
1) Serial	Job	-	basics	
a) Submit	a	serial	job	that:		

i) Is	a	serial	(1	core)	job		
ii) Emails	you	when	is	starts,	ends	and	aborts	
iii) Has	a	maximum	wall	time	of	2	minutes	
iv) Runs	the	‘hostname’	command	

b) Make	a	note	of	the	jobid	when	your	job	is	submitted	
c) Watch	your	job	run	with	the	following	command:		

i) “squeue	-u	$USER”	
d) Did	you	get	the	result	emailed	to	your	account	
e) Display	the	job	output	file.	
f) Examine	the	emails	you	have	received.	
	

2) Serial	Job	-	output	
a) Submit	a	serial	job	that:		

i) As	in	the	previous	question	
• Is	a	serial	(1	core)	job		
• Emails	you	when	is	starts,	ends	and	aborts	
• Has	a	maximum	wall	time	of	2	minutes	
• Runs	the	‘hostname’	command	

ii) Writes	the	standard	output	and	standard	error	into	separate	files.	
b) Make	a	note	of	the	jobid	when	your	job	is	submitted	
c) Watch	your	job	run	with	the	following	command:		

i) “squeue	-u	$USER”	
ii) 	“scontrol	show	job	<jobid>”	

d) Did	you	get	the	result	emailed	to	your	account	
e) Display	the	job	output	file.	
f) Examine	the	emails	you	have	received.	
	

3) Serial	Job	-	error	
a) Submit	a	serial	job	that:	

i) As	in	the	previous	question	
• Is	a	serial	(1	core)	job		
• Emails	you	when	is	starts,	ends	and	aborts	
• Has	a	maximum	wall	time	of	2	minutes	
• Runs	the	‘hostname’	command	
• Writes	the	standard	output	and	standard	error	into	separate	files.	

ii) Runs	the	non	existent	command	‘hello’	
b) Make	a	note	of	the	jobid	when	your	job	is	submitted	
c) Watch	your	job	run	with	the	following	command:		

i) “squeue	-u	$USER”	
ii) “sscontrol	show	job	<jobid>””	

d) Did	you	get	the	result	emailed	to	your	account	
e) Display	the	job	output	and	error	files.		
f) Examine	the	emails	you	have	received.	

	 	

	
4) Serial	Job	-	Walltime	

a) Submit	a	serial	job	that:	
i) As	in	question	2	

• Is	a	serial	(1	core)	job		
• Emails	you	when	is	starts,	ends	and	aborts	
• Has	a	maximum	wall	time	of	2	minutes	
• Runs	the	‘hostname’	command	
• Writes	the	standard	output	and	standard	error	into	separate	files.	

ii) Sleeps	for	200	seconds		
b) Think	about	what	will	you	think	happen	when	this	jobs	runs?	

i) “squeue	-u	$USER”	
ii) The	job	output	and	error	files.	
iii) The	emails.	

c) Make	a	note	of	the	jobid	when	your	job	is	submitted	
d) Watch	your	job	run	with	the	following	command:		

i) “squeue	-u	$USER”	
ii) 	“scontrol	show	job	<jobid>”	

e) Did	you	get	the	result	emailed	to	your	account	
f) Examine	the	emails	you	have	received.	
g) Display	the	job	output	and	error	files.		

	
	

5) Serial	Job	–	Job	names	
a) Submit	a	serial	job	that:		

i) As	in	question	2	
• Is	a	serial	(1	core)	job		
• Emails	you	when	is	starts,	ends	and	aborts	
• Has	a	maximum	wall	time	of	2	minutes	
• Runs	the	‘hostname’	command	
• Writes	the	standard	output	and	standard	error	into	separate	files.	

ii) Sleeps	for	30	seconds		
iii) Is	named	“my-named-job”	

	
b) Look	at	your	job	in	the	output	of	the	following	commands		

i) “squeue	-u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
c) Look	at	the	following	job	outputs:	

i) The	job	output	and	error	files.	
ii) The	emails	

	
	
	
	 	

6) Interactive	serial	Job	
a) Open	a	second	ssh	session/terminal	to	the	workshop	cluster	

	
b) In	the	second	ssh	session	submit	a	job	that:	

i) Is	a	serial	(1	core)	job	
ii) Has	a	maximum	wall	time	of	20	minutes	
iii) Emails	you	when	the	job	is	aborted,	before	it	runs	and	a	after	it	ends	
iv) Is	named	“my-first-interactive-job”		
v) Is	interactive	

	
c) Wait	for	the	job	to	be	allocated	after	it	is	allocated	answer	the	following	

questions	
i) Look	at	the	command	line	you	are	on.	
ii) Which	node	are	you	on?	

Hint:	“hostname”	
iii) Print	and	look	at	all	the	slurm	variables.	

Hint:	“printenv	|	grep	SLURM”	
iv) Find	out	on	which	node	is	your	job	allocated.	

Hint:	“echo	$SLURM_NODELIST”	
v) What	is	the	jobs	name?	

Hint:	“echo	$SLURM_JOB_NAME”	
vi) In	which	directory	are	you?		

Hint:	“pwd”	command	
vii) Which	directory	has	the	job	been	submitted	from?	

Hint:	“echo	$SLURM_SUBMIT_DIR”	
viii) 	What	is	the	path	to	executable	for	this	job?	

Hint:	“echo	$PATH”	
	

d) Open	a	shell	on	the	inside	of	the	job	running	in	the	allocated	resources.	
Hint:	“srun	--pty	-p	interact	bash”	

	 	

	
	

e) Answer	these	basic	questions		
i) Look	at	the	command	line	you	are	on.	
ii) Which	node	are	you	on?	

Hint:	“hostname”	
iii) Print	and	look	at	all	the	slurm	variables.	

Hint:	“printenv	|	grep	SLURM”	
iv) Find	out	on	which	node	is	your	job	allocated.	

Hint:	“echo	$SLURM_NODELIST”	
v) What	is	the	jobs	name?	

Hint:	“echo	$SLURM_JOB_NAME”	
vi) In	which	directory	are	you?		

Hint:	“pwd”	command	
vii) Which	directory	has	the	job	been	submitted	from?	

Hint:	“echo	$SLURM_SUBMIT_DIR”	
viii) 	What	is	the	path	to	executable	for	this	job?	

Hint:	“echo	$PATH”	
	

f) From	your	first	terminal	on	the	login	node	look	at	your	job	in	the	output	of	
the	following	commands:	
i) “squeue	-u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
g) Go	back	to	your	second	terminal	session	

	 	

h) The	current	interactive	job	only	uses	1	process,	on	1	core,	inside	1	task,	
inside	1	step,	and	does	not	use	arrays	but	for	future	comparison	with	other	
more	complex	job	types	run	the	following	commands	and	write	down	the	
results	
i) Give	a	list	of	node	names	where	each	process	(there	is	only	one	in	this	

case)	of	this	job	runs?		
Hint:	“echo	$SLURM_JOB_NODELIST”	

ii) On	how	many	nodes	(there	is	only	one	in	this	case)	does	this	job	run?	
Hint:	“echo	$SLURM_JOB_NUM_NODES”	
Hint:	“echo	$SLURM_NNODES”	

iii) What	is	the	total	number	of	tasks	in	this	allocation	
Hint:	“echo	$SLURM_NTASKS”	
Hint:	“echo	$SLURM_NPROCS”	

iv) What	is	the	number	of	tasks	per	node	(listed	by	node)	
Hint:	“echo	$SLURM_TASKS_PER_NODE”	

v) How	many	steps	are	in	this	job	
Hint:	“echo	$SLURM_STEP_NUM_TASKS”	

vi) What	is	the	ID	of	the	current	step	
Hint:	“echo	$SLURM_	SLURM_STEPID”	

vii) What	is	the	array	ID	of	this	job?		
Hint:	“echo	$SLURM_ARRAY_TASK_ID”	
Answer:	In	this	case	there	is	none.	
	

	 	

	
i) Optional	for	advanced	Unix	users:	In	the	interactive	job		

i) (Advanced	Unix)		List	the	jobs	cpuset/cgroup.	A	cpuset	or	cgroup	is	used	
to	assigning	a	set	of	processor	and	memory	to	a	set	of	processes,	and	can	
be	used	by	the	scheduling	system	to	keep	a	job	from	using	resources	
assigned	to	other	jobs.		
Hint:	“ls	

/sys/fs/cgroup/cpuset/slurm/uid_$SLURM_JOB_UID/job_$SLURM_JOB_ID/step_
$SLURM_STEPID”	

ii) (Advanced	Unix)			Verify	that	your	current	shell’s	process	id	is	inside	the	
cpuset.		
Hint:	“echo	$$”	to	find	the	process	id	of		your	current	shell	
Hint:	“cat	

/sys/fs/cgroup/cpuset/slurm/uid_$SLURM_JOB_UID/job_$SLURM_JOB_ID/s
tep_$SLURM_STEPID/tasks”		

to	list	processes	in	the	jobs	cpuset.		
iii) (Advanced	Unix)	Show	which	cores	and	which	memory	set	that	your	job	

is	running	on?		
Hint:	“cat	
/sys/fs/cgroup/cpuset/slurm/uid_$SLURM_JOB_UID/job_$SLURM_JOB_I
D/step_$SLURM_STEPID/cpuset.cpus”		

				for	core	numbers	that	the	job	processes	are	running	on.	
Hint:	“cat	
/sys/fs/cgroup/cpuset/slurm/uid_$SLURM_JOB_UID/job_$SLURM_JOB_I
D/step_$SLURM_STEPID/	cpuset.mems”		

				for	memory	locatio(s)	that	the	job	memory	may	run	on		
		

	
j) Close	the	interactive	shell	by	running	the	exit	command	

	
k) Open	a	shell	on	the	inside	of	the	job	running	in	the	allocated	resources.	

Hint:	“srun	--pty	-p	interact	bash”	
	

l) What	is	the	ID	of	the	current	step	
Hint:	“echo	$SLURM_	SLURM_STEPID”	
	

m) Close	the	interactive	shell	by	running	the	exit	command	
n) Close	your	allocated	job	by	running	the	exit	command	

	
	
	

	 	

	
	

7) Job	Arrays		
a) Submit	a	serial	job	array	that:		

i) Has	a	maximum	wall	time	of	2	minutes	
ii) Sleeps	30	seconds	
iii) Runs	the	command	“hostname”	
iv) Is	named	“my-array-job”	
v) Has	12	tasks	
vi) Writes	a	output	file	to		“slurm-q7_<jobid>_<arrayid>.out	
vii) 	Writes	a	error	file	to		“slurm-q7_<jobid>_<arrayid>.err	

	

b) Run	the	following	commands	to	see	your	job	running	
i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
c) Look	at	the	job	output	files	

	
8) Job	Arrays		

a) Submit	a	serial	job	array		
i) Has	a	maximum	wall	time	of	2	minutes	
ii) Sleeps	30	seconds	
iii) Runs	the	command	“hostname”	
iv) Is	named	“my-array-job2”	
v) Has	12	tasks	
vi) Writes	a	output	file	to		“slurm-q7_<jobid>_<arrayid>.out	
vii) 	Writes	a	error	file	to		“slurm-q7_<jobid>_<arrayid>.err	
viii) Runs	at	most	2	jobs	at	once	

	
b) Run	the	following	commands	to	see	your	job	running	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
c) Look	at	the	job	output	files	

	
	 	

9) Job	Arrays		
a) Submit	a	serial	job	array		

i) 		 Has	a	maximum	wall	time	of	2	minutes	
ii) 		 Sleeps	30	seconds	
iii) 		 Runs	the	command	“hostname”	
iv) 			 Is	named	“my-array-job3”	
v) 		 Has	4	tasks	with	indexes	of:	1,	2,	7,	-13	
vi) 		 Writes	a	output	file	to		“slurm-q9_<jobid>_<arrayid>.out	
vii) 		 Writes	a	error	file	to		“slurm-q9_<jobid>_<arrayid>.err	
viii) Runs	at	most	2	jobs	at	once	

	
b) Run	the	following	commands	to	see	your	job	running	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
c) Look	at	the	job	output	files	

	 	

10) Job	arrays		
a) Submit	a	job	that:	

i) Has	2	tasks	with	indexes	of:	1,	4	
ii) Asks	for	1	core	per	task	
iii) Has	a	maximum	wall	time	of	2	minutes	
iv) Emails	you	when	the	job	is	aborted,	before	it	runs	and	a	after	it	ends	
v) Is	named	“my-array-var-job”	

b) Look	at	the	PBS	environment	variables:	
i) Give	a	list	of	node	names	where	each	process	of	this	job	runs?		

Hint:	“echo	$SLURM_JOB_NODELIST”	
ii) On	how	many	nodes	(there	is	only	one	in	this	case)	does	this	job	run?		

Hint:	“echo	$SLURM_JOB_NUM_NODES”	
Hint:	“echo	$SLURM_NNODES”	

iii) What	is	the	total	number	of	tasks	in	this	allocation.?		
Hint:	“echo	$SLURM_NTASKS”	
Hint:	“echo	$SLURM_NPROCS	

iv) What	is	the	number	of	tasks	per	node	(listed	by	node)?	
	Hint:	“echo	$SLURM_TASKS_PER_NODE”	

v) How	many	steps	are	in	this	job?	
Hint:	“echo	$SLURM_STEP_NUM_TASKS”	

vi) What	is	the	task	id	in	the	array	of	this	job?		
Hint:	“echo	$SLURM_ARRAY_TASK_ID”	

vii) Prints	all	the	SLURM	variables	
Hint:	“printenv	|	grep	SLURM”	
	

c) Run	the	following	commands	to	see	your	job	running	
i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

	
d) Look	at	the	job	output	files	

	 	

11) 	Array	job	with	inputs	example		
Working	example	of	an	array	job	taking	input	from	a	file	(This	is	advanced	
example,	It	was	included	as	a	request	from	a	prior	workshop,	we	may	not	have	
time	to	write	this	in	the	session,	in	that	case	just	look	at	and	run	the	answer	
script.)	
a) Submit	a	serial	job	array	that	reads	from	a	single	file	and	runs	a	job	for	each	

line	in	the	input	file.	
i) Is	named	“my-input-array-job”	
ii) Has	4	tasks	with	1	procs	each.	
iii) Emails	you	when	your	job	is	complete.	
iv) The	file	that	is	used	as	input	is	named:	“input.array”	

b) Have	each	job	array	output	double	the	first	number	and	adding	the	second.	
c) Run	the	job	and	see	the	output	
d) As	advanced	work	if	time	permits	see	if	you	can	output	in	a	single	file	as	

opposed	to	many	array	files.	
	

12) MPI	Jobs		
a) Submit	the	start-mpi.sh		job	
b) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”		
ii) “scontrol	show	job	<jobid>”	
iii) “scontrol	show	jobid	-dd	<jobid>”	

c) Note	how	long	it	took	to	run	
d) Edit	the	start-mpi.sh		script	to	user	4	processors	
e) Submit	the	edited	script	
f) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”		
ii) “scontrol	show	job	<jobid>”	
iii) “scontrol	show	jobid	-dd	<jobid>”	

g) Please	list	which	nodes	and	cores	the	job	is	running	on	or	scheduled	to	run	
on	and	how	long	it	took	to	run.	

	 	

	
13) 	MPI	Interactive	Job			

a) Submit	a	job	
i) Asks	4	processors	
ii) Has	a	walltime	of	20	minutes	
iii) Is	named	“my-interactive-mpijob”	
iv) Is	interactive	

b) After	the	job	starts	look	at	the	SLURM	environment	variables	
(run:	“printenv	|	grep	-i	slurm”)	

i) What	is	the	jobs	id?	
Hint:	“echo	$SLURM_JOB_ID”	

ii) On	how	many	nodes	does	this	job	run?		
Hint:	“echo	$SLURM_NNODES”	

iii) On	how	many	processors	does	this	job	run?		
Hint:	“echo	$SLURM_NPROCS”	

iv) On	which	node(s)	is	your	job	allocated?	
	Hint:	“echo	$SLURM_JOB_NODELIST”	

v) On	how	many	processors	per	node	is	the	job	allocated?		
Hint:	“echo	$SLURM_JOB_CPUS_PER_NODE”	

vi) On	how	many	tasks	per	node	is	the	job	allocated?		
Hint:	“echo	$SLURM_TASKS_PER_NODE”	

	
c) Run	the	command	“srun	hostname	”		

i) How	many	lines	of	output	do	you	get.		
d) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

e) Exit	your	job	with	the	exit	command	
	 	

	
14) 	MPI	Interactive	Jobs	part2		

a) Submit	a	job	
i) Asks	for	4	processors	on	a	single	node	
ii) Has	a	walltime	of	20	minutes	
iii) Is	named	“my-interactive-mpijob2”	
iv) Is	interactive	

b) After	the	job	starts	look	at	the	SLURM	environment	variables	
i) (run:	“printenv	|	grep	-i	slurm”)	
ii) What	is	the	jobs	id?	

Hint:	“echo	$SLURM_JOB_ID”	
iii) On	how	many	nodes	does	this	job	run?		

Hint:	“echo	$SLURM_NNODES”	
iv) On	how	many	processors	does	this	job	run?		

Hint:	“echo	$SLURM_NPROCS”	
v) On	which	node(s)	is	your	job	allocated?	

Hint:	“echo	$SLURM_JOB_NODELIST”	
vi) On	how	many	processors	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_JOB_CPUS_PER_NODE”	
vii) On	how	many	tasks	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_TASKS_PER_NODE”	
c) Run	the	command	“srun	hostname	”	

i) How	many	lines	of	output	do	you	get.		
d) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

e) Exit	your	job	with	the	exit	command	
	 	

	
15) OpenMP	jobs	

a) Submit	a	job		
i) Asking	for	1	node	with	12	cores	
ii) Has	a	maximum	walltime	of	20	minutes	
iii) Is	named	“my-interactive-openmpjob”	
iv) Is	interactive	

b) After	the	job	starts	look	at	the	SLURM	environment	variables	
(run:	“printenv	|	grep	-i	slurm”)	
i)	 What	is	the	jobs	id?	

Hint:	“echo	$SLURM_JOB_ID”	
ii)	 On	how	many	nodes	does	this	job	run?		

Hint:	“echo	$SLURM_NNODES”	
iii)	 On	how	many	processors	does	this	job	run?		

Hint:	“echo	$SLURM_NPROCS”	
iv)	 On	which	node(s)	is	your	job	allocated?	

	Hint:	“echo	$SLURM_JOB_NODELIST”	
v)	 On	how	many	processors	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_JOB_CPUS_PER_NODE”	
vi)	 On	how	many	tasks	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_TASKS_PER_NODE”	
c) Run	the	command	“srun	hostname	”	

i) How	many	lines	of	output	do	you	get.	
d) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

e) Exit	your	job	with	the	exit	command	
	

	 	

	
16) Hybrid	Interactive	Jobs	

a) Submit	a	job		that:	
i) Asking	for	3	nodes	with	2	task	per	node	and	5	cores	per	task.	
ii) Is	named	“my-interactive-hybridjob”	
iii) Has	a	maximum	walltime	of	20	minutes	

b) After	the	job	starts	look	at	the	SLURM	environment	variables	
(run:	“printenv	|	grep	-i	slurm”)	
i)	 What	is	the	jobs	id?	

Hint:	“echo	$SLURM_JOB_ID”	
ii)	 On	how	many	nodes	does	this	job	run?		

Hint:	“echo	$SLURM_NNODES”	
iii)	 On	how	many	processors	does	this	job	run?		

Hint:	“echo	$SLURM_NPROCS”	
iv)	 On	which	node(s)	is	your	job	allocated?	

	Hint:	“echo	$SLURM_JOB_NODELIST”	
v)	 On	how	many	processors	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_JOB_CPUS_PER_NODE”	
vi)	 On	how	many	tasks	per	node	is	the	job	allocated?		

Hint:	“echo	$SLURM_TASKS_PER_NODE”	
c) Run	the	command	“srun	hostname	”	

i) How	many	lines	of	output	do	you	get.	
d) Look	at	the	job	with	the	following	commands:	

i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

e) Please	list	which	nodes	and	cores	the	job	is	running	on	or	scheduled	to	run	
on.	

f) Exit	your	job	with	the	exit	command	
	

17) 	Jobs	and	memory		
a) Take	the	start-mem.pbs		script	and	edit	it	so	that	is	asks	for:		

--mem-per-cpu=12000	
b) Submit	a	job		from	the	script	you	edited	.	Look	at	the	job	with	the	following	

commands:	
i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

c) How	much	memory	does	this	job	use?	
	

18) Jobs	and	memory		
a) Take	the	start-mem.pbs		script	and	edit	it	so	that	is	asks	for:	--mem=12000	
b) Submit	a	job		from	the	script	you	edited	.	Look	at	the	job	with	the	following	

commands:	
i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

c) How	much	memory	does	this	job	use?	

19) Jobs	and	memory	(mem,pmem)	
a) Take	the	start-mem.pbs		script	and	edit	it	so	that	is	asks	for:		

--mem-per-cpu	=3000mb	
b) Submit	a	job		from	the	script	you	edited	.	Look	at	the	job	with	the	following	

commands:	
i) “squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	

c) How	much	memory	does	this	job	use?	
	

20) 	Jobs	and	memory		(appropriate	resources)	
a) Create	a	job	run	the	“cryptic”	program	edit	the	start-mem2.pbs	script	

i) Make	sure	your	job	emails	you	when	is	starts,	ends	and	aborts	
ii) Make	a	guess	and	for	enough	RAM	to	run	the	program		

b) Submit	your	edited	Job	script	,	look	at	your	running	Job	with	the	following	
commands,	look	at	the	,memory	used	by	your	job	
i) 	“squeue	–u	$USER”	
ii) “scontrol	show	job	<jobid>”	
iii) Did	your	job	run	successfully?	Or	fail	because	of	a	lack	of	memory?		
iv) If	your	job	failed	due	to	a	lack	of	memory,	increase	the	maximum	memory	

requested	and	resubmit	your	job,	and	go	back	to	point	b)	
c) Look	at	the	email	reporting	on	your	job	success,	how	much	resources	were	

reported	used.	Compare	the	memory	used	to	the	reported	memory	in	point	
c).	

d) Edit	job	script	and	request	an	appropriate	amount	of	memory	to	run	the	Job	.	
e) Submit	your	new	job	
f) Verify	that	the	jobs	runs	successfully.	

	
21) 	GPUs		

a) Submit	a	job	asking	for:	
i) 1	gpu	
ii) 1	cpu	
iii) Has	a	maximum	wall	time	of	10	minutes	
iv) Sleeps	500	seconds	

b) Runs	the	command	scontrol	

22) Software	licenses	and	generic	resources		
*	Currently	not	implemented	on	the	cluster	

a) Submit	a	job	asking	for	that	asks	for		
i) 2	cpus	
ii) 2	sas	licenses	

b) Try	to	see	resources	used	by	your	job,	use	the	scontrol	command:	

	 	

	
23) Full	nodes	

a) Submit	a	job	asking	for	that	asks	for:	

i) 4	tasks	
ii) 1	node	
iii) Not	to	run	on	any	nodes	with	other	jobs	

Useful	if	you	are	trying	to	debug	your	job	
b) See	if	you	can	see	which	nodes	your	job	is	running	on.	

i) “scontrol	show	job	<jobid>”	
	

24) 	Job	dependencies		
a) Submit	a	serial	job	named	dep1,	that	has:	

i) Walltime	of	2:00		
ii) Sleeps	120	seconds	
iii) Submit	a	serial	job	22b	waits	until	job	dep2	is	done	
iv) Walltime	of	2:00		
v) Sleeps	120	seconds	

b) Look	at	job	dep2	with	“scontrol	show	job	<jobid>”	
c) Run	the	command	“squeue	-u	$USER”	ls	
d) Verify	that	Job	dep1	complete	before	dep2	starts	
	
	

25) This	question	has	been	removed	
	

26) 		Job	using	temporary	directory		

a) Submit	a	job	that	runs	in	the	temporary	directory	used	no	more	than	1GB	of	
space,		

	
27) Job	environment	variables.		

a) Submit	a	serial	job	that	prints	the	partition(s)	that	the	job	was	ran	in	
	

28) Multiple	accounting	groups	(This	exercise	will	only	be	available	to	users	with	
RAC	allocated	groups	or	multiple	accounting	groups.	The	answer	will	need	to	be	
modified	with	your	accounting	group.)	
a) Submit	a	Job	to	a	non	default	accounting	group,	that	asks	for	1	proc	
b) Try	to	see	which	accounting	group	your	job	belongs	to,	use	the	scontrol	

command:		
i) “scontrol	show	job	<jobid>”	

	 	

	
29) Basic	Job	info				

a) Use	the	“squeue	-u”	and	“scontrol	show	jobid	-dd	<jobid>”	commands	to		find	
out	how	many	jobs	your	have	running,	queued,	in	hold	state	or	complete.	

b) Use	the	“showq	–b”	command	to	see	how	many	jobs	are	in	what	state?	

30) 	Examining	a	job		

a) Start	a	Job			

b) Examine	its	priority	with	”sprio”	

c) 	run	scontrol	show	jobid	-dd	<jobid>	and	determine	how	much	RAM	the	Job	
asks	for/used	

	

31) Job	holds	

a) See	if	any	of	your	jobs	in	the	queue	have	any	job	holds,	if	so	identify	the	hold	
and	the	reason	why.	

32) 	Cluster	info	

a) How	many	idle	nodes	are	on	the	cluster	“sinfo		--states=idle”	

b) How	many	nodes	are	down	and	drained	“sinfo	–R”	

33) Show	some	detailed	information	

