
Education Outreach and Training
Tutorials

Introduction to Short Read Mapping:
The foundation of next generation

sequencing analysis
April 3rd, 2019 (10:00AM-11:00PM PST)

Phillip A Richmond, Oriol Fornes

Copyright Information

The material is open source, and in this
presentation no previous external work was utilized.

Welcome!

● Welcome to the Introduction to Short Read Mapping
● I am co-teaching this seminar with Dr. Oriol Fornes, who studies gene

regulation and frequently processes short-read data on the Cedar compute
cluster.

● This is not meant to be a follow-along seminar, but the commands, datasets,
and scripts will be available afterwards for your own exploration

● This presentation will be recorded and the slides will remain available

http://bit.ly/2WD1ORc

http://bit.ly/2WD1ORc

Interactive Experience

We hope this is an interactive experience for all of you.

Questions/Problems can be posted to the Etherpad:

https://etherpad.openstack.org/p/EOT_APRIL2019

Dr. Oriol Fornes will be here to help answer questions while I’m presenting.

https://etherpad.openstack.org/p/EOT_APRIL2019

Speaker Bio

Phillip Richmond
PhD Candidate, Wasserman Lab, BC Children’s Hospital Research
Institute

Bioinformatics Program, University of British Columbia

https://phillip-a-richmond.github.io

Research:Maximizing the Utility of Whole Genome Sequencing in the
Diagnosis of Rare Genetic Disorders

Previous work in Genomics: Genomic Contributions to Ethanol
Sensitivity in Mice, Polyploid Evolution in Yeast, Brewing Yeast
Genomics, Cancer Cell Epigenetics, Addiction Predisposition

Also loves teaching genomics, and my puppy Sherlock Holmes

https://phillip-a-richmond.github.io

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Transcriptional regulatory datasets and where to find them
● Mapping reads to the genome using BWA mem
● Peak calling and creating pileup files using MACS2
● Visualizing data in IGV

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Transcriptional regulatory datasets and where to find them
● Mapping reads to the genome using BWA mem
● Peak calling and creating pileup files using MACS2
● Visualizing data in IGV

Next generation sequencing: Short-read sequencing

Fragments of DNA

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

@Read1
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

Convert to
Fastq

Diverse Input, Same Output Format
● Different inputs still result in the same output data format
● Examples:

○ DNA-seq, ChIP-seq, RNA-seq, GRO-seq, ATAC-seq

● For non-DNA assays (e.g. RNA-seq/GRO-seq), they undergo a conversion from
RNA-->cDNA before sequencing

@K00171:617:HMMTNBBXX:1:1101:28686:1648
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

@Readname:And:Flowcell:Info 1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING

Diverse Input Data, Same Output Format

@K00171:617:HMMTNBBXX:1:1101:28686:1648
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
BBBBCCA?>><>=;:BBBBBBBBB

@Readname:And:Flowcell:Info 1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING

Q
ua

lit
y

sc
or

e
(Q

)

Probability of error (p)

Q = -10 * log10(p)

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Transcriptional regulatory datasets and where to find them
● Mapping reads to the genome using BWA mem
● Peak calling and creating pileup files using MACS2
● Visualizing data in IGV

ENCODE - Encyclopedia of DNA Elements

ENCODE is one of the
many places to find
open source data:
www.encodeproject.org

encodeproject.org

http://www.encodeproject.org

You can download a diverse set of data across tissues/cell types

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

1-Crosslink
DNA:Protein

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

5-Ligate
sequencing
adapters

Chromatin Immunoprecipitation (ChIP-seq)
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

5-Ligate
sequencing
adapters

6-Sequence
Library

TGCGTA
CGTACTG

GCATGCGTA

ATAC-seq represents open chromatin

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

T
F

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Transcriptional regulatory datasets and where to find them
● Mapping reads to the genome using BWA mem
● Peak calling and creating pileup files using MACS2
● Visualizing data in IGV

For those of you who want to “follow along”

I’ll be showing you files and pipeline scripts which are available to you to reuse/repurpose as you see fit.

NOTE: I do not expect you to follow along on the command line exploring the files. You can always
re-watch this recording and hit pause. Maybe listen to it in slow motion. Whatever floats your boat.

Logging into cedar:

$ ssh username@cedar.computecanada.ca

A place of learning

The main directory for today’s workshop data/scripts is:

/scratch/richmonp/TRAINING/APRIL2019/

If you want, you can make a temporary directory here to play around with. If you do, name it something
unique.

$ mkdir /scratch/richmonp/TRAINING/APRIL2019/SHERLOCK/

Change SHERLOCK to your own directory name if you want to rerun this script.

All you need is scripts

/scratch/richmonp/TRAINING/APRIL2019/SCRIPTS/ has 3 scripts inside it:

H3K27Ac_Workshop.sh

POLR2A_Workshop.sh

ATAC-Seq_Workshop.sh

I’m going to copy these so I can play with them:

$ cp /scratch/richmonp/TRAINING/APRIL2019/SCRIPTS/*sh SHERLOCK/

There are also scripts in this directory without the _Workshop, they are the ones I’ve already edited to
work for my personal directory.

Breakdown of the script: Welcome to the mellow yellow

This header information contains info about the account to bill for these hours, I want it to mail me, how
much RAM and CPUs I need over a single node, and where to send standard error and output

Breakdown of the script: Welcome to the mellow yellow

This header information contains info about the account to bill for these hours, I want it to mail me, how
much RAM and CPUs I need over a single node, and where to send standard error and output

You will need to change these
to be relevant to your own use
case

Load my necessary tools

I’m also going to load the necessary modules, and install a local version of MACS2 to my home directory.

Then, I set the MACS2 variable (blue guy) to be the command which calls the MACS2 tool. You’ll see why
later

You’re going to need a reference genome next

Next, I specify the genome I want to use to map my data against. I realize you won’t all work in human,
but if you work in a model organism I recommend checking out this repository for genomes:

/cvmfs/ref.mugqic/genomes/

Here, I’m using their BWA index, and their Fasta file

Reference Genome, Fasta file format
Reference genomes are packaged into fasta files.
Format:
>chromosome1_Name OtherChromInfo AccessionInfo Etc.
NNNNNNATTCGTTGATGGATAGCATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCA
CCACCCAGATTCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATA
CATAG ….
>chromosome2_Name OtherChromInfo AccessionInfo Etc.
NNNNNNNCCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATACAT
AGATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCACCACCCAGATTGGAGTTGCCA
GAT

We need to “index” this genome in order to map to it. There are many different genome indexing
strategies. For bwa, we use the command bwa index, which creates an FM-Index of the genome.
$ bwa index <in.fasta>
This will generate these files:
genome.fa.amb, genome.fa.ann, genome.fa.bwt, genome.fa.pac, genome.fa.sa

Set some more variables

I’m setting an identifier, a working directory (change this if you want to use the script yourself) ,the sample
name, and the threads I’m using. I also make a working directory and change into it.

I HIGHLY RECOMMEND using variables like this within your scripts. It will make it possible to easily
change out a single variable or path, and the script can remain functional

Set some more variables

I’m setting an identifier, a working directory (change this if you want to use the script yourself) ,the sample
name, and the threads I’m using. I also make a working directory and change into it.

I HIGHLY RECOMMEND using variables like this within your scripts. It will make it possible to easily
change out a single variable or path, and the script can remain functional

You will need to change this
directory to be relevant to your
own use case

Set even more variables, and download some data

Here I set some file names, including for files that don’t exist yet.

Then I download some data, and rename it according to the files I want them to be called.

If you want to explore lots of these datasets to download, use the www.encodedata.org website.

http://www.encodedata.org

Let the games begin: Mapping Reads to the
Genome

The little if/fi statements are to check if the output file exists, and if it does not exist, then perform the little
command inside the block.

The BWA mem command is in the block, and at a minimum it needs an indexed genome, and an input
fastq. I also add options -t for multithreading (using more cores), -R for a readgroup identifier (required for
many tools), and -M for mapping split/secondary hits (not always needed). I also capture the standard out
and place it into a SAM file.

The output SAM file

@SQ - Sequence (contig/chromosome) from reference file
@PG - Program information about mapping
@RG - Read group information (we won’t have any here)

Tab delimited, each line is 1 read. Pairs will be next to each other in the file (e.g.
Line1: Read1
Line2: Read2

https://samtools.github.io/hts-specs/SAMv1.pdf

Then we convert, sort, and index the bam file

Here, I’m using the | to skip the step of saving the bam file, and then sorting it.

I link the two commands together to first convert the sam into bam using samtools view, and then sorting it
using samtools sort.

I also add a multi-threading option, but samtools asks for “additional threads” so I take my thread# - 1.

The index command will create a .bai file next to the .bam file (file.bam.bai), which is needed for
downstream tools

An easier version of samtools can be found here

$ module load samtools/1.3.1

We will use 3 samtools operations: view, sort, and index (in that order)

$ samtools view -b <in.sam> -o <out.bam>
$ samtools view -b Sample1.sam -o Sample1.bam

$ samtools sort <in.bam> -o <out.sorted.bam>
$ samtools sort Sample1.bam -o Sample1.sorted.bam

$ samtools index <in.sorted.bam>
$ samtools index Sample1.sorted.bam

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Transcriptional regulatory datasets and where to find them
● Mapping reads to the genome using BWA mem
● Peak calling and creating pileup files using MACS2
● Visualizing data in IGV

The last component of the pipeline is to call peaks

Here I’m calling peaks using MACS2.

I’m adding a sample name, I want it to output a bedgraph of normalized coverage for visualization. I’m
using the ENCODE standard cutoff.

For ATAC-seq there is no “control”, but for ChIP-seq pipelines there is sometimes a control sample, which
you can provide as background for the peak caller.

Output files from MACS2

You’ll get a set of files, and the ones which we will visualize are the:

 *_treat_pileup.bdg,

*_summits.bed,

*_peaks.narrowPeak, which we will convert into a bed file (just rename it .bed)

Now, for visualization

I like to use OSX-Fuse / sshfs to connect my computer to Cedar. If you don’t have
it installed, google how to do so. There is also another 2-minute learn-along
describing this process. If you ask me I’ll dig it up.

Then I’ll open IGV

If you don’t have IGV, I recommend downloading it here after this webinar:

http://software.broadinstitute.org/software/igv/download

http://software.broadinstitute.org/software/igv/download

Select the hg38 genome, if it isn’t in your list..

Then go and get it

And then load your files via File> Load from file...

And you’re going to want to select the OSXFUSE Volume 0 (sshfs)

Load in the .bam files, and the .narrowPeak files

And explore away!

This is a good region for the heart transcriptional regulation:

Chr10:21160000-23400000

Around the gene NEBL.

I’ll now explore this data interactively and open to questions / comments.

To visualize the bedgraph files effectively...

You’ll need to convert them to bigwig

This can be done, and if you’re interested in learning how let
me know.

In fact, Oriol has been working on it this morning so we
should have the command ready for you soon!

:)

Open question and answer period

Acknowledgements

● Phil Richmond (Teacher)
○ PhD Student Wasserman Lab, enjoys teaching

● Oriol Fornes (Co-teacher)
○ Post-doc, Deputy Group Leader, Wasserman Lab

FLASH DEBUGGING
$ samtools sort Sample1.bam -o Sample1.sorted.bam
Crazy characters printing to the screen

$ samtools view -bS Sample1.sam Sample1.bam
Crazy characters printing to the screen

$ samtools index Sample1.bam
[E::hts_idx_push] unsorted positions
samtools index: "Sample1.bam" is corrupted or unsorted

$ bwa mem -t ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq
[E::bwa_idx_load_from_disk] fail to locate the index files

Fix: This sort command doesn’t use a -o
Unless you specify -T and -O as well.
$ samtools sort Sample1.bam Sample1.sorted

Fix: This commands needs a -o for the output
$ samtools view -bS Sample1.sam -o Sample1.bam

Fix: Order matters. Sort before you index
$ samtools index Sample1.sorted.bam

Fix: the -t option requires an integer. Otherwise, all the
other positional arguments are out of place.
$ bwa mem -t 4 ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq

Fix: Make sure you load the .bam file,
The .bai file just needs to be in the same directory
As the .bam file

