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Geospatial Analysis with High Performance Computing Resources

What is this talk about?

How do we do spatial analysis without a spatial DataBase like
QGIS, PostGRES, or ArcGIS?

What C and Python libraries do we need in order to perform
such an analysis?

GeoPandas provides data structures and a convenient API for
geographic information science

We can build our own spatial indexes for accelerating spatial
joins by using R-Trees [3]

We will introduce two strategies for parallelizing spatial
computations for improved performance
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Downloading Data and Example Problem

Downloading Data 1: csv data

We will be working with US Census Data from the 5-year
American Community Survey

Specifically, we will be using the de-identified Public Use
Microdata Sample (PUMS) data from 2013

Point your browser at https://www2.census.gov/
programs-surveys/acs/data/pums/2017/5-Year/ to see
the relevant FTP directory

Download csv_hil.zip to your personal computer (by right
clicking and choosing Save As)

https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
csv_hil.zip
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Downloading Data and Example Problem

Downloading Data 2: geographies

Working with PUMS data requires the PUMA boundaries and
we will be relating these back to census tracts

Point your browser at
https://www2.census.gov/geo/tiger/TIGER2018/PUMA/

to see the relevant FTP directory

Download tl_2018_17_puma10.zip to your personal
computer (by right clicking and choosing Save As)

Point your browser at https:
//www2.census.gov/geo/tiger/TIGER2018/TRACT/ to see
the relevant FTP directory

Download tl_2018_17_tract.zip to your personal
computer (by right clicking and choosing Save As)

https://www2.census.gov/geo/tiger/TIGER2018/PUMA/
tl_2018_17_puma10.zip
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
tl_2018_17_tract.zip
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Downloading Data and Example Problem

Where we are going

PUMS Data:

import pandas as pd

import numpy as np

from pandas import DataFrame,Series

basedf=pd.read_csv('ss13hil.csv')

#what are the columns?

print(list(basedf.columns))

['insp', 'RT', 'SERIALNO', 'DIVISION', 'PUMA', 'REGION', 'ST', 'ADJHSG', 'ADJINC', 'WGTP',

'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP', 'GASP', 'HFL',

'MHP', 'MRGI', 'MRGP', 'MRGT', 'MRGX', 'REFR', 'RMSP', 'RNTM', 'RNTP', 'RWAT', 'RWATPR', 'SINK', 'SMP',

'STOV', 'TEL', 'TEN', 'TOIL', 'VACS', 'VALP', 'VEH', 'WATP', 'YBL', 'FES', 'FINCP', 'FPARC', 'GRNTP',

'HHL', 'HHT', 'HINCP', 'HUGCL', 'HUPAC', 'HUPAOC', 'HUPARC', 'KIT', 'LNGI', 'MULTG', 'MV', 'NOC', ...]

#plus 50 more real columns and 80 replication weights

For more information see the pums data dictionary and technical documentation:

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/
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Downloading Data and Example Problem

Where we are going: geopandas is easy to use for data
analysis

What is the mean number of occupants in a census housing unit
for each census tract?

shp_path='tl_2018_17_puma10.shp'

geo_df=gpd.read_file(shp_path)

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

housingdf['weightedNP']=basedf['WGTP']*basedf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame(pumaAvgNPArray, columns=['avgNP']).reset_index()

fulldf=geo_df.merge(avgNPdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

fig, ax = plt.subplots(1, 1)

fulldf.plot(column='avgNP', ax=ax, legend=True)
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Downloading Data and Example Problem

Geospatial Computation

Geospatial data analysis is a fairly mature topic computer science
and has widely accepted standards for many important algorithms
and datasets.

1 Geometric analysis on(to) an ellipsoid (earth measuring)

2 Spatial-relational data analysis (linking data to geometries)

3 Spatial Indexing and search algorithms

These three topics form the core of geospatial data analysis. Other
topics, like random process simulation (e.g. MCDS) and modelling
of high dimensional geospatial data by stochastic processes (e.g.
Kriging) rely on additional data structures and tools that are
outside of the scope of this talk. Some of those tools can be found
in the PySAL library.
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Downloading Data and Example Problem

OSGeo Libraries

Much as image analysis has been standardized in open source
libraries like OpenCV, geospatial analysis algorithms have standard
open source implementations as part of the OSGeo projects:

1 PROJ provides generic coordinate transformations for 3D-2D
projections

2 GEOS provides tools for computational geometry

3 GDAL/OGR provides geospatial-relational data representation
tools

Each of these functionally depends on the previous ones in the list
and is an integral part of effective geospatial analysis.
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Downloading Data and Example Problem

Python Geospatial Libraries

The main libraries provided OSGeo are written in C++. Popular
Python modules that have been built on top of them.

PROJ PyProj

GEOS Shapely

GDAL/OGR Fiona

These features all come together in a single python library called
GeoPandas that mimics the familiar structure of the popular data
analysis library Pandas.
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Downloading Data and Example Problem

Cluster Architecture
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Downloading Data and Example Problem

Cluster Considerations

What is different about working on an HPC computing cluster
from the tradition personal Workstation environment of geospatial
analysis?

Complex C dependencies (like GDAL) need to be built
manually (possibly integrated into an environment module by
a system administrator)

Computational resources across many computers can be used
on a single job to accelerate calculations

Managing memory and communication between computers
can be a challenge
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Downloading Data and Example Problem

Python on a Cluster

What is different about working on an HPC computing cluster with
Python?

Python libraries tend to benefit less from this opportunity
because of how they manage resources.

However, if the C libraries that they call (like GDAL) can take
advantage of the HPC environment, then the corresponding
python tools (like GeoPanadas) can be accelerated.

Tools like Dask have been built to further simplify using
multiprocess or multinode resources at the python level.
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Pandas Review

What is pandas?

Pandas provides a SQL-like approach (that blends in elements
of statistics and linear algebra) to analyzing tables of data [2]

DataFrames in R are very similar

Pandas has been adopted as a de facto standard for input and
vectorization across numerous disciplines including Python
data analysis with spatial components
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Pandas Review

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv', index_col='SERIALNO',

usecols=['SERIALNO', 'PUMA00', 'PUMA10', 'ST',

'ADJHSG', 'ADJINC', 'WGTP', 'NP', 'TYPE', 'ACR',

'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP',

'FS', 'FULP'])

basedf.head()
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Pandas Review

query

query takes a text string argument in the form (roughly) of a SQL
WHERE clause

Column names need to be referenced without quoting so suitable
single-word names are needed

https://pandas.pydata.org/pandas-docs/version/0.22/

indexing.html#indexing-query

basedf.query('PUMA00==3515')

https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query
https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query
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Pandas Review

merge as JOIN

merge is a holistic JOIN operator

Like SQL JOINs, the options for using it are complex and take a great deal of
practice to master

We will focus on two options: on= and how=

on determines the common column used to join the two together (a list of
common columns can be specified)

note that the indexes are not preserved. To keep them .reset index() before
joining and then set the index from that column after or join on index (not
covered here)

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'a':[1,2,3], 'c':[10,11,12]}, index=['u','v','w'])

pd.merge(df1,df2,on='a')
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Pandas Review

map for Transforming Columns

basedf['NP\_sq']=basedf['NP'].map(lambda x: x**2)

basedf['PUMA\_str']=basedf['PUMA'].map(lambda x: 'PUMA:'+str(x))
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Pandas Review

Split-Apply-Combine as an overall strategy

Similar to (but more general than) GROUP BY in SQL

General tool for bulk changes

The splitting step breaks data into groups using any column
(including the row number) [2]

This can be accomplished using df.groupby('colName')
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Pandas Review

apply in action

subdf=basedf.query('PUMA==03515').copy()

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

return x

subdf=subdf.apply(computeWeightedNP, axis=1)

totals=subdf.sum()

totals['weightedNP']/totals['WGTP']

Out: 1.70737
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Pandas Review

apply as CROSS APPLY

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

#print(x)

totals=x.sum()

x['avgNP']=totals['weightedNP']/totals['WGTP']

return x

subdf.groupby(['PUMA']).apply(computeWeightedNP)
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Geopandas Basics

What’s in a GeoDataBase?

A GeoDB has three essential components: [1]

Spatial features (with a Datum and Projection information)

Attributes linked to spatial features

A means of transforming and linking by attribute data or
spatial feature

Pandas gives us a way of managing structured attribute data,
what do we need to add in order to build a usable spatial
analysis data structure
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Geopandas Basics

GeoDataBases made considerably easier

GeoPandas supports almost all Pandas operations in one form
or another

GeoPandas provides easy projection handling

GeoPandas provides R-Tree indexing of GeoDataFrames to
accelerate spatial filtering and joining
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Geopandas Basics

What is a GeoDataFrame?

A GeoDataFrame is mostly structured like a DataFrame but
has a single column that is a GeoSeries

This links each attribute record to a unique geospatial feature

The GeoSeries column can have any name but by default it is
geometry

The objects in the geometry column are Shapely objects (in
our case Polygons)

The GeoSeries and GeoDataFrame have a single common crs

attribute for characterizing the Coordinate Reference System
and projection data

The GeoSeries and GeoDataFrame have a common spatial
index attribute sindex that implements an R-Tree for the
GeoSeries
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Geopandas Basics

Loading data to a GeoDataFrame

Is vastly easier than manually assembling linked spatial data
for a Pandas DataFrame

Automatically identifies the corresponding .prj and .dbf files
and incorporates them using fiona

Can still be done manually if something special is needed
(http://geopandas.org/gallery/create_geopandas_
from_pandas.html#

sphx-glr-gallery-create-geopandas-from-pandas-py)

import geopandas as gpd

shp_path='tl_2018_17_puma10.shp'

geo_df=gpd.read_file(shp_path)

http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
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Geopandas Basics

Examining our GeoDataFrame

geo_df.head()

geo_df.geometry.head()
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Geopandas Basics

CRS data and PyProj

First we need to get a handle on what the crs value means
and if it agrees with the .prj file provided

from pyproj import CRS

wkt_str='GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]'

crs_utm = CRS.from_string(wkt_str)

crs_utm.to_proj4()

Out: +proj=longlat +datum=NAD83 +no_defs +type=crs

crs_utm.to_epsg()

Out: 4269

This establishes that the WKT string from the .prj file has been correctly

loaded to the crs. We can learn more about the projection in use by looking it

up on https://spatialreference.org/ref/epsg/nad83/ However, we can

already tell by examining the proj4 string that the data is unprojected because

proj=longlat

https://spatialreference.org/ref/epsg/nad83/
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Geopandas Basics

Changes of Projection with GeoPandas

Here we chose a semi-arbitrary projection that works on much of North
America but it tailored to the eastern part of Illinois

Generally care is required in choosing your projection, but the most
important thing is consistency

Differently projected data is fundamentally not comparable

geo_df=geo_df.to_crs({'init': 'epsg:26971'})

geo_df.plot()
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Geopandas Basics

Shapely Polygons

Full set theoretic machinery: Intersections, Unions, Contains,
Differencing

More geometrically technical options in general but very efficient

Easy to convert back and forth with PySAL (to get a high level
computational geometry interface)

import shapely.geometry

poly1=geo_df.geometry[0]

type(poly1)

Out: shapely.geometry.polygon.Polygon

poly2=ps.lib.cg.asShape(poly1)

type(poly2)

Out: pysal.lib.cg.shapes.Polygon

poly3=shapely.geometry.polygon.Polygon(shapely.geometry.asShape(poly2))

type(poly3)

Out: shapely.geometry.polygon.Polygon

poly1==poly3

Out: True
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Geopandas Basics

Example Problems

Problems 1

What part of Illinois is it that has the lowest accuracy of projection
in epsg 26971?

1 Perform the projection of the geo df GeoDataFrame that was
outlined in the slides

2 Using the shapely area function through GeoPandas (i.e.
geo df.geometry.area) redo the area computation exercise
from the last section

3 What is the percent difference in the projected area of each
PUMA from the stated land+water areas? What is the
maximum observed difference?

4 Use query to find the record with the maximum area
difference use the .plot() function to plot the PUMA with
the biggest error.

5 Use query to plot the PUMAs with a percent error greater
than 0.1, greater than 0.08, and greater than 0.05
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Geopandas Basics

Example Problems

Solution 1

geo_df['statedArea']=geo_df.ALAND10+geo_df.AWATER10

geo_df['computedArea']=geo_df.geometry.area

geo_df['areaDiff']=geo_df['statedArea']-geo_df['computedArea']

geo_df['abs_areaDiff']=geo_df['areaDiff'].abs()

geo_df['frac_areaDiff']=geo_df['abs_areaDiff']/geo_df['statedArea']

geo_df['perc_areaDiff']=geo_df['frac_areaDiff']*100

geo_df['perc_areaDiff'].max()

Out:0.10317568566038449

geo_df.query('perc_areaDiff>0.1')

geo_df.query('perc_areaDiff>0.1').plot()

geo_df.query('perc_areaDiff>0.08').plot()

geo_df.query('perc_areaDiff>0.05').plot()

Western Illinois is the worst part of the projection
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Geopandas Basics

Example Problems

Problems 2

1 Identify neighboring PUMA regions with a GeoDataFrame
(Hint: you can convert the Shapely polygons to PySAL
polygons)
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Geopandas Basics

Example Problems

Solution 2

poly1=ps.lib.cg.asShape(geo_df.geometry[0])

f=lambda poly2: ps.lib.cg.get_shared_segments(poly1,ps.lib.cg.asShape(poly2))

geo_df['sharedSegments']=geo_df.geometry.map(f)

def listFilter(x):

if x==[]:

return False

else:

return True

geo_df[geo_df['sharedSegments'].map(listFilter)]
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GeoPandas for Combined Spatial and Numerical Analysis

Extending a GeoDataFrame

Using the Pandas merge with the spatial frame in the right position
returns a DataFrame which would mean giving up our spatial
indexing, CRS, and plotting!

GeoPandas has its own implementations of many standard pandas
analysis functions that accept the same options

Let’s start from the reduced DataFrame that was computed earlier
using the PUMS weights

housingdf['weightedNP']=housingdf['WGTP']*housingdf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame(pumaAvgNPArray, columns=['avgNP']).reset_index()
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GeoPandas for Combined Spatial and Numerical Analysis

Extending a GeoDataFrame

AvgNPdf has the same number of records as our geo df table
because we have made use of groupby

Join is 1-1 and can be done as an INNER JOIN

The merge function returns a GeoDataFrame

fulldf=geo_df.merge(avgNPdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

type(fulldf)

Out: geopandas.geodataframe.GeoDataFrame

fulldf.head()
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GeoPandas for Combined Spatial and Numerical Analysis

GeoDataFrame Queries

Joined data can subsequently be filtered as usual

fulldf.query('avgNP>2.9')
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GeoPandas for Combined Spatial and Numerical Analysis

Choropleth Plotting

fulldf.plot(column='avgNP')
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GeoPandas for Combined Spatial and Numerical Analysis

Choropleth Plotting

fig, ax = plt.subplots(1, 1)

fulldf.plot(column='avgNP', ax=ax, legend=True)
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GeoPandas for Combined Spatial and Numerical Analysis

Filtered Choropleth Plotting

fig, ax = plt.subplots(1, 1)

fulldf.query('avgNP>2.2').plot(column='avgNP', ax=ax, legend=True)



Geospatial Analysis with High Performance Computing Resources

GeoPandas for Combined Spatial and Numerical Analysis

Spatial Index Based Filtering

Sometimes, we want to analyze explicit spatial subsets

We could define a mask and test for inclusion row by row

It is much easier to use the spatial index that already exists

fig, ax = plt.subplots(1, 1)

fulldf.cx[250000:,450000:]

returns only records with some portion of the polygon east of 250000 and north of

450000 (in the projected coordinate system)
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GeoPandas for Combined Spatial and Numerical Analysis

Spatial Index Based Filtering

Plotting works the same way and allows us to focus our attention
on areas of interest

fig, ax = plt.subplots(1, 1)

fulldf.cx[250000:,450000:].plot(column='avgNP', ax=ax, legend=True)
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GeoPandas for Combined Spatial and Numerical Analysis

Spatial Index Based Filtering

The result can be combined with relational / numerical filtering of
values to find records of interest

fig, ax = plt.subplots(1, 1)

filteredData=fulldf.cx[250000:,450000:].query('avgNP>2.5')

filteredData.plot(column='avgNP', ax=ax, legend=True)
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Spatial Joins in GeoPandas using R-Tree Indexing

Spatial Joins for linking geographies

It is normal to deal with multiple spatial feature sets in
geospatial analysis

Often, different data is attached to each feature and, in order
to link data across scales or express connective relationships,
it is necessary to perform spatial joins

Spatial Joins can be thought of as a way of forming a join
between two tables of discrete features while using complex
spatial relationships as the join criterion rather than using
matching keys

To understand this we will need a second data set that we can
join to the first

shp_path_t='tl_2018_17_tract.shp'

dft=gpd.read_file(shp_path_t)

dft=dft.to_crs({'init': 'epsg:26971'})



Geospatial Analysis with High Performance Computing Resources

Spatial Joins in GeoPandas using R-Tree Indexing

Examining our two geographies

If two feature sets were the same, comparing them would be uninteresting (or at
least very easy)
It is important to make sure that both are using the same projection

dft.cx[300000:,600000:].plot()

fulldf.cx[300000:,600000:].plot()
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Spatial Joins in GeoPandas using R-Tree Indexing

Adding some simple data to the tract level geography

In the name of expedience, we will append some randomly
generated data to our tract GeoDataFrame

import numpy as np

dft['tract_score']=np.random.normal(1000,150,dft.shape[0])

dft.head()
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Spatial Joins in GeoPandas using R-Tree Indexing

How is a spatial join computed and what does that have to
do with GEOS/GDAL?

Spatial join conditions are set relationships between the
objects in the geometry column

In order to determine if two rows “match”, the GEOS libraries
are called on to evaluate the relationship between the two
geometric objects being compared

For example, two polygons may need to be tested to see if
they overlap (i.e. have a nonempty intersection)

GEOS contains functions for determining the intersection of
two polygonal interiors for the purpose of determining
intersection and containment (which are the join options
supported by GeoPandas)
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Spatial Joins in GeoPandas using R-Tree Indexing

R-Tree Spatial Indexing

For large tables of polygons (or other shapes), the intersection
determining procedure of GEOS is still not fast enough and a
spatial index is required

As such the sjoin function in GeoPandas can be executed
either using GEOS or using a spatial index like an R-Tree

R-Tree is a data structure that (imperfectly) covers the space
of possible set operations between polygons,

This is directly analogous to what a binary search tree does
for a key column in a traditional relational database table (or
in Pandas for that matter)
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Spatial Joins in GeoPandas using R-Tree Indexing

rtree library Dependency

By evaluating set relationships using an R-Tree spatial index,
match operations can be accelerated by orders of magnitude

In order for the RTree version of sjoin to work, GeoPandas
requires an additional library: rtree

rtree is a wrapper for a C library libspatialindex

As such, we will need to compile libspatialindex and link it to
our python distribution
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Spatial Joins in GeoPandas using R-Tree Indexing

Basic Join Syntax

gpd.sjoin(df1,df2,how=, op=)

how is analogous to how for relational joins except that it also
specified which geometry column is retained

Options: left (df1 geometry is kept and all records from df1), right
(df2 geometry is kept and all records from df2), inner (df1 geometry
is kept but only matching records from df1)

on is implicit since there is only one GeoSeries per GeoDataFrame

op determines the spatial rule for matching (explanation below for
the left and inner cases)

Options: intersects (any overlap), contains (df1 object entirely
surrounds df2 object), within (df2 object entirely surrounds df2
object)
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Spatial Joins in GeoPandas using R-Tree Indexing

Basic Join Syntax

joined_data=gpd.sjoin(tractdf,pumsdf,how='left',op='intersects')

Produces a spatially joined GeoDataFrame where the geometry column

retained is the tract level geometry and any records associated with

PUMAs that it intersects would be appended.
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Spatial Joins in GeoPandas using R-Tree Indexing

Join Example: Multiple Matches

joined_data.shape[0]

Out:493

tractdf.shape[0]

Out:287

joined_data.query('TRACTCE=="803500"')

This result (the joined data table) has the same number of tracts

included as the original filtered tract data, 286.
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Spatial Joins in GeoPandas using R-Tree Indexing

Join Example: Grouped Data

def f(x):

a=x['avgNP'].max()

y=x.query('avgNP=='+str(a))

return y

result=joined_data.groupby(['TRACTCE']).apply(f)

fig, ax = plt.subplots(1, 1)

result.plot(column='avgNP', ax=ax, legend=True)
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Spatial Joins in GeoPandas using R-Tree Indexing

Join Example: Appended Columns

fig, ax = plt.subplots(1, 1)

result.plot(column='tract_scor', ax=ax, legend=True)
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Spatial Joins in GeoPandas using R-Tree Indexing

Join Example: Filtering on Joined Data

fig, ax = plt.subplots(1, 1)

filt_result=result.query('avgNP>2.6&tract_scor>1000')

filt_result.plot(column='tract_scor', ax=ax, legend=True)



Geospatial Analysis with High Performance Computing Resources

Parallelization of Spatial Joins

Parallelizable Aspects of the Spatial Join Problem

In what follows, we will discuss methods of spatial join acceleration
developed for data science applications by
Ravi Shekhar (https://towardsdatascience.com/
geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8)
Joris Van den Bossche and Mathew
Rocklin(https://matthewrocklin.com/blog/work/2017/09/
21/accelerating-geopandas-1)
These are by no means exhaustive of the options for parallelizing
spatial joins. There is a whole body of work on parallelization for
the underlying C code. However, these methods are python-centric
and can be understood without a deep knowledge of C or MPI.

https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8
https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8
https://matthewrocklin.com/blog/work/2017/09/21/accelerating-geopandas-1
https://matthewrocklin.com/blog/work/2017/09/21/accelerating-geopandas-1
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Parallelizable Aspects of the Spatial Join Problem

Each test for intersection is independent of all others pairs of
polygons being compared

Multiprocessing versus Multithreading with GDAL/OGR and
R-Tree

RTree Serving

DataFrame Subclassing
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Parallelization of Spatial Joins

What is Dask?

Dask is a code preprocessing tool for data processing flows that
maps a Python algorithm into a graph of tasks.

1 The task graph generated represents each calculation on each
data input as a task

2 The task graph is then simplified to something that can run
more efficiently in parallel

3 Finally, the graph is submitted to a scheduler that can run the
calculation to get answers as they are needed

Dask implements optimized graph simplifications for specific
libraries (NumPy and Pandas)
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Parallelization of Spatial Joins

What is a Dask Scheduler?

After generating the task graph, Dask then calls a different Python
library to run the parallel calculation as C code. The library used
depends on the scheduler that you set when creating the Cluster

object or calling compute.

threading

multiprocessing

dask.distributed → mpi4py

mpi4py is the only option that can make effective use of multiple
nodes on a shared HPC cluster. In the single node case, there is a
choice (in general) between threading and multiprocessing that will
be discussed more below.
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Dask DataFrames and partitions

The parallelization strategy that we use depends on the objects
that we are manipulating.* We will focus on the Dask DataFrame
as it is more relevant to the spatial join

For a spatial join, the primary axis of decomposition is into
rows that can each be compared to each row of a target
GeoDataFrame

Dask DataFrames decompose Pandas DataFrames into row
batches and distributes them for individual calculations

Each batch becomes a conceptually independent calculation
that we call a partition

Each partition should have the same function called against it
in a given parallel operation

*To handle fast raster computations, we could distribute NumPy ndarray objects

broken into blocks.
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map partitions as an interface for distributed joins

The Dask DataFrame is a viable parallelization strategy for spatial
joins as long as one of the tables is a coarser partition (i.e.
smaller) than the other.

To implement the comparison of a subtable join to the target
second table we can define a function custom join

custom join has to operate on a Pandas DataFrame (which
will be its first argument) and load a target GeoDataFrame
from a file for the second dataset*

Because the partitioning of Dask DataFrame is optimized for
a Pandas DataFrame, we need to use a representation of the
source GeoDataFrame as a Pandas DataFrame with the
geometry coded as a sequence of text or numeric columns

*functional interface and data passing strategy due to Ravi Shekhar
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Parallelization of Spatial Joins

map partitions as an interface for distributed joins

The custom join function would take a dataframe as its first
argument and then a sequence of column references (so that
the source dataframe is arbitrary up to the geometry
serialization (in our simple case we will use the name of a
single geometry column)

Finally, when executing the computation in Dask we would
call sourceGDF.map partitions(custom join, col1,

col2, ... , meta=(outputCol,np.float64)) and it
would execute the function on each partition

The meta tuple is used to fix a name and datatype for the
output column instead of leaving it up to Dask to infer. The
advantage of np.float64 is that is permits NaNs for
unmatched rows.



Geospatial Analysis with High Performance Computing Resources

Parallelization of Spatial Joins

Choosing a Dask Scheduler

GDAL/OGR and libspatialindex are NOT threadsafe therefore
the threading engine is not an option

threading is the default option for Dask DataFrame because
Pandas DataFrames themselves regularly release the GIL and
threadsafe

Therefore, to make sure that you handle data in a way that is
consistent you need to generate a new process for each
calculation
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Choosing a Dask Scheduler

mpi4py and multiprocessing both produce new processes
(and an independent python interpreter) for each partition of
the data and as such can be used safely

This does mean that RTrees and target GeoDataFrames need
to be built separately in each worker process increasing the
memory overhead (unless an explicit shared memory construct
were carefully invoked)

On a single node, multiprocessing is probably the best
choice as it allows for separate core to being work on separate
join components safely as long as you have enough memory

Across multiple nodes, dask.distributed supported by
mpi4py is the only practical choice
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Practical Implementation

We begin by converting the GeoDataFrame to a Pandas
DataFrame. One approach by which this can be done is simply
using the DataFrame constructor to make the geometry column
into a column of Shapely objects (a valid column in a Pandas
DataFrame) rather than a GeoSeries (which includes additional
metadata and indexing data structures). We will focus on the
example join above of tractdf and pumsdf

tdf_pandas=pd.DataFrame(tractdf)

tdf_dask=dd.from_pandas(tdf_panadas, npartitions=8)
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Parallelization of Spatial Joins

Practical Implementation

The resulting dask DataFrame has been allocated a number of
partitions such that one partition per worker can be employed and
have a dedicated core for each worker on an 8 core system. To
scale this up we could simply use a system with more cores and
more partitions. Note that we are partitioning the tract DataFrame
because it has finer spatial partitions and so more rows. For a
larger DataFrame, we could use 40 cores (in our sbatch request)
and 40 partitions.

#tractdf should be a suitably projected GeoDataFrame

tdf_pandas=pd.DataFrame(tractdf)

tdf_dask=dd.from_pandas(tdf_panadas, npartitions=40)



Geospatial Analysis with High Performance Computing Resources

Parallelization of Spatial Joins

Practical Implementation

With a partitioned dataframe in hand, we can define a join function

def custom_join(df, geometry, shp_path):

import geopandas as gpd

import pandas as pd

#read in PUMA df as GeoPandas DF

pumaGDF=gpd.read_file(shp_path)

pumaGDF.to_crs({'init': 'epsg:26971'})

#convert df (partition of tract df) back to geopandas DF

tractGDF=gpd.GeoDataFrame(df,geometry=geometry)

#with RTrees built for each, execute usual sjoin

joined_data=gpd.sjoin(tractGDF,pumaGDF,how='left',op='intersects')

#convert joined DF back to DaskDF

sjoinOutputDask=pd.DataFrame(joined_data)

return sjoinOutputDask
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Parallelization of Spatial Joins

Practical Implementation

Finally, we can execute the code using the map partitions Dask
function

#define an empty dataframe with appropriate column names

#and datatypes for the join output

EmptyDF=...

with dask.config.set(scheduler='processes'):

tdf_dask.map_partitions(custom_join, 'geometry' ,'aPath', meta=EmptyDF)

joined_data=gpd.GeoDataFrame(tdf_dask,geometry='geometry')
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Practical Implementation

Improvements

We can reduce memory overhead between processes by only
loading geopandas and pandas initially in the outer process

We can also reduce memory overhead by creating shared
memory construct for sharing out the target dataframe (the
one not being partitioned) to the worker processes

We can even build a central RTree server and share out the
target RTree to minimize records shared between processes
(described in the next slide)

All of the converting back and forth is wasteful. We are better
off subclassing Dask DataFrame directly https:

//docs.dask.org/en/latest/dataframe-extend.html

and having partitions operate directly on sub GeoDataFrames

https://docs.dask.org/en/latest/dataframe-extend.html
https://docs.dask.org/en/latest/dataframe-extend.html
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Practical Implementation

None of this work makes much sense without a very large
input data set.

RTrees are already very efficient search mechanisms.

Each partition should be on the order of at least 1 GB, per
usual Dask chunksize recommendations for workers.
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A Different Approach to Interprocess Communication

Alternatively one can generate one RTree for each
GeoDataFrame and then have interprocess communication in
the form of an RTree server using multiprocessing manager to
share out the relevant RTree filtered joins to the worker
processes

https://sgillies.net/2008/10/30/

multiprocessing-with-rtree.html

This requires a substantial amount of additional work to make
sure that the memory access is done in a safe way without
introducing too much overhead

The key idea is register needed geometric operations with a
multiprocessing manager subclass and then call them from the
remote workers

https://sgillies.net/2008/10/30/multiprocessing-with-rtree.html
https://sgillies.net/2008/10/30/multiprocessing-with-rtree.html
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