
Singularity containers for HPC
Westgrid Webinar, Feb. 5, 2020

Dr. Grigory Shamov, HPC Specialist, Site Lead
UManitoba/WG

1

How to deal with software complexity?
● Controlling software dependencies

● Configuring software packages

● Distributing software (in a portable way).

● High Performance Computing:

○ Reproducibility, Mobility of computing?

● One of the approaches is to isolate/containerize software/apps together with

their dependencies

2

Outline
● What are containers (In Linux)

● Containers in Enterprise and High-Performance Computing

● Singularity basics, new capabilities in Singularity 3.x

○ Building containers from recipes

○ Pulling from DockerHub

○ Singularity libraries and builders (SHub, Sylabs)

○ NVidia GPUs and Singularity

○ MPI parallel codes with Singularity

● Singularity use cases, best practices

3

Glossary
Operating system - All the software that let you interact with a computer, run
applications, UI, etc. ; consists of the “kernel” and “userland” parts.

Kernel - Central piece of software that manages hardware and provides resources
(CPU, IO, memory, filesystems) to the processes it is running.

Users - Linux separates access for end users, system service accounts and root. Fine
grained control (sudo, capabilities).

Program and Process - process is an instance of a running program with resources
allocated by kernel . Processes associated with users.

Daemon process - a process that runs long time, “in the background”
4

Virtual Machines or Containers?

What is the difference, and which of the m to use when?

1. VMs offer true isolation , maximal flexibility at performance

and space cost (improving a lot recently)

a. Can run any combination of host and guest OS

b. You can improve performance at cost of losing flexibiity and
isolation

2. Containers are an OS-level mechanism of isolating userland

parts of OS together with a given application

a. Chroot on steroids; namespaces for processes

b. Security issues of sharing the same kernel, privilege escalation

c. No performance overhead

5

source: Greg Kurtzer keynote at HPC Advisory Council 2017 @ Stanford

http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf#43

Containers: Docker use cases
Developed as Containers platform for services/daemons.

● Enterprise computing, Microservices approach

○ Load balancers, oversubscription

○ Orchestration tools (Google Kubernetes)

○ Many containers per node, oversubscription

● Runs as root or a service user; cgroups for RM

● Uses commodity, Internet network stack extensively

Very popular with software developers; thanks to Recipes and the huge registry at

DockerHub (https://hub.docker.com) . Made its way to Research Computing software

dev.!

6

https://hub.docker.com

Containers: HPC use case
● In HPC world jobs are ran in the batch mode: queue, start, run, end cycle.

● Often long running compute, large state (memory, data on disk).

● Often a whole node or many nodes per job, statically allocated.

○ Worst case scenarios, no CPU oversubscription possible.

● Close access to hardware for speed; specialized interconnects, RDMA, direct GPU

access, zero-copy IPC

● Shared systems, pretend to be a single large machine with RM Scheduler, shared

network FS, users connecting directly on the machine.

7

Can I run Docker on HPC?
Short answer is often no.

● Security model: no root or sudo is given on shared machines

● Cgroups resource management will conflict with HPCs RM

But users really want it? Containers for HPC:

Shifter; Singularity; CharlieCloud -- either based on Docker or

inter-operable with it; running containers in user space, as a user.

● Zero performance overhead for either of them (an SC19 paper).
8

Singularity
Created first at LBNL, now developed by a company (SyLabs) https://sylabs.io/

Mobility of compute, reproducible research with Containers.

Developed for HPC use case: runs as a regular user, can access shared filesystems.

Interoperable with Docker; can run services as well.

Supported on ComputeCanada’s HPC machines.

Many updates with version 3. (switch to Golang, new container formats, new build

services, overlays, etc. -- will talk today!)

9

https://sylabs.io/

Singularity : getting started
If you have a) Singularity container image, and b) Singularity runtime installed, you can

run your app in the container in thes.

./my-app [options] my-input.dat

[singularity command] [singularity-options] ./container.sif [options] input.dat

For example,

singularity run ./lolcow.sif

singularity exec -B /scratch:/scratch ./R-INLA.sif R Benchmark.R

10

Singularity : getting the runtime
On ComputeCanada HPC machines: module spider singularity; ml singularity/3.5

With OS package manager: apt-get install singularity-container (old versions on Ubuntu 18.04+) or yum install

singularity (EPEL, has a recent version).

Build from sources: see documentation at SyLabs. (https://sylabs.io/guides/3.5/admin-guide/installation.html)

For CentOS 7: install dependencies; sudo yum groupinstall -y 'Development Tools' && sudo yum install -y \

 openssl-devel libuuid-devel libseccomp-devel wget squashfs-tools cryptsetup

Download the sources: wget \

https://github.com/sylabs/singularity/releases/download/v3.5.2/singularity-3.5.2.tar.gz

rpmbuild -ta singularity-3.5.2.tar.gz; find the RPMS and install: sudo yum localinstall singularity-*.rpm

11

https://sylabs.io/guides/3.5/admin-guide/installation.html

How to get Singularity container images?
Build your own; pull others’ images; build on top of othersimages
Lets start with pulling a small image. (Things to consider on CC systems: network and FS performance; memory and
threads to pack/unpack the container). singularity pull is the command. https://hub.docker.org is the Registry.

 singularity pull lolcow1.sif docker://godlovedc/lolcow

 Or running it right away: singularity run docker://godlovec/lolcow:latest ; or opening a shell in the container!

● Images are cached , under $HOME/singularity

● Docker layers are cached too. singularity pull docker://jfloff/alpine-python:2.7

● We can control cache location with SINGULARITY_CACHE environment (and SINGULARITY_TMP)

● singulatity cache {list|clean} commands to manage cache.

● singularity inspect shows the image’s metadata ; --runscript, --deffile opttions for SIF images are useful.

12

https://hub.docker.org

Where to get Singularity container images?
Pulling containers

Public containers repositories from where to “pull” or build containers.

● DockerHub public registry. docker://

● SyLabs public library (new). library://

● SingularityHub. shub://

Private repositories

● Require authentication. singularity pull --docker-login docker://your-private-repo/container:tag

CVMFS distributions! They distribute container images in an unpacked directory format. CVMFS handling various

optimizations and caching of this format.

● OpenScienceGrid: https://opensciencegrid.org/docs/worker-node/install-singularity/
13

https://opensciencegrid.org/docs/worker-node/install-singularity/

Building Singularity container images
Building might require sudo, because some OS parts belong to root
Container formats in Singularity 3.x

● SIF: the default, read-only, compressed SquashFS image. Can be signed. Can be encrypted (new in 3.x)

● Sandbox: a directory tree. Writable. Use --sandbox option to commands that build containers.

● Overlay: read-only SIF formats can be enhanced by a writable ext3 layed (new , experimental, requires kernel
3.18+)

Building from recipes and/or other containers with the singularity build command

● singularity build {target} {source} .

● singularity build alpine.sif alpine-dir/ ; singularity build alpine.sif Singularity ; singularity build alpine.sif

docker://jfloff/alpine-python:2.7 , etc.

● Interactive container development: the singularity shell command. But finalize with a recipe!
14

Singularity recipes
1. Specifies from where to Bootstrap

from something (OS repo, docker,

etc.)

2. Modifies the container in %post,

copies %files

3. Sets the %environment

4. Defines entry point in %runscript

More examples at Github

(https://github.com/sylabs/singularity/blob/master/examples)

Bootstrap: docker

From: rocker/r-ver:latest

%post

 apt-get update

 apt-get install -y libssl-dev libsasl2-dev jags

autoconf automake

 apt-get install -y curl wget libudunits2-dev bash

libicu-dev libeigen3-dev

 apt-get install -y gcc-multilib g++-multilib

 # generic R packages

 R -e "install.packages('ggplot2')"

 # skipped a few packsges #

 R -e "install.packages('R2jags')"

 #R2OpenBUGS

 wget

http://pj.freefaculty.org/Ubuntu/15.04/amd64/openbugs/openbugs

_3.2.3.orig.tar.gz

 tar xzf openbugs_3.2.3.orig.tar.gz

 cd openbugs-3.2.3

 ./configure

 make && make check && make install

 R -e "install.packages('R2OpenBUGS')"

15

https://github.com/sylabs/singularity/blob/master/examples

Remote building services / libraries
What if you do not have sudo anywhere? How do you distribute your Sing. images?

The original build service: V. Sochat’s SingularityHUB

● Link your Github repo with recipe to https://singularity-hub.org ; wait for it to build; setup auto rebuild hooks.

● Pull the container from anywhere like so (putting your URI of course): singularity pull shub://vsoch/hello-world

● Right now locked down due to an abuse by a malicious user; limits are set to the number of pulls.

The new SyLabs Cloud service.

● Register with an identity provider (Google, FB, MS, Github) at https://cloud.sylabs.io ; Get an access token.

● Either use --remote build option from a local Singularity installation or deposit a recipe

● Pull the container from anywhere with singulatity pull library://your-name/aproject/your-image:tag

16

https://singularity-hub.org
https://cloud.sylabs.io

Running containers on HPC machines
Access to filesystems using --bind | -B options.

● Bind-mount is a Linux kernel mechanism. -B outside:inside

● Some paths are mounted by default. /home , /tmp, …

● Sysadmin can configure more/less paths by default

● You can prevent mounting paths by --containall (other?) options

singularity exec -B /sbb/scratch:/global/scratch -B /scratch:/scr Tf.sif python mytf.py

17

Running GPU software in containers

Singularity supports NVidia through bind-mounding the GPU drivers and base CUDA

libraries. --nv flag foes it.

● singularity exec --nv -B /sbb/scratch:/mnt tensorflow.sif python my-tf.py

● NVidia provides readily made containers for a large number of HPC apps.

○ https://ngc.nvidia.com/catalog/containers

● Example: NAMD on GPU from NVIDIA

Singularity also supports AMD with --roce flag.

18

https://ngc.nvidia.com/catalog/containers

Running MPI software in containers
MPI libraries are using a high-performance interconnect, RDMA etc. so they are hard to
containerize

MPI is a standard; for message passing interface. MPI comes with several implementations (OpebnMPI, MPICH,

IntelMPI, PlatformMPI, Cray MPI, ..). Thus no generic --mpi flag is easy to implement for the containers. The following

modes can be thought of::

1. Inside container (less interesting, won’t work across the nodes); singularity exec my.simg mpiexec hello.mpi

2. Hybrid mode: same (or similar) MPI in container and outside. Mpiexec singularity run hello.mpi

3. Bind mode: host’s MPI libraries and drivers are mounted into the container. Mpiexec singularity

Examples of the recipes at Sylabs documentation page (https://sylabs.io/guides/3.5/user-guide/mpi.html).

Less of a use case? Most MPI software in HPC world comes as sources.

However, MPI+X model might be useful (try GAMESS-US with MPI with GPU, or LAMMPS+GPU, etc.).

19

https://sylabs.io/guides/3.5/user-guide/mpi.html

Services with Singularity
A new feature in v. 2.4, expanded in v.3.4+

If you really need to run a daemon / service (which is not usually an HPC workload)/

● The command is singularity instance (singularity instance start http.sif my-web)

● It can use its own Cgroups mechanism (--cgroups flags) to manage the resources.

● It can run in a privileged mode, as root, with fine-grained capabilities. (--addcap)

● Documented at SyLabs site:

https://sylabs.io/guides/3.5/user-guide/running_services.html

20

https://sylabs.io/guides/3.5/user-guide/running_services.html

Conclusions

Containerization technology is mature and usable.

If applied wisely it can help with mobility, reproducibility of research.

The Singularity is one of the most popular, production ready containers for HPC.

21

