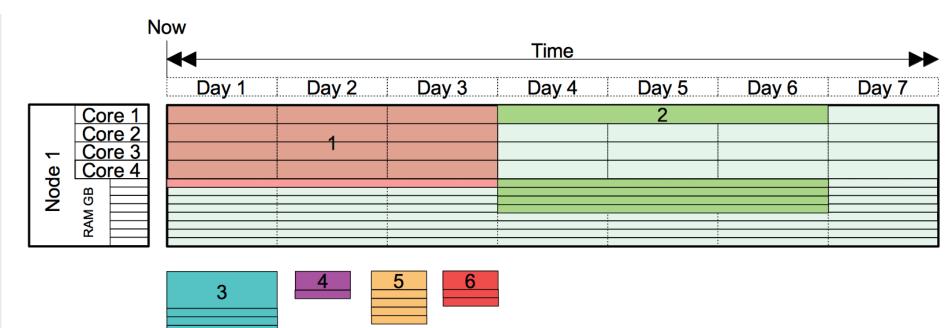

			Day 1	Day 2		Day 3	Day 4	Da	ay 5	Day 6	Day 7	
	Core 1	Г	2		÷			:				
e e	Core 2		3			1						
8	Core 3							1				
Z	Core 4							-		2		

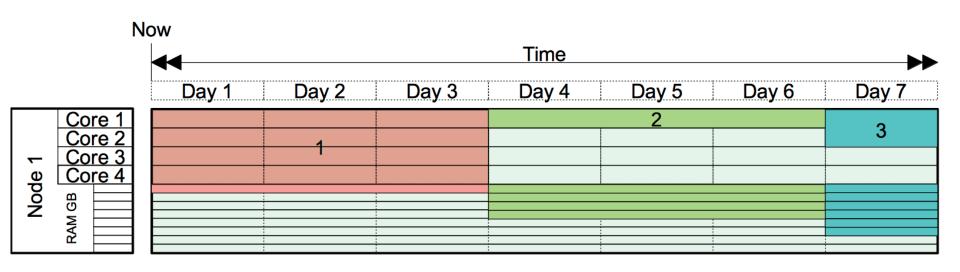
		Day 1		Day 2	Day 3		Day 4	 Day 5	 Day 6	Day 7	
	Core 1	2				:					
de	Core 2	3				1					
8	Core 3		4								
Z	Core 4					:				2	

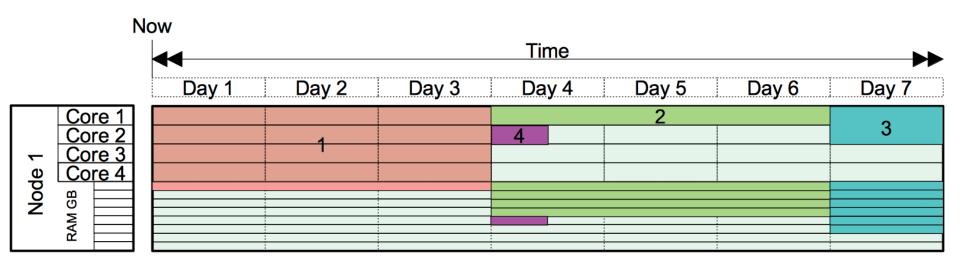

	Day 1		Day 2	Day 3	Day 4		Day 5	Day 6	Day 7	
← Core 1	2					-				1
e Core 2	3				1				- 	
<u>8</u> Core 3		4					5			
Z Core 4									2	


		Day 1	Ľ)ay 2	Day 3		Day 4		Day 5	Day 6 D	ay 7
Core 1	Г	2	: : :								
<u> <u> </u> <u> </u> Core 2 </u>		3				1			6		
8 Core 3		4	4						5		
Z Core 4								ł		2	

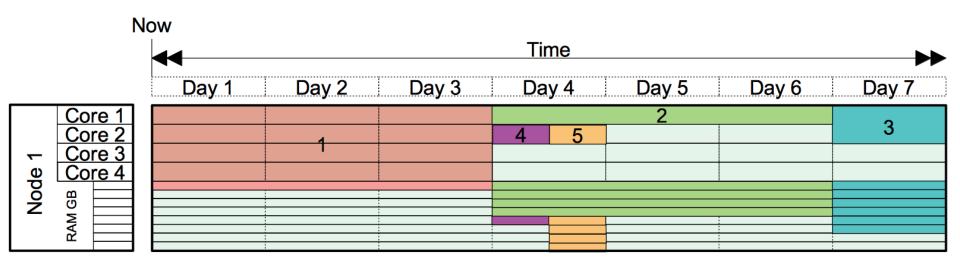

Single node cluster

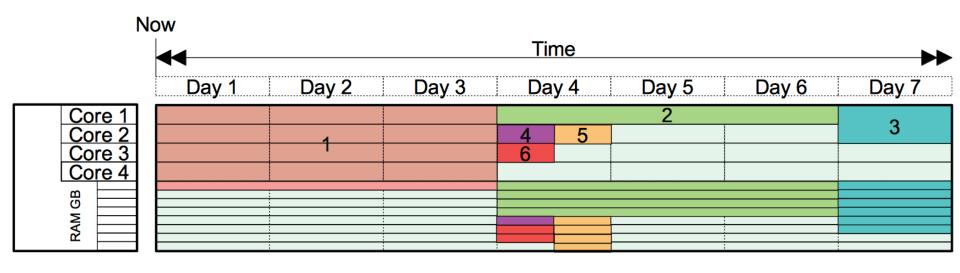

Short serial jobs and Backfill

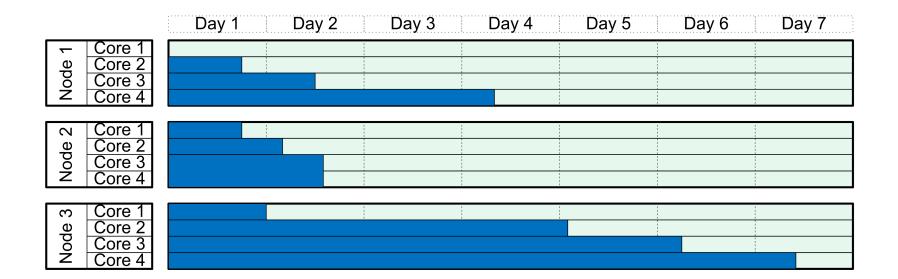


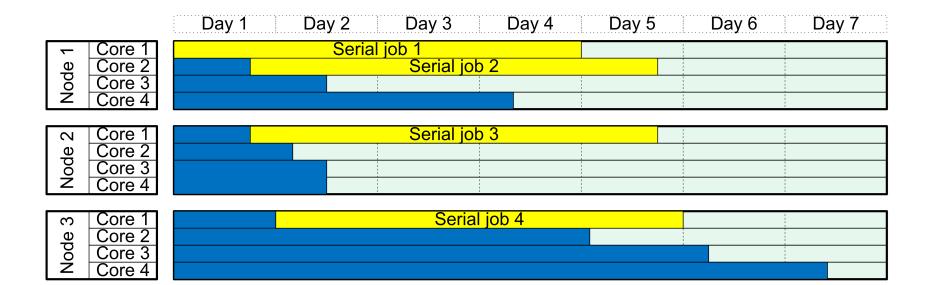


2

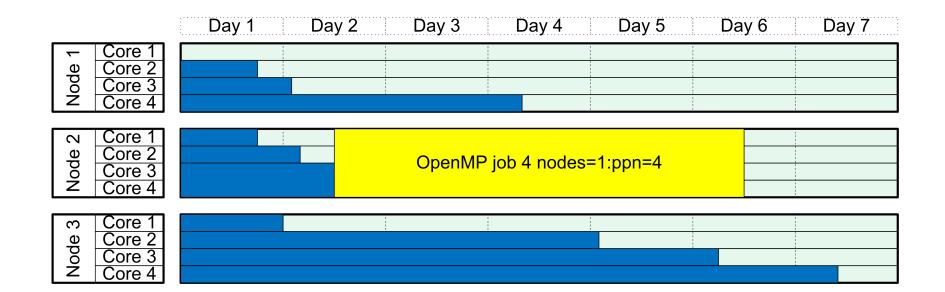








Visualizing Multinode cluster


Many Serial Jobs

MPI job

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
← Core 1 ⊕ Core 2			MPI Job MPI Job	part 1 of 4 part 2 of 4			
NCore 1⊕Core 2OCore 3ZCore 4			MPI Job	part 3 of 4			
ෆ Core 1 භ Core 2 o Core 3 Z Core 4			MPI Job	part 4 of 4			

Single node muti-core job (OpenMP, Gaussian, Threads)

Hybrid Job

	Day 1 Day	2 Day 3	Day 4 Day 5	Day 6	Day 7
← Core 1 ⊕ Core 2		Hybrid Job nodes=	2:ppn=2 part 1 of 2		
thetaCore 2Core 3Core 3ZCore 4					
へ Core 1 _0 Core 2		Hybrid Job nodes=	2:ppn=2 part 2 of 2		
b Core 2OCore 3ZCore 4					
က Core 1 စ္ Core 2					

Maximum job walltime partition limit

- A high maximum walltime is not necessary a good thing, clusters that allow high walltime jobs take longer for jobs to start to run, and are less "fair".
- There are advantages to running shorter jobs, such as how quickly your job can be started.
- The longer and larger a job is the greater the chances of experiencing hardware failure, minimize this through check pointing.
- Part of the resources of a cluster is dedicated for shorter jobs.
- Part of CC clusters are dedicated to whole node parallel jobs, other jobs with a short walltime of under 12 hours can run in this part at a reduced priority compared to whole node parallel jobs.

Partition name	Maximum walltime
*_b1	3 hours
*_b2	12 hours
*_b3	1 day
*_b4	3 days
*_b4	7 days
*_b6	28 days

Fairshare Fairshare Interval 35 30 airshare Usage **Fairshare Decay** 25 20 15 10 Past Present 6 5 3 2 0 Effective Fairshare Fairshare Depth = 7

 Fair share usage is weighted by when the usage occurred recent usage is more important then usage at the end of the period

Group's Status: "sshare -l"

[kamil@cedar5	workshop_tes	st]\$ ss	hare -l	egrep "(#	Account ^root no	_rac_ ras_b	cc-debug kami	1_)"	
	Account	User	RawShares	NormShares	RawUsage N	ormUsage <mark>E</mark>	ffectvUsage F	airShare	LevelFS
root				0.000000	639083114320110		1.00000	0	
no_rac_cpu			1320	0.043194	404703982221822	0.63325	0.63325	7	0.068209
ras_basic_c	:pu		1320	0.999243	404703982221822	0.63325	7 1.00000	0	0.999243
cc-debug_c	:pu		1	0.000236	1273287234	0.000002	0.00003		75.104409
cc-debug_	_cpu	kamil	1	0.004386	Θ	0.000000	0.000000	0.026537	inf
def-kamil_	_cpu		1	0.000236	Θ	0.00000	0.000000		inf
def-kamil	_cpu	kamil	1	1.000000	Θ	0.000000	0.000000	0.486678	inf
no_rac_gpu			65	0.002127	6883285083841	0.010771	0.010771		0.197479
ras_basic_g	gpu		65	0.984848	6883285083841	0.010771	1.000000		0.984848
cc-debug_g	gpu		1	0.000236	12668	0.00000	0.000000		128389.386733
cc-debug_	_gpu	kamil	1	0.004386	Θ	0.000000	0.000000	0.508693	inf
def-kamil_	_gpu		1	0.000236	Θ	0.000000	0.000000		inf
def-kamil	_gpu	kamil	1	1.000000	Θ	0.000000	0.000000	0.973463	inf

Jobs by partition squeue -p <partitionname>

е

JOBID F	PARTITION	NAME
535639	cpubase_b	AE17631.
591830	cpubase_b	bz.sh
615762	cpubase_b	AE21380.
401219	cpubase_b	CTD095.s
491576	cpubase_b	gen3x1s8
535638	cpubase_b	AE17594.
491574	cpubase_b	gen3x1s6
491575	cpubase_b	gen3x1s7

USER S	ST	TIME	NODES	NODELIST(F
kamil	PD	0:00		(Resource
rming	PD	0:00	1	(Resource
kamil	PD	0:00	1	(Resource
john	PD	0:00	1	(Resource
judy	R	2-08:04:59	1	cdr747
kamil	R	1-11:46:03	1	cdr101
masao	R	4-20:06:44	1	cdr79
masao	R	4-20:06:44	1	cdr85

Priority sprio

JOBID	PRIORITY	AGE	FAIRSHARE	PARTITION	TRES
130976	7088	2500	0	625	cpu=2526,mem=1437
167003	6150	2500	0	1250	cpu=2008,mem=392
195802	4996086	2500	4991771	833	cpu=469,mem=45,gres/
195809	4996086	2500	4991771	833	cpu=469,mem=45,gres/
195810	4996086	2500	4991771	833	cpu=469,mem=45,gres/
205281	8206	2500	0	625	cpu=1875,mem=1800,gr
205290	6408	2500	0	625	cpu=1875,mem=2,gres/
544814	23534	1741	21571	208	cpu=13,mem=2
544815	23534	1741	21571	208	cpu=13,mem=2
617580	24194	373	22768	1042	cpu=10,mem=2
617581	24194	373	22768	1042	cpu=10,mem=2