
Using Singularity Containers 
in Virtual Machines and HPC

Venkat Mahadevan

UBC Advanced Research Computing (ARC)

5/26/2021



Virtualization



Containers



Containers

• Containers provide an additional layer of abstraction over 
virtualization.

Infrastructure

OS

Container Engine

Applications and Libraries



Containers

• However, containers do not require virtual machines and can happily 
run on bare-metal.

• Lightweight compared to VMs in terms of memory and storage 
requirements.

• Increases portability of applications between datacenters, private 
clouds, and public clouds.



Containers 

• Can provide a very customized environment specific to research use 
cases.

• Commercial software that requires old, obsolete libraries or operating 
system versions.

• Bottom line: use containers where it makes sense to your workflow.



Why Use Containers

• Reproducibility.

• Portability.

• Isolation.

• Avoiding complexity aka dependency hell.



Docker

• The advent of Docker resulted in widespread adoption of container 
technology.

• Uses cgroups, kernel namespaces, OverlayFS (union filesystem) to 
allow containers to run in a singular Linux instance.

• Very mature technology with ~7 million DockerHub users.



Docker



Singularity

• However, Docker is not a perfect fit in the advanced research 
computing space.

• The Docker daemon needs to run in the background with elevated 
privileges on every node (in the datacenter, private/public Cloud VM, 
etc.) that hosts containers.

• This is a security concern which can be mitigated but limits some 
features.



Singularity

• Docker also does not provide close integration with the standard HPC 
software stack such as MPI as well as schedulers and resource 
managers such as Slurm & PBS Pro.

• Container orchestration technologies such as Kubernetes can 
replicate some of the aforementioned functionality but the existing 
HPC stack is well entrenched and robust.



Singularity features

• Was developed at Lawrence Berkeley National Lab specifically for HPC 
workloads.

• No daemon process required; an executable is provided.

• The user permissions are maintained both in and outside the 
container; mitigates privilege escalation concerns.



Singularity features

• Support for both NVIDIA and AMD GPUs: pass the --nv or --rocm flag 
to the singularity command line.

• The host and container must have compatible versions of the GPU 
drivers and libraries installed.

• Support for MPI via a couple of different models: the hybrid model 
and the bind model.



Singularity features

• MPI via the Hybrid model:
• Both the host and the container must have compatible versions of MPI 

libraries and runtime installed.

• Simplifies the running of MPI applications (just run the singularity command 
after mpirun or srun if using Slurm).

• MPI via the Bind model:
• Mount the MPI implementation of the host in the container.

• https://sylabs.io/guides/3.7/user-guide/mpi.html

https://sylabs.io/guides/3.7/user-guide/mpi.html


What about performance?

• On bare-metal, there is almost no performance gap between running 
in a Singularity container vs. directly on the host system.

• Papers benchmarking the performance of Singularity with various 
applications have found near native performance (within 1-2% 
performance) on bare-metal HPC systems:
• https://ieeexplore.ieee.org/abstract/document/8855563

• https://people.csail.mit.edu/dpaz/img/PDF/a065-LePaz.pdf

https://ieeexplore.ieee.org/abstract/document/8855563
https://people.csail.mit.edu/dpaz/img/PDF/a065-LePaz.pdf


Typical workflow



DockerHub



Virtual Machines and HPC

• There is always going to be a performance impact of virtualization vs 
bare-metal. 

• However, running containers on virtual machines and whole HPC 
clusters on VMs and Clouds is gaining popularity.

• Performance impacts can be mitigated by tuning VMs and underlying 
hardware (e.g. AWS Elastic Network/Fabric Adapter).



Deep Learning with Horovod

• Horovod is a distributed deep learning training framework for 
TensorFlow, Keras, PyTorch, and Apache MXNet.

• https://github.com/horovod/horovod/

• The stated goal is to take single-GPU training and scale it across many 
GPUs in parallel.

https://github.com/horovod/horovod/


Distributed training example

• Build singularity container using DockerHub:
singularity pull horovod.sif docker://horovod/horovod:sha-40cbc9b

• Run on a single GPU:
singularity exec --nv horovod.sif horovodrun -np 1 -H localhost:1 

python ~/pytorch_imagenet_resnet50.py --train-dir ~/tiny-imagenet-

200/train --val-dir ~/tiny-imagenet-200/val



Distributed training example

• Will run the example on a virtual HPC on AWS

Parallel Cluster.

• 8 GPU nodes with V100 running on AWS EC2 P3

instances.

• Slurm scheduler with Open MPI.



Distributed training example



TTK Demo on HPC



References

• Singularity on Compute Canada HPC: 
https://docs.computecanada.ca/wiki/Singularity

• Sylabs.io Singularity Official User Guide: 
https://sylabs.io/guides/3.7/user-guide/

• Westgrid YouTube channel: 
https://www.youtube.com/channel/UCfgds4Qf7VFOv4ORRvFFmhw

https://docs.computecanada.ca/wiki/Singularity
https://sylabs.io/guides/3.7/user-guide/
https://www.youtube.com/channel/UCfgds4Qf7VFOv4ORRvFFmhw


Attributions

• https://en.wikipedia.org/wiki/Intermodal_container#/media/File:Line3174_-
_Shipping_Containers_at_the_terminal_at_Port_Elizabeth,_New_Jersey_-
_NOAA.jpg

• https://commons.wikimedia.org/wiki/File:VMM-Type1.JPG

• https://en.wikipedia.org/wiki/Docker_(software)#/media/File:Docker-linux-
interfaces.svg

• http://singularity.lbl.gov/assets/img/diagram/singularity-2.4-flow.png

https://en.wikipedia.org/wiki/Intermodal_container#/media/File:Line3174_-_Shipping_Containers_at_the_terminal_at_Port_Elizabeth,_New_Jersey_-_NOAA.jpg
https://commons.wikimedia.org/wiki/File:VMM-Type1.JPG
https://en.wikipedia.org/wiki/Docker_(software)#/media/File:Docker-linux-interfaces.svg
http://singularity.lbl.gov/assets/img/diagram/singularity-2.4-flow.png

